[Commelinanae+Cyperales]


CYPERALES Juss. ex Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 263. Jan-Apr 1820 [‘Cyperaceae’]

Poales Small, Fl. S.E. U.S.: 48. 22 Jul 1903; Poanae Takht. ex Reveal et Doweld in Novon 9: 550. 30 Dec 1999

Habit Usually bisexual (sometimes monoecious, andromonoecious, gynomonocious, polygamomonoecious, dioecious, androdioecious, or gynodioecious), usually perennial, biennial or annual herbs (sometimes suffrutices, rarely trees, shrubs, or lianas). Sometimes hygrophytic or aquatic. Often xerophytes.

Vegetative anatomy Mycorrhiza often absent. Phellogen absent. Primary vascular tissue two or more cylinders of vascular bundles or scattered bundles. Secondary lateral growth absent. Vessels present in roots and/or stem and/or leaves. Vessel elements with scalariform or simple (rarely reticulate) perforation plates; lateral pits scalariform or alternating. Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids usually P2c or P2cf Type (rarely P2cs type). Nodes? Secretory cavities absent. Idioblasts with silica bodies (often conical, rounded, saddle-shaped or quadratic) present or absent. Calciumoxalate raphides present or absent. C4 and CAM physiology occurring.

Trichomes Hairs unicellular or multicellular, uniseriate, simple or branched (sometimes stellate or peltate-lepidote, or T-shaped, and sometimes malpighiaceous, hairs), or absent; glandular hairs sometimes present; microhairs sometimes present.

Leaves Alternate (distichous or tristichous, sometimes tetrastichous), simple, entire, usually linear, sometimes differentiated into pseudopetiole and pseudolamina, sometimes reduced to leaf sheath, with supervolute/convolute, involute, conduplicate, plicate, adplicate, revolute, or plicate (rarely circinate) ptyxis. Stipules absent; leaf sheath usually well developed, open or closed, often with membranous adaxial ligule at distal end of sheath (ligule sometimes modified into hairs or absent). Venation usually parallelodromous, often with transverse veins (sometimes pinnate-parallelodromous). Stomata paracytic or tetracytic (rarely anomocytic), neighbouring cells with oblique or non-oblique divisions. Cuticular wax crystalloids usually as longitudinally aggregated rodlets (Strelitzia type; sometimes scale-like or spherical). Epidermis often with cell walls containing one or several silica bodies. Mesophyll sometimes with sclerenchymatous idioblasts. Mucilaginous idioblasts present or absent. Mesophyll usually without calciumoxalate crystals (sometimes with druses, styloids or single prismatic crystals). Secretory cavities usually absent. Cystoliths absent. Leaf margin usually entire (sometimes serrate or spinose-dentate).

Inflorescence Terminal, panicle, thyrsoid, corymb, simple or compound, spike-, head-, spadix- or raceme-like, or spike, raceme or head (flowers sometimes solitary). Floral prophylls (bracteoles) one, two or absent.

Flowers Usually actinomorphic (rarely more or less zygomorphic). Hypogyny. Tepals usually three, 3+3 (sometimes 2+2, rarely one, four, 2+4, or more than six) or modified into scales or bristles (rarely hairs), or absent; outer tepals with contorted or imbricate (sometimes open, rarely cochlear or conduplicate) aestivation, sepaloid or petaloid; inner tepals with imbricate or contorted aestivation, sepaloid or petaloid. Nectary usually absent (septal nectaries sometimes present). Disc absent.

Androecium Stamens usually three or 3+3 (sometimes one, two, 2+2, five, or more than six). Filaments usually free from each other (sometimes more or less connate), usually free from tepals (sometimes epitepalous). Anthers dorsifixed, subbasifixed or basifixed, versatile or non-versatile, usually tetrasporangiate (rarely disporangiate or trisporangiate), introrse, latrorse or extrorse, longicidal (dehiscing by longitudinal slits) or poricidal (dehiscing by apical pores or short slits). Tapetum secretory. Staminodia usually absent (female flowers sometimes with staminodia).

Pollen grains Microsporogenesis usually successive (rarely simultaneous). Pollen grains usually monoporate to monoulcerate, diporate to tetraporate (to heptaporate) or pantotreme (sometimes spiraperturate or trichotomosulcate, rarely disulculate or inaperturate), often operculate, usually shed as monads (sometimes as cryptotetrads), usually tricellular (sometimes bicellular) at dispersal. Exine tectate or semitectate, usually with columellate (sometimes granular) infratectum, reticulate to punctate, echinulate, echinate, spinulate, finely scabrate, microverrucate, scrobiculate, or smooth.

Gynoecium Pistil composed of (one to) three (or four) connate carpels. Ovary superior, usually unilocular or trilocular (rarely bilocular). Style single, simple, or stylodia two or three, free or more or less connate. Stigma single, usually bilobate (rarely uni-, tri- or quadrilobate), or stigmas two or three (to nine), papillate or non-papillate, Dry type. Pistillodium usually absent (male flowers sometimes with pistillodium).

Ovules Placentation axile, basal, apical or parietal. Ovules one to more than 50 per ovary, anatropous, hemianatropous, amphitropous, orthotropous or campylotropous, ascending, horizontal or pendulous (often orthotropous pendulous), usually bitegmic (rarely unitegmic or almost ategmic), crassinucellar or incompletely tenuinucellar (to pseudocrassinucellar). Micropyle usually endostomal (sometimes bistomal). Funicular obturator occasionally present. Parietal cell formed from archesporial cell, or absent. Nucellar cap often present. Megagametophyte usually monosporous, Polygonum type (rarely disporous, Allium type, or tetrasporous, close to Drusa type). Synergids sometimes haustorial. Antipodal cells persistent, sometimes binucleate, sometimes more than three, sometimes proliferating (rarely absent). Endosperm development ab initio nuclear or helobial. Endosperm haustoria chalazal and micropylar, or absent. Embryogenesis usually asterad (sometimes onagrad).

Fruit A loculicidal and/or septicidal capsule, a nutlet (achene), a follicle, a berry or a nut-like caryopsis with pericarp usually fused with seed coat in adaxial end (sometimes a drupe, rarely a nutlet with membranous or gelatinous pericarp free from seed coat, or a syncarp or coenocarp).

Seeds Aril absent. Caruncular elaiosome occasionally present. Testa usually dry (sometimes fibrous; sometimes developing into a sarcotesta; or degenerating). Exotesta sometimes with silica bodies, sometimes fibrous. Endotesta sometimes persistent, sometimes with silica bodies. Tegmen sometimes fibrous, sometimes tanniniferous. Exotegmen sometimes degenerating. Perisperm not or only slightly developed. Endosperm copious, starchy, usually with proteinaceous tissue (rarely absent), with aleurone and sometimes oils; starch grains simple or compound. Embryo usually minute (sometimes large), straight or curved, usually well differentiated (sometimes rudimentary), with or without chlorophyll. Cotyledon one, not photosynthesizing. Cotyledon hyperphyll compact (sometimes modified into haustorium) and not assimilating, or elongate and assimilating. Hypocotyl internode present or absent. Mesocotyl sometimes present. Coleoptile modified into substrate-penetrating plumule envelope, with or without lamina, or absent. Germination phanerocotylar or cryptocotylar.

Cytology x = 2–20

DNA Mitochondrial gene sdh3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin, syringetin), laricitrin, flavonol glycosides (glycosides of myricetin etc.), flavonol sulfate, flavone sulfates, flavone-5-, flavone-6- and C-glycosides, catechin, gossypetin, aurones, luteolin, 8-hydroxyluteolin, luteolin-5-methylether, derivatives of 6-hydroxyluteolin and 6-hydroxymyricetin (hydroxyflavonoids), luteolinidin glycoside, tricine (flavone-3’,5’-dimethyl ether of tricetine), 6-hydroxyflavonoids (quercetagetin, patuletin), flavanones, cyanidin 3-deoxyanthocyanins, triterpenes, chalcones, tannins, cinnamic acids, daphnetin, juncosol (phenol), isoquinoline alkaloids, tryptophane- or tyramine-derived alkaloids (gramine, hordenine, tyramine, etc.), pyrrolizidine alkaloids as 1-aminopyrrolizidine derivatives (loline, lolinine, norline, etc.), indole alkaloids, cyanogenic glycosides (triglochinin), steroidal saponins, tyrosine-derived cyanogenic compounds, chrysazine (anthraquinone), -sitosterol, and S-methylcysteine present. Ferulic, diferulic and p-coumaric acids (esterified) components of non-lignified cell walls. Ellagic acid not found.

Systematics Poales are sister-group to [Commelinales+Cannales] (Commelinanae).

Bromeliaceae and Typhaceae are basal branches in Poales. They were identified as sister-groups in several studies, and Stevens (2001 onwards) cites the following potential synapomorphies for the clade [Bromeliaceae+Typhaceae]: stomatal subsidiary cells with oblique divisions; leaf without distinct sheath; three-nucleotide deletion in the atpA gene. However, these features may be polarized as plesiomorphies instead. Oblique divisions of subsidiary cells also occurs outside Poales (e.g. Iridales). There is a large variation in leaf base sheathing among monocots in general. Finally, the three-base deletion may be interpreted as an insertion in the other clades. Givnish & al. (2010) found Bromeliaceae as sister to the remaining Poales, whereas Typhaceae are successive sister-group to the rest.

Rapateaceae are sister to the remaining Poales except Bromeliaceae and Typhaceae (with various higher or lower support) in many molecular analyses. The remainder of Poales form a somewhat different topology depending on the genes and methods used for the analyses. One possible topology is [Prionium+[Thurnia+[Juncaceae+Cyperaceae]]]+[[Mayaca+[Xyridaceae+ Eriocaulaceae]]+pooids]]. Another plausible topology may be the following (2012 version of Stevens 2001 onwards): [[[Xyridaceae+Eriocaulaceae]+[Mayaca+[Thurniaceae+[Juncaceae+ Cyperaceae]]]]+pooids], where Mayacaceae are sister to the cyperoids. The main clade, representing the vast majority of Poales is characterized by the features (Stevens 2001 onwards): cellulose fibrils in outer epidermal cell walls of root elongation zone arranged parallel to root axis; trichoblast in atrichoblast/trichoblast cell pair adjacent to apical meristem; absence of septal nectaries; pollen grains tricellular at dispersal; absence of parietal tissue in ovule; absence (loss) of the mitochondrial gen sdh4; and presence of (1->3),(1->4)-ß-D-glucans in cell walls. C4 metabolism is widely distributed here. Moreover, the root hairs in most of those Poales which have been studied develop exclusively from special small cells in the epidermal (piliferous) layer. In most vascular plants the root hairs develop from any cell of the epidermal (piliferous) layer.

Stevens (2001 onwards) lists the following potential synapomorphies of the clade [[Eriocaulaceae+Xyridaceae]+[Mayaca+[Prionium+[Thurnia+[Juncaceae+Cyperaceae]]]]]: leaves spirally arranged; anthers basifixed; outer tepals persistent in fruit; deletions in ORF2280 region; loss of entire plastid gene accD and mitochondrial gene sdh4; and presence of flavonoids.

The xyrid clade, comprising Mayacaceae, Eriocaulaceae and Xyridaceae has, e.g., the following potential synapomorphies (Stevens 2001 onwards): silica bodies absent; spiral leaves; perianth differentiated into outer sepalous and inner petalous tepals; basifixed anthers; pollen grains with spinulate exine; style present; micropyle bistomal; calyx persistent in fruit; seed coat endostomal-tegmic; presence of operculum (’embryostega’) on the seed; undifferentiated embryo; and presence of flavonoids. The position of and support of this clade varies according to analysis methods.

Eriocaulaceae and Xyridaceae (at least Xyris itself) form a well supported monophyletic group in most analyses, characterized by the following potential synapomorphies, according to Stevens (2001 onwards): vessel elements with simple perforation plates; absence of silica bodies; inflorescence scapose, capitate, and provided with involucral bracts; clawed inner tepals; filaments adnate to inner tepals, antepetalous; presence of exothecium; exine provided with spines; seed ridged, with tegmic operculum; and cuticular layer present between testa and tegmen. The last character also occurs in Rapateaceae.

The strongly supported cyperoid clade [Prionium+[Thurnia+[Juncaceae+Cyperaceae]]] has the following potential synapomorphies (Stevens 2001 onwards): absence of mycorrhiza; trichoblasts arising from distal cell in a cell pair; culm angular in cross-section; leaves tristichous, with air canals; leaf sheath usually closed; perianth small, membranous and undifferentiated, or absent; microsporogenesis simultaneous; pollen grains porate, shed in tetrads, and tricellular at dispersal; ovules anatropous; seed coat testal-tegmic; photosynthesizing unifacial cotyledon hyperphyll (phanomer) usually present; presence of hypocotyl; seedling collar minute, with rhizoids; chromosomes with diffuse centromeres; deletions in ORF2280; a 3 bp deletion in the plastid gene atpA; and presence of amylophilic pteridophyte type starch grains, 3-deoxyanthocyanins and luteolin-5-methylether. The clade [Juncaceae+Cyperaceae] alone has endostomal micropyle; absence (loss) of plastid gene rpl23; and presence of luteolin-5’methyl ether.

The clade [[Mayaca+[Eriocaulaceae+Xyridaceae]]+pooids], with fairly weak support in some molecular analyses, is supported by the characters tenuinucellate ovules and minute and little differentiated embryo.

The pooid clade is strongly supported by molecular data and comprises [[Anarthriaceae+ [Centrolepidaceae+Restionaceae]]+[Flagellariaceae+[Joinvilleaceae+Ecdeiocoleaceae+Poaceae]]]]. Stevens (2001 onwards) cites the following potential synapomorphies: sieve tube plastids with cuneate and additional loosely packed protein crystals; leaves usually distichous and sheathing; floral prophylls (bracteoles) often absent; tepals membranous and undifferentiated; endothecial cell wall thickenings girdle-like; pollen grains monoporate, annulate/ulcerate and with scrobiculate exine (with minute pores penetrating tectum and foot layer); stigma plumose, with receptive cells on multicellular branches; placentation apical; ovule one per carpel, orthotropous; micropyle bistomal; embryo minute, undifferentiated, broad; seedling with collar rhizoids; deletions in the ORF2280 region; primary cell wall also containing (1–3, 1–4)-β-D-glucans; and presence of flavones.

The restioid clade of this monophyletic group includes Anarthriaceae, Restionaceae and Centrolepidaceae (the last group possibly being nested inside Restionaceae) and is supported by the synapomorphies: usually dioecious; root hairs developing from any epidermal cell (a reversal); culm with parenchymatous sheath, palisade chlorenchymatous tissue, and sclerenchymatous cylinder with vascular bundles inside; chlorenchyma with peg cells; stamens three, antepetalous; anthers dorsifixed; phanomer (photosynthesizing unifacial cotyledon hyperphyll) present; and loss of plastid gene rpoC1. Restionaceae and Centrolepidaceae share the apomorphies: absence of mycorrhiza; absence of hairs; anthers disporangiate and monothecal; pollen grain pore non-annulate, with irregular margin; cells of megasporangial epidermis anticlinally elongated; megagametophyte with compound starch grains (in particular around polar nuclei); and antipodal cells persistent and proliferating.

The pooids in a strict sense may have the topology [Flagellariaceae+[[Joinvilleaceae+ Ecdeiocoleaceae]+Poaceae]], which is followed here. On the other hand, Ecdeiocoleaceae are sometimes recovered as sister to Poaceae. In any case, the pooids s.str. clade is characterized by the following potential synapomorphies (Stevens 2001 onwards): trichoblasts arising from distal cell of each cell pair; pseudolamina with transverse veins; leaf sheath with distal ligule; inflorescence a panicle, with adaxial swellings on branches; presence of nucellar cap; massive suprachalazal zone; indehiscent fruit; cotyledon non-photosynthesizing; and primary cell walls with mixed-linkage glucans. Finally, the monophyletic group formed by Joinvilleaceae, Ecdeiocoleaceae and Poaceae may have the synapomorphies: silica bodies cuboid; epidermis with microhairs; foliar epidermis with long and silica-containing short cells; guard cells dumbbell-shaped; presence of fusoid cells (large colourless cells in the central mesophyll); hollow stem; presence of nucellar cap; first seedling leaf lacking lamina; presence of one 28 kb and one 6,4 kb inversion in the plastid genome; and loss of the functional plastid gene ycf2.

Phylogeny of Cyperales based on DNA sequence data (Givnish & al. 1999; Michelangeli & al. 2003; Marchant & Briggs 2007; Briggs & al. 2010; Givnish & al. 2010). Rapateaceae are sometimes recovered adjacent to Mayacaceae, Xyridaceae and Eriocaulaceae, whereas Mayaca is sister to the clade [Prionium+[Thurnia+[Juncaceae+Cyperaceae]]] in Stevens (2001 onwards, version 9). The JEP clade is often unresolved, or either Ecdeiocoleaceae, Joinvilleaceae or [Ecdeiocoleaceae+Joinvilleaceae] are placed as sister-group to Poaceae.

ANARTHRIACEAE D. F. Cutler et Airy Shaw

( Back to Cyperales )

Cutler et Airy Shaw in Kew Bull. 19: 489. 26 Jul 1965

Hopkinsiaceae B. G. Briggs et L. A. S. Johnson in Telopea 8: 484. Jul 2000; Lyginiaceae B. G. Briggs et L. A. S. Johnson in Telopea 8: 488. Jul 2000

Genera/species 3/11

Distribution Southwestern Western Australia.

Fossils Unknown.

Habit Usually dioecious (rarely monoecious), perennial herbs. Graminids. Rarely with stilt roots. Hygrophytes. Culm branched (Anarthria) or simple (Lyginia), in cross-section terete or flattened.

Vegetative anatomy Root hairs lignified, developed from any epidermal cell. Lateral roots developing from a zone opposite protoxylem poles. Chlorenchymatous layer of peg cells present inside epidermis; inside this layer a cylinder of vascular bundles. Anarthria: common parenchymatic and sclerenchymatic envelope not forming vascular cylinder inside chlorenchyma, instead surrounding each vascular bundle; palisade tissue absent. Hopkinsia and Lyginia: subepidermal chlorenchyma separated from cortex by common sclerenchyma cylinder and parenchyma sheath. Phellogen absent. Secondary lateral growth absent. Vessels present in stem and leaves (probably absent from roots). Vessel elements with scalariform perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids probably P2c type, with cuneate protein crystals. Nodes? Silica bodies absent. Calciumoxalate crystals and druses present in Lyginia.

Trichomes Hairs absent.

Leaves Anarthria: alternate (distichous), simple, entire, linear, equitant, isobifacial, laterally flattened, with margin facing culm, with convolute (supervolute) ptyxis; Hopkinsia and Lyginia: leaves reduced to scale-like sheaths. Stipules absent; leaf sheath open, with distal ligule. Venation parallelodromous. Stomata (brachy)paracytic, in furrows, with Poaceae type guard cells. Cuticular waxes? Epidermis without lines of alternating long and short cells. Mesophyll with sclerenchymatous idioblasts; mesophyll without calciumoxalate crystals. Leaf margin entire.

Inflorescence Terminal, few- to many-flowered, usually panicle (not consisting of spikelets, or spikelets one-flowered). Each flower subtended by one or two bracts. Floral prophyll (bracteoles) one, two or absent.

Flowers Actinomorphic, small. Hypogyny. Tepals 3+3, free, membranous to hard. Nectary absent. Disc absent.

Androecium Stamens three, antepetalous (outer staminal whorl absent). Filaments filiform, free or connate (Lyginia), free from tepals. Anthers subbasifixed, versatile, disporangiate (in Anarthria) or tetrasporangiate (in Hopkinsia and Lyginia), latrorse-introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Female flowers often with staminodia.

Pollen grains Microsporogenesis successive? Pollen grains graminoid, monoporate to monoulcerate, operculate? (ulcus with annulus), shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, scrobiculate to smooth (in Hopkinsia and Lyginia microverrucate).

Gynoecium Pistil usually composed of three connate antesepalous carpels (in Hopkinsia of one carpel). Ovary superior, trilocular. Stylodia three, free or connate at base, with adaxial stigmatic areas. Stigmas three, papillate, Dry type? (sometimes extremely elongated). Pistillodium absent or rudimentary in male flowers.

Ovules Placentation apical-axile. Ovule one per carpel, orthotropous, pendulous, bitegmic, tenuinucellar. Micropyle bistomal? Outer integument ? cell layers thick. Inner integument ? cell layers thick, tanniniferous. Hypostase present adjacent to chalazal end. Megagametophyte monosporous, Polygonum type (in Lyginia with compound starch grains). Antipodal cells? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit Usually a loculicidal capsule (in Hopkinsia a nutlet with fleshy pedicel and persistent tepals).

Seeds Aril absent. Testa? Tegmen? Perisperm not developed. Endosperm copious, starchy. Embryo small?, chlorophyll? Cotyledon one (in Hopkinsia not photosynthesizing). Cotyledon hyperphyll? Hypocotyl internode? Mesocotyl? Coleoptile absent? Plumule? Collar hairs? Germination? Phanomer?

Cytology n = 6 (Lyginia); n = 9 (Hopkinsia); n = 11, 22 (Anarthria)

DNA ORF 2280 present. The plastid gene trnL has a 3 bp deletion and a 5 bp insertion. The plastid genome lacks the 28 kb inversion often present in Restionaceae, Joinvilleaceae, Ecdeiocoleaceae, and Poaceae.

Phytochemistry Insufficiently known. Flavonols (kaempferol, quercetin, myricetin) and flavonol glycosides present. Fructans present in Lyginia. Proanthocyanidins and flavonoid sulphates not found.

Use Unknown.

Systematics Anarthria (6; southwestern Western Australia); Hopkinsia (2; southwestern Western Australia), Lyginia (3; southwestern Western Australia).

Anarthriaceae are probably sister to [Restionaceae+Centrolepidaceae].

Anarthria is sister to [Hopkinsia+Lyginia] (Briggs & al. 2010).

Phylogeny of Anarthriaceae based on DNA sequence data (Briggs & al. 2010).

BROMELIACEAE Juss.

( Back to Cyperales )

de Jussieu, Gen. Plant.: 49. 4 Aug 1789 [’Bromeliae’], nom. cons.

Bromeliales Link, Handbuch 1: 207. 4-11 Jul 1829 [’Bromelieae’]; Tillandsiaceae Wilbr., Nat. Pflanzenfam.: 44. Jun-Dec 1834 [’Tillandsieae’]; Bromeliopsida Brongn., Enum. Plant. Mus. Paris: xv, 23. 12 Aug 1843 [’Bromelioideae’]; Bromelianae R. Dahlgren ex Reveal in Novon 2: 235. 13 Oct 1992; Bromeliidae C. Y. Wu in Acta Phytotaxon. Sin. 40: 299. 2002

Genera/species 58–60/2.490–2.500

Distribution Tropical and subtropical regions of America from Virginia in the United States to Patagonia in South America; one species of Pitcairnia in tropical West Africa.

Fossils Uncertain. Karatophyllum bromelioides, a fossil from Costa Rica of the mid-Cenozoic, has been attributed to the Bromeliaceae.

Habit Usually bisexual (sometimes functionally unisexual), usually perennial herbs (rarely trees or lianas). Many species are epiphytic or epilithic. Some species are succulent. Two species of Brocchinia and one species of Catopsis are carnivorous.

Vegatative anatomy Majority of species with CAM metabolism (evolved multiple times). Intracauline adventitious roots present in stem cortex in species with a distinct stem. Lateral roots developing from a zone opposite protoxylem poles. Roots in epiphytes and epiliths modified into climbing organs; some species lack roots entirely. Phellogen? Secondary lateral growth absent. Vessels present in roots and often also in stem and leaves. Vessel elements usually with scalariform (in roots sometimes simple) perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays? Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals, or P2ccl type, with cuneate and several additional loosely packed protein crystals. Nodes? Stem epidermis with silica bodies in inner periclinal cell walls. Mucilaginous idioblasts (raphide sacs) with calciumoxalate raphides.

Trichomes Water absorbing peltate hairs consisting of a proximal foot cell, a multicellular uniseriate stalk of living cells and a stellate to discoid peltate upper part consisting of numerous usually dead cells, often pressed against epidermis; rarely with multicellular simple uniseriate or stellate hairs or glandular hairs. Water absorbing stellate or lepidote peltate hairs present especially at leaf bases.

Leaves Alternate (usually spiral; in some species of Tillandsia distichous), simple, entire, often linear (sometimes filiform), usually hard, coriaceous or succulent (sometimes transformed into spines), with convolute (supervolute), curved or flat ptyxis. Stipules absent; leaf sheath indistinctly delimited from lamina. Venation parallelodromous. Stomata tetracytic (sometimes with six subsidiary cells, sometimes paracytic?), with oblique cell divisions. Cuticular wax crystalloids usually absent (sometimes as aggregated rodlets, often longitudinally orientated, Strelitzia type, or as scales). Epidermis with silica bodies (one per cell, imbedded in inner periclinal cell walls). Mesophyll with water-storing tissue and mucilaginous idioblasts containing calciumoxalate raphides. Envelopes of vascular bundles fibrous. Hypodermal cells often with transparent yellowish tannine drips. Leaf margin serrate (often spinose-dentate) or entire.

Inflorescence Usually terminal, spike or raceme (rarely head), often in panicle or thyrse (flowers in Tillandsia solitary), often with showy colourful bracts (inflorescence in Deuterocohnia lignified, with cambium-like meristem and anthesis persisting for several years). Extrafloral nectaries sometimes present.

Flowers Usually actinomorphic (in Pitcairnia and Tillandsia somewhat zygomorphic). Hypogyny (probably secondary) to epigyny. Tepals 3+3, free or connate; outer tepals usually with contorted (sometimes imbricate, rarely cochleate) aestivation, sepaloid or petaloid, persistent; inner tepals with imbricate or contorted aestivation, petaloid, often connivent into a tube, often considerably longer than outer tepals, often with one or two basal adaxial scale-like outgrowths (nectaries?) and/or longitudinal bulges. Septal nectaries present. Disc absent.

Androecium Stamens 3+3. Filaments flattened, more or less fleshy or plicate, usually free (sometimes connate at base), usually free from tepals (sometimes adnate to inner tepals). Anthers basifixed or dorsifixed, usually non-versatile?, tetrasporangiate, introrse to latrorse, longicidal (dehiscing by longitudinal slits); connective in Androlepis prolonged. Tapetum secretory, with uni- to multinucleate cells, with ab initio secretory cells subsequently invading. Female flowers with staminodia.

Pollen grains Microsporogenesis successive. Pollen grains monosulcate, diporate to tetraporate or pantotreme (in Aechmea, Canistrum and Guzmania inaperturate), usually shed as monads (in Androlepis, Hohenbergiopsis and some Orthophytum as tetrads), usually bicellular (rarely tricellular) at dispersal. Pollen grains sometimes without starch. Exine semitectate, with columellate infratectum, usually reticulate (sometimes scrobiculate or pertectate).

Gynoecium Pistil composed of three connate carpels; median carpel abaxial. Ovary superior (although initiated inferior) to inferior, trilocular. Style simple, long, subulate, straight or curved, trifid at apex (absent in some genera). Stigma usually trilobate (in Aechmea and Werauhia entire), with straight or spirally twisted, sometimes foliaceous, branched or irregularly folded lobes, sometimes cupular, often papillate, Dry or Wet type. Male flowers with pistillodium; sterile flowers sometimes with pistillodium.

Ovules Placentation axile. Ovules two to more than 50 per carpel, usually anatropous (rarely campylotropous or orthotropous), bitegmic, crassinucellar, often with a chalazal appendage. Micropyle endostomal. Outer integument up to seven cell layers thick. Inner integument two cell layers thick. Megasporangium one cell layer thick at micropyle; epidermal cells elongate. Parietal cell formed from archesporial cell. Nucellar cap sometimes two cell layers thick. Megagametophyte monosporous, Polygonum type. Antipodal cells sometimes proliferating. Endosperm development ab initio helobial; cell wall formation in small chalazal space preceding wall formation in large micropylar spaces. Endosperm haustoria? Embryogenesis asterad.

Fruit A usually septicidal (sometimes septicidal-loculicidal, rarely loculicidal) capsule or a berry with persistent outer tepals (berries in some species fused with each other and with inflorescence axis into a syncarp).

Seeds Aril absent. Seed sometimes winged or plumose (hair tufts in Tillandsioideae formed by splitting of testa). Operculum sometimes? present. Seed coat testal-tegmic. Testa dry or developing into a sarcotesta. Exotegmen sometimes thickened. Endotegmen tanniniferous. Perisperm not developed. Endosperm copious, starchy, periferal cells with aleurone and lipids; starch grains simple or compound. Embryo usually small, straight, often lateral, well differentiated, without chlorophyll, Trillium type. Cotyledon one. Cotyledon hyperphyll elongate and assimilating, or compact and not assimilating. Hypocotyl internode present or absent. Coleoptile absent. Radicula absent in Tillandsioideae. Germination phanerocotylar? or cryptocotylar.

Cytology n = 16, 17, 21, 24, 25, 27, 32, 36, 48 – Chromosomes usually not more than 2.75 μm long.

DNA

Phytochemistry Flavonols (kaempferol, quercetin), C-glycosylated/6-oxygenated flavones, derivatives (partially O-methylated) of 6-hydroxyluteolin and 6-hydroxymyricetin, cyaniding?, triterpenes and steroidal saponins present. Ferulic, diferulic and p-coumaric acids (esterified) components of non-lignified cellwalls. Ellagic acid and alkaloids not found. Ananas comosus contains bromelain (a mixture of at least five different proteolytic enzymes); fruit scent largely due to undecatriene and undecatetraene.

Use Ornamental plants, fruits (Ananas comosus, Aechmea, Bromelia, Greigia), fibres (Ananas lucidus, Aechmea magdalenae, Neoglaziovia variegata).

Systematics Bromeliaceae have sometimes (with high support) been identified as sister to the remaining Poales (Givnish & al. 2010). The subdivision below is according to Givnish & al. (2006).

Brocchinioideae Givnish in Aliso 23: 15. Dec 2007

1/21. Brocchinia (21; Roraima areas in the Guyana Highlands and northern Brazil). – Stem sometimes erect. Adventitious roots sometimes intracauline. Stellate chlorenchyma present. Flowers very small. Epigyny. Septal nectaries present above ovules. Seeds caudate. Basal hair tuft sometimes present. n = 9?, 23. – Large variation occurs in the mains of nitrogen absorption. Brocchinia reducta is carnivorous. Brocchinia acuminata is myrmecophilous.

[Lindmanioideae+[Tillandsioideae+[Hechtioideae+[Navioideae+Pitcairnioideae]+[Puyoideae+ Bromelioideae]]]]

Terminal hair cell dead. Septal nectaries inserted below ovules.

Lindmanioideae Givnish in Aliso 23: 15. Dec 2007

1/38. Lindmania (38; the Guayana Highlands, northern Brazil). – Dioecious. Chlorenchyma not stellate. Leaf margin entire or serrate. Outer tepals with contorted aestivation. Stigma simple, erect. Seeds caudate. Cotyledon hypophyll foliaceous.

[Tillandsioideae+[Hechtioideae+[Navioideae+Pitcairnioideae]+[Puyoideae+Bromelioideae]]]

Inner tepals often with subbasal scales and/or longitudinally orientated callosities.

Tillandsioideae Burnett, Outlines Bot.: 442. Feb 1835 [‘Tillandsidae’]

9/970–980. Catopsis (18; tropical America), Glomeropitcairnia (2; the West Indies), Mezobromelia (9; Colombia, Ecuador), Guzmania (c 170; tropical America), ’Vriesea’ (c 280; tropical America; non-monophyletic), Alcantarea (13; tropical America; in Vriesea?), Werauhia (c 65; tropical South America; in Vriesea?), ’Tillandsia’ (c 480; tropical America; polyphyletic), Racinaea (c 55; tropical America), Viridantha (6; Mexico). – Tropical and subtropical parts of America from southern United States to tropical South America. Epiphytic. Roots often adapted solely for anchoring purpose (sometimes absent, e.g. in adult individuals of Tillandsia usneoides). Lepidote hairs actinomorphic. Leaf margin entire. Inflorescence sometimes distichous. Ovules with chalazal elongated appendage. Outer integument sometimes five cell layers thick. Seeds caudate due to strongly prolonged outer integument. Apical and/or basal hair tufts usually developed by longitudinal splitting of outer integument. Radicula ephemeral or absent. Karyotype bimodal.

[Hechtioideae+[Navioideae+Pitcairnioideae]+[Puyoideae+Bromelioideae]]

Hechtioideae Givnish in Aliso 23: 16. Dec 2007

1/c 50. Hechtia (c 50; Texas, Mexico, northern Central America). – Dioecious. Xeromorphic. Hypodermal sclerenchymatic tissue present. Internal water storing tissue present. Chlorenchyma undifferentiated. Hairs arranged in parallel rows. Leaf margin usually serrate (sometimes entire). Ovary sometimes semi-inferior. Stigma simple, erect. Seeds usually winged. Cotyledon hypophyll foliaceous. – Hechtia and Tillandsioideae form a trichotomy together with the remaining Bromeliaceae (e.g. Terry & al. 1997). Hechtia is occasionally grouping together with Tillandsioideae (Crayn & al. 2004).

[Navioideae+Pitcairnioideae]

Navioideae Harms in Notizbl. Bot. Gart. 10: 575. 30 Mar 1929

6/c 125. Navia (98; northern South America), Steyerbromelia (3; Venezuela, central Amazonia), Cottendorfia (1; C. florida; northeastern Brazil), Connellia (5; Venezuela Highlands), Fosterella (16; Central America, western South America), Ayensua (1; A. uaipanensis; Venezuela). – The Venezuela and the Guayana Highlands, northeastern Brazil. Xeromorphic. Peripheral water storing tissue present. Stellate chlorenchyma present. Leaf margin serrate or entire. Inner tepals very small. Seeds often winged.

Pitcairnioideae Harms in Engler et Prantl, Nat. Pflanzenfam., ed. 2, 15a: 99. 1930

5–6/420–425. Dyckia (c 125; tropical South America), Pitcairnia (c 285; tropical America, one species, P. feliciana, in tropical West Africa), Pepinia (68; southern Mexico, Central America, Colombia and Venezuela to Peru and Bolivia, with their highest diversity in Venezuela and Ecuador; in Pitcairnia?), Brewcaria (2; Guayana Highlands), Deuterocohnia (14; South America southwards to Chile), Encholirium (29; eastern South America). – Mexico and Central America southwards to Chile; the occurrence of Pitcairnia feliciana in West Africa is most probably due to recent long distance dispersal. Lepidote hairs divided or hairs stellate. Hypogyny to epigyny. Ovule with chalazal appendage. Outer integument sometimes five cell layers thick. Parietal tissue sometimes several cell layers thick. Seeds caudate, with body cells different from ‘tail’; seeds often winged. Embryo often lateral. Hypocotyl elongated. Cotyledon hypophyll foliaceous. Collar rhizoids present in Pitcairnia. Karyotype sometimes bimodal.

[Puyoideae+Bromelioideae]

Puyoideae Givnish in Aliso 23: 16. Dec 2007

1/c 190. Puya (c 190; the Cordillera in Costa Rica and Guayana Highlands southwards to Chile and Argentina; possibly non-monophyletic?). – Usually xeromorphic. Hypodermal sclerenchymatic tissue present. Internal water storing tissue present. Chlorenchyma undifferentiated. Hairs arranged in parallel rows. Foliar trichomes with well developed wings. Leaf margin serrate. Flowers zygomorphic. Outer tepals with contorted aestivation. Inner tepals clawed, after anthesis densely spirally twisted. Parietal tissue several cell layers thick. Seeds circumferentially winged. Cotyledon hypophyll foliaceous.

Bromelioideae Burnett, Outlines Bot.: 442, 444. Feb 1835 [‘Bromelidae’]

c 33/c 680. Orthophytum (c 25; eastern Brazil), Cryptanthus (c 45; eastern Brazil), Araeococcus (6; tropical America), Fascicularia (1; F. bicolor; Chile), Greigia (28; Central and northwestern South America), Fernseea (2; Brazil), Ochagavia (4; southern and central Chile, Juan Fernandez Islands), Billbergia (62; tropical America, with their highest diversity in eastern Brazil), Neoglaziovia (3; eastern Brazil), Bromelia (c 50; tropical America), Deinacanthon (1; D. urbanianum; Paraguay, northwestern Argentina), Chevaliera (22; tropical America), Pseudananas (1; P. sagenarius; tropical South America), Ananas (1–7; A. comosus; tropical America), Acanthostachys (2; eastern Brazil, Paraguay, northeastern Argentina), Hohenbergia (47; tropical America), ’Aechmea’ (c 180; tropical America; polyphyletic), Ursulaea (2; Mexico; in Aechmea?), ’Quesnelia’ (15; southeastern Brazil; polyphyletic), Canistrum (7; eastern Brazil), Edmundoa (3; eastern Brazil), Wittrockia (11; eastern Brazil), Portea (9; eastern Brazil), Pseudaechmea (1; P. ambigua; Colombia), Hohenbergiopsis (1; H. guatemalensis; southern Mexico, Guatemala), Androlepis (1; A. skinneri; Central America), Lymania (8; tropical America), Nidularium (c 50; eastern South America), Canistropsis (9; tropical America), Andrea (1; A. sellowiana; central Brazil), Neoregelia (c 100; tropical and subtropical South America), Streptocalyx (20; Brazil), Ronnbergia (12; Central America, northwestern South America), Disteganthus (3; northeastern South America). – Mexico, the West Indies, Central and South America to Chile. Epiphytic. Roots often adapted exclusively for anchoring purpose. CAM photosynthesis frequent. Lepidote hairs irregularly peltate. Leaf margin serrate or entire. Epigyny. Perianth tube or hypanthium sometimes present. Outer tepals sometimes asymmetrical. Inner tepals sometimes with adaxial subbasal appendages. Pollen grains sometimes porate. Ovary inferior. Stigma conduplicate, spirally twisted. Ovules with chalazal (funicular) appendage. Micropyle bistomal or endostomal. Fruit berry-like. Seeds usually without appendage. Gelatinous sarcotesta frequently present. Embryo lateral. Cotyledon usually photosynthesizing. Collar rhizoids present. Radicula prominent. Hypocotyl short.

Cladogram (simplified) of Bromeliaceae based on DNA sequence data (Terry & al. 1997; etc.).

Cladogram (simplified) of Bromelioideae based on DNA sequence data (Schulte & al. 2009).

CENTROLEPIDACEAE Endl.

( Back to Cyperales )

Endlicher, Gen. Plant.: 119. Dec 1836 [’Centrolepideae’], nom. cons.

Devauxiaceae Dumort., Anal. Fam. Plant.: 62, 63. 1829, nom. illeg.; Centrolepidales R. Dahlgren ex Takht., Divers. Classif. Fl. Pl.: 553. 24 Apr 1997

Genera/species 3/36

Distribution Southern China, Indochina, Malesia, New Guinea, Australia, Tasmania, New Zealand, southernmost South America.

Fossils Uncertain.

Habit Monoecious, andromonoecious or polygamomonoecious, usually annual (sometimes perennial) herbs. Graminids. Culm terete.

Vegatative anatomy Mycorrhiza absent. Root hairs developing from any epidermal cell, from one side of epidermal cell (peg cells absent?). Root without pericycle. Lateral roots developing from a zone opposite protophloem poles. Phellogen absent. Usually with one or several subepidermal palisade-like chlorenchyma layers without peg cells; inside these layers a parenchymatic cylinder and inside this a sclerenchymatic cylinder; medulla with scattered collateral vascular bundles; palisade tissue absent. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements with scalariform perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma absent? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Silica bodies and crystals usually absent? Calciumoxalate crystals absent.

Trichomes Hairs unicellular or multicellular, usually uniseriate (in Gaimardia often branched), or absent.

Leaves Alternate (distichous), simple, entire, linear or subulate, unifacial, with convolute (supervolute) ptyxis? Stipules absent; leaf sheath open, usually without ligule (in Gaimardia with distal ligule). Venation parallelodromous. Stomata (brachy)paracytic, with Poaceae type? guard cells. Cuticular wax crystalloids non-orientated. Epidermis with or without silica bodies. Mesophyll without calciumoxalate crystals. Leaf margin entire. Epidermis with hairs and papillae.

Inflorescence Terminal, few- to many-flowered usually bisexual pseudanthia, each pseudanthial unit being a spikelet with usually two (sometimes one, three or no) hyaline membranous secondary bracts (floral prophylls?); pseudanthia concentrated in capitate or distichous spike-like inflorescences, each subtended by two (or more) scale-like or green primary bracts.

Flowers Actinomorphic?, small. Hypogyny. Tepals probably absent. Nectary absent. Disc absent.

Androecium Stamen one or two (outer staminal whorl absent). Filament filiform. Anther dorsifixed, versatile, disporangiate (monothecal), introrse?, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Staminodia absent.

Pollen grains Microsporogenesis successive. Pollen grains monoporate or monoulcerate, without annulus or operculum, shed as monads, tricellular at dispersal. Exine tectate, with granular infratectum, punctate, scrobiculate, microverrucate.

Gynoecium Pistil composed of a single ascidiate carpel or, alternatively, one to 30 (rarely up to 45) free or (seemingly) connate carpels. Ovary superior, unilocular (unicarpellate), shortly stipitate. Style single, simple, filiform, persistent, with adaxial pollen receptive surface. Stigma one, papillate, type? Pistillodium absent.

Ovules Placentation apical. Ovule one per carpel, orthotropous, pendulous, bitegmic, tenuinucellar to weakly crassinucellar. Micropyle bistomal. Outer integument two? cell layers thick. Inner integument two? cell layers thick. Hypostase absent. Parietal cell usually not formed (parietal tissue sometimes one cell layer thick). Nucellar cap not formed. Megasporangial epidermis with anticlinally elongate cells (radial elongation of megasporangial epidermis). Megagametophyte monosporous, Polygonum type (Poaceae variation), with compound starch grains (polar nuclei surrounded by large starch bodies). Antipodal cells usually binucleate. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit A one-seeded, abaxially dehiscing follicle with membranous pericarp (in Aphelia indehiscent). Collateral ovaries often fused into a capsule-like coenocarp.

Seeds Aril absent. Seed coat endotegmic. Testa and exotegmen degenerating. Endotegmen membranous, tanniniferous, persistent. Cuticle between integument well developed. Perisperm not or only slightly developed. Endosperm copious, starchy; starch grains compound. Embryo very small, conical, rudimentary, chlorophyll? Cotyledon one. Cotyledon hyperphyll elongate, assimilating. Hypocotyl internode absent. Coleoptile absent. Collar hairs? Germination phanerocotylar. First seedling leaf with disc-shaped part; with isodiametric or palisade chlorenchyma cells. Photosynthesizing unifacial cotyledon hyperphyll (phanomer) usually present.

Cytology n = 10

DNA The 28 kb inversion is absent from the plastid DNA in at least Centrolepis.

Phytochemistry Very insufficiently known. Cyanogenic compounds not found. Aluminium accumulation occurring in Centrolepis.

Use Unknown.

Systematics Gaimardia (4; New Guinea, Tasmania, New Zealand, one species in Tierra del Fuego and the Falkland Islands), Aphelia (6; Australia), Centrolepis (26; Hainan, Indochina, Malesia, Australia).

Gaimardia is sister to [Aphelia+Centrolepis] (Briggs & al. 2010). One synapomorphy common to Aphelia and Centrolepis may be their absence of a distal foliar ligule.

Parsimony analysis of trnK and trnL-F identified Centrolepidaceae as sister-group to Restionaceae (Briggs & Linder 2009). On the other hand, Bayesian-inference analysis of the trn sequences and data from rbcL analyses recovered the clade as embedded within Restionaceae (Briggs & Linder 2009). This is also found in some maximum-likelihood and maximum-parsimony analyses (e.g., Linder & al. 2000; Briggs & al. 2010). In this case, the following topology was: [Restionoideae+[Sporadanthoideae+[Leptocarpoideae+Centrolepidoideae]]].

The leaves in Centrolepidaceae resemble the seedling leaves of Restionaceae, and Centrolepidaceae may have evolved from neotenic Restionaceae. The apertures of the pollen grains in some Australian Leptocarpoideae are similar to those in Centrolepidaceae, having a granular infratectum instead of the columellate infratectum seen in the majority of Restionaceae. Endexine is absent from or very poorly developed in Centrolepidaceae.

Pending results from a comprehensive molecular analysis of a large number of species ofRestionaceae and Centrolepidaceae from Africa, Australia and South America, I keep Centrolepidaceae as separate from Restionaceae. As sister to Leptocarpoideae they may be treated as Centrolepidoideae Burnett, Outlines Bot.: 416. Feb 1835 [‘Centrolepidae’].

The interpretation of the complex inflorescence of Centrolepidaceae (particularly in Aphelia) has been extremely difficult. The reproductive units in Centrolepis were interpreted by Sokoloff & al. (2009, 2010) as distichously arranged in lateral double spikelets each subtended by a bract. Usually, each reproductive unit (flower?) is rarely subtended by a bract (one important exception is Centrolepis racemosa) and consists of a single stamen and one to c. 30 (to 45) carpels. Gaimardia, on the other hand, has simple terminal spikelets. An alternative explanation was presented by Cooke (1998), who interpreted the inflorescence as being a bisexual pseudanthium consisting of a varying number of unisexual atepalous flowers, each comprising one or two stamens and a single carpel, respectively.

Phylogeny of Centrolepidaceae based on DNA sequence data (Briggs & al. 2010).

CYPERACEAE Juss.

( Back to Cyperales )

de Jussieu, Gen. Plant.: 26. 4 Aug 1789 [’Cyperoideae’, ’Cyperoïdeae’], nom. cons.

Scirpaceae Batsch ex Borkh., Bot. Wörterb. 2: 340. 1797 [’Scirpeae’]; Scleriaceae Bercht. et J. Presl, Přir. Rostlin: 263. Jan-Apr 1820; Caricaceae Bercht. et J. Presl, Přir. Rostlin: 263. Jan-Apr 1820 [’Caricinae’], nom. illeg. – non Caricaceae Dumort. 1829; Papyraceae Burnett, Outl. Bot.: 761, 1129. Feb 1835; Caricineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 1691. 1846; Cyperineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 1691, 1702. 1846; Scirpineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 1691, 1698. 1846; Kobresiaceae Gilly in Iowa State Coll. J. Sci. 26: 210. Jan 1952; Mapaniaceae Shipunov in Žurn. Obshchei Biol. 64: 505. Dec 2003

Genera/species 100–105/4.400–4.500

Distribution Cosmopolitan, with their largest diversity in temperate and alpine regions.

Fossils Fossil pollen and infructescence of Volkeria messelensis from the mid-Eocene of Germany were assigned to Mapanioideae. Fossil fruits (Caricoidea, Cladiocarya, Polycarpella, Scleriocarya, etc. and also several extant genera) of Cyperaceae (Cyperoideae) have been recorded from the mid-Paleocene onwards in, above all, Europe, Asia and North America, and pollen grains are relatively frequent in Cenozoic layers.

Habit Usually bisexual or monoecious (rarely andromonoecious, gynomonoecious, dioecious, androdioecious or gynodioecious; unisexual flowers sometimes in bisexual pseudanthia), usually perennial (sometimes annual) herbs (rarely shrubs, lianas or epiphytes; Microdracoides consists of small trees). Graminids. Some species have bulb-like or tuberous swollen internodes or stem bases. A few species possess stilt roots. Rhynchospora anomala xeromorphic, with adventitious roots (with well developed velamen) running down along envelope formed by persistent leaf bases. Many species are helophytes (sometimes aquatic). Culm usually medullated (rarely hollow or septate) and terete to sharply triangular in cross-section (rarely flattened, winged or quadrangular to sexangular in cross-section).

Vegetative anatomy Mycorrhiza usually absent (vesicular-arbuscular mycorrhiza present in some species). Dauciform roots (with dense long root hairs, epidermal cells elongate at right angles to long axis of root) sometimes present. Lateral roots developing from zone opposite protophloem or opposite protoxylem poles. Phellogen absent. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements with scalariform and/or simple perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals, or P2cf, with cuneate protein crystals and peripheral protein filaments. Nodes? Many species possessing C4 photosynthesis with a green envelope of Kranz’ cells surrounding vascular bundles (C4 photosynthesis and Kranz’ anatomy evolved perhaps six times; Kranz’ anatomy present in at least four types: Chlorocyperus, Fimbristylis, Rhynchospora, and Eleocharis types; also reversals to C3 photosynthesis in, e.g., many species of Cyperus), with or without an envelope of parenchyma cells. Chlorenchyma with lobed cells (peg cells?) present. Idioblasts with frequent tannins and polyphenols. Silica bodies conical, inserted on cell walls, usually inner periclinal epidermal cell walls near veins. Calciumoxalate raphides absent.

Trichomes Hairs usually unicellular (sometimes multicellular, uniseriate) or absent; often with unicellular ‘prickle hairs’, with sharp-pointed apex and usually swollen base.

Leaves Alternate (usually tristichous, sometimes distichous, tetrastichous or spiral), simple, entire, usually linear (rarely ensiform or terete), often reduced to a mere leaf sheath, with conduplicate, plicate, revolute, convolute (supervolute) or involute ptyxis. Stipules absent; leaf sheath usually closed (in Coleochloa and Oreobolus open), often with distal ligule (rarely with distal contraligule). Venation parallelodromous. Stomata usually paracytic (sometimes tetracytic), with dumbbell-shaped guard cells. Cuticular wax crystalloids as aggregated rodlets (Strelitzia type) or non-orientated. Air canals present. Epidermis usually with silica bodies. Mesophyll without mucilaginous idioblasts and calciumoxalate raphides. Leaf margin usually entire (sometimes finely serrate-dentate).

Inflorescence Terminal (sometimes pseudolateral), usually compound (sometimes simple) panicle, corymb, spike-like, anthela and/or head-like, consisting of axillary one- or many-flowered spikelets (sometimes a solitary spikelet), each in axil of often foliaceous bract and with one or more bracts without flowers; bracts with or without sheath; floral bracts usually small and scale-like, persistent or caducous; lowermost spikelet scale often prophyll, usually without flower. Spikelet usually monopodial (indeterminate; sometimes sympodial?). Central axis of spikelet, rhachilla, persistent or caducous (rarely fragmented into one-flowered units); rhachilla internodes short or long, sometimes winged or curved around fruit/fruits. Female spikelet in Carex reduced to pistil and rhachilla, enclosed by urceolate utriculus, formed by basal prophyll of one-flowered female spikelet.

Flowers Actinomorphic (zygomorphic through reduction), small. Hypogyny. Tepals usually (one to) three (or four) or 3+3 (sometimes more than six), usually hair-, bristle- or scale-like, usually free (sometimes connate), or absent. Nectary absent. Disc usually absent.

Androecium Stamens (one to) three (to six; in Chrysithrix numerous [in pseudanthium?]), at least sometimes antesepalous. Filaments usually free (rarely more or less connate), usually free from tepals. Anthers basifixed, versatile, tetrasporangiate, introrse or latrorse, longicidal (dehiscing by longitudinal slits); connective often comb-shaped and prolonged. Tapetum secretory, with binucleate to multinucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous (Cyperaceae variation). Pollen grains graminoid, usually monoulcerate or monoporate (in Carex and other Cyperaceae with pseudomonads five or six circular or elongate poroids present: one distal and additional poroids equatorial), shed as pseudomonads (cryptotetrads), three microspores in each tetrahedral tetrad degenerating and incorporated into wall of functioning fourth pollen grain, usually tricellular (sometimes bicellular) at dispersal. Exine tectate, with columellate infratectum, smooth; exine formed from microsporocyte wall. Intine in Carex sometimes thin below aperture, thick in interapertural regions.

Gynoecium Pistil composed of two or three (or four) connate and at least sometimes antesepalous carpels (median carpel in Carex adaxial, inverted); gynoecium developing from annular primordium. Ovary superior, unilocular (sometimes on gynophore). Stylodia two or three (rarely four), simple or branched, free or connate in lower part; stylar base often enlarged and persistent. Stigmas two or three (to nine), filiform, adaxially decurrent, papillate or non-papillate, Dry type. Pistillodium absent.

Ovules Placentation basal. Ovule one per ovary, anatropous, bitegmic, crassinucellar. Micropyle usually endostomal (at least in Hypolytrum often bistomal, Z-shaped). Outer integument two? cell layers thick. Inner integument two? cell layers thick. Funicular obturator present near micropyle often present. Hypostase present or absent. Parietal cell formed from archesporial cell. Parietal tissue two to four cell layers thick. Megasporangium rarely one cell layer thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria chalazal and micropylar, or absent. Embryogenesis onagrad (Juncus variation).

Fruit Usually a nutlet (achene), often with persistent tepals as bristles, hairs or scales (achene in Carex surrounded by utriculus at dispersal; in Cladium, Mapania and Scirpodendron a drupe).

Seeds Aril absent. Seed coat testal-tegmic. Testa thin, not fused with pericarp. Exotesta with silica bodies. Remaining testal layers fibrous. Tegmen thin and fibrous. Perisperm not developed. Endosperm copious, with starch and oils (aleurone?); starch grains simple. Embryo small, capitate, well or little differentiated, without chlorophyll, Xyris, Carex, Schoenus or Scirpus types. Cotyledon one or indistinct, not photosynthesizing. Cotyledon hypophyll elongate, assimilating. Hypocotyl internode absent. Mesocotyl sometimes present. Coleoptile with chlorophyll. Plumule? Collar very small, with rhizoids. Germination cryptocotylar?

Cytology n = 5–>60 (chromosome numbers in Carex extremely variable). – Centromere in many species diffuse (centric activity present over more or less the entire chromosomes; not limited to a specific site; spindle fibrils attached at several sites along chromosomes), easily leading to aberrant chromosome numbers by chromosome fragmentation, agmatoploidy, detached chromosome segments moving against poles and remaining functional. Following meiosis three nuclei move towards one pole and degenerate; finally, they become embedded in the wall of the surviving microspore.

DNA Deletion encompassing three base pairs in plastid gene atpA. Plastid gene rpl23 lost. Plastid gene infA lost/defunct (Cyperus). One three base pairs insertion present in nuclear 5.8S rDNA. Mitochondrial gene rps14 transferred to nucleus (pseudogene ψrps14 present in mitochondrial genome).

Phytochemistry Flavonols (quercetin), flavone-C-glycosides, flavone sulphates, aurones, flavanones, cyanidin, tricin (tricetin 3’,5’-dimethyl ether; frequent), 6-hydroxyluteolin, luteolin-5’-methyl ether, chalcones, simple indole alkaloids, and daphnetin present. Carbohydrates stored as kestose and isokestose oligosaccharides (fructans). Ferulic and p-coumaric acids (esterified) components of non-lignified cell walls. Ellagic acid not found. Aluminium accumulation occurring in some species.

Use Ornamental plants, vegetables (Cyperus esculentus, Eleocharis dulcis), paper (Cyperus papyrus), thatching (Cladium mariscus etc.), rafts, canoes, carpets, textiles, basketry, bioenergy, forage plants, etc.

Systematics Cyperaceae are sister-group to Juncaceae.

Mapanioideae (Hypolytreae) are sister-group to the remaining Cyperaceae (Cyperoideae). The subdivision below is based on Muasya & al. (2009) and Hinchliff & Roalson (2013).

Mapanioideae C. B. Clarke in W. H. Harvey et O. W. Sonder (ed. W. T. Thiselton-Dyer), Fl. Cap. 7: 150. Dec 1897 [‘Mapanieae’]

11–12/145–150. Hypolytreae Nees ex Wight et Arn., Contr. Bot. India: 69. Dec 1834. Capitularina (1; C. involucrata; New Guinea), Exocarya (1; E. sclerioides; eastern New Guinea, Queensland), Lepironia (1; L. articulata; Madagascar and eastwards to Polynesia), Chorizandra (c 7; Australia, Tasmania, New Caledonia), Chrysitrix (4; Western Cape, southwestern Western Australia), Diplasia (1; D. karatifolia; Costa Rica to western Brazil), ‘Mapaniatenuiscapa (Southeast Asia, West Malesia), Hypolytrum (c 45; tropical and subtropical regions on both hemispheres), ‘Mapania’ (c 75; pantropical; non-monophyletic), Paramapania (7; Malesia; in Mapania?), Scirpodendron (2; Sri Lanka and eastwards to Polynesia), Principina (1; P. grandis; Principé in tropical West Africa). – Tropical and subtropical regions, with their highest diversity in tropical regions in the Old World. Phytoliths usually absent. Inflorescences possibly consisting of pseudanthia. Sterile bracts present between stamens and gynoecium. Stamens inserted in axils of scale-like bracts subtending female flowers.

Cyperoideae Beilschm. in Flora 16(Beibl. 7): 52. 14 Jun 1833 [‘Cypereae’] (under construction)

90–95/c 4.300. Trilepideae Goetgh. in Taxon 34: 629. 29 Nov 1985. Coleochloa (7; tropical and southern Africa, Madagascar), Trilepis (3; northeastern South America), Microdracoides (1; M. squamosus; tropical West and Central Africa). – Sclerieae Wight et Arn., Contr. Bot. India: 71. Dec 1834. Calyptrocarya (8; tropical America), Diplacrum (7; pantropical), Bisboeckelera (4; South America), Becquerelia (8; tropical America), Scleria (c 250; tropical and subtropical regions on both hemispheres). – Cladieae Torr. in Ann. Lyceum Nat. Hist. New York 3: 372. Aug-Dec 1836. Cladium (4; nearly cosmopolitan, especially North America). – Schoeneae Dumort., Fl. Belg.: 145. 1827. Didymiandrum (1; D. stellatum; tropical South America), Exochogyne (1; E. amazonica; northern South America, southeastern Brazil), Lagenocarpus (c 30; tropical America); Carpha (c 15; Central African mountains, southern Africa, Madagascar, southern Japan, mountains in New Guinea, Australia, Chile; incl. Trianoptiles?), Trianoptiles (3; Northern, Western and Eastern Cape; in Carpha?); Gymnoschoenus (2; southwesternmost and southeastern Australia, Tasmania), Schoenus (c 80; temperate to tropical regions on both hemispheres, with their highest diversity in Malesia and Australia), ‘Tetraria’ pro parte (<50; tropical and southern Africa, Australia, New Zealand; non-monophyletic; incl. Epischoenus?), Epischoenus (8; Western and Eastern Cape, KwaZulu-Natal?; in Tetraria?), Machaerina (c 45; tropical and subtropical regions on both hemispheres, with their highest diversity in Australia), Lepidosperma (c 60; Malesia, Australia, New Caledonia, New Zealand, with their largest diversity in Australia), Neesenbeckia (1; N. punctoria; Western Cape), Cyathochaeta (3; southwestern Western Australia, southeastern New South Wales), ‘Gahnia’ (c 40; East Asia, Malesia, Australia, New Caledonia and Pacific islands to the Hawaiian Islands; paraphyletic; incl. Mesomelaena?), Mesomelaena (5; southwestern Western Australia; in Gahnia?), Ptilothrix (1; P. deusta; southeastern Queensland, eastern New South Wales), Evandra (2; southwestern Western Australia), Caustis (c 6; western Western Australia, eastern and southeastern Australia, Tasmania), ‘Costulariafragilis (southeastern New Caledonia), ‘Oreobolus’ (14; alpine areas in southeasternmost Australia and Tasmania, mountains on Pacific islands, southern Andes, subAntarctic islands; non-monophyletic), ‘Costularianervosa (New Caledonia), ‘Cyathocoma’ (3; Western Cape to KwaZulu-Natal, Mozambique?; non-monophyletic), Capeobolus (1; C. brevicaulis; Western and Eastern Cape), ‘Tetraria’ pro parte, Morelotia (2; New Zealand, the Hawaiian Islands), Tricostularia (6; Australia, one species also in Malesia, southern Asia and New Caledonia), ‘Costularia’ (c 20; tropical and southern Africa, Madagascar, Indian Ocean islands, Malesia, Australia, New Caledonia; polyphyletic). – Rhynchosporeae Wight et Arn., Contr. Bot. India: 71. Dec 1834. ‘Rhynchospora’ (c 250; nearly cosmopolitan, with their highest diversity in tropical and subtropical South America; paraphyletic; incl. Pleurostachys?), Pleurostachys (c 30; South America; in Rhynchospora?). – Scirpeae T. Lestib. in B. C. J. Dumortier, Fl. Belg.: 143. 1827. Dulichium (1; D. arundinaceum; North America), Blysmus (3; Europe, temperate Asia); Khaosokia (1; K. caricoides; peninsular Thailand); Calliscirpus (2; southern Oregon, California, northwestern Mexico); ‘Trichophorum’ (9; temperate regions on the Northern Hemisphere, mountains in Southeast Asia, the Andes; paraphyletic; incl. Zameioscirpus?), Zameioscirpus (3; the Andes; in Trichophorum?); Amphiscirpus (1; A. nevadensis; western North America, Chile, Argentina), Phylloscirpus (5; the Andes); ‘Scirpus’ (64; almost cosmopolitan; polyphyletic), Sumatroscirpus (1; S. junghuhnii; northern Sumatra; in Scirpus?), Dracoscirpoides (2; South Africa), Eriophorum (18–20; temperate and polar regions on the Northern Hemisphere, South Africa). – Cariceae Dumort., Fl. Belg.: 145. 1827. Carex (c 1.800; cosmopolitan, with their largest diversity in temperate and alpine regions). – Cypereae Dumort., Anal. Fam. Plant.: 65. 1829 [‘Cyperineae’]. Androtrichum (1; A. trigynum; coastal regions in northern Argentina), ‘Androtrichumgiganteum (northern Argentina), ‘Cyperus’ (c 400; nearly cosmopolitan; non-monophyletic), Kyllingiella (4–5; tropical East Africa; in Cyperus?), Mariscus (c 200; nearly cosmopolitan; in Cyperus?),‘Kyllinga’ (c 60; tropical and subtropical regions on both hemispheres; non-monophyletic; in Cyperus?), Courtoisina (2; tropical and southern Africa, Madagascar, India), Sphaerocyperus (1; S. erinaceus; tropical Africa; in Cyperus?),‘Pycreus’ (c 100; tropical and subtropical regions on both hemispheres; paraphyletic; in Cyperus?), Queenslandiella (1; Q. hyalina; East Africa and eastwards to eastern Australia; in Cyperus?), Alinula (4; tropical and southern Africa, Madagascar; non-monophyletic?; in Cyperus?), Remirea (1; R. maritima; pantropical; in Cyperus?), ‘Lipocarpha’ (c 35; tropical and subtropical regions on both hemispheres; paraphyletic; in Cyperus?), Ascolepis (c 20; tropical and subtropical regions on both hemispheres; in Cyperus?), Bulbostylis (c 100; tropical and subtropical regions on both hemispheres; incl. Nemum?), Nemum (c 10; tropical Africa; in Bulbostylis?), Trachystylis (1; T. stradbrokensis; coastal areas of eastern Queensland and northeastern New South Wales), Arthrostylis (1; A. aphylla; tropical Australia), Actinoschoenus (3–4; Madagascar, Sri Lanka, China), Abildgaardia (c 15; Africa, Asia, Australia, one species, A. ovata, in North America), Crosslandia (1; C. setifolia; northern Australia), Fimbristylis (c 300; nearly cosmopolitan), Eleocharis (c 200; cosmopolitan); Ficinia (c 60; tropical and southern Africa, Madagascar, New Zealand, with the highest diversity in the Cape Provinces), ‘Schoenoplectus’ (25–30; temperate to tropical regions on both hemispheres; non-monophyletic), Actinoscirpus (1; A. grossus; tropical and subtropical Asia and eastwards to northern Australia and Pacific islands), Pseudoschoenus (1; P. inanis; Northern, Western and Eastern Cape, Free State, Lesotho), Schoenoplectiella (c 50; temperate to tropical regions on both hemispheres), Bolboschoenus (6–15; temperate to tropical regions on both hemispheres), Fuirena (c 30; warm-temperate to tropical regions on both hemispheres), Scirpoides (5; the Mediterranean, southern Africa, tropical and subtropical regions in Asia), Erioscirpus (2; northern India, Himalayas, northern Burma), Hellmuthia (1; H. membranacea; southern coast of Western Cape), ‘Isolepis’ (c 70; temperate to tropical regions on both hemispheres, paraphyletic). – Unplaced Cyperoideae Afrotrilepis (2; tropical West and Central Africa), Ascopholis (1; A. gamblei; southern India), Cephalocarpus (3; tropical South America), Everardia (12; Venezuela, Guyana), Koyamaea (1; K. neblinensis; Venezuela, Brazil), Nelmesia (1; N. melanostachya; northern Congo), Reedia (1; R. spathacea; southwesternmost Western Australia), Rhynchocladium (1; R. steyermarkii; Venezuela), Trichoschoenus (1; T. bosseri; Madagascar). – Cosmopolitan, with their largest diversity in tropical and subtropical regions. Phytoliths frequent. Tepals as scales, hairs or bristles (sometimes connate), or absent. Pollen grains obovoid, also with three to six lateral pores/colpi (pantoporate). – Trilepideae are sister-group to the remaining Cyperoideae and Cladium is successive sister to the rest. Larridon & al. (2013) have shown that most genera recognized in Cypereae (e.g. by Goetghebeur 1998) are nested inside Cyperus. An even more comprehensive investigation may reveal that Cyperus comprises the majority of the Cypereae above. The clade [Blysmus+Dulichium] is sister-group to [Khaosokia+Calliscirpus+[Scirpeae+Cariceae]] in Hinchliff & Roalson (2013). However, the situation in Cyperoideae at least above Rhynchosporeae is chaotic and every new comprehensive analysis of this part of Cyperaceae presents a new picture of their phylogeny. Hence, the subdivision above is still highly provisional.

Consensus tree (simplified) of Cyperaceae based on successively weighted DNA sequence data (Muasya & al. 1998, 2000).

Majority rule consensus tree (simplified) of Mapanioideae (Hinchliff & Roalson 2013).

ECDEIOCOLEACEAE D. F. Cutler et Airy Shaw

( Back to Cyperales )

Cutler et Airy Shaw in Kew Bull. 19: 495. 26 Jul 1965

Genera/species 2/3

Distribution Western (mainly coastal) parts of Western Australia.

Fossils Unknown.

Habit Monoecious, perennial herbs. Graminids. Xeromorphic. Culm terete, branched, furrowed, with swollen nodes and solid (medullated?) internodes, photosynthesizing.

Vegetative anatomy Culm ridges sclerenchymatous (sclerenchyma ridges in Georgeantha extending through chlorenchyma to subepidermal sclerenchymatous layer; not in Ecdeiocolea). Epidermis in Ecdeiocolea with rows of alternately long and short cells. Stomata paracytic, in longitudinal furrows along culm. Phellogen absent. Chlorenchyma with peg cells. Sclerenchyma not forming a continuous cylinder. Vascular bundles bicollateral, each one surrounded by sclerenchymatous envelope. Secondary lateral growth absent. Vessels present in roots, rhizome and culm. Vessel elements with scalariform or simple perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Secretory cavities absent. Culm chlorenchyma with cuboid silica bodies as sand. Calciumoxalate crystals absent? (raphides absent). Special short idioblasts with large single silica bodies (phytoliths) absent.

Trichomes Hairs absent (Ecdeiocolea), or multicellular, uniseriate or branched (rhizome, culm bases and spiklets in Georgeantha); microhairs?

Leaves Alternate (distichous), on young shoots simple, entire, linear, on older shoots reduced and only consisting of leaf sheath, with convolute (supervolute) ptyxis. Stipules absent; leaf sheath closed, auriculate, in Georgeantha caducous; ligule absent. Venation parallelodromous (also with transverse veins?). Stomata paracytic, with dumbbell-shaped Poaceae type guard cells. Cuticular waxes? Mesophyll with fusoid cells? Secretory cavities absent. Mesophyll without mucilaginous idioblasts or calciumoxalate raphides. Epidermis without rows of long and short cells. Silica absent from leaf epidermis. Leaf margin entire.

Inflorescence Terminal, cymose, usually branched spike-like head, consisting of one (Ecdeiocolea) or two or three (Georgeantha) racemose spikelets with male flowers alternating with female flowers; inflorescence branches not in axils of spatha-like bracts; basal spikelet bracts, glumes, usually with axillary male or female flowers. Each flower in axil of a bract, lemma. Floral prophylls (bracteoles) absent.

Flowers Zygomorphic (due to reduction), dorsiventrally flattened, small. Hypogyny. Tepals 2+2 (Ecdeiocolea) or 3+3 (Georgeantha), bract-like (sepaloid, glumaceous); two adaxial outer tepals with conduplicate aestivation, keeled, laterally compressed, ciliated at apex, abaxial outer tepal (in Georgeantha) and inner tepals flattened, free, surrounded by a stout scale-like bract. Nectary absent. Disc absent.

Androecium Stamens 2+2 (Ecdeiocolea, possibly corresponding to outer staminal whorl and adaxial stamen of inner staminal whorl) or 3+3 (Georgeantha). Filaments filiform, free from each other and from tepals. Anthers basifixed, versatile, tetrasporangiate, latrorse-introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Endothecial thicknesses girdle type. Female flowers with rudimentary staminodia.

Pollen grains Microsporogenes successive. Pollen grains graminoid, monoporate to monoulcerate, operculate (with a plug, Poaceae type), shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, smooth (not scrobiculate).

Gynoecium Pistil composed of two (Ecdeiocolea) or three (Georgeantha) connate carpels. Ovary superior, unilocular (Ecdeiocolea) or trilocular (Georgeantha). Stylodia two (Ecdeiocolea) or three (Georgeantha), free, covered by adaxial stigmatic surfaces. Stigmas plumose, with papillate hairs, Dry type. Male flowers with rudimentary pistillodium.

Ovules Placentation apical-axile. Ovule one per carpel, orthotropous, pendulous, bitegmic, tenuinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Nucellar cap? Megagametophyte tetrasporous, 16-celled, similar to Drusa type (Ecdeiocolea), or monosporous, Polygonum type (Ecdeiocolea?). Antipodal cells absent. Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A nutlet (achene; Ecdeiocolea) or a one- or two-seeded loculicidal capsule (Georgeantha).

Seeds Aril absent. Exotesta with large cells, in Georgeantha with convex and strongly sinuate walls; thickness very different in Ecdeiocolea. Endotesta? Tegmen? Perisperm not developed. Endosperm copious, starchy? Embryo?, chlorophyll? Cotyledon one, not photosynthesizing. Cotyledon hyperphyll? Hypocotyl internode? Mesocotyl? Coleoptile? Plumule? Collar hairs? Germination?

Cytology n = c. 24 (Ecdeiocolea); n = 32–33 (Georgeantha)

DNA The plastid genome has an inversion of 28 kb and an inversion of 6,4 kb (Michelangeli & al. 2003). Inversion absent from the plastid gene trnT.

Phytochemistry Flavonols (isorhamnetin, in Georgeantha also quercetin) present. Galactose present in Georgeantha.

Use Unknown.

Systematics Georgeantha (1; G. hexandra; westernmost Western Australia), Ecdeiocolea (2; western Western Australia).

Ecdeiocoleaceae are probably sister to Joinvilleaceae (Marchant & Briggs 2007; Saarela & Graham 2010), although Poaceae have also been identified as its sister-group (Givnish & al. 2010, etc).

ERIOCAULACEAE Martinov

( Back to Cyperales )

Martinov, Tekhno-Bot. Slovar: 237. 3 Aug 1820 [‘Eriocauleae’], nom. cons.

Eriocaulales Nakai, Hisi-Shokubutsu: 49. 1930; Eriocaulineae Thorne et reveal in Bot. Rev. (Lancaster) 73: 85. 29 Jun 2007

Genera/species 7/c 1.270

Distribution Tropical and subtropical regions on the Southern and Northern Hemispheres, with their largest diversity in the Guayana Highlands and southeastern Brazil; a few species of Eriocaulon in temperate parts of Europe, East Asia and North America; Mesanthemum: tropical Africa, Madagascar.

Fossils Uncertain. Subfossil pollen grains of Eriocaulon septangulare (E. pellucidum) are known from Pleistocene layers in Ireland and Canada.

Habit Usually monoecious (rarely dioecious or bisexual), perennial or annual herbs. Many species are helophytes and some are aquatic.

Vegetative anatomy Outer part of root cortex in Eriocaulon with specialized aerenchyma formed by alternating transverse layers of stellate parenchyma cells and radiate rows of longitudinally widened and flattened cells without contact with adjacent lateral cells. Root phloem and xylem elements often intermixed in stele. Lateral roots developing from a zone opposite protophloem or opposite protoxylem poles. Phellogen absent. Stem endodermal cell walls often U- or O-shaped in cross-section. Stem vascular bundles alternately on outside and inside. Secondary lateral growth usually absent (cambium occasionally present, producing secondary tissue with separate vascular bundles). Vessels usually present in roots and stem. Vessel elements with scalariform or simple (sometimes reticulate) perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Silica bodies absent or nearly so. Calciumoxalate crystals of various types (raphides absent).

Trichomes Hairs multicellular, uniseriate, with apical cell unbranched, or T-shaped malpighiaceous hairs; hairs on vegetative parts with foot cell and bulb-like persistent usually dark basal cell; often also glandular hairs.

Leaves Alternate (usually spiral, rarely distichous), simple, entire, linear or subulate, with convolute (supervolute) ptyxis? Stipules absent; leaf sheath indistinct. Vascular bundle envelope with large cells without chloroplasts. Palisade tissue absent. Venation parallelodromous. Stomata usually paracytic, with Poaceae type guard cells. Cuticular wax crystalloids as aggregated rodlets. Epidermis without silica bodies; subepidermal cells in Paepalanthus with silica bodies. Mesophyll without mucilaginous idioblasts. Mesophyll with calciumoxalate as druses, styloids or single prismatic crystals (raphides absent). Leaf margin entire.

Inflorescence Terminal, dense head-like spike, or compound head- or umbel-like capitulum consisting of up to 1.000 or more partial inflorescences. Pseudanthium surrounded by scale-like outer bracts and with ten to more than 1.000 flowers in axils of often petaloid separate inner bracts (absent in Syngonanthus). Peduncle (scape) narrow, spirally twisted, often with ridges or edges and ebracteate, although usually with a closed sheathing basal bract; peduncle with central cylinder consisting of two cylinders of concentric or biconcentric vascular bundles separated by a sclerenchymatous envelope.

Flowers Actinomorphic or zygomorphic, very small. Floral receptacle flat or slightly convex. Hypogyny. Tepals 2+2 or 3+3, with usually open (sometimes valvate) aestivation, persistent; outer tepals dry, membranous, sepaloid, usually free (sometimes connate at base; rarely connate into a tube or spathe-like); inner tepals petaloid, membranous, caducous, usually more or less connate (in, e.g., Eriocaulon free), sometimes absent. Tepal nectaries in Eriocaulon inserted on edges or adaxial side of perianth tube. Septal nectaries absent. Disc absent.

Androecium Stamens in Paepalanthoideae two or three (outer staminal whorl absent), antepetalous; stamens in Eriocaulon and Mesanthemum usually 2+2 or 3+3 (in Syngonanthus amazonicus a single stamen). Stamens sometimes inserted on androphore. Filaments free; inner filaments in Eriocaulon and Mesanthemum adnate to inner tepals (epitepalous). Anthers usually dorsifixed (in Leiothrix basifixed), non-versatile?, usually tetrasporangiate (in many species of Paepalanthus disporangiate due to fusion of microsporangia), introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, usually with uninucleate (rarely binucleate) cells. Female flowers often with (antesepalous) inconspicuous (often scale-like) staminodia.

Pollen grains Microsporogenesis usually successive (rarely simultaneous). Pollen grains usually spiraperturate (one aperture spirally winding over entire pollen grain; sometimes inaperturate), shed as monads, bicellular or tricellular at dispersal. Exine tectate, with columellate? infratectum, echinulate to echinate, often spinulate.

Gynoecium Pistil composed of two or three connate carpels. Ovary superior, bilocular or trilocular. Stylodia two or three, free or connate at base, often with stylar appendages. Stigmas two or three, carinal/dorsal (Eriocaulon, Mesanthemum) or commissural and non-vascularized (with stylodia-like nectariferous appendages between stigmas, in Syngonanthus present on same place as vascularized style in Eriocaulon), simple or bifid, non-papillate, Dry type. Male flowers often with pistillodium.

Ovules Placentation axile-apical. Ovule one per carpel, orthotropous, pendulous, bitegmic, tenuinucellar. Micropyle usually endostomal (in Syngonanthus bistomal). Outer integument two cell layers thick. Inner integument two cell layers thick. Hypostase present. Obturator absent. Parietal cell not formed (parietal tissue absent). Megagametophyte monosporous, Polygonum type. Unique antipodal cyst, developed by fusion of antipodal cells, present in megagametophyte. Endosperm development ab initio nuclear, later cellular (or helobial?). Endosperm haustoria little developed or absent. Embryogenesis asterad.

Fruit Dorsicidal-loculicidal capsules with persistent tepals.

Seeds Aril absent. Seed coat endotestal or tegmic. Exotesta membranous, usually entirely degenerating or persisting as rows of hooks on seed coat. Endotesta consisting of hexagonal brownish red to yellow cells with prominent anticlinal walls forming a striate pattern. Operculum? Exotegmen? Endotegmic cells tanniniferous. Perisperm not developed. Endosperm copious, starchy; starch grains usually compound. Embryo small, lens- to bell-shaped, rudimentary (lacks organs but shows differentiation of dermatogen), enclosed by endosperm at micropylar end, Xyris-Scirpus type, chlorophyll? Cotyledon one, not photosynthesizing. Cotyledon hyperphyll compact, not assimilating. Hypocotyl internode absent. Coleoptile absent. Radicula rudimentary or absent. Collar hairs? Germination?

Cytology n = 8, 9, 15, 20, 25 – Polyploidy occurring.

DNA Significant transfers of ribosomal protein genes and succinate dehydrogenase genes have taken place from the mitochondrial genome (to the nuclear genome?) at least in one species of Paepalanthus (‘Lachnocaulon anceps’). ORF 2280 sometimes present.

Phytochemistry Flavonols (kaempferol, myricetin), 6-hydroxyflavonoids quercetagetin and patuletin (6-methyl ether of quercetagetin) present. Ellagic acid, proanthocyanidins, alkaloids, and cyanogenic or phenolic compounds not found. Ferulic, diferulic and p-coumaric acids (esterified) components of non-lignified cell walls.

Use Ornamental plants.

Systematics The [Eriocaulon+Mesanthemum] clade is sister to the remaining Eriocaulaceae.

Eriocauloideae Burnett, Outlines Bot.: 416. Feb 1835 [‘Eriocaulidae’]

2/c 500. Eriocaulon (c 400; tropical and subtropical regions on both hemispheres, one species, E. aquaticum, on Ireland and the Hebrides), Mesanthemum (22; tropical and subtropical Africa, Madagascar). – Mainly pantropical (few in temperate regions). Usually aquatic. Roots and leaves usually with aerenchyma. Inner tepals free, with black (nectar producing?) glandular apex. Stamens 2+2 or 3+3 stamens, diplostemonous. Inner filaments adnate to inner tepals (epipetalous). Stigma carinal/dorsal. Testa little developed. Tegmen tanniniferous.

Paepalanthoideae Ruhland in H. G. A. Engler, Pflanzenr. 13: 30, 40. 27 Mar 1903

5/c 770. Rondonanthus (5; Guayana Highlands, northeastern South America), Leiothrix (37; South America, with their largest diversity in Brazil), Comanthera (40; northern South America, with their highest diversity in northern Brazil), Syngonanthus (c 200; tropical America, tropical Africa, Madagascar), Paepalanthus (c 400; tropical America, tropical Africa, Madagascar, with their largest diversity in northern South America). – North and South America, Africa, Madagascar (especially in tropical South America). Usually terrestrial. Roots and leaves sometimes with aerenchyma. Secondary lateral growth reported from some species of Paepalanthus and Syngonanthus. Inner tepals often connate in middle (at least in male flowers; sometimes [secondarily?] free; sometimes absent), eglandular. Stamens two or three, haplostemonous, antepetalous. Anthers sometimes disporangiate and monothecal (through fusions). Nectariferous carinal stylar appendages usually present. Male flowers with nectariferous pistillodium. Nectaries consisting of strongly prolonged epidermal cells. Seed coat endotestal. – Rondonanthus was sistern to Paepalanthus in a study by de Andrade & al. (2010), but sister to the remaining Paepalanthoideae in analyses by Trovó & al. (2013).

Phylogeny of Eriocaulaceae based on DNA sequence data (de Andrade & al. 2010).

Phylogeny of Eriocaulaceae based on DNA sequence data (Trovó & al. 2013).

FLAGELLARIACEAE Dumort.

( Back to Cyperales )

Dumortier, Anal. Fam. Plant.: 59, 60. 1829, nom. cons.

Flagellariales (Meisn.) Takht. ex Reveal et Doweld in Novon 9: 550. 30 Dec 1999

Genera/species 1/4

Distribution Tropical and southern Africa, Madagascar, Sri Lanka and southern India, Southeast Asia and eastward to northern Australia, islands in the southwestern Pacific.

Fossils Uncertain. Pollen grains similar to Flagellaria have been found in Miocene layers on Borneo.

Habit Usually bisexual (sometimes unisexual), perennial herbs. Stout, twining and climbing graminids. Dichotomously branched from distinctly sympodial rhizomes.

Vegetative anatomy Lateral roots developing from a zone opposite protoxylem poles. Phellogen absent. Culm solid, with extensive medulla in internodes and compact swollen nodes, without secretory canals. Vascular bundles embedded in sclerotic tissue between cortex and central cylinder of aerial stems. Endodermal cells radially elongate. Chlorenchyma lacking peg cells. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements with scalariform or simple perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2ccl type, with cuneate and several additional loosely packed protein crystals. Nodes? Arm cells and fusoid cells absent. Silica bodies spherical, present only in association with vascular strands. Cells with calciumoxalate crystals present.

Trichomes Hairs absent; multicellular microhairs?

Leaves Alternate (distichous), simple, entire, linear, with convolute (supervolute) ptyxis below and circinate ptyxis at apex. Stipules absent; leaf sheath usually closed (rarely open), auriculate, with one pair of distal lateral lobes (ligule?). Venation parallelodromous (also with transverse veins). Stomata paracytic, with Poaceae type guard cells; guard cells not reniform or dumbbell-shaped and without perforations between adjacent guard cells; adjacent cells with oblique divisions. Cuticular wax crystalloids as non-orientated platelets (similar to those in Restionaceae), only adjacent to stomata. Epidermal cells without silica bodies and without phytoliths. Mesophyll with secretory canals and fibrous cells with granular silica bodies below and above vascular strands. Mesophyll cells with or without calciumoxalate crystals. Leaf margin entire. Leaf apex developing into tendril when in contact with support, due to presence of sensitive adaxial cells. Extrafloral nectaries present or absent.

Inflorescence Terminal, compound panicle, with spike- or raceme-like partial inflorescences terminating branches. Lateral branches often with distinct adaxial swellings at base, and with first two bracts usually inserted transversely at almost same level. Floral prophylls (bracteoles) absent.

Flowers Actinomorphic, small. Hypogyny. Tepals 3+3, pseudouniseriate, sepaloid, membranous, persistent, connate at base. Nectary absent. Disc absent.

Androecium Stamens usually 3+3 (sometimes fewer, with fertile stamens replaced by staminodia?). Filaments free from each other and from tepals. Anthers basifixed, versatile, usually tetrasporangiate (rarely tri-, hexa- or heptasporangiate), latrorse or introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Endothecial thickenings with complete basal plate. Female flowers with staminodia.

Pollen grains Microsporogenesis successive. Pollen grains monoporate to monoulcerate, with or without rudimentary operculum, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, microperforate, verrucate to scrobiculate.

Gynoecium Pistil composed of usually three (sometimes two) connate carpels. Ovary superior, trilocular. Stylodia three, free or somewhat connate at base. Stigmas three, adaxially papillate (papillae multicellular), Dry type. Male flowers with pistillodium.

Ovules Placentation apical-axile. Ovule one per carpel, almost orthotropous, pendulous, bitegmic, crassinucellar. Micropyle endostomal; endostoma formed by fast growth of inner integument. Outer integument apporox. four cell layers thick. Inner integument two? cell layers thick. Parietal cell formed from non-dividing archesporial cell. Parietal tissue one cell layer thick. Epidermal cells of megasporangium dividing periclinally. Megagametophyte at least sometimes disporous, 8-nucleate, Allium type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad or asterad.

Fruit A usually one-seeded (rarely two-seeded) drupe.

Seeds Aril absent. Seed coat consisting of exotesta fused with endocarp. Operculum present. Exotesta with persistent outer periclinal wall. Endotesta? Tegmen? Perisperm not developed. Endosperm copious, starchy; starch grains simple or compound. Embryo small, lens-shaped, little differentiated, Xyris-Scirpus type, chlorophyll? Cotyledon one, not photosynthesizing. Cotyledon hyperphyll? Hypocotyl internode? Mesocotyl? Coleoptile absent or minute. Plumule? Radicula with collar hairs. First leaf absent. Germination?

Cytology n = 19

DNA The 6,4 kb and 28 kb inversions are absent from the plastid genome. ORF2280?

Phytochemistry Flavonols (kaempferol), alkaloids, cyanogenic glycosides (triglochinin), saponins, and -sitosterol present. Ellagic acid and proanthocyanidins not found. Ferulic, diferulic and p-coumaric acids (esterified) components of non-lignified cell walls.

Use Basketry, medicinal plants.

Systematics Flagellaria (4; tropical and southern Africa, Madagascar, southern India, Sri Lanka, Southeast Asia, Malesia, Melanesia, northern Australia, Micronesia and Polynesia eastwards to Samoa and Niue).

Flagellaria is sister to a clade comprising Ecdeiocoleaceae, Joinvillea and Poaceae.

JOINVILLEACEAE Toml. et A. C. Sm.

( Back to Cyperales )

Tomlinson et Smith in Taxon 19: 888. 30 Dec 1970

Genera/species 1/2

Distribution West Malesia, Melanesia and eastwards on islands in the Pacific to Samoa and the Hawaiian Islands (absent from East Malesia and Australia).

Fossils Uncertain. Ambiguous fossils from New Zealand have sometimes been assigned to Joinvillea.

Habit Bisexual, perennial herbs. Graminids. Culm simple, usually terete, with hollow internodes and compact swollen nodes.

Vegetative anatomy Phellogen absent. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements with scalariform or simple (in leaves sometimes also reticulate) perforation plates; lateral pits? small, numerous. Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2ccl type, with cuneate and several additional loosely packed protein crystals. Nodes? Chlorenchyma without peg cells. Arm cells probably absent. Fusoid cells present. Silica bodies cuboid, especially frequent in epidermal cell walls and in association with vascular strands. Special short idioblasts with large single silica bodies (phytoliths) present.

Trichomes Hairs unicellular or multicellular, branched or uniseriate, often pointed (‘prickle hairs’); multicellular microhairs often present.

Leaves Alternate (distichous), simple, entire, linear, with plicate ptyxis. Stipules absent; leaf sheath open, auriculate, with distal ligule. Venation parallelodromous to palmate-parallelodromous; veins anastomosing; main veins connected by transverse veins. Stomata paracytic, with dumbbell-shaped Poaceae type guard cells. Cuticular wax crystalloids absent. Mesophyll with fusoid cells? Epidermis with rows of long cells alternating with short cells containing silica bodies and cuboidal unlobed phytoliths. Mesophyll without mucilaginous idioblasts and without calciumoxalate raphides. Mesophyll cells with calciumoxalate crystals, tannins and silica. Foliar epidermis with microhairs? Leaf margin finely serrate.

Inflorescence Terminal, compound panicle with spike- or raceme-like partial inflorescences. Lateral branches with distinct adaxial swellings at base. Prophylls caducous.

Flowers Actinomorphic, small. Hypogyny. Tepals 3+3, dry, bract-like, sepaloid (outer tepals cucullate), persistent, free or connate at base. Nectary absent. Disc absent.

Androecium Stamens 3+3. Filaments free, sometimes adnate at base to tepals. Anthers subbasifixed, versatile, tetrasporangiate, latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Endothecial thickenings girdle type. Staminodia absent.

Pollen grains Microsporogenesis successive. Pollen grains graminoid, monoporate to monoulcerate, with or without rudimentary operculum, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, microperforate, scrobiculate.

Gynoecium Pistil composed of three connate carpels. Ovary superior, trilocular. Stylodia three, free or somewhat connate at base, sometimes persistent. Stigmas three, with plumose lobes, and with scattered detached papillate surfaces on multiseriate branches, Dry? type. Pistillodium absent.

Ovules Placentation apical-axile. Ovule one per carpel, orthotropous, pendulous, bitegmic, tenuinucellar? Micropyle bistomal. Outer integument two cell layers thick. Inner integument two cell layers thick. Parietal cell not formed (parietal tissue absent). Nucellar cap? Megagametophyte disporous, Allium? type. Antipodal cells three, binucleate. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad?

Fruit A one- to three-seeded drupe with persistent tepals (and sometimes stylar branches).

Seeds Aril absent. Seed coat tegmic. Testa thin. Exotegmen? Endotegmen tanniniferous. Perisperm not developed. Endosperm copious, starchy; starch grains compound. Embryo small, disc-shaped, little differentiated to rudimentary, Xyris-Scirpus type, chlorophyll? Cotyledon one, not photosynthesizing. Cotyledon hyperphyll? Hypocotyl internode? Mesocotyl? Coleoptile? Plumule? Collar hairs? Germination? First seedling leaf only as leaf sheath.

Cytology n = 18

DNA The plastid genome has an inversion of 28 kb and one inversion of 6,4 kb. The mitochondrial gene rps14 is transferred to the nuclear genome, with pseudogene ψrps14 in mtDNA. The trnT inversion is absent.

Phytochemistry Very insufficiently known. Ferulic, diferulic and p-coumaric acids (esterified) components of non-lignified cell walls.

Use Unknown.

Systematics Joinvillea (2; West Malesia, Melanesia and eastwards on islands in the Pacific to Samoa, the Caroline Islands and the Hawaiian Islands).

Joinvillea and Poaceae have a similar type of leaf epidermal structure in the form of alternating long and short cells. The thickened tepal bases may be homologous to the lodiculae in Poaceae. The stigmas have, as in Poaceae and some Restionaceae, plumose lobes. Fusoid cells may be present (Smithson 1957).

JUNCACEAE Juss.

( Back to Cyperales )

de Jussieu, Gen. Plant.: 43. 4 Aug 1789 [’Junci’], nom. cons.

Juncales Bercht. et J. Presl, Přir. Rostlin: 266. Jan-Apr 1820 [‘Junceae’]; Juncopsida Bartl., Ord. Nat. Plant.: 23, 34. Sep 1830 [’Juncinae’]; Juncanae Takht., Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 510. 4 Feb 1967; Juncidae Doweld, Tent. Syst. Plant. Vasc.: lxii. 23 Dec 2001

Genera/species 7/440-450

Distribution Cosmopolitan, with their highest diversity in cold and temperate regions in the Northern and Southern Hemispheres.

Fossils Fossil seeds have been found in Late Eocene to Early Oligocene layers in England and from the Miocene onwards in several places in Europe. Pollen grains, at least of Juncus and Luzula, are known from the Cenozoic of Russia, Germany and North America.

Habit Usually bisexual (rarely monoecious, dioecious or gynodioecious), usually perennial (sometimes annual) herbs. Graminids. Many species are aquatic or hygrophytic. Culm terete or flattened in cross-section, smooth or with longitudinal ridges and furrows.

Vegetative anatomy Mycorrhiza absent? Dauciform roots (with dense long root hairs, epidermal cells elongate at right angles to long axis of root) sometimes present. Root hairs sometimes developing from short cells in root epidermis. Root endodermis one cell layer thick, with cell wall thickenings U-shaped in cross-section. Lateral roots developing from a zone opposite protophloem or opposite protoxylem poles. Central rhizome parenchyma with several scattered vascular bundles. Culm with one or few peripheral concentric cylinders of vascular bundles, without endodermis. Phellogen absent. Medulla hollow or consisting of aerenchyma with stellate cells. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements in Juncus and Luzula with scalariform and/or simple (in remaining genera usually entirely scalariform) perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Silica bodies usually absent (in Juncus rarely as silica sand). Calciumoxalate raphides absent.

Trichomes Hairs usually absent (multicellular, uniseriate hairs present on leaf margins in Luzula).

Leaves Alternate (usually tristichous, rarely distichous), simple, entire, linear, usually unifacial (subulate or filiform; rarely laterally flattened and equitant; in some species consisting of mere leaf sheath), often with convolute (supervolute) ptyxis. Stipules absent; leaf sheath usually open (in Luzula closed), often auriculate (sometimes with ligule formed by fusion of auriculae). Venation parallelodromous. Stomata paracytic (in xeromorphic species Poaceae type paracytic). Cuticular waxes? Air canals present. Mesophyll without calciumoxalate raphides. Leaf margin usually entire (in, e.g., Juncus trifidus serrate).

Inflorescence Usually terminal or pseudolateral, racemose, panicle, corymb, spike- or head-like, in anthela, drepania or rhipidia (flowers in Marsippospermum and Rostkovia solitary terminal; in Distichia, Oxychloe and Patosia solitary lateral). Basal inflorescence bract in some species of Juncus elongate (appearing as prolongation of culm). Floral prophylls (bracteoles) one adaxial, two transverse or absent.

Flowers Actinomorphic, usually small (in Marsippospermum relatively large). Hypogyny. Tepals (2–)3+(2–)3, sepaloid, caducous or persistent, free. Nectary absent. Disc absent.

Androecium Stamens usually 3+3 (rarely 2+2, two or three [inner staminal whorl absent]), usually alternitepalous (in Luzula antetepalous). Filaments filiform or flattened, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse or latrorse, longicidal (dehiscing by longitudinal slits); connective sometimes slightly prolonged at apex. Tapetum secretory, with uninucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous (sometimes with ephemeral cell plate following meiosisI). Pollen grains monoulcerate with indistinct aperture, shed as tetrahedral tetrads with common exine, tricellular at dispersal. Exine tectate, thin, with columellate? infratectum, smooth.

Gynoecium Pistil composed of usually three (rarely two) connate antesepalous carpels; median carpel abaxial. Ovary superior, usually trilocular (sometimes unilocular and incompletely septate; rarely bilocular). Stylodia usually three (rarely two), free or connate below. Stigmas usually three (rarely two), adaxial, papillate (with unicellular papillae), Dry type, sometimes twisted. Pistillodium absent.

Ovules Placentation usually axile (when ovary unilocular then parietal placentation; in Luzula basal). Ovules one (Luzula) or three to c. 50 per carpel, anatropous, ascending, bitegmic, weakly crassinucellar. Micropyle endostomal or bistomal. Outer integument two (Juncus), or three or four (Distichia, Luzula) cell layers thick. Inner integument two cell layers thick. Funicular obturator (as hair) present. Hypostase present or absent. Parietal cell formed from archespore. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio helobial. Endosperm haustoria? Embryogenesis onagrad (Juncus or Luzula variation).

Fruit A usually many-seeded (in Luzula three-seeded) loculicidal, usually trilocular capsule (in Distichia, Oxychloe and Patosia more irregularly dehiscing or sometimes a pyxidium).

Seeds Seeds in many species of Luzula with a chalazal (apical) or micropylar (basal) fleshy caruncular elaiosome. Seed coat in Juncus largely exotestal-endotegmic. Exotesta sometimes mucilaginous; in Luzula membranous. Endotesta? Exotegmen? Endotegmen in Luzula thickened. Perisperm not developed. Endosperm copious, starchy, outer layers with aleurone and oils. Suspensor few-celled, little developed. Embryo small, straight, without chlorophyll, enclosed by endosperm, Xyris-Scirpus type. Cotyledon one, usually photosynthesizing. Cotyledon hyperphyll elongate, assimilating. Hypocotyl rudimentary or absent. Hypocotyl internode present or absent. Coleoptile absent. Collar very small, with rhizoids. Phanomer (photosynthesizing unifacial cotyledon hyperphyll) usually present. Germination?

Cytology n = 9–65 (Juncus); n = 3–42 (Luzula); n = 8 (Oxychloe) – Centromeres at least in Luzula diffuse (centric activity principally over the entire chromosomes, not situated at a specific site; spindle fibrils attaching to several sites along the chromosomes), easily resulting in anomalous chromosome numbers by chromosome fragmentation, agmatoploidy; detached chromosome segments move against the poles and remain functional.

DNA A deletion of three base pairs present in the plastid gene atpA. The plastid gene rpl23 is absent.

Phytochemistry Flavonols (quercetin), flavones, flavone sulphates, luteolin-5’-methyl ether, luteolinidin based glycosides (replacing anthocyanins), cyanidin, tannins, juncosol (a phytotoxic phenol), 7,8-dihydroxy coumarin, daphnetin including its 8-methyl-ether, and tyrosine-derived cyanogenic compounds present. Flavone-C-glycosides, tricin, anthocyanins, ellagic acid, alkaloids, and saponins not found.

Use Ornamental plants, carpets, baskets, candle wicks (Juncus effusus etc.).

Systematics Luzula (c 110; cosmopolitan, especially temperate Northern Hemisphere), ‘Juncus’ (c 310; cosmopolitan; non-monophyletic), Marsippospermum (4; South Island of New Zealand, Campbell Island, Auckland Islands, southernmost South America, Falkland Islands), Rostkovia (2; R. magellanica: southernmost South America, Patagonia, Falkland Islands, South Georgia Island, Campbell Island, New Zealand, Ecuador; R. tristanensis: Tristan da Cunha), ‘Oxychloe’ (5–6; the Andes from Peru to northern Patagonia in Argentina; non-monophyletic), Distichia (3; the Andes from Colombia and Ecuador to northern Chile and northern Argentina).

Oxychloe has occasionally been interpreted as sister to Cyperaceae, thus making Juncaceae paraphyletic. It lacks a groove and additional subepidermal sclerenchyma girdles in the leaf. In, e.g., the Plunkett & al. (1995) and Munro & Linder (1998) analyses, Oxychloe is recovered within Cyperaceae. However, these analyses were obviously based on mixed samples. The position of Oxychloe in Juncaceae – near Distichia and Patosia – has been clarified by later investigations.

Thurnia (Thurniaceae) and Prionium (Prioniaceae) are successive sister-groups to the [Juncaceae+Cyperaceae] clade.

Luzula elegans is sister to the remaining species of the monophyletic Luzula. The species is annual and has a cymose inflorescence. The six somatic chromosomes evolved as a result of chromosome fusion (Nordenskiöld 1951).

Juncus’ in the current circumscription is heavily non-monophyletic, according to Drábková & al. (2003, 2006) and Drábková (2010), with the two species J. monanthos and J. trifidus forming a sister-group to the remaining Juncaceae, and J. capitatus successive sister to the rest. Luzula was sister to a main clade comprising Juncus pro parte, Distichia, Marsippospermum, Oxychloe, Patosia, and Rostkovia. Furthermore, Juncus capensis and J. lomatophyllus formed a sister-group to Oxychloe, Distichia and Patosia, where Distichia was paraphyletic relative to Patosia. Additional molecular analyses, including even more taxa of Juncus, are desirable.

Strict consensus tree of Juncaceae based on DNA sequence data (Drábková 2010). Rostkovia has been added here as sister to Marsippospermum as revealed in some analyses.

MAYACACEAE Kunth

( Back to Cyperales )

Kunth in Abh. Königl. Akad. Wiss. Berlin, Phys. Abh. 1840: 93. 1842 [’Mayaceae’], nom. cons.

Mayacales Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 214. 20 Jul 1943

Genera/species 1/4

Distribution Africa, southeastern United States, the West Indies, Central and South America.

Fossils Unknown.

Distribution Bisexual, perennial herbs. Aquatic or helophytic.

Vegetative anatomy Root hairs developing from specialized rhizodermal cells. Lateral roots developing from a zone opposite protophloem poles. Phellogen absent. Cortex aerenchymatous, consisting of septate air canals. Central stem stele consisting of three to five collateral vascular bundles in a single cylinder separated by endodermis from cortex; vascular bundles outside endodermis from that layer. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements with scalariform (sometimes reticulate?) perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Uniseriate colleters present. Silica bodies absent. Calciumoxalate raphides absent.

Trichomes Hairs almost absent (present in leaf axils); uniseriate glandular hairs present in leaf axils.

Leaves Alternate (spiral), simple, entire, linear to filiform, with adplicate (flat) ptyxis. Stipules and leaf sheath absent. Leaf axils with caducous uniseriate glandular hairs (colleters?). Leaf one-veined. Stomata paracytic, with subsidiary cells with intersecting oblique cell divisions. Cuticular waxes? Mesophyll without mucilaginous idioblasts and calciumoxalate crystals. Leaf margin entire. Leaf apex usually bifid to bidentate.

Inflorescence Flowers axillary (appearing terminal), solitary, open above water surface. Flowers associated with a wide adaxial prophyll-like structure (bracteole?).

Flowers Actinomorphic, small. Hypogyny. Tepals 3+3, free; outer tepals with valvate or subvalvate aestivation, sepaloid; inner tepals with imbricate aestivation, petaloid, shortly clawed. Nectary absent. Disc absent.

Androecium Stamens three (inner staminal whorl absent), antesepalous. Filaments filiform, free from each other and from tepals. Anthers basifixed, non-versatile, usually tetrasporangiate (sometimes disporangiate, rarely trisporangiate), extrorse, poricidal (dehiscing by an apical pore, a short slit or a pore at apex of a tubular outgrowth). Tapetum secretory, with uninucleate cells. Staminodia absent.

Pollen grains Microsporogenesis successive. Pollen grains monosulcate, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, finely reticulate, spinulate.

Gynoecium Pistil composed of three connate antepetalous carpels. Ovary superior, unilocular. Style single, simple, with stylar canal. Stigma short, capitate or somewhat trilobate, type? Pistillodium absent.

Ovules Placentation parietal. Ovules two to c. 30 per ovary, orthotropous, ascending or horizontal, bitegmic, tenuinucellar to weakly crassinucellar. Micropyle bistomal (endostomal?). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Hypostase well developed, tanniniferous. Obturator present. Megasporangial epidermis basally thickened. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit A loculicidal capsule.

Seeds Aril absent. Seeds operculate. Seed coat tegmic. Testa? Exotegmic cells with U-shaped lignifications. Operculum (somewhat similar to embryostega in Commelinaceae) mostly developed from endotegmen. Perisperm not developed. Endosperm copious, with starch and aleurone, and with a proteinaceous outer layer. Embryo small, undifferentiated, micropylar, Xyris-Scirpus type. Cotyledon one, consisting of a closed leaf sheath and an apical haustorium. Radicula absent. Germination?

Cytology n = 8

DNA

Phytochemistry Very insufficiently known. Flavonols (quercetin) and phenolic compounds present. Ellagic acid, proanthocyanidins, and cyanogenic compounds not found.

Use Aquarium plants.

Systematics Mayaca (4; southeastern United States, the West Indies, Central and South America; one species, M. baumii, in Angola and possibly Congo and Zambia due to recent long distance dispersal).

Mayaca is sister to [Eriocaulaceae+Xyridaceae].

POACEAE (R. Br.) Barnhart

( Back to Cyperales )

Barnhart in Bull. Torrey Bot. Club 22: 7. 15 Jan 1895, nom. cons.

Gramineae Juss., Gen. Plant.: 28. 4 Aug 1789, nom. cons. et nom. alt.; Aegilopaceae Martinov, Tekhno-Bot. Slovar: 221. 3 Aug 1820 [‘Egilopeae’, ‘Aegilopeae’]; Agrostidaceae Bercht. et J. Presl, Přir. Rostlin: 264. Jan-Apr 1820 [‘Agrostideae’]; Alopecuraceae Martinov, Tekhno-Bot. Slovar: 19. 3 Aug 1820 [‘Alopecurinae’]; Andropogonaceae Martinov, Tekhno-Bot. Slovar: 28. 3 Aug 1820 [‘Andropogones’]; Avenaceae Martinov, Tekhno-Bot. Slovar: 60. 3 Aug 1820; Bambusaceae Bercht. et J. Presl, Přir. Rostlin: 265. Jan-Apr 1820; Bromaceae Bercht. et J. Presl, Přir. Rostlin: 264. Jan-Apr 1820; Chloridaceae Bercht. et J. Presl, Přir. Rostlin: 265. Jan-Apr 1820 [‘Chlorideae’]; Hordeaceae Bercht. et J. Presl, Přir. Rostlin: 265. Jan-Apr 1820; Maydaceae Martinov, Tekhno-Bot Slovar: 387. 1820 [‘Mayseae’], nom. illeg.; Melicaceae Martinov, Tekhno-Bot. Slovar: 390. 3 Aug 1820 [‘Meliceae’]; Nardaceae Martinov, Tekhno-Bot. Slovar: 413. 3 Aug 1820 [‘Nardinae’]; Olyraceae Bercht. et J. Presl, Přir. Rostlin: 265. Jan-Apr 1820 [‘Olyreae’]; Oryzaceae Bercht. et J. Presl, Přir. Rostlin: 265. Jan-Apr 1820 [‘Oryzeae’]; Panicaceae Bercht. et J. Presl, Přir. Rostlin: 264. Jan-Apr 1820 [‘Paniceae’]; Saccharaceae Bercht. et J. Presl, Přir. Rostlin: 265. Jan-Apr 1820 [‘Saccharinae’]; Stipaceae Bercht. et J. Presl, Přir. Rostlin: 264. Jan-Apr 1820; Festucaceae Spreng. in J. Sadler, Fl. Comit. Pest. 1: 28. 27 Jun 1825; Anthoxanthaceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827; Asperellaceae Link, Hort. Berol. 1: 106, 270. 1 Oct-27 Nov 1827 [’Asperellinae’]; Cenchrinaceae Link, Hort. Berol. 1: 9, 268. 1 Oct-27 Nov 1827 [‘Cenchrinae’]; Chaeturaceae Link, Hort. Berol. 1: 106, 269. 1 Oct-27 Nov 1827 [‘Chaeturinae’]; Chamagrostidaceae Link, Hort. Berol. 1: 268. 1 Oct-27 Nov 1827 [‘Chamagrostideae’], nom. illeg; Chondrosaceae Link, Hort. Berol. 1: 269. 1 Oct-27 Nov 1827 [‘Chondrosiaceae’]; Cynodontaceae Link, Hort. Berol. 1: 51, 269. 1 Oct-27 Nov 1827 [‘Cynodonteae’]; Cynosuraceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827 [‘Cynosurinae’]; Echinariaceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827; Ehrhartaceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827 [‘Ehrhartinae’]; Glyceriaceae Link, Hort. Berol. 1: 271. 1 Oct-27 Nov 1827 [‘Glycerinae’]; Lappaginaceae Link, Hort. Bot. 1: 11, 268. 1 Oct-27 Nov 1827 [‘Lappagineae’], nom. illeg.; Loliaceae Link, Hort. Berol. 1: 6, 267. 1 Oct-27 Nov 1827; Miliaceae Link, Hort. Berol. 1: 91, 270. 1 Oct-27 Nov 1827; Ophiuraceae Link, Hort. Berol. 1: 3, 268. 1 Oct-27 Nov 1827 [‘Ophiurinae’]; Paspalaceae Link, Hort. Berol. 1: 47, 269. 1 Oct-27 Nov 1827 [‘Paspalinae’, ‘Paspalaceae’]; Phleaceae Link, Hort. Berol. 1: 269. 1 Oct-27 Nov 1827 [‘Phleodeae’]; Spartinaceae Link, Hort. Berol. 1: 46, 268. 1 Oct-27 Nov 1827; Triticaceae Link, Hort. Berol. 1: 22, 268. 1 Oct-27 Nov 1827 [’Triticeae’]; Zoysiaceae Link, Hort. Berol. 1: 8, 268. 1 Oct-27 Nov 1827 [’Zoysinae’]; Holcaceae Link, Hort. Berol. 2: 252. Jul-Dec 1833 [‘Holcoideae’]; Laguraceae Link, Hort. Berol. 2: 250. Jul-Dec 1833 [‘Lagurinae’]; Phalaridaceae Link, Hort. Berol. 2: 250. Jul-Dec 1833 [‘Phalarideae’]; Tristeginaceae Link, Hort. Berol. 2: 220. Jul-Dec 1833 [’Tristeginae’], nom. illeg.; Avenales Bromhead in Edinburgh New Philos. J. 24: 417. Apr 1838; Arundinaceae Döll, Rhein. Fl.: 60. 24-27 Mai 1843; Sesleriaceae Döll, Rhein. Fl.: 60. 24-27 Mai 1843; Coleanthaceae (Link) Pfeiffer, Nomencl. Bot. 1(2): 818. 3 Oct 1873 [‘Coleanthinae’]; Zeaceae A. Kern., Pflanzenleben 2: 651. 8 Aug 1891; Arundinellaceae (Stapf) Herter in Revista Sudamer. Bot. 6: 136. Jun 1940; Eragrostidaceae (Stapf) Herter in Revista Sudamer. Bot. 6: 145. Jun 1940; Lepturaceae (Dumort.) Herter in Revista Sudamer. Bot. 6: 147. Jun 1940; Pappophoraceae (Kunth) Herter in Revista Sudamer. Bot. 6: 145. 1940; Pharaceae (Stapf) Herter in Revista Sudamer. Bot. 6: 139. Jun 1940; Anomochloaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 222. 20 Jul 1943; Parianaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 222. 20 Jul 1943; Streptochaetaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov]: 222. 20 Jul 1943

Genera/species 700–720/10.350–10.650

Distribution Cosmopolitan including polar areas.

Fossils Well preserved fossil grass phytoliths have been found in a dinosaur coprolith from the Maastrichtian Deccan Intertrappean Beds of India, and phytoliths (sometimes associated with epidermal fragments) are known from Cenozoic layers in many places. Pollen grains resembling those in Poaceae have been found in Maastrichtian layers, whereas leaves and flowers are known from the Early Eocene onwards. Paleocene grass pollen have been recorded from Brazil and tropical West Africa. Inflorescence parts have been detected in Oligocene layers in Germany and a spikelet was found in the Early Eocene of Tennessee.

Habit Usually bisexual (sometimes monoecious, andromonoecious, gynomonocious, polygamomonoecious, dioecious, androdioecious, or gynodioecious), usually perennial, biennial or annual herbs (sometimes woody, up to c. 40 m tall). Graminids. Sometimes helophytes, rarely aquatic. Numerous species are xerophytes. Culm terete to elliptic in cross-section, usually with hollow (fistulose; sometimes medullated solid) internodes and solid swollen nodes.

Vegetative anatomy Adventitious roots developing directly from hypocotyl. Endophytic fungi (i.a. Class I endophytes, Clavicipitaceae) frequent. Vesicular-arbuscular mycorrhiza often present. Roots producing siderophores that chelate ferric ions subsequently taken up by plant. Lateral roots developing from zone opposite protophloem or opposite protoxylem poles. Phellogen absent. Chlorenchyma without peg cells. Primary vascular tissue two or more cylinders of vascular bundles or scattered bundles. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements with scalariform or simple perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2cc type (with cuneate protein crystals) or P2ccl type (with cuneate and several additional loosely packed protein crystals); P proteins absent from sieve elements. Nodes? Secretory cavities absent. Arm cells and fusoid cells present or absent. Special short idioblasts with large single silica bodies (phytoliths) of various shape (cuboidal, rounded, quadratic, cross- or saddle-shaped, etc.). Calciumoxalate absent or scarce. C4 and CAM physiologies frequently present (at least 50% of species; evolved several times).

Trichomes Hairs unicellular or multicellular, uniseriate, or absent; glandular hairs sometimes present; usually bicellular (sometimes multicellular) microhairs present in most Poaceae.

Leaves Alternate (usually distichous; in Micraira tristichous), simple, entire, usually linear, with supervolute(-plicate), conduplicate (involute, revolute, convolute, or plicate) ptyxis (sometimes differentiated into pseudopetiole and pseudolamina). Stipules absent; leaf sheath well developed, usually open (rarely closed), long, usually with membranous adaxial distal ligule (sometimes modified into hairs or absent); sometimes with abaxial contraligule. Venation usually parallelodromous, often with transverse veins (in Leptaspis and Pharus pinnate-parallel); midvein usually distinct. Stomata paracytic, usually with dumbbell-shaped Poaceae type guard cells (not in, e.g., Neostapfia) and conical to dome-shaped subsidiary cells. Cuticular wax crystalloids as longitudinally aggregated or non-orientated rodlets and platelets, chemically dominated by polymeric aldehydes, or as tubuli, chemically characterized by hydroxy-β-diketones (sometimes Strelitzia type). Central mesophyll with large uncoloured fusoid cells. Epidermis usually with rows of long cells alternating with short cells containing silica (with longitudinal axis parallel to lamina); short ones usually containing silica crystals. Most Poaceae forming pairs of silica-cork short cells. Mucilaginous idioblasts absent. Secretory cavities usually absent. Cystoliths absent. Leaf margin usually entire (sometimes serrate). Epidermis usually with microhairs. Extrafloral nectaries rarely present.

Inflorescence Terminal, compound panicle, or simple or branched spike-, head-, spadix- or raceme-like (sometimes surrounded by spatha), consisting of spikelets subtended by one basal pair of bracts, glumes (glumae), without axillary flowers; above these one, several or numerous flowers each subtended and often surrounded by a bract (or outer tepal?), lemma, and opposite this a two-keeled and usually two-veined palea (possibly corresponding to a floral prophyll [bracteole] or two connate outer tepals). Glumes and/or lemmas (rarely paleas) often provided with long and narrow projections, awns. Lateral branches often bearing distinct adaxial swellings at base. Spikelet bracts usually suppressed. Some genera have modified sterile flowers or sterile branchlets serving as dispersal mechanisms.

Flowers Zygomorphic (due to reduction), small. Hypogyny. Each flower with usually two (rarely one, three or more than three) very small scale-like lodiculae, probably corresponding to reduced tepals of inner whorl (when more than three, then supernumerary lodiculae possibly corresponding to reduced modified sterile stamens; sometimes connate; often absent in female flowers). Nectary absent. Disc absent.

Androecium Stamens usually three (often 3+3, rarely one, two, four, five, or more than six, in Ochlandra up to c. 120 [to c. 170]). Filaments long, filiform, usually free from each other, free from lodiculae. Anthers dorsifixed, centrifixed or subbasifixed, versatile, tetrasporangiate, introrse, latrorse or extrorse, longicidal (dehiscing by longitudinal slits) or poricidal (dehiscing by apical pores or short slits). Tapetum secretory, with uni-, bi- or multinucleate cells. Staminodia absent.

Pollen grains Microsporogenesis usually successive (in Streptochaeta simultaneous). Pollen grains graminoid, usually monoporate to monoulcerate, operculate, shed as monads, usually tricellular at dispersal. Exine tectate, with columellate infratectum, smooth, echinulate, spinulate, or finely scabrate, with thin intraexinous channels (not scrobiculate).

Gynoecium Pistil composed of probably three connate carpels (three vascular bundles reaching stigma), with abaxial carpel fertile leading to pseudomonomery. Ovary superior, unilocular (pseudomonomerous). Style single, simple, solid or hollow, or stylodia two (rarely three; third style often represented by a reduced basal tissue), apical or lateral, free or more or less connate. Stigma single and usually bilobate (rarely uni-, tri- or quadrilobate), or stigmas two (rarely three), with often plumose lobes, papillate or non-papillate, Dry type, usually with scattered discontinuous receptive surfaces on multiseriate branches (sometimes on distinct zones) (pollen tubes growing between elongate transfer cells in multicellular stigmatic lobes). Pistillodium absent.

Ovules Placentation basal to parietal. Ovule one per ovary, hemianatropous, amphitropous or campylotropous (rarely orthotropous, pendulous), usually bitegmic (rarely unitegmic or almost ategmic), tenuinucellar or pseudocrassinucellar. Funicle short. Micropyle usually endostomal (sometimes bistomal). Outer integument two? cell layers thick. Inner integument two? cell layers thick. Parietal cell not formed (parietal tissue absent). Megasporangium multilayered. Nucellar cap usually (not in Pooideae) formed through periclinal cell divisions in megasporangial epidermis. Megagametophyte monosporous, Polygonum type (Poaceae variation). Synergids sometimes haustorial (in ’Cortaderia’ and other Danthonioideae). Antipodal cells binucleate, more than three, often proliferating (rarely up to c. 300 cells). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad (special variation). Polyembryony frequent.

Fruit Usually a nut-like caryopsis with adaxial end of seed coat usually fused with endocarp (sometimes an achene with membranous or gelatinous pericarp not adherent to seed coat; rarely a berry or a drupe).

Seeds Aril absent. Testa usually not persistent. Tegmen? Perisperm not or only slightly developed. Endosperm copious, starchy, usually with proteinaceous tissue (rarely absent); peripheral cell layers of mature endosperm showing meristematic activity, with aleurone and sometimes oils; starch grains simple or compound. Embryo small to large, straight or curved, lateral-abaxial (sometimes inserted adjacent to seed coat on one side), well differentiated, with special and unique shape, usually almost enclosed by cylindrical coleoptile, without chlorophyll. Cotyledon one, lateral, not photosynthesizing. Haustorial cotyledon hyperphyll compact, not assimilating, modified into absorptive scutellum appressed to endosperm. Hypocotyl internode absent. Collar modified to epiblast, cotyledon ligule, often stout, or absent (alternatively, epiblast representing projection from first lateral root). Plumule terminal. Coleoptile first leaf, modified into substrate penetrating plumular envelope, with or without lamina. Alternatively, coleoptile and scutellum being different parts of cotyledon. Mesocotyl present as part of axis between coleoptile and scutellum, or absent. Radicula surrounded by coleorrhiza and scutellum, or absent. Germination cryptocotylar.

Cytology n = 11, 18 (Anomochlooideae); n = (2) (4) 5–12 (14) (other Poaceae) (n = 2–90) x = 5 or 11? – Polyploidy and aneuploidy frequently occurring. Agamospermy present in many genera. – ADP-glucose pyrophosphorylase present in cytosol.

DNA The plastid genome has one inversion of 28 kb, a second inversion of 6,4 kb, and a third inversion of 0,2–2 kb, and only 17 introns. The plastid gene accD, ORF244 and the introns 1 and 2 in clpP are often absent (at least in Bambusa, Oryza and Zea). ORF2280 is absent in many Poaceae. The intron is absent from the plastid gene rpoC1 (at least in Oryza and Zea). An insertion is present in the plastid gene rpoC2. A trnT inversion is present in the single copy region of the plastid genome. The IR region of the plastid DNA is expanded. A translocation has taken place in the plastid genome, thus creating the pseudogene ψrpl23.

Duplication of the nuclear genes AP1/FUL (FUL1 and FUL2) has taken place in the crown clade (this duplication may be involved in the evolution of the spikelet): one copy coding for degradation of starch into fermentable sugars in endosperm, the second copy with wider expression. Vast gene duplications have taken place in the API, AG and SEP gene families, although not in the AP3 evolutionary line. A duplication of the gene LOFSEP may have taken place in Poaceae (Malcomber & Kellogg 2005), the entire genome being duplicated in a clade comprising at least Zea, Oryza, Hordeum, and Sorghum. Loss of nuclear genes ycf1 and ycf2, the c. 200 bp ψycf1 being left in the genome. The mitochondrial gene rps14 has been transferred to the nuclear genome, the pseudogene ψrps14 being left in mtDNA.

Phytochemistry Flavonol sulphates, flavone sulphates, flavone-5- and C-glycosides, luteolin, tricin (tricetin 3’,5’-dimethyl ether, very frequent), 3-deoxyanthocyanins, free triterpenes, isoquinoline alkaloids, tryptophane- or tyramine-derived alkaloids (gramine, hordenine, tyramine, etc.), pyrrolizidine alkaloids (1-aminopyrrolizidine derivatives; loline, lolinine, norline, etc.), indole alkaloids, tyrosine-derived cyanogenic compounds, and chelidonic acid present. Flavonols (kaempferol, quercetin), cyanidin, and saponins rare. Ellagic acid not found. Primary cell wall with abundant arabinoxylans. Xyloglucans without fucose. Lignins with p-coumarylic alcohol (lignins acylated with p-coumarates), and coniferyl and sinapyl monomers. Hemicellulose/pectin composition different from other seed plants. Aluminium accumulation occurring in some species.

Use Ornamental plants, starch sources (cereals), sugar (Saccharum), beer and other alcohol beverages (Hordeum, Triticum, Saccharum, etc.), vegetables, spices and perfumes (Cymbopogon), necklaces (Coix), forage plants, thatching, basketry, textiles, carpets, brushes, bamboo species for timber, carpentries, tools, ornaments, weapons, musical instruments, vegetables, paper, etc.

Systematics Poaceae are sister-group either to Ecdeiocoleaceae or (perhaps more probable) to the clade [Joinvilleaceae+Ecdeiocoleaceae]. Multicellular microhairs are present in Joinvilleaceae and many Poaceae (also in Ecdeiocoleaceae?).

The system below largely follows: Soreng RJ, Davidse G, Peterson PM, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Morrone O, Romaschenko. 2012 (and continuously revised). A world-wide phylogenetic classification of Poaceae (Gramineae). Published online. Another important source is Peterson & al. (2011).The potential synapomorphies of the clades are mainly according to Stevens (2001 onwards).

A possible topology is the following:

[Anomochloa+[Streptochaeta+[Pharoideae+[Puelioideae+[[Aristidoideae+[Panicoideae+Arundoideae]]]+[Ehrhartoideae+[Bambusoideae+Pooideae]]]]]]]

Sometimes, the following two alternative topologies of the “crown clade” are recovered:

[[Pooideae+[Bambusoideae+Ehrhartoideae]]+[Micrairoideae+[Panicoideae+[[Aristidoideae+Danthonioideae]+[Arundinoideae+Chloridoideae]]]]] or [Bambusoideae+[Ehrhartoideae+[Pooideae+[Panicoideae+[[Aristidoideae+Danthonioideae]+[Arundinoideae+Chloridoideae]]]]]]

Anomochlooideae Pilg. ex Potzdal in Willdenowia 1: 772. 1 Mar 1957 [‘Anomochloideae’] (paraphyletic)

2/4. Anomochloa (1; A. marantoidea; Bahia in southeastern Brazil); Streptochaeta (3; tropical America). – Central America to tropical South America, forests. Pseudopetiole with apical (and sometimes basal) pulvinus. Ligule modified into fringe of hairs. Arm cells absent in Streptochaeta. Inflorescence branches cymose, with two ’bracts’ along each branch unit and two additional ’bracts’ subtending each flower (Anomochloa), or flowers spirally arranged along racemose axis, with several spiral ’bracts’ subtending each flower (Streptochaeta). Tepals 2(–3)+3 or absent. Anomochloa with four stamens and one carpel. Filaments connate at base. Anthers subbasifixed or centrifixed (Anomochloa), latrorse. Anther wall development Reduced type, without endothecium thickenings. Microsporogenesis simultaneous. Stigma in Streptochaeta not plumose. Epiblasts present in Anomochloa, absent in Streptochaeta. First leaf of seedling without pseudolamina. n = 11, 18. Plastid gene rpoC2 insertion with 21 bp subrepeats. A c. 850 bp pseudogene ψycf1 present in nuclear genome in Anomochloa. – Streptochaeta and Anomochloa are sister-groups in some analyses. In others, Streptochaeta is recovered as successive sister to the remaining Poaceae (except Anomochloa). The bicarinate palea in Streptochaeta is sometimes interpreted as originated from two adaxial outer tepals. Likewise, the lodiculae have been interpreted as three modified inner tepals. In a way, morphology indicates that Streptochaeta may be sister to all other Poaceae (including Anomochloa).

[Pharoideae+[Puelioideae+[SAPA+EBP]]] ("The spikelet clade")

Leaves with membranous ligules, sometimes also ciliate. Inflorescence consisting of laterally compressed, racemose, pedunculate spikelets. Spikelet units with two sterile basal glumes (spikelet bract + prophyll). Flowers distichous, each with lemma and palea (possibly equalling one bract and two connate adaxial outer tepals), inverted. Lodiculae two or three (possibly equalling inner tepal whorl; median lodicula adaxial). n = 12. 3’ end of the plastid gene matK with 1 bp deletion. Plastid gene rpoC1 absent (lost). Plastid gene rpoC2 insertion with 39 bp subrepeats.

Pharoideae L. G. Clark et Judz. in Taxon 45: 643. 1996

2/12. Leptaspis (4; tropical regions in the Old World), Pharus (8; tropical and subtropical America). – Pantropical, forests. Microhairs absent. Leaves resupinate. Lateral veins oblique. Spikelets one-flowered. Stamens 3+3. Anthers centrifixed, latrorse. Anther wall development in Pharus Reduced type, without endothecium thickenings. Style hollow (Pharus) or solid. Micropyle bistomal (Pharus). Coleoptile with pseudolamina. Scutellus tail absent in Pharus.

[Puelioideae+[SAPA+IEBP]] ("The bistigmatic clade")

Phytoliths saddle-shaped. Spikelets disarticulating above glumes. Anthers usually versatile. Stigmas two, with stigmatic branching in two orders. Plastid gene ndhF with 15 bp insertion.

Puelioideae (Soderstr. et R. P. Ellis) L. G. Clark, M. Kobay., S. Mathews, Spangler et E. A. Kellogg in Syst. Bot. 25: 184. Apr-Jun 2000

2/11. Guaduella (6; tropical West and Central Africa), Puelia (5; tropical West and Central Africa). – Tropical West and Central Africa. Flowers bisexual or unisexual, polygamous. Perennial with sympodial rhizome. Kranz’ anatomy absent. Arm cells poorly developed. Fusoid cells well developed. Microhairs multicellular uniseriate (Guaduella) or absent (Puelia). Pseudopetiole present. Contraligule present (Puelia) or absent (Guaduella). Lodiculae three. Stamens 3+3. Filaments free (Guaduella) or connate (Puelia). Stigmas two or three. Embryo small. Seedling leaves of unknown shape. n = 12 (Puelia).

[[Aristidoideae+[Panicoideae+[Arundinoideae+[Danthonioideae+Chloridoidae]]]]+[Ehrhartoideae+[Bambusoideae+Pooideae]]]

Arm cells absent. Fusoid cells absent. No differentiation of leaf into pseudopetiole and pseudolamina. Leaf transverse veins absent. Lodiculae usually two. Stamens usually three. Stylodia two, not connate. Antipodal cells usually proliferating. x = 12. Benzoxazinoids (a type of defense molecules) sometimes present. Genome duplication present. Plastid gene ndhF with 15 bp insertion. Disease resistance through nuclear gene Hm1.

[Aristidoideae+[Panicoideae+[Arundinoideae+[Danthonioideae+Chloridoideae]]]]

Phytoliths axial-bilobate or axial-polylobate.

Aristidoideae Caro in Dominuezia 4: 16. Feb 1982

3/c 345. Aristida (c 290; tropical and subtropical regions on both hemispheres), Sartidia (4; tropical and southern Africa, Madagascar), Stipagrostis (c 50; arid and semi-arid subtropical regions in the Mediterranean, Africa and Asia to China). – Tropical and subtropical regions. Often with C4 photosynthesis. Ligule lined with hairs. Spikelet elongated-cylindrical, disarticulating above glume. Lemma awn trifid, or (one or) three awns, with basal columella. Germination flap present. n = 11, 12. Insertion of 6 bp absent from 3’ end of plastid gene matK. – Aristidoideae are possibly sister-group to the clade [Panicoideae+Arundinoideae+[Danthonioideae+ Chloridoideae]]. However, Aristidoideae are sometimes revealed as sister-group to Danthonioideae, and the analyses by Peterson & al. (2011) place Aristideae as sister to the clade [Hakonechloa+[Danthonieae+[Chlorideae+Centropodieae]]].

[Panicoideae+[Arundinoideae+[Danthonioideae+Chloridoideae]]] (The "PACC clade", the "PACMAD clade", or the "PACCMAD" clade)

C4 photosynthesis present in approximately 50% of the species. Phytoliths dumbbell-shaped. Ligule often consisting of hairs. Hilum non-linear. Mesocotyl internode elongated. Epiblast absent. Plastid gene ndhF extended from short single copy region (SSC) into inverted repeat (IR). 3’ end of the plastid gene matK usually with 6 bp insertion.

Panicoideae Link, Hort. Berol. 1: 202. 1 Oct-27 Nov 1827 [‘Paniceae’]

225–235/3.180–3.280. Tropical, subtropical and temperate regions. Culm usually solid. Fusoid cells often absent. C4 photosynthesis frequent. Elongate microhairs usually present, Panicoid type (with slender thin-walled cap cells). Stomata with triangular or dome-shaped subsidiary cells. Spikelet development basipetal. Spikelet dorsally compressed, without rachilla, two-flowered, lower flower male or sterile, female floret one. Spikelet shed as one-seeded unit by disarticulation below glumes. Style sometimes present. Hilum non-linear. Starch grains simple. Embryo with overlapping leaf margins. Epiblast usually present in ’centothecoids’. Germination flap present. n = 5, 7, 9, 10 (11–14). Plastid gene rpl16 intron with 5 bp insertion. Deletion of 4 bp in rpl16 intron in "centothecoids" Pseudogene ψrps14 absent (lost).

Gynerieae Sánchez-Ken et L. G. Clark in Novon 11: 350. 21 Sep 2001

1/1. Gynerium (1; G. sagittatum; Central and South America southwards to Paraguay). – Gynerieae may be sister-group to the clade [[Thysanolaeneae+Centotheceae+Cyperochloeae]+[Chasmanthieae+Zeugiteae]]. According to Morrone & al. (2012), they are instead sister to the clade [Paniceae+[Paspaleae+[Arundinelleae+Andropogoneae]]].

[[Thysanolaeneae+Centotheceae+Cyperochloeae]+[Chasmanthieae+Zeugiteae]]

[Thysanolaeneae+Centotheceae+Cyperochloeae]

Thysanolaeneae C. E. Hubb. in J. Hutchinson, Fam. Fl. Plants 2: 222. 20 Jul 1934

1/1. Thysanolaena (1; T. latifolia; southern and southeastern Asia, southern China). – Thysanolaena may be sister to the clade [Centotheceae+Cyperochloeae] or should be included in Centotheceae.

Centotheceae Ridl., Mat. Fl. Malay. Pen. 3: 122. 1907

2/4–5. Centotheca (3–4; tropical regions in the Old World), Megastachya (1; M. mucronata; tropical and southern Africa, Madagascar). – Tropical regions in the Old World. – Centotheceae may be sister to Cyperochloeae.

Cyperochloeae L. Watson et Dallwitz ex Sánchez-Ken et L. G. Clark in Amer. J. Bot. 97: 1744. 1 Oct 2010

2/2. Cyperochloa (1; C. hirsuta; southwestern Western Australia), Spartochloa (1; S. scirpoidea; southwestern Western Australia). – Southwestern Western Australia.

[Chasmanthieae+Zeugiteae]

Chasmanthieae W. V. Br. et B. N. Sm. ex Sánchez-Ken et L. G. Clark in Amer. J. Bot. 97: 1744. 1 Oct 2010

2/6. Bromuniola (1; B. gossweileri; Tanzania to Angola), Chasmanthium (5; eastern North America). – Eastern and southern tropical Africa, eastern North America. –Chasmanthieae are sister-group to Zeugiteae.

Zeugiteae Sánchez-Ken et L. G. Clark in Amer. J. Bot. 97: 1744. 1 Oct 2010

5/18. Chevalierella (1; C. dewildemanii; Congo), Lophatherum (2; East Asia, India to Malesia and tropical Australia), Orthoclada (2; O. africana: southeastern tropical Africa; O. laxa: southern Mexico to tropical South America), Pohlidium (1; P. petiolatum; Panamá), Zeugites (12; tropical America). – Pantropical.

[[Steyermarkochloeae+Tristachyideae]+[Andropogonodae+Panicodae]]

[Steyermarkochloeae+Tristachyideae]

Steyermarkochloeae Davidse et R. P. Ellis in Ann. Missouri Bot. Gard. 71: 994. 1985

2/2. Arundoclaytonia (1; A. dissimilis; Amazonas, Brazil), Steyermarkochloa (1; S. angustifolia; Colombia, Venezuela). – Tropical South America. – Steyermarkochloeae are sister to Tristachyideae, according to Morrone & al. (2012).

Tristachyideae Sánchez-Ken et L. G. Clark in Amer. J. Bot. 97: 1743. 1 Oct 2010

8/c 90. Danthoniopsis (c 20; Africa, the Arabian Peninsula to Pakistan), Dilophotriche (3; Senegal to the Ivory Coast), Gilgiochloa (1; G. indurata; tropical Africa), Loudetia (c 25; tropical and southern Africa, Madagascar, tropical South America), Loudetiopsis (11; tropical West Africa, tropical South America), Trichopteryx (5; tropical and southern Africa, Madagascar), Tristachya (22; tropical and southern Africa, Madagascar, tropical South America), Zonotriche (3; tropical Africa). – Africa and Madagascar to Pakistan, tropical South America. – Tristachyideae may be sister to Steyermarkochloeae.

[Andropogonodae+Panicodae]

Lecomtelleae Pilg. ex Potztal in Willdenowia 1: 771. 1957

1/1. Lecomtella (1; L. madagascariensis; the Andringitra mountain range in southern Madagascar). – The position of Lecomtella madagascariensis is uncertain. It is sister-group to [Sacchareae+Paspaleae] or [Sacchareae+Paniceae] or [Paniceae+Paspaleae] or [Paniceae+[Paspaleae+Sacchareae]] or to Paniceae (Besnard & al. 2013).

Andropogonodae L. Liu in Acta Phytotaxon. Sin. 18: 325. Aug 1980 (‘Andropogodae’]

[Sacchareae+Arundinelleae]

Sacchareae Martynov, Tekhno-Bot. Slovar: 556. 31 Jul-5 Aug 1820 [‘Saccharinae‘]

c 80/1.080–1.100. Eriochrysis (7; tropical and southern Africa, India, tropical America), Eulalia (c 30; tropical and subtropical regions in Africa, Madagascar, Asia and Australia), Eulaliopsis (3; Afghanistan, India, China, Taiwan, the Philippines), Homozeugos (5; tropical Africa), Imperata (c 10; tropical and subtropical regions on both hemispheres), Lophopogon (2; India), Microstegium (c 20; tropical and subtropical regions in the Old World, especially China), Miscanthus (14; tropical and subtropical regions in the Old World, southern Africa, East Asia), Pogonatherum (4; tropical Asia), Polytrias (1; P. indica; Southeast Asia), Saccharum (35–40; tropical and subtropical regions on both hemispheres), Spodiopogon (15; Turkey and eastwards to Japan), Veldkampia (1; V. sagaingensis; Southeast Asia). – Apocopis (c 15; India to southern China and Malesia), Germainia (9; Assam, Southeast Asia, Malesia to Queensland), Trachypogon (6; tropical and southern Africa, Madagascar, tropical America). – Asthenochloa (1; A. tenera; Central Malesia), Bothriochloa (c 30; tropical and subtropical regions in America), Chrysopogon (c 45; warmer regions on both hemispheres, especially in Palaeotropis; incl. Vetiveria?), Vetiveria (10; tropical and southern Africa, tropical Asia and eastwards to Australia; in Chrysopogon?), Capillipedium (14; East Africa, tropical Asia and eastwards to Australia and New Caledonia), Cleistachne (1; C. sorghoides; tropical and southern Africa, India), Dichantium (c 20; tropical and subtropical regions in the Old World), Euclasta (2; tropical Africa, India, tropical America), Hemisorghum (2; tropical Asia), Pseudodichanthium (1; P. serrafalcoides; western India), Pseudosorghum (1; P. fasciculare; tropical Asia), Sorghastrum (c 20; tropical and subtropical regions in America), Sorghum (c 30; tropical and subtropical regions in the Old World, one species in Mexico), Spathia (1; S. neurosa; tropical Australia). – Andropterum (1; A. stolzii; tropical Africa), Apluda (1; A. mutica; Socotra, Mauritius and eastwards to Taiwan and New Caledonia), Ischaemum (c 70; tropical and subtropical regions on both hemispheres, especially Asia), Kerriochloa (1; K. siamensis; Southeast Asia), Pogonachne (1; P. racemosa; Bombay area in India), Sehima (7; tropical regions in the Old World, southern Africa, Australia), Thelepogon (1; T. elegans; Ethiopia southwards to Namibia and eastwards to India), Triplopogon (1; T. ramosissima; western India). – Dimeria (c 40; Madagascar, India and eastwards to China and tropical Australia). – Coix (5; tropical Asia). – Andropogon (c 120; tropical and subtropical regions on both hemispheres), Arthraxon (c 25; tropical and subtropical regions in Asia eastwards to China and Australia), Bhidea (3; India), Cymbopogon (c 70; tropical and subtropical regions in Africa, Madagascar, Asia and Australia), Diheteropogon (5; tropical and southern Africa), Schizachyrium (c 60; tropical and subtropical regions on both hemispheres). – Agenium (3; Brazil to Argentina), Anadelphia (14; western to southeastern tropical Africa), Clausospicula (1; C. extensa; Northern Territory), Elymandra (6; tropical and southern Africa, one species also in Brazil, probably due to long distance dispersal), Exotheca (1; E. abyssinica; tropical Africa, Vietnam), Heteropogon (8; tropical and subtropical regions on both hemispheres), Hyparrhenia (c 65; Macaronesia, the Mediterranean, Africa, Madagascar, southwestern and southern Asia eastwards to Pakistan and India, tropical America, with their highest diversity in Africa), Hyperthelia (6; tropical and southern Africa), Iseilema (c 20; India, Sri Lanka, Southeast Asia, Malesia, New Guinea, tropical Australia), Monocymbium (4; tropical and southern Africa), Parahyparrhenia (5; tropical West and Central Africa, India, Thailand), Pseudanthistiria (3; India, Thailand, southern China), Themeda (27; tropical and subtropical regions in the Old World). – Chasmopodium (2; tropical West and Central Africa), Elionurus (c 15; tropical and subtropical Africa and eastwards to Sind in northwestern India, Australia, tropical and subtropical America), Eremochloa (11; India, Sri Lanka, Southeast Asia, Malesia to tropical Australia), Glyphochloa (8; central and southern India), Hemarthria (14; tropical and subtropical regions in the Old World), Heteropholis (5; Central Africa and eastwards to Australia), Lasiurus (1; L. scindicus; Mali and eastwards to northeastern India), Loxodera (5; tropical Africa), Mnesithea (c 30; tropical and subtropical regions on both hemispheres), Ophiuros (4; northeastern tropical Africa and eastwards to southern China and Australia), Oxyrhachis (1; O. gracillima; tropical East and southern Africa, Madagascar), Phacelurus (10; tropical and subtropical Africa and Asia eastwards to Indochina and Japan, one species in southern Europe), Rhytachne (12; tropical and southern Africa, Madagascar, tropical South America), Rottboellia (5; tropical and subtropical Africa and Asia, Madagascar), Thaumastochloa (7; New Guinea, Australia), Urelytrum (7; tropical and southern Africa, Madagascar), Vossia (1; V. cuspidata; tropical Africa and southwards to Namibia and northern Botswana, eastern India to Burma). – Chionachne (9; India and eastwards to eastern Australia), Polytoca (1; P. digitata; Assam to Southeast Asia, Java to New Guinea), Trilobachne (1; T. cookei; the West Indies). – Tripsacum (12; southern United States, Mexico, Central America, South America to Paraguay), Zea (5; Mexico, Central America). Tropical and subtropical regions. – Tropical and subtropical regions on both hemispheres. Spikelets paired. C4 photosynthetic pathway (NADP-ME subtype) present.

Arundinelleae Stapf in W. H. Harvey et O. W. Sonder (ed. W. T. Thiselton-Dyer), Fl. Cap. 7: 314. Jul 1898

2–4/c 90. Arundinella (c 60; tropical and subtropical regions on both hemispheres), Garnotia (c 30; southern and eastern Asia and eastwards to Pacific islands), Chandrasekharania (1; C. keralensis; Kerala in India)?, Jansenella (1; J. griffithiana; India, Sri Lanka)? – Tropical and subtropical regions, especially Asia. – Arundinelleae are sister to Sacchareae (Sánchez-Ken & Clark 2010, as ’Andropogoneae’). The positions of Chandrasekharania and Jansenella are very uncertain.

Panicodae L. Liu in Acta Phytotaxon. Sin. 18: 324. Aug 1980

[Paniceae+Paspaleae]

Paniceae R. Br. in M. Flinders, Voy. Terra Austral. 2: 582. 19 Jul 1814

80–85/1.250–1.300. Anthephora (12; tropical and southern Africa, the Arabian Peninsula, one species, A. hermaphrodita, also in tropical America), Chaetopoa (2; Tanzania), Chlorocalymma (1; C. cryptacanthum; Tanzania), Digitaria (c 250; cosmopolitan), Megaloprotachne (1; M. albescens; Namibia, Northern Cape, Botswana), Tarigidia (1; T. aequiglumis; Namibia, North-West, Free State), Trachys (1; T. muricata; coastal areas in southern India, Sri Lanka, Bangladesh and Burma). – Acroceras (19; tropical and southern Africa, Madagascar, Southeast Asia, Malesia), Alloteropsis (5; tropical and subtropical regions in the Old World), Amphicarpum (2; southeastern United States), Boivinella (2; Madagascar; in Cyphochlaena?), Cyphochlaena (2; Madagascar; incl. Boivinella?), Cyrtococcum (11; tropical regions in the Old World), Echinochloa (c 45; warm-temperate to tropical regions on both hemispheres), Entolasia (5; tropical and southern Africa, tropical Asia to eastern Australia, New Caledonia), Lasiacis (16; tropical and subtropical regions in America), Mayariochloa (1; M. amphistemon; Cuba), Microcalamus (1; M. barbinodis; tropical West Africa), Oplismenus (5; tropical and subtropical regions on both hemispheres), Ottochloa (3; India, southern China, Southeast Asia, Malesia to northern Australia), Parodiophyllochloa (6; Mexico, Central America, South America to Argentina), Pseudechinolaena (6; Madagascar, one species, P. polystachya, pantropical). – Ancistrachne (3; the Philippines, eastern Australia), Calyptochloa (1; C. gracillima; Queensland), Cleistochloa (3; northeastern Australia), Neurachne (6; Australia), Paraneurachne (1; P. muelleri; Australia), Thyridolepis (3; arid regions in Australia). – Chaetium (3; tropical America), Eriochloa (c 25; tropical and subtropical regions on both hemispheres), Eccoptocarpha (1; E. obconiciventris; southern tropical Africa), Leucophrys (1; L. mesocoma; southern Namibia, Northern Cape; in Urochloa?), Megathyrsus (2; tropical and subtropical Africa, southern Arabian Peninsula), Melinis (22; tropical and southern Africa, Madagascar), Moorochloa (3; tropical and subtropical America), Rupichloa (2; Bahia, Minas Gerais), Scutachne (1; S. dura; Cuba, Hispaniola), Thuarea (1; T. involuta; Madagascar and eastwards to Polynesia), Tricholaena (4; the Canary Islands, the Mediterranean, Africa, Madagascar), Urochloa (c 100; tropical and subtropical regions on both hemispheres; incl. Leucophys?), Yvesia (1; Y. madagascariensis; Madagascar). – Arthragrostis (1; A. deschampsioides; Queensland), Louisiella (1; L. fluitans; Sudan, Congo), ’Panicum’ (c 300; warm-temperate to tropical regions on both hemispheres; polyphyletic), Yakirra (6; Burma, Australia). – Acritochaete (1; A. volkensii; mountains in tropical Africa), Alexfloydia (1; A. repens; Coffs Harbour in New South Wales), Cenchrus (23; warm-temperate to tropical regions in Africa, India and America), Snowdenia (4; tropical East Africa; in Cenchrus?), Chamaeraphis (1; C. hordeacea; northern Australia), Dissochondrus (1; D. biflorus; the Hawaiian Islands), Holcolemma (4; East Africa, India, Australia), Hygrochloa (2; northern Australia), Ixophorus (1; I. unisetus; Mexico), Paractaenum (2; Australia), Paratheria (2; tropical West and Central Africa, Madagascar, Cuba, Brazil), Plagiosetum (1; P. refractum; Australia; in Paractaenum?), Pseudochaetochloa (1; P. australiensis; northern Australia), Pseudoraphis (6; India to China, Japan and Australia), ’Setaria’ (c 130; warm-temperate to tropical regions on both hemispheres; non-monophyletic; incl. Paspalidium?), Paspalidium (c 40; warmer regions on both hemispheres; in Setaria?), Setariopsis (2; Arizona, Mexico, Central America, Colombia, Venezuela), Spinifex (4; India and eastwards to East Asia and Pacific islands), Stenotaphrum (7; tropical and subtropical regions on both hemispheres), Stereochlaena (5; tropical East Africa to South Africa), Streptolophus (1; S. sagittifolius; Angola), Uranthoecium (1; U. truncatum; tropical Australia), Whiteochloa (5; Aru Islands, tropical Australia), Xerochloa (3; Australia), Zuloagaea (1; Z. bulbosa; Arizona to northern South America), Zygochloa (1; Z. paradoxa; arid regions of central Australia). – Unlaced Paniceae Dichanthelium (c 70; America), Homopholis (1; H. belsonii; southeastern Queensland, northeastern New South Wales), Hylebates (2; tropical Africa), Hydrothauma (1; H. manicatum; Zambia), Kikuyuochloa (1; K. clandestina; East Africa), Oryzidium (1; O. barnardii; Namibia, northern Botswana to Zambia), Poecilostachys (c 20; tropical Africa, Madagascar), Sacciolepis (c 30; tropical and subtropical regions on both hemispheres, with their largest diversity in tropical Africa), Taeniorhachis (1; T. repens; Somalia), Thedachloa (1; T. nana; northwestern Australia), Thyridachne (1; T. tisserantii; tropical Africa), Trichanthecium (38; tropical Africa, tropical America), Walwhalleya (3; Australia). – Cosmopolitan, with their highest diversity in tropical and subtropical regions. – Paniceae are sister to [Arundinelleae+Andropogoneae].

Paspaleae J. Presl in C. B. Presl, Reliq. Haenk. 1: 208. Jan-Jun 1830 [’Paspalineae’]

40–45/620–650? Aakia (1; A. tuerckheimii; southern Mexico, Central America), Acostia (1; A. gracilis; Ecuador), Anthaenantiopsis (4; tropical and subtropical regions in South America), Axonopus (c 115; tropical and subtropical regions in America, one species in Africa), Baptorhachis (1; B. foliacea; Mozambique), Echinolaena (8; tropical America), Gerritea (1; G. pseudopetiolata; Bolivia), Hopia (1; H. obtusa; southwestern North America), Ichnanthus (c 30; tropical America, one species pantropical), Ocellochloa (12; tropical America), Osvaldoa (1; O. valida; Brazil, Uruguay, Argentina), Paspalum (c 330; tropical and subtropical regions on both hemispheres, with their largest diversity in tropical America), Thrasya (19; tropical America; in Paspalum?), Reimarochloa (3; southern United States, Central and South America to Argentina), Renvoizea (10; Brazil), Spheneria (1; S. kegelii; tropical South America), Streptostachys (3; tropical America), Thrasyopsis (2; southern Brazil). – Anthenantia (2; southeastern United States), Dallwatsonia (1; D. felliana; northern Queensland), Hymenachne (10; tropical regions on both hemispheres), Otachyrium (7; South America), Ottochloa (3; India to China and northern Australia), Plagiantha (1; P. tenella; Bahia in Brazil), Panicum group Laxum, Steinchisma (7; southern United States and southwards to Argentina). – Aconisia (1; A. grande; Panamá to Venezuela and Brazil), Altoparadisium (2; Brazil, Bolivia), Apochloa (15; tropical America), Arthropogon (3; Brazil, Bolivia), Canastra (1; C. lanceolata; Brazil), Coleataenia (7; eastern United States and southwards to Brazil and Bolivia), Cyphonanthus (1; C. discrepans; Central America, the West India, northern South America to Brazil and Bolivia), Homolepis (3; tropical America), Keratochlaena (1; K. rigidifolia; Guyana; incl. Sclerochlamys?), Sclerochlamys (1; S. brachyptera; Australia; in Keratochlaena?), Mesosetum (c 25; tropical America, with their highest diversity in Brazil), Oncorachis (2; Brazil), Oplismenopsis (1; O. najada; Uruguay, Argentina), Phanopyrum (1; P. gymnocarpon; southeastern United States), Stephostachys (1; S. mertensii; Mexico and southwards to Argentina), Tatianyx (1; T. arnacites; Brazil), Triscenia (1; T. ovina; Cuba). – Unplaced Paspaleae Reynaudia (1; R. filiformis; Cuba, Hispaniola). – Pantropical, with their largest diversity in tropical America.

[Arundinoideae+[Danthonioideae+Chloridoideae]]

Arundinoideae Burmeist., Handb. Naturgesch.: 204. 1837 [‘Arundinaceae’]

19–20/100–105. Ligule hairy. Lemma awned. Starch grains compound. – The clade [Arundineae+Amphipogoneae] is sister to Micraireae.

[Arundineae+Amphipogoneae]

Arundineae Dumort., Observ. Gramin. Belg.: 82. Jul-Sep 1824 [’Arundinaceae’]

15/33–38. Arundo (3; A. donax, A. pliniana: the Mediterranean; A. formosana: the Ryukyu Islands, Taiwan, the Philippines), Dregeochloa (2; southern Namibia, Northern Cape), Hakonechloa (1; H. macra; Japan), Molinia (2; Europe, temperate Asia), Monachather (1; M. paradoxa; Australia), Phaenanthoecium (1; P. koestlinii; mountains in northeastern tropical Africa)?, Phragmites (4–5; cosmopolitan). – Unplaced Arundineae Crinipes (2; Sudan, Ethiopia, Uganda), Dichaetaria (1; D. wightii; India, Sri Lanka), Elytrophorus (2; tropical and southern Africa, tropical Asia to tropical Australia), Leptagrostis (1; L. schimperiana; Ethiopia), Nematopoa (1; N. longipes; Zimbabwe), Piptophyllum (1; P. welwitschii; Angola), Styppeiochloa (3; mountains in southern to southeastern tropical Africa, Madagascar), Zenkeria (4; India, Sri Lanka). – Cosmopolitan, with their largest diversity in tropical and subtropical regions in the Old World. Elongate microhairs Panicoid type (with slender thin-walled cap cells). Hilum short. Epiblasts absent. n = 6, 9, 12. – Hakonechloa is sister to the clade [Danthonioideae+Chloridoideae], according to Peterson & al. (2011).

Amphipogoneae L. Watson et T. D. Macfarl. in Fl. Australia 43: 373. 2002

1–2/10. Amphipogon (9; Australia; incl. Diplopogon?), Diplopogon (1; D. setaceus; southwesternmost Western Australia; in Amphipogon?). – Australia.

Micraireae Pilg. in Engler et Prantl, Nat. Pflanzenfam., ed. 2, 14d: 167. 16 Feb 1956

3/c 55. Micraira (16; tropical Australia). – Eriachne (c 50; Sri Lanka and southern China, to southern Malesia and Australia), Pheidochloa (2; P. vulpioidea: New Guinea; P. gracilis: tropical Australia). – Coelachne (11; tropical regions in the Old World), Heteranthoecia (1; H. guineensis; tropical Africa), Isachne (c 90; tropical and subtropical regions on both hemispheres, especially southern and eastern Asia), Limnopoa (1; L. meeboldii; southern India), Sphaerocaryum (1; S. malaccense; India and eastwards to China, Taiwan and West Malesia). – Hubbardia (1; H. heptaneuron; western India). – Pantropical, with their highest diversity in the Old World tropics. Sometimes xerophytic. C4 photosynthesis present in Eriachne. Leaves tristichous. Stomatal subsidiary cells dome-shaped. Ligule with hair fringe. Lemma with or without awn. Embryo small. Starch grains simple. Germination flap present. n = 10. – Micraireae are sister-group to [Arundineae+Amphipogoneae]. In other analyses they are sister-group to [Panicoideae+[[Aristidoideae+Danthonioideae]+[Arundinoideae+Chloridoideae]]].

[Danthonioideae+Chloridoideae]

Hilum short, punctate.

Danthonioideae N. P. Baker et P. H. Linder in Ann. Missouri Bot. Gard. 88: 421. 17 Sep 2001

c 20/280–285. Merxmuellera (17; tropical and southern Africa, Madagascar), Capeochloa (3; southern Africa), Geochloa (3; tropical and southern Africa), Pentameris (c 80; tropical and subtropical Africa, Madagascar, southern and eastern Asia), Chionochloa (23; southeastern Australia, New Zealand, Lord Howe), Cortaderia (c 20; New Guinea, South America; non-monophyletic?), Chaetobromus (1; C. involucratus; southern Namibia, Northern and Western Cape), Pseudopentameris (4; mountains in Western Cape), Austroderia (5; New Zealand), Notochloe (1; N. microdon; Blue Mountains in New South Wales), Plinthanthesis (3; southeastern Australia), Chimaerochloa (1; C. archboldii; tropical Asia to New Guinea), Danthonia (c 20; Europe, the Mediterranean, America), Tenaxia (8; Africa, temperate to tropical Asia), Schismus (5; the Mediterranean, Africa, southwestern Asia and eastwards to northwestern India and China), Tribolium (10; southern Namibia, Northern, Western and Eastern Cape), Rytidosperma (68; New Guinea, Australia, New Zealand, South America). – Unplaced Danthonioideae Alloeochaete (6; southern tropical Africa), Danthonidium (1; D. gammiei; India). – Cosmopolitan, with their highest diversity in the Southern Hemisphere, especially in southern and eastern Africa and Australia (few species in Southeast Asia and Malesia). Leaves usually symmetrical. Ligules ciliated. Foliar anatomy festucoid. Prophylls bifid. Spikelets festucoid. Lemma awn trifid or with three awns. Stylar bases much separated. Synergids haustorial. n = 6, 7, 9. – In some analyses Danthonioideae are sister-group to Aristidoideae.

Chloridoideae Burmeist., Handb. Naturgesch.: 205. 1837 [’Chlorideae’]

c 130/1.410–1.420. Centropodieae are sister-group to the remaining Chloridoideae, according to Peterson & al. (2011). – Unplaced Chloridoideae Decaryella (1; D. madagascariensis; Madagascar), Habrochloa (1; H. bullockii; Central Africa), Halopyrum (1; H. mucronatum; coasts along the Indian Ocean), Indopoa (1; I. paupercula; India), Kampochloa (1; K. brachyphylla; southern tropical Africa), Lepturopetium (1; L. kuniensis; New Caledonia, Marshall Islands, Cocos Island), Myriostachya (1; M. wightiana; southern India, Sri Lanka, Southeast Asia), Neostapfiella (3; Madagascar), Ochthochloa (1; O. compressa; northeastern Africa, the Arabian Peninsula, Sind), Pogonochloa (1; P. greenwayi; southern tropical Africa), Pseudozoysia (1; P. sessilis; Somalia), Silentvalleya (1; S. nairii; India), Viguierella (1; V. madagascariensis; Madagascar). – Tropical, subtropical and warm-temperate regions, dry habitats (especially in Africa and Australia). C4 photosynthesis usually present (phosphoenolpyruvate carboxykinase subtype). Microhairs usually with inflated hemispherical thick-walled distal cells and elongate secretory basal cell with internal membranes (’Chloridoid type’; in Neyraudia ‘Panicoid type’). Leaves usually symmetrical. Spikelets disarticulating above glumes. Hilum short. Epiblast usually present. Mesocotyl present. Leaf margins of embryo not overlapping. Plastid gene rpl16 intron with 4 bp insertion. n = (6–8) 9, 10.

[Centropodieae+[Triraphideae+[Eragrostideae+[Zoysieae+Chlorideae]]]]

Centropodieae P. M. Peterson, N. P. Barker et H. P. Linder in Taxon 60(4): 1118. Aug 2011

2/6. Centropodia (4; North Africa, the Middle East and eastwards to India), Ellisochloa (2; southern Africa). – Southern Africa and one species in North Africa eastwards to India. C3 (Ellisochloa) and C4 (Centropodia) photosynthesis present. Microhairs probably absent. Haustorial synergids absent. x = 9, 12.

[Triraphideae+[Eragrostideae+[Zoysieae+Chlorideae]]]

Triraphideae P. M. Peterson in Mol. Phylogen. Evol. 55(2): 591. May 2010

2/c 60. Neyraudia (c 50; tropical and subtropical regions in the Old World), Triraphis (10; tropical Africa, the Arabian Peninsula, Australia, one species in central Brazil). – Tropical and subtropical regions in the Old World, central Brazil.

[Eragrostideae+[Zoysieae+Chlorideae]]

Eragrostideae Stapf in W. H. Harvey et O. W. Sonder (ed. W. T. Thiselton-Dyer), Fl. Cap. 7: 316. Jul 1898 [’Eragrosteae’]

c 18/c 420. Cottea (1; C. pappophorides; southern United States to central Mexico, Ecuador to Argentina), Enneapogon (c 30; dry warmer regions on both hemispheres), Kaokochloa (1; K. nigrirostris; northwestern Namibia), Schmidtia (2; Africa, Cape Verde Islands, Pakistan). – Entoplocamia (1; E. aristulata; Namibia), Fingerhuthia (2; southern tropical and southern Africa, the Arabian Peninsula, Afghanistan to India), Tetrachaete (1; T. elionuroides; Ethiopia, Tanzania, the Arabian Peninsula), Tetrachne (1; T. dregei; Eastern Cape, Free State, Lesotho, Pakistan), Uniola (2; southern United States, Mexico, Central America to Ecuador). – Catalepis (1; C. gracilis; South Africa, Lesotho), Cladoraphis (2; Namibia, Northern and Western Cape), Ectrosia (14; the Philippines and New Guinea to tropical Australia), ’Eragrostis’ (c 350; tropical to warm-temperate regions on both hemispheres; non-monophyletic), Harpachne (3; northern and northeastern Africa, southwestern China), Heterachne (3; northern Australia), Psammagrostis (1; P. wiseana; westernmost Western Australia), Richardsiella (1; R. eruciformis; Zambia), Steirachne (2; northeastern South America). – Tropical and subtropical (to warm-temperate) regions on both hemispheres.

[Zoysieae+Chlorideae]

Zoysieae Benth. in J. Linn. Soc. London, Bot. 19: 29. 24 Dec 1881

5/c 230. Zoysia (9; Mauritius and eastwards to Polynesia), Urochondra (1; U. setulosa; Sudan, Somalia and eastwards to Sind). – Pogononeura (1; P. biflora; tropical East Africa), Psilolemma (1; P. jaegeri; East Africa), ’Sporobolussomalensis (East Africa); Sporobolus (c 220; warm-temperate to tropical regions on both hemispheres). – Subcosmopolitan.

Chlorideae Martynov, Tekhno-Bot. Slovar: 125. 31 Jul-5 Aug 1820

c 85/730–740. Acrachne (3; tropical and southern Africa, Madagascar, Southeast Asia, Australia), Afrotrichloris (2; Somalia), Apochiton (1; A. burttii; Tanzania), Astrebla (4; Australia), Austrochloris (1; A. dichanthoides; Queensland), Brachyachne (9–10; tropical and subtropical Africa, Java and eastwards to New Guinea and northern Australia), Chloris (c 55; warm-temperate to tropical regions on both hemispheres), Chrysochloa (4; tropical Africa), Coelachyrum (1–8; tropical and southern Africa, the Arabian Peninsula, Pakistan), Cynodon (c 10; tropical and subtropical regions on both hemispheres), Daknopholis (1; D. boivinii; East Africa, Madagascar, Aldabra), Dinebra (23; tropical eastern and northeastern Africa, Madagascar, southwestern Asia to India, southern United States), Diplachne (2; warm-temperate to tropical regions on the Northern Hemisphere), Disakisperma (3; southern and tropical eastern Africa, southern United States), Eleusine (9; Africa, Madagascar, South America), Enteropogon (19; tropical and subtropical regions on both hemispheres), Eustachys (11; tropical and subtropical regions in Africa and America), Harpochloa (1; H. falx; southern tropical and southern Africa), Leptochloa (5; eastern tropical and southern Africa, Australia, the Marquesas Islands, North and South America), Lepturus (c 10; coasts in East Africa, South Africa, Sri Lanka, Australia to Polynesia), Lintonia (2; tropical eastern and southern Africa), Microchloa (6; Africa, one species in tropical and subtropical regions on both hemispheres), Pommereulla (1; P. cornucopiae; southern India, Sri Lanka), Rheochloa (1; R. scabiflora; central Brazil), Schoenefeldia (2; tropical and southern Africa, Madagascar, India), Sclerodactylon (2; coast of East Africa, islands in the Indian Ocean), Tetrapogon (5; Africa, the Middle East to India). – Neesiochloa (1; N. barbata; northeastern Brazil), Pappophorum (8; southern United States to Argentina), Tridens (12; Angola, eastern United States and southwards to Argentina). – Hilaria (10; southern United States, Mexico, Guatemala). – Muhlenbergia (c 155; tropical and subtropical regions in southern Asia and America). – Aeluropus (c 10; the Mediterranean, southwestern Asia and eastwards to India and northern China), Odyssea (2; coasts of the Red Sea, tropical and southern Africa). – Monodia (1; M. stipoides; northernmost Western Australia), Symplectrodia (2; Northern Territory), Triodia (c 65; Australia). – Neostapfia (1; N. colusana; California), Orcuttia (5; California), Tuctoria (3; California). – Triplasis (2; central and eastern United States to Costa Rica), Schenckochloa (1; S. barbata; northern Brazil), Vaseyochloa (1; V. multinervosa; Texas), Tridentopsis (2; southwestern United States, northern Mexico, the West Indies), Gouinia (10; tropical America). – Ctenium (c 20; tropical and subtropical regions of Africa and America, Madagascar). – Trichoneura (7; tropical Africa, the Arabian Peninsula, Texas, Peru, the Galápagos Islands). – Farrago (1; F. racemosa; Tanzania), Craspedorhachis (2–5; southern tropical and southern Africa). – Lopholepis (1; L. ornithocephala; southern India, Sri Lanka), Mosdenia (1; M. leptostachys; northern South Africa), Perotis (14; tropical and subtropical Africa, southern Madagascar, temperate to tropical Asia eastwards to China, New Guinea and northern Australia), Trigonochloa (2; tropical, southern and eastern Africa, the Arabian Peninsula and eastwards to India and Sri Lanka). – Desmostachya (1; D. bipinnata; North Africa, southwestern Asia to India and Southeast Asia), Eragrostiella (6; East Africa, Sri Lanka and eastwards to northern Australia), Melanocenchris (3; Chad and tropical northeastern Africa to India and Sri Lanka), Oropetium (6; arid and semiarid regions in Africa and India), Tripogon (c 30; tropical and southern Africa, Madagascar, India to Australia). – Monelytrum (1; M. luederitzianum; southern Angola, Namibia), Polevansia (1; P. rigida; eastern Eastern Cape, Lesotho), Tragus (7; tropical and subtropical regions in the Old World), Willkommia (4; southern tropical and southern Africa, Texas). – Distichlis (8–9; Australia, United States, Mexico, the West Indies, Argentina), Jouvea (2; Baja California to Panamá). – Bouteloua (c 45; Canada, United States and Mexico, Central America, the West Indies, South America to Argentina). – Blepharidachne (4; western United States, Argentina), Dasyochloa (1; D. pulchella; southwestern United States), Erioneuron (3; southern United States, Mexico, Peru, Bolivia, Argentina), Munroa (5; western United States, Chile, Argentina), Scleropogon (1; S. brevifolius; southwestern United States, Mexico, Chile, Argentina), Swallenia (1; S. alexandrae; Eureka Valley Sand Dunes in Inyo County in California). – Dignathia (5; tropical East Africa, western India), Leptothrium (2; Senegal and eastwards to Pakistan, the West Indies), Leptocarydion (1; L. vulpiastrum; northern Namibia, KwaZulu-Natal, Mpumalanga, Northern Province, Botswana, East Africa), Lophacme (2; southern tropical and southern Africa), Bewsia (1; B. biflora; northern Namibia, northern South Africa, Swaziland), Gymnopogon (c 15; tropical and subtropical regions in America, India to Thailand). – Unplaced Chlorideae Allolepis (1; A. texana; southern United States, Mexico), Brachychloa (2; KwaZulu-Natal, Mozambique), Dactyloctenium (13; tropical and subtropical regions on both hemispheres), Hubbardochloa (1; H. gracilis; mountains in Central Africa), Kengia (c 13; southern Europe, Turkey and eastwards to temperate East Asia), Lepturidium (1; L. insulare; Cuba), Neobouteloua (2; Chile, Argentina), Orinus (4; Himalayas to western China), Oxychloris (1; O. scariosa; Australia), Sohnsia (1; S. filifolia; Mexico), Vietnamochloa (1; V. aurea; Vietnam). – Tropical and subtropical (to warm-temperate) regions on both hemispheres.

[Ehrhartoideae+[Bambusoideae+Pooideae]] ("The BEP clade")

Phytoliths in Ehrhartoideae and Bambusoideae transverse-bilobate, in Brachyelytrum and Pooideae axial-bilobate or axial-polylobate. x = 12. Endosperm softness gene present. – Transverse-bilobates were possibly lost in the common ancestor of Brachyelytrum and Pooideae. Alternatively, this feature is a synapomorphy of [Ehrhartoideae+Bambusoideae] (Rudall & al. 2014).

Ehrhartoideae Jacq.-Fél. ex Caro in Dominguezia 4: 11. Feb 1982

c 20/c 130. Widely distributed, especially on the Southern Hemisphere. Microhairs usually present. Fusoid cells absent. Longitudinal walls of epidermal cells sometimes straight. Spikelet developing basipetally. Glumes minute. Stamens (one to) six. Stylodia almost entirely separate. n = (10, 15).

Streptogyneae C. E. Hubb. ex Calderón et Soderstr. in Smithsonian Contr. Bot. 44: 18. 13 Feb 1980

1/2. Streptogyna (2; S. crinita: tropical Africa, India, Sri Lanka; S. americana: tropical America). – Epidermal papillae absent. Spikelet several-flowered. Lemma with awns. Lodiculae three. Multicellular microhairs present on lodiculae in S. crinita. Stamens two. Stigmas two or three. Hilum linear extending along entire fruit. Starch grains aggregated or simple. Embryo without mesocotyl internode. Epiblast prominent. First seedling leaf with strongly overlapping margins. n = 12. – Streptogyna may be sister to the clade [Panicoideae+Arundinoideae] (Peterson & al. 2011), although Soreng & al. (2012) insert Streptogyna (Streptogyneae) in Ehrhartoideae.

Ehrharteae Nevski in Trudy Bot. Inst. Akad. Nauk S.S.S.R., ser. 1, Fl. Sist. Vyssh. Rast. 4: 227. 1937

4/c 50. Ehrharta (c 30; South Africa and northwards to Ethiopia, the Mascarenes, Malesia and eastwards to New Zealand, especially Western and Eastern Cape), Microlaena (10; the Philippines, Java and eastwards to northern Australia and islands in the Pacific), Tetrarrhena (6; Australia), Zotovia (3; alpine New Zealand). – Tropical and subtropical regions in the Old World. Arm cells absent. Epiblasts absent at least in Ehrharta. Roots in Ehrharta at scutellar node.

Oryzeae Martynov,Tekhno-Bot. Slovar: 444. 31 Jul-5 Aug 1820

c 15/c 80. Leersia (17; warm-temperate to tropical regions on both hemispheres), Oryza (c 25; tropical and subtropical regions on both hemispheres; incl. Porteresia?), Porteresia (1; P. coarctata; India, Burma; in Oryza?); Chikusichloa (3; China, Japan, Ryukyu Islands, Sumatra), Hygroryza (1; H. aristata; southern and Southeast Asia to China), Luziola (12; America), Maltebrunia (5; tropical and southern Africa, Madagascar), Potamophila (1; P. parviflora; northern New South Wales), Prosphytochloa (1; P. prehensilis; Eastern Cape, KwaZulu-Natal, Mpumalanga, Northern Province), Rhynchoryza (1; R. subulata; Paraguay, Argentina), Zizania (4; eastern India to East Asia, North America), Zizaniopsis (5; tropical and subtropical regions in America); Humbertochloa (2; tropical East Africa, Madagascar), Phyllorachis (1; P. sagittata; southern tropical Africa). – Subcosmopolitan. Arm cells present. First seedling leaf only sheath. – Suddia (1; S. sagittifolia; Sudan) may also belong in Oryzeae.

[Bambusoideae+Pooideae]

Epiblast present. First seedling leaf with overlapping margins.

Bambusoideae Luerss., Grundz. Bot., ed. 5: 451. Jun 1893 [‘Bambusaceae’]

110–115/1.400–1.450. Tropical, subtropical and temperate regions, often forests. Woody, sometimes tree-like. Mesophyll differentiated into palisade and spongy tissues. Fusoid cells and strongly asymmetrically invaginated arm cells present. Microhairs elongate, with slender thin-walled cap cells (Panicoid type). Leaves with pseudopetiole, often with inner and outer distal ligules. Culm leaves often very different from other leaves (heterophylly). Lodiculae two or three. Stamens (two to) six (to c. 140). Filaments sometimes connate at base. Stigmas (one or) two or three. Fruit sometimes a berry. First seedling leaf only sheath. n = 7, 9–12. – Woody and some herbaceous species have a synchronized anthesis, and many are monocarpic (hapaxanthic); this may be a plesiomorphy in Bambusoideae. The woody temperate species perhaps form a sister-group to the remainder.

Arundinarieae Hackel in Engler et Prantl, Nat. Pflanzenfam. II, 2: 92, 93. Nov 1887

c 30/550–560. Acidosasa (10–11; southern China, Vietnam), Ampelocalamus (c 13; Himalayas to China), Arundinaria (3; eastern United States), Bashania (6; China), Bergbambos (1; B. tessellata; southern and eastern South Africa), Borinda (8; eastern Himalaya, Bhutan, Tibet, Yunnan, Sichuan), Chimonobambusa (35–40; Himalayas, China, Japan), Chimonocalamus (11; eastern Himalaya to Yunnan), Drepanostachyum (c 10; Himalayas to southwestern China; incl. Himalayacalamus?), Himalayacalamus (8; Himalayas to southwestern China; in Drepanostachyum?), Fargesia (c 90; eastern Himalayas to China), Ferrocalamus (1–2; F. strictus; southern Yunnan), Gaoligongshania (1; G. megalothyrsa; southern Yunnan), Gelidocalamus (9–13; southeastern China), Indocalamus (23; China, Japan), Indosasa (15; southern China, Vietnam), Oldeania (1; O. alpina; tropical East Africa, Cameroun), Oligostachyum (15; China), Phyllostachys (50–55; Himalayas, China to Japan), Pleioblastus (c 40; China, the Korean Peninsula, Japan, Vietnam), Pseudosasa (19; China, the Korean Peninsula, Japan), Sarocalamus (3; southern and eastern Himalayas to southwestern China), Sasa (c 60; temperate East Asia, with their highest diversity in Japan), Sasaella (c 10; Japan), Semiarundinaria (c 5; China, Japan), Shibataea (7; southeastern China, southwestern Japan), Sinobambusa (10; southwestern and southern China, northern Vietnam), Thamnocalamus (2–4; Himalayas), ’Yushania’ (c 80; southern Himalayas to southern China and Peninsular Thailand, Taiwan, Indochina, the Philippines, northern Borneo; Madagascar; polyphyletic). – Himalayas to East Asia, North America, with their largest diversity in China. – The Malagasy species of ’Yushania’ should probably be separated from the rest. Ampelocalamus may be sister to the remaining Arundinarieae.

Bambuseae Kunth ex Dumort., Anal. Fam. Plant.: 63. 1829 [‘Bambusaceae’]

c 60/720–750. Melocanna (2; India, Southeast Asia, Malesia), Ochlandra (11; southern India, Sri Lanka), Schizostachyum (c 60; Madagascar, northeastern India, Himalayas, China, Southeast Asia), Annamocalamus (1; A. kontumensis; Vietnam); Cathariostachys (2; Madagascar), Decaryochloa (1; D. diadelpha; Madagascar), Hickelia (4; Tanzania, Madagascar), Hitchcockella (1; H. baronii; Madagascar), Nastus (15–17; Madagascar, Réunion, Sumatra and eastwards to the Solomon Islands), Perrierbambus (2; Madagascar), Valiha (2; Madagascar); Bambusa (100–120; tropical and subtropical regions in Asia, Australia and America; incl. Fimbribambusa?), Fimbribambusa (2; Central and East Malesia; in Bambusa?), Bonia (5; southern China, Vietnam), Cochinchinochloa (1; C. braiana; southern Vietnam), Cyrtochloa (7; the Philippines), Dendrocalamus (c 40; India, Sri Lanka, Southeast Asia to China and the Philippines), Dinochloa (c 30; Burma to the Philippines), Gigantochloa (c 30; India, Sri Lanka, Southeast Asia, Malesia), Greslania (4; New Caledonia), Holttumochloa (3; the Malay Peninsula), Kinabaluchloa (2; West Malesia), Maclurochloa (1; M. montana; the Malay Peninsula), Melocalamus (5; India, southern China, Southeast Asia), Mullerochloa (1; M. moreheadiana; northern Queensland), Neololeba (5; Central Malesia to tropical Australia), Neomicrocalamus (5; East Asia), Nianhochloa (1; N. bidoupensis; Mount Bidoup in southern Vietnam), Oreobambos (1; O. buchwaldii; tropical East Africa; in Dendrocalamus?), Oxytenanthera (1; O. abyssinica; tropical Africa; in Dendrocalamus?), Parabambusa (1; P. kaini; New Guinea), Phuphanochloa (1; P. speciosa; Thailand), Pinga (1; P. marginata; New Guinea), Pseudobambusa (2; the Andaman Islands), Pseudoxytenanthera (1–4; southern India, Sri Lanka), Soejatmia (1; S. ridleyi; the Malay Peninsula), Sphaerobambos (3; Malesia), Temochloa (1; T. liliana; southern Thailand), Temburongia (1; T. simplex; Temburong River in Brunei), Thyrsostachys (2; Burma and Thailand to China), Vietnamocalamus (1; V. catbaensis; Vietnam), Vietnamosasa (3; southern Vietnam); Racemobambos (c 20; India, East and Southeast Asia, Malesia); Chusquea (135–140; tropical America including the Andes); Apoclada (3; Brazil), Eremocaulon (5; Brazil), Guadua (c 25; tropical America), Olmeca (2; Mexico), Otatea (3; Mexico to northern Colombia); Actinocladum (1; A. verticillatum; Brazil), Alvimia (3; Brazil), Arthrostylidium (c 30; tropical America), Athroostachys (1; A. capitata; eastern Brazil), Atractantha (5; eastern Brazil), ’Aulonemia’ (c 35; Central America, tropical South America; non-monophyletic), Cambajuva (1; C. ulei; southern Brazil), Colanthelia (7; Brazil), Didymogonyx (2; Colombia, Venezuela), Elytrostachys (2; Central America, northern South America), Filgueirasia (2; Brazil), Glaziophyton (1; G. mirabile; mountains in eastern Brazil), Merostachys (c 45; tropical America), Myriocladus (13; Roraima areas in Venezuela), Rhipidocladum (20; tropical America). – Pantropical, Himalayas, East Asia, New Caledonia, with their largest diversity in tropical Asia and tropical South America.

Olyreae Martynov, Tekhno-Bot. Slovar: 456. 31 Jul-5 Aug 1820

22/c 125. ’Pariana’ (c 35; Costa Rica and Panamá to Amazonian and southeastern Brazil and Bolivia; paraphyletic; incl. Eremitis?), Eremitis (>5; Atlantic Brazil; in Pariana?), Parianella (2; southern Bahia in Brazil); Buergersiochloa (1; B. bambusioides; New Guinea); Cryptochloa (8; tropical America), ’Olyra’ (24; tropical and subtropical America; paraphyletic), Arberella (7; tropical America; in Olyra?), Lithachne (4; tropical America; in Olyra?), Piresia (4; Venezuela and Trinidad to Brazil), Diandrolyra (3; southeastern Brazil), ’Parodiolyra’ (5; tropical America; paraphyletic), Raddiella (7; tropical America), ’Sucrea’ (3; Brazil; paraphyletic), Raddia (5; Guyana, eastern Brazil). – Unplaced Olyreae Agnesia (1; A. lancifolia; Amazonas), Ekmanochloa (2; eastern Cuba), Froesiochloa (1; F. boutelouoides; tropical South America), Maclurolyra (1; M. tecta; Panamá), Mniochloa (1; M. pulchella; Cuba), Piresiella (1; P. strephioides; Cuba), Rehia (1; R. nervata; tropical South America), Reitzia (1; R. smithii; southern Brazil). – Tropical America, one species in New Guinea. – Pariana (including Eremitis) is sister to the remaining Olyreae and Buergersiochloa successive sister to the rest (Oliveira & al. 2014). Buergersiochloa bambusioides in New Guinea is nested within the monophyletic and otherwise entirely American woody clade. Species of Olyra and Pariana are said to be pollinated by insects (Soderstrom & Calderón 1971).

Brachyelytreae Ohwi in Bot. Mag. (Tokyo) 55: 361. 1941

1/3. Brachyelytrum (3; Japan, southeastern China, eastern North America). – Stomatal subsidiary cells with parallel sides. n = 11. – Brachyelytrum may be sister to Pooideae. On the other hand, it is sometimes placed as part of a polytomy including also Bambusoideae and Ehrhartoideae (see, e.g., Blaner & al. 2014).

Pooideae Benth., Fl. Hongk.: 407. Feb 1861 [’Poaeaceae’]

170–175/3.500–3.600. Mainly temperate regions in the Northern Hemisphere. Epichloe endophytes pervasive. C3 photosynthesis present. C4 photosynthesis probably absent. Asymmetric division of root epidermal cells forming trichoblast-atrichoblast pair. Longitudinal walls of epidermal cells straight. Microhairs absent. Stomatal subsidiary cells with parallel margins. Primary inflorescence branches distichous. Lemma usually with five veins. Lodiculae slightly or not vascularized. Styles almost entirely separate (connate only at base). Hilum often short. Embryo small. Epiblast present at least in most Pooideae (absent in Bromus and in some Brachypodium and Hordeeae). Scutellum not peltate. Scutellum tail absent (also in some Brachyelytrum). n = (2, 4–)7(–13). Duplication of β-amylase gene. Fructose oligosaccharides present in stem. – Epichloe (Clavicipitaceae), an endophytic group of ascomycetes, is only known in Pooideae. A similar group is Neotyphodium. At least 30% of the species in Pooideae are associated with this kind of symbioses and vertical as well as horizontal transfers of these fungi take place. Numerous alkaloids (e.g. ergotamins) are produced as a result of these symbioses.

Nardeae W. D. J. Koch, Syn. Fl. Germ. Helv.: 830. Jan-Oct 1837

2/2. Nardus (1; N. stricta; Europe except the Mediterranean, western Asia), Lygeum (1; L. spartum; the Mediterranean, North Africa). – Europe, western Asia, the Mediterranean. Lodiculae absent. Style and stigma single. n = 10, 13. – Nardeae are successive sister-group to the remaining Pooideae except Brachyelytrum.

Phaenospermateae Renvoize et Clayton in Kew Bull. 40: 478. 4 Jul 1985

3/5. Phaenosperma (1; P. globosa; Assam, Japan, the Korean Peninsula, southeastern China, Taiwan), Stephanachne (3; Central Asia, western China), Sinochasea (1; S. trigyna; western China). – Central and East Asia, Assam.

Ampelodesmeae (Conert) Tutin in Bot. J. Linn. Soc. 76(4): 369. Jun 1978

1/1. Ampelodesmos (1; A. mauritanicus; the Mediterranean). – Probably originated from ancient hybridization between members of Phaenospermateae and Stipeae.

Meliceae Link ex Endl., Fl. Poson.: 116. Mai 1830 [’Melicaceae’]

8/c 130. Brylkinia (1; B. caudata; eastern Russia, China, Japan), Streblochaete (1; S. longiarista; tropical and southern Africa, Réunion, mountains in Indonesia and the Philippines). – Glyceria (c 35; temperate regions on the Northern Hemisphere, with their largest diversity in North America), Lycochloa (1; L. avenacea; Syria; in Schizachne?), Schizachne (1; S. purpurascens; Arctic Europe, northeastern Asia, temperate North America, mountains in southwestern United States; incl. Lycochloa?), Melica (c 80; temperate regions on both hemispheres except Australia), Pleuropogon (5; western United States, one species, P. sabinei, Arctic circumpolar), Triniochloa (6; tropical America). – Temperate regions on the Northern Hemisphere, few species in tropical regions and Chile. – The clade [Brylkinia+Streblochaete (incl. Koordersiochloa)] is sister-group to Meliceae sensu stricto. Brylkinia and Streblochaete have a cylindrical to lanceoloid style and a punctate hilum.

Duthieeae Röser et Jul. Schneid. in Syst. Biodivers. 9: 41. Mar 2011

5/7. Danthoniastrum (1; D. compactum; the Balkan, Caucasus); Pseudodanthonia (1; northwestern Himalaya), Metcalfia (1; M. mexicana; Mexico), Anisopogon (1; A. avenaceus; eastern New South Wales, eastern Victoria), Duthiea (3; Afghanistan to China). – Temperate and subtropical regions in the Old World, Mexico. – Danthoniastrum compactum is placed outside Duthieeae as well as Phaenospermateae in the nuclear ITS analysis by Schneider & al. (2011). On the other hand, it is nested well inside Duthieeae in their matK-3‘trnK exon analysis.

Stipeae Martynov, Tekhno-Bot. Slovar: 601. 31 Jul-5 Aug 1820 [’Stipaceae’]

20–25/540–550. Macrochloa (1; M. tenacissima; the Mediterranean), ’Stipa’ (c 150; Europe, North Africa, temperate and drier subtropical regions in Asia, with their highest diversity in southwestern and southern Asia; paraphyletic), Ortachne (3; Costa Rica and southwards to Peru, Chile and Argentina), Psammochloa (1; P. villosa; the Gobi Desert), Trikeraia (4; Pakistan to China), ’Ptilagrostis’ (9; Russia to China; polyphyletic), Piptatheropsis (5; North America), Hesperostipa (5; North America), Piptochaetium (36; semi-arid grasslands in the United States and Mexico southwards to Argentina), Aciachne (3; the High Andes in Costa Rica to northern Argentina), Anatherostipa (7; the Andes in Costa Rica till Chile), Patis (3; temperate regions on the Northern Hemisphere), Oryzopsis (1; O. asperifolia; North America), ’Achnatherum’ (c 50; temperate regions on the Northern Hemisphere and South America; paraphyletic), Celtica (1; C. gigantea; western Mediterranean; in Achnatherum?), Austrostipa (c 60; Australia, one species also in New Zealand; in Achnatherum?), Nassella (c 120; tropical and subtropical regions in America, with their largest diversity in the Andes in South America; in Achnatherum?), Jarava (c 55; South America; in Achnatherum?), Oloptum (1; O. miliaceum; the Mediterranean, southwestern Asia), Orthoraphium (1; O. roylei; Himalayas), Pappostipa (23; the United States and Mexico to Chile and Argentina; in Achnatherum?), Stipellula (5; warm-temperate and subtropical regions in the Old World), Timouria (4; Pakistan and Central Asia to Mongolia and China). – Subcosmopolitan, with their highest diversity in temperate and alpine regions. – Macrochloa is a potential sister to the remaining Stipeae.

Diarrheneae (Ohwi) Tateoka ex C. S. Campb. in J. Arnold Arbor. 66: 188. 8 Apr 1985

1/6. Diarrhena (6; East Asia, North America). – Embryo of Bambusoid type.

Brachypodieae Harz in Linnaea 43: 15. 1880

1/18. Brachypodium (18; Europe, the Mediterranean, temperate regions in Asia, southern Africa, tropical mountains in Mexico to Bolivia).

Hordeeae Martynov, Tekhno-Bot. Slovar: 314. 31 Jul-5 Aug 1820 [’Hordeaceae’]

20–21/500–510. Littledalea (4; Central Asia to western China). – Bromus (c 150; temperate regions on the Northern Hemisphere, the Mediterranean, southern Africa, tropical Mountains in South America). – Aegilops (23; the Canary Islands, the Mediterranean and eastwards to Pakistan and Central Asia; in Triticum?), Agropyron (c 15; temperate regions in the Old World), Australopyrum (3; eastern Australia, New Zealand), Connorochloa (1; C. tenuis; New Zealand), Crithopsis (1; C. delileana; Crete, Libya and eastwards to Iran), Dasypyrum (2; the Mediterranean), Elymus (c 155; temperate regions on the Northern Hemisphere), Eremopyrum (c 5; southern Europe, the Mediterranean, Morocco and eastwards to western China), Henrardia (2; Turkey and Iran to Central Asia), Heteranthelium (1; H. piliferum; Turkey to Pakistan), Hordelymus (1; H. europaeus; Europe and North Africa eastwards to Caucasus), Hordeum (30–35; temperate regions on both hemispheres), Leymus (c 50; temperate regions on the Northern Hemisphere, one species, L. erianthus, also in Argentina), Peridictyon (1; P. sanctum; the Balkan), Psathyrostachys (8; eastern Mediterranean and eastwards to Central Asia), Secale (3; eastern Europe and eastwards to Central Asia, the Mediterranean, the Middle East, Roggeveld in Western Cape), Taeniatherum (1; T. caput-medusae; Spain and eastwards to Pakistan and Central Asia), Thinopyrum (c 10; coastal regions in Europe, the Mediterranean, southwestern Asia to Iran), Triticum (c 25; the Mediterranean and southwestern Asia to China; incl. Aegilops?). – Temperate and subtropical regions on both hemispheres, with their highest diversity in temperate Eurasia. – Littledalea is sister to the remaining Triticeae and Bromus successive sister to the remainder.

Poeae R. Br. in M. Flinders, Voy. Terra Austral. 2: 582. 19 Jul 1814 [’Poaceae’] (under construction)

110–120/2.400–2.500. Amphibromus (12; Australia, New Zealand, temperate South America; in Helictotrichon?), Torreyochloa (4; northeast Asia, North America). – Arrhenatherum (6; Europe, the Mediterranean, northern and western Asia), Avena (c 25; Europe, the Mediterranean, North Africa to Ethiopia, southwestern Asia), Gaudinia (4; the Azores, the Mediterranean), Graphephorum (3; North to Central America), ’Helictotrichon’ (c 45; temperate regions on the Northern Hemisphere, tropical mountains; polyphyletic), Trisetopsis (c 25; tropical and subtropical Africa, Madagascar, the Arabian Peninsula), Koeleria (c 35; temperate regions on both hemispheres, tropical and subtropical African mountains), Lagurus (1; L. ovatus; the Mediterranean), Rostraria (c 10; Europe, the Mediterranean, southern Africa), Sphenopholis (6; Canada to Mexico), Trisetaria (15; the Mediterranean and eastwards to western Himalaya), Trisetum (c 75; temperate regions on the Northern Hemisphere). – Phalaris (22; temperate regions on the Northern Hemisphere, the Mediterranean, Andean and southern South America), Anthoxanthum (c 40; temperate and alpine regions on the Northern Hemisphere, tropical mountains in Africa and Asia). – Airopsis (1; A. tenella; southern Europe, northwestern Africa), Briza (c 20; Europe, temperate Asia, the Mediterranean, South America). – Chascolytrum (16 or 22; South America; incl. Erianthecium, Microbriza and Rhombolytrum?), Erianthecium (1; E. bulbosum; southern Brazil, Uruguay; in Chascolytrum?), Microbriza (2; Brazil to Argentina; in Chascolytrum?), Rhombolytrum (3; southern Brazil, Uruguay, Chile; in Chascolytrum?), Relchela (1; R. panicoides; Chile, Argentina). – Agrostis (c 175; temperate regions on both hemispheres, tropical mountains, Macquarie Island, subAntarctic South America, Falkland Islands, Crozet Islands, Kerguélen, Prince Edward Islands; incl. Calamagrostis?), ’Calamagrostis’ (c 230; temperate regions on both hemispheres; non-mono-phyletic; incl. Aniselytron and Deyeuxia?; in Agrostis?), Aniselytron (2; northern India to Japan; in Calamagrostis?), Deyeuxia (c 200; temperate regions on both hemispheres; in Calamagrostis?), Chaetopogon (1; C. fasciculatus; Mediterranean), Dichelachne (9; East Malesia to Australia, New Zealand), Echinopogon (7; New Guinea, Australia, New Zealand), Gastridium (2; western Europe, the Canary Islands, the Mediterranean and eastwards to Iran), Hypseochloa (2; Mount Cameroun, mountains in Tanzania), Limnodea (1; L. arkansana; southern United States)?, Pentapogon (1; P. quadrifidus; southestern South Australia, southestern New South Wales, Victoria, Tasmania), Polypogon (c 18; warm-temperate regions on both hemispheres, tropical mountains), Triplachne (1; T. nitens; the Mediterranean). – Dryopoa (1; D. dives; southeastern New South Wales, Victoria, Tasmania), Scolochloa (1; S. festucacea; temperate regions on the Northern Hemisphere). – Echinaria (1; E. capitata; southern and southeastern Europe, the Mediterranean, southwestern Asia to Caucasus), Mibora (2; western Europe, northwestern Africa), Oreochloa (4; mountains in Central and southern Europe), Sesleria (c 30; Europe, western Asia), Stephanachne (3; Central Asia, western China). – Catabrosa (2; temperate regions on the Northern Hemisphere, Chile), Cinna (4; temperate regions on the Northern Hemisphere), Coleanthus (1; C. subtilis; temperate regions on the Northern Hemisphere), Phippsia (2; Arctic regions on the Northern Hemisphere), Puccinellia (c 120; temperate and Arctic regions on the Northern Hemisphere, southern Africa, one species, P. stricta, in Australia), Sclerochloa (1; S. dura; the Mediterranean and eastwards to China), Zingeria (4; Europe, southwestern Asia to Iran). – Milium (4; Europe, temperate Asia, eastern North America). – Agrostopoa (3; Colombia), Alopecurus (c 35; temperate regions on the Northern Hemisphere, temperate South America), Apera (3; Europe, southwestern Asia eastwards to Afghanistan), Arctagrostis (1; A. latifolia; Arctic regions), Arctophila (1; A. fulva; Arctic regions), Beckmannia (2; temperate regions on the Northern Hemisphere), Cornucopiae (2; eastern Mediterranean and eastwards to Iraq), Cyathopus (1; C. sikkimensis; Himalayas), Dupontia (1; D. fisheri; Arctic regions), Hookerochloa (2; eastern New South Wales, Victoria, Tasmania), Libyella (1; L. cyrenaica; North Africa), Limnas (2; Central Asia to northeastern Siberia), Lindbergella (1; L. sintenisii; Cyprus), Nephelochloa (1; N. orientalis; Turkey), Nicoraepoa (6; the Andes in South America), Pholiurus (1; P. pannonicus; southeastern Europe to Central Asia), Poa (>500; temperate, alpine and polar regions on both hemispheres, tropical mountains), Anthochloa (1; A. lepidula; Peru, Chile; in Poa?), Aphanelytrum (1; A. procumbens; western tropical South America; in Poa?), Eremopoa (4; eastern Mediterranen and eastwards to western China; in Poa?), Neuropoa (1; N. fax; South Australia, New South Wales, Victoria; in Poa?), Oreopoa (1; O. anatolica; southern Turkey; in Poa?), Rhizocephalus (1; R. orientalis; the Mediterranean and eastwards to Iran), Saxipoa (1; S. saxicola; southeastern New South Wales, eastern Victoria, Tasmania), Simplicia (2; New Zealand), Sylvipoa (1; S. queenslandica; southeastern Queensland, eastern New South Wales), Ventenata (5; southern Europe, the Mediterranean and eastwards to the Caspian Sea). – Phleum (16; temperate regions on the Northern Hemisphere, temperate South America). – Deschampsia (c 30; temperate and polar regions on both hemispheres, the Andes from 34°10’ south latitude to Tierra del Fuego, Falkland Islands, South Georgia Island, South Shetland Islands, Antarctic Peninsula and adjacent islands, South Orkney Islands, South Sandwich Islands, Prince Edward Islands, Crozet islands, Kerguelen Islands, Heard Island), Holcus (8; Europe, the Mediterranean, North and southern Africa, southwestern Asia), Vahlodea (1; V. atropurpurea; cold-temperate and arctic-alpine regions on the Northern Hemisphere, subAntarctic South America). – Aira (8; Europe, the Mediterranean and eastwards to Iran), Antinoria (2; Mediterranean), Avenella (1; A. flexuosa; temperate regions on the Northern Hemisphere), Corynephorus (5; Europe, the Mediterranean and eastwards to Iran), Periballia (2–4; the Mediterranean; incl. Molineriella?). – Scribneria (1; S. bolanderi; western United States). – Castellia (1; C. tuberculosa; Macaronesia, the Mediterranean, North Africa and eastwards to Pakistan), Drymochloa (c 5; Europe, western Mediterranean, North Africa), Festuca (c 480; temperate, polar and alpine regions on both hemispheres, Tierra del Fuego, Falkland Islands, South Georgia Islands, Kerguelen Islands, Macquarie Island, tropical mountains), Loliolum (1; L. subulatum; eastern Mediterranean and eastwards to Central Asia; in Festuca?), Micropyrum (3; Central Europe, the Mediterranean; in Festuca?), Narduroides (1; N. salzmannii; the Mediterranean; in Festuca?), Psilurus (1; P. incurvus; southern Europe, the Mediterranean and eastwards to Pakistan; in Festuca?), Leucopoa (10; temperate Asia, North America), Lolium (6–12; temperate regions in Europe and Asia, the Canary Islands, the Mediterranean; incl. Micropyropsis and Schedonorus?), Micropyropsis (1; M. tuberosa; southern Spain; in Lolium?), Schedonorus (3?; temperate regions on the Northern Hemisphere; in Lolium?), Megalachne (2; Juan Fernandez Islands), Patzkea (5; Europe, the Mediterranean), Podophorus (1; P. bromoides; Juan Fernandez Islands). – Dactylis (1; D. glomerata; Europe, temperate Asia), Lamarckia (1; L. aurea; the Mediterranean, the Middle East to Pakistan). – Cynosurus (8; Europe, the Mediterranean, southwestern Asia). – Ammochloa (3; the Mediterranean, southwestern Asia). – Agropyropsis (1; A. lolium; Algeria), Cutandia (6; the Mediterranean, southwestern Asia), Desmazeria (6–7; Europe, the Mediterranean, North Africa, southwestern Asia to Iran), Hainardia (1; H. cylindrica; the Mediterranean), Parapholis (6; Europe, the Mediterranean, southern Asia), Sphenopus (2; the Mediterranean, southwestern Asia eastwards to Iran), Vulpiella (1; V. tenuis; western Mediterranean). – Cosmopolitan, with their largest diversity in temperate regions on the Northern Hemisphere.

Cladogram (simplified and slightly modified) of Poaceae based on DNA sequence data (Bouchenak-Khelladi & al. 2008; Schneider & al. 2009). Anomochloa and Streptochaeta are sister-groups in some analyses. Isachne is sister to Eriachne in “Micrairoideae” (=Micraireae) in, e.g., Peterson & al. (2011).

PRIONIACEAE S. L. Munro et H. P. Linder

( Back to Cyperales )

S. L. Munro et H. P. Linder in Syst. Bot. 23: 51. 4 Mai 1998

Genera/species 1/1

Distribution Southern South Africa.

Fossils Unknown.

Habit Bisexual, perennial herbs or, in older individuals, with lignified up to one metre tall (sometimes taller) aerial stem. Graminids. Helophyte. Culm angular in cross-section, erect.

Vegetative anatomy Mycorrhiza absent? Aerial stem with thin-walled epidermis, cortex with loosely packed parenchyma cells and scattered vascular bundles, and central cylinder with scattered amphivasal bundles. Phellogen absent. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements usually with scalariform (in stems sometimes simple) perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Silica bodies spherical, in epidermal cells; silica bodies absent from parenchyma cells. Tanniniferous cells scattered. Calciumoxalate crystals absent.

TrichomesHairs absent, except for small unicellular hairs on pedicels.

Leaves Alternate (tristichous), simple, entire, linear, flat or V-shaped in cross-section (with spinose-serrate keel), unifacial, with convolute (supervolute) ptyxis. Stipules absent; leaf sheath closed, without ligule? Venation parallelodromous. Stomata paracytic. Cuticular wax crystalloids as longitudinally aggregated rodlets, Strelitziatype. Air canals with chlorenchyma. Epidermis with silica bodies? Mesophyll without mucilaginous idioblasts or calciumoxalate crystals. Leaf margin spinose-serrate.

Inflorescence Terminal, richly branched, panicle. Floral prophyll (bracteole) absent.

Flowers Actinomorphic, small. Hypogyny. Tepals 3+3, sepaloid, membranous, persistent, free. Nectary absent. Disc absent.

Androecium Stamens 3+3. Filaments filiform, free. Anthers basifixed, non-versatile?, tetrasporangiate, latrorse?, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with uninucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains with indistinct aperture (ulcerate), shed as tetrahedral and tetragonal tetrads, tricellular at dispersal. Exine tectate, with granular? infratectum, scabrate or ulcerate.

Gynoecium Pistil composed of three carpels, connate only at base. Ovary superior, trilocular, narrowing towards apex. Stylodia three, free or slightly connate at base. Stigmas three, papillate, Dry? type, Pistillodium absent.

Ovules Placentation axile. Ovules one to seven per carpel, anatropous, ascending, apotropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument one or two cell layers thick. Inner integument two cell layers thick. Parietal cell formed from archesporial cell. Megagametophyte monosporous, Polygonumtype. Synergids with a filiform apparatus. Antipodal cells persistent. Endosperm development ab initio helobial. Endosperm haustoria? Embryogenesis onagrad (Juncusvariation).

Fruit A loculicidal capsule.

Seeds Aril absent. Seed coat testal-tegmic. Exotesta consisting of one to three layers of sclerenchymatous fibres. Endotesta consisting of one or two parenchymatous layers. Tegmen consisting of elongate tightly packed tanniniferous cells. Perisperm not developed. Endosperm copious, starchy. Embryo small, straight, well differentiated, Xyris-Scirpustype, with chlorophyll. Cotyledon one, photosynthesizing. Cotyledon hyperphyll? Hypocotyl absent. Mesocotyl? Coleoptile absent. Plumule terminal. Collar very small, with rhizoids. Germination phanerocotylar.

Cytology n = ? – Chromosomes with diffuse centromeres.

DNA Deletion of three base pairs in plastid gene atpA.

Phytochemistry Very insufficiently known. Flavone-C-glycosides present. Luteolin-5-methylether? Cyanogenic compounds not found.

Use Fibre plant.

Systematics Prionium (1; P. serratum; Western and Eastern Cape, southern Kwazulu-Natal).

Prionium is sister to [Thurnia+[Juncaceae+Cyperaceae]], according to Munro & Linder (1998).

RAPATEACEAE Dumort.

( Back to Cyperales )

Dumortier, Anal. Fam. Plant., 60, 62. 1829, nom. cons.

Rapateales (Meisn.) Colella ex Reveal et Doweld in Novon 9: 551. 30 Dec 1999; Rapateanae Doweld, Tent. Syst. Plant. Vasc.: lxii. 23 Dec 2001

Genera/species 16/c 95

Distribution Tropical Central and South America, tropical West Africa, with their highest diversity in the Guayana and Venezuelan Highlands.

Fossils Unknown.

Habit Bisexual, perennial herbs. Usually hygrophytic (a few species are epiphytic).

Vegetative anatomy Phellogen absent. Stems with wide outer cortex consisting of parenchyma cells with starch; inner cortex consisting of several sclereid layers. Central stem cylinder consisting of sclerified parenchyma and collateral and amphivasal vascular bundles. Secondary lateral growth absent. Vessels present in roots and stem (rarely in leaves). Vessel elements with simple and/or scalariform perforation plates; lateral pits scalariform. Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Mucilage canals present in some species. Tanniniferous cells often frequent (at least in hypodermis). Silica bodies (druses) and/or silica sand usually present. Calciumoxalate probably absent.

Trichomes Axillary, multicellular, uniseriate, mucilage secreting eglandular hairs often abundant, especially on young shoots.

Leaves Alternate (usually distichous, sometimes spiral), simple, entire, often linear, unifacial to bifacial, usually V-shaped, often twisted 90°, with conduplicate ptyxis, sometimes with spines. Stipules absent; leaf sheath open (rarely with distal ligule), symmetrical or asymmetrical. Colleters uniseriate, secreting mucilage. Venation parallelodromous. Stomata paracytic, with dumbbell-shaped Poaceae type guard cells; subsidiary cells oily. Cuticular wax crystalloids usually absent (sometimes amorphous and spherical, non-orientated). Epidermis with silica druses. Mesophyll without mucilaginous cells and calciumoxalate crystals. Leaf margin entire.

Inflorescence Terminal or axillary, simple or compound spherical or flattened thyrses or thyrsoid inflorescences with one to more than 70 many-flowered cymose partial inflorescences as spike-like bostryces with terminal flower and coriaceous bracts, often with two or more, sometimes more or less connate, spathe-like bracts.

Flowers Actinomorphic or somewhat zygomorphic, large. Hypogyny. Tepals 3+3; outer tepals with imbricate aestivation, sepaloid, free or connate at base; inner tepals usually with imbricate aestivation, petaloid, caducous, connate at base. Septal nectaries present at least in Monotrematoideae. Disc absent. Colleters present on floral parts.

Androecium Stamens 3+3. Filament bases usually connate and/or adnate to inner tepals (in one species of Rapatea hairy). Anthers basifixed to subbasifixed, non-versatile, usually tetrasporangiate (sometimes disporangiate), extrorse to introrse, poricidal (dehiscing by usually one or two, in Schoenocephalium four, apical to adaxial pores or short slits); connective sometimes with apical appendages. Tapetum secretory, with mostly binucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains monosulcate or trichotomosulcate (sometimes zonisulcate or zonisulculate, rarely disulculate), shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate, foveolate or scrobiculate.

Gynoecium Pistil composed of three connate carpels. Ovary superior, trilocular or (due to reduction of two carpels) unilocular; septa often incomplete. Style single, simple. Stigma capitate to punctate, often finely hairy, type? Pistillodium absent.

Ovules Placentation usually axile (sometimes basal). Ovules usually one to eight (sometimes up to c. 50) per carpel, anatropous, ascending, apotropous, bitegmic, crassinucellar. Micropyle usually bistomal (sometimes endostomal), directed downwards. Outer integument three to ten cell layers thick. Inner integument ? cell layers thick. Funicular obturator present in some representatives. Parietal cell formed from archesporial cell. Epidermal megasporangium cells often radially prolonged. Megagametophyte monosporous, Polygonum type. Antipodal cells sometimes more than three. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad.

Fruit A septicidal capsule, often with only one or two locules fertile.

Seeds Aril absent. Sometimes with a conical or cap-like spongy caruncle or elaiosome at chalazal end. Seed coat testal-tegmic, sometimes winged. Exotesta thin, with silica bodies. Endotesta sometimes with silica bodies; endotestal cells thick-walled (in Spathanthus with U-shaped wall thickenings). Cuticular layer present between testa and tegmen. Tegmic cells tanniniferous. Perisperm not developed. Endosperm copious, starchy, oily and proteinaceous; starch grains simple. Embryo small, little differentiated, micropylar, Xyris-Scirpus type. Cotyledon one. Coleoptile absent. Collar absent. Rhizoids absent. Radicula little developed. Germination?

Cytology n = 11 (Maschalocephalus); n = 26 (Cephalostemon, Spathanthus)

DNA

Phytochemistry Virtually unknown. Aluminium accumulation occurring in many species.

Use Unknown.

Systematics Rapateaceae are sister to all other Poales except Bromeliaceae and Typhaceae. In some analyses, Rapateaceae are recovered as sister to the remaining Poales (incl. Bromeliaceae and Typhaceae), although the support is fairly low.

Spathanthus

1/2. Spathanthus (2; northern South America). – Ovule one per carpel. Seeds ovoid-oblongoid. Endotestal cells with U-shaped wall thickenings. – Spathanthus is sister to all other Rapateaceae (Givnish & al. 2004).

[Rapateoideae+[Monotrematoideae+Saxofridericioideae]]

Rapateoideae Meisn., Plant. Vasc. Gen.: Tab. Diagn. 405. 17-20 Aug 1842 [‘Rapateaceae’]

2/27. Rapatea (18; tropical South America), Cephalostemon (9; tropical South America). – The Guyana Highlands and southwards to Matto Grosso (Brazil) and the central Andes (Bolivia). Ovule one per carpel. Seeds ovoid-oblongoid, sometimes with a papillate apical appendage. – Rapateoideae are sister-group to [Monotrematoideae+Saxofridericioideae].

[Monotrematoideae+Saxofridericioideae]

Monotrematoideae Givnish et P. E. Berry in T. J. Givnish et al. in Intern. J. Plant Sci. 165(Suppl. 4): S45. 27 Sep 2004 [’Monotremoideae’]

4/8. Monotrema (5; Colombia, Venezuela, Brazil), Potarophytum (1; P. riparium; northeastern South America), Windsorina (1; W. guianensis; Guyana), Maschalocephalus (1; M. dinklagei; Sierra Leone, Liberia, most probably due to late long distance dispersal; Givnish & al. 2004). – Guyana, the upper Rio Negro in Colombia and Venezuela, tropical West Africa. Septal nectaries present. Ovule one per carpel. Seeds ovoid-oblongoid, white-granulate (muriculate), with a flattened apical appendage. – Monotrematoideae are sister to Saxofridericioideae.

Saxofridericioideae Maguire in B. Maguire et al. in Mem. New York Bot. Gard. 10: 21. 1 Jul 1958

9/c 55. Stegolepideae Givnish et P. E. Berry in T. J. Givnish et al., Intern. J. Plant Sci. 165(Suppl. 4): S45. 27 Sep 2004. Epidryos (3; Panamá and Colombia, Guianas), Phelpsiella (1; P. ptericaulis; Venezuela), Marahuacaea (2; Venezuela), Amphiphyllum (2; Venezuela), Stegolepis (30–35; northern South America). – Saxofridericieae Maguire in B. Maguire et al., Mem. New York Bot. Gard. 10: 21. 1 Jul 1958. Saxofridericia (9; tropical South America), Kunhardtia (2; Venezuela), Guacamaya (1; G. superba; Colombia, Venezuela), Schoenocephalium (5; northeastern South America). – Panamá, northern South America, with their largest diversity in the Guayana Highlands (the Guayana Shield). Seeds prismatic, pyramidal, lens-shaped or crescent-shaped. – Stegolepis has auriculate leaf sheath. Saxofridericieae have leaves often differentiated into pseudopetiole and pseudolamina.

Cladogram of Rapateaceae based on DNA sequence data (Givnish & al. 2000, 2004).

RESTIONACEAE R. Br.

( Back to Cyperales )

Brown, Prodr. Fl. Nov.-Holl.: 243. 27 Mar 1810 [’Restiaceae’], nom. cons.

Restionales R. Br. ex Bercht. et J. Presl, Přir. Rostlin: 266. Jan-Apr 1820 [’Restiaceae’]; Restionineae Link, Handbuch 1: 134. 4-11 Jul 1829 [‘Restiaceae’]; Elegiaceae Raf., Fl. Tellur. 4: 32, 33. med 1838 [’Elegides’]

Genera/species 40–43/500–520

Distribution Tropical and southern Africa, Madagascar, Southeast Asia to New Guinea, Australia, Tasmania, New Zealand, Chile, with their largest diversity in southwestern Australia and the Western Cape Province in South Africa.

Fossils Restiocarpus comprises fossil fruits from the Eocene/Oligocene border of Queensland and may be remnants of Restionaceae or some allied group. Pollen grains with the formal name of Milfordia are known from Eocene strata in Queensland, Europe, Asia and North America. They have often been assigned to Restionaceae, although they may emanate from other graminoid groups. Plausible Restionaceae pollen have been described from the Neogene at several places in the Southern Hemisphere, from the earliest Paleocene onwards.

Habit Usually dioecious (in Coleocarya and Lepyrodia monoecious; in, e.g., some species of Lepyrodia sometimes bisexual), perennial (sometimes annual) herbs. Graminids. Often xeromorphic. Culm photosynthesizing, simple or branched (branches sometimes verticillate), usually terete (rarely quadrangular or flattened in cross-section), smooth, verrucose, striate, furrowed or pitted, medullated or with a hollow centre, often with compact swollen nodes.

Vegetative anatomy Mycorrhiza absent. Root hairs developing from any epidermal cell, usually persistent, lignified, very long and densely spaced. Lateral roots developing from a zone opposite protoxylem poles. Rhizome with endodermis-like envelope. Phellogen absent. Rhizome with endodermoid sheath. One or several subepidermal palisade-like chlorenchyma layers with peg cells; inside these layers a parenchyma cylinder and inside this a sclerenchymatous cylinder; medulla with scattered collateral vascular bundles. Culm with protective lignified chlorenchymatous cells lining substomatal cavities. Secondary lateral growth absent. Vessels present in roots and stem (rarely in leaves). Vessel elements with scalariform or simple (sometimes reticulate) perforation plates; lateral pits scalariform or alternating. Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2cc type (with cuneate protein crystals), P2ccl type (with cuneate and several additional loosely packed protein crystals) or P2cf (with cuneate protein crystals and peripheral protein filaments). Nodes? Silica as sphaeroidal-nodular bodies or granular crystal sand; parenchyma and sclerenchyma cells often filled with silica bodies, usually in association with vascular strands (especially in parenchyma sheath between chlorenchyma and sclerenchyma cylinders, or in outer sclerenchymatous layer).

Trichomes Hairs unicellular or multicellular, uniseriate (rarely T-shaped), multiseriate-stellate, stalked (sometimes peltate) or absent; multicellular microhairs rarely? present.

Leaves Alternate (spiral or distichous), simple, entire, linear, often with convolute (supervolute) ptyxis, usually reduced to mere sheaths or bristle-like. Stipules absent; leaf sheath well developed, usually open (rarely closed), usually persistent (sometimes caducous), often with one pair of membranous lobes or a membranous distal edge (ligule?). Venation parallelodromous. Stomata (brachy)paracytic; often Poaceae type guard cells, sometimes sunken. Cuticular wax crystalloids as non-orientated platelets, only associated with stomata. Epidermis with or without rows of alternately long and short cells; epidermal cells with or without silica bodies. Mesophyll without mucilaginous idioblasts and usually without calciumoxalate crystals (raphides absent). Leaf margin entire.

Inflorescence Terminal, compound, simple or branched panicle, corymb, spike- or head-like with one- or many-flowered partial inflorescences as spikelets (inflorescence sometimes consisting of a single spikelet); inflorescence branches in axils of often spatha-like bracts; lower spikelet bracts often without flowers; flowers usually with a single bract (rarely two bracts). Inflorescences often with large sexual dimorphism. Floral prophylls (bracteoles) often absent (sometimes two).

Flowers Actinomorphic to somewhat zygomorphic, small. Hypogyny. Tepals usually 3+3 (rarely two, three, 2+2, 3+2, or absent), dry, membranous to hard (in male flowers rarely reduced), often persistent, usually free (sometimes connate at base); outer lateral tepal often with a hairy (sometimes winged) keel. Nectary absent. Disc absent.

Androecium Stamens usually three (rarely one or two), antepetalous (outer staminal whorl absent). Filaments filiform, free from each other and from tepals. Anthers dorsifixed, sometimes versatile, usually disporangiate and monothecal (rarely tetrasporangiate and dithecal), usually introrse (rarely latrorse), longicidal (dehiscing by longitudinal slits); connective sometimes slightly prolonged. Tapetum secretory, with uninucleate to quadrinucleate cells; anther walls highly tanniniferous. Female flowers often with staminodia.

Pollen grains Microsporogenesis successive. Pollen grains graminoid, monoporate or monoulcerate (aperture with various shape; most African representatives with a very wide pore), with or without operculum or annulus, shed as monads, usually tricellular (sometimes bicellular) at dispersal. Exine tectate, with columellate infratectum, perforate, rugulate or scrobiculate, usually microverrucate or smooth (rarely verrucate or spinulate).

Gynoecium Pistil composed of one to three connate antesepalous carpels (sometimes only one out of three carpels fertile leading to pseudomonomery). Ovary superior, unilocular to trilocular; ovary walls richly tanniniferous. Stylodia usually three (rarely one or two), usually free (rarely connate at base), with adaxial stigmatic surfaces. Stigmas usually three (rarely one or two), much branched, with papillate branches, Dry type. Male flowers often with pistillodium (at least rudimentary).

Ovules Placentation usually axile to apical (apical or marginal, when ovary monomerous then unilocular). Ovule one per carpel, orthotropous, pendulous, bitegmic, usually tenuinucellar (in at least Alexgeorgea crassinucellar). Micropyle usually bistomal (in Willdenowia and some species of Leptocarpus endostomal). Outer integument ? cell layers thick. Inner integument ? cell layers thick; inner epidermis of inner integument strongly tanniniferous. Parietal cell usually not formed (parietal tissue present in at least Alexgeorgea, one cell layer thick). Hypostase usually present (no widening of micropylar part of integument). Megasporangial epidermis with anticlinally elongate cells (radial elongation of megasporangial epidermis). Megagametophyte monosporous, Polygonum type (sometimes Poaceae variation), with large compound starch grains (polar nuclei surrounded by large starch bodies). Synergids sometimes with a filiform apparatus. Antipodal cells in Restioneae at least sometimes proliferating. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad?

Fruit A loculicidal usually three-seeded capsule or a one-seeded unilocular nutlet; fruit stalk sometimes fleshy and elaiosome-like (spikelet axis in Hypolaena fleshy); nutlet sometimes with persistent tepals with wing-shaped keel. Fruit in Alexgeorgea hypogeal.

Seeds Aril absent. Elaiosome present in some African genera. Exotesta persistent. Endotesta? Tegmen? Perisperm not developed. Endosperm copious, starchy. Embryo small, often lens-shaped, little differentiated, Xyris-Scirpus type, chlorophyll? Cotyledon one, usually photosynthesizing. Cotyledon hyperphyll prolonged, assimilating. Hypocotyl and collar rudimentary. Hypocotyl internode absent. Coleoptile absent. Collar rhizoids present. Germination phanerocotylar. First leaf of seedling unifacial, with sheath-like part.

Cytology n = 6, 7, 9, 11, 12 (Australian genera); n = 16, 20 (African genera) – Agamospermy probably occurs in some genera. Some species are parthenocarpic and known as female plants only.

DNA The plastid genome has an inversion of 28 kb in some species (present at least in Askidiosperma, Baloskion, Leptocarpus, Rhodocoma, and Elegia fenestrata; absent from Desmocladus and Elegia cuspidata).

Phytochemistry Flavonols (kaempferin, quercetin), flavones, flavone-C-glycosides and flavone sulphates sometimes present (flavones and glycoflavones present in some African clades). Proanthocyanidins present in almost all African species, whereas remaining species (including a few African species) possess 8-hydroxyflavonoids gossypetin and hypolaetin (8-hydroxyluteolin). Glycosides of myricetin, laricitrin and syringetin present in ’Elegia’ and Chondropetalum. S-methylcysteine (an amino acid) present in Lepyrodia. Tricin, ellagic acid, alkaloids, saponins, and cyanogenic compounds not found.

Use Ornamental plants (Chondropetalum tectorum, Elegia capensis etc.), thatching (Thamnochortus insignis etc.), forage plants.

SystematicsRestionaceae are sister-group to either Centrolepidaceae or (perhaps more probable) Anarthriaceae.

The diversification in the Cape Region (c. 350 species) may have started during the Late Eocene or the Early Oligocene (Hardy & al. 2004), and trans-oceanic dispersal – rather than vicariance – may be the explanation for the presence of Restionaceae in both South Africa and Australasia. South African Restionaceae have protecting cells in the form of lignified chlorenchyma cells surrounding subepidermal cavities, flavonols (sometimes myricetin), proanthocyanidins, and fewer flavones. Australian Restionaceae have usually terete leaves (not in Anthochortus); pollen grains with large pores without annulus; non-photosynthesizing cotyledon; elongate internodes on seedling culm; and chlorenchymatous palisade cells; sulphated flavonoids; few flavonols (quercetin more frequent) and rarely proanthocyanidins.

Restionoideae Arn., Botany: 135. 9 Mar 1832 [‘Restieae’]

c 17/c 350. Africa south of Sahara, Madagascar, Australia. Substomatal protective cells often present – modified cells of the chlorenchyma with slightly to moderately thickened lignified walls surrounding a substomatal cavity forming a tube extending all or part the way through chlorenchyma. Pillar cells absent. ‘False pillar cells’ – lignified cells of the chlorenchyma that extend outwards from ridges of the sclerenchyma – sometimes present. Sclerenchyma ribs sometimes present, alternating with outer vascular bundles. Pollen type ‘African restionoid’, i.e. tectum raised around a relatively small (4–10 µm) aperture, some species with thickened foot layer. Flavonols (usually glycoside derivatives of myricetin and its methyl ethers larycitin and syringetin), non-hydrolyzable tannins, and proanthocyanidins present. n = 16, 20.

Restioneae Bartl., Ord. Nat. Plant.: 36. Sep 1830

c 9/c 300. Platycaulos (8; western and southwestern Eastern Cape), ’Calopsis’ (23; Northern, Western and Eastern Cape to KwaZulu-Natal; non-monophyletic), Ischyrolepis (c 50; Northern, Western and Eastern Cape, KwaZulu-Natal, Mpumalanga, Lesotho), ’Restio’ (90–95; tropical and southern Africa, Madagascar, Australia; non-monophyletic), Rhodocoma (7; Western and Eastern Cape, KwaZulu-Natal), Thamnochortus (33; Western and Eastern Cape), ‘Restiodispar (Western Cape), Staberoha (9; Western Cape), Askidiosperma (12; Western Cape), Elegia (60–65; Northern, Western and Eastern Cape). – Tropical and southern Africa, Madagascar, Australia. Sclerenchyma ribs absent. ’False pillar cells’ absent. Chlorenchyma cells radially elongated. Silica bodies often present in parenchyma sheath (absent from sclerenchyma cylinder). Style one to three. Antipodal cells at least sometimes proliferating. Fruit a capsule or a soft-walled nut. Immature seed coat tanniniferous. – Platycaulos is sister to the remainder (Eldenäs & Linder 2000).

Willdenowieae Masters in A. L. P. P. de Candolle, Monogr. Phan. 1: 314. Jun 1878 [‘Willdenovieae’]

c 8/c 50. Nevillea (2; Western Cape), ’Willdenowia’ (12; Northern and Western Cape; non-monophyletic), Mastersiella (3; Western Cape), ’Anthochortus’ (c 15; Western Cape; polyphyletic), Hydrophilus (1; H. rattrayi; Western and Eastern Cape), ’Hypodiscus’ (c 15; Northern, Western and Eastern Cape; non-monophyletic), Cannomois (6; Western and Eastern Cape), Ceratocaryum (6; Western Cape). – Southwestern South Africa. ‘False pillar cells’ present in some species. Sclerenchyma ridges often alternate with outer vascular bundles, extending from sclerenchyma sheath all or part-way through chlorenchyma. Chlorenchyma cells often radially short and flattened. Silica bodies usually present only in sclerenchyma cylinder. Anterior carpel absent, with displacement of remaining carpels. Styles two (rarely connate at base. Antipodal cells proliferating? Fruit a nut, usually with heavily lignified pericarp. Pedicel in fruit often fleshy and modified into elaiosome-like structure (fruits often myrmecochorous). Immature seed coat not tanniniferous. – Willdenowieae was unresolved in Eldenäs & Linder (2000). Possibly, Nevillea is sister to the remainder in one of the main clades.

[Sporadanthoideae+Leptocarpoideae]

Chlorenchyma cells palisade. Pollen type ‘Australian restionoid’, i.e. tectum not raised around a large (8–25 µm) and usually irregular aperture, distinct annulus and thickened foot layer absent. Cotyledon photosynthesizing or non-photosynthesizing. Culm internodes of seedling elongated. First leaves of seedling terete. Flavonols rarely present (except quercetin). Flavones very diverse. Sulphated flavonoids present. Non-hydrolyzable tannins rare. n = 6, 7, 9, 11, 12.

Sporadanthoideae B. G. Briggs et H. P. Linder in Telopea 12: 338. Oct 2009

3/32. Lepyrodia (22; Australia except the central areas, Tasmania), Calorophus (2; western Tasmania), Sporadanthus (8; southwestern Western Australia, southeastern Queensland, New South Wales, Tasmania, North Island of New Zealand, Chatham Islands). – Australia, Tasmania, New Zealand, Chatham Islands. Some species of Lepyrodia monoecious or bisexual. Substomatal protective cells present (modified chlorenchyma cells with slightly to moderately thickened lignified walls surrounding a substomatal cavity forming a tube extending all or part way through chlorenchyma). Pillar cells absent. ‘False pillar cells’ absent. Sclerenchyma girdles or ridges absent. Spikelets often absent (spikelets reduced in Lepyrodia and Sporadanthus), flowers then solitary and bracteolate. Capsule usually trilocular. Myricetin and quercetin often present (myricetin absent in Calorophus). Flavones and proanthocyanidins usually absent. – Lepyrodia may be sister to [Calorophus+Sporadanthus].

Leptocarpoideae B. G. Briggs et H. P. Linder in Telopea 12: 339. Oct 2009 (under construction)

20–23/c 125. Eurychorda (1; E. complanata; southeastern Queensland, eastern New South Wales, Victoria, Tasmania); Winifredia (1; W. sola; southwestern Tasmania), Taraxis (1; T. grossa; southwestern Western Australia), Empodisma (5; Australia, Tasmania, New Zealand), Alexgeorgea (3; southwestern Western Australia), Chaetanthus (3; southwestern Western Australia), Dapsilanthus (4; Guangxi and Hainan in China, Thailand, Indochina, Malay Peninsula, Aru Islands, New Guinea, northernmost Northern Territory, northern Queensland), Leptocarpus (15–16; southwestern Western Australia, New South Wales, Tasmania), Loxocarya (5; southwestern Western Australia), Tremulina (2; southwestern Western Australia), Chordifex (26; southwestern Western Australia, New South Wales [‘Saropsis’], Tasmania [‘Acion’]), Baloskion (8; southeastern Queensland, eastern New South Wales, Victoria, southern South Australia, Tasmania), Dielsia (1; D. stenostachya; southwestern Western Australia), Melanostachya (1; M. ustulata; southwestern Western Australia), Tyrbastes (1; T. glaucescens; southwestern Western Australia), Coleocarya (1; C. gracilis; southeastern Queensland, northeastern New South Wales), Lepidobolus (9–10; southern Australia, especially southwestern Western Australia), Desmocladus (23; southwestern Western Australia). – Unplaced Leptocarpoideae Apodasmia (4; South Australia, Tasmania, New Zealand, Chile), Catacolea (1; C. enodis; southwestern Western Australia), Cytogonidium (1; C. leptocarpoides; southwestern Western Australia), Hypolaena (8; Australia, especially in southwestern Western Australia), Platychorda (2; southwestern Western Australia). – Southeast Asia to New Guinea, Australia, New Zealand, Chile. Substomatal protective cells absent; substomatal cavity in members of Desmocladus group and Alexgeorgea protected by elongated and thick-walled epidermal cells. Pillar cells (elongate palisade-like cells of parenchyma sheath, usually with moderately thickened lignified walls, radiating from sclerenchyma sheath to epidermis, dividing chlorenchyma into longitudinal bands) present in Eurychorda, Alexgeorgia, western Australian Chordifex, Dielsia, Loxocarya, Taraxis and the Leptocarpus group. Girdles (sclerenchyma ridges) sometimes present opposite outer vascular bundles, extending from sclerenchyma sheath all or part-way through chlorenchyma. Flavones (usually luteolin and hypolaetin) and sulphated flavonoids and flavonoid derivatives present (e.g. gossypetin). Flavonols and proanthocyanidins usually absent. – Eurychorda is sister to the remaining Leptocarpoideae.

Cladogram of Restionaceae in South Africa based on morphology and DNA sequence data (Eldenäs & Linder 2000). Chondropetalum and Dovea are nested in Elegia.

Phylogeny of Restionaceae in Australia based on DNA sequence data (Briggs 2000; Briggs & al. 2010). Acion, Guringalia and Soropsis are nested in Chordifex. In the Briggs (2000) analysis the basal clade of Calorophus, Lepyrodia and Sporadanthus collapsed into a trichotomy.

THURNIACEAE Engl.

( Back to Cyperales )

Engler, Syllabus, ed. 5: 94. Jul 1907, nom. cons.

Genera/species 1/3

Distribution Northeastern South America.

Fossils Unknown.

Habit Bisexual, perennial herbs. Graminids. Often helophytic or aquatic. Culm angular in cross-section, erect.

Vegetative anatomy Mycorrhiza absent? Phellogen absent. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements usually with scalariform (in stems sometimes simple) perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type, with cuneate protein crystals. Nodes? Silica bodies spherical, in epidermal cells, and silica sand in parenchyma cells. Tanniniferous cells scattered. Calciumoxalate crystals absent.

Trichomes Hairs absent, except for small unicellular hairs on pedicels.

Leaves Alternate (tristichous or tetrastichous), simple, entire, linear, flat or V-shaped in transverse section, unifacial, with convolute (supervolute) ptyxis. Stipules absent; leaf sheath closed?, with ligule? Venation parallelodromous; vascular bundles in vertical pairs (superposed) with a larger adaxial non-inverted (with phloem on lower side) and a smaller abaxial inverted bundle (with phloem on upper side), the two phloems facing each other. Stomata usually paracytic (sometimes tetracytic). Cuticular wax crystalloids as aggregated rodlets. Epidermis with silica bodies. Mesophyll without mucilaginous idioblasts or calciumoxalate crystals. Leaf margin entire to hispid.

Inflorescence Flowers in one or several terminal dense racemose heads subtended by narrowly elongate bracts. Peduncle (culm) triangular or quadrangular in transverse section.

Flowers Actinomorphic, small. Hypogyny. Tepals 3+3, sepaloid, membranous, persistent, free. Nectary absent. Disc absent.

Androecium Stamens 3+3. Filaments filiform, free from each other, somewhat adnate at base to tepals. Anthers basifixed, non-versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with uninucleate? cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains with indistinct aperture (ulcerate), shed as tetrahedral tetrads, tricellular at dispersal. Exine tectate, with granular? infratectum, scabrate or ulcerate.

Gynoecium Pistil composed of three connate carpels. Ovary superior, trilocular, narrowing towards apex. Style single, trilobate. Stigmas three, papillate, Dry type. Pistillodium absent.

Ovules Placentation axile to axile-basal or lateral. Ovules one to seven per carpel, anatropous, ascending, apotropous, bitegmic, crassinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument one or two cell layers thick. Inner integument two cell layers thick. Parietal cell formed from archesporial cell. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A loculicidal capsule.

Seeds Aril present. Seed coat testal-tegmic, with one subulate outgrowth at each end. Testa puberoulous. Exotesta consisting of one to three layers of sclerenchymatous fibres. Endotesta consisting of one or two parenchymatous layers. Tegmen consisting of elongate tightly packed tanniniferous cells. Perisperm not developed. Endosperm copious, starchy. Embryo small, straight, well differentiated, Xyris-Scirpus type, chlorophyll? Cotyledon one, photosynthesizing. Cotyledon hyperphyll? Hypocotyl absent. Mesocotyl? Coleoptile absent. Plumule terminal. Collar very small, with rhizoids. Germination phanerocotylar.

Cytology n = ? – Chromosomes with diffuse centromeres.

DNA Deletion of three base pairs in the plastid gene atpA.

Phytochemistry Virtually unknown. Flavone-C-glycosides? Luteolin-5-methylether? Cyanogenic compounds not found.

Use Unknown.

Systematics Thurnia (3; the Guyana Highlands, northern Brazil).

Thurnia is sister to [Juncaceae+Cyperaceae], according to Munro & Linder (1998).

TYPHACEAE Juss.

( Back to Cyperales )

de Jussieu, Gen. Plant.: 25. 4 Aug 1789 [’Typhae’] , nom. cons.

Sparganiaceae Hanin, Cours Bot.: 400. 16-23 Apr 1811 [’Spargania’], nom. cons.; Typhales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 263. Jan-Apr 1820 [‘Typhaceae’]; Typhanae Thorne ex Reveal in Novon 2: 237. 13 Oct 1992

Genera/species 2/24–26

Distribution Cosmopolitan.

Fossils Fruits assigned to Typha have been found in the Maastrichtian of Central Europe and Sparganium fruits were reported from Paleocene and younger layers. The oldest fruits are quinquelocular. Sparganium and Typha have been recorded more frequently from the Eocene onwards. Typhaspermum, representing seeds similar to Typha, is known from Late Eocene to Oligocene layers in Queensland.

Habit Monoecious, perennial herbs. Aquatic or helophytic. Rhizome rich in starch.

Vegetative anatomy Lateral roots developing from a zone opposite protoxylem poles. Phellogen absent. Secondary lateral growth absent. Vessels present in roots, stem and leaves. Vessel elements with scalariform perforation plates; lateral pits? Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2cs type, with cuneate protein crystals and starch grains. Nodes? Silica bodies present or absent. Calciumoxalate as raphides, druses or single prismatic or rod-shaped crystals. Calciumoxalate styloids present in rows of cells above sclerenchyma bundles in Typha. Starch grains simple.

Trichomes Hairs absent from vegetative organs.

Leaves Alternate (distichous), simple, entire, aerial leaves linear, in Sparganium sometimes keeled and laterally flattened, with ? ptyxis. Stipules absent; leaf sheath well developed, in Typha with adaxial mucilaginous cells. Venation parallelodromous. Stomata paracytic (subsidiary cells obliquely divided). Cuticular wax crystalloids as longitudinally aggregated rodlets (Strelitzia type), chemically dominated by wax esters. Epidermis with or without silica bodies; epidermis with tanniniferous myriophyllin cells. Mesophyll with or without mucilaginous idioblasts and sacs containing calciumoxalate raphides. Leaf margin entire.

Inflorescence Terminal (in Sparganium often axillary), complex multiple compound racemose, with male inflorescence(s) in upper part and female inflorescence(s) in lower part; in Typha spike-like (stachyoid) or spadix-like (spadicioid); in Sparganium spherical and capitate (cephalioid); inflorescences compact and consisting of reduced one- or few-flowered branched partial inflorescences.

Flowers Actinomorphic, small to minute. Hypogyny. Tepals one to c. 20, in male flowers usually three, in female flowers one to four, filiform (Typha), or three or 3+3 sepaloid and scale-like and with quincuncial aestivation (Sparganium), persistent, free or connate at base. Nectary absent. Disc absent.

Androecium Stamens in Typha usually three (sometimes one, two or up to eight); in Sparganium (one to) three or 3+3, on androphore. Filaments linear to filiform, free from each other or connate at base, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, extrorse to latrorse, longicidal (dehiscing by longitudinal slits); connective in Typha somewhat prolonged. Tapetum intermediate between secretory and amoeboid-periplasmodial, in Sparganium with 8-nucleate cells (Typha type: tapetal nuclei dividing, each cell becoming ab initio binucleate, subsequently dividing twice). Staminodia absent.

Pollen grains Microsporogenesis successive. Pollen grains monoulcerate with indistinct pore-like aperture, usually shed as monads (in Typha occasionally as tetrads), usually bicellular at dispersal. Exine tectate, with columellate infratectum, finely reticulate, echinulate or smooth.

Gynoecium Pistil in Typha composed of one stipitate carpel; pistil in Sparganium composed of two or three connate carpels (usually only one carpel fertile, pseudomonomerous). Ovary superior, unilocular, sometimes on gynophore. Style (stylodium) single, simple or bifid or trifid in upper part. Stigma two or three, decurrent, fairly elongate, Dry type, in Sparganium papillate. Pistillodium absent.

Ovules Placentation apical or subapical. Ovule one per carpel, anatropous, pendulous, apotropous, bitegmic, crassinucellar. Micropyle bistomal (in Typha endostomal?). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator present. Parietal cell formed from archesporial cell and further developing into parietal tissue. Nucellar cap approx. two cell layers thick. Megagametophyte monosporous, Polygonum type. Antipodal cells in Sparganium often proliferating (to c. 150 cells). Endosperm development ab initio helobial of aberrant type: small chalazal endosperm chamber with rapid cell divisions (free nuclear divisions up to 16-nucleate stage or cell wall formation earlier), large micropylar chamber developing into nutrient tissue. Endosperm haustoria absent. Embryogenesis asterad (Typha) or onagrad (Sparganium).

Fruit In Typha a hairy follicular nutlet with strongly reduced endocarp and mesocarp; in Sparganium a drupe with usually spongy exocarp, decaying during maturation, and hard endocarp.

Seeds Aril absent. Operculum present. Seed coat in Sparganium testal-tegmic, with testa and tegmen membranous except at micropylar end, thick-walled cells here forming a conical double operculate structure; testa in Typha compressed, with thin-walled cells, tegmen with thick-walled cells. Perisperm thin, weakly developed. Endosperm copious, with micropylar chamber containing aleurone, starch (starch grains pteridophyte type, amylophilic), proteins (in Sparganium), and oils (in Typha); chalazal chamber with very small amounts of nutrients. Embryo long, straight, slender, without chlorophyll, Trillium type. Cotyledon one, terminal. Cotyledon hyperphyll elongate, assimilating. Hypocotyl present. Hypocotyl internode absent (Typha) or short (Sparganium). Mesocotyl absent. Coleoptile absent (Typha) or present (Sparganium). Plumule lateral. Collar rhizoids present. Germination?

Cytology x = 15

DNA Deletion in ORF2280

Phytochemistry Flavonols (in Typha kaempferol, quercetin, cinnamic acids; in Sparganium quercetin, myricetin), catechin, and cyanidin (in Sparganium also delphinidin?) present. Alkaloids and cyanogenic compounds rare. Ellagic acid, chelidonic acid, and saponins not found. Ferulic acid (ferulate, esterified) component of non-lignified cell walls.

Use Ornamental plants, Typha also for matting, basketry, vegetables (starchy rhizome), etc.

Systematics Typha (8–13), Sparganium (15).

Sparganium

1/14. Temperate and arctic regions, one or two species in Southeast Asia, Malesia, New Guinea, Australia, the Southern Hemisphere southwards to New Zealand. Aquatic. Leaves linear. Leaf sheath indistinct. Stomatal subsidiary cells with intersecting oblique divisions. Inflorescence spherical, cephalioid. Tepals one to six; when three, then median tepal adaxial. Stamens usually three or 3+3. Anthers extrorse-latrorse. Pistil composed of two or three carpels. Ovary sometimes with three fertile locules; some flowers with a second sterile ovary locule (some fossil fruits with up to seven locules). Embryogenesis onagrad. Fruit a spongy drupe with persistent tepals and micropylar plug. Testa membranous. Endosperm also proteinaceous. Cotyledon non-photosynthesizing, with envelope. Hypocotyl internode short. Coleoptile present.

Typha

1/10–12. Cosmopolitan except Arctic regions. Styloids in cell rows above sclerenchyma bundles. Cuticular wax crystalloids as aggregated rodlets. Leaf sheath distinct. Inflorescence dense stachyoid or spadicioid. Pedicel with long hairs. Tepals absent. Stamens (one to) three (to eight). Filaments connate. Tapetum with octonucleate? cells. Pollen grains occasionally shed in tetrads. Pistil composed on a single carpel. Embryogenesis asterad. Fruit an achene with small operculum. Endosperm also oily. Hypocotyl internode absent. Coleoptile absent.

XYRIDACEAE C. Agardh

( Back to Cyperales )

Agardh, Aphor. Bot.: 158. 23 Mai 1823 [’Xyrideae’], nom. cons.

Xyridales Lindl., Veg. Kingd.: lvii, 185. 14-28 Mar 1846; Abolbodaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 221. 20 Jul 1943; Xyridineae thorne et Reveal in Bot. Rev. (Lancaster) 73: 85. 29 Jun 2007

Genera/species 5/275–325

Distribution Tropical and subtropical regions on the Southern and Northern Hemispheres, with their largest diversity in northern South America; few species in temperate areas.

Fossils Fossilized seeds attributed to Xyris have been found in the mid- and Late Miocene of Germany (Mai 2000).

Habit Bisexual, usually perennial (sometimes annual) herbs. Often helophytic (rarely aquatic); some species are xerophytic.

Vegetative anatomy Mycorrhiza absent. Roots fibrous. Root endodermis uni- or multilayered, consisting of large evenly thick cells with specific orientation. Root stele relatively narrow. Root phloem and xylem elements usually irregularly scattered in parenchyma. Lateral roots developing from a zone opposite protophloem poles. Phellogen absent. Stem vascular bundles amphivasal. Secondary lateral growth absent. Vessels present in roots and, usually, in stem and leaves. Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits scalariform. Imperforate tracheary xylem elements tracheids. Wood rays absent. Axial parenchyma? Sieve tube plastids P2ccof type, with cuneate and orthogonal protein crystals and peripheral protein filaments. Nodes? Silica bodies absent. Calciumoxalate as single crystals (raphides absent).

Trichomes Hairs unicellular or multicellular (few-celled), uniseriate, usually simple; in Xyris uniseriate hairs with bulb-like terminal cell producing mucilage present in leaf axils.

Leaves Alternate (usually distichous, sometimes spiral), simple, entire, linear, usually equitant, laterally flattened, sometimes subulate, with convolute (supervolute) ptyxis? Stipules absent; leaf sheath distinct, open, some species of Xyris with distal ligule (or auriculae). Venation parallelodromous. Stomata paracytic or anomocytic (in Abolboda sometimes tetracytic). Cuticular waxes absent. Cuticle with insoluble secretions. Outer epidermal cell walls often with papillae, tubercles or other types of outgrowths, or thickened. Mesophyll without mucilaginous cells, often with calciumoxalate as druses or solitary prismatic crystals (raphides absent). Leaf margin entire.

Inflorescence Terminal or lateral, dense, spike- or head-like condensed panicle (usually stachyoid; in Achlyphila open) consisting of one- or sometimes two- or three-flowered cymose partial inflorescences (in some species spikes in panicles; in Aratitiyopea racemose; in Achlyphila solitary flowers, each of which enclosed by an involucral bract), on long peduncle bracteate in lower part. Each flower usually subtended by one or several pairs of bracts. Floral prophyll (bracteole) absent.

Flowers Actinomorphic or zygomorphic (in Orectanthe bilabiate). Hypogyny. Tepals usually 3+3 (in Abolboda and Orectanthe sometimes 2+3); outer tepals usually three (sometimes two, carinate), sepaloid, free or two lateral connate at base; median tepal in Xyris membranous, caducous, or all outer tepals persistent (median outer tepal in Abolboda strongly reduced or absent); inner tepals with imbricate aestivation, petaloid, clawed, early caducous, usually free (sometimes large and often connate at base into a tube). Nectary absent. Disc absent.

Androecium Stamens usually three (outer staminal whorl absent), antepetalous (sometimes also one to three staminodia; one species of Xyris with six fertile stamens). Filaments often filiform, with flattened base, usually connate, usually adnate to inner tepals (epipetalous; in Achlyphila free). Anthers basifixed, non-versatile, tetrasporangiate (microsporangia sometimes connate), usually latrorse or extrorse (rarely introrse), longicidal (dehiscing by longitudinal slits). Tapetum usually secretory (in Abolbodoideae amoeboid-periplasmodial), with binucleate cells. Exothecium present. Staminodia (in Xyris and sometimes in Abolboda) usually three (sometimes one or two), alternipetalous, extrastaminal, free from tepals, simple, bifid or quadrifid, usually provided with long (often plumose) hairs (secondary pollen presentation).

Pollen grains Microsporogenesis successive. Pollen grains monosulcate (in Xyris; sometimes disulcate) or inaperturate (in Abolbodoideae), shed as monads, usually bicellular (sometimes tricellular) at dispersal. Exine tectate, with columellate? infratectum, spinulate or smooth.

Gynoecium Pistil composed of three connate carpels. Ovary superior, unilocular to entirely or partially (at least basally) trilocular. Style single, filiform, terete or triangular in cross-section in lower part, usually trilobate (in Achlyphila simple), in Abolboda, Aratitiyopea and Orectanthe trifid in upper part and with three lateral appendages. Stigmas three, lobate or U-shaped, often infundibuliform to subcapitate, usually fimbriate or papillate, type? Pistillodium absent.

Ovules Placentation in Xyris marginal, parietal (sometimes intrusively so), basal, basal-axile, free central or axile, in Abolbodoideae parietal. Ovules usually numerous (sometimes one) per carpel, anatropous (Achlyphila, Abolboda) or orthotropous (Xyris; in Orectanthe anatropous to slightly campylotropous), bitegmic, tenuinucellar to weakly crassinucellar (Abolboda). Micropyle bistomal? Outer integument ? cell layers thick. Inner integument ? cell layers thick. Hypostase absent (in Xyris) or present (in Abolbodoideae). Obturator absent. Parietal cell not formed (parietal tissue absent). Megasporangial epidermis in Xyris sometimes with periclinal cell divisions. Megagametophyte monosporous, Polygonum type, or disporous, Allium type. Endosperm development ab initio nuclear (in Xyris) or helobial. Endosperm haustoria? Embryogenesis asterad.

Fruit Usually a loculicidal, many-seeded (rarely one-seeded) capsule (in Xyris rarely a pyxidium) with persistent tepals.

Seeds Aril absent. Seed coat testal-exotegmic, sometimes winged. Seeds sometimes operculate; operculum formed from exotegmen, chalazal. Tegmen mechanical, rich in resins and tannins. Perisperm not developed. Endosperm copious, starchy and proteinaceous (and sometimes oily); starch grains compound (Xyris) or simple (Abolboda). Embryo small (Xyris) or large, straight or curved (in Abolbodoideae large and curved), little differentiated or rudimentary, with chlorophyll, Xyris-Scirpus type. Cotyledon one. Cotyledon hyperphyll prolonged, assimilating. Hypocotyl internode short, with rhizoids. Coleoptile absent. Collar rhizoids usually present. Germination?

Cytology n = 8, 9, 13, 16, 17 – Polyploidy frequently occurring.

DNA Deletions present in ORF2280.

Phytochemistry Flavonols (kaempferol, quercetin), flavone glycosides, cyanidin, saponins, and chrysazine (an anthraquinone) present. Esterified ferulic acid (diferulic acid?, p-coumaric acid?) component of non-lignified cell walls. Phenolic compounds present or absent. Ellagic acid and alkaloids not found. Aluminium accumulated.

Use Aquarium plants, medicinal plants.

Systematics Xyridaceae are sister to Eriocaulaceae with high support. Xyris is sister to the remaining Xyridaceae. Comprehensive molecular phylogenetic analyses of Xyridaceae are needed.

Xyris

1/250–300. Tropical to warm-temperate regions on both hemispheres, with their highest diversity, c 150 species, in Brazil. Stem vascular bundles forming a single cylinder. Leaves distichous, equitant, isobifacial, ligulate. Mucilaginous hairs present in leaf axils. Peduncle sometimes spirally twisted. Median tepal membranous, caducous. Stamens sometimes 3+3. Tapetum secretory, with binucleate cells. Pollen grains usually monosulcate. Exine not spiny. Staminodia usually three, branched and with moniliform hairs on branch apices. Placentation marginal, parietal (sometimes intrusively), basal, basal-axile, free central or axile. Ovule orthotropous. Hypostase absent. Endosperm development usually nuclear. Endotestal cells thickened. Starch grains compound. Cotyledon bifacial. Cotyledon hypophyll bifacial, photosynthesizing. Hypocotyl present. Collar rhizoids present. n = 8?, 9, 13, 14, 16, 17 or more. Polyploidy frequently occurring.

Abolbodoideae Suess. et Beyerle in Bot. Jahrb. Syst. 67: ?. 1935 (Abolbodaceae Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 221. 20 Jul 1943)

4/c 25. Achlyphila (1; A. disticha; Venezuela), Aratitiyopea (1; A. lopezii; Venezuela), Orectanthe (2; Venezuela), Abolboda (c 20; tropical South America). – Northern South America, with their largest diversity in the Venezuelan and the Guayana Highlands. Stem vascular bundles present alternately on inside and outside of thickened sclerified cylinder, also scattered in centre. Leaves usually spiral (rarely distichous), rarely equitant (in Achlyphila isobifacial). Inflorescence sometimes branched, in Achlyphila and some species of Abolboda open. Peduncle in Achlyphila and Abolboda with one or more pairs of opposite bracts. Outer tepals in Abolboda two or three; median outer tepal strongly reduced or absent. Anthers sometimes introrse. Tapetum amoeboid-periplasmodial (Abolboda). Staminodia usually absent (in Abolboda sometimes filamentous). Pollen grains spheroidal, inaperturate (in Orectanthe up to c. 185 μm in diameter). Style often solid (not hollow), usually trifid in upper part and with three vascularized nectariferous lateral carinal (non-commissural) appendages (absent in Achlyphila). Placentation axile. Ovule usually anatropous, in Abolboda sometimes crassinucellar. Hypostase present. Endosperm development usually helobial. Exotesta in Orectanthe mechanical, thick-walled. Endotestal cells in Abolboda large, alternating with projecting exotegmic cells. Exotegmen thick-walled. Starch grains simple. n = 8–10, 13, 17.


Literature

Acedo C. 1995. Revisión taxonómica del género Bromus L. (Poaceae) en la Península Ibérica. – Memoria de Doctorado, Universidad de León, Spain.

Acedo C, Llamas F. 1997. Two new brome-grasses (Bromus, Poaceae) from the Iberian Peninsula. – Willdenowia 27: 47-55.

Acedo C, Llamas F. 1999. The genus Bromus L. (Poaceae) in the Iberian Peninsula. – Phanerog. Monogr. 22.

Acedo C, Llamas F. 2003. A new species of Tridens (Poaceae) from Brazil. – Syst. Bot. 28: 313-316.

Acosta J, Scataglini M, Reinheimer R, Zuloaga F. 2014. A phylogenetic study of subtribe Otachyriinae (Poaceae, Panicoideae, Paspaleae). – Plant Syst. Evol. 300: 2155-2166. – Erratum: idem p. 2167.

Adams KL, Palmer JD. 2003. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. – Mol. Phylogen. Evol. 29: 380-395.

Adamson MA. 1935. A revision of the South African species of Juncus. – Bot. J. Linn. Soc. 50: 1-38.

Adati S. 1958. Cytogenetics of Japanese wild forage Miscanthus species. – Proceedings of the Tenth International Congress of Genetics 2: 1-2.

Agafonov AV, Salomon B. 2002. Genepools in SH-genomic Elymus species in Boreal Eurasia. – In: Hernández P (ed), Proceedings of the 4th International Triticeae Symposium, September 10-12, 2001, Córdoba, Spain, Sevilla, pp. 37-41.

Ahmad NM, Martin PM, Vella JM. 2009. Floral morphogenesis and proliferation in Poa labillardieri (Poaceae). – Aust. J. Bot. 57: 602-618.

Ahsan SMN, Vahidy AA, Ali SI. 1994. Chromosome numbers and incidence of polyploidy in Panicoideae (Poaceae) from Pakistan. – Ann. Missouri Bot. Gard. 81: 775-783.

Ahumada O, Vegetti AC. 2009. Inflorescence structure in species of Scleria subgenus Hypoporum and subgenus Scleria (Sclerieae-Cyperaceae). – Plant Syst. Evol. 281: 115-135.

Aiken SG, Consaul LL. 1995. Leaf cross sections and phytogeography: a potent combination for identifying members of Festuca subg. Festuca and Leucopoa (Poaceae), occurring in North America. – Amer. J. Bot. 82: 1287-1299.

Aiken SG, Darbyshire SJ. 1990. Fescue grasses of Canada. – Biosystematics Research Institute, Agriculture Canada, Ottawa.

Aiken SG, Lefkovitch LP. 1990. Arctagrostis (Poaceae), tribe Pooideae in North America and Greenland. – Can. J. Bot. 68: 2422-2432.

Aiken SG, Lefkovitch LP. 1993. On the separation of two species of Festuca subg. Obtusae (Poaceae). – Taxon 42: 323-337.

Aiken SG, Consaul LL, Lefkovitch LP. 1995. Festuca edlundiae (Poaceae), a high Arctic, new species compared enzymatically and morphologically with similar Festuca species. – Syst. Bot. 20: 374-392.

Ainouche ML, Bayer RJ. 1997. On the origins of the tetraploid Bromus species (section Bromus, Poaceae): insights from internal transcribed spacer sequences of nuclear ribosomal DNA. – Genome 40: 730-743.

Ainscought MM, Barker CM, Stace CA. 1986. Natural hybridizations between Festuca and species of Vulpia. – Watsonia 16: 143-151.

Albert B, Matamoro-Vidal A, Raquin C, Nadot S. 2010. Formation and function of a new pollen aperture pattern in angiosperms: the proximal sulcus of Tillandsia leiboldiana (Bromeliaceae). – Amer. J. Bot. 97: 365-368.

Albert B, Ressayre A, Nadot S. 2011. Correlation between pollen aperture pattern and callose deposition in late tetrad stage in three species producing atypic pollen grains. – Amer. J. Bot. 98: 189-196.

Albert B, Toghranegar Z, Nadot S. 2014. Diversity and evolution of microsporogenesis in Bromeliaceae. – Bot. J. Linn. Soc. 176: 36-45.

Alexeev E. 1980. Genus Colpodium Trin. s. str. – Novsti Sist. Vysš. Rast. 17: 4-10. [In Russian]

Alexeev E. 1981. Genus Paracolpodium (Tzvel.) Tzvel. (Poaceae). – Novsti Sist. Vysš. Rast. 18: 86-95. [In Russian]

Alexeev E. 1985. Festuca L. (Poaceae) in Alaska and Canada. – Novsti Sist. Vysš. Rast. 22: 5-35. [In Russian]

Alexeev E. 1986. New narrow-leaved Festuca (Poaceae) members from Tropical and South Africa. – Bot. Žurn. 71: 1109-1117. [In Russian]

Alexeev E. 1987. Fescues of the Festuca abyssinica s.l. (Poaceae) group. – Bot. Žurn. 72: 1260-1268. [In Russian]

Aliscioni SS. 2000. Anatomía ecológica de algunas especies del género Paspalum (Poaceae, Panicoideae, Paniceae). – Darwiniana 38: 187-207.

Aliscioni SS. 2002. Contribución a la filogenia del género Paspalum (Poaceae: Panicoideae: Paniceae). – Ann. Missouri Bot. Gard. 89: 504-523.

Aliscioni SS, Giussani LM, Zuoaga FO, Kellogg EA. 2003. A molecular phylogeny of Panicum (Poaceae: Paniceae). Tests of monophyly and phylogenetic placement within the Panicoideae. – Amer. J. Bot. 90: 796-821.

Allred KW. 1982. Describing the grass inflorescences. – Range Managem. 35: 672-695.

Allred KW, Gould FW. 1983. Systematics of the Bothriochloa saccharoides complex (Poaceae: Andropogoneae). – Syst. Bot. 8: 168-184.

Almeida VR, Ferreira da Costa A, Mantovani A, Gonçalves-Esteves V, de Oliveira R do C, Forzza RC. 2009. Morphological phylogenetics of Quesnelia (Bromeliaceae, Bromelioideae). – Syst. Bot. 34: 660-672.

Alves MV, Thomas WW. 2002. Four new species of Hypolytrum Rich. (Cyperaceae) from Costa Rica and Brazil. – Feddes Repert. 113: 261-270.

Alves MV, Thomas WW, Das Gracas Lapa Wanderley M. 2002. New species of Hypolytrum Rich. (Cyperaceae) from the Neotropics. – Brittonia 54: 124-135.

Alves MV, Estelita MEM, Wanderley MGL, Thomas WW. 2002. Aplicações taxonômicas da anatomia foliardas espécies brasileiras de Hypolytrum Rich. (Cyperaceae). – Rev. Brasileira Bot. 25: 1-9.

Alves MV, Araújo AC, Prata AP, Vitta F, Hefler S, Trevisan R, Gil AB, Martins S, Thomas WW. 2010. Documenting Cyperaceae in diverse tropical countries: the example of Brazil. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 417-424.

Alves PGM, Scatena VL, Trovó M. 2013. Anatomy of scapes, bracts, and leaves of Paepalanthus sect. Diphyomene (Eriocaulaceae, Poales) and its taxonomic implications. – Brittonia 65: 262-272.

Amarasinghe V, Watson L. 1988. Comparative ultrastructure of microhairs in grasses. – Bot. J. Linn. Soc. 98: 303-319.

Amarasinghe V, Watson L. 1990. Taxonomic significance of microhair morphology in the genus Eragrostis Beauv. (Poaceae). – Taxon 39: 59-65.

Ammann K. 1981. Bestimmungsschwierigkeiten bei europäischen Bromus-Arten. – Bot. Jahrb. Syst. 102: 459-469.

Amorim AM, Leme EMC. 2009. Two new species of Quesnelia (Bromeliaceae: Bromelioideae) from the Atlantic rainforest of Bahia, Brazil. – Brittonia 61: 14-21.

Amsler AI, Vegetti AC. 1999. Tiplogía de la inflorescencia en Rhynchoryza (Oryzeae-Poaceae). – Candollea 54: 54-65.

Amsler AI, Perreta MG, Tivano JC, Vegetti AC. 2004. Anatomía caulinar de especies de Oryzeae. – Candollea 59: 135-155.

Anderson DE. 1974. Taxonomy of the genus Chloris (Gramineae). – Brigham Young Univ. Sci. Bull., Biol. Ser. 29: 1-133.

Andrade MJG de. 2007. Filogenia e taxonomia em Eriocaulaceae neotropicais. – Ph.D. diss., Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.

Andrade MJG de, Giulietti AM, Rapini A, Queiroz LP de, Conceição A de Souza, Almeida PRM de, Berg C van den. 2010. A comprehensive phylogenetic analysis of Eriocaulaceae: evidence from nuclear (ITS) and plastid (psbA-trnH and trnL-F) DNA sequences. – Taxon 59: 379-388.

Andrés JM. 1941. Numero de cromosomas en las especies del género Hordeum espontáneas en los alrededores de Buenos Aires. – Rev. Fac. Agron. 2: 100-107.

Angelov GB. 2003. Relationships among Agropyron, Dasypyrum and Lophopyrum (Triticeae: Poaceae) viewed from isoenzyme variation of esterase, peroxidase and acid phosphatase. – Acta Bot. Croat. 62: 11-19.

Ansari R, Balakrishnan NP. 1994. The family Eriocaulaceae in India. – Bishen Singh Mahendra Pal Singh, Dehra Dun, India.

Anton AM. 1981. The genus Tragus (Gramineae). – Kew Bull. 36: 55-61.

Anton AM, Cocucci AE. 1984. The grass megagametophyte and its possible phylogenetic implications. – Plant Syst. Evol. 146: 117-121.

Anton AM, Connor HE. 1995. Floral biology and reproduction in Poa (Poeae: Gramineae). – Aust. J. Bot. 43: 577-599.

Appel O, Bayer C. 1998. Flagellariaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 208-211.

Appels R, Dvořák J. 1982. Relative rates of divergence of spacer and gene sequences within the rDNA region of species in the Triticeae: implications for the maintenance of homogeneity of a repeated gene family. – Theor. Appl. Gen. 63: 361-365.

Araújo AC, Fischer EA, Sazima M. 1994. Floração sequencial e polinização de três espécies de Vriesea (Bromeliaceae) na região de Juréia, sudeste do Brasil. – Rev. Bras. Bot. 17: 113-118.

Araújo AC, Longhi-Wagner HM, Thomas WW. 2003. New unicapitate species of Rhynchospora (Cyperaceae) from South America. – Brittonia 55: 30-36.

Araújo AC, Longhi-Wagner HM, Thomas WW. 2012. A synopsis of Rhynchospora sect. Pluriflorae (Cyperaceae). – Brittonia 64: 381-393.

Arber A. 1923. Leaves of the Gramineae. – Bot. Gaz. 76: 374-388.

Arber A. 1928. Studies in the Gramineae V. 1. On Luziola and Dactylis; 2. On Lygeum and Nardus. – Ann. Bot. 52: 291-407.

Arber A. 1929. Studies in the Gramineae VI. 1. Streptochaeta. 2. Anomochloa. 3. Ichnanthus. – Ann. Bot. 43: 35-53.

Arber A. 1934. The Gramineae: a study of cereal, bamboo, and grass. – Cambridge University Press, Cambridge.

Arekal GD, Ramaswamy SN. 1980. Embryology of Eriocaulon hookerianum Stapf and the systematic position of Eriocaulaceae. – Bot. Not. 133: 295-309.

Arenas P, Arroyo SC. 1988. Las espécies comestibles del género Bromelia (Bromeliaceae) del Gran Chaco. – Candollea 43: 645-660.

Armstrong KC. 1973. Chromosome pairing in hexaploid hybrids from Bromus erectus x B. inermis (2n=56). – Can. J. Gen. Cytol. 15: 427-436.

Armstrong KC. 1977. Hybrids of the annual Bromus arvensis with perennial B. inermis and B. erectus. – Can. J. Genet. Cytol. 21: 65-71.

Armstrong KC. 1981. The evolution of Bromus inermis and related species of Bromus sect. Pnigma. – Bot. Jahrb. Syst. 102: 427-443.

Armstrong KC. 1982. Hybrids between the tetraploids of Bromus inermis and Bromus pumpellianus. – Can. J. Bot. 60: 476-482.

Armstrong KC. 1983. The relationship between some Eurasian and American species of Bromus section Pnigma as determined by the karyotypes of some F1 hybrids. – Can. J. Bot. 61: 700-707.

Armstrong KC. 1984a. The genomic relationship of the diploid Bromus variegatus to Bromus inermis. – Can. J. Genet. Cytol. 62: 469-474.

Armstrong KC. 1984b. Chromosome pairing affinities between Old and New World species of Bromus section Pnigma. – Can. J. Bot. 62: 581-585.

Armstrong KC. 1985. Chromosome pairing failure in an intersectional amphiploid of Bromus altissimus x B. arvensis. – Can. J. Genet. Cytol. 27: 705-709.

Armstrong KC. 1991. Chromosome evolution in Bromus. – In: Tsuchiya T, Gupta PK (eds), Chromosome engineering in plants: genetics, breeding, evolution, part B, Elsevier, Amsterdam, pp. 366-377.

Arnow LA. 1981. Poa secunda Presl versus P. sandbergii Vasey (Poaceae). – Syst. Bot. 6: 412-421.

Arrais M das Graças Medina. 1989. Aspectos anatômicos de espécies de Bromeliaceae da Serra do Cipö-MG, com especial referência à vascularização floral. – Ph.D. diss., São Paulo, Brazil.

Arriaga MO. 1990. Desarrollo de la estructura Kranz en tallo de especies de Eriochloa (Paniceae-Poaceae). – Bol. Soc. Argent. Bot. 26: 177-195.

Arriaga MO. 1992. Salt glands in flowering culms of Eriochloa species (Poaceae). – Bothalia 22: 111-117.

Arriaga MO, Barkworth ME. 2006. Amelichloa: a new genus in the Stipeae (Poaceae). – Sida 22: 145-149.

Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki K. 2004. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. – DNA Research 11: 93-99.

Asplund I. 1968. Embryological studies in the genera Sparganium and Typha. A preliminary report. – Svensk Bot. Tidskr. 62: 410-412.

Asplund I. 1972. Embryological studies in the genus Typha. – Svensk Bot. Tidskr. 66: 1-17.

Asplund I. 1973. Embryological studies in the genus Sparganium. – Svensk Bot.Tidskr. 67: 177-200.

Assadi M. 1996. A taxonomic revision of Elymus sect. Caespitosae and sect. Elytrigia (Poaceae, Triticeae) in Iran. – Willdenowia 26: 251-271.

Assadi M, Runemark 1995. Hybridisation, genomic constitution and generic delimitation in Elymus s.l. (Poaceae: Triticeae). – Plant Syst. Evol. 194: 189-205.

Astegiano MA. 1973. Sobre la presencia del genero Aciachne (Gramineae) en la Argentina. – Kurtziana 7: 43-47.

Aston HI. 1987. Sparganiaceae. – In: George AS (ed), Flora of Australia 45, Australian Government Publ. Service, Canberra, pp. 6-8.

Atkins RJ, Barkworth ME, Dewey DR. 1984. A taxonomic study of Leymus ambiguus and L. salinus (Poaceae: Triticeae). – Syst. Bot. 9: 279-294.

Auquier P, Somers Y. 1967. Recherches histotaxonomiques sur le chaume des Poaceae. – Bull. Soc. Roy. Bot. Belg. 100: 95-140.

Avdulov NP. 1931. Karyo-systematische Untersuchungen der Familie Gramineen. – Bull. Appl. Bot. Genet. Plant Breed. [Suppl.] 44: 1-428. [In Russian with German summary]

Bačič T, Jogan N, Koce JD. 2007. Luzula sect. Luzula in the south-eastern Alps – karyology and genome size. – Taxon 56: 129-136.

Backer CA. 1951a. Juncaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(3), Noordhoff-Kolff N. V., Batavia, pp. 210-215.

Backer CA. 1951. Flagellariaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(3), Noordhoff-Kolff, N. V., Batavia, pp. 245-250.

Baden C. 1991. A taxonomic revision of Psathyrostachys Nevski (Poaceae). – Nord. J. Bot. 11: 3-26.

Baden C, Bothmer R von. 1994. A taxonomic revision of Hordeum sect. Critesion. – Nord. J. Bot. 14: 117-136.

Baeza PCM. 1996. Los géneros Danthonia D.C. y Rytidosperma Steud. (Poaceae) en América – una revision. – Sendtnera 3: 11-93.

Baeza PCM, Stuessy TF, Marticorena C. 2002. Notes on the Poaceae of the Robinson Crusoe (Juan Fernandez) Islands, Chile. – Brittonia 54: 154-163.

Baeza PCM, Finot VL, Matther O. 2006. Micromorfología de la epidermis de la lemma de Trisetum y géneros afines (Poaceae, Pooideae). – Darwiniana 44: 32-57.

Bahadur KN, Jain SS. 1981. Rare bamboos of India. – Indian J. For. 4: 280-286.

Bailey LH. 1886. A preliminary synopsis of North American carices. – Proc. Amer. Acad. Arts Sci. 3: 59-157.

Baillon MH. 1892. Une Graminée uniflore. – Bull. Mens. Soc. Linn. Paris 130: 1034-1036.

Baillon MH. 1893. Nouvelle note sur l’Aciachne. – Bull. Mens. Soc. Linn. Paris 135: 1073.

Baker JG. 1889. Handbook of the Bromeliaceae. – George Bell & Sons, London.

Bakker K. 1958. Restionaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(4), Noordhoff-Kolff N. V., Djakarta, pp. 416-420.

Baldini RM. 1995. Revision of the genus Phalaris L. (Gramineae). – Webbia 49: 265-329.

Balke M, Gómez-Zurita J, Ribera I, Viloria A, Zillikens A, Steiner J, García M, Hendrich L, Vogler AP. 2008. Ancient associations of aquatic beetles and tank bromeliads in the neotropical forest canopy. – Proc. Natl. Acad. Sci. U.S.A. 105: 6356-6361.

Ball PW. 1990. Some aspects of the phytogeography of Carex. – Can. J. Bot. 68: 1462-1472.

Ballard F. 1932. The genus Mariscopsis. – Kew Bull. 1932: 457-458.

Ballard F. 1933. Queenslandiella hyalina (Vahl) Ballard. – Hooker’s Icones Plantarum ser. 5, tab. 3208.

Balslev H. 1979. 208. Juncaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 11, Swedish Natural Science Research Council, Stockholm, pp. 1-44.

Balslev H. 1982. A systematic monograph of the neotropical Juncaceae. – Ph.D. diss., City University of New York, New York.

Balslev H. 1996. Flora Neotropica Monograph 68. Juncaceae. – The New York Botanical Garden, Bronx, New York.

Balslev H. 1998. Juncaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 252-260.

Baltisberger M, Leuchtmann A. 1991. Investigations on some Gramineae from Albania and Greece. – Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich 57: 182-192.

Bamboo Phylogeny Group. 2006. The Bamboo Phylogeny Project. – BAMBOO, Mag. Amer. Bamboo Soc. 27: 11-14.

Banerjee U. 1967. Ultrastructure of the tapetal membranes in grasses. – Grana Palynol. 7: 2-3.

Banfi E, Bracchi G, Galasso G, Romani E. 2005. Agrostologia placentina. – Mem. Soc. Ital. Sci. Nat. Mus. Civico Storia Milano 33: 1-80.

Bao Y, Ge S. 2004. Origin and phylogeny of Oryza species with the CD genome based on multiple-gene sequence data. – Plant Syst. Evol. 249: 55-66.

Baquar SR. 1978. Cytological studies of some Southern Nigerian Cyperaceae. – La Kromosomo II, 9: 263-270.

Baranova MA. 1975. Stomatographical studies of the family Flagellariaceae. – Bot. Žurn. 60: 1690-1697. [In Russian]

Barber JC, Hames KA, Cialdella AM, Giussani LM, Morrone O. 2009. Phylogenetic relationships of Piptochaetium Presl (Poaceae: Stipeae) and related genera reconstructed from nuclear and chloroplast sequence datasets. – Taxon 58: 375-380.

Baresch A, Smith JAC, Winter K, Valerio AL, Jaramillo C. 2011. Karatophyllum bromelioides L. D. Gómez revisited: a probable fossil CAM bromeliad. – Amer. J. Bot. 98: 1905-1908.

Barfuss M, Samuel MM, Till W. 2004. Molecular phylogeny in subfamily Tillandsioideae (Bromeliaceae) based on six cpDNA markers: an update. – J. Brom. Soc. 54: 9-17.

Barfuss M, Samuel MR, Till W, Stuessy TF. 2005. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. – Amer. J. Bot. 92: 337-351.

Barker NP. 1993 A biosystematic study of Pentameris (Arundineae, Poaceae). – Bothalia 23: 25-47.

Barker NP. 1994. External fruit morphology of southern African Arundineae (Arundinoideae: Poaceae). – Bothalia 24: 55-66.

Barker NP. 1995. A molecular phylogeny of the subfamily Arundinoideae (Poaceae). – Ph.D. diss., University of Cape Town, Republic of South Africa.

Barker NP. 1997. The relationships of Amphipogon, Elytrophorus and Cyperochloa (Poaceae) as suggested by rbcL sequence data. – Telopea 7: 205-213.

Barker NP, Linder HP, Harley EH. 1995. Polyphyly of the Arundinoideae (Poaceae): evidence from rbcL sequence data. – Syst. Bot. 20: 423-435.

Barker NP, Linder HP, Harley EH. 1998. Sequences of the grass-specific insert in the chloroplast rpoC2 gene elucidate generic relationships of the Arundinoideae (Poaceae). – Syst. Bot. 23: 327-350.

Barker NP, Clark LG, Davis JI, Duvall MR, Guala GF, Hsiao C, Kellogg EA, Linder HP, Mason-Gamer R, Mathews S, Soreng R, Spangler R. 2000. A phylogeny of the grass family (Poaceae), as inferred from eight character sets. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 3-7

Barker NP, Morton CM, Linder HP. 2000. The Danthonieae: generic composition and relationships. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 221-230.

Barker NP, Clark L, Davis JI, Duvall MR, Guala G, Hsiao C, Kellogg EA, Linder HP, Mason-Gamer R, Mathews S, Simmons M, Soreng R, Spangler R. 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). – Ann. Missouri Bot. Gard. 8: 373-457..

Barker NP, Linder HP, Morton CM, Lyle M. 2003. The paraphyly of Cortaderia (Danthonioideae; Poaceae): evidence from morphology, chloroplast and nuclear DNA sequence data. – Ann. Missouri Bot. Gard. 90: 1-24.

Barker NP, Galley C, Verboom GA, Mafa P, Gilbert M, Linder HP. 2007. The phylogeny of the austral grass subfamily Danthonioideae: evidence from multiple data sets. – Plant Syst. Evol. 264: 135-156.

Barkworth ME. 1981. Foliar epidermis and taxonomy of North American Stipeae (Gramineae). – Syst. Bot. 6: 136-152.

Barkworth ME. 1982. Embryological characters and the taxonomy of the Stipeae (Gramineae). – Taxon 31: 233-243.

Barkworth ME. 1983. Ptilagrostis in North America and its relationship to other Stipeae (Gramineae). – Syst. Bot. 8: 395-419.

Barkworth ME. 1988. New taxa in Piptochaetium (Stipeae, Gramineae) from Mexico. – Syst. Bot. 13: 196-201.

Barkworth ME. 1990. Nassella (Gramineae, Stipeae): revised interpretation and nomenclatural changes. – Taxon 39: 597-614.

Barkworth ME. 1993. North American Stipeae (Gramineae): taxonomic changes and other comments. – Phytologia 74: 1-25.

Barkworth ME. 2001. Distribution and diagnostic characters of Nassella (Poaceae: Stipeae). – Taxon 50: 439-468.

Barkworth ME. 2006. Manual of grasses for North America North of Mexico. – University of Utah, Logan.

Barkworth ME, Everett J. 1987. Evolution in the Stipeae: identification and relationships of its monophyletic taxa. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 251-264.

Barkworth ME, Torres MA. 2001. Distribution and diagnostic characters of Nassella (Poaceae: Stipeae). – Taxon 50: 439-468.

Barkworth ME, Arriaga MO, Smith JF, Jacobs SWL, Valdés-Reyna J, Bushman BS. 2008. Molecules and morphology in South American Stipeae (Poaceae). – Syst. Bot. 33: 719-731.

Barkworth ME, Jacobs SWL, Zhang H-Q. 2009. Connorochloa: a new genus in Triticeae. – Breeding Sci. 59: 685-686.

Barnard C. 1958. Floral histogenesis in monocotyledons III. The Juncaceae. – Aust. J. Bot. 6: 285-298.

Barreto L, Echternacht L, Garcia Q. 2013. Seed coat sculpture in Comanthera (Eriocaulaceae) and its implications on taxonomy and phylogenetics. – Plant Syst. Evol. 299: 1461-1469.

Barrett RL, Wilson KL. 2012. A review of the genus Lepidosperma Labill. (Cyperaceae: Schoeneae). – Aust. Syst. Bot. 25: 225-294.

Barros M. 1928. Ciperáceas Argentinas I. Heleocharis. – An. Mus. Argent. Ci. Nat. “Bernardino Rivadavia” 34: 425-496.

Barros M. 1935. Ciperáceas Argentinas II. Géneros Kyllingia, Scirpus, Carex. – An Mus. Nac. Hist. Nat. Buenos Aires 37: 133-263.

Barrow J, Lucero M, Reyes-Vera I, Havstad K. 2007. Endosymbiotic fungi structurally integrated with leaves reveals a lichenous condition of C4 grasses. – In Vitro Cell. Devel. Biol. Plant 43: 65-70.

Battaglia E. 1954. Assenza si centromero localizzato in Heleocharis uniglumis (Link) Schult. – Caryologia 6: 319-332.

Battaglia E. 1955. A consideration of a new type of meiosis (mis-meiosis) in Juncaceae (Luzula) and Hemiptera. – Bull. Torrey Bot. Club 82: 383-396.

Battaglia E, Boyes JW. 1955. Post-reductional meiosis: its mechanism and causes. – Caryologia 8: 87-133.

Baum BR. 1968. Delimitation of the genus Avena (Gramineae). – Can. J. Bot. 46: 121-132.

Baum BR. 1969. The use of lodicule type in assessing the origin of Avena fatuoids. – Can. J. Bot. 47: 931-944.

Baum BR. 1973. The genus Danthoniastrum, about its circumscription, past and present status, and some taxonomic principles. – Österr. Bot. Zeitschr. 122: 51-57.

Baum BR. 1975. Cladistic analysis of the diploid and hexaploid oats (Avena, Poaceae) using numerical techniques. – Can. J. Bot. 53: 2115-2127.

Baum BR. 1977. Oats: wild and cultivated. A monograph of the genus Avena L. (Poaceae). – Biosyst. Res. Inst., Ottawa, Canada, Monogr. 14.

Baum BR. 1987. Numerical taxonomic analyses of the Poaceae. – In: Soderstrom TR, Hilu KH, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 334-342.

Baum BR, Appels R. 1992. Evolutionary change at the 5S DNA loci of species in the Triticeae. – Plant Syst. Evol. 183: 195-208.

Baum BR, Bailey LG. 1990. Key and synopsis of North American Hordeum species. – Can. J. Bot. 68: 2433-2442.

Baum BR, Estabrook GF. 1996. Impact of outgroup inclusion on estimates by parsimony of undirected branching of ingroup phylogenetic lines. – Taxon 45: 243-257.

Baum BR, Tulloch AP, Bailey LG. 1980. A survey of epicuticular waxes among genera of Triticeae I. Ultrastructure of glumes and some leaves as observed with the scanning electron microscope. – Can. J. Bot. 58: 2467-2480.

Baum BR, Estes JR, Pushpendra K, Gupta PK. 1987. Assessment of the genomic system of classification in the Triticeae. – Amer. J. Bot. 74: 1388-1395.

Baum BR, Tulloch AP, Bailey LG. 1989. Epicuticular waxes of the genus Hordeum: a survey of their chemical composition and ultrastructure. – Can. J. Bot. 67: 3219-3226.

Baum BR, Edwards T, Johnson DA. 2009. Phylogenetic relationships among diploid Aegilops species inferred from 5S rDNA units. – Mol. Phylogen. Evol. 53: 34-44.

Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset MT. 2002. Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). – Mol. Phylogen. Evol. 22: 303-314.

Bayer C, Appel O. 1998. Joinvilleaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 249-251.

Beaman RS. 1989. Systematics of Tillandsia subgenus Pseudalcantarea (Bromeliaceae) and cladistic relationships of the Bromelioideae, Pitcairnioideae, and Tillandsioideae. – M.Sc. thesis, University of Florida, Gainesville, Florida.

Beetle AA. 1943. The North American variations of Distichlis spicata. – Bull. Torrey Bot. Club 70: 638-650.

Beetle AA. 1945. Distichlis spicata in Australia. – Rhodora 47: 148.

Beetle AA. 1946. Studies in the genus Scirpus L. VIII. Notes on its taxonomy, phylogeny and distribution. – Amer. J. Bot. 33: 660-666.

Beetle AA. 1955a. The grass genus Distichlis. – Rev. Argentina Agron. 22: 86-94.

Beetle AA. 1955b. The four subfamilies of the Gramineae. – Bull. Torrey Bot. Club 82: 196-197.

Beetle AA, Manrique Forceck E, Jaramillo Luque V, Guerreo Sánchez P, Miranda Sánchez A, Núñez Tancredi I, Chimal Hernández A. 1987. Las gramíneas de México 2. – Secretaría de Agricultura y Recursos Hidráulicos, México.

Begum M. 1966. Sporogenesis and the development of gametophtes in Eriocaulon quinquangulare Linn. – Curr. Sci. 35: 262-263.

Begum M. 1968. Embryological studies in Eriocaulon quinquangulare L. – Proc. Indian Acad. Sci., Sect. B, 67: 148-156.

Bell HL. 2007. Phylogenetic relationships within Chloridoideae (Poaceae) with emphasis on subtribe Monanthochloinae. – Ph.D. diss., Claremont Graduate University, Claremont, California.

Bell HL, Columbus JT. 2008. Proposal for an expanded Distichlis (Poaceae, Chloridoideae): support from molecular, morphological, and anatomical characters. – Syst. Bot. 33: 536-551.

Bell TL, Pate JS. 1993. Morphotypic differentiation in the SW Australian restiad Lyginia barbata R. Br. (Restionaceae). – Aust. J. Bot. 41: 91-104.

Benko-Iseppson AM, Wanderley MGL. 2002. Cytogenetic studies on Brazilian Xyris species (Xyridaceae). – Bot. J. Linn. Soc. 138: 245-252.

Benner U, Schnepf E. 1975. Die Morphologie der Nektarausscheidung bei Bromeliaceen: Beteiligung des Golgi-Apparates. – Protoplasma 85: 337-349.

Bennetzen JL. 2007. Patterns in grass genome evolution. – Curr. Opinion Plant Biol. 10: 176-181.

Bentham G. 1881. Notes on Gramineae. – Bot. J. Linn. Soc. 19: 14-134.

Benzing DH. 1976. Bromeliad trichomes: structure, function, and ecological significance. – Selbyana 1: 330-348.

Benzing DH. 1980. The biology of the Bromeliads. – Mad River Press, Eureka, California.

Benzing DH. 1990. Vascular epiphytes. – Cambridge University Press, Cambridge.

Benzing DH. 1994. How much is known about Bromeliaceae in 1994? – Selbyana 15: 1-7.

Benzing DH. 2000. Bromeliaceae – Profile of an adaptive radiation. – Cambridge University Press, Cambridge.

Benzing DH, Renfrow A, 1974. The mineral nutrition of Bromeliaceae. – Bot. Gaz. 135: 281-288.

Benzing DH, Henderson K, Kessel B, Sulak J. 1976. The absorptive capacities of bromeliad trichomes. – Amer. J. Bot. 63: 1009-1014.

Benzing DH, Seemann J, Renfrow A. 1978. The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection. – Amer. J. Bot. 65: 359-365.

Benzing DH, Givnish TJ, Bermudes D. 1985. Absorptive trichomes in Brocchinia reducta (Bromeliaceae) and their evolutionary and systematic significance. – Syst. Bot. 10: 81-91.

Berger CA. 1946. The cytology of Luzula. – Amer. J. Bot. 36: 794.

Bergner I, Jensen U. 1989. Phytoserological contribution to the systematic placement of the Typhales. – Nord. J. Bot. 8: 447-456.

Bernardello LM, Galetto L, Juliani HR. 1991. Floral nectar, nectary structure and pollinators in some Argentinian Bromeliaceae. – Ann. Bot., N. S., 67: 401-411.

Bernardello LM, Galetto L, Jaramillo J, Grijalba E. 1994. Floral nectar chemical composition of some species from reserva Río Guajalito, Ecuador. – Biotropica 26: 113-116.

Berry PE. 1999. 212B. Rapateaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 63, Nord. J. Bot., Copenhagen, pp. 39-45.

Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin P-A. 2009. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. – Mol. Biol. Evol. 26: 1909-1919.

Besnard G, Christin P-A, Malé P-J G, Coissac E, Ralimanana H, Vorontsova MS. 2013. Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar. – Ann. Bot. 112: 1057-1066.

Bess EC, Doust AN, Kellogg EA. 2005. A naked gass in the ‘bristle clade’: a phylogenetic and developmental study of Panicum section Bulbosa (Paniceae: Poaceae). – Intern. J. Plant Sci. 166: 371-381.

Bess EC, Doust AN, Davidse G, Kellogg EA. 2006. Zuloagaea, a new genus of neotropical grass within the “Bristle Clade” (Poaceae: Paniceae). – Syst. Bot. 31: 656-670.

Bessey EA. 1917. The phylogeny of the grasses. – Rep. Michigan Acad. Sci. 19: 239-245.

Betancur J, Salinas NR. 2006. El ocaso de Pseudaechmea (Bromeliaceae: Bromelioideae): the Pseudaechmea (Bromeliaceae: Bromelioideae) twilight. – Caldasia 28: 157-164.

Bews JW. 1929. The world’s grasses: their differentiation, distribution, economics, and ecology. – Longmans, Green & Co., London.

Bhanwra RK. 1988. Embryology in relation to systematics of Gramineae. – Ann. Bot., N. S., 62: 215-233.

Bhanwra RK, Kaur N, Garg A. 1991. Embryological studies in some grasses and their taxonomic significance. – Bot. J. Linn. Soc. 107: 405-417.

Bhanwra RK, Sharma ML, Vij SP. 2001. Comparative embryology of Bambusa tulda Roxb. and Thyrsostachys siamensis Gamble (Poaceae: Bambuseae). – Bot. J. Linn. Soc. 135: 113-124.

Bir SS, Sahni M. 1985. Cytological investigations on some grasses from Punjab Plain, North India. – Proc. Indian Natl. Sci. Acad., Part B, Biol. Sci. 5: 609-626.

Bir SS, Sidhu M, Kamra S. 1982. Cytological studies on certain sedges from Punjab, India. – Cell Chromosome Res. 5: 25-28.

Bir SS, Sidhu M, Kamra S. 1986. Karyotypic studies on certain members of Cyperaceae from Punjab, North West India. – Cytologia 51: 95-106.

Bir SS, Cheema P, Kumari S, Sidhu M. 1993. Occurrence of B-chromosomes and karyotypic analysis in sedge genus Eleocharis R. Br. – Curr. Sci. 64: 322-325.

Birch JL, Cantrill DJ, Walsh NG, Murphy DJ. 2014. Phylogenetic investigation and divergence dating of Poa (Poaceae, tribe Poeae) in the Australasian region. – Bot. J. Linn. Soc. 175: 523-552.

Birch WR. 1963. Epiblast in Gramineae. – Nature 198(4877): 304.

Bisht MS, Mukai Y. 2002. Genome organization and polyploid evolution in the genus Eleusine (Poaceae). – Plant Syst. Evol. 233: 243-258.

Björkman SO. 1956. Zingeria biebersteiniana (Claus) P. Smirn. – one more grass species with the chromosome number 2n = 8. – Svensk Bot. Tidskr. 50: 513-515.

Björkman SO. 1960. Studies in Agrostis and related genera. – Symb. Bot. Upsal. 17(1): 1-12.

Blake ST. 1939. A monograph of the genus Eleocharis in Australia and New Zealand. – Proc. Roy. Soc. Queensland 50: 88-132.

Blake ST. 1972a. Neurachne and its allies (Gramineae). – Contr. Queensland Herb. 13: 1-53.

Blake ST. 1972b. Plinthanthesis and Danthonia and a review of the Australian species of Leptochloa (Gramineae). – Contr. Queensland Herbarium 14: 1-19.

Blakey CA, Goldman SL, Dewald CL. 2001. Apomixis in Tripsacum: comparative mapping of a multigene phenomenon. – Genome 44: 222-230.

Blaner A, Schneider J, Röser M. 2014. Phylogenetic relationships in the grass family (Poaceae) based on the nuclear single copy locus topoisomerase 6 compared with chloroplast DNA. – Syst. Biodivers. 1: 111-124.

Blaser NW. 1941a. Studies in the morphology of the Cyperaceae I. Morphology of flowers: A. Scirpoid genera. – Amer. J. Bot. 28: 542-551.

Blaser NW. 1941b. Studies in the morphology of the Cyperaceae I. Morphology of flowers: B. Rhynchosporoid genera. – Amer. J. Bot. 28: 832-838.

Blaser NW. 1944. Studies in the morphology of the Cyperaceae II. The prophyll. – Amer. J. Bot. 31: 53-64.

Blattner FR. 2004. Phylogenetic analysis of Hordeum (Poaceae) as inferred by nuclear rDNA ITS sequences. – Mol. Phylogen. Evol. 33: 289-299.

Böcher TW. 1972. Leaf anatomy in Sporobolus rigens (Tr.) Desv. (Gramineae). – Bot. Not. 125: 344-360.

Bodard M. 1962. Notes préliminaires à la révision de genre Bulbostylis (Cypéracées). – Bull. Soc. Bot. France 108: 307-310.

Bodard M. 1963. Première contribution à la revision du genre Bulbostylis (Cyperaceae) en Afrique. – Ann. Fac. Sci. Univ. Dakar 9: 51-80.

Böhling N, Scholz H. 2003. The Gramineae (Poaceae) flora of the Southern Aegean islands (Greece). Checklist, new records, internal distribution. – Ber. Inst. Landschafts-Pflanzenökologie Univ. Hohenheim, Beih. 16.

Böhme S. 1988. Bromelienstudien III. Vergleichende Untersuchungen zu Bau, Lage und systematischer Verwertbarkeit der Septalnektarien von Bromeliaceen. – Trop. Subtrop. Pflanzenwelt 62: 125-274.

Bonde SD. 1986. A new gramineous stem from the Deccan Intertrappean beds of Nawargaon in Wardha District, Majharashtra, India. – Biovigyanam 12: 39-43.

Bonnefille R, Hamilton AC, Linder HP, Riollet G. 1990. 30,000-Year-old fossil Restionaceae pollen from central equatorial Africa and its biogeographical significance. – J. Biogeogr. 17: 307-314.

Booth TA, Richards AJ. 1976. Studies in the Hordeum murinum aggregate I. Morphology. – Bot. J. Linn. Soc. 72: 149-159.

Booth TA, Richards AJ. 1978. Studies in the Hordeum murinum L. aggregate: disc electrophoresis of seed proteins. – Bot. J. Linn. Soc. 76: 115-125.

Bor NL. 1954. Notes on Asiatic grasses XXII. Trikeraia Bor, a new genus of Stipeae. – Kew Bull. 9: 555-557.

Bor NL. 1960. The grasses of Burma, Ceylon, India and Pakistan (excluding Bambuseae). – Pergamon Press, Oxford.

Borges RLM de, Santos F de A dos, Giuletti AM. 2009. Comparative pollen morphology and taxonomic considerations in Eriocaulaceae. – Rev. Palaeobot. Palynol. 154: 91-105.

Borre A van den, Watson L. 1994. The infrageneric classification of Eragrostis (Poaceae). – Taxon 43: 383-422.

Borre A van den, Watson L. 1997. On the classification of the Chloridoideae (Poaceae). – Aust. Syst. Bot. 10: 491-531.

Borre A van den, Watson L. 2000. On the classification of the Chloridoideae: results from morphological and leaf anatomical data analyses. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, Victoria, pp. 180-183.

Borrill M. 1962. The experimental taxonomy of Anthoxanthum species. – Proc. Linn. Soc. London 1960: 106-109.

Borrill M. 1963. Experimental studies of evolution in Anthoxanthum (Gramineae). – Genetica 34: 183-210.

Bortiri E, Coleman-Derr D, Lazo G, Anderson O, Gu Y. 2008. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes. – BMC Research Notes 1: 61-68.

Borwein B, Goetsee ML, Krupko S. 1949. Development of the embryo sac of Restio dodii and Elegia racemosa. – J. South Afr. Bot. 15: 1-11.

Botha DJ, Schijff HP van der. 1976. The structure and ontogeny of the chlorenchyma in the stems of Elegia L. (Restionaceae). – J. South Afr. Bot. 42: 57-62.

Botha DJ, Schijff HP van der, Tonder EMA van. 1972. The position, structure and ontogeny of the stomata in Elegia vaginulata. – Tydskr. Natuurwet. 13: 193-199.

Bothmer R von. 1979. Revision of the Asiatic taxa of Hordeum sect. Stenostachys. – Bot. Tidsskr. 74: 117-147.

Bothmer R von, Jacobsen N. 1979. A taxonomic revision of Hordeum secalinum and H. capense. – Bot. Tidsskr. 74: 223-235.

Bothmer R von, Jacobsen N. 1980. Wild species of Hordeum (barley) in Argentina and Chile. – Geogr. Tidsskr. 80: 3-4, 18-21, 27.

Bothmer R von, Jacobsen N, Nicora E. 1980. Revision of Hordeum sect. Anisolepis Nevski. – Bot. Not. 130: 539-554.

Bothmer R von, Jacobsen N, Bagger Jørgensen R, Nicora E. 1982. Revision of the Hordeum pusillum group. – Nord. J. Bot. 2: 307-321.

Bothmer R von, Salomon B, Enomoto T, Watanabe O. 2005. Distribution, habitat and status for perennial Triticeae species in Japan. – Bot. Jahrb. Syst. 126: 317-346.

Boubier A-M. 1895. Remarques sur l’anatomie systématique des Rapateacées et des familles voisines. – Bull. Herb. Boiss. 3: 115-120.

Bouchenak-Khelladi Y. 2007. Grass evolution and diversificiation: a phylogenetic approach. – Ph.D. diss., Trinity College, Dublin.

Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Bank M van den, Chase MW, Hodkinson TR. 2008. Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. – Mol. Phylogen. Evol. 47: 488-505.

Bouchenak-Khelladi Y, Verboom GA, Hodkinson TR, Salamin N, François O, Ní Chonghaile G, Savolainen V. 2009. The origins and diversification of C4 grasses and savanna-adapted ungulates. – Global Change Biol. 15: 2397-2417.

Bouchenak-Khelladi Y, Savolainen V, Hodkinson TR. 2010. Diversification of the grasses (Poaceae): a phylogenetic approach to reveal macro-evolutionary patterns. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 451-475.

Bouchenak-Khelladi Y, Verboom GA, Savolainen V, Hodkinson TR. 2010. Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. – Biol. J. Linn. Soc. 162: 543-557.

Bouchenak-Khelladi Y, Muasya AM, Linder HP. 2014. A revised evolutionary history of Poales: origins and diversification. – Bot. J. Linn. Soc. 175: 4-16.

Bouchenak-Khelladi Y, Slingsby JA, Verboom GA, Bond WJ. 2014. Diversification of C4 grasses (Poaceae) does not coincide with their ecological dominance. – Amer. J. Bot. 101: 300-307.

Bouton JH, Brown RH, Bolton JK, Campagnoli RP. 1981. Photosynthesis of grass species differing in carbon dioxide fixation pathways. – Plant Physiol. 67: 433-437.

Bowden BN. 1971. Studies on Andropogon gayanus Kunth VI. The leaf nectaries of Andropogon gayanus var. bisquamulatus (Hochst.) Hack. (Gramineae). – Bot. J. Linn. Soc. 64: 77-80.

Bowden WM. 1959. Chromosome numbers and taxonomic notes on northern grasses I. Tribe Triticeae. – Can. J. Bot. 37: 1143-1151.

Bowden WM. 1960a. Chromosome numbers and taxonomic notes on northern grasses II. Tribe Festuceae. – Can. J. Bot. 38: 117-131.

Bowden WM. 1960b. Chromosome numbers and taxonomic notes on northern grasses III. Twenty-five genera. – Can. J. Bot. 38: 541-557.

Bowden WM. 1961. Chromosome numbers and taxonomic notes on northern grasses IV. Tribe Festuceae: Poa and Puccinellia. – Can. J. Bot. 39: 123-138.

Bowden WM. 1962. Cytotaxonomy of the native and adventive species of Hordeum, Eremopyrum, Secale, Sitanion and Triticum in Canada. – Can. J. Bot. 40: 1675-1711.

Bowden WM. 1965. Cytotaxonomy of the Eurasiatic and South American species of the barley genus, Hordeum L. – Can. J. Genet. Cytol. 7: 394-399.

Bowden WM. 1966. Chromosome numbers in seven genera of the tribe Triticeae. – Can. J. Genet. Cytol. 8: 130-136.

Bowman CM, Bonnard G, Dyer TA. 1983. Chloroplast DNA variation between species of Triticum and Aegilops. Location of the variation in the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. – Theor. Appl. Gen. 65: 247-262.

Boykin LM, Pockman WT, Lowrey TK. 2008. Leaf anatomy of Orcuttieae (Poaceae: Chloridoideae): more evidence of C4 photosynthesis without Kranz anatomy. – Madroño 55: 143-150.

Bozek M, Leitch AR, Leitch IJ, Záveská Drábková L, Kuta E. 2012. Chromosome and genome size variation in Luzula (Juncaceae), a genus with holocentric chromosomes. – Bot. J. Linn. Soc. 170: 529-541.

Brain CK. 1934. A key to the sedges (Cyperaceae) of Southern Rhodesia. – Proc. Rhodesia Sci. Assoc. 33: 51-96.

Brandenburg DM, Estes JR, Collins SL. 1991. A revision of Diarrhena (Poaceae) in the United States. – Bull. Torrey Bot. Club 118: 128-136.

Braselton JP. 1971. The ultrastructure of the non-localized kinetochores of Luzula and Cyperus. – Chromosoma 36: 89-99.

Braselton JP. 1981. The ultrastructure of the meiotic kinetochores of Luzula. – Chromosoma 82: 143-151.

Bremer K. 2002. Gondwanan evolution of the grass alliance of families (Poales). – Evolution 56: 1374-1387.

Brichambaut GP de, Sauvage C. 1954. Notes agrostologiques. –Bull. Soc. Sci. Nat. Maroc 34: 235-254.

Briggs BG. 1963. Chromosome numbers in Lepyrodia and Restio in Australia. – Contr. New South Wales Natl. Herb. 3: 223-232.

Briggs BG. 1966. Chromosome numbers of some Australian monocotyledons. – Contr. New South Wales Natl. Herb. 4: 24-34.

Briggs BG. 1987. Typhaceae. – In: George AS (ed), Flora of Australia 45, Australian Government Publ. Service, Canberra, pp. 8-10.

Briggs BG. 2000. What is significant – the wollemi pine or the southern rushes? – Ann. Missouri Bot. Gard. 87: 72-80.

Briggs BG. 2001. Proposal to conserve the name Leptocarpus (Restionaceae) with a conserved type. – Taxon 50: 919-921.

Briggs BG. 2004. Restionaceae (Poales) in the footsteps of Robert Brown. – Telopea 10: 499-503.

Briggs BG. 2014a. Leptocarpus (Restionaceae) enlarged to include Meeboldina and Stenotalis, with new subgenera and Western Australian species. – Telopea 16: 19-41.

Briggs BG. 2014b. Desmocladus (Restionaceae) enlarged to include the Western Australian genera Harperia, Kulinia and Onychosepalum. – Telopea 17: 29-33.

Briggs BG, Johnson LAS. 1998a. Georgeantha hexandra, a new genus and species of Ecdeiocoleaceae (Poales) from Western Australia. – Telopea 7: 307-312.

Briggs BG, Johnson LAS. 1998b. A guide to a new classification of Restionaceae and allied families. – In: Meney KA, Pate JS (eds) Australian rushes – biology, identification and conservation of Restionaceae and allied families, University of Western Australia Press, Nedlands, Western Australia, pp. 25-56.

Briggs BG, Johnson LAS. 1998c. New genera and species of Australian Restionaceae (Poales). – Telopea 7: 345-373.

Briggs BG, Johnson LAS. 1998d. New combinations arising from a new classification of non-African Restionaceae. – Telopea 8: 21-33.

Briggs BG, Johnson LAS. 1999. A guide to a new classification of Restionaceae and allied families. – In: Meney KA, Pate JS (eds), Australian rushes. Biology, identification and conservation of Restionaceae and allied families, University of Western Australia Press, Nedlands, Western Australia, pp. 25-56.

Briggs BG, Johnson LAS. 2000. Hopkinsiaceae and Lyginiaceae, two new families of Poales in Western Australia, with revisions of Hopkinsia and Lyginia. – Telopea 8: 477-502.

Briggs BG, Johnson LAS. 2001a. The genus Desmocladus (Restionaceae) and new species from the south of Western Australia and South Australia. – Telopea 9: 227-245.

Briggs BG, Johnson LAS. 2001b. New species of Harperia, Loxocarya, Onychosepalum, Platychorda and Tremulina (Restionaceae) in Western Australia. – Telopea 9: 247-257.

Briggs BG, Johnson LAS. 2004a. New Western Australian species of Hypolaena (Restionaceae) and a new section. – Telopea 10: 573-580.

Briggs BG, Johnson LAS. 2004b. New combinations in Chordifex (Restionaceae) from eastern Australia and new species from Western Australia. – Telopea 10: 683-700.

Briggs BG, Linder HP. 2009. A new subfamilial and tribal classification of Restionaceae (Poales). – Telopea 12: 333-345.

Briggs BG, Johnson LAS, Krauss SL. 1990. The species of Alexgeorgia, a Western Australian genus of the Restionaceae. – Aust. Syst. Bot. 3: 751-758.

Briggs BG, Marchant AD, Gilmore S, Porter CL. 2000. A molecular phylogeny of Restionaceae and allies. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 661-671.

Briggs BG, Marchant AD, Perkins AJ. 2010. Phylogeny and features in Restionaceae, Centrolepidaceae and Anarthriaceae (restiid clade of Poales). – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 357-388.

Briggs BG, Marchant AD, Perkins AJ. 2014. Phylogeny of the restiid clade (Poales) and implications for the classification of Anarthriaceae, Centrolepidaceae and Australian Restionaceae. – Taxon 63: 24-46.

Brink D, Wet JMJ de. 1983. Supraspecific groups in Tripsacum (Gramineae). – Syst. Bot. 8: 243-249.

Britton NL. 1907. The sedges of Jamaica. – Bull. Dept. Agric. Jamaica 5: 10.

Brix K. 1974. Sexual reproduction in Eragrostis curvula (Schrad.) Nees. – Zeitschr. Pflanzenzüchtung 71: 25-32.

Brown GK, Gilmartin AJ. 1984. Stigma structure and variation in Bromeliaceae – neglected taxonomic characters. – Brittonia 36: 364-374.

Brown GK, Gilmartin AJ. 1986. Chromosomes of the Bromeliaceae. – Selbyana 9: 88-93.

Brown GK, Gilmartin AJ. 1988. Comparative ontogeny of bromeliaceous stigmas. – In: Leins P, Tucker SC, Endress PK (eds), Aspects of floral development, J. Cramer, Berlin, Stuttgart, pp. 191-204.

Brown GK, Gilmartin AJ. 1989a. Stigma types in Bromeliaceae – a systematic survey. – Syst. Bot. 14: 110-132.

Brown GK, Gilmartin AJ. 1989b. Chromosome numbers in Bromeliaceae. – Amer. J. Bot. 76: 657-665.

Brown GK, Leme EMC. 2000. Cladistic analysis in the nidularioid complex. – In: Leme EMC(ed), Nidularium – bromeliads of the Atlantic forest, Sexante Artes, Rio de Janeiro, pp. 240-247.

Brown GK, Leme EMC. 2005. The re-establishment of Andrea (Bromeliaceae: Bromelioideae), a monotypic genus from southeastern Brazil threatened with extinction. – Taxon 54: 63-70.

Brown GK, Terry RG. 1992. Petal appendages in Bromeliaceae. – Amer. J. Bot. 79: 1051-1071.

Brown SW. 1950. Spurious secondary associations and asymmetric spindles in a Luzula. – Cytologia 15: 259-268.

Brown SW. 1954. Mitosis and meiosis in Luzula campestris DC. – Univ. Calif. Publ. Bot. 27: 231-278.

Brown WV. 1948. A cytological study in the Gramineae. – Amer. J. Bot. 35: 382-395.

Brown WV. 1950. A cytological study of some Texas grasses. – Bull. Torrey Bot. Club 77: 63-76.

Brown WV. 1951. Chromosome numbers of some Texas grasses. – Bull. Torrey Bot. Club 78: 292-299.

Brown WV. 1958a. Leaf anatomy in grass systematics. – Bot. Gaz. 119: 170-178.

Brown WV. 1958b. Apomixis as related to geographical distribution in the panicoid grass tribes. – J. South Afr. Bot. 24: 191-200.

Brown WV. 1959. The epiblast and coleoptile of the grass embryo. – Bull. Torrey Bot. Club 86: 13-16.

Brown WV. 1960. The morphology of the grass embryo. – Phytomorphology 10: 215-323.

Brown WV. 1965. The grass embryo: a rebuttal. – Phytomorphology 15: 274-284.

Brown WV. 1977. The Kranz syndrome and its subtypes in grass systematics. – Mem. Torrey Bot. Club 23: 1-97.

Brown WV, Emery WHP. 1957. Some South African apomictic grasses. – J. South Afr. Bot. 23: 123-125.

Brown WV, Emery WHP. 1958. Apomixis in the Gramineae: Panicoideae. – Amer. J. Bot. 45: 253-263.

Brown WV, Johnson SC. 1962. The fine structure of the grass guard cell. – Amer. J. Bot. 49: 110-115.

Brown WV, Harris WE, Graham JD. 1959. Grass morphology and systematics I. The internode. – Southw. Natur. 4: 115-125.

Browning J. 1992. Hypogynous bristles and scales in basal florets in amphicarpous Schoenoplectus species (Cyperaceae). – Nord. J. Bot. 12: 171-175.

Browning J. 1994. Floret position in Costularia (Cyperaceae): a new interpretation. – Nord. J. Bot. 14: 653-655.

Browning J, Gordon-Gray KD. 1993. Notes on tropical Africa Cyperaceae. – Nord. J. Bot. 13: 507-510.

Browning J, Gordon-Gray KD. 1995. Studies in Cyperaceae in southern Africa 24. Three species of Scirpoides. – South Afr. J. Bot. 60: 315-320.

Browning J, Gordon-Gray KD. 1999. The inflorescence in southern Africa species of Bolboschoenus (Cyperaceae). – Ann. Bot. Fenn. 36: 81-97.

Browning J, Gordon-Gray KD, Smith SG. 1995. Achene structure and taxonomy of North American Bolboschoenus (Cyperaceae). – Brittonia 47: 433-445.

Browning J, Gordon-Gray KD, Smith SG. 1997. Achene morphology and pericarp anatomy of the type specimens of the Australian and New Zealand species of Bolboschoenus (Cyperaceae). – Aust. Syst. Bot. 10: 49-58.

Bruhl JJ. 1990. Taxonomic relationships and photosynthetic pathways in the Cyperaceae. – Ph.D. diss., Australian National University, Canberra.

Bruhl JJ. 1991. Comparative development of some taxonomically critical floral/inflorescence features in Cyperaceae. – Aust. J. Bot. 39: 119-127.

Bruhl JJ. 1994. Amphicarpy in the Cyperaceae, with novel variation in the wetland sedge Eleocharis caespitosissima Baker. – Aust. J. Bot. 42: 441-448.

Bruhl JJ. 1995. Sedge genera of the world: relationships and a new classification of the Cyperaceae. – Aust. Syst. Bot. 8: 125-305.

Bruhl JJ, Whalley RDB (Wal). 2011. Walwhalleya jacobsiana (Poaceae, Paniceae), a new, rare species of grass from South Australia. – Telopea 13: 77-92.

Bruhl JJ, Wilson KL. 2007 [2008]. Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpon MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 99-148.

Bruhl JJ, Watson L, Dallwitz MJ. 1992. Genera of Cyperaceae: interactive identification and information retrieval. – Taxon 41: 225-234.

Bruhl JJ, Wilson PG, Wills KE. 2006. Grass not fungus: Walwhalleya nom. nov. (Poaceae, Paniceae). – Aust. Syst. Bot. 19: 327-328.

Brysting AK, Fay MF, Leitch IJ, Aiken SG. 2004. One or more species in the Arctic grass genus Dupontia? – A contribution to the Panarctic flora project. – Taxon 53: 365-382.

Buchenau F. 1865. Der Blüthenstand der Juncaceen. – Jahrb. Wiss. Bot. 4: 385-440.

Buchenau F. 1875. Monographie der Juncaceen vom Cap. – Abh. Naturwiss. Ver. Bremen 4: 393-512.

Buchenau F. 1885. Kritische Zusammenstellung der europäischen Juncaceen. – Engl. Bot. Jahrb. Syst. 7: 153-176.

Buchenau F. 1888. Juncaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(5), W. Engelmann, Leipzig, pp. 1-7.

Buchenau F. 1890a. Monographia Juncacearum. – Engl. Bot. Jahrb. Syst. 12: 1-495.

Buchenau F. 1890b. Monographia Juncacearum. Supplement. – Engl. Bot. Jahrb. Syst. 12: 71-74.

Buchenau F. 1898. Luzula campestris und verwandte Arten. – Österr. Bot. Zeitschr. 48: 161-167, 209-220, 243-246, 284-297.

Buckler ES, Holtsford TP. 1996a. Zea systematics: ribosomal ITS evidence. – Mol. Biol. Evol. 13: 612-622.

Buckler ES, Holtsford TP. 1996b. Zea ribosomal repeat evolution and substitution patterns. – Mol. Biol. Evol. 13: 623-632.

Budnowski A. 1922. The septal glands of the Bromeliaceae. – Bot. Arch. 1: 47-80.

Buell CR. 2009. Poaceae genomes: going from unattainable to becoming a model clade for comparative plant genomics. – Plant Physiol. 149: 111-116.

Bugg C, Smith C, Blackstock N, Simpson D, Ashton PA. 2013. Consistent and variable leaf anatomical characters in Carex (Cyperaceae). – Bot. J. Linn. Soc. 172: 371-384.

Bulinska-Rodomska Z, Lester RN. 1988. Intergeneric relationships of Lolium, Festuca and Vulpia (Poaceae) and their phylogeny. – Plant Syst. Evol. 159: 217-227.

Burkart A. 1975. Evolution of grasses and grasslands in South America. – Taxon 24: 53-66.

Burke SV, Clark LG, Triplett JK, Grennan CP, Duvall MR. 2014. Biogeography and phylogenomics of New World Bambusoideae (Poaceae), revisited. – Amer. J. Bot. 101: 886-891.

Burman AG. 1980. A new species of Paspalum (Gramineae) from Brazil. – Kew Bull. 35: 297-298.

Burman AG. 1985 [1987]. The genus Thrasya H.B.K. (Gramineae). – Acta Bot. Venezuelica 14: 7-93.

Burson BL. 1975. Cytology of some apomictic Paspalum species. – Crop Sci. 15: 229-232.

Burson BL. 1978. Genome relations between Paspalum conspersum and two diploid Paspalum species. – Can. J. Genet. Cytol. 20: 365-372.

Burton GW. 1942. A cytological study of some species in the tribe Paniceae. – Amer. J. Bot. 29: 355-359.

Burt-Utley K, Utley JF. 1988. New and noteworthy species of Hechtia (Bromeliaceae) from Guerrero, Mexico. – Syst. Bot. 13: 276-282.

Butzin F. 1965. Neue Untersuchungen über die Blüte der Gramineae. – Ph.D. diss., Freie Universität Berlin, Germany.

Butzin F. 1970. Die systematische Gliederung der Paniceae. – Willdenowia 6: 179-192.

Butzin F. 1973. Die Namen der supragenerischen Einheiten der Gramineae (Poaceae). – Willdenowia 7: 113-168.

Butzin F. 1977. Evolution der Infloreszenzen in der Borstehhirsen-Verwandtschaft. – Willdenowia 8: 67-79.

Caceres MR. 1969. La anatomía foliar de Monanthochloë. – Rev. Fac. Ci. Agr. Univ. Nac. Cuyo 15: 39-45.

Cáceres ME, Mazzucato A. 1995. Cytological and embryological studies in Setaria cordobensis Herrmann and Setaria leiantha Hackel (Poaceae). – Caryologia Collation 48: 255-263.

Caetano-Anollés G. 2005. Evolution of genome size in the grasses. – Crop Sci. 45: 1809-1816.

Cahoon AB, Sharpe RM, Mysayphonh C, Thompson EJ, Ward AD, Lin A. 2010. The complete chloroplast genome of tall fescue (Lolium arundinaceum; Poaceae) and comparison of whole plastomes from the family Poaceae. – Amer. J. Bot. 97: 49-58.

Cai L-B, Wu Z-L. 1997. Studies on the biosystematicf relationships and geographic distribution of Trikeraia Bor and Stephanachne Keng. – Bull. Bot. Res (Zhiwuyanjiu: jikan) 17: 380-388.

Calderón CE, Soderstrom TR. 1973. Morphological and anatomical considerations of the grass subfamily Bambusoideae based on the new genus Maclurolyra. – Smithsonian Contr. Bot. 11: 1-55.

Calderón CE, Soderstrom TR. 1980. The genera of Bambusoideae (Poaceae) of the American continent: keys and comments. – Smithsonian Contr. Bot. 44: 1-27.

Cámara Hernández J, Gambino S. 1990. Ontogeny and morphology of Zea diploperennis inflorescences and the origin of maize (Zea mays ssp. mays). – Maydica 35: 113-124.

Cámara Hernández J, Gambino S. 1993. The synflorescence of Tripsacum dactyloides (Poaceae). – Beitr. Biol. Pflanzen 66: 295-303.

Cámara Hernández J, Miante Alzogaray AM. 1995. Polytely: a general character in Poaceae. – Beitr. Biol. Pflanzen 68: 249-261.

Cámara Hernández J, Rua G. 1992. The synflorescence of Poaceae. – Beitr. Biol. Pflanzen 66: 297-311.

Cambecèdes J, Vaillancourt RE, Potts BM. 1999. Morphological and genetic variation in Centrolepis paludicola and C. monogyna (Centrolepidaceae). – Aust. Syst. Bot. 12: 679-688.

Camelbeke K, Goetghebeur P. 1999. The ligule, a new diagnostic character in Scleria (Cyperaceae). – Syst. Geogr. Plants 68: 73-84.

Camelbeke K, Zijlstra G, Goetghebeur P. 2001. Nomenclature of genera and subdivisions of genera within Scleria P. J.Bergius (Cyperaceae). – Taxon 50: 479-486.

Campbell CS. 1986. Phylogenetic reconstructions and two new varieties in the Andropogon virginicus complex (Poaceae: Andropogoneae). – Syst. Bot. 11: 280-292.

Campbell CS, Kellogg EA. 1987. Sister group relationships of the Poaceae. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 217-224.

Campbell CS, Garwood PE, Specht LP. 1986. Bambusoid affinities of the North temperate genus Brachyelytrum (Gramineae). – Bull. Torrey Bot. Club 113: 135-141.

Campbell DHa. 1899. Studies on the flower and embryo of Sparganium. – Proc. Calif. Acad. Sci., Ser. III, Bot. 1: 293-328.

Campbell DHb. 1899. Notes on the structure of the embryo-sac in Sparganium and Lysichiton. – Bot. Gaz. 27: 153-166.

Campbell LM. 2004. Anatomy and systematics of Xyridaceae, with special reference to Aratitiyopea Steyerm. & P. E. Berry. – Ph.D. diss, The City University of New York, New York.

Campbell LM. 2005. Contributions towards a monograph of Xyridaceae: a revised nomenclature for Abolboda (Xyridaceae). – Harvard Pap. Bot. 10: 137-146.

Campbell LM, Stevenson DW. 2005. Vegetative anatomy of Aratitiyopea lopezii (Xyridaceae). – Acta Bot. Venez. 28: 395-407.

Campbell LM, Stevenson DW. 2007 [2008]. Inflorescence architecture and floral morphology in Aratitiyopea lopezii (Xyridaceae). – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 227-233.

Camus A. 1925. Lecomtella, genre nouveau de graminées malgaches. – Compt. Rend. Hedb. Sé. Acad. Sci. Paris 181: 567-568.

Camus A. 1943. Le genre Vulpia dans la flore française. – Not. Syst. 11: 124-131.

Camus EG. 1913. Les Bambusées. – Paul Lechevalier, Paris.

Canela MBF, Paz NPL, Wendt T. 2003. Revision of the Aechmea multiflora complex (Bromeliaceae). – Bot. J. Linn. Soc. 143: 189-196.

Carle R. 1992. Ananas. – In: Hänsel R, Keller K, Rimpler H, Schneider G (eds), Hagers Handbuch der pharmazeutischen Praxis, 5th ed., Springer, Berlin, Heidelberg, New York, pp. 272-276.

Carlquist SJ. 1960. Anatomy of Guayana Xyridaceae: Abolboda, Orectanthe, and Achlyphila. – Mem. New York Bot. Gard. 10: 65-117.

Carlquist SJ. 1961. Pollen morphology of Rapateaceae. – Aliso 5: 39-66.

Carlquist SJ. 1966. Anatomy of Rapateaceae. Roots and stems. – Phytomorphology 16: 17-38.

Carlquist SJ. 1969. Rapateaceae. – In: Metcalfe CE (ed), Anatomy of the monocotyledons 3, Oxford, pp. 128-145.

Carlquist SJ. 1976. Alexgeorgea, a bizarre new genus of Restionaceae from Western Australia. – Aust. J. Bot. 24: 281-295.

Carniel K. 1962. Beiträge zur Entwicklungsgeschichte des sporogenen Gewebes der Gramineen und Cyperaceen II. Cyperaceae. – Österr. Bot. Zeitschr. 109: 81-95.

Carniel K. 1972. Elektronenmikroskopische Analyse der Pollenentwicklung von Heleocharis palustris. – Österr. Bot. Zeitschr. 120: 223-234.

Caro JA. 1966. Las especies de Stipa de la region central Argentina. – Kurtziana 3: 7-119.

Caro JA. 1982. Sinopsis taxonómica de las gramíneas Argentinas. – Dominguezia 4: 1-51.

Caro JA, Sánchez E. 1971a. La identidad de Stipa brachychaeta Godron, S. caudata Trinius y S. bertrandii Philippi. – Darwiniana 16: 637-653.

Caro JA, Sánchez E. 1971b. Contribuciones al mejor conocimiento de las Chlorideae (Gramineae) argentinas. – Kurtziana 6: 219-232.

Caro JA, Sánchez E. 1973. Las especies de Stipa (Gramineae) del subgénero Jarava. – Kurtziana 7: 61-116.

Carolin RC, Jacobs SWL,Vesk M. 1977.The ultrastructure of Kranz cells in the family Cyperaceae. – Bot. Gaz. 138: 413-419.

Carter S. 1966. Juncaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-11.

Carvalho MLS de, Nakamura AT, Sajo M das G. 2009. Floral anatomy of neotropical species of Mayacaceae. – Flora 204: 220-227.

Castro NM. 1986. Estudos morphologicos dos órgãos vegetativos de especies de Paepalanthus Kunth (Eriocaulaceae). – Ph.D. diss., Instituto de Biociências, Universidad de São Paulo, Brazil.

Castroviejo S. 1995. Rhynchospora modesti-lucennoi, sp. nov. (Cyperaceae), from the western Mediterranean, Madagascar and Africa. – Nord. J. Bot. 15: 577-570.

Catalán P, Olmstead RG. 2000. Phylogenetic reconstruction of the genus Brachypodium P. Beauv. (Poaceae) from combined sequences of chloroplast ndhF gene and nuclear ITS. – Plant Syst. Evol. 220: 1-19.

Catalán P, Shi Y, Armstrong L, Draper J, Stace CA. 1995. Molecular phylogeny of the grass genus Brachypodium P. Beauv. based on RFLP and RAPD analysis. – Bot. J. Linn. Soc. 117: 263-280.

Catalán P, Kellogg EA, Olmstead RG. 1997. Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. – Mol. Phylogen. Evol. 8: 150-166.

Catalán P, Torrecilla P, Rodriguez JAL, Olmstead RG. 2004. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. – Mol. Phylogen. Evol. 31: 517-541.

Catling PM, Reznicek AA, Crins WJ. 1993. Carex juniperorum (Cyperaceae), a new species from northeastern North America, with a key to Carex sect. Phyllostachys. – Syst. Bot. 18: 496-501.

Cayouette J, Catling PM. 1992. Hybridization in the genus Carex with special reference to North America. – Bot. Rev. 58: 351-440.

Cayouette J, Morisset P. 1985. Chromosome studies on natural hybrids between maritime species of Carex (sections Phacocystis and Cryptocarpae) in northeastern North America and their taxonomic implication. – Can. J. Bot. 63: 1957-1985.

Cebolla Lozano C, Rivas Ponce MA. 2003. Catálogo del género Festuca L. (Poaceae) en la Península Ibérica. – Candollea 58: 189-213.

Čelakovský L. 1885. Über die Infloreszenz von Typha. – Flora 68: 617-630.

Čelakovský L. 1887. Über die ährchenartigen Partialinfloreszenzen der Rhynchosporen. – Ber. Deutsch. Bot. Ges. 5: 148-152.

Čelakovský L. 1889a. Über den Ährchenbau der brasilianischen Grasgattung Streptochaeta Schrad. – Sitzungsber. Königl. Böhm. Ges. Wiss. Prag, Math.-Naturwiss. Kl., 3: 14-42.

Čelakovský L. 1889b. Über die Blütenstände der Cariceen. – Sitzungsber. Königl. Böhm. Ges. Wiss. Prag, Math.-Naturwiss. Kl., 3: 91-113.

Čelakovský L. 1891. Über die Verwandtschaft von Typha und Sparganium. – Österr. Bot. Zeitschr. 41: 117-121, 154-160, 195-199, 224-228, 266-272.

Čelakovský L. 1897. Über die Homologien des Grasembryos. – Bot. Zeitschr. 55: 141-174.

Cerros-Tlatilpa R, Columbus JT, Barker NP. 2011. Phylogenetic relationships of Aristida and relatives (Poaceae, Aristidoideae) based on noncoding chloroplast (trnL-F, rpl16) and nuclear (ITS) DNA sequences. – Amer. J. Bot. 98: 1868-1886.

Chacón J, Madriñán S, Chase MW, Bruhl JJ. 2006. Molecular phylogenetics of Oreobolus (Cyperaceae) and the origin and diversification of the American species. – Taxon 55: 359-366.

Chanda S. 1965. On the pollen morphology of the Flagellariaceae with reference to taxonomy. – Trans. Bose Res. Inst. Calcutta 8: 53-55.

Chanda S. 1966. On the pollen morphology of the Centrolepidaceae, Restionaceae and Flagellariaceae, with special reference to taxonomy. – Grana Palynol. 6: 355-415.

Chanda S, Ferguson IK. 1978. Pollen morphology of Calorophus and Empodisma (Restionaceae) and its taxonomic significance. – Kew Bull. 33: 411-415.

Chanda S, Rowley S. 1967. Apertural types in pollen of the Restionaceae and Flagellariaceae. – Grana Palynol. 7: 16-36.

Chandra N. 1963. Morphological studies in the Gramineae III. On the nature of the gynoecium in the Gramineae. – J. Indian Bot. Soc. 42: 252-259.

Chao C-S. 1989. A revision of the species described under Arundinaria (Gramineae) in Southeast Asia and Africa. – Kew Bull. 44: 349-367.

Chao C-S, Renvoize SA. 1988a. Two new bamboos from the eastern Himalaya and southern Burma. – Kew Bull. 43: 409-413.

Chao C-S, Renvoize SA. 1988b. Notes on some species of Phyllostachys (Gramineae: Bambusoideae). – Kew Bull. 43: 415-422.

Chao C-Y. 1964. Megasporogenesis, megagametogenesis and embryogeny in Paspalum orbiculare. – New Asia College Acad. Ann. 6: 15-25.

Chao C-Y. 1974. Megasporogenesis and megagametogenesis in Paspalum commersonii and P. longifolium at two polyploid levels. – Bot. Not. 127: 267-275.

Chapman GP. 1990. The widening perspective: reproductive biology of bamboos, some dryland grasses and cereals. – In: Champman GP (ed), Reproductive versatility in the grasses, Cambridge University Press, Cambridge, pp. 240-257.

Chapman GP (ed). 1992. Grass evolution and domestication. – Cambridge University Press, London.

Chapman GP. 1996. The biology of grasses. – CAB International, Wallingford, England.

Charmet G, Balfourier F. 1994. Isozyme variation and species relationships in the genus Lolium L. (rye grasses, Gramineae). – Theor. Appl. Gen. 87: 641-649.

Chase A. 1906. Notes on genera of Paniceae I. – Proc. Biol. Soc. Washington 19: 184-192.

Chase A. 1908a. Notes on genera of Paniceae II. – Proc. Biol. Soc. Washington 21: 1-10.

Chase A. 1908b. Notes on genera of Paniceae III. – Proc. Biol. Soc. Washington 21: 175-188.

Chase A. 1911. Notes on genera of Paniceae IV. – Proc. Biol. Soc. Washington 24: 103-160.

Chase A. 1924. Aciachne, a cleistogamous grass of the high Andes. – J. Washington Acad. Sci. 14: 364-366.

Chase A. 1929. The North American species of Paspalum. – Contr. U.S. Natl. Herb. 28: 1-310.

Chase A. 1964. First book of grasses. The structure of grasses explained for beginners. – Smithsonian Institution, Washington, D.C.

Chaudhary SA. 1989. Grasses of Saudi Arabia. – Riyadh.

Chaudhary SA, Cope TA. 1983. Studies in the flora of Arabia VI. A checklist of grasses of Saud Arabia. – Arab Gulf J. Sci. Res. 1: 313-354.

Cheadle VI. 1955a. Conducting elements in the xylem of the Bromeliaceae. – Bull. Bromeliad Soc. 5: 3-7.

Cheadle VI. 1955b. The taxonomic use of specialization of vessels in the metaxylem of Gramineae, Cyperaceae, Juncaceae, and Restionaceae. – J. Arnold Arbor. 36: 141-157.

Cheadle VI, Kosakai H. 1972. Vessels in the Cyperaceae. – Bot. Gaz. 133: 214-223.

Cheadle VI, Kosakai H. 1974. Vessels in Juncales I. Juncaceae and Thurniaceae. – Phytomorphology 23: 80-87.

Cheadle VI, Kosakai H. 1975. Vessels in Juncales II. Centrolepidaceae and Restionaceae. – Amer. J. Bot. 62: 1017-1026.

Cheadle VI, Kosakai H. 1982. Occurrence and specialization of vessels in Xyridales. – Nord. J. Bot. 2: 97-109.

Chemisquy MA, Giussani LM, Scataglini MA, Kellogg EA, Morrone O. 2010. Phylogenetic studies favour the unification of Pennisetum, Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid and morphological analysis, and nomenclatural combinations in Cenchrus. – Ann. Bot. 106: 107-130.

Chen C-H, Veldkamp J-F, Kuoh C-S. 2012. Taxonomic revision of Microstegium s.str. (Andropogoneae, Poaceae). – Blumea 57: 160-189.

Chen R, Li X, Song W, Liang G, Zhang P, Lin R, Zong W, Chen C, Fung H. 2004. Chromosome atlas of major economic plant genome in China (Tomus IV). Chromosome atlas of various bamboo species. – Science Press, Beijing.

Chennaveeraiah MS. 1960. Karyomorphologic and cytotaxonomic studies in Aegilops. – Acta Horti Gothob. 23: 85-178.

Chermezon H. 1919a. Mariscus (Cypéracées) nouveaux de Madagascar. – Bull. Mus. Natl. Hist. Nat. Paris 25: 300-304, 405-410.

Chermezon H. 1919b [1920]. Cyperus nouveaux de Madagascar. – Bull. Soc. Bot. France 66: 338-353.

Chermezon H. 1920 [1921]. Diagnoses de Pycreus et Cyperus nouveaux de Madagascar. – Bull. Soc. Bot. France 67: 326-330.

Chermezon H. 1921. Scirpées nouvelles de Madagascar. – Bull. Soc. Bot. France 68: 417-426.

Chermezon H. 1922a. Sur la position systématique du genre Remirea. – Bull. Soc. Bot. France 69: 809-814.

Chermezon H. 1922b. Révision des Cypéracées de Madagascar 2. – Ann. Mus. Col. Marseille 30: 1-62.

Chermezon H. 1925a. Sur la dissémination de quelques Cypéracées. – Bull. Soc. Bot. France 71: 849-861.

Chermezon H. 1925b. Diagnoses des Cypéracées nouvelles de Madagascar. – Bull. Soc. Bot. France 72: 18-22.

Chermezon H. 1925c. Observations sur quelques Cypéracées de Madagascar. – Bull. Soc. Bot. France 72: 168-174.

Chermezon H. 1929. Les Cypéracées à feuille ensiformes. – Arch. Bot. Bull. Mens. 3: 73-101.

Chermezon H. 1931. Les Cypéracées du Haut-Oubangui. – Arch. Bot. (Caen) 4, Mém. 7: 1-25.

Chermezon H. 1934. Cypéracées nouvelles du Congo Belge. – Rev. Zool. Bot. Afr. 24: 294-299.

Chermezon H. 1936. Contribution à la Flore Cypérologique du Sénégal. Cypéracées récoltées par M. Trochain. – Arch. Bot. (Caen) 7, Mém. 4: 1-32.

Chermezon H. 1937. Cypéracées. – In: Humbert H (ed), Flore de Madagascar, Tananarive.

Chevalier A. 1933. Deux cypéracées arbustiformes remarquables de l’ouest africain. – Reprint from “La Terre et la Vie” No de Mars 1933.

Chia L-C, Fung H-L, But P P-H. 1983. Notes on Gramineae: Bambusoideae in Hong Kong. – Kew Bull. 37: 591-595.

Chiapella J. 2000. The Deschampsia cespitosa complex in central and northern Europe: a morphological analysis. – Bot. J. Linn. Soc. 134: 495-512.

Chiapella J. 2007. A molecular phylogenetic study of Deschampsia (Poaceae: Aveneae) inferred from nuclear ITS and plastid trnL sequence data: support for the recognition of Avenella and Vahlodea. – Taxon 56: 55-64.

Chiapella J. 2008. On Jarava, or putting the cart before the horse. – Taxon 57: 695-697.

Chiapella J, Probatova NS. 2003. The Deschampsia cespitosa complex (Poaceae: Aveneae) with special reference to Russia. – Bot. J. Linn. Soc. 142: 213-228.

Chiapella J, Zuloaga FO. 2010. A revision of Deschampsia, Avenella, and Vahlodea (Poaceae, Poeae, Airinae) in South America. – Ann. Missouri Bot. Gard. 97: 141-162.

Chin TC. 1941. The cytology of some wild species of Hordeum. – Ann. Bot., N. S., 5: 535-545.

Chippindall LKA. 1959. A guide to the identification of grasses in South Africa. – In: Meredit (ed), The grasses and pastures of South Africa, Parow, C. P., pp. 1-527.

Choo MK, Soreng RJ, Davis JI. 1994. Phylogenetic relationships among Puccinellia and allied genera of Poaceae as inferred from chloroplast DNA restriction site variation. – Amer. J. Bot. 81: 119-126.

Chopanov P, Yurtsev VN. 1976. Chromosome numbers of some grasses of Turkmenia II. – Bot. Žurn. 61: 1240-1244.

Christensen J, Horner H, Lersten N. 1972. Pollen wall and tapetal orbicular wall development in Sorghum bicolor (Gramineae). – Amer. J. Bot. 59: 43-58.

Christin P-A, Besnard G.2009. Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes. – Amer. J. Bot. 96: 2234-2239.

Christin P-A, Salamin N, Savolainen V, Besnard G. 2007. A phylogenetic study of the phosphoenolpyruvate carboxylase multigene family in Poaceae: understanding the molecular changes linked to C4 photosynthesis evolution. – Kew Bull. 62: 455-562.

Christin P-A, Salamin N, Savolainen V, Duvall M, Besnard G. 2007. C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. – Curr. Biol. 17: 1241-1247.

Christin P-A, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. – Curr. Biol. 18: 37-43.

Christin P-A, Petitpierre B, Salamin N, Büchi L, Besnard G. 2009. Evolution of C4 phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype. – Mol. Biol. Evol. 26: 357-365.

Christin P-A, Salamin N, Kellogg EA, Vicentini A, Besnard G. 2009. Integrating phylogeny into studies of C4 variation in the grasses. – Plant Physiol. 149: 82-87.

Christin P-A, Edwards EJ, Besnard G, Boxall SF, Gregory R, Kellogg EA, Hartwell J, Osborne CP. 2012. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. – Curr. Biol. 22: 445-449.

Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical enablers and the evolution of C4 photosynthesis in grasses. – Proc. Natl. Acad. Sci. U.S.A. 110: 1381-1386.

Christin P-A, Spriggs E, Osborne CP, Strömberg CAE, Salamin N, Edwards EJ. 2014. Molecular dating, evolutionary rates, and the age of the grasses. – Syst. Biol. 63: 153-165.

Christopher J, Mini LS, Pillai TN. 1989. Karyomorphological studies of Coix aquatica Roxb. – Cytologia 54: 169-172.

Christophersen E. 1931. Notes on Joinvillea. – Bernice P. Bishop Mus. Bull. 9: 2-7.

Chrtek J. 1965. Bemerkungen zur Gliederung der Gattung Trisetum Pers. – Bot. Not. 118: 210-224.

Chrtek J. 1966. Beitrag zur Kenntnis einiger Arten der Gattung Trisetum der Türkei. – Bot. Not. 119: 486-490.

Chu C-D, Chao C-S. 1979. Acidosasa – a new genus of Chinese Bambusoideae. – J. Nanjing Coll. Forest Prod. Ind. 1-2: 142-145.

Church GL. 1949. A cytotaxonomic study of Glyceria and Puccinellia. – Amer. J. Bot. 36: 155-165.

Church GL. 1952. The genus Torreyochloa. – Rhodora 54: 197-200.

Ciaffi W, Paolacci AR, Tanzarella OA, Porceddu E. 2011. Molecular aspects of flower development in grasses. – Sex Plant Repr. 24: 247-282.

Cialdella AM, Giussani LM. 2002. Phylogenetic relationships of the genus Piptochaetium (Poaceae, Pooideae, Stipeae): evidence from morphological data. – Ann. Missouri bot. Gard. 89: 305-336.

Cialdella AM, Morrone O, Zuloaga FO. 2006. Revisión de las especies de Axonopus (Poaceae, Panicoideae, Paniceae), serie Suffulti. – Ann. Missouri Bot. Gard. 93: 592-633.

Cialdella AM, Giussani LM, Aagesen L, Zuloaga FO, Morrone O. 2007. A phylogeny of Piptochaetium (Poaceae: Pooideae: Stipeae) and related genera based on a combined analysis including trnL-F, rpl16, and morphology. – Syst. Bot. 32: 545-559.

Cialdella AM, Salariato DL, Aagesen L, Giussani LM, Zuoaga FO, Morrone O. 2010. Phylogeny of New World Stipeae (Poaceae): an evaluation of the monophyly of Aciachne and Amelichloa. – Cladistics 26: 563-578.

Cialdella AM, Sede SM, Romaschenko K, Peterson PM, Soreng RJ, Zuloaga FO, Morrone O. 2014. Phylogeny of Nassella (Stipeae, Pooideae, Poaceae) based on analyses of chloroplast and nuclear ribosomal DNA and morphology. – Syst. Bot. 39: 814-828.

Clark LG. 1986. Systematics of Chusquea Section Chusquea, Section Swallonochloa, Section Verticillatae, Section Serpentes, and Section Longifoliae (Poaceae: Bambusoideae). – Ph.D. diss., Iowa State University, Ames, Iowa.

Clark LG. 1989. Systematics of Chusquea section Swallenochloa, section Verticillatae, section Serpentes, and section Longifoliae (Poaceae: Bambusoideae). – Syst. Bot. Monogr. 27: 1-127.

Clark LG. 1990. Chusquea sect. Longiprophyllae (Poaceae: Bambusoideae): a new Andean section and new species. – Syst. Bot. 15: 617-634.

Clark LG. 1992. Chusquea sect. Swallenochloa (Poaceae: Bambusoideae) and allies in Brazil. – Brittonia 44: 387-422.

Clark LG. 1995. Diversity and distribution of the Andean woody bamboos (Poaceae: Bambusoideae). – In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds), Biodiversity and conservation of neotropical montane forests, New York Botanical Garden, Bronx, New York, pp. 501-512.

Clark LG. 1996. Four new species of Chusquea (Poaceae: Bambusoideae) from Brazil and Ecuador. – Brittonia 48: 250-262.

Clark LG. 1997a. Diversity, biogeography, and evolution in Chusquea (Poaceae: Bambusoideae). – In: Chapman GP (ed), The bamboos, Academic Press, London, pp. 33-44.

Clark LG. 1997b. Bamboos: the centrepiece of the grass family. – In: Chapman GP (ed), The Bamboos, Academic Press, London, pp. 237-248.

Clark LG. 2004. The grasses (Poaceae): Robert Brown and now. – Telopea 10: 505-514.

Clark LG, Cortés G. 2004. A new species of Otatea from Chiapas, Mexico. – Bamboo Sci. Cult. 18: 1-6.

Clark LG, Judziewicz EJ. 1996. The grass subfamilies Anomochlooideae and Pharoideae (Poaceae). – Taxon 45: 641-645.

Clark LG, Londoño X. 1991a. Miscellaneous new taxa of bamboo (Poaceae: Bambuseae) from Colombia, Ecuador and Mexico. – Nord. J. Bot. 11: 323-331.

Clark LG, Londoño X. 1991b. A new species and new sections of Rhipidocladum (Poaceae: Bambusoideae). – Amer. J. Bot. 78: 1260-1279.

Clark LG, Davidse G, Ellis RP. 1989. Natural hybridization in bamboos: evidence from Chusquea sect. Swallenochloa (Poaceae: Bambusoideae). – Natl. Geogr. Res. 5: 459-476.

Clark LG, Zhang W-P, Wendel JF. 1995. A phylogeny of the grass family (Poaceae) based on ndhF sequence data. – Syst. Bot. 20: 436-460.

Clark LG, Cortes R G, Chazaro B M. 1997. An unusual new species of Chusquea (Poaceae: Bambusoideae) from Mexico. – Syst. Bot. 22: 219-228.

Clark LG, Kobayashi M, Mathews S, Spangler RE, Kellogg EA. 2000. The Puelioideae, a new subfamily of Poaceae. – Syst. Bot. 25: 181-187.

Clark LG, Dransfield S, Triplett J, Sánchez-Ken JG. 2007 [2008]. Phylogenetic relationships among the one-flowered, determinate genera of Bambuseae (Poaceae: Bambusoideae). – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simspon MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 315-332.

Clarke CB. 1883. On Hemicarex, Benth., and its allies. – Bot. J. Linn. Soc. 20: 374-403.

Clarke CB. 1884. On the Indian species of Cyperus. – Bot. J. Linn. Soc. 21: 1-202.

Clarke CB. 1896. New East African Cyperaceae. – J. Bot. 34: 224-226.

Clarke CB. 1908. New genera and species of Cyperaceae. – Kew Bull., Add. Ser., 8: 1-196.

Clarke CB. 1909. Illustrations of Cyperaceae. – London.

Clarkson RB. 1961. Fraser’s sedge, Cymophyllus fraseri (Andrews) Mackenzie. – Castanea 26: 129-136.

Clayton WD. 1966. Studies in the Gramineae IX. Andropogoneae. – Kew Bull. 20: 257-274.

Clayton WD. 1969. A revision of the genus Hyparrhenia. – Kew Bull., Add. Ser., 2: 1-169.

Clayton WD. 1970a. Studies in the Gramineae XXI. Coelorhachis and Rhytachne: a study in numerical taxonomy. – Kew Bull. 24: 309-314.

Clayton WD. 1970b. Gramineae (Part 1). – In: Milne-Redhead, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-176.

Clayton WD. 1972 [1973]. Studies in the Gramineae XXXIII. The awnless genera of Andropogoneae. – Kew Bull. 28: 49-58.

Clayton WD. 1974. Gramineae (Part 2). - In: Polhill RM (ed), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 177-449.

Clayton WD. 1975. Chorology of the genera of Gramineae. – Kew Bull. 30: 111-132.

Clayton WD. 1976. Studies in the Gramineae XLI. Some discriminant functions for Hyparrhenia. – Kew Bull. 30: 511-520.

Clayton WD. 1981a. Evolution and distribution of grasses. – Ann. Missouri Bot. Gard. 68: 5-14.

Clayton WD. 1981b. New grasses from Tanzania. – Kew Bull. 36: 234.

Clayton WD. 1981c. Early sources of tribal names in Gramineae. – Kew Bull. 36: 483-485.

Clayton WD. 1982. Notes on subfamily Chloridoideae (Gramineae). – Kew Bull. 37: 417-420.

Clayton WD. 1985. Miscellaneous notes on pooid grasses. – Kew Bull. 40: 727-729.

Clayton WD. 1987a. Andropogoneae. – In: Soderstrom TR, Hilu KH, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 334-342.

Clayton WD. 1987b. Miscellaneous notes on panicoid grasses. – Kew Bull. 42: 401-403.

Clayton WD. 1990. The spikelet. – In: Chapman GP (ed), Reproductive versatiliby in the grasses, Cambridge University Press, Cambridge, pp. 32-51.

Clayton WD, Renvoize SA. 1982. Gramineae (Part 3). – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 451-898.

Clayton WD, Renvoize SA. 1986. Genera Graminum. Grasses of the world. – Kew Bull., Add. Ser., 13: 1-389.

Clayton WD, Richardson FR. 1973. Studies in the Gramineae XXXII. The tribe Zoysieae Miq. – Kew Bull. 28: 37-48.

Clayton WD, Vorontsova MS, Harman KT, Williamson H. 2012. GrassBase – The online World grass flora. – The Board of Trustees, Royal Botanic Gardens, Kew. http://www.kew.org/data/grasses-db/index.htm

Clegg MT, Rawson JRY, Thomas K. 1984. Chloroplast DNA variation in pearl millet and related species. – Genetics 106: 449-461.

Clifford HT. 1961. Floral evolution in the family Gramineae. – Evolution 15: 455-460.

Clifford HT. 1965. The classification of Poaceae: a statistical study. – Papers, Dept. of Biology, University of Queensland 4: 243-253.

Clifford HT. 1967. A contribution to the leaf-anatomy of Hubbardia heptaneuron Bor (Gramineae). – Kew Bull. 21: 169-174.

Clifford HT. 1970. Monocotyledon classification with special reference to the origin of grasses (Poaceae). – In: Robson NKB, Cutler DF, Gregory M (eds), New research in plant anatomy, Academic Press, London, pp. 25-34.

Clifford HT. 1987. Spikelet and floral morphology. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 21-30.

Clifford HT. 1988. The taxonomic significance of the ability of grass ‘seed’ to germinate under waterlogged conditions. – Kew Bull. 43: 327-328.

Clifford HT, Watson L. 1977. Identifying grasses: data, methods and identification. – University of Queensland Press, St. Lucia.

Clifford HT, Williams WT, Lance GN. 1969. A further numerical contribution to the classification of Poaceae. – Aust. J. Bot. 17: 119-131.

Coan AI, Scatena VL. 2004. Embryology and seed development of Blastocaulon scirpeum and Paepalanthus scleranthus (Eriocaulaceae). – Flora 199: 47-57.

Coan AI, Alves MV, Scatena VL. 2008. Comparative study of ovule and fruit development in species of Hypolytrum and Rhynchospora (Cyperaceae, Poales). – Plant Syst. Evol. 272: 181-195.

Coan AI, Alves MV, Scatena VL. 2010. Evidence of pseudomonad pollen formation in Hypolytrum (Mapanioideae, Cyperaceae). – Aust. J. Bot. 58: 663-672.

Cocks PS, Boyce KG, Kloot PM. 1976. The Hordeum murinum complex in Australia. – Aust. J. Bot. 24: 651-662.

Cocucci AE, Anton AM. 1988. The grass flower: suggestions on its origin and evolution. – Flora 181: 353-362.

Columbus JT. 1996. Lemma micromorphology, leaf blade anatomy, and phylogenetics of Bouteloua, Hilaria, and relatives (Gramineae: Chloridoideae: Boutelouinae). – Ph.D. diss., University of California, Berkeley, California.

Columbus JT. 1999a. An expanded circumscription of Bouteloua (Gramineae: Chloridoideae): new combinations and names. – Aliso 18: 61-65.

Columbus JT. 1999b. Morphology and leaf blade anatomy suggest a close relationship between Bouteloua aristidoides and B. (Chondrosium) eriopoda (Gramineae: Chloridoideae). – Syst. Bot. 23: 467-478.

Columbus JT, Smith JP Jr. 2010. Nomenclatural changes for some grasses in California and the Muhlenbergia clade (Poaceae). – Aliso 28: 65-67.

Columbus JT, Kinney MS, Pant R, Delgado MES. 1998. Cladistic parsimony analysis of internal transcribed spacer region (nrDNA) sequences of Bouteloua and relatives (Gramineae: Chloridoideae). – Aliso 17: 99-130.

Columbus JT, Kinney MS, Delgado MES, Porter JM. 2000. Phylogenetics of Bouteloua and relatives (Gramineae: Chloridoideae): cladistic parsimony analysis of internal transcribed spacer (nrDNA) and trnL-F (cpDNA) sequences. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 189-194.

Columbus JT, Cerros-Tlatilpa R, Kinney MS, Siqueiros-Delgado ME, Bell HL, Griffith MP, Refulio-Rodriguez NF. 2007. Phylogenetics of Chloridoideae (Gramineae): a preliminary study based on nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 565-579.

Columbus JT, Peterson PM, Rodríguez NFR, Tlatilpa RC, Kinney MS. 2010. Phylogenetics of Muhlenbergiinae (Poaceae: Chloridoideae, Cynodonteae) based on ITS and trnL-F DNA sequences. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 477-495.

Comparot-Moss S, Denyer K. 2009. The evolution of the starch biosynthetic pathway in cereals and other grasses. – J. Experim. Bot. 60: 2481-2492.

Conert HJ. 1959. Über die Stellung der Gattung Phaenosperma im System der Gramineae. – Bot. Jahrb. Syst. 78: 195-207.

Conert HJ. 1961. Die Systematik und Anatomie der Arundineae. – Weinheim.

Conert HJ. 1970. Merxmuellera, eine neue Gattung der Gramineen. – Schenckenberg. Biol. 51: 129-133.

Conert HJ. 1971. The genus Danthonia in Africa. – Mitt. Bot. Staatssamml. München 10: 299-308.

Conert HJ. 1987. Current concepts in the systematics of the Arundinoideae. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 239-250.

Conert HJ, Lobin W. 1984. Revision der kapverdischen Sporobolus-Arten (Poaceae). – Garcia de Orta, Sér. Bot. 6: 51-68.

Conn BJ, Doust ANL. 1997. Xyris L. Section Pomatoxyris Endl. (Xyridaceae) in Australia. – Aust. Syst. Bot. 10: 189-248.

Connor HE. 1970. Gynodioecism in Danthonia archboldii. – Aust. J. Bot. 18: 233-236.

Connor HE. 1979. Breeding systems in the grasses: a survey. – New Zealand J. Bot. 17: 547-574.

Connor HE. 1981. Evolution of reproductive systems in the Gramineae. – Ann. Missouri Bot. Gard. 68: 48-74.

Connor HE. 1987. Reproductive biology in grasses. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 117-132.

Connor HE. 2004. Flora of New Zealand – Gramineae Supplement I: Danthonioideae. – New Zealand J. Bot. 42: 771-795.

Connor HE. 2008. Floral biology of Australian species of Hierochloë (Gramineae). – Aust. J. Bot. 50: 166-176.

Connor HE. 2012. Flower and floral biology of the holy grasses (Hierochloë and Anthoxanthum: Aveneae, Gramineae). – Flora 207: 323-333.

Connor HE, Edgar E. 1974. Names and types in Cortaderia Stapf (Gramineae). – Taxon 23: 595-605.

Connor HE, Jacobs SWL. 1991. Sex ratios in dioecious Australian grasses: a preliminary assessment. – Cunninghamia 2: 385-390.

Consaul LL, Gillespie LJ, Waterway MJ. 2008. Systematics of North American arctic diploid Puccinellia (Poaceae): morphology, DNA content, and AFLP markers. – Syst. Bot. 33: 251-261.

Consaul LL, Gillespie LJ, Waterway MJ. 2010a. Evolution and polyploidy origins in North American Arctic Puccinellia (Poaceae) based on nuclear ribosomal spacer and chloroplast DNA sequences. – Amer. J. Bot. 97: 324-336.

Consaul LL, Gillespie LJ, Waterway MJ. 2010b. Polyploid speciation and evolution in Arctic Puccinellia (Poaceae: Puccinelliinae) – a review. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 645-662.

Coode MJE. 1978. Flore des Mascareignes 187: Flagellariacées. – In: Bosser J, Cadet T, Julien HR, Marais W (eds), Flore des Mascareignes: La Réunion, Maurice, Rodrigues, The Sugar Research Institute, Mauritius.

Cook CDK, Nicholls MS. 1986. A monographic study of the genus Sparganium (Sparganiaceae) 1. Subgenus Xanthosparganium Holmberg. – Bot. Helvetica 96: 213-267.

Cook CDK, Nicholls MS. 1987. A monographic study of the genus Sparganium (Sparganiaceae) 2. Subgenus Sparganium. – Bot. Helvetica 97: 1-44.

Cooke DA. 1992. A taxonomic revision of Centrolepis (Centrolepidaceae) in Australia. – J. Adelaide Bot. Gard. 15: 1-63.

Cooke DA. 1998. Centrolepidaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 106-109.

Cope TA. 1983. Centropodia: an earlier name for Asthenatherum (Gramineae). – Kew Bull. 37: 657-659.

Cope TA. 1984. Some new Arabian grasses. – Kew Bull. 39: 833-836.

Cope TA. 1985. Studies in the flora of Arabia XX. A key to the grasses of the Arabian Peninsula. – Arab Gulf J. Sci. Res., Spec. Publ. 1: 1-82.

Cope TA. 1987. Euthryptochloa: a new genus of Gramioneae from China. – Kew Bull. 42: 707-709.

Cope TA. 1992a. Some new Somali grasses. – Kew Bull. 47: 277-282.

Cope TA. 1992b. Some new Arabian grasses II. – Kew Bull. 47: 655-664.

Cope TA. 1993. Taeniorhachis: a new genus of Gramineae from Somalia. – Kew Bull. 48: 403-405.

Cope TA. 1995a. Some new Somali grasses II. – Kew Bull. 50: 109-117.

Cope TA. 1995b. Two new species of Perotis Aiton (Gramineae) from tropical Africa. – Kew Bull. 50: 611-614.

Cope TA. 1998a. A synopsis of Eragrostis Wolf (Poaceae) in the Flora Zambesiaca area. – Kew Bull. 53: 129-164.

Cope TA. 1998b. A synopsis of Sporobolus R. Br. (Poaceae) in the Flora Zambesiaca area. – Kew Bull. 53: 165-172.

Cope TA. 2006. Three new Arabian grasses. – Kew Bull. 61: 243-244.

Cope TA, Hosni HA. 1991. A key to Egyptian grasses. – Kew.

Costa AF da, Rodrigues PJFP, Wanderley MDGL. 2009. Morphometric analysis and taxonomic revision of the Vriesea paraibica complex (Bromeliaceae). – Bot. J. Linn. Soc. 159: 163-181.

Costa FN. 2006. Three new species of Actinocephalus Sano (Eriocaulaceae) from Minas Gerais, Brazil. – Novon 16: 212-215.

Costa FN, Sano PT. 2013. New circumscription of the endemic Brazilian genus Actinocephalus (Eriocaulaceae). – Novon 22: 281-287.

Costa Pereira S, Barreto IL. 1985. O gênero Chloris Swartz (Gramineae) no Rio Grande do Sul. – Rodriguésia 62: 9-20.

Cotton R. 1974. Cytotaxonomy of the genus Vulpia. – Ph.D. diss., University of Manchester, England.

Cotton R, Stace CA. 1976. Taxonomy of the genus Vulpia (Gramineae) I. Chromosome numbers and geographical distribution of the Old World species. – Genetica 46: 235-255.

Cotton R, Stace CA. 1977. Morphological and anatomical variation of Vulpia (Gramineae). – Bot. Not. 130: 173-187.

Covas G. 1949. Taxonomic observations on the North American species of Hordeum. – Madroño 10: 1-21.

Covas G. 1951. Nuevo Hordeum hexaploide indigena en la Patagonia. – Rev. Argentina Agron. 18: 74-77.

Covas G. 1952. Nota taxonómica sobre especies sudamericanas de “Hordeum”. – Rev. Argentina Agron. 19: 140-142.

Covas G. 1981. Las especies pampeanas de Chloris (gramineae). – Apuntes Fl. Pampa 1: 262-264.

Crawford FC. 1910. Anatomy of the British Carices. – Oliver & Boyd, Edinburgh.

Crayn DM, Terry RG, Smith JAC, Winter K. 2000. Molecular systematic investigations in Pitcairnioideae (Bromeliaceae) as a basis for under-standing the evolution of crassulacean acid metabolism (CAM). – In: Wilson KL, Morrison DA (eds.), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 569-579.

Crayn DM, Winter K, Smith JAC. 2004. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae. – Proc. Natl. Acad. Sci. U.S.A. 101: 3703-3708.

Crepet WL, Feldman GD. 1991. The earliest remains of grasses in the fossil record. – Amer. J. Bot. 78: 1010-1014.

Crepet WL, Friis EM. 1987. The evolution of insect pollination in angiosperms. – In: Friis EM, Chaloner WG, Crane PR (eds), The origin of angiosperms and their biological consequences, Cambridge University Press, Cambridge, pp. 181-201.

Crins WJG. 1985. The taxonomy of Carex section Ceratocystis in North America and Northern Eurasia. – Ph.D. diss., Dept. of Botany, University of Toronto, Canada.

Crins WJG. 1990. Phylogenetic considerations below the sectional level in Carex. – Can. J. Bot. 68: 1433-1440.

Crins WJG, Ball PW. 1988. Sectional limits and phylogenetic considerations in Carex section Ceratocystis (Cyperaceae) in North America. – Brittonia 40: 38-47.

Crins WJG, Ball PW. 1989a. Taxonomy of the Carex flava complex (Cyperaceae) in North America and northern Eurasia I. Numerical taxonomy and character analysis. – Can. J. Bot. 67: 1032-1047.

Crins WJG, Ball PW. 1989b. Taxonomy of the Carex flava complex (Cyperaceae) in North America and northern Eurasia II. Taxonomic treatment. – Can. J. Bot. 67: 1048-1065.

Cross RA. 1980. Distribution of sub-families of Gramineae in the Old World. – Kew Bull. 35: 279-289.

Cummings MP, King LM, Kellogg EA. 1994. Slipped strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). – Mol. Biol. Evol. 11: 1-8.

Curtis WM. 1984. New species of Tasmanian Monocotyledones in the families Juncaceae, Centrolepidaceae and Cyperaceae. – Brunonia 7: 297-304.

Cusset F, Tran TTH. 1965. La ligule de la feuille végétative des Carex. – Bull. Soc. Bot. France 112: 42-54.

Cutler DF. 1965. Vegetative anatomy of Thurniaceae. – Kew Bull. 19: 431-441.

Cutler DF. 1969. Juncales. – In: Metcalfe CR (ed), Anatomy of the monocotyledons IV, Clarendon Press, Oxford, pp. 1-358.

Cutler DF. 1972. Vicarious species of Restionaceae in Africa, Australia and South America. – In: Valentine DH (ed), Taxonomy, phytogeography and evolution, Academic Press, London, pp. 73-83.

Cutler DF, Airy Shaw HK. 1965. Anarthriaceae and Ecdeiocoleaceae: two new monocotyledonous families, separated from the Restionaceae. – Kew Bull. 19: 489-499.

Cvelev NN. 1972. On the taxonomy and phylogeny of genus Festuca of the USSR II. Evolution of subgenus Festuca. – Bot. Žurn. 57: 161-172.

Dahlgren O. 1917. Die jüngeren Entwicklungsstadien der Samenanlagen von Typha latifolia L. – Svensk Bot. Tidskr. 12: 207-211.

Dandin SB, Chennaveeraiah MS. 1977. Chromosome number and cytology of some species of Paspalum. – Proc. Indian Sci. Congress Assoc. 64: 146.

Dandin SB, Chennaveeraiah MS. 1983. Chromosome number and meiotic behaviour in interpretation of basic chromosome number in the genus Paspalum. – J. Cytol. Genet. 18: 26-33.

Dandin SB, Chennaveeraiah MS. 1988. Cytological evidence for apomixis in some species of Paspalum 1. – J. Cytol. Genet. 23: 61-67.

Danin A. 2004. Arundo (Gramineae) in the Mediterranean reconsidered. – Willdenowia 34: 361-369.

Danton P. 2002. Bromeliaceae et Orchidaceae de l’archipel Juan Fernández (Chili). – Richardiana 2: 93-110.

Darbyshire SJ. 1993. Realignment of Festuca subgenus Schedonorus with the genus Lolium (Poaceae). – Novon 3: 239-243.

Darbyshire SJ, Warwick SI. 1992. Phylogeny of North American Festuca (Poaceae) and related genera using chloroplast DNA restriction site variation. – Can. J. Bot. 70: 2415-2429.

David R. 1976. Nomenclature of the British taxa of the Carex muricata L. aggregate. – Watsonia 11: 59-65.

David R, Chater AO. 1977. Carex polyphylla Kar. & Kir. and Carex leersiana Rauschert. – Watsonia 11: 253-254.

David R, Kelcey JG. 1975. Carex muricata L. sensu Nelmes and Carex bullockiana Nelmes. – Watsonia 10: 412-414.

Davidse G. 1987. Fruit dispersal in the Poaceae. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 143-155.

Davidse G, Ellis RP. 1984. Steyermarkochloa, a new genus from Venezuela and Colombia (Poaceae; Arundinoidese; Steyermarkochloeae). – Ann. Missouri Bot. Gard. 71: 994-1012.

Davidse G, Ellis RP. 1987. Arundoclaytonia, a new genus of the Steyermarkochloeae (Poaceae: Arundinoideae) from Brazil. – Ann. Missouri Bot. Gard. 74: 479-490.

Davidse G, Filgueiras TS. 1993. Paspalum longiaristatum (Poaceae: Paniceae), a new serpentine endemic from Goiás, and the first awned species in the genus. – Novon 3: 129-132.

Davidse G, Pohl RW. 1971. Chromosome numbers of Costa Rica grasses. – Brittonia 23: 293-324.

Davidse G, Pohl RW. 1972. Chromosome numbers and notes on some Central American grasses. – Can. J. Bot. 50: 273-283.

Davidse G, Pohl RW. 1974. Chromosome numbers, meiotic behaviour, and notes on tropical American grasses (Gramineae). – Can. J. Bot. 52: 317-328.

Davidse G, Pohl RW. 1978. Chromosome numbers of tropical American grasses (Gramineae). – Ann. Missouri Bot. Gard. 65: 637-649.

Davidse G, Pohl WP. 1992. New taxa and nomenclatural combinations of Mesoamerican grasses (Poaceae). – Novon 2: 81-110.

Davidse G, Hoshino T, Simon BK. 1986. Chromosome counts of Zimbabwean grasses (Poaceae) and an analysis of polyploidy in the grass flora of Zimbabwe. – South Afr. J. Bot. 52: 521-527.

Davidse G, Soderstrom TR, Ellis RP. 1986. Pohlidium petiolatum (Poaceae: Centotheceae), a new genus and species from Panama. – Syst. Bot. 11: 131-144.

Davidse G, Morrone O, Zuloaga FO. 2001. Two new species of Paspalum (Poaceae: Panicoideae) from Brazil. – Novon 11: 389-394.

Davidse G, Soreng RJ, Peterson PM. 2009. Agrostopoa (Poaceae, Pooideae, Poeae, Poinae), a new genus with three species from Colombia. – Novon 19: 32-40.

Davies EW. 1956a. Cytology, evolution, and origin of the aneuploid series in the genus Carex. – Hereditas 42: 349-365.

Davies EW. 1956b. Some new chromosome numbers in the Cyperaceae. – Watsonia 3: 242-243.

Davies J, Briarty LG, Rieley JO. 1973. Observations on the swollen lateral roots of the Cyperaceae. – New Phytol. 72: 167-174.

Davies RJ-P, Craigie AI, Mackay DA, Whalen MA, Cheong JP-E, Leach GJ. 2007. Resolution of the taxonomy of Eriocaulon (Eriocaulaceae) taxa endemic to Australian mound springs, using morphometrics and AFLP markers. – Aust. Syst. Bot. 20: 428-447.

Davis JI. 1983. Phenotypic plasticity and the selection of taxonomic characters in Puccinellia (Poaceae). – Syst. Bot. 8: 341-353.

Davis JI. 1988. Genetic and environmental contributions to multivariate morphological pattern in Puccinellia (Poaceae). – Can. J. Bot. 66: 2436-2444.

Davis JI, Manos PS. 1991. Isozyme variation and species delimitation in the Puccinellia nuttalliana complex (Poaceae): an application of the phylogenetic species concept. – Syst. Bot. 16: 431-445.

Davis JI, Soreng RJ. 1993. Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. – Amer. J. Bot. 80: 1444-1454.

Davis JI, Soreng RJ. 2007 [2008]. A preliminary phylogenetic analysis of the grass subfamily Pooideae (Poaceae), with attention to structural features of the plastid and nuclear genomes, including an intron loss in GBSSI. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 335-348.

Davis JI, Soreng RJ. 2010. Migration of endpoints of two genes relative to boundaries between regions of the plastid genome in the grass family (Poaceae). – Amer. J. Bot. 97: 874-892.

Dean M, Ashton PA. 2008. Leaf surfaces as a taxonomic tool: the case of Carex section Phacocystis (Cyperaceae) in the British Isles. – Plant Syst. Evol. 273: 97-105.

De Bustos A, Jouve N. 2002. Phylogenetic relationships of the genus Secale based on the characterisation of rDNA ITS sequences. – Plant Syst. Evol. 235: 147-154.

Decker HF. 1964a. An anatomic-systematic study of the classical tribe Festuceae (Gramineae). – Amer. J. Bot. 51: 453-463.

Decker HF. 1964b. Affinities of the grass genus Ampelodesmos. – Brittonia 16: 76-79.

deKoning R, Sosef MSM, Veldkamp JF. 1983. A revision of Heteropholis and Thaumastochloa (Gramineae). – Gard. Bull. Straits Settlem. (Singapore) 36: 137-162.

De Langhe JE. 1944. Sur le groupe du Carex muricata L. en Belgique. – Bull. Soc. Roy. Bot. Belg. 76: 39-50.

De Moraes Fernandes MI, Barreto IL, Salzano FM, Sacchet MOF. 1974. Cytological and evolutionary relationships in Brazilian forms of Paspalum (Gramineae). – Caryologia 27:455-465.

Dengler NG, Dengler RE, Hattersley PW. 1986. Comparative bundle sheath and mesophyll differentiation in the leaves of the C4 grasses Panicum effusum and P. bulbosum. – Amer. J. Bot. 73: 1431-1442.

Denham SS. 2005. Revisión sistemática del subgénero Harpostachys de Paspalum (Poaceae, Panicoideae, Paniceae). – Ann. Missouri Bot. Gard. 92: 463-532.

Denham SS, Zuloaga FO. 2007. Phylogenetic relationships of the Decumbentes group of Paspalum, Thrasya, and Thrasyopsis (Poaceae: Panicoideae: Paniceae). – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California. – Aliso 23: 545-562.

Denham SS, Zuloaga FO, Morrone O. 2002. Systematic revision and phylogeny of Paspalum subgenus Ceresia (Poaceae: Panicoideae: Paniceae). – Ann. Missouri Bot. Gard. 89: 337-399.

Denton MF. 1983. Anatomical studies of the Luzulae group of Cyperus (Cyperaceae). – Syst. Bot. 8: 250-262.

De Oliveira L, de Sousa F, Wendt T, Brown GK, Tuthill DE, Evans TM. 2007. Monophyly an phylogenetic relationships in Lymania (Bromeliaceae: Bromelioideae) based on morphology and chloroplast DNA sequences. – Syst. Bot. 32: 264-270.

De Oliveira L, de Sousa F, Wendt T. 2008. Taxonomy and conservation of the genus Lymania (Bromeliaceae) in the southern Bahian Atlantic Forest of Brazil. – Bot. J. Linn. Soc. 157: 47-66.

De Oliveira L, De Aquino AJG, Guedès MLS, Cotias de Oliveira ALP. 2008. Cytogenetics of Brazilian species of Bromeliaceae. – Bot. J. Linn. Soc. 158: 189-193.

Derieg NJ, Sangaumphai A, Bruederle LP. 2008. Genetic diversity and endemism in North American Carex section Ceratocystis (Cyperaceae). – Amer. J. Bot. 95: 1287-1296.

De Sousa GM, Lapa Wanderly MDG, Alves M. 2009. Inflorescence architecture in Brazilian species of Aechmea subgenus Chevaliera (Bromeliaceae-Bromelioideae) dagger. – Bot. J. Linn. Soc. 158: 584-592.

Devos KM. 2010. Grass genome organization and evolution. – Curr. Opin. Plant Biol. 13: 139-145.

Dewey DR. 1982. Genomic and phylogenetic relationships among North American perennial Triticeae grasses. – In: Estes JE et al. (eds), Grasses and grassland, University of Oklahoma Press, Norman, pp. 51-80.

Dewey DR, Hsiao C. 1983. A cytogenetic basis for transferring Russian wildrye from Elymus to Psathyrostachys. – Crop Sci. 23: 123-126.

Dhooge S, Goetghebeur P, Muasya AM. 2003. Zameioscirpus, a new genus of Cyperaceae from South America. – Plant Syst. Evol. 243: 73-84.

Diao X, Freeling M, Lisch D. 2006. Horizontal transfer of a plant transposon. – PLOS Biol. 4: e5. doi:10.1371/journal.pbio.0040005

Díaz O, Salomon B, Bothmer R von. 1998. Description of isozyme polymorphisms in Elymus species by using starch gel electrophoresis. – In: Jaradat AA (ed), Triticeae III, Enfield, New Hampshire, pp. 199-208.

Díaz-Pérez AJ, Sharifi-Tehrani M, Inda LA, Catalán P. 2014. Polyphyly, gene-duplication and extensive allopolyploidy framed the evolution of the ephemeral Vulpia grasses and other fine-leaved Loliinae (Poaceae). – Molec. Phylogen. Evol. 79: 92-105.

Didrichsen A. 1894. Om cyperaceens kim I. – Bot. Tidsskr. 19: 1-6.

Didrichsen A. 1897. Om cyperaceens kim II. – Bot. Tidsskr. 21: 1-10.

Diekmann K, Hodkinson TR, Wolfe KH, Bekerom R van den, Dix PJ, Barth S. 2009. Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (Lolium perenne L.). – DNA Research 16: 165-176.

Dillon SL, Lawrence PK, Henry RJ. 2001. the use of ribosomal ITS to determine phylogenetic relationships within Sorghum. – Plant Syst. Evol. 230: 97-110.

Dillon SL, Lawrence PK, Henry RJ, Price HJ. 2007. Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. – Plant Syst. Evol. 268: 29-43.

Ding Hou. 1958. Centrolepidaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(4), Noordhoff-Kolff N. V., Djakarta, pp. 421-428.

Doebley JF. 1989. Molecular evidence for a missing wild relative of maize and the introgression of its chloroplast genome into Zea perennis. – Evolution 43: 1555-1559.

Doebley JF, Goodman MM, Stuber CW. 1984. Isoenzymatic variation in Zea (Gramineae). – Syst. Bot. 9: 203-218.

Doebley JF, Renfroe W, Blanton A. 1987. Restriction site variation in the Zea chloroplast genome. – Genetics 117: 139-147.

Doebley JF, Durbin M, Golenberg E, Clegg M, Ma D. 1990. Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae). – Evolution 44: 1097-1108.

Doebley JF, Bothmer R von, Larson S. 1992. Chloroplast DNA variation and the phylogeny of Hordeum (Poaceae). – Amer. J. Bot. 79: 576-584.

Doğan M. 1988. A scanning electron microscope survey of the lemma in Phleum, Pseudophleum and Rhizocephalus (Gramineae). – Notes Roy. Bot. Gard. Edinb. 45: 117-124.

Doğan M. 1991. A taxonomical revision of the genus Phleum L. (Gramineae). – Karaca Arb. Mag. 1: 53-70.

Doğan M, Us J. 1996. Infrageneric classification of the genus Phleum L. (Gramineae) estimated by numerical taxonomy. – In: Öztürk M, Seçmen Ö, Görk G (eds), Plant life in Southwest and Central Asia, Izmir.

Dokkedall AL, Salatino A. 1992. Flavonoids of Brazilian Leiothrix Ruhland (Eriocaulaceae). – Biochem. Syst. Ecol. 20: 31-32.

Domin K. 1907. Monographie der Gattung Koeleria. – Bibl. Bot. 65.

Donadío S, Giussani LM, Kellogg EA, Zuloaga FO, Morrone O. 2009. A preliminary molecular phylogeny of Pennisetum and Cenchrus (Poaceae-Paniceae) based on the trnL-F, rpl16 chloroplast markers. – Taxon 58: 392-404.

Donadío S, Pozner R, Giussani L. 2015. Phylogenetic relationships within Tillandsia subgenus Diaphoranthema (Bromeliaceae, Tillandsioideae) based on a comprehensive morphological dataset. – Plant Syst. Evol. 301: 387-410.

Döring E. 2009. Molekulare Phylogenie der Hafer-Gräser (Poaceae: Pooideae: Aveneae). – Ph.D. diss., Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany.

Döring E, Schneider J, Hilu KW, Röser M. 2007. Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae). – Kew Bull. 62: 407-424.

Dörr H, Leist N. 1984. Morphologie der Lodiculae in der Gattung Avena L. und ihre systematische Verwertbarkeit. – Landw. Forsch. 3, Kongreßband 1984: 556-569.

Doust AN, Conn BJ. 1994. Xyris L. section Xyris (Xyridaceae) in Australia. – Aust. Syst. Bot. 7: 455-484.

Doust AN, Kellogg EA. 2002a. Integrating phylogeny, developmental morphology and genetics: a case study of inflorescence evolution in the ‘bristle grass’ clade (Panicoideae: Poaceae). – In: Cronk QCB, Bateman RM, Hawkins JA (eds), Developmental genetics and plant evolution, Taylor and Francis, London, pp. 298-314.

Doust AN, Kellogg EA. 2002b. Inflorescence diversification in the panicoid “bristle grass” clade (Paniceae, Poaceae): evidence from molecular phylogenies and developmental morphology. – Amer. J. Bot. 89: 1203-1222.

Doust AN, Penly AM, Jacobs SWL, Kellogg EA. 2007. Congruence, conflict, and polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle clade” (Paniceae, Panicoideae, Poaceae). – Syst. Bot. 32: 531-544.

Doyle JJ, Davis JI, Soreng RJ, Garvin D, Anderson MJ. 1992. Chloroplast DNA inversions and the origin of the grass family (Gramineae). – Proc. Natl. Acad. Sci. U.S.A. 89: 7722-7726.

Drábková LZ. 2010. Phylogenetic relationships within Juncaceae: evidence from five regions of plastid, mitochondrial and nuclear ribosomal DNA, with notes on morphology. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 389-416.

Drábková LZ, Vlaček C. 2007. The phylogenetic position of Oxychloë (Juncaceae): evidence from morphology, nuclear and plastid DNA regions. – Taxon 56: 95-102.

Drábková LZ, Vlaček Č. 2009. DNA variation within Juncaceae: comparison of impact of organelle regions on phylogeny. – Plant Syst. Evol. 278: 169-186.

Drábková LZ, Kirschner J, Seberg O, Petersen G, Vlaček C. 2003. Phylogeny of the Juncaceae based on rbcL sequences, with special emphasis on Luzula DC. and Juncus L. – Plant Syst. Evol. 240: 133-147.

Drábková LZ, Kirschner J, Vlček Č, Pačes V. 2004. TrnL-trnF intergenic spacer and trnL intron define clades within Luzula and Juncus (Juncaceae). – J. Mol. Evol. 59: 1-10.

Drábková LZ, Kirschner J, Vlček Č. 2006. Phylogenetic relationships within Luzula DC. and Juncus L. (Juncaceae): a comparison of phylogenetic signals of trnL-trnF intergenic spacer, trnL intron and rbcL plastome sequence data. – Cladistics 22: 132-143.

Dransfield S. 1981. The genus Dinochloa (Gramineae-Bambusoideae) in Sabah. – Kew Bull. 36: 613-633.

Dransfield S. 1983a. The genus Racemobambos (Gramineae: Bambusoideae). – Kew Bull. 37: 661-679.

Dransfield S. 1983b. Notes on Schizostachyum (Gramineae-Bambusoideae) from Borneo and Sumatra. – Kew Bull. 38: 321-332.

Dransfield S. 1989. Sphaerobambos, a new genus of bamboo (Gramineae-Bambusoideae) from Malesia. – Kew Bull. 44: 425-434.

Dransfield S. 1992. The bamboos of Sabah. – Forest Records 14, Forest Research Centre, Forestry Department, Sabah, Malaysia.

Dransfield S. 1994. The genus Hickelia (Gramineae: Bambusoideae). – Kew Bull. 49: 429-443.

Dransfield S. 1996. New species of Dinochloa (Gramineae-Bambusoideae) in Malesia and notes on the genus. – Kew Bull. 51: 103-117.

Dransfield S. 1997. Notes on the genus Decaryochloa (Gramineae-Bambusoideae) from Madagascar. – Kew Bull. 52: 593-600.

Dransfield S. 1998a. Valiha and Cathariostachys, two new bamboo genera (Gramineae-Bambusoideae) from Madagascar. – Kew Bull. 53: 375-397.

Dransfield S. 1998b. Cyrtochloa, a new genus of bamboo (Gramineae-Bambusoideae) from the Philippines. – Kew Bull. 53: 857-873.

Dransfield S. 2002. Sirochloa, a new bamboo genus from Madagascar (Poaceae-Bambusoideae). – Kew Bull. 57: 963-970.

Dransfield S. 2003. A new species and a new combination of Cyrtochloa (Poaceae-Bambusoideae) from the Philippines. – Kew Bull. 58: 981-985.

Dransfield S. Wong K-M. 1996. Temburongia, a new genus of bamboo (Gramineae: Bambusoideae) from Brunei. – Sandakania 7: 49-58.

Druyts-Voets E. 1970. Types van stengel- en bladstrukturen in het genus Cyperus L. – Natuurwet. Tijdschr. (Gent) 52: 28-49.

Dubcovsky J, Zuloaga FO. 1991. Números cromosómicos de especies sudamericanas de Panicum (Poaceae: Paniceae). – Bol. Soc. Argentina Bot. 27: 201-206.

Dugas DP, Ratallack GJ. 1993. Middle Miocene fossil grasses from Fort Ternan, Kenya. – J. Paleontology 67: 113-128.

Dunbar A. 1973. Pollen development in the Eleocharis palustris group (Cyperaceae) I. Ultrastructure and ontogeny. – Bot. Not. 126: 197-254.

Du Plessis H, Spies JJ. 1992. Chromosome numbers in the genus Pentaschistis (Poaceae, Danthonieae). – Taxon 41: 709-720.

Duvall MR. 1987. A systematic evaluation of the genus Zizania (Poaceae). – Ph.D. diss., University of Minnesota, St. Paul, Minnesota.

Duvall MR, Biesboer D. 1988. Anatomical distinctions between the pistillate spikelets of the species of wild-rice (Zizania, Poaceae). – Amer. J. Bot. 75: 157-159.

Duvall MR, Doebley JF. 1990. Restriction site variation in the chloroplast genome of Sorghum (Poaceae). – Syst. Bot. 15: 472-480.

Duvall MR, Morton BR. 1996. Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data. – Mol. Phylogen. Evol. 5: 352-358.

Duvall MR, Peterson PM, Terrell EE, Christensen AH. 1993. Phylogeny of North American oryzoid grasses as construed from maps of plastid DNA restriction sites. – Amer. J. Bot. 80: 83-88.

Duvall MR, Peterson PM, Christensen AH. 1994. Alliances of Muhlenbergia (Poaceae) within New World Eragrostideae are identified by phylogenetic analysis of mapped restriction sites form plastid DNAs. – Amer. J. Bot. 81: 622-629.

Duvall MR, Noll JD, Minn AH. 2001. Phylogenetics of Paniceae (Poaceae). – Amer. J. Bot. 88: 1988-1992.

Duvall MR, Saar DE, Grayburn WS, Holbrook GP. 2003. Complex transitions between C3 and C4 photosynthesis during the evolution of Paniceae: a phylogenetic case study emphasizing the position of Steinchisma hians (Poaceae), a C3-C4 intermediate. – Intern. J. Plant Sci. 164: 949-958.

Duvall MR, Davis JI, Clark LG, Noll JD, Goldman DH, Sánchez-Ken G. 2007 [2008]. Phylogeny of the grasses (Poaceae) revisited. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 237-247.

Duvall MR, Leseberg CH, Grennan CP, Morris LM. 2010. Molecular evolution and phylogenetics of complete chloroplast genomes in Poaceae. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 437-451.

Ebinger JE. 1963. A new subgenus in Luzula (Juncaceae). – Brittonia 15: 169-174.

Ebinger JE, Carlen JL. 1975. Culm morphology and grass systematics. – Trans. Illinois State Acad. Sci. 68: 87-101.

Echternacht L, Sano PT, Bonillo C, Cruaud C, Couloux A, Dubuisson J-Y. 2014. Phylogeny and taxonomy of Syngonanthus and Comanthera (Eriocaulaceae): evidence from expanded sampling. – Taxon 63: 47-63.

Edgar E. 1966. Luzula in New Zealand. – New Zealand J. Bot. 4: 159-184.

Edgar E. 1970. Centrolepidaceae. – In: Moore LB, Edgar E (eds), Flora of New Zealand 2, Wellington.

Edgar E, Connor HE. 1998. Zotovia and Microlaena: New Zealand ehrhartoid Gramineae. – New Zealand J. Bot. 36: 565-586.

Edgar E, Forde MB. 1991. Agrostis in New Zealand. – New Zealand J. Bot. 29: 139-161.

Edwards EJ, Smith SA. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. – Proc. Natl. Acad. Sci. U.S.A. 107: 2532-2537.

Edwards EJ, Still CJ. 2008. Climate, phylogeny and the ecological distribution of C4 grasses. – Ecol. Lett. 11: 266-276.

Egorova TV. 1980. Rod Eleocharis R. Br. vo flore dal’nego vostoka SSSR. – Nov. Sist. Vysš. Rast. 17: 65-81.

Egorova TV. 1981. Sistema i konspekt roda Eleocharis R. Br. (Cyperaceae) flory SSSR. – Nov. Sist. Vysš. Rast. 18: 95-124.

Egorova TV. 1999. The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). –State Chemical-Pharmaceutical Academy, St. Petersburg, and Missouri Botanical Garden Press, St. Louis.

Egorova TV, Khoi NK. 1980. Konspekt rodov Scirpus L., Eriophorum L., Fuirena Rottb. i Eleocharis R. Br. flory V’etnama. – Nov. Sist. Vysš. Rast. 17: 54-63.

Ehler N. 1977. Neue Untersuchungen zur Entwicklung, Struktur und Funktion der Bromelien-Trichome. – Bromelienstudien II: 473-508.

Ehler N, Schill R. 1973. Die Pollenmorphologie der Bromeliaceae. – Pollen Spores 15: 13-45.

Eig A. 1929. Monographisch-kritische Übersicht der Gattung Aegilops. – Feddes Repert. 55.

Eiten LT. 1964. Egleria, a new genus of Cyperaceae from Brazil. – Phytologia 9: 481-487.

Eiten LT. 1970. Notes on Brazilian Cyperaceae II. – Phytologia 20: 273-276.

Eiten LT. 1976a. Inflorescence units in the Cyperaceae. – Ann. Missouri Bot. Gard. 63: 81-112.

Eiten LT. 1976b. The morphology of some critical Brazilian species of Cyperaceae. – Ann. Missouri Bot. Gard. 63: 113-199.

Eldenäs PK, Linder HP. 2000. Congruence and complementarity of morphological and trnL-trnF sequence data and the phylogeny of the African Restionaceae. – Syst. Bot. 25: 692-707.

Elias MK. 1942. Tertiary prairie grasses and other herbs from the high plains. – Geol. Soc. America Spec. Pap. 41: 1-176.

Ellis RP. 1976. A procedure for standardizing comparative leaf anatomy in the Poaceae I. The leaf-blade as viewed in transverse section. – Bothalia 12: 65-109.

Ellis RP. 1977. Distribution of the Kranz syndrome in the Southern African Eragrostoideae and Panicoideae according to bundle sheath anatomy and cytology. – Agroplantae 9: 73-110.

Ellis RP. 1979. A procedure for standardizing comparative leaf anatomy in the Poaceae II. The epidermis as seen in surface view. – Bothalia 12: 641-671.

Ellis RP. 1982. Leaf anatomy of South African Danthonieae (Poaceae) VII. Merxmuellera dura and M. rangei. – Bothalia 14: 95-99.

Ellis RP. 1984a. Leaf anatomy of the South African Danthonieae (Poaceae) IX. Asthenatherum glaucum. – Bothalia 15: 153-159.

Ellis RP. 1984b. Eragrostis walteri – a first record of non-Kranz leaf anatomy in the subfamily Chloridoideae (Poaceae). – South Afr. J. Bot. 3: 380-386.

Ellis RP. 1987a. A review of comparative leaf blade anatomy in the systematics of the Poaceae: the past twenty-five years. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 3-10.

Ellis RP. 1987b. Leaf anatomy of the genus Ehrharta (Poaceae) in southern Africa: the Setacea group. – Bothalia 17: 75-89.

Ellis RP. 1987c. Leaf anatomy of the genus Ehrharta (Poaceae) in southern Africa: the Villosa group. – Bothalia 17: 195-204.

Ellis RP. 1988. Leaf anatomy and systematics of Panicum (Poaceae: Panicoideae) in southern Africa. – In: Goldblatt P, Lowry PP II (eds), Modern systematic studies in African botany, Monogr. Syst. Bot. Missouri Bot. Gard. 25: 129-156.

Emery WHP. 1957. A cyto-taxonomical study of Setaria macrostachya (Gramineae) and its relatives in the Southwestern United States and Mexico. – Bull. Torrey bot. Club 84: 94-104.

Endo TR, Gill BS. 1984. The heterochromatin distribution and genome evolution in diploid species of Elymus and Agropyron. – Can. J. Genet. Cytol. 26: 669-678.

Engelmann G. 1866-1868. A revision of the North American species of the genus Juncus, with a description of new and imperfectly known species. – Trans. Acad. Sci. St. Louis 2: 424-499.

Engler A. 1886. Über die Familie Typhaceae. – Bot. Centralbl. 25: 127.

Engler A. 1888a. Flagellariaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(4), W. Engelmann, Leipzig, pp. 1-3.

Engler A. 1888b. Mayacaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(4), W. Engelmann, Leipzig, pp. 16-18.

Engler A. 1888c. Xyridaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(4), W. Engelmann, Leipzig, pp. 18-20.

Engler A. 1888d. Rapateaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(4), W. Engelmann, Leipzig, pp. 28-31.

Engler A. 1889a. Typhaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(1), W. Engelmann, Leipzig, pp. 183-186.

Engler A. 1889b. Sparganiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(1), W. Engelmann, Leipzig, pp. 192-193.

Engler A. 1930. Flagellariaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Augl., Bd. 15a, W. Engelmann, Leipzig, pp. 6-8.

Engler A, Krause K. 1911. Über den anatomischen Bau der baumartigen Cyperaceae Schoenodendron bücheri Engl. aus Kamerun. – Abh. Kön. Preuß. Akad. Wissensch. 1911.

Erdtman G, Praglowski J. 1974. A note on pollen morphology. – In: Smith LB, Downs RJ (eds), Pitcairnioideae (Bromeliaceae). Flora Neotropica 14, Hafner Press, New York, pp. 28-33.

Ertter B. 1986. The Juncus triformis complex. – Mem. New York Bot. Gard. 39: 1-90.

Escobedo-Sarti J, Ramírez I, Leopardi C, Carnevali G, Magallón S, Duno R, Mondragón D. 2013. A phylogeny of Bromeliaceae (Poales, Monocotyledoneae) derived from an evaluation of nine supertree methods. – J. Syst. Evol. 51: 743-757.

Escudero M, Luceño M. 2009. Systematics and evolution of Carex sects. Spirostachyae and Elatae (Cyperaceae). – Plant Syst. Evol. 279: 163-189.

Escudero M, Valcárcel V, Vargas P, Luceño M. 2007. Evolution in Carex L. sect. Spirostachyae (Cyperaceae): a molecular and cytogenetic approach. – Organisms Divers. Evol. 7: 271-291.

Escudero M, Hipp AL, Waterway MJ, Valente LM. 2012. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). – Mol. Phylogen. Evol. 63: 650-655.

Esen A, Hilu KW. 1989. Immunological affnities among subfamilies of the Poaceae. – Amer. J. Bot. 76: 196-203.

Esen A, Hilu KW. 1991. Electrophoretic and immunological studies of prolamins in the Poaceae II. Phylogenetic affinities of the Aristideae. – Taxon 40: 5-17.

Espejo-Serna A. 2002. Viridantha, un género nuevo de Bromeliaceae (Tillandsioideae) endémico de México. – Acta Bot. Mexicana 60: 25.

Essi L, Longhi-Wagner HM, Souza-Chies TT de. 2008. Phylogenetic analysis of the Briza complex (Poaceae). – Mol. Phylogen. Evol. 47: 1018-1029.

Essi L, Souza Chies TT, Longhi Wagner HM. 2010. Three new taxa of Chascolytrum (Poaceae, Pooideae, Poeae) from South America. – Novon 20: 149-156.

Estes JR, Tyrl RJ. 1982. The generic concept and generic circumscription in the Triticeae: an end paper. – In: Estes JR, Tyrl RJ, Brunken JN (eds), Grasses and grasslands, systematics and ecology, University of Oklahoma Press, Norman, pp. 145-164.

Evans TM, Brown GK. 1989. Plicate staminal filaments in Tillandsia subgenus Anoplophytum. – Amer. J. Bot. 76: 1478-1485.

Everett J. 1991. Systematic relationships of the Australian Stipeae (Poaceae). – M.Sc. thesis, University of Sydney, New South Wales, Australia.

Everett J, Jacobs SWL. 1983. Studies in Australian Stipa (Poaceae). – Telopea 2: 391-400.

Everett J, Jacobs SWL. 1990. Notes on Stipa (Poaceae) in Australia and Easter Island. – Telopea 4: 7-11.

Fagundes NF, Mariath JE de A. 2010. Morphoanatomy and ontogeny of fruit in Bromeliaceae species. – Acta Bot. Brasilica 24: 765-779.

Fahmy AG. 2008. Diversity of lobate phytoliths in grass leaves from the Sahel region, West Tropical Africa: tribe Paniceae. – Plant Syst. Evol. 270: 1-23.

Fan X, Liu J, Sha L-N, Sun G-L, Hu Z-Q, Zeng J, Kang H-Y, Zhang H-Q, Wang Y, Wang X-L, Zhang L, Ding C-B, Yang R-W, Zheng Y-L, Zhou Y-H. 2014. Evolutionary pattern of rDNA following polyploidy in Leymus (Triticeae: Poaceae). – Molec. Phylogen. Evol. 77: 296-306.

Fang W, Wu J-R, Sheng Y-C. 1991. Chromosome numbers of ten scattered bamboos. – J. Zhejiang Forest College 8: 127-129.

Faria APG, Wendt T, Brown GK. 2004. Cladistic relationships of Aechmea (Bromeliaceae, Bromelioideae) and allied genera. – Ann. Missouri Bot. Gard. 91: 303-319.

Fassett NC. 1925. Notes on Distichlis. – Rhodora 27: 67-72.

Faulkner JS. 1972. Chromosome studies on Carex section Acutae in North-west Europe. – Bot. J. Linn. Soc. 65: 271-302.

Felber F. 1986. Distribution des cytodèmes d’Anthoxanthum odoratum L. s. lat. en Suisse. Les relations Alpes-Jura. Index des nombres chromosomiques des Spermatophytes de la Suisse III. Poaceae, genre Anthoxanthum. – Bot. Helv. 96: 145-158.

Felber F. 1988. Distribution des cytodèmes d’Anthoxanthum odoratum L. s. l. en France et dans les regions limitrophes. – Bull. Soc. Bot. France 135: 281-293.

Fernandes A, Queiros M. 1969. Contribution à la connaissance cytotaxinomique des Spermatophyta du Portugal I. Gramineae. – Bol. Soc. Brot., ser. II, 43: 20-140.

Fernández Souto DP, Catalano SA, Tosto D, Bernasconi P, Sala A, Wagner M, Corach D. 2006. Phylogenetic relationships of Deschampsia antarctica (Poaceae): insights from nuclear ribosomal ITS. – Plant Syst. Evol. 261: 1-9.

Ferrari R, Scatena V, Oriani A. 2014. Leaf and inflorescence peduncle anatomy: a contribution to the taxonomy of Rapateaceae. – Plant Syst. Evol. 300: 1579-1590.

Ferreira FM, Berg C van den, Hollowell VC, Oliveira RP. 2013. Parianella (Poaceae, Bambusoideae): morphological and biogeographical information reveals a new genus of herbaceous bamboos from Brazil. – Phytotaxa 77: 27-32.

Ferris C, King RA, Gray AJ. 1997. Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C. E. Hubbard. – Mol. Ecol. 6: 185-187.

Fijten F. 1975. A taxonomic revision of Buergersiochloa Pilg. (Gramineae). – Blumea 22: 415-418.

Filgueiras TS. 1982. Taxonomia e distribuição de Arthropogon Nees (Gramineae). – Bradea 3: 303-322.

Filgueiras TS. 1990. Revisão de Mesosetum Steudel (Gramineae: Paniceae). – Acta Amazonica 14: 47-114.

Filgueiras TS. 1993. Nomenclatural and critical notes on some Brazilian species of Paspalum (Poaceae: Paniceae). – Acta Amazonica 23: 147-161.

Filgueiras TS. 1994. A new species of Echinolaena (Poaceae: Paniceae) from Ecuador and a key to the New World species of the genus. – Nord. J. Bot. 14: 379-381.

Filgueiras TS. 1995. Paspalum niquelandiae (Poaceae: Paniceae), a new species from serpentine outcrops of central Brazil. – Novon 5: 30-33.

Filgueiras TS. 1996. Arthropogon rupestris (Poaceae: Arthropogoneae) a new species from the Brazilian cerrado vegetation and a revised key for the genus. – Nord. J. Bot. 16: 69-72.

Filgueiras TS, Davidse G. 1994. Paspalum biaristatum (Poaceae: Paniceae), a new serpentine endemic from Goiás, Brazil, and the second awned species in the genus. – Novon 4: 18-22.

Filgueiras TS, Davidse G. 1995. Two new species of Paspalum (Poaceae: Paniceae) from Brazil. – Novon 5: 146-151.

Filgueiras TS, Zuloaga FO. 1999. A new Triraphis (Poaceae: Eragrostoideae) from Brazil: first record of a native species in the New World. – Novon 9: 36-41.

Filgueiras TS, Davidse G, Zuloaga FO. 1993. Ophiochloa, a new endemic serpentine grass genus (Poaceae: Paniceae) from the Brazilian cerrado vegetation. – Novon 3: 360-366.

Fillgueiras TS, Peterson PM, Herrera-Arrieta Y. 1999. Rheochloa (Poaceae: Chloridoideae), a new genus from Central Brazil. – Syst. Bot. 24: 123-127.

Filgueiras TS, Morrone O, Zuloaga FO. 2001. Paspalum burmanii (Poaceae: Paniceae), a new species from central Brazil. – Novon 11: 36-39.

Filgueiras TS, Davidse G, Zuloaga FO, Morrone O. 2001. The establishment of the new genus Altoparadisium and a reevaluation of the genus Arthropogon (Poaceae, Paniceae). – Ann. Missouri Bot. Gard. 88: 351-372.

Fincher GB. 2009. Revolutionary times in our understanding of cell wall biosynthesis and remodelling in the grasses. – Plant Physiol. 149: 27-37.

Finlayson CM, Roberts J, Chick AJ, Sale PJM. 1983. The biology of Australian weeds II. Typha dominguensis Pers. and Typha orientalis Presl. – J. Aust. Inst. Agric. Sci. 49: 3-10.

Finot VL, Peterson PM, Zuloaga FO, Soreng RJ, Matthei O. 2005. A revision of Trisetum (Poaceae: Pooideae: Aveninae) in South America. – Ann. Missouri Bot. Gard. 92: 533-568.

Finot VL, Baeza CM, Matthei O. 2006. Micromorfología de la epidermis de la lemma de Trisetum y géneros afines (Poaceae, Pooideae). – Darwiniana 44: 32-57.

Finot VL, Barrera JA, Marticorena C, Rojas G. 2011. Systematic diversity of the family Poaceae (Gramineae) in Chile. – In: Grillo O (ed.), The dynamical processes of biodiversity – case studies of evolution and spatial distribution, publ. by InTech, Rijeka & Shanghai, pp. 71-108.

Fisher AE, Triplett JK, H C-S, Schiller AD, Oltrogge KA, Schroder ES, Kelchner SA, Clark LG. 2009. Paraphyly in the bamboo subtribe Chusqueinae (Poaceae: Bambusoideae) and a revised infrageneric classification for Chusquea. – Syst. Bot. 34: 673-683.

Fisher AE, Clark LG, Kelchner SA. 2014. Molecular phylogeny estimation of the bamboo genus Chusquea (Poaceae: Bambusoideae: Bambuseae) and description of two new subgenera. – Syst. Bot. 39: 829-844.

Fisher JB. 1971. Inverted vascular bundles in the leaf of Cladium (Cyperaceae). – Bot. J. Linn. Soc. 64: 277-293.

Flovik K. 1938. Cytological studies on arctic grasses. – Hereditas 24: 265-376.

Foggi B, Rossi G. 1996. A survey of the genus Festuca L. (Poaceae) in Italy I. The species of the summit flora in the Tuscan-Emilian Apennines and Apuan Alps. – Willdenowia 26: 183-215.

Foggi B, Scholz H, Valdés B. 2005. The Euro+Med treatment of Festuca (Gramineae) – new names and new combinations in Festuca and allied genera. – Willdenowia 35: 241-244.

Foggi B, Parolo G, Šmarda P, Coppi A, Lastrucci L, Lakušić D, Eastwood R, Rossi G. 2012. Revision of the Festuca alpina group (Festuca section Festuca, Poaceae) in Europe. – Bot. J. Linn. Soc. 170: 618-639.

Fontana A. 1963. Micorriza ectotrofiche in una ciperacea: Kobresia bellardii. – Degl. Giorn. Bot. Ital. 70: 639-641.

Ford BA, Ball PW. 1992. The taxonomy of the circumpolar short-beaked taxa of Carex sect. Vesicariae (Cyperaceae). – Syst. Bot. 17: 620-639.

Ford BA, Ball PW, Ritland K. 1991. Allozyme diversity and genetic relationships among North American members of the short-beaked taxa of Carex sect. Vesicariae (Cyperaceae). – Syst. Bot. 16: 116-131.

Ford BA, Iranpour M, Naczi RFC, Starr JR, Jerome CA. 2006. Phylogeny of Carex subg. Vignea (Cyperaceae) based on non-coding nrDNA sequence data. – Syst. Bot. 31: 70-82.

Ford BA, Ghazvini H, Naczi RFC, Starr JR. 2012. Phylogeny of Carex subg. Vigna (Cyperaceae) based on amplified fragment length polymorphism and nrDNA data. – Syst. Bot. 37: 913-925.

Fortune PM, Schierenbeck KA, Ainouche AK, Jacquemin J, Wendel JF, Ainouche ML. 2007. Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species (Poaceae). – Mol. Phylogen. Evol. 43: 1040-1055.

Fortune PM, Pourtau N, Viron N, Ainouche ML. 2008. Molecular phylogeny and reticulate origins of the polyploid Bromus species from section Genea (Poaceae). – Amer. J. Bot. 95: 454-464.

Forzza RC. 2001. Filogenia da tribo Puyeae Wittm. e revisão taxonômica do gênero Encholirium Mart. ex Schult. & Schult. f. (Pitcairnioideae-Bromeliaceae). – Ph.D. diss., University of São Paulo, Brazil.

Fox DL, Koch PL. 2004. Carbon and oxygen isotopic variability in Neogene paleosol carbonates: constraints on the evolution of C4-grasslands of the Great Plains, USA. – Palaeogeogr. Palaeoclim. Palaeoecol. 207: 305-329.

Francis A. 1990. The Tripsacinae: an interdisciplinary review of maize (Zea mays) and its relatives. – Acta Bot. Fenn. 140: 1-51.

Franklin DC. 2003. Morphology and taxonomy of the Top End Bamboo Bambusa arnhemica F. Muell., a little-known bamboo from northern Australia. – Bamboo Sci. Cult. 17: 44-54.

Franklin DC. 2008. Taxonomic interpretations of Australian native bamboos (Poaceae: Bambuseae) and their biogeographic implications. – Telopea 12: 179-191.

Franklin EF. 1983. Two new species of Scleria (Cyperaceae) from South Africa. – Kew Bull. 38: 33-36.

Freckmann RW, Lelong MG. 2003. Nomenclatural changes and innovations in Panicum and Dichanthelium (Poaceae: Paniceae). – Sida 20:161-174.

Frederiksen S. 1982. Festuca brachyphylla, F. saximontana and related species in North America. – Nord. J. Bot. 2: 525-536.

Frederiksen S. 1986. Revision of Taeniatherum (Poaceae). – Nord. J. Bot. 6: 389-397.

Frederiksen S. 1991. Taxonomic studies in Dasypyrum (Poaceae). – Nord. J. Bot. 11: 135-142.

Frederiksen S. 1991. Taxonomic studies in Eremopyrum (Poaceae). – Nord. J. Bot. 11: 271-285.

Frederiksen S. 1993. Taxonomic studies in some annual genera of the Triticeae (Poaceae). – Nord. J. Bot. 13: 481-493.

Frederiksen S, Bothmer R von. 1986. Relationships in Taeniatherum (Poaceae). – Can. J. Bot. 64: 2343-2347.

Frederiksen S, Seberg O. 1992. Phylogenetic analysis of the Triticeae (Poaceae). – Hereditas 116: 15-19.

Freitag H. 1975. The genus Piptatherum (Gramineae) in Southwest and South Asia. – Notes Roy. Bot. Gard. Edinb. 33: 341-408.

Freitag H. 1985. The genus Stipa (Gramineae) in Southwest and South Asia. – Notes Roy. Bot. Gard. Edinb. 42: 355-489.

Freitag H. 1989. Piptatherum and Stipa (Gramineae) in the Arabian Peninsula and tropical East Africa. – In: Tan K (ed), The Davis and Hedge festschrift, Edinburgh University Press, Edinburgh, pp. 115-132.

Freter LE, Brown WV. 1955. A cytotaxonomic study of Bouteloua curtipendula and B. uniflora. – Bull. Torrey Bot. Club 82: 121-130.

Friar E, Kochert G. 1991. Bamboo germplasm screening with nuclear restriction fragment length polymorphisms. – Theor. Appl. Gen. 82: 697-703.

Friedland S. 1941. The American species of Hemicarpha. – Amer. J. Bot. 28: 855-861.

Friedman J, Harder LD. 2004. Inflorescence architecture and wind pollination in six grass species. – Funct. Ecol. 18: 851-860.

Fuente García V de la, Ortuñez E. 1998. Biosistemática de la sección Festuca del género Festuca L. (Poaceae) en la Península Ibérica. – Madrid.

Fuente García V de la, Sanchez Mata D. 1986. Datos taxonómicas sobre el género Festuca L. (Gramineae) en la Península Ibérica. – Candollea 41: 441-448.

Fuente García V de la, Ferrero LM, Ortuñez Rubio E. 2001. Chromosome counts in the genus Festuca L. section Festuca (Poaceae) in the Iberian Peninsula. – Bot. J. Linn. Soc. 137: 385-398.

Gabel ML, Bich H. 1988. A range extension for the Tertