COMMELINIDAE Takht.

Takhtajan, Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 171. 4 Feb 1967


[Arecaceae+Dasypogonaceae+[Commelinanae+Cyperales]]


ARECACEAE Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 266. Jan-Apr 1820, nom. cons.

Palmae Juss., Gen. Plant.: 37. 4 Aug 1789, nom. cons. et nom. alt.; Rhapidaceae Bercht. et J. Presl, Přir. Rostlin: 266. Jan-Apr 1820 [‘Rhapideae’]; Borassaceae Schultz Sch., Nat. Syst. Pflanzenr.: 318. 30 Jan-10 Feb 1832 [’Borasseae’]; Cocosaceae Schultz Sch., Nat. Syst. Pflanzenr.: 316. 30 Jan-10 Feb 1832 [’Cocoineae’]; Coryphaceae Schultz Sch., Nat. Syst. Pflanzenr. 317. 30 Jan-10 Feb 1832; Sabalaceae Schultz Sch., Nat. Syst. Pflanzenr.: 317. 30 Jan-10 Feb 1832 [’Sabalineae’]; Sagoaceae Schultz Sch., Nat. Syst. Pflanzenr.: 316. 30 Jan-10 Feb 1832 [’Sagoineae’]; Phoenicaceae Burnett, Outl. Bot.: 395, 1155. Feb 1835; Phoenicales Burnett, Outl. Bot.: 1155. Feb 1835 [’Phoeniciales’]; Calamaceae Kunth ex Perleb, Clav. Class.: 13. Jan-Mar 1838 [’Calameae’]; Lepidocaryaceae Mart., Hist. Nat. Palm. 3: 196. 23 Sep 1838 [’Lepidocaryinae’]; Phytelephantaceae Mart. ex Perleb, Clav. Class.: 11. Jan-Mar 1838 [’Phytelephanteae’]; Arecales Bromhead in Mag. Nat. Hist., ser. II, 4: 333. Jul 1840; Phoenicopsida Brongn., Enum. Plant. Mus. Paris: xv, 15. 12 Aug 1843 [’Phoenicoideae’]; Nypaceae Brongn. ex Le Maout et Decne., Traité Général Bot.: 624. Jan-Apr 1868 [’Nipaceae’]; Ceroxylaceae Vines, Stud. Text-book Bot. 2: 544. Mar 1895 [’Ceroxylinae’]; Manicariaceae O. F. Cook in Contr. U.S. Natl. Herb. 13: 140. 22 Jun 1910; Acristaceae O. F. Cook in Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913; Chamaedoreaceae O. F. Cook in Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913 [’Chamaedoraceae’]; Geonomataceae O. F. Cook in Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913 [’Geonomaceae’]; Iriarteaceae O. F. Cook et Doyle in Contr. U.S. Natl. Herb. 16: 225. 13 Feb 1913; Malortieaceae O. F. Cook in Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913; Pseudophoenicaceae O. F. Cook in Contr. U.S. Natl. Herb. 16: 243. 14 Mai 1913; Synechanthaceae O. F. Cook in Contr. U.S. Natl. Herb. 16: 252. 14 Mai 1913; Cocosales Nakai, Hisi-Shokubutsu: 48. 1930 [’Cocoales’]; Arecanae Takht., Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 525. 4 Feb 1967; Arecidae Takht., Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 525. 4 Feb 1967

Genera/species 184/2.325–2.385

Distribution Chiefly pantropical, some species in subtropical regions and a few species in warm-temperate areas.

Fossils The oldest records of Arecaceae leaves and pollen date from the Coniacian and the Santonian. Stems, leaves, seeds, pollen grains (e.g. Echimonocolpites, Longapertites, Mauritiidites, Monocolpites and Spinizonocolpites) and fruits are known from the Maastrichtian onwards, and especially from the Paleocene and Eocene. Flowers of possibly arecaceous origin have been found in Campanian to Maastrichtian layers in Portugal. Fossil records of Nypa and the extinct Nipadites usually consist of pollen grains (Spinizonocolpites) and date back to the Maastrichtian. Numerous palm fossils, such as Arecoideostrobus, Hyphaeneocarpon, Nipadites, Palmocarpon, Palmoxylon, Parapalmocaulon and Sabalophyllum, are known from the Maastrichtian Deccan Intertrappean Beds in India. These consist of stems, leaves, fruits, etc. Finally, a large number of fossils have been identified as belonging in extant genera.

Habit Usually monoecious, polygamomonoecious or dioecious; male and female flowers isomorphic or heteromorphic (sometimes bisexual); evergreen, woody (trees, shrubs or lianas), usually with monopodial growth (rarely branched). Roots or leaflets sometimes modified into spines (spine roots). Aerial roots (stilt roots, prop roots or pneumatophores) present in many species. Nypa consists of mangrove plants. Hyphaene has dichotomous branching.

Vegetative anatomy Phellogen? Wood consisting of primary tissue originating in apical meristem; without or almost without secondary lateral growth. Endodermal cell walls with annular or U-shaped thickenings. Cambium absent (stem sometimes increasing in thickness due to primary growth). Vascular bundles scattered in stem parenchyma. Secondary lateral growth absent (sometimes weak lateral growth by divisions in ground tissue). Vessels present in root, stem and leaves (vessels often very long, up to several metres). Vessel elements with scalariform or simple perforation plates (simple perforation plates absent in, e.g., Nypa); lateral pits? Imperforate tracheary xylem elements tracheids, septate or non-septate; fibres partly associated with xylem and phloem, partly scattered in parenchyma. Wood rays? Axial parenchyma? Wood sometimes fluorescent. Sieve tube plastids usually P2cs type, with cuneate protein crystals and starch grains (rarely P2c type, with cuneate protein crystals, without starch or protein filaments, or P2cfs, with cuneate protein crystals, starch and protein filaments). Nodes multilacunar with several leaf traces. Parenchyma cells often sclerified or lignified (in some groups, e.g. Metroxylon, starchy). Special cells, isodiametric stegmata connected to fibres, with cap-shaped or spherical and often spinulate silica bodies. Calciumoxalate usually as raphides (rarely as crystal sand or solitary crystals).

Trichomes Lepidote and peltate hairs abundant.

Leaves Alternate (rarely distichous or tristichous), seemingly pinnately compound (rarely repeatedly pinnately compound) or seemingly palmately compound (palmate or costapalmate with segment), or simple, pinnately or palmately lobed (rarely entire or bifid), usually differentiated into pseudopetiole and pseudolamina; hastulae often present at junction between pseudopetiole and pseudolamina; rhachis in some species prolonged and modified into whip-like tendril, cirrhus, with plicate, induplicate (splitting along adaxial folds) or reduplicate (splitting along abaxial folds; rarely splitting between folds or non-splitting) ptyxis; leaflets reduplicate: Λ-shaped, or induplicate: V-shaped. Leaves often very large (in Raphia up to more than 25 m). Stipules absent; leaf sheath well developed, closed, often long and wide (sometimes with prickles or spines developed from modified adventitious roots or leaflets), in some species with a ligule-like structure in transition zone to pseudopetiole or pseudolamina. Central pseudopetiole vascular bundles with one or two phloem strands. Venation parallelodromous (seemingly pinnate or palmate). Stomata usually tetracytic; subsidiary cells with oblique divisions. Cuticular wax crystalloids as longitudinally aggregated rodlets (Strelitzia type), chemically dominated by wax esters. Mesophyll with idioblasts containing calciumoxalate as raphides, crystal sand and/or solitary prismatic crystals. Epidermal cells often with silica bodies. Leaf margin usually entire (rarely serrate).

Inflorescence Usually axillary (sometimes terminal), simple or compound panicle, spike- or spadix-like surrounded by one or several spatha-like bracts (inflorescence in some species of Calamus transformed into a climbing flagellum). Partial inflorescences of various shape, usually cymose. Prophyll bicarinate. Floral prophylls (bracteoles) on branches lateral (ultimate inflorescence units cincinni).

Flowers Usually actinomorphic (rarely zygomorphic). Hypogyny. Tepals usually 3+3 (sometimes 2+2; rarely several whorles or up to ten spiral tepals), usually with imbricate (sometimes valvate; inner tepals in, e.g., Cocos with valvate) aestivation, free or more or less connate (in, e.g., Coccothrinax all tepals connate into tube); outer tepals usually sepaloid; inner tepals usually petaloid. Nectar secreted from septal nectaries or androecial nectaries at staminal bases. Disc absent.

Androecium Stamens usually 3+3 (rarely three, antesepalous or antepetalous, sometimes more than six, in Phytelephas and Ammandra to more than 1.000). Filaments usually narrow, erect or inflexed in bud, free or connate at base into tube, free from or more or less adnate to tepals. Anthers basifixed or dorsifixed, usually straight (rarely spirally twisted), often versatile, tetrasporangiate, introrse or latrorse (rarely extrorse), usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pores). Tapetum secretory, with binucleate cells. Female flowers usually with few to numerous staminodia, free or connate (sometimes adnate to perianth or gynoecium; sometimes absent).

Pollen grains Microsporogenesis simultaneous (by centripetal or centrifugal cell wall production) or successive. Pollen grains monoporate or diporate, monosulcate, trichotomosulcate, zonosulcate etc. (17 different aperture types found, very rarely inaperturate), shed as monads, bicellular at dispersal. Exine tectate, semitectate or intectate, with columellate to granular infratectum, perforate, reticulate, fossulate or scrobiculate, rugulate, gemmate or with other supratectal processes, or smooth.

Gynoecium Carpels (one to) three or four (to ten), free or more or less connate. Ovary superior, usually trilocular or unilocular (apocarpy) with one fertile locule (pseudomonomerous; rarely up to decemlocular). Stylodia (styluli) (one to) three (or four), free or more or less connate. Stigmas usually erect or reflexed (rarely indistinct), papillate, Dry type. Male flowers often with pistillodia.

Ovules Placentation subbasal, lateral or subapical. Ovules usually one per carpel (rarely one per ovary), anatropous, hemianatropous, campylotropous or orthotropous, apotropous, bitegmic, crassinucellar. Micropyle exostomal, endostomal or bistomal. Outer integument usually eight or more cell layers thick (in Nypa ten cell layers thick). Inner integument usually two or three (rarely up to seven) cell layers thick. Parietal cell formed from archesporial cell. Parietal tissue one to six cell layers thick (sometimes absent). Nucellar cap often formed by periclinal divisions of megasporangial epidermis. Megagametophyte usually monosporous, Polygonum type (rarely disporous, Allium type). Antipodal cells persistent, often proliferating. Endosperm development ab initio nuclear. Endosperm haustorium micropylar. Embryogenesis onagrad or asterad. Polyembryony occurring in some species.

Fruit A usually single-seeded (rarely two- to ten-seeded; sometimes dry) drupe (sometimes with seed and endocarp almost fused; in some species very large: Lodoicea having seeds with a length of up to 50 cm and a weight of up to 18 kg) or a berry (sometimes dry); often with persistent style and/or stigmas.

Seeds Aril sometimes present. Sarcotesta sometimes present. Testa usually with two outer layers thickened. Tegmen? Perisperm not developed. Endosperm copious, often ruminate, with aleurone, lipids and hemicellulose; starch absent; endosperm cells thick-walled. Embryo short, wide, without chlorophyll. Cotyledon one, not photosynthesizing. Cotyledon hyperphyll elongate to compact, not assimilating. Hypocotyl internode and mesocotyl absent. Coleoptile present or absent. Radicula stout, branched, persistent or ephemeral, with short collar (sometimes with roots). Germination cryptocotylar.

Cytology n = 13–18 (rarely more); n = 13, 14 (Calamoideae), n = 17? (Nypa), n = 18 (Coryphoideae), n =13 (Ceroxyloideae), n = 16 (Arecoideae) – Polyploidy rarely occurring (e.g. n = 303±3 in Voaniola).

DNA

Phytochemistry Flavone-C-glycosides, flavone-5-glycosides, flavone sulfate, flavonol sulfate, luteolin sulfate, cyanidin, tricine (tricetine-3’,5’-dimethyl ether; frequent), diterpenes, sesquiterpenes, tannins, catechins, proanthocyanidins, triterpene saponins, or steroidal saponins present. Flavonols (kaempferol, quercetin, luteolin, etc.) and pyrimidine alkaloids rare. Ellagic acid and cyanogenic compounds not found. Lignins with p-coumarylic alcohol and coniferyl and sinapyl monomers.

Use Ornamental plants, fruits (Cocos, Phoenix, Salacca), vegetables (Euterpe etc.), starch sources (Metroxylon), sugar and alcohol (Arenga, Borassus, Caryota, Phoenix), stimulants (Areca catechu), medicinal plants, fruit-oils and fats (Cocos, Elaeis, Orbigyna), waxes (Ceroxylon, Copernicia), fibres for roofing, textiles and carpets (Cocos), buttons and carvings (seeds of Phytelephas), tools, weapons, basketry, handicraft, timber, carpentries, jewellery, perfumes.

Systematics The subdivision below is founded on Dransfield & al. (2005) and the strict consensus tree in Baker & al. (2009). Calamoideae are sister to all other Arecaceae. A weakly supported sister-group relationship between Arecaceae and Dasypogonaceae was identified by Barrett & al. (2013).

Calamoideae Beilschm. in Flora 16(Beibl. 7): 55, 105. 14 Jun 1833 [‘Calameae’]

17/>540. Pantropical, with their highest diversity in tropical Asia. Root periderm absent. Endodermal cells walls usually thickened. Leaves with reduplicate ptyxis. Adaxial subepidermal non-vascular fibres present. Longitudinal bundles bridging to adaxial epidermis via vertically elongate sclereids. Lateral vascular bundles adaxial to longitudinal bundles. Parenchyma cells adjacent to protoxylem usually inflated. Epidermal cells rectangular, with sinuate anticlinal walls. Flowers inserted in dyads. Tepals usually connate. Inner tepals with valvate aestivation. Pollen grains in Calameae equatorially disulcate. Ovary and fruit covered with reflexed scales. Stylodia usually separate (sometimes absent). Placentation basal. Ovule probably epitropous, with spirally twisted funicle. Fruit enclosed by reflexed scales. Endocarp usually thin. Seeds one to three. Sarcotesta usually thick. n = 13, 14. – Ancistrophyllinae are sister-group to the remaining Calamoideae.

Eugeissoneae W. J. Baker et J. Dransf. in Syst. Bot. 25: 318. 5 Jun 2000

1/6. Eugeissona (6; E. ambigua, E. brachystachys, E. insignis, E. minor, E. tristis, E. utilis; Thailand, the Malay Peninsula, Borneo). – Polygamous.

[Lepidocaryeae+Calameae]

Lepidocaryeae (Mart.) Dumort., Anal. Fam. Plant.: 55. 1829

7/c 50. Raphiinae Wendl. in J. Bot. 3: 383. 1 Dec 1865 [‘Raphieae’]. Raphia (c 20; tropical and southern Africa, Madagascar, one species, R. taedigera, from Nicaragua to Brazil). – Mauritiinae Meisn., Plant. Vasc. Gen.: Tab. Diagn. 354, Comm. 265. 13-15 Feb 1842 [‘Mauritieae’]. Mauritia (2; M. carana, M. flexuosa; tropical South America), Mauritiella (4; M. aculeata, M. armata, M. macroclada, M. pumila; northern tropical South America), Lepidocaryum (1; L. tenue; western Amazonia in Brazil). – Ancistrophyllinae Becc. in Ann. Roy. Bot. Gard. Calcutta 12(2): 209. 1918 [‘Ancistrophyllae’]. Oncocalamus (5; O. djodu, O. macrospathus, O. mannii, O. tuleyi, O. wrightianus; Cameroon, Gabon), Laccosperma (6; L. acutiflorum, L. korupensis, L. leave, L. opacum, L. robustum, L. secundiflorum; Ghana, Nigeria, Cameroon, Gabon), Eremospatha (11; tropical West and Central Africa). – Pantropical.

Calameae (Kunth) Lecoq et Juill., Dict. Rais. Term. Bot.: 98. 1831

9/>485. Korthalsiinae Becc. in Ann. Roy. Bot. Gard. Calcutta 12(2): 209. 1918 [‘Korthalsieae’]. Korthalsia (30; Burma, the Andaman Islands, Indochina, Malesia to New Guinea). – Salaccinae Becc. in Ann. Roy. Bot. Gard. Calcutta 12(2): 207. 1918 [‘Zalacceae’]. Eleiodoxa (1; E. conferta; West Malesia), Salacca (22; Yunnan, Burma, Southeast Asia, West Malesia to the Philipppines). – Metroxylinae Blume in Rumphia 2: 176. Jan-Aug 1843 [‘Metroxyleae’]. Metroxylon (7; M. amicarum, M. paulcoxii, M. sagu, M. salomonense, M. upoluense, M. vitiense, M. warburgii; East Malesia to New Guinea, Solomon Islands, Vanuatu, Fiji, Samoa). – Plectocomiinae J. Dransf. et N. W. Uhl in Principes 30: 5. 20 Feb 1986. Myrialepis (1; M. paradoxa; the Malay Peninsula, Sumatra), Plectocomiopsis (6; P. corneri, P. geminiflora, P. mira, P. songthanhensis, P. triquetra, P. wrayi; southern Burma, Thailand, West Malesia), Plectocomia (16; the Himalayas, Burma, southern China, Southeast Asia, West Malesia to the Philippines). – Pigafettinae J. Dransf. et N. W. Uhl in Principes 30: 5. 20 Feb 1986. Pigafetta (2; P. elata, P. filaris; Central and East Malesia). – Calaminae Meisn., Plant. Vasc. Gen.: Tab. Diagn. 354, Comm. 265. 13-15 Feb 1842 [‘Calameae’]. Calamus (>400; tropical Asia to Queensland, Solomon Islands, Vanuatu, Fiji, one species, C. deerratus, in tropical West and Central Africa, with their highest diversity in Malesia), Ceratolobus (6; West Malesia); Daemonorops (c 115; tropical Asia, with their largest diversity in West Malesia), Pogonotium (3; West Malesia), Retispatha (1; R. dumetosa; Borneo). – Tropical Africa, tropical Asia to Samoa, with their largest diversity in West Malesia. Pollen grains equatorially disulcate. – Korthalsiinae are sister-group to the remaining Calameae, and Metroxylinae are sister to the clade [Plectocomiinae+[Pigafettinae+Calaminae]]. Calameae are usually climbing by a cirrhus, a prolonged hooked leaf apex and often by a flagellum produced by the spiny modified inflorescence axis, which is adnate to the leaf sheath at the nearest node above. They are usually dioecious.

[Nypa+[Coryphoideae+[Ceroxyloideae+Arecoideae]]]

Stevens (2001 onwards) lists the following features common to this clade: primary growth sustained; presence of root periderm; straight anticlinal epidermal walls; and absence of adaxial subepidermal non-vascular fibres.

Nypoideae Griff., Palms Brit. E. Ind.: 7. post 3 Sep 1850 [‘Nipinae’]

1/1. Nypa (1; N. fruticans; Sri Lanka, Bengal, Southeast Asia, Malesia, Melanesia to New Guinea, northern Queensland and Melanesia). – Fossils of Nypa are known from the Late Cretaceous and the Early Paleogene of many parts of the world (e.g. Tasmania and the London Clay flora) and indicate an almost worldwide former distribution. Branching dichotomous. Endodermal cell walls not or only little thickened. Silica bodies small, hat-shaped. Leaves pseudopinnate, with reduplicate ptyxis. Veins sinuate, irregular, bridging to epidermis via vertically elongated sclereids. Sheaths of transverse veins sclereidal. Hypodermal cells several layered, with lignified walls, hexagonal, transversely elongate. Epidermal cells hexagonal to fusiform. Hydathodes present. Stomatal guard cells in cross-section with several ledges. Inflorescence axis adnate to internode above. Male inflorescence spike. Female inflorescence capitate. Inner tepals free. Tepals in male flowers 3+3, undifferentiated. Stamens three, antesepalous. Filaments connate. Anthers extrorse. Staminodia absent. Pollen grains zonasulcate (sulcus encircling). Tepals in female flowers absent? Pistil composed of three (or four) connate carpels with conduplicate margins. Pistillodium absent. Placentation laminar to submarginal. Outer integument approx. ten cell layers thick. n = 17? – Nypa fruticans, the sole extant species of this clade, is sister to the remaining Arecaceae.

[Coryphoideae+[Ceroxyloideae+Arecoideae]]

The following potential synapomorphies are listed by Stevens (2001 onwards): sieve tubes with compound sieve plates; cell walls of endodermis with U-shaped thickenings; and microsporogenesis simultaneous.

Coryphoideae Burnett, Outlines Bot.: 398. Feb 1835 [‘Coryphidae’]

47/480–490. Tropical, subtropical and warm temperate regions in both hemispheres, with fewer species in South America. Stem usually unbranched. Metaxylem elements in transverse section often more than two. Leaves usually pseudopalmate or costapalmate, with induplicate ptyxis. Mesophyll without free fibre bundles. Longitudinal bundles with adaxially-abaxially elongate bridging sclereids. transverse bundles with broad sheath of fibres. Adaxial vein rib with five or more independent vascular bundles. Inflorescence varying in shape. Inner tepals often with valvate aestivation, usually connate. Microsporocyte usually with ring of callose. Carpels usually free or with connate stylodia (style sometimes present and with three connate or one stylar canal; style sometimes absent). n = 18.

[Chuniophoeniceae+[Corypha+[Caryoteae+Borasseae]]]

This clade is sister-group to the remaining Coryphoideae in Baker & al. (2009).

Chuniophoeniceae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 561. 2006

4/6. Chuniophoenix (3; C. hainanensis: Hainan; C. nana: Hainan, northern Vietnam; C. suoitienensis: southern Vietnam), Kerriodoxa (1; K. elegans; peninsular Thailand), Nannorrhops (1; N. ritchieana; the Arabian Peninsula to Pakistan), Tahina (1; T. spectabilis; northwestern Madagascar). – The Arabian Peninsula to Vietnam. – Chuniophoeniceae are sister to a clade comprising [Corypha+[Caryoteae+Borasseae]].

[Corypha+[Caryoteae+Borasseae]]

Corypheae Martinov, Tekhno-Bot. Slovar: 166. 3 Aug 1820 [‘Coryphineae’]

1/5. Corypha (5; C. lecomtei, C. microclada, C. taliera, C. umbraculifera, C. utan; India, Sri Lanka, Burma, the Andaman Islands, Southeast Asia, Malesia to New Guinea and tropical Australia).

[Caryoteae+Borasseae]

Caryoteae Scheff. in Ann. Jard. Bot. Buitenzorg 1: 142. 1876

2/c 40. Caryota (15; India, Sri Lanka, Burma, southern China, Southeast Asia, Malesia to New Guinea, tropical Australia, Solomon Islands and Vanuatu), Arenga (c 25; the Himalayas, southern China, Southeast Asia, Malesia to New Guinea and Queensland, Taiwan, Ryukyu Islands). – Tropical Asia, tropical Australia, Melanesia. Style absent.

Borasseae Dumort., Anal. Fam. Plant.: 55. 1829

8/22. Bismarckia (1; B. nobilis; Madagascar), Satranala (1; S. decussilvae; Madagascar), Hyphaene (8; tropical Africa, Madagascar, the Mascarene Islands, the Arabian Peninsula, India, Sri Lanka), Medemia (1; M. argun; northeastern Africa); Latania (3; L. loddigesii: Mauritius; L. lontaroides: Réunion; L. verschaffeltii: Rodrigues), Lodoicea (1; L. maldivica; the Seychelles), Borassodendron (2; B. borneense: Borneo; B. machadonis: southern Burma, southern Thailand, the Malay Peninsula), Borassus (5; B. aethiopum, B. akeassii: tropical and southern Africa; B. madagascariensis: Madagascar; B. flabellifer: Sri Lanka to Malesia; B. heineanus: New Guinea). – Tropical regions in the Old World. Usually dioecious. – Lodoicea maldivica has the largest seeds among all seed-plants, weighing up to 15–20(–30) kg and having a length of up to at least 4 dm.

[Phoenix+[Sabal+Cryosophileae]]

This clade is sister-group to Trachycarpeae.

Phoeniceae Horan., Char. Ess. Fam.: 43. 17 Jun 1847

1/14. Phoenix (14; the Canary Islands, the Mediterranean, tropical and subtropical regions in northern and central Africa and Asia east to southern China, the Malay Peninsula and Sumatra).

[Sabal+Cryosophileae]

Sabaleae (Martius) Dumort., Anal. Fam. Plant.: 55. 1829

1/14. Sabal (14; southeastern United States, Mexico, Central America, the West Indies, tropical South America).

Cryosophileae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 561. 2006

11/>80. Chelyocarpus (4; C. chuco, C. dianeurus, C. repens, C. ulei; tropical South America), Itaya (1; I. amicorum; Brazil, Peru), Sabinaria (1; S. magnifica; southern Panamá, northwestern Colombia), Thrinax (4; T. ekmaniana: Cuba; T. excelsa, T. parviflora: Jamaica; T. radiata: Central America, the West Indies), Schippia (1; S. concolor; Belize), Cryosophila (10; western central Mexico to northern Colombia), Trithrinax (4; T. acanthocoma, T. brasiliensis, T. campestris, T. schizophylla; Brazil, Bolivia, Paraguay, Uruguay, Argentina), Zombia (1; Z. antillarum; Hispaniola), Coccothrinax (>50; southeastern Mexico, the West Indies, with their highest diversity on Cuba), Hemithrinax (3; H. compacta, H. ekmaniana, H. rivularis; eastern Cuba), Leucothrinax (1; L. morrisii; Florida Keys, the West Indies). – Tropical America.

Trachycarpeae Satake in Hikobia 3: 121. Oct 1962

19/300–310. Colpothrinax (3; C. aphanopetala: southern Central America; C. cookii: northern Central America; C. wrightii: western Cuba, Isla de la Juventud), Washingtonia (2; W. filifera: arid and semiarid regions in southwestern United States, northwesternmost Mexico; W. robusta: northwestern Mexico), Pritchardia (25–35; Solomon Islands, Fiji, Samoa, Tonga, the Cook Islands, the Tuamotu Islands, the Hawaiian Islands), Copernicia (21; the West Indies, South America, with their largest diversity on Cuba), Brahea (11; Mexico, Central America), Rhapidophyllum (1; R. hystrix; southeastern United States), Maxburretia (3; M. furtadoana, M. gracilis, M. rupicola; peninsular Thailand, the Malay Peninsula), Chamaerops (1; C. humilis; western Mediterranean), Trachycarpus (11; the Himalayas, China, northern Thailand), Guihaia (3; G. argyrata, G. grossefibrosa, G. lancifolia; southern China, northern Vietnam), Rhapis (10; southern China, Southeast Asia), Serenoa (1; S. repens; southeastern United States), Acoelorraphe (1; A. wrightii; Central America), Livistona (c 30; northeastern Africa, the Arabian Peninsula, Ryukyu Islands, tropical and eastern Asia to tropical Australia), Johannesteijsmannia (4; J. altifrons, J. lanceolata, J. magnifica, J. perakensis; Hainan, Vietnam, peninsular Thailand, the Malay Peninsula, northern Sumatra, Borneo), Lanonia (8; Indochina), Pholidocarpus (6; P. ihur, P. kingianus, P. macrocarpus, P. majadum, P. mucronatus, P. sumatranus; peninsular Thailand, the Malay Peninsula, Sumatra, Borneo, the Moluccas), Saribus (9; the Philippines, Raja Ampat Islands, Banggi Island, Sulawesi, the Moluccas, New Guinea, Nggela in Solomon Islands, southernmost New Caledonia), Licuala (c 150; the Himalayas, southern China, Southeast Asia, Malesia to New Guinea and tropical Australia, Vanuatu). – Nearly pantropical. – Colpothrinax is sister to the remaining Trachycarpeae.

[Ceroxyloideae+Arecoideae]

According to Stevens (2001 onwards) Ceroxyloideae and Arecoideae have the following synapomorphies in common: petiole vascular bundles arranged in one or more V’s; sheaths of transverse veins sclereidal; veins sinuate, irregular; and epidermal cells hexagonal to fusiform.

Ceroxyloideae Drude in Bot. Zeitung (Berlin) 35: 632. 28 Sep 1877 [‘Ceroxylinae’]

8/46. Madagascar, the Comoros, northeastern Queensland, Florida, Central America, the West Indies, tropical South America. Leaves pseudopinnate, with reduplicate ptyxis. Flowers solitary along inflorescence rhachis. Tepals sometimes elongate. n = 13. – Phytelephas and its closest relatives have tetramerous flowers with up to c. 1.000 centrifugal stamens (Palandra) and approx. ten carpels. Ceroxyloideae are sister-group to Arecoideae and Cyclospatheae are sister to the clade [Ceroxyleae+Phytelephanteae] (Baker & al. 2009).

Cyclospatheae O. F. Cook in A. P. Northrop, Mem. Torrey Bot. Club 12: 24. 1902

1/4. Pseudophoenix (4; P. ekmanii, P. lediniana, P. vinifera: Hispaniola; P. sargentii: southeastern Florida, eastern Mexico, northern West Indies). – Polygamous.

[Ceroxyleae+Phytelephanteae]

Dioecious.

Ceroxyleae Blatter, Palms Brit. India Ceylon: xvi, 337. 1926 [‘Ceroxylinae’]

4/34. Ceroxylon (12; the Andes from Colombia and Venezuela to Bolivia), Juania (1; J. australis; Juan Fernández Islands); Oraniopsis (1; O. appendiculata; northeastern Queensland), Ravenea (20; Madagascar, the Comoros). – Madagascar, the Comoros, Queensland, western South America.

Phytelephanteae Horan., Char. Ess. Fam.: 38. 17 Jun 1847

3/8. Phytelephas (6; P. aequatorialis, P. macrocarpa, P. schottii, P. seemannii, P. tenucaulis, P. tumacana; southern Panamá, Colombia, northwestern Brazil, Ecuador, Peru, Bolivia), Aphandra (1; A. natalia; eastern Ecuador), Ammandra (1; A. decasperma; western and eastern Colombia). – Northern South America.

Arecoideae Burnett, Outlines Bot.: 401. Feb 1835 [‘Arecidae’]

111/1.260–1.310. Pantropical. Stem with crownshaft formed by elongated leaf sheaths. Leaves with reduplicate ptyxis. Hypodermal cells hexagonal, transversely elongate. Inflorescence with prophylls and one or several bracts. Flowers usually in triads, when monoecious with central female flower and lateral male flowers, or in acervuli, with flowers in two vertical rows. Stylodia usually separate (style sometimes single). n = 16. – The phylogeny within Arecoideae is still uncertain. Either Chamaedoreeae (Comer & al. 2015) or Iriarteeae are sister-group of the remaining Arecoideae. The apical meristem in the aerial stem in Iriarteeae increases its size, the stem gradually growing thicker (stilt roots arising from the lower part of the stem stabilize the otherwise very unstable structure of the plant). The flowers in Chamaedoreeae are often sessile and arranged in acervuli, modified often ebracteate cincinni.

Iriarteeae Drude in Bot. Zeitung (Berlin) 35: 632. 28 Sep 1877 [‘Iriarteae’]

5/31–35. Iriartea (1; I. deltoidea; Central America, tropical South America), Dictyocaryum (3; D. fuscum, D. lamarckianum, D. ptarianum; northern and central Andes, Venezuela), Iriartella (1; I. setigera; northern and western tropical South America), Socratea (5; S. exorrhiza, S. hecatonandra, S. montana, S. rostrata, S. salazarii; Central America, northern and western South America), Wettinia (21–25; Colombia, Venezuela, Ecuador). – Central America, tropical South America.

[Chamaedoreeae+[[Roystonea+[Reinhardtia+Cocoseae]]+[[Podococcus+[Orania+Sclerosperma]]+[Euterpeae+[Pelagodoxeae+[Leopoldinia+[Manicaria+Geonomateae]]]+Areceae]]]]

Chamaedoreeae Drude in Bot. Zeitung (Berlin) 35: 632. 28 Sep 1877 [‘Chamaedorineae’]

5/110–120. Hyophorbe (5; H. amaricaulis, H. lagenicaulis, H. vaughanii: Mauritius; H. indica: Réunion; H. verschaffeltii: Rodrigues), Synechanthus (2; S. fibrosus, S. warscewiczianus; Mexico, Central America, tropical South America), Gaussia (5; G. attenuata, G. gomez-pompae, G. maya, G. princeps, G. spirituana; southern Mexico, Central America, the Greater Antilles), Chamaedorea (100–110; southern Mexico, Central America, the West Indies, tropical South America), Wendlandiella (1; W. gracilis; Brazil, Peru). – The Mascarene Islands, tropical America. – Chamaedoreeae are sister-group to the remaining Arecoideae.

[[Roystonea+[Reinhardtia+Cocoseae]]+[[Podococcus+[Orania+Sclerosperma]]+[Euterpeae+[Pelagodoxeae+[Leopoldinia+[Manicaria+Geonomateae]]]+Areceae]]]

Roystoneeae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 562. 2006 [‘Roystoneae’]

1/11. Roystonea (11; Florida, southern Mexico, Central America, the West Indies, northwestern tropical South America). – Roystonea is sister to [Reinhardtia+Cocoseae] (Comer & al. 2015).

Reinhardtieae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 562. 2006

1/6. Reinhardtia (6; R. elegans, R. gracilis, R. koschnyana, R. latisecta, R. paiewonskiana, R. simplex; southern Mexico, Central America, Colombia).

Cocoseae Dumort., Anal. Fam. Plant.: 56. 1829 [‘Cocoineae’]

20/340–350. Elaeidinae Drude in C. F. P. von Martius, Fl. Bras. 3(2): 395. 1 Mai 1882 [‘Elaeideae’]. Barcella (1; B. odora; Brazil), Elaeis (2; E. guineensis: tropical West and Southwest Africa from Gambia to Angola; E. oleifera: Central America, tropical South America). – Bactridinae Drude in C. F. P. von Martius, Fl. Bras. 3(2): 301, 395. 1 Mai 1882. Acrocomia (8; southern Mexico, Central America, Cuba, tropical South America), Aiphanes (c 30; tropical America), Hexopetion (2; H. mexicanum: southern Mexico to Nicaragua; H. alatum: Nicaragua to Panamá), Astrocaryum (35–40; Central America, tropical South America); Bactris (75–80; southern Mexico, Central America, the West Indies, tropical South America), Desmoncus (24; southern Mexico, Central America, the West Indies, tropical South America). – Attaleinae Drude in C. F. P. von Martius, Fl. Bras. 3(2): 395. 1 Mai 1882 [‘Attaleeae’]. Beccariophoenix (1; B. madagascariensis; eastern Madagascar), Jubaeopsis (1; J. caffra; Pondoland in Eastern Cape), Voanioala (1; V. gerardii; Madagascar), ‘Butia’ (c 20; tropical South America; non-monophyletic), Jubaea (1; J. chilensis; 32°S to 35°S in central Chile), Paschalococos (1; P. disperta; Easter Island, extinct), Parajubaea (3; P. cocoides, P. sunkha, P. torallyi; subalpine regions in Colombia, Ecuador and Bolivia), Allagoptera (5; A. arenaria, A. brevicalyx, A. campestris, A. caudescens, A. leucocalyx; Brazil, Bolivia, Paraguay, Argentina), Attalea (72; tropical America), Cocos (1; C. nucifera; tropical and subtropical coastal areas), Lytocaryum (4; L. hoehnei, L. insigne, L. itapebiense, L. weddellianum; southeastern Brazil; in Syagrus?), ‘Syagrus’ (c 55; tropical South America, one species in the Lesser Antilles; incl. Lytocaryum?). – Tropical and subtropical Africa and America, Madagascar. – Roystonea is sister to the clade [Reinhardtia+Cocoseae]. Elaeidinae are sister to Bactridinae.

[[Podococcus+[Orania+Sclerosperma]]+[Euterpeae+[Pelagodoxeae+[Leopoldinia+[Manicaria+Geonomateae]]]+Areceae]]

Podococceae J. Dransf. et N. W. Uhl in Principes 30: 6. 20 Feb 1986

1/1. Podococcus (1; P. barteri; Central Africa). – Podococcus may be sister to [Orania+Sclerosperma], and these three genera form a sister-group the remaining Arecoideae.

[Orania+Sclerosperma]

Oranieae Becc. in O. Beccari et R. E. G. Pichi Sermolli, Webbia 11: 15. 1955

1/28. Orania (28; Madagascar, southern Thailand to New Guinea). – Orania may be sister-group to [Podococceae+Sclerospermateae] (Comer & al. 2015).

Sclerospermateae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 562. 2006 [‘Sclerospermeae’]

1/3. Sclerosperma (3; S. mannii, S. profizianum, S. walkeri; tropical West Africa).

[Euterpeae+[Pelagodoxeae+[Leopoldinia+[Manicaria+Geonomateae]]]+Areceae]

Euterpeae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 562. 2006

5/31. Hyospathe (4; H. elegans, H. frontinensis, H. macrorhachis, H. peruviana; Costa Rica, Panamá, northern tropical South America), Euterpe (7; E. broadwayi, E. catinga, E. edulis, E. longibracteata, E. luminosa, E. oleracea, E. precatoria; Central America, the West Indies, tropical South America), Prestoea (10; Central America, tropical South America), Neonicholsonia (1; N. watsonii; Central America), Oenocarpus (9; Costa Rica, Panamá, tropical South America). – Tropical America. – Hyospathe is sister to the rest of Euterpeae, although with fairly low bootstrap support.

Pelagodoxeae+[Leopoldinia+[Manicaria+Geonomateae]]]+Areceae]

Pelagodoxeae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 563. 2006

2/2. Pelagodoxa (1; P. henryana; Melanesia, the Marquesas Islands), Sommieria (1; S. leucophylla; New Guinea). – New Guinea, Melanesia, the Marquesas Islands. – Pelagodoxeae are sister to the clade [Leopoldinia+[Manicaria+Geonomateae]].

[Leopoldinia+[Manicaria+Geonomateae]]

Leopoldinieae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 562. 2006

1/3. Leopoldinia (3; L. major, L. piassaba, L. pulchra; Colombia, Venezuela, Amazonian Brazil).

[Manicaria+Geonomateae]

Manicarieae J. Dransf., N. W. Uhl, Rasmussen, W. J. Baker, M. M. Harley et C. Lewis in Kew Bull. 60: 562. 2006

1/1. Manicaria (1; M. saccifera; Central America, Trinidad, tropical South America).

Geonomateae Luerss., Handb. Syst. Bot. 2: 342. Jan 1880 [‘Geonomeae’]

6/c 100. Welfia (2; W. alfredii, W. regia; Nicaragua to Colombia and Ecuador, central Peru), Pholidostachys (8; Nicaragua to Colombia, Ecuador, Peru, Amazonian Brazil); Calyptrogyne (17; southern Mexico, Central America, Colombia), Calyptronoma (3; C. occidentalis: Jamaica; C. plumeriana: Cuba, Hispaniola; C. rivalis: Hispaniola, Puerto Rico), Asterogyne (5; A. guianensis, A. martiana, A. ramosa, A. spicata, A. yaracuyense; Central America, northern tropical South America), Geonoma (c 65; southern Mexico, Central America, the West Indies, tropical South America). – Tropical America. – The [Welfia+Pholidostachys] clade is sister to the remaining Geonomateae.

Areceae (Mart.) Dumort., Anal. Fam. Plant.: 56. 1829 [‘Arecaceae’]

61/595–600. – Dypsidinae are sister-group to the remaining Areceae.

Dypsidinae Becc., Palmae Madagascar: 2. 1912 [‘Dypsideae’]

4/c 70. Lemurophoenix (1; L. halleuxii; northeastern Madagascar), Dypsis (c 65; Madagascar, the Comoros, Pemba, Mauritius), Marojejya (2; M. darianii, M. insignis; northeastern Madagascar), Masoala (2; M. kona, M. madagascariensis; northeastern Madagascar). – Madagascar, the Comoros, Pemba, Mauritius.

[Arecinae+[ODAT clade+Iguanurinae]+Ptychospermatinae]

Arecinae Engl. in Bopt. Jahresber. (Just) 3: 456. Mai-Dec 1877

6/c 215. Cyrtostachys (7; C. bakeri, C. barbata, C. elegans, C. excelsa, C. glauca, C. loriae, C. renda; peninsular Thailand, Malesia to New Guinea, the Bismarck Archipelago and Solomon Islands), Bentinckia (2; B. condapanna: southern Western Ghats; B. nicobarica: the Nicobar Islands), Clinostigma (11; New Britain, Solomon Islands, Vanuatu, Fiji, Samoa, Micronesia to Bonin Island), Areca (c 50; India to southern China and Southeast Asia, Malesia to Melanesia), Nenga (5; N. banaensis, N. gajah, N. grandiflora, N. macrocarpa, N. pumila; Vietnam, peninsular Thailand, the Malay Peninsula, Sumatra, Java, Borneo), Pinanga (c 140; India and the Himalayas to southern China, Southeast Asia, Malesia to New Guinea). – Tropical Asia, Melanesia, Samoa, Micronesia. – Arecinae are sister to a clade comprising the “ODAT clade” plus an extended Iguanurinae.

The “ODAT clade”

4/10. Oncosperma (5; O. fasciculatum, O. gracilipes, O. horridum, O. platyphyllum, O. tigillarium; Sri Lanka, Southeast Asia, Malesia to the Moluccas and the Philippines), Deckenia (1; D. nobilis; the Seychelles), Acanthophoenix (3; A. crinita, A. rousselii, A. rubra; the Mascarene Islands), Tectiphiala (1; T. ferox; Mauritius). – Tropical Asia, the Mascarene Islands, the Seychelles.

Iguanurinae Benth. et Hook. f., Gen. Plant. 3: 872, 876. 14 Apr 1883 [‘Iguanureae’]

7/c 46. Dictyosperma (1; D. album; the Mascarene Islands), Rhopaloblaste (6; the Nicobar Islands, Malesia to New Guinea, New Ireland and Solomon Islands); Masoala (2; northeastern Madagascar), Iguanura (c 35; peninsular Thailand, West Malesia), Verschaffeltia (1; V. splendida; the Seychelles), Roscheria (1; R. melanochaetes; the Seychelles), Phoenicophorium (1; P. borsigianum; the Seychelles), Nephrosperma (1; N. vanhoutteanum; the Seychelles). – Madagascar, the Mascarene Islands, the Seychelles, the Nicobar Islands, Malesia, the Solomon Islands. – The clade [Dictyosperma+ Rhopaloblaste] is sister to the remaining Iguanurinae.

Ptychospermatinae Benth. et Hook. f., Gen. Plant. 3: 872, 874. 14 Apr 1883 [‘Ptychospermeae’]

40/c 255. Lepidorrhachis (1; L. mooreana; Lord Howe Island); Howea (2; H. belmoreana, H. forsteriana; Lord Howe Island); Calyptrocalyx (c 25; the Moluccas, New Guinea); Hydriastele (48; East Malesia to Queensland and Fiji), Loxococcus (1; L. rupicola; Sri Lanka); Hedyscepe (1; H. canterburyana; Lord Howe Island; in Basselinia?), Rhopalostylis (2; R. baueri, R. sapida; New Zealand, Chatham Islands, Norfolk Island, Kermadec Islands); Carpoxylon (1; C. macrospermum; Vanuatu), Satakentia (1; S. liukiuensis; Ryukyu Islands), Neoveitchia (1; N. storckii; Vanuatu, Fiji); Actinorhytis (1; A. calapparia; New Guinea); Archontophoenix (6; A. alexandrae, A. cunninghamiana, A. maxima, A. myolensis, A. purpurea, A. tuckeri; eastern Queensland, eastern New South Wales), Chambeyronia (2; C. lepidota, C. macrocarpa; New Caledonia), Actinokentia (2; A. divaricata, A. huerlimannii; New Caledonia), Kentiopsis (4; K. magnifica, K. oliviformis, K. piersoniorum, K. pyriformis; New Caledonia); Cyphokentia (1; C. macrostachya; New Caledonia), Clinosperma (4; C. bractealis, C. lanuginosa, C. macrocarpa, C. vaginata; New Caledonia); Dransfieldia (1; D. micrantha; western New Guinea), Linospadix (7; L. albertisianus, L. apetiolatus, L. caninus, L. microcaryus, L. minor, L. monostachyos, L. palmerianus; New Guinea, eastern Queensland, northeastern New South Wales), Laccospadix (1; L. australasica; northeastern Queensland), Heterospathe (c 40; Central and East Malesia to New Guinea, Solomon Islands, Vanuatu, Fiji); Physokentia (7; P. avia, P. dennisii, P. insolita, P. petiolata, P. tete, P. thurstonii, P. whitmorei; New Britain, Solomon Islands, Vanuatu, Fiji), Cyphosperma (5; C. balansae: New Caledonia; C. voutmelensis: Vanuatu; C. naboutinense, C. tanga, C. trichospadix: Fiji), Burretiokentia (5; B. dumasii, B. grandiflora, B. hapala, B. koghiensi, B. vieillardii; New Caledonia), Basselinia (11; New Caledonia), Cyphophoenix (4; C. alba, C. elegans, C. fulcita, C. nucele; New Caledonia). – Ptychospermatinae form a polytomy in the strict consensus tree in Baker & al. (2009; see also Baker & al. 2011 and Alapetite & al. 2014), and have received a much wider definition here than in Dransfield & al. (2005). The following clade received high bootstrap support: Ptychosperma (30; East Malesia to New Guinea and tropical Australia, the Bismarck Archipelago, Solomon Islands), Normanbya (1; N. normanbyi; northeastern Queensland), Carpentaria (1; C. acuminata; tropical Australia), Wodyetia (1; W. bifurcata; Melville Range in Queensland), Ponapea (3; the Caroline Islands), Drymophloeus (3; D. litigiosus, D. oliviformis: the Moluccas, New Guinea; D. whitmeeanus: Samoa), Brassiophoenix (2; B. drymophoeoides, B. schumannii; Papua New Guinea), Ptychococcus (2; P. lepidotus, P. paradoxus; New Guinea, Solomon Islands), Ponapea (4; P. hentyi: New Britain; P. hosinoi, P. ledermanniana: the Caroline Islands; P. palauensis: Palau), Wallaceodoxa (1; W. raja-ampat; Gag Island and Waigeo Island off the western peninsula of New Guinea), Adonidia (1; A. merrillii; the Philippines), Jailoloa (1; J. halmaherensis; Halmahera in the Moluccas), Manjekia (1; M. maturbongsii; Biak Island Northwest of New Guinea), Solfia (1; S. samoensis; Samoa), Balaka (9; Fiji, Samoa), Veitchia (11; Palawan, Solomon Islands, Vanuatu, Fiji, Tonga). – Sri Lanka, Ryukyu Islands, North, Central and East Malesia to northeastern Australia, Lord Howe Island, Melanesia, New Zealand and surrounding islands, Tonga, Samoa.

Phylogeny (simplified) of Arecaceae based on morphological and molecular data (Baker & al. 2009).


Literature

Adam H, Jouannic S, Morcillo F, Verdeil, J-L, Duval Y, Tregear JW. 2007. Determination of flower structure in Elaeis guineensis: Do palms use the same homeotic genes as other species? – Ann. Bot. 100: 1-12.

Alapetite E, Baker WJ, Nadot S. 2014. Evolution of stamen number in Ptychospermatinae (Arecaceae) insights from a new molecular phylogeny of the subtribe. – Molec. Phylogen. Evol. 76: 227-240.

Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V, Ohlrogge J, Saie IJ, Suliman-Elmeer KM, Bennetzen JL, Kruegger RR, Malek JA. 2011. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). – Nat. Biotechnol. 29: 521-527.

Anderson AB, Balick MJ. 1988. Taxonomy of the Babassu complex (Orbignya spp.: Palmae). – Syst. Bot. 13: 32-50.

Anderson AB, Overal WL, Henderson A. 1988. Pollination ecology of a forest-dominant palm (Orbignya phalerata Mart.) in northern Brazil. – Biotropica 20: 192-205.

Anzizar I, Herrera M, RohdeW, Santos A, Dowe JL, Goikoetxea P, Ritter E. 1998. Studies on the suitability of RAPD and ISTR for identification of palm species (Arecaceae). – Taxon 47: 635-645.

Arber A. 1922. On the development and morphology of the leaves of palms. – Roc. Roy. Soc. London, Ser. B., Biol. Sci. 93: 249-261.

Askgaard A, Stauffer F, Hodel DFR, Barfod AS. 2008. Floral structure in the neotropical palm genus Chamaedorea (Arecoideae, Arecaceae). – An. Jard. Bot. Madrid 65: 197-210.

Asmussen CB. 1999a. Toward a chloroplast DNA phylogeny of the Geonomeae (Palmae). – In: Henderson A, Borchsenius F (eds), Evolution, variation, and classification of palms, Mem. New York Bot. Gard. 83: 121-129.

Asmussen CB. 1999b. Relationships of tribe Geonomeae (Arecaceae) based on plastid rps16 DNA sequences. – Acta Bot. Venezuelica 22: 65-76.

Asmussen CB, Chase MW. 2001. Coding and non-coding plastid DNA in palm systematics. – Amer. J. Bot. 88: 1103-1117.

Asmussen CB, Baker WJ, Dransfield J. 2000. Phylogeny of the palm family (Arecaceae) based on rps16 intron and trnL-trnF plastid DNA sequences. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Melbourne, pp. 525-537.

Asmussen CB, Dransfield J, Deickmann V, Barfod AS, Pintaud J-C, Baker WJ. 2006. A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. – Bot. J. Linn. Soc. 151: 15-38.

Babik W, Butlin RK, Baker WJ, Papadopulos AST, Boulesteix M, Anstett MC, lewer C, Hutton I, Savolainen V. 2009. How sympatric is speciation in the Howea palms of Lord Howe Island? – Mol. Ecol. 18: 3629-3638.

Bacon CD, Baker WJ. 2011. Saribus resurrected. – Palms 55: 109-116.

Bacon CD, Feltus FA, Paterson AH, Bailey CD. 2008. Novel nuclear intron-spanning primers for Arecaceae evolutionary biology. – Molec. Ecol. Res. 8: 211-214.

Bacon CD, Baker WJ, Simmons MP. 2012. Miocene dispersal drives island radiations in the palm tribe Trachycarpeae (Arecaceae). – Syst. Biol. 61: 426-442.

Bacon CD, McKenna MJ, Simmons MP, Wagner WL. 2012. Evaluating multiple criteria for species delimitation: an empirical example using Hawaiian palms (Arecaceae: Pritchardia). – BMC Evol. Biol. 12: 23.

Bacon CD, Velásquez-Puentes F, Flórez-Rodríguez A, Balslev H, Galeano G, Bernal R, Antonelli A. 2016. Phylogenetics of Iriarteeae (Arecaceae), cross-Andean disjunctions and convergence of clustered infructescence morphology in Wettinia. – Bot. J. Linn. Soc. 182: 272-286.

Bacon CD, Look SL, Guiérrez-Pinto N, Antonelli A, Tan HTW, Kumar PP, Guan SL, Dransfield J, Baker WJ. 2016. Species limits, geographical distribution and genetic diversity in Johannesteijsmannia (Arecaceae). – Bot. J. Linn. Soc. 182: 318-347.

Bailey LH. 1941. Acrocomia – Preliminary paper. – Gentes Herb. 4: 420-476.

Bailey LH. 1943. New palms in Panamá and others. – Gentes Herb. 6: 198-264.

Bailey LH, Moore HE Jr. 1949. Palms uncertain and new. – Gentes Herb. 8: 93-205.

Baker WJ. 1997. Systematic studies of the calamoid palms. – Ph.D. diss., University of Reading, England.

Baker WJ, Couvreur TLP. In press. Biogeography and distribution patterns of Southeast Asian palms. – In: Gower D, Johnson K, Richardson JE, Rosen B, Rüber L, Williams S (eds), Biotic evolution and environmental change in Southeast Asia, Cambridge University Press, Cambridge, pp. ??-??

Baker WJ. 2015. A revised delimitation of the rattan genus Calamus (Arecaceae). – Phytotaxa 197: 139-152.

Baker WJ, Couvreur TLP. 2012. Biogeography and distribution patterns of Southeast Asian palms. – In: Gower D, Johnson K, Richardson JE, Rosen B, Rüber L, Williams S (eds), Biotic evolution and environmental change in Southeast Asia, Cambridge University Press, Cambridge, pp. 164-190.

Baker WJ, Couvreur TLP. 2013a. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages I. Historical biogeography. – J. Biogeogr. 40: 274-285.

Baker WJ, Couvreur TLP. 2013b. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages II. Diversification history and origin of regional assemblages. – J. Biogeogr. 40: 286-298.

Baker WJ, Dransfield J. 2000. Towards a biogeographic explanation of the calamoid palms. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Melbourne, pp. 545-553.

Baker WJ, Dransfield J. 2002. Calamus longipinna (Arecaceae: Calamoideae) and its relatives in New Guinea. – Kew Bull. 57: 853-866.

Baker WJ, Dransfield J. 2008. Calospatha subsumed in Calamus (Arecaceae: Calamoideae). – Kew Bull. 63: 161-162.

Baker WJ, Dransfield J. 2014. New rattans from New Guinea (Calamus, Arecaceae). – Phytotaxa 163: 181-215.

Baker WJ, Dransfield J. 2016. Beyond Genera Palmarum: progress and prospects in palm systematics. – Bot. J. Linn. Soc. 182: 207-233.

Baker WJ, Heatubun CD. 2012. New palms from Biak and Supiori, western New Guinea. – Palms 56: 131-150.

Baker WJ, Hutton I. 2006. Lepidorrhachis. – Palms 50: 33-38.

Baker WJ, Loo AHB. 2004. A synopsis of the genus Hydriastele (Arecaceae). – Kew Bull. 59: 61-68.

Baker WJ, Asmussen CB, Barrow SC, Dransfield J, Hedderson TA. 1999 [2000]. A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from the trnL-trnF region. – Plant Syst. Evol. 219: 111-126.

Baker WJ, Dransfield J, Harley MM, Bruneau A. 1999. Morphology and cladistic analysis of subfamily Calamoideae (Palmae). – In: Henderson A, Borschenius F (eds), Evolution, variation, and classification of palms, pp. 305-323 [Mem. New York Bot. Gard. 83: 307-324], New York Botanical Garden, Bronx, New York.

Baker WJ, Dransfield J, Hedderson TA. 2000. Phylogeny, character evolution, and a new classification of the calamoid palms. – Syst. Bot. 25: 297-322.

Baker WJ, Hedderson TA, Dransfield J. 2000a. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. – Mol. Phylogen. Evol. 14: 195-217.

Baker WJ, Hedderson TA, Dransfield J. 2000b. Molecular phylogenetics of Calamus (Palmae) and related rattan genera based on 5S nrDNA spacer sequence data. – Mol. Phylogen. Evol. 14: 218-231.

Baker WJ, Bayton RP, Dransfield J, Maturbongs RA. 2003. A revision of the Calamus aruensis (Arecaceae) complex in New Guinea and the Pacific. – Kew Bull. 58: 351-370.

Baker WJ, Zona S, Heatubun CD, Lewis CE, Maturbongs RA, Norup MV. 2006. Dransfieldia (Arecaceae) – a new palm genus from western New Guinea. – Syst. Bot. 31: 61-69.

Baker WJ, Savolainen V, Asmussen-Lange CB, Chase MW, Dransfield J, Forest F, Harley MM, Uhl NW, Wilkinson M. 2009. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. – Syst. Biol. 58: 240-256.

Baker WJ, Norup MV, Clarkson JJ, Couvreur TLP, Dowe JL, Lewis CE, Pintaud JC, Savolainen V, Wilmot T, Chase MW. 2011. Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae). – Ann. Bot. 108: 1417-1432.

Baker WJ, Allkin R, Barker AM, Macía MJ, Theys A, Villalba S, Gardiner LM. 2015. Bioinformática y la familia de las palmas. – In: Balslev H, Macía MJ, Navarrete H (eds), Cosecha de palmas en el noreste de Suramérica: bases científicas para su manejo y conservación, Pontificia Universidad Católica del Ecuador, Quito, pp. 213-222.

Balhara M, Stauffer FW, Balslev H, Barfod AS. 2013. Floral structure and organogenesis of the wax palm Ceroxylon ceriferum (Arecaceae; Ceroxyloideae). – Amer. J. Bot. 100: 2132-2140.

Balick MJ. 1986. Systematics and economic botany of the Oenocarpus-Jessenia (Palmae) complex. – Advances in Economic Botany 3, The New York Botanical Garden, Bronx, New York.

Balick MJ. 1988. Jessenia and Oenocarpus: neotropical oil plams worthy of domestication. – FAO Plant P. 88: 191.

Balslev H, Barfod A. 1987. Ecuadorean palms – an overview. – Opera Bot. 92: 17-35.

Balslev H, Henderson A. 1987. A new Ammandra (Palmae) from Ecuador. – Syst. Bot. 12: 501-504.

Balslev H, Macía MJ, Navarrete H (eds). 2015. Cosecha de palmas en el noreste de Suramérica: bases científicas para su manejo y conservación. – Pontificia Universidad Católica del Ecuador, Quito.

Bande MB, Prakash U, Ambwani K. 1982. A fossil palm fruit Hyphaeneocarpon indicum gen. et sp. nov. from the Deccan Intertrappean beds, India. – The Palaeobotanist 30: 303-309.

Banka R, Baker WJ. 2004. A monograph of the genus Rhopaloblaste (Arecaceae). – Kew Bull. 59: 47-60.

Barbosa Rodriques J. 1903. Sertum Palmarum Brasiliensium 1-2. – Veuve Monnom, Bruxelles.

Barfod AS. 1988a. Leaf anatomy and its taxonomic significance in phytelephantoid palms (Arecaceae). – Nord. J. Bot. 8: 341-348.

Barfod AS. 1988b. Pollen morphology of Ammandra, Palandra and Phytelephas (Arecaceae). – Grana 27: 239-242.

Barfod AS. 1991. A monographic study of the subfamily Phytelephantoideae (Arecaceae). – Opera Bot. 105: 1-73.

Barfod AS, Saw LG. 2002. The genus Licuala (Arecaceae, Coryphoideae) in Thailand. – Kew Bull. 57: 827-852.

Barfod AS, Ervik F, Bernal R. 1999. Recent evidence on the evolution of phytelephantoid palms. – Mem. New York Bot. Gard. 83: 265-277.

Barfod AS, Trénel P, Borchsenius F. 2010. Drivers of diversification in the vegetable ivory palms (Arecaceae: Ceroxyloideae, Phytelepheae) – vicariance or adaptive shifts in niche traits? – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 225-243.

Barfod AS, Hagen M, Borchsenius F. 2011. Twenty-five years of progress in understanding pollination mechanisms in palms (Arecaceae). – Ann. Bot. 108: 1503-1516.

Barrett CF, Bacon CD, Antonelli A, Cano Á, Hofmann T. 2016. An introduction to plant phylogenomics with a focus on palms. – Bot. J. Linn. Soc. 182: 234-255.

Barrett CF, Baker WJ, Comer JR, Conran JG, Lahmeyer SC, Leebens-Mack JH, Li J, Lim GS, Mayfield-Jones DR, Perez L, Medina J, Pires JC, Santos C, Wm. Stevenson D, Zomlefer WB, Davis JI. 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. – New Phytologist 209: 855-870.

Barrow S. 1996. A monograph of Phoenix L. (Palmae: Coryphoideae). – Ph.D. diss., Dept. of Agricultural Botany, University of Reading, England.

Barrow S. 1998. A monograph of Phoenix L. (Palmae: Coryphoideae). – Kew Bull. 53: 513-575.

Barrow S. 1999. Systematic studies in Phoenix L. (Palmae: Coryphoideae). – In: Henderson A, Borchsenius F (eds), Evolution, variation, and classification of palms. – Mem. New York Bot. Gard. 83: 215-223.

Bayton RP. 2005. Borassus L. and the borassoid palms: systematics and evolution. – Ph.D. diss., Dept. of Agricultural Botany, University of Reading, England.

Beccari O. 1908. Le palme americane delle tribu delle Coryphaeae. – Webbia 2: 1-343.

Beccari O. 1910. Palme Australasiche nuove o poco note. – Webbia 3: 131-165.

Beccari O. 1912. The palms indigenous to Cuba II. – Pomona Coll. J. Econ Bot. 2: 361-371.

Beccari O. 1914. Palme del Madagascar. – Istituto Micrografico Italiano.

Beccari O. 1916. Il genera Cocos Linn. e le palme affine. – Agric. Colon. 10: 435-471, 489-532, 585-623.

Beccari O. 1918. Asiatic palms – Lepidocaryeae III. – Ann. Roy. Bot. Gard. (Calcutta) 12: 1-231.

Beccari O. 1920. Le palme della Nuova Caledonia. – M. Ricci, Firenze.

Beccari O. 1923. Neue Palmen Papuasiens II. – Engl. Bot. Jahrb. Syst. 58: 441-462.

Beccari O. 1924. Palme della tribú Borasseae (ed. U. Martelli). – G. Passeri, Firenze.

Beccari O, Pichi-Sermolli RG. 1955. Subfamiliae arecoidearum palmae gerontogeae. Tribuum et generum conspectus. – Webbia 11: 1-187.

Beentje HJ. 1994. A monograph of Ravenea (Palmae: Ceroxyloideae). – Kew Bull. 49: 623-671.

Belin-Depoux M, Hering de Queiroz M. 1972. Remarques sur le développement des feuilles des palmiers: rapprochement avec d’autres Monocotylédons. – Phytomorphology 21: 337-353.

Bernal-Gonzalez R. 1986a. The genus Metasocratea (Palmae). – Kew Bull. 41: 151-152.

Bernal-Gonzales R. 1986b. Aiphanes macroloba and Aiphanes monostachys (Palmae). – Brittonia 38: 65-70.

Bernal-Gonzalez R. 1998. The growth form of Phytelephas seemannii – a potentially immortal solitary palm. – Principes 42: 15-23.

Bernal-Gonzalez R. 2014. The discovery of the amazing Sabinaria magnifica. – Palms 58: 5-18.

Bernal-Gonzalez R, Galeano-Garces G. 1989. The identity of Roebelia and Platenia (Palmae). – Kew Bull. 44: 321-328.

Bernal-Gonzalez R, Henderson AH. 1986. A new species of Socratea (Palmae) from Colombia with notes on the genus. – Brittonia 38: 55-59.

Berry EW. 1905. A palm from the mid-Cretaceous. – Torreya 5: 30-33.

Berry EW. 1926a. A fossil palm fruit from the Middle Eocene of northwestern Peru. – Proc. U. S. Natl. Mus. 70, Art. 3: 1-4.

Berry EW. 1926b. Cocos and Phymatocaryon in the Pliocene of New Zealand. – Amer. J. Sci. 12: 181-184.

Bjorholm S, Svenning J-C, Baker WJ, Skov F, Balslev H. 2006. Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. – Bot. J. Linn. Soc. 151: 113-125.

Blombery A, Rodd T. 1982. Palms. – Sydney.

Bobisut D. 1904. Zur Anatomie einiger Palmenblätter. – S. V. Akad. Wissensch. Wien 113: 345-378.

Bogotá-A GR, Hoorn C, Star W, Langelaan R, Banks H, Galeano G, Bernal R. 2015. Pollen morphology of Sabinaria magnifica (Cryosophileae, Coryphoideae, Arecaceae). – Phytotaxa 207: 135-140.

Bonde SD. 1995. A palm peduncle and fruit from the Deccan Intertrappean beds of India. – In: Pant DD (ed), Global environment and diversification of plants through geological time, Society of Indian Plant Taxonomists, Allahabad, India, pp. 63-69.

Bonde SD. 1996. Arecoideostrobus moorei gen. et sp. nov. a palm rachilla from the Deccan Intertrappean beds of India. – The Palaeobotanist 43: 102-109.

Borchsenius F. 1996. Geonoma irena (Arecaceae), a new species from western Ecuador. – Nord. J. Bot. 16: 605-608.

Borchsenius F, Balslev H. 1989. Three new species of Aiphanes (Palmae) with notes on the genus in Ecuador. – Nord. J. Bot. 9: 383-393.

Borchsenius F, Bernal R. 1996. Flora Neotropica. Monograph 70. Aiphanes (Palmae). – New York Botanical Garden, Bronx, New York.

Borchsenius F, Borgtoft Pederson H, Balslev H. 1998. Manual to the palms of Ecuador. – AAU Reports 37.

Borhidi A, Muñiz O. 1985. Adiciones al Catálogo de las Palmas de Cuba. – Acta Bot. Hung. 31: 225-230.

Bosch E. 1947. Blütenmorphologische und zytologische Untersuchungen an Palmen. – Ber. Schweiz. Bot. Ges. 57: 37-100.

Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, Arondel V. 2011. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. – Proc. Natl. Acad. Sci. U.S.A. 108: 12527-12532.

Braun A. 1984. More Venezuelan palms. – Principes 28: 73-84.

Braun A, Chitty FD. 1987. Palmas autóctonas de Venezuela y de los países adyacentes. – Caracas.

Brongniart A. 1873. Notice sur les palmiers de la Nouvelle-Calédonie. – Compt. Rend. Acad. Sci. Paris 77: 396-402.

Burret M. 1928. Beiträge zur Kenntnis der Palmen von Malesia, Papua und der Südsee. – Feddes Repert. 24: 253-296.

Burret M. 1929a. Die Palmengattungen Orbygnia, Attalea, Scheelea und Maximiliana. – Notizbl. Bot. Gart. Berlin-Dahlem 10: 651-701.

Burret M. 1929b. Die Gattung Hyospathe Mart. – Notizbl. Bot. Gard. Berlin-Dahlem 10: 854-859.

Burret M. 1929c. Palmae cubenses et domingenses. – Kungl. Sv. Vetensk.-Akad. Årsbok 67: 1-2.

Burret M. 1930. Eine neue Palmengattung aus Südamerika. – Notizbl. Bot. Gart. Berlin-Dahlem 11: 48-51.

Burret M. 1932. Die Palmegattungen Martinezia und Aiphanes. – Notizbl. Bot. Gar. Berlin-Dahlem 11: 557-577.

Burret M. 1933a. Palmae Neogeae IV. – Notizbl. Bot. Gart. Berlin-Dahlem 11: 857-866.

Burret M. 1933b. Schippia, eine neue Palmengattung aus Brit. Honduras. – Notizbl. Bot. Gart. Mus. Berlin-Dahlem 11: 867-869.

Burret M. 1935. New palms from Fiji. – Occas. Pap. Bernice Pauahi Bishop Mus. 11: 1-14.

Burret M. 1936. Palmae Neogeae X. – Notizbl. Bot. Gart. Berlin-Dahlem 13: 339-347.

Burret M. 1939. Palmae gesammelt in Neue Guinea von L. J. Brass. – J. Arnold Arbor. 20: 187-212.

Burret M. 1940a. Palmen und Tiliaceen von der Südsee aus der Sammlung des Bernice P. Bishop Museums, Honolulu, Hawaii. – Notizbl. Bot. Gart. Berlin-Dahlem 15: 85-96.

Burret M. 1940b. Palmae. – In: Diels L (ed), Neue Arten aus Ecuador III, Notizbl. Bot. Gart. Berlin-Dahlem 15: 23-38.

Burret M, Potztal E. 1956a. Systematische Übersicht über die Palmen. – Willdenowia 1: 59-74, 350-385.

Burret M, Potztal E. 1956b. Microcoelum, eine neue Palmengattung (Cocoideae). – Willdenowia 1: 386-388.

Burret M, Potztal E. 1956c. Bemerkungen zu den Palmengattungen Liberbaileya, Maxburretia und Symphyogyne. – Willdenowia 1: 529-530.

Cano Á, Perret M, Stauffer FW. 2013. A revision of the genus Trithrinax (Cryosophileae, Coryphoideae, Arecaceae). – Phytotaxa 136: 1-53.

Castaño F, Crèvecoeur M, Pintaud J-C, Stauffer FW. 2011. Floral structure in the Neotropical palms Chelyocarpus Dammer, Cryosophila Blume and Itaya H. E. Moore (Arecaceae). – Candollea 66: 65-79.

Castaño F, Stauffer F, Marquinez X, Crèvecoeur M, Collin M, Pintaud J-C, Tregear J. 2014. Floral structure and development in the monoecious palm Gaussia attenuata (Arecaceae; Arecoideae). – Ann. Bot. (London) 114: 1483-1495.

Castaño F, Marquínez X, Crèvecoeur M, Collin M, Stauffer FW, Tregear JW. 2016. Comparison of floral structure and ontogeny in monoecious and dioecious species of the palm tribe Chamaedoreeae (Arecaceae; Arecoideae). – Intern. J. Plant Sci. 177: 247-262.

Chapin M, Essig FB, Pintaud J-C. 2001. The morphology and histology of the fruits of Pelagodoxa (Arecaceae): taxonomic and biogeographical implications. – Syst. Bot. 26: 779-785.

Chitaley SD. 1960. Nipa fruits from the Deccan Intertrappeans of India. – Bull. Bot. Soc. 1: 31-35.

Chitaley SD, Nambudiri EMV. 1995. Anatomy of Nypa fruits reviewed from new specimens from the Deccan Intertrappean flora of India. – In: Pant DD (ed), Global environment and diversification of plants through geological times, Society of Indian plant taxonomists, Allahabad, India, pp. 83-94.

Collinson ME. 1993. Taphonomy and fruiting biology of recent and fossil Nypa. – Spec. Pap. Palaeontology 49: 165-180.

Comer JR, Zomlefer WB, Barrett CF, Davis JI, Stevenson DW, Heyduk K, Leebens-Mack JH. 2015. Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from next-generation sequencing. – Amer. J. Bot. 102: 888-899.

Comer JR, Zomlefer WB, Barrett CF, Stevenson DW, Heyduk K, Leebens-Mack JH. 2016. Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). – Mol. Phylogen. Evol. 97: 32-42.

Conran JG, Rozefelds AC. 2003. Palmoxylon queenslandicum: a permineralised Oligocene palm trunk from near Springsure, south eastern Queensland. – Alcheringa 27: 125-134.

Cook OF. 1901. A synopsis of the palms of Puerto Rico. – Bull. Torrey Bot. Club 28: 525-569.

Cook OF. 1910. History of the coconut palm in America. – Contr. U.S. Natl. Herb. 14: 271-342.

Cook OF. 1927. Kentia palms in California: South Pacific island palms adapted to coast conditions. – J. Heredity 18: 397-419.

Corner EJH. 1966. The natural history of palms. – Weidenfeld & Nicolson, London.

Couvreur TLP, Baker WJ. 2013. Tropical rain forest evolution: palms as a model group. – BMC Biology 11: 48.

Couvreur TLP, Hahn WJ, de Granville J-J, Pham J-L, Ludeña B, Pintaud J-C. 2007. Phylogenetic relationships of the cultivated neotropical palm Bactris gasipaes (Arecaceae) with its wild relatives inferred from chloroplast and nuclear DNA polymorphisms. – Syst. Bot. 32: 519-530.

Couvreur TLP, Forest F, Baker WJ. 2011. Origin and global diversification patterns of tropical rainforests: inferences from a complete genus-level phylogeny of palms. – BMC Biology 9: 44. doi:10.1186/1741-7007-9-44.

Couvreur TLP, Kissling WD, Condamine FL, Svenning J-C, Rowe NP, Baker WJ. 2015. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms. – Frontiers in Genetics 5: 542. doi: 10.3389/fgene.2014.00452.

Crisp MD, Isagi Y, Kato Y, Cook LG, Bowman DMJS. 2010. Livistona palms in Australia: ancient relics or opportunistic immigrants? – Mol. Phylogen. Evol. 54: 512-523.

Cuenca A, Asmussen-Lange CB. 2007. Phylogeny of the palm tribe Chamaedoreeae (Arecaceae) based on plastid DNA sequences. – Syst. Bot. 32: 250-263.

Cuenca A, Asmussen-Lange CB, Borchsenius F. 2008. A dated phylogeny of the palm tribe Chamaedoreeae supports Eocene dispersal between Africa, North and South America. – Mol. Phylogen. Evol. 46: 760-775.

Cuenca A, Dransfield J, Asmussen-Lange CB. 2009. Phylogeny and evolution of morphological characters in tribe Chamedoreeae (Arecaceae). – Taxon 58: 1092-1108.

Daghlian CP. 1978. Coryphoid palms from the Lower and Middle Eocene of southeastern North America. – Palaeontographica, Ser. B, 166: 44-82.

Dahlgren BE. 1936. Index of American palms. – Field Mus. Nat. Hist. Bot. 14: 1-456.

Dahlgren BE. 1959. Index of American palms. Plates. – Field Mus. Nat. Hist. Bot. 14: pl. 1-412.

Dahlgren BE, Glassman S. 1963. A revision of the genus Copernicia 2. West Indian species. – Gentes Herb. 9: 43-232.

De Nevers G, Henderson A. 1988. A new Calyptrogyne (Palmae: Geonomeae) from Panama. – Syst. Bot. 13: 428-431.

Dengler NG, Dengler RF, Kaplan DR. 1982. The mechanism of plication inception in palm leaves: histogenetic observations on the pinnate leaf of Chrysalidocarpus lutescens. – Can J. Bot. 60: 2976-2998.

Domenech B, Asmussen-Lange CB, Baker WJ, Alapetite E, Pintaud J-C, Nadot S. 2014. A phylogenetic analysis of palm subtribe Archontophoenicinae (Arecaceae) based on 14 DNA regions. – Bot. J. Linn. Soc. 175: 469-481.

Dominguez XA, Rodriguez V, Villegas AD, Rojas P. 1972. Extractives from Sargentia greggii. – Phytochemistry 11: 2648-2649.

Dowe JL. 1989. Palms of the south-west Pacific. – Palm and Cycad Societies of Australia, Milton, Queensland.

Dowe JL. 1995. A preliminary review of the biogeography of Australian palms. – Mooreana 5: 7-22.

Dowe JL. 2009. A taxonomic account of Livistona R. Br. (Arecaceae). – Gard. Bull. (Singapore) 60: 185-344.

Dowe JL. 2010. Australian palms: biogeography, ecology and systematics. – CSIRO, Collingwood, Victoria.

Dowe JL, Cabalion P. 1996. A taxonomic account of Arecaceae in Vanuatu, with descriptions of three new species. – Aust. Syst. Bot. 9: 1-60.

Dransfield J. 1970. Studies in the Malayan palms Eugeissona and Johannesteijsmannia. – Ph.D. diss., University of Cambridge, England.

Dransfield J. 1976. Terminal flowering in Daemonorops. – Principes 20: 29-32.

Dransfield J. 1978. Growth forms of rain forest palms. – In: Tomlinson PB, Zimmerman MH (eds), Tropical trees as living systems, Cambridge University Press, Cambridge, pp. 247-268.

Dransfield J. 1981. A synopsis of the genus Korthalsia (Palmae: Lepidocaryoideae). – Kew Bull. 36: 163-194.

Dransfield J. 1982a. Notes on rattans (Palmae: Lepidocaryoideae) occurring in Sabah, Borneo. – Kew Bull. 36: 783-815.

Dransfield J. 1982b. A reassessment of the genera Plectocomiopsis, Myrialepis and Bejaudia (Palmae: Lepidocaryoideae). – Kew Bull. 37: 237-254.

Dransfield J. 1982c. Nomenclatural notes on Laccosperma and Ancistrophyllum (Palmae: Lepidocaryoideae). – Kew Bull. 37: 455-457.

Dransfield J. 1983. Wissmannia (Palmae) reduced to Livistona. – Kew Bull. 38: 199-200.

Dransfield J. 1984a. The genus Areca (Palmae: Arecoideae) in Borneo. – Kew Bull. 39: 1-22.

Dransfield J. 1984b. A note on the genus Zalaccella (Palmae: Lepidocaryoideae). – Kew Bull. 39: 797-798.

Dransfield J. 1986. Palmae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-55.

Dransfield J. 1987. Bicentric distributions in Malesia as exemplified by palms. – In: Whitmore TC (ed), Biogeographical evolution of the Malay Archipelago, Clarendon Press, Oxford, pp. 60-72.

Dransfield J. 1988. The palms of Africa and their relationships. – In: Goldblatt P, Lowry PP (eds), Modern systematic studies in African botany, Missouri Botanical Garden Press, St. Louis, pp. 95-103.

Dransfield J. 1989. Voanioala (Arecoideae: Cocoeae: Butiinae), a new palm genus from Madagascar. – Kew Bull. 44: 191-198.

Dransfield J. 1990. Notes on rattans (Palmae: Calamoideae) occurring in Sarawak, Borneo. – Kew Bull. 45: 73-99.

Dransfield J. 1991a. Paschalococos disperta. – In: Zizka G (ed), Flowering plants of Easter Island, Palmengarten Wissenschaftliche Berichte 3, Frankfurt, pp. 64-65.

Dransfield J. 1991b. Lemurophoenix (Palmae: Arecoideae), a new genus from Madagascar. – Kew Bull. 46: 61-68.

Dransfield J. 1991c. Notes on Pinanga (Palmae) in Sarawak. – Kew Bull. 46: 691-698.

Dransfield J. 2001. Two new species of Daemonorops (Arecaceae) from Vietnam. – Kew Bull. 56: 661-667.

Dransfield J, Baker WJ. 2003. An account of the Papuasian species of Calamus (Arecaceae) with paired fruit. – Kew Bull. 58: 371-387.

Dransfield J, Beentje HJ. 1995a. The palms of Madagascar. – Royal Botanic Gardens, Kew, and The International Palm Society.

Dransfield J, Beentje HJ. 1995b. Satranala (Coryphoideae: Borasseae: Hyphaeninae), a new palm genus from Madagascar. – Kew Bull. 50: 85-92.

Dransfield J, Manokaran N (eds). 1993. Plant resources of south-east Asia, no. 6, Rattans. – Pudoc, Wageningen.

Dransfield J, Uhl NW. 1986. An outline of a classification of palms. – Principes 30: 3-11.

Dransfield J, Uhl NW. 1998. Palmae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 306-389.

Dransfield J, Baker WJ. 2003. An account of the Papuasian species of Calamus (Arecaceae) with paired fruit. – Kew Bull. 58: 371-387.

Dransfield J, Ferguson IK, Uhl NW. 1990. The coryphoid palms: patterns of variation and evolution. – Ann. Missouri Bot. Gard. 77: 802-815.

Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE. 2005. A new phylogenetic classification of the palm family, Arecaceae. – Kew Bull. 60: 559-569.

Dransfield J, Beentje H, Britt A, Ranarivelo T, Razafitsalama J. 2006. Field guide to the palms of Madagascar. – Royal Botanic Gardens, Kew, Richmond.

Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM. Lewis CE. 2008. Genera Palmarum – the evolution and classification of palms. – Kew Publ., the Royal Botanic Gardens, Kew, Richmond, England.

Dransfield J, Rakotoarinivo M, Baker WJ, Bayton RP, Fisher JB, Horn JW, Leroy B, Metz X. 2008. A new coryphoid palm genus from Madagascar. – Bot. J. Linn. Soc. 156: 79-91.

Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE. 2011. Validation of Laccospadicinae (Arecaceae: Areceae). – Palms 55: 199.

Drude O. 1877. Ausgewählte Beispiele zur Erläuterung der Fruchtbildung bei den Palmen. – Bot. Zeitung 35: 616-632.

Drude O. 1889. Palmae (echte Palmen). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(3), W. Engelmann, Leipzig, pp. 1-93; Drude O. 1897. Nachträge zu II(3), pp. 49-58.

Dufaÿ M, Hossaert, McKey M, Anstett MC. 2003. When leaves act like flowers: how dwarf palms attract their pollinators. – Ecol. Lett. 6: 28-34.

Dugand A. 1976. Palmarum Colombiensium Elenchus. – Cespedesia 5: 257-342.

Eames AJ. 1953. Neglected morphology of the palm leaf. – Phytomorphology 3: 172-189.

Eiserhardt WL, Pintaud J-C, Asmussen-Lange C, Hahn WJ, Bernal R, Balslev H, Borchsenius F. 2011. Phylogeny and divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences. – Taxon 60: 485-498.

Eiserhardt WL, Svenning J-C, Kissling WD, Baslev H. 2011. Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. – Ann. Bot. 108: 1391-1416.

Endt D. 1998. The Chatham Islands: home of the most southern naturally occurring palm in the world, Rhopalostylis ‘Chatham’. – Principes 42: 145-147.

Endt R, Hayward BW. 1997. Modern relatives of New Zealand’s fossil coconuts from high altitude South America. – Newsl. Geol. Soc. New Zealand 113: 67-70.

Erwin DM, Stockey RA. 1994. Permineralized monocotyledons from the Middle Eocene Princeton chert: Arecaceae. – Palaeontographica, Ser. B, 234: 19-40.

Essig FB. 1977. A systematic histological study of palm fruits I. The Ptychosperma alliance. – Syst. Bot. 2: 151-168.

Essig FB. 1999. Trends of specialization in the palm pericarp. – Mem. New York Bot. Gard. 83: 279-284.

Essig FB. 2002. A systematic histological study of palm fruits VI. Subtribe Linospadicinae (Arecaceae). – Brittonia 54: 196-201.

Essig FB. 2008. A systematic histological study of palm fruits VIII. Subtribe Dypsidinae (Arecaceae). – Brittonia 60: 82-92.

Essig FB, Hernandez N. 2001. A systematic histological study of palm fruits IV. Subtribe Oncospermatinae (Arecaceae). – Brittonia 53: 466-461.

Essig FB, Hernandez N. 2002. A systematic histological study of palm fruits V. Subtribe Archontophoenicinae (Arecaceae). – Brittonia 54: 65-71.

Essig FB, Litten L. 2004. A systematic histological analysis of palm fruits VII. The Cyrtostachydinae (Arecaceae). – Brittonia 56: 375-379.

Essig FB, Young BE. 1979. A systematic histological study of palm fruits II. The Areca alliance. – Syst. Bot. 4: 16-28.

Essig FB, Manka TJ, Bussard L. 1999. A systematic histological study of palm fruits III. Subtribe Iguanurinae (Arecaceae). – Brittonia 51: 307-325.

Evans TD, Sengdala K, Viengkham OV, Thammavong B, Dransfield J. 2000. Four new species of Calamus (Arecaceae: Calamoideae) from Laos and Thailand. – Kew Bull. 55: 929-940.

Evans TD, Sengdala K, Thammavong B, Viengkham OV, Dransfield J. 2002. A synopsis of the rattans (Arecaceae: Calamoideae) of Laos and neighbouring parts of Indochina. – Kew Bull. 57: 1-84.

Faurby S, Eiserhardt WL, Baker WJ, Svenning J-C. 2016. An all-evidence species-level supertree for the palms (Arecaceae). – Mol. Phylogen. Evol. 100: 57-69.

Faye A. 2015. La dynamique évolutive des forêts tropicales humides d’Afrique Centrale: cas d’étude sur les palmiers (Arecaceae). – Ph.D. thesis, Université de Montpellier.

Faye A, Pintaud J-C, Baker WJ, Bonké B, Couvreur TLP. 2014. A plastid phylogeny of the African rattans (Ancistrophyllinae, Arecaceae). – Syst. Bot. 39: 1099-1107.

Faye A, Pintaud J-C, Baker WJ, Vigouroux Y, Sonke B, Couvreur TLP. 2016. Phylogenetics and diversification history of African rattans (Calamoideae, Ancistrophyllinae). – Bot. J. Linn. Soc. 182: 256-271.

Faye A, Deblauwe V, Mariac C, Richard D, Sonké B, Vigouroux Y, Couvreur TLP. 2016. Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: climate stability predicts unique genetic diversity. – Mol. Phylogen. Evol. 105: 126-138.

Ferguson IK. 1986. Observations on the variation in pollen morphology of Palmae and its significance. – Can. J. Bot. 64: 3079-3090.

Ferguson IK, Harley MM. 1993. The significance of new and recent work on pollen morphology in the Palmae. – Kew Bull. 48: 205-243.

Ferguson IK, Havard AJ, Dransfield J. 1987. The pollen morphology of the tribe Borasseae (Palmae: Coryphoideae). – Kew Bull. 42: 405-422.

Fernando ES. 1990. The genus Heterospathe (Palmae: Arecoideae) in the Philippines. – Kew Bull. 45: 219-234.

Fernando ES. 1994. New species of Pinanga (Palmae: Arecoideae) from Luzon Island, Philippines. – Kew Bull. 49: 775-784.

Fisher JB. 1973. Unusual branch development in the palm Chrysalidocarpus. – Bot. J. Linn. Soc. 66: 83-95.

Fisher JB. 1974. Axillary and dichotomous branching in the palm Chamaedorea. – Amer. J. Bot. 61: 1046-1056.

Fisher JB, Dransfield J. 1977. Comparative morphology and development of inflorescence adnation in rattan palms. – Bot. J. Linn. Soc. 75: 119-140.

Fisher JB, Dransfield J. 1979. Development of axillary and leaf-opposed buds in rattan palms. – Ann. Bot., N. S., 44: 57-66.

Fisher JB, Maidman KJ. 1999. Branching and architecture in palms: value for systematics. – Mem. New York Bot. Gard. 83: 35-46.

Fisher JB, Moore HE Jr. 1977. Multiple inflorescences in palms (Arecaceae): their development and significance. – Bot. Jahrb. Syst. 98: 573-611.

Fisher JB, Tomlinson PB. 1973. Branch and inflorescence production in saw palmetto (Serenoa repens). – Principes 17: 10-19.

Fisher JB, Tan HTW, Toh LPL. 2002. Xylem of rattans: vessel dimensions in climbing palms. – Amer. J. Bot. 89: 196-202.

Freitas C, Meerow AW, Pintaud J-C, Henderson A, Noblick L, Costa FRC, Barbosa CE, Barrington D. 2016. Phylogenetic analysis of Attalea (Arecaceae): insights into the hisotircal biogeography of a recently diversified Neotropical plant group. – Bot. J. Linn. Soc. 182: 287-302.

Fuller D. 1999. The lost palm of Fiji, a resolution of Goniocladus, and a preliminary cladistic analysis of Physokentia. – Mem. New York Bot. Gard. 83: 203-213.

Futey MK, Gandolfo MA, Zamaloa MC, Cúneo R, Cladera G. 2012. Arecaceae fossil fruits from the Paleocene of Patagonia, Argentina. – Bot. Rev. 78: 205-234.

Galeano G. 1991. Las palmas de la region de Araracuara. Estudios en la Amazonia Colombiana. – Tropenbos, Bogotá.

Galeano G, Bernal R. 1987. Palmas del Departamento de Antioquia – Región Occidental: 24-36. – Universidad Nacional de Colombia, Bogotá.

Galeano G, Bernal R. 2010. Palmas de Colombia. Guía de Campo. – Editorial Universidad Nacional de Colombia, Bogotá.

Galeano G, Bernal R. 2013. Sabinaria, a new genus of palms (Cryosophileae, Coryphoideae, Arecaceae) from the Colombia-Panama border. – Phytotaxa 144: 27-44.

Gaut BS, Morton BR, McCaig BC, Clegg MT. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. – Proc. Natl. Acad. Sci. U.S.A. 93: 10274-10279.

Gee CT. 2001. The mangrove palm Nypa in the geologic past of the New World. – Wetlands Ecol. Manag. 9: 181-194.

Giddey A, Spichiger RE, Stauffer FW. 2009. Comparative floral structure and systematics in the Asian palm genus Rhapis (Arecaceae, Coryphoideae). – Flora 204: 347-357.

Glassman S. 1965. Preliminary studies in the palm genus Syagrus Mart. and its allies. – Fieldiana: Botany 31: 147-164.

Glassman S. 1970. A conspectus of the palm genus Butia Becc. – Fieldiana, Bot. 32: 127-172.

Glassman SF. 1972. A revision of B. E. Dahlgren’s Index of American palms. – Phanerogamarum Monographiae Tomus VI, J. Cramer, Germany.

Glassman S. 1979. A re-evaluation of the genus Butia with a description of a new species. – Principes 23: 65-79.

Glassman S. 1987. Revisions of the palm genus Syagrus Mart. and other selected genera in the cocos alliance. – Illinois Biol. Monogr. 56.

Glassman S. 1999. A taxonomic treatment of the palm subtribe Attaleinae (tribe Cocoeae). – Illinois Biol. Monogr. 59: 1-414.

Gomez-Navarro C, Jaramillo C, Herrera F, Wing SL, Callejas R. 2009. Palms (Arecaceae) from a Paleocene rainforest of northern Colombia. – Amer. J. Bot. 96: 1300-1312.

Govaerts R, Dransfield J. 2005. World checklist of palms. – Royal Botanic Gardens, Kew, Richmond, England.

Govaerts R, Dransfield J, Zona S, Hodel DR, Henderson A. 2015. World checklist of Arecaceae. – The Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/

Granville J-J de. 2007. A new species of Bactris (Palmae) from French Guiana. – Brittonia 59: 354-356.

Gunn BF. 2004. The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. – Ann. Missouri Bot. Gard. 91: 505-522.

Gunn BF, Baudouin L, Olsen KM. 2011. Independent origins of cultivated coconut (Cocos nucifera L.) in the Old World tropics. – PLoS ONE: 6: e21143.

Guo L-X, Henderson A. 2007. Notes on Calamus (Palmae) in China: C. oxycarpus, C. albidus, and C. macrorhynchus. – Brittonia 59: 350-353.

Haccius B, Philip VJ. 1979. Embryo development in Cocos nucifera L.: a critical contribution to a general understanding of palm embryogenesis. – Plant Syst. Evol. 132: 91-106.

Hahn WJ. 2002a. A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. – Syst. Biol. 5: 92-112.

Hahn WJ. 2002b. A phylogenetic analysis of the arecoid line of palms based on plastid DNA sequence data. – Mol. Phylogen. Evol. 23: 189-204.

Hahn WJ, Sytsma KJ. 2000. Molecular systematics and biogeography of the Southeast Asian genus Caryota (Palmae). – Syst. Bot. 24: 558-580.

Hallé F. 1977. The longest leaf in palms? – Principes 21: 18.

Harley MM. 1989. Pollen morphology of Voanioala gerardii (Palmae: Arcoideae: Cocoeae: Butiinae). – Kew Bull. 44: 199-205.

Harley MM. 1990. Occurrence of simple, tectate, monosulcate, or trichotomosulcate pollen grains within the Palmae. – Rev. Palaeobot. Palynol. 64: 137-147.

Harley MM. 1997. Palm pollen and the fossil record I-II. – Ph.D. diss., Kew University of East London and The Royal Botanic Gardens, Kew, England.

Harley MM. 1999. Palm pollen: overview and examples of taxonomic value at species level. – In: Henderson A, Borschenius F (eds), Evolution, variation, and classification of palms, New York Botanical Garden, Bronx, pp. 95-120.

Harley MM. 2006. A summary of fossil records for Arecaceae. – Bot. J. Linn. Soc. 151: 39-67.

Harley MM, Baker WJ. 2001. Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of the fossil record of palm-like pollen. – Grana 40: 45-77.

Harley MM, Dransfield J. 2003. Triporate pollen in the Arecaceae. – Grana 42: 3-19.

Harley MM, Morley RJ. 1995. Ultrastructural studies of some fossil and extant palm pollen, and the reconstruction of the biogeographical history of subtribes Iguanurinae and Calaminae. – Rev. Palaeobot. Palynol. 85: 153-183.

Harley MM, Kurmann MH, Ferguson IK. 1991. Systematic implications of comparative morphology in selected Tertiary and extant pollen from the Palmae and the Sapotaceae. – In: Blackmore S, Barnes HS (eds), Pollen and spores: patterns of diversification, Clarendon Press, Oxford, pp. 225-238.

Harries H. 1978. The evolution, dissemination and classification of Cocos nucifera L. – Bot. Rev. 44: 265-319.

Hartwich SJ, Conran JG, Bannister JM, Lindqvist JK, Lee DE. 2010. Calamoid fossil palm leaves and fruits (Arecaceae: Calamoideae) from Late Eocene Southland, New Zealand. – Aust. Syst. Bot. 23: 131-140.

Heads M. 2010. The endemic plant families and the palms of New Caledonia: a biogeographical analysis. – J. Biogeogr. 37: 1239-1250.

Heatubun CD. 2002. A monograph of Sommieria (Arecaceae). – Kew Bull. 57: 599-611.

Heatubun CD. 2011. Seven new species of Areca (Arecaceae). – Phytotaxa 28: 6-26.

Heatubun CD, Baker WJ, Mogea JP, Harley MM, Tjitrosoedirdjo SS, Dransfield J. 2009. A monograph of Cyrtostachys (Arecaceae). – Kew Bull. 64: 67-94.

Heatubun CD, Dransfield J, Flynn T, Tjitrosoedirdjo S, Mogea JP, Baker WJ. 2012. A monograph of the betel nut palms (Areca: Arecaceae) of East Malesia. – Bot. J. Linn. Soc. 168: 147-173.

Heatubun CD, Zona S, Baker WJ. 2014. Three new genera of arecoid palm (Arecaceae) from eastern Malesia. – Kew Bull. 69: 9525.

Heatubun CD, Zona S, Baker WJ. 2014b. Three new palm genera from Indonesia. – Palms 58: 197-202.

Heatubun CD, Lekitoo K, Matani OP. 2014. Palms on the nickel island: an expedition to Gag Island, western New Guinea. – Palms 58: 115-134.

Heatubun CD, Petoe P, Baker WJ. 2018. A monograph of the Nengella group of Hydriastele (Arecaceae). – Kew Bull. 73: 18. doi 10.1007/S12225-018-743-8

Henderson AJ. 1985. Pollination of Socrata exorrhiza and Iriartea Ventricosa. – Principes 29: 64-71.

Henderson AJ. 1986a. A review of pollination studies in the Palmae. – Bot. Rev. 52: 221-259.

Henderson AJ. 1986b. Palm brief: Barcella odora. – Principes 30: 74-76.

Henderson AJ. 1990. Flora Neotropica. Monograph 53. Arecaceae I. Introduction and Iriarteinae. – New York Botanical Garden, Bronx, New York..

Henderson AJ. 2000. Flora Neotropica. Monograph 79. Bactris (Palmae). – New York Botanical Garden, Bronx, New York.

Henderson AJ. 2002a. Evolution and ecology of palms. – The New York Botanical Garden Press, Bronx.

Henderson AJ. 2002b. Phenetic and phylogenetic analysis of Reinhardtia (Palmae). – Amer. J. Bot. 89: 1491-1502.

Henderson AJ. 2005. A multivariate study of Calyptrogyne (Palmae). – Syst. Bot. 30: 60-83.

Henderson AJ. 2011a. A revision of Geonoma (Arecaceae). – Phytotaxa 17: 1-271.

Henderson AJ. 2011b. A revision of Leopoldinia (Arecaceae). – Phytotaxa 32: 1-17.

Henderson AJ. 2011c. A revision of Desmoncus (Arecaceae). – Phytotaxa 35: 1-88.

Henderson AJ. 2012. A revision of Pholidostachys (Arecaceae). – Phytotaxa 43: 1-48.

Henderson AJ. 2015. A revision of Chuniophoenix (Arecaceae). – Phytotaxa 218: 163-170.

Henderson AJ, Bacon CD. 2011. Lanonia (Arecaceae: Palmae), a new genus from Asia, with a revision of the species. – Syst. Bot. 36: 883-895.

Henderson AJ, Balick M. 1991. Attalea crassispatha, a rare and endemic Haitian palm. – Brittonia 43: 189-194.

Henderson AJ, Dung NQ. 2010. Notes on rattans (Arecaceae) from Vietnam. – Phytotaxa 8: 25-33.

Henderson AJ, Ferreira E. 2002. A morphometric study of Synechanthus (Palmae). – Syst. Bot. 27: 693-702.

Henderson AJ, Floda D. 2015. Retispatha subsumed in Calamus (Arecaceae). – Phytotaxa 192: 58-60.

Henderson AJ, Martins R. 2002. Classification of specimens in the Geonoma stricta (Palmae) complex: the problem of leaf size and shape. – Brittonia 54: 202-212.

Henderson AJ, Nguyen Quoc D. 2013. Four new species of Calamus (Arecaceae) from Vietnam. – Phytotaxa 135: 19-26.

Henderson AJ, Villalba I. 2013. A revision of Welfia (Arecaceae). – Phytotaxa 119: 33-44.

Henderson AJ, Galeano G, Bernal R. 1995. Field guide to the palms of the Americas. – Princeton Unversity Press, Princeton, New Jersey.

Henderson AJ, Pardini R, Dos Santos Rebello JF, Vanin S, Almeida D. 2000. Pollination of Bactris (Palmae) in an Amazon forest. – Brittonia 52: 160-171.

Henderson AJ, Lixiu G, Barfod AS. 2007. A new, dioecious, dimorphic species of Licuala (Palmae) from Hainan, China. – Syst. Bot. 32: 718-721.

Henderson AJ, Borchsenius F, Balslev H. 2008. New species of Geonoma (Palmae) from Ecuador. – Brittonia 60: 190-201.

Henderson AJ, Ban NK, Thanh BV. 2010. New species of Areca, Pinanga, and Licuala (Arecaceae) from Vietnam. – Phytotaxa 8: 34-40.

Henderson FM. 2006. Morphology and anatomy of palm seedlings. – Bot. Rev. 72: 273-329.

Henderson FM, Stevenson DW. 2006. A phylogenetic study of Arecaceae based on seedling morphological and anatomical data. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana botanical Garden, Claremont, California. – Aliso 22: 251-264.

Heyduk K, Trapnell DW, Barrett CF, Leebens-Mack J. 2016. Phylogenomic analyses of Sabal (Arecaceae) species relationships using targeted sequence capture. – Biol. J. Linn. Soc. 117: 106-120.

Hodel DR. 2007. A review of the genus Pritchardia. – Palms 51S: S1-53.

Hodel DR. 2009. A new species of Pritchardia and the rediscovery of P. lowreyana on Oahu, Hawaii. – Palms 53: 173-179.

Hodel DR, Pintaud J-C. 1998. The palms of New Caledonia. – Kampon Tansacha & Allen Press, Lawrence, Kansas.

Horn JW, Fisher JB, Tomlinson PB, Lewis CE, Laubengayer K. 2009. Evolution of lamina anatomy in the palm family (Arecaceae). – Amer. J. Bot. 96: 1462-1486.

Isnard S. 2006. Biomechanics and development of rattans: what is special about Plectocomia himalayana Griff. (Calamoideae, Plectocomiinae)? – Bot. J. Linn. Soc. 151: 83-91.

Jeanson ML. 2011. Systematics of tribe Caryoteae (Arecaceae). – Ph.D. thesis, Muséum National d’Histoire Naturelle, Paris.

Johnson D (ed). 1991. Palms for human needs in Asia. – IUCN, Rotterdam.

Johnson D (ed) and the IUCN/SSC Palm Specialist Group. 1996. Palms: their conservation and sustained utilization. Status survey and conservation action plan. – Gland, Switzerland, and IUCN, Cambridge, England.

Johnson MAT. 1985. New chromosome counts in the Palmae. – Kew Bull. 40: 109-114.

Johnson MAT. 1989. An unusually high chromosome number in Voanioala gerardii (Palmae: Arecoideae: Cocoeae: Butiinae). – Kew Bull. 44: 207-210.

Johnson MAT, Kenton AY, Bennet MD, Brandham PE. 1989. Voanioala gerardii has the highest known chromosome number in the monocotyledons. – Genome 32: 328-333.

Jouannic S, Lartaud M, Hervé J, Collin M, Orieux Y, Verdeil J-L, Tregear JW. 2011. The shoot apical meristem of oil palm (Elaeis guineensis; Arecaceae): developmental progression and dynamics. – Ann. Bot. 108: 1477-1487.

Kahn F, Granville J-J de. 1992. Palms in forest ecosystems of Amazonia. – Springer, Berlin, Heidelberg, New York.

Kaplan DR, Dengler NG, Dengler RF. 1982a. The mechanism of plication inception in palm leaves: problem and developmental morphology. – Can. J. Bot. 60: 2939-2975.

Kaplan DR, Dengler NG, Dengler RF. 1982b. The mechanism of plication inception in palm leaves: histogenetic observations on the palmate leaf of Raphis excelsa. – Can. J. Bot. 60: 2999-3016.

Kaul KN. 1951. A palm fruit from Kapurdi (Jodhpur, Rajasthan Desert). Cocos sahnii sp. nov. – Curr. Sci. 20: 138.

Keim AP, Dransfield J. 2012. A monograph of the genus Orania (Arecaceae: Oranieae). – Kew Bull. 67: 127-190.

Kissling WD, Eiserhardt WL, Baker WJ, Borchsenius F, Couvreur TLP, Balslev H, Svenning J-C. 2012. Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. – Proc. Natl. Acad. Sci. U. S. Amer. 109: 7379-7384.

Klotz LH. 1978a. Form of the perforation plates in the wide vessels of metaxylem in palms. – J. Arnold Arbor. 59: 105-128.

Klotz LH. 1978b. The number of wide vessels in petiolar vascular bundles of palms: an anatomical feature of systematic signicance. – Principes 22: 64-69.

Klotz LH. 1978c. Observations on diameters of vessels in palms. – Principes 22: 99-106.

Kramadibrata P, Dransfield J. 1992. Calamus inops (Palmae: Calamoideae) and its relatives. – Kew Bull. 47: 581-593.

Kubitzki K. 1991. Dispersal and distribution in Leopoldinia (Palmae). – Nord. J. Bot. 11: 429-432.

Langlois AC. 1976. Supplement to palms of the world. – University Presses of Florida, Gainesville, Florida.

Leiva A. 1999. Las palmas en Cuba. – La Habana.

León H. 1939. Contribución al studio de las palmas de Cuba III. Género Coccothrinax. – Mem. Soc. Cub. Hist. Nat. Felipe Poey 13: 107-156.

Lewis CE. 2002. A phylogenetic analysis of the palm subtribe Oncospermatinae (Arecaceae) based on morphological characters. – Brittonia 54: 78-91.

Lewis CE, Doyle JJ. 2001. Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). – Mol. Phylogen. Evol. 19: 409-420.

Lewis CE, Doyle JJ. 2002. A phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes. – Plant Syst. Evol. 236: 1-17.

Lewis CE, Zona S. 2008. Leucothrinax morrisii, a new name for a familiar Caribbean palm. – Palms 52: 84-88.

Listabarth C. 1992. A survey of pollination strategies in the Bactridinae. – Bull. Inst. Franç. Ét. Andines 21: 699-714.

Loo AHB, Dransfield J, Chase MW, Baker WJ. 2006. Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). – Mol. Phylogen. Evol. 39: 598-618.

Lorek M, Pradhan KC. 2006. A new species of Trachycarpus (Arecaceae), with remarks on its unusual habitat. – Bot. Jahrb. Syst. 126: 419-426.

Lorenzi H, Souza HM de, Medeiros-Costa JT de, Coelho de Cerqueira LS, Behr N von. 1996. Palmeiras no Brasil – natives e exóticas. – Editora Plantarum Ltd. (eds), Avenida, Brazil.

Ludeña B, Chabrillange N, Aberlenc-Bertossi F, Adam H, Tregear JW, Pintaud J-C. 2011. Phylogenetic utility of the nuclear genes AGAMOUS 1 and PHYTOCHROME B in palms (Arecaceae): an example within Bactridinae. – Ann. Bot. 108: 1433-1444.

Manchester SR, Lehman T, Wheeler EA. 2010. Fossil palms (Arecaceae, Coryphoideae) associated with juvenile herbivorous dinosaurs in the Upper Cretaceous Aguja formation, Big Bend national park, Texas. – Intern. J. Plant Sci. 171: 679-689.

Markley KS. 1955. Caranday – a source of palm wax. – Econ. Bot. 9: 39-52.

Martelli U. 1934. Generi, specie e varietà nuove di palme gerontogee della tribù Arecaceae lasciate inedite dal Dr. Od. Beccari ed ordinate a cura di U. Martelli. – Atti Soc. Tosc. Sci. Nat. Pisa Processi Verbali 44: 114-176.

Mauro-Herrera M, Meerow AW, Borrone JW, Kuhn DN, Schnell RJ. 2006. Ten informative markers developed from WRKY sequences in coconut (Cocos nucifera). – Mol. Ecol. Notes 6: 904-906.

Meerow AW, Noblick LR, Borrone JW, Couvreur TLP, Mauro-Herrera M, Hahn WJ, Kuhn DN, Nakamura K, Oleas NH, Schnell RJ. 2009. Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Arecaceae) identifies Syagrus as the sister group of the coconut. – PLoS ONE 4: e7353.

Meerow AW, Noblick L, Salas-Leiva DE, Sanchez V, Francisco-Ortega J, Jestrow B, Nakamura K. 2015. Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. – Cladistics 31: 509-534.

Mendis NM, Ferguson IK, Dransfield J. 1987. The pollen morphology of the subtribe Oncospermatinae (Palmae: Arecoideae: Areceae. – Kew Bull. 42: 47-63.

Moore HE Jr. 1949. 10 other palm studies. – In: Bailey H (ed), Palmae incertae et novae, Gentes Herb. 8: 191-205.

Moore HE Jr. 1951. Various new palms. – Gentes Herb. 8: 223-238.

Moore HE Jr. 1957. Reinhardtia. – Gentes Herb. 8: 541-576.

Moore HE Jr. 1965. Ptychococcus lepidotus – a new species from New Guinea. – Principes 9: 10-13.

Moore HE Jr. 1972. Chelyocarpus and its allies Crysophila and Itaya (Palmae). – Principes 16: 67-88.

Moore HE Jr. 1973a. The major groups of palms and their distributions. – Gentes Herb. 11: 27-140.

Moore HE Jr. 1973b. Palms in the tropical ecosystems of Africa and South America. – In: Meggers BJ, Ayensu ES, Duckworth WD (eds), Tropical forest ecosystems in Africa and South America: a comparative review, Smithsonian Institution, Washington, D.C., pp. 63-88.

Moore HE Jr. 1978. New genera and species of Palmae from New Caledonia. – Gentes Herb. 11: 291-309.

Moore HE Jr. 1980. New genera and species of Palmae from New Caledonia 2. – Gentes Herb. 12: 17-24.

Moore HE Jr, Uhl NW. 1973. Palms and the origin and evolution of monocotyledons. – Quart. Rev. Biol. 48: 414-436.

Moore HE Jr, Uhl NW. 1982. Major trends of evolution in palms. – Bot. Rev. 48: 1-69.

Moore HE Jr, Uhl NW. 1984. The indigenous palms of New Caledonia. – Allertonia 3: 313-402.

Moraes MR. 1996. Novelties of the genera Parajubaea and Syagrus (Palmae) from Interandean valleys of Bolivia. – Novon 6: 85-92.

Moraes MR, Henderson A. 1990. The genus Parajubaea (Palmae). – Brittonia 42: 92-99.

Morici C. 2000. The genus Thrinax in Cuba. – Palms 44: 63-68.

Morici C, Pérez RV. 2006. Coccothrinax torrida (Arecaceae), a new species from southeastern Cuba. – Brittonia 58: 189-193.

Morton BR, Gaut BS, Clegg MT. 1996. Evolution of alcohol dehydrogenase genes in the palm and grass families. – Proc. Natl. Acad. Sci. U.S.A. 93: 11735-11739.

Moya C, Leiva A. 2000. Checklist of the palms of Cuba, with notes on their ecology, distribution and conservation. – Palms 44: 69-84.

Muller J. 1979. Reflections on fossil palm pollen. – Proceedings of the IV International Palynological Conference, Birbal Sahli Inst. of Paleobotany, Lucknow, India, 1, pp. 568-579.

Muñiz O, Borhidi A. 1982. Catálogo de las palmas de Cuba. – Acta Bot. Acad. Sci. Hung. 28: 309-345.

Murray S. 1973. The formation of the endocarp in palm fruits. – Principes 17: 91-102.

Nadot S, Sannier J, Barfod A, Baker WJ. 2011. Evolution of the palm androecium as revealed by character mapping on a supertree. – In Wannthorp L, Ronse De Craene LP (eds), Flowers on the Tree of Life, Syst. Ass. Spec. Vol. 80, Cambridge University Press, Cambridge, pp. 156-180.

Nadot S, Alapetite E, Baker WJ, Tregear JW, Barfod AS. 2016. The palm family (Arecaceae): a microcosm of sexual system evolution. – Bot. J. Linn. Soc. 182: 376-388.

Narayana GV, John CM. 1949. Varieties and forms of the coconut. – Madras Agric. J. 36: 349-366.

Niño M, Dorr L, Stauffer FW. 2005. Una nueva especie de Aiphanes (Arecaceae) de la Cordillera de Mérida, Venezuela. – Sida 21: 1529-1606.

Noblick LR. 2017. Key to Syagrus identification using leaflet margin anatomy: supplement to “A revision of Syagrus (Arecaceae)”. – PhytoKeys 81: 19-46.

Noblick LR, Lorenzi H. 2010. Lytocaryum, including a new species from Bahia, Brazil. – Palms 54: 5-17.

Noblick LR, Meerow AW. 2015. The transfer of the genus Lytocaryum to Syagrus. – Palms 59: 57-62.

Noblick LR, Hahn WJ, Griffith MP. 2013. Structural cladistics study of Cocoseae, subtribe Attaleinae (Arecaceae): evaluating taxonomic limits in Attaleinae and the neotropical genus Syagrus. – Brittonia 65: 232-261.

Noblick LR, Lorenzi H, Souza VC. 2014. Four new taxa of acaulescent Syagrus (Arecaceae) from Brazil. – Phytotaxa 188: 1-13.

Norup MV. 2004. A molecular systematic study of Heterospathe and Rhopaloblaste (Arecaceae, Areceae). – Masters thesis, University of Aarhus, Denmark.

Norup MV. 2005. Alsmithia subsumed in Heterospathe (Arecaceae, Arecoideae). – Novon 15: 455-457.

Norup MV, Dransfield J, Chase MW, Barfod AS, Fernando ES, Baker WJ. 2006. Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). – Amer. J. Bot. 93: 1065-1080.

Nowak JS, Dengler NG, Posluszny U. 2007. The role of abscission during leaflet separation in Chamaedorea elegans (Arecaceae). – Intern. J. Plant Sci. 168: 533-545.

Nowak JS, Dengler NG, Posluszny U. 2008. Abscission-like leaflet separation in Chamaedorea seifrizii (Arecaceae). – Intern. J. Plant Sci. 169: 723-734.

Nowak JS, Bolduc N, Dengler NG, Posluszny U. 2011. Compound leaf development in the palm Chamaedorea elegans is KNOX-independent. – Amer. J. Bot. 98: 1575-1582.

Ortega-Chávez N, Stauffer FW. 2011. Ontogeny and structure of the acervulate partial inflorescence in Hyophorbe lagenicaulis (Arecaceae; Arecoideae). – Ann. Bot. (London), mcr149. http://dx.doi.org/10.1093/aob/mcr149.

Palmweb. 2015. Palmweb: Palms of the World Online. http://www.palmweb.org/

Palmworld. 2015. Palmworld. https://urlproxy.sunet.se/canit/urlproxy.php?_q=aHR0cDovL3d3dy5wYWxtd29ybGQub3JnLw%3D%3D&_s=ZGVmYXVsdA%3D%3D&_c=dcf1c7bd&_r=c3Utc2U%3D

Pan AD, Jacobs BF, Dransfield J, Baker WJ. 2006. The fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28-27 Mya) of north-western Ethiopia. – Bot. J. Linn. Soc. 151: 69-81.

Panza V, Lainez V, Maldonado S. 2004. Seed structure and histochemistry in the palm Euterpe edulis. – Bot. J. Linn. Soc. 145: 445-453.

Parsons RF. 2007. The southernmost limits for palms. – New Zealand J. Bot. 45: 477-478.

Parthasarathy MV. 1968. Observations on metaphloem in the vegetative organs of palms. – Amer. J. Bot. 55: 1140-1168.

Parthasarathy MV. 1974a. Ultrastructure of phloem in palms II. Structural changes, and fate of the organelles in differentiating sieve elements. – Protoplasma 79: 93-125.

Parthasarathy MV. 1974b. Ultrastructure of phloem in palms III. Mature phloem. – Protoplasma 79: 265-315.

Parthasarathy MV, Klotz LH. 1976. Palm “wood” I. Anatomical aspects. – Wood Sci. Technol. 10: 215-229.

Passalia MG, Romero EJ, Panza JL. 2001. Improntas foliares del Cretácico de la provincia de Santa Cruz, Argentina. – Ameghiniana 38: 73-84.

Patil GV, Upadhye EV. 1984. Cocos-like fruit from Mohgaonkalan Intertrappean beds. – In: Sharma AK, Mitra GC, Banerjee M (eds), Proceedings of the symposium on evolutionary botany and biostratigraphy, University of Calcutta 1979, Today & Tomorrow’s Printers & Publ., New Delhi, pp. 541-554.

Periasamy K. 1962. Morphological and ontogenetic studies in palms I. Development of the plicate condition in the palm leaf. – Phytomorphology 12: 54-64.

Periasamy K. 1977. Morphological and ontogenetic studies in palms VI. On the ontogeny of plication in the palm leaf. – Proc. Indian Acad. Sci., Sect. B, 85: 269-273.

Pinedo AS, Martins RC, De Oliveira RC, Gomes SM. 2016. Leaf anatomy in Allagoptera (Arecaceae). – Bot. J. Linn. Soc. 182: 361-375.

Pintaud J-C. 1999a. Phylogénie, biogeography et écologie des palmiers de Nouvelle-Calédonie. – Ph.D. diss., Université de Toulouse, France.

Pintaud J-C. 1999b. A cladistic analysis of Archontophoenicinae (Palmae, Areceae), based on morphological and anatomical characters. – Mem. New York Bot. Gard. 83: 279-284.

Pintaud J-C. 2000. An introduction to the palms of New Caledonia. – Palms 44: 132-140.

Pintaud J-C. 2006. The impact of forest disturbance on the palms of New Caledonia. – Palms 50: 123-135.

Pintaud J-C, Baker WJ. 2008. A revision of the palm genera (Arecaceae) of New Caledonia. – Kew Bull. 63: 61-73.

Pintaud J-C, Hodel DR. 1998a. A revision of Kentiopsis, a genus endemic to New Caledonia. – Principes 42: 32-33, 41-53.

Pintaud J-C, Hodel DR. 1998b. Three new species of Burretiokentia. – Principes 42: 152-155, 160-166.

Pintaud J-C, Jaffré T. 2002. Patterns of diversity and endemism of palms on ultramafic rocks in New Caledonia. – South Afr. J. Sci. 97: 548-550.

Pintaud J-C, Stauffer FW. 2011. A revision of the large-flowered group of Basselinia Vieill. sect. Taloua H. E. Moore & Uhl (Arecaceae). – Candollea 66: 147-154.

Pintaud J-C, Jaffré T, Veillon J-M. 1999. Conservation status of New Caledonia palms. – Pacific Cons. Biol. 5: 9-15.

Pintaud J-C, Jaffré T, Puig H. 2001. Chorology of New Caledonian palms and possible evidence of Pleistocene rain forest refugia. – Compt. Rend. Acad. Sci. Paris, sér. III, Sci. Vie 324: 453-463.

Pintaud J-C, Millán B, Kahn F. 2008. The genus Hexopetion Burret (Arecaceae). – Rev. Peruana Biol. 15(Suppl. 1): 49-54.

Pintaud J-C, Zehdi S, Couvreur T, Barrow S, Henderson S, Aberlenc-Bertossi F, Tregear J, Billotte N. 2010. Species delimitation in the genus Phoenix (Arecaceae) based on SSR markers, with emphasis on the identity of the date palm (Phoenix dactylifera). – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 267-286.

Poinar Jr G. 2002a. Fossil palm flowers in Dominican and Mexican amber. – Bot. J. Linn. Soc. 138: 57-61.

Poinar Jr G. 2002b. Fossil palm flowers in Dominican and Baltic amber. – Bot. J. Linn. Soc. 139: 361-367.

Pole MS. 1993. Early Miocene flora of the Manuherikia Group, New Zealand 4. Palm remains. – J. Roy. Soc. New Zealand 23: 283-288.

Pole MS, Macphail MK. 1996. Eocene Nypa from Regatta Point, Tasmania. – Rev. Palaeobot. Palyn. 92: 55-67.

Prakash U. 1954. Palmocarpon mohgaoense sp. nov., a palm fruit from the Deccan Intertrappean series, India. – The Palaeobotanist 3: 91-96.

Prakash U. 1958. Studies in the Deccan Intertrappean flora: two palm woods from Mohgoan Kalan. – The Paleobotanist 7: 136-142.

Pyykkö M. 1985. Anatomy of the stem and petiole of Raphia hookeri (Palmae). – Ann. Bot. Fenn. 22: 129-138.

Quero HJ. 1992. Current status of Mexican palms. – Principes 36: 203-216.

Quero HJ, Read RW. 1986. A revision of the palm genus Gaussia. – Syst. Bot. 11: 145-154.

Rakotoarinivo M, Dransfield J. 2010. New species of Dypsis and Ravenea (Arecaceae) from Madagascar. – Kew Bull. 65: 279-303.

Read RW. 1965. Palm chromosomes by air mail. – Principes 9: 4-10.

Read RW. 1966. New chromosome counts in the Palmae. – Principes 10: 55-61.

Read RW. 1975. The genus Thrinax (Palmae: Coryphoideae). – Smithsonian Contr. Bot. 19: 1-98.

Read RW, Hickey LJ. 1972. A revised classification of fossil palm and palm-like leaves. – Taxon 21: 129-137.

Reis SB, Mello ACMP, Oliveira DMT. 2017. Pericarp formation in early divergent species of Arecaceae (Calamoideae, Mauritiinae) and its ecological and phylogenetic importance. – Plant Syst. Evol. 303: 675-687.

Rigby JF. 1995. A fossil Cocos nucifera L. fruit from the latest Pliocene of Queensland, Australia. – In: Pant DD, Bhatnagar AN, Surange KR, Bose MN, Khare PK (eds), Proceedings of the International Conference on the global environment and diversification of plants through geological time, South Asian Publ., Birbal Sahni Inst., Centennial Vol., Allahabad Univ., Allahabad, pp. 379-381.

Rivera D, Obón C, García-Arteaga J, Egea T, Alcaraz F, Laguna E, Carreño E, Johnson D, Krueger R, Delgadillo J, Ríos S. 2014. Carpological analysis of Phoenix (Arecaceae): contributions to the taxonomy and evolutionary history of the genus. – Bot. J. Linn. Soc. 175: 74-122.

Rodd AN. 1998. Revision of Livistona (Arecaceae) in Australia. – Telopea 8: 49-153.

Rodríguez SM, Oliver PH. 2002. Pollen morphology of Arecaceae from Cuba. – Grana 41: 149-157.

Romanov MS, Bobrov AVFC, Wijesundara DSA, Romanova ES. 2011. Pericarp development and fruit structure in borassoid palms (Arecaceae-Coryphoideae-Borasseae). – Ann. Bot. 108: 1489-1502.

Romero EJ. 1968. Palmoxylon patagonicum n. sp., del Tergiario Inferior de la provincial de Chubut, Argentina. – Ameghiniana 5: 417-432.

Roncal J, Francisco-Ortega J, Asmussen CB, Lewis CE. 2005. Molecular phylogenetics of tribe Geonomeae (Arecaceae) using nuclear DNA sequences of phosphoribulokinase and RNA polymerase II. – Syst. Bot. 30: 275-283.

Roncal J, Zona S, Lewis CE. 2008. Molecular phylogenetic studies of Caribbean palms (Arecaceae) and their relationships to biogeography and conservation. – Bot. Rev. 74: 78-102.

Roncal J, Borchsenius F, Asmussen-Lange CB, Balslev H. 2010. Divergence times in the tribe Geonomateae (Arecaceae) coincide with Tertiary geological events. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 245-265.

Roncal J, Kahn F, Millan B, Couvreur TLP, Pintaud JC. 2013. Cenozoic colonization and diversification patterns of tropical American palms: evidence from Astrocaryum (Arecaceae). – Bot. J. Linn. Soc. 171: 120-139.

Röser M. 1994. Pathways of karyological differentiation in palms (Arecaceae). – Plant Syst. Evol. 189: 83-122.

Röser M. 1995. Trends in karyo-evolution of palms. – In: Brandham P, Bennett M (eds), Kew Chromosome Conference IV, Royal Botanic Gardens, Kew, pp. 249-265.

Röser M. 1999. Chromosome structures and karyotype rearrangement in palms (Palmae). – In: Henderson A, Borchsenius F (eds), Evolution, variation, and classification of Palms, Mem. New York Bot. Gard. 83: 61-71.

Rudall PJ, Abranson K, Dransfield J, Baker W. 2003. Floral anatomy in Dypsis (Arecaceae-Areceae): a case of complex synorganization and stamen reduction. – Bot. J. Linn. Soc. 143: 115-133.

Rudall PJ, Ryder RA, Baker WJ. 2011. Comparative gynoecium structure and multiple origins of apocarpy in coryphoid palms (Arecaceae). – Intern. J. Plant Sci. 172: 674-690.

Saakov SG. 1954. Palms and their culture in USSR. – Acad. Sci. USSR, Moscow and Leningrad. [In Russian]

Salzman VT, Judd WS. 1995. A revision of the Greater Antilles species of Bactris (Bactrinidae: Arecaceae). – Brittonia 47: 345-371.

Sánchez AL. 2006. Notes on Cuban native palms. – Willdenowia 36 (Spec. issue): 507-513.

Sanín MJ, Galeano G. 2011. A revision of the Andean wax palms, Ceroxylon (Arecaceae). – Phytotaxa 34: 1-64.

Sanín MJ, Kissling WD, Bacon CD, Borchsenius F, Galeano G, Svenning J-C, Olivera J, Ramírez R, Trénel P, Pintaud J-C. 2016. The Neogene rise of the tropical Andes facilitated diversification of wax palms (Ceroxylon: Arecaceae) through geographical colonization and climatic niche separation. – Bot. J. Linn. Soc. 182: 303-317.

Sannier J, Nadot S, Forchioni A, Harley M, Albert B. 2006. Variations in the microsporogenesis of monosulcate palm pollen. – Bot. J. Linn. Soc. 151: 93-102.

Sannier J, Asmussen-Lange C, Harley M, Nadot S. 2007. Evolution of microsporogenesis in palms (Arecaceae). – Intern. J. Plant Sci. 168: 877-888.

Sannier J, Baker WJ, Anstett MC, Nadot S. 2009. A comparative analysis of pollinator type and pollen ornamentation in the Araceae and the Arecaceae, two unrelated families of the monocots. – BMC Res. Notes 2: 145.

Satake T. 1962. A new system of the classification of Palmae. – Hikobia 3: 125.

Satô D. 1949. Karyotype alterations and phylogeny VI. Karyotype analysis in Palmae. – Cytologia 14(3-4): 174-186.

Savolainen V, Anstett MC, Lexer C, Hutton I, Clarkson JJ, Norup MV, Powell MP, Springate D, Salamin N, Baker WJ. 2006. Sympatric speciation in palms on an oceanic island. – Nature 441: 210-213.

Saw LG. 2012. A revision of Licuala (Arecaceae, Coryphoideae) in Borneo. – Kew Bull. 67: 577-654.

Saw LG, Dransfield J, Keith-Lucas DM. 2003. Morphological diversity of the genus Licuala (Palmae). – Telopea 10: 187-206.

Schaarschmidt F, Wilde V. 1986. Palmenblüten und blätter aus dem Eozän von Messel. – Cour. Forschungsinst. Senckenberg 86: 177-202.

Schmid R. 1970. Notes on the reproductive biology of Asterogyne martiana (Palmae) II. Pollination by syrphid flies. – Principes 14: 39-49.

Schmid R. 1983. Septal nectaries of Asterogyne martiana and other Palmae. – Principes 27: 168-174.

Schmitt U, Weiner G, Liese W. 1995. The fine structure of the stegmata in Calamus axillaris during maturation. – IAWA J. 16: 61-68.

Schoute JC. 1909. Über die Verästelung bei monokotylen Bäumen II. Die Verästelung von Hyphaene. – Rec. Trav. Bot. Néerl. 6: 211-232.

Scott RA, Williams PL, Craig LC, Barghoorn ES, Hickey LJ, MacGinitie HD. 1972. “Pre-Cretaceous” angiosperms from Utah: evidence for Tertiary age of the palm woods and roots. – Amer. J. Bot. 59: 886-896.

Seubert E. 1996a. Root anatomy of palms II. Calamoideae. – Feddes Repert. 107: 43-59.

Seubert E. 1996b. Root anatomy of palms III. Ceroxyloideae, Nypoideae, Phytelephantoideae. – Feddes Repert. 107: 597-619.

Seubert E. 1997. Root anatomy of palms I. Coryphoideae. – Flora 192: 81-103.

Seubert E. 1998a. Root anatomy of palms IV. Arecoideae, part 1. General remarks and descriptions on the roots. – Feddes Repert. 109: 89-127.

Seubert E. 1998b. Root anatomy of palms IV. Arecoidee, part 2. Systematic implications. – Feddes Repert. 109: 231-247.

Shukla A, Mehrotra R, Guleria J. 2012. Cocos sahnii Kaul: a Cocos nucifera L.-like fruit from the early Eocene rainforest of Rajasthan, western India. – J. Biosci. 37: 769-776.

Silberbauer-Gottsberger I. 1973. Blüten- und Fruchtbiologie von Butia leiospatha (Arecaceae). – Österr. Bot. Zeitschr. 121: 171-185.

Silberbauer-Gottsberger I. 1990. Pollination and evolution in palms. – Phyton 30: 213-233.

Siles L, Cela J, Munné-Bosch S. 2013. Vitamin E analyses in seeds reveal a dominant presence of tocotrienols over tocopherols in the Arecaceae family. – Phytochemistry 95: 207-214.

Singh R, Ong-Abdullah M, Low E-TL, Manaf MAA, Rosli R, Nookiah R, Ooi LC-L, Ooi SE, Chan K-L, Halim MA. 2013. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. – Nature 500: 335-339.

Skov F. 1994. Geonoma polyandra (Arecaceae), a new species from Ecuador. – Nord. J. Bot. 14: 39-41.

Skov F, Balslev H. 1989. A revision of Hyospathe (Arecaceae). – Nord. J. Bot. 9: 189-202.

Sowunmi MA. 1972. Pollen morphology of the Palmae and its bearing on taxonomy. – Rev. Palaeobot. Palynol. 13: 1-80.

Srivastava R, Srivastava G. 2014. Fossil fruit of Cocos L. (Arecaceae) from Maastrichtian-Danian sediments of central India and its phytogeographical significance. – Acta Palaeobot. 54: 67-75.

Stauffer FW. 1999. Datos preliminaries a la actualización de la flora de palmas (Arecaceae) de Venezuela. – Acta Bot. Venez. 22: 77-107.

Stauffer FW, Endress PK. 2003. Comparative morphology of female flowers and systematics in Geonomeae (Arecaceae). – Plant Syst. Evol. 242: 171-203.

Stauffer FW, Rutishauser R, Endress PK. 2002. Morphology and development of the female flowers in Geonoma interrupta (Arecaceae). – Amer. J. Bot. 89: 220-229.

Stauffer FW, Asmussen CB, Henderson A, Endress PK. 2003. A revision of Asterogyne (Arecaceae: Arecoideae: Geonomeae). – Brittonia 55: 326-356.

Stauffer FW, Baker WJ, Dransfield J, Endress PK. 2004. Comparative floral structure and systematics of Pelagodoxa and Sommieria (Arecaceae). – Bot. J. Linn. Soc. 146: 27-39.

Stauffer FW, Barfod A, Endress PK. 2009. Floral structure in Licuala peltata (Arecaceae: Coryphoideae), with special reference to the architecture of the unusual labyrinthine nectary. – Bot. J. Linn. Soc. 161: 66-77.

Stauffer FW, Siegert S, Silberbauer-Gottsberger I, Gottsberger G. 2016. Floral structure in the Asian palm Eugeissona tristis Griff. (Arecaceae: Calamoideae), and description of a new nectary type in the family. – Plant Syst. Evol. 302: 629-639.

Steyermark JA. 1951. Palmae. – In: Contributions to the flora of Venezuela, Fieldiana Bot. 28: 71-92.

Sunderland TCH. 2003. Two new species of rattan (Palmae: Calamoideae) from the forests of West and Central Africa. – Kew Bull. 58: 987-990.

Sunderland TCH. 2012. A taxonomic revision of the rattans of Africa (Arecaceae: Calamaoideae). – Phytotaxa 51: 1-76.

Svenning J-C, Borchsenius F, Bjorholm S, Balslev H. 2008. High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. – J. Biogeogr. 35: 394-406.

Thanikaimoni G. 1970. Pollen morphology, classification, and phylogeny of Palmae. – Adansonia, sér. II, 10: 347-365.

Thanikaimoni G. 1971. Les palmiers: palynologie et systématique. – Trav. Sect. Sci. Techn. Inst. Franç. Pondichéry 11: 1-286.

Thomas MM, Garwood NC, Baker WJ, Henderson SA, Russell SJ, Hodell DR, Bateman RM. 2006. Molecular phylogeny of the palm genus Chamaedorea, based on the low-copy nuclear genes PRK and RPB2. – Mol. Phylogen. Evol. 38: 398-415.

Thomas R, Franceschi D De. 2013. Palm stem anatomy and computer-aided identification: the Coryphoideae (Arecaceae). – Amer. J. Bot. 100: 289-313.

Thomas R, Boura A. 2015. Palm stem anatomy: phylogenetic or climatic signal? – Bot. J. Linn. Soc. 178: 467-488.

Tidwell WD, Rushforth SR, Reveal JL, Behunin H. 1970. Palmoxylon simperi and Palmoxylon pristina: two pre-Cretaceous angiosperms from Utah. – Science 168: 835-840.

Tomlinson PB. 1960a. Essays on the morphology of palms. – Principes 4: 55-61.

Tomlinson PB. 1960b. Essays on the morphology of palms. – Principes 4: 140-143.

Tomlinson PB. 1960c. Seedling leaves in palms and their morphological significance. – J. Arnold Arbor. 41: 414-428.

Tomlinson PB. 1961a. Essays on the morphology of palms. – Principes 5: 8-12.

Tomlinson PB. 1961b. Essays on the morphology of palms. – Principes 5: 46-53.

Tomlinson PB. 1961c. Essays on the morphology of palms. – Principes 5: 83-89.

Tomlinson PB. 1961d. Essays on the morphology of palms. – Principes 5: 117-124.

Tomlinson PB. 1962a. Essays on the morphology of palms. – Principes 6: 44-52.

Tomlinson PB. 1962b. Essays on the morphology of palms. – Principes 6: 122-124.

Tomlinson PB. 1962c. The leaf base in palms. Its morphology and mechanical biology. – J. Arnold Arbor. 43: 23-49.

Tomlinson PB. 1963. Essays on the morphology of palms VII. A digression about spines. – Principes 6: 44-52.

Tomlinson PB. 1967. Dichotomous branching in Allagoptera? – Principes 11: 70-72.

Tomlinson PB. 1971. The shoot apex and its dichotomous branching in the Nypa palm. – Ann. Bot., N. S., 35: 865-879.

Tomlinson PB. 1979. Systematics and ecology of the Palmae. – Ann. Rev. Ecol. Syst. 10: 85-107.

Tomlinson PB. 1990. The structural biology of palms. – Clarendon Press, Oxford.

Tomlinson PB. 2006a. The uniqueness of palms. – Bot. J. Linn. Soc. 151: 5-14.

Tomlinson PB. 2006b. Stem anatomy of climbing palms in relation to long-distance water transport. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California. – Aliso 22: 265-277.

Tomlinson PB, Moore HE Jr. 1968. Inflorescence in Nannorrhops ritchiana (Palmae). – J. Arnold Arbor. 49: 16-34.

Tomlinson PB, Soderholm PK. 1975. The flowering and fruiting of Corypha elata in South Florida. – Principes 19: 83-89.

Tomlinson PB, Spangler R. 2002. Developmental features of the discontinuous stem vascular system in the rattan palm Calamus (Arecaceae-Calamoideae-Calamineae). – Amer. J. Bot. 89: 1128-1141.

Tomlinson PB, Zimmermann MH. 1968. Anatomy of the palm Raphis excelsa V. Inflorescence. – J. Arnold Arbor. 49: 291-306.

Tomlinson PB, Zimmermann MH. 2003. Stem vascular architecture in the American climbing palm Desmoncus (Arecaceae-Arecoideae-Bactridinae). – Bot. J. Linn. Soc. 142: 243-254.

Tomlinson PB, Horn JW, Fisher JB. 2011. The anatomy of palms: Arecaceae – Palmae. – Oxford University Press, Oxford.

Tralau H. 1964. The genus Nypa van Wurmb. – Kungl. Sv. Vetensk.-akad. Handl., 4e ser. 10: 1-29.

Trénel P, Gustafsson MHG, Baker WJ, Asmussen-Lange CB, Dransfield J, Borchsenius F. 2007. Mid-Tertiary dispersal, not Gondwanan vicariance explains distribution patterns in the wax palm subfamily (Ceroxyloideae: Arecaceae). – Mol. Phylogen. Evol. 45: 272-288.

Tripathi RP, Mishra SN, Sharma BD. 1999. Cocos nucifera-like petrified fruit from the Tertiary of Amarkantak, M. P., India. – Paleobotanist 48: 251-255.

Trudgen MS, Baker WJ. 2008. A revision of the Heterospathe elegans (Arecaceae) complex in New Guinea. – Kew Bull. 63: 639-647.

Tuley P. 1995. The palms of Africa. – Tendrine Press, Zennor, St. Ives, Cornwall.

Uhl NW. 1966. Morphology and anatomy of the inflorescence axis and flowers of a new palm, Aristeyera spicata. – J. Arnold Arbor. 47: 9-22.

Uhl NW. 1972a. Leaf anatomy in the Chelyocarpus alliance. Principes 16: 101-110.

Uhl NW. 1972b. Inflorescence and flower structure in Nypa fruticans (Palmae). – Amer. J. Bot. 59: 729-743.

Uhl NW. 1976. Developmental studies in Ptychosperma (Palmae) I. The inflorescence and the flower cluster. – Amer. J. Bot. 63: 82-96.

Uhl NW. 1978. Leaf anatomy in the species of Hyophorbe (Palmae). – Gentes Herb. 11: 268-283.

Uhl NW. 1988. Floral organogenesis in palms. – In: Leins P, Tucker SC, Endress PK (eds), Aspects of floral development, Gebrüder Bornträger, Berlin, pp. 25-44.

Uhl NW, Dransfield J. 1984. Development of the inflorescence, gynoecium, and androecium with reference to palms. – In: White RA, Dickison WC (eds), Contemporary problems in plant anatomy, Academic Press, New York, pp. 347-449.

Uhl NW, Dransfield J. 1987. Genera Palmarum: a classification of palms based on the work of Harold E. Moore, Jr. – The International Palm Society, Ithaca, New York, L. H. Bailey Hortorium, and Allen Press, Lawrence, Kansas.

Uhl NW, Dransfield J. 1988. Genera Palmarum, a new classification of palms and its implications. – Adv. Econ. Bot. 6: 1-19.

Uhl NW, Dransfield J. 1999. Genera Palmarum after ten years. – In: Henderson A, Borchsenius F (eds), Evolution, variation, and classification of palms, Mem. New York Bot. Gard. 83: 245-253.

Uhl NW, Moore HE Jr. 1971. The palm gynoecium. – Amer. J. Bot. 58: 945-992.

Uhl NW, Moore HE Jr. 1977a. Centrifugal stamen initiation in phytelephantoid palms. – Amer. J. Bot. 64: 1152-1161.

Uhl NW, Moore HE Jr. 1977b. Correlations of inflorescence, floral structure, and floral anatomy with pollination in some palms. – Biotropica 9: 170-190.

Uhl NW, Moore HE Jr. 1978. The structure of the acervulus, the flower cluster of chamaedoroid palms. – Amer. J. Bot. 65: 197-204.

Uhl NW. Moore HE. Jr. 1980. Androecial development in six polyandrous genera representing five major groups of palms. – Ann. Bot., N. S., 45: 57-75.

Uhl NW, Dransfield J, Davis JI, Luckow MA, Hansen KS, Doyle JJ. 1995. Phylogenetic relationships among palms: cladistic analyses of morphological and chloroplast DNA restriction site variation. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ. (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, Richmond, England, pp. 623-661.

Valkenburg JLCH van, Sunderland TCH. 2008. A revision of the genus Podococcus (Arecaceae). – Kew Bull. 63: 251-260.

Valkenburg JLCH van, Sunderland TCH, Couvreur TLP. 2008. A revision of the genus Sclerosperma (Arecaceae). – Kew Bull. 63: 75-86.

Vandenburg LE, Wilder EA. 1970. The structural constituents of Carnauba wax. – J. Amer. Oil Chem. Soc. 47: 514-518.

Vaudois-Miéja N, Lejal-Nicol A. 1987. Paléocarpologie africaine: apparition des l’Aptien en Égypte d’un palmier (Hyphaeneocarpon aegypticum n.sp.). – Compt. Rend. Acad. Sci. Paris, sér. II, 304: 233-238.

Vianna SA, Carmelo-Guerreiro SM, Noblick LR, Colombo CA. 2017. Leaf anatomy of Acrocomia (Arecaceae): an additional contribution to the taxonomic resolution of a genus with great economic potential. – Plant Syst. Evol. 303: 233-248.

Vieillard E. 1873. Étude sur les palmiers de la Nouvelle-Calédonie. – Bull. Soc. Linn. Normandie, sér. II, 6: 226-233.

Watling D. 2005. Palms of the Fiji Islands. – Environmental Consultants, Suva, Fiji.

Wendland H. 1865. New classification of palms. – J. Bot. 3: 382-383.

Wessels Boer JG. 1965. The indigenous palms of Suriname. – In: Lanjouw J (ed), Flora of Suriname V(1), Leiden.

Wessels Boer JG. 1968. The geonomoid palms. – Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Tweede Reeks 58(1): 1-202.

Wessels Boer JG. 1988. Palmas indígenas de Venezuela. – Pittiera 17: 1-332.

Williams CA, Harborne JB. 1973. Negatively charged flavones and tricin as chemosystematic markers in the Palmae. – Phytochemistry 12: 2417-2430.

Wilson MA, Gaut B, Clegg MT. 1990. Chloroplast DNA evolves slowly in the palm family (Arecaceae). – Mol. Biol. Evol. 7: 303-314.

Zimmermann MH, Tomlinson PB. 1965. Anatomy of the palm Raphis excelsa I. Mature vegetative axis. – J. Arnold Arbor. 46: 160-178.

Zimmermann MH, Tomlinson PB. 1974. Vascular patterns in palm stems: variations of the Rhaphis principe. – J. Arnold Arbor. 55: 402-424.

Zona S. 1990. A monograph of Sabal (Arecaceae: Coryphoideae). – Aliso 12: 583-666.

Zona S. 1995. A revision of Calyptronoma (Arecaceae). – Principes 39: 140-151.

Zona S. 1996. Roystonea (Arecaceae: Arecoideae). – Flora Neotropica, New York Botanical Garden, Bronx, New York, 71: 1-35.

Zona S. 1999a. New perspectives on generic limits and relationships in the Ptychospermatinae (Palmae: Arecoideae). – Mem. New York Bot. Gard. 83: 255-263.

Zona S. 1999b. A revision of Drymophloeus (Arecaceae: Arecoideae). – Blumea 44: 1-24.

Zona S. 2002. A revision of Pseudophoenix. – Palms 46: 19-38.

Zona S. 2003. Endosperm condition and the paradox of Ptychococcus paradoxus. – Telopea 10: 179-185.

Zona S. 2004. Raphides in palm embryos and their systematic significance. – Ann. Bot. 93: 415-421.

Zona S. 2005. A revision of Ptychococcus (Arecaceae). – Syst. Bot. 30: 520-529.

Zona S, Baker WJ. 2014. Solfia transferred to Balaka. – Palms 58: 191-192.

Zona S, Essig FB. 1999. How many species of Brassiophoenix? – Palms 43: 45-48.

Zona S, Henderson A. 1989. A review of animal-mediated seed dispersal of palms. – Selbyana 11: 6-21.

Zona S, Francisco-Ortega J, Jestrow B, Baker WJ, Lewis CE. 2011. Molecular phylogenetics of the palm subtribe Ptychospermatinae (Arecaceae). – Amer. J. Bot. 98: 1716-1726.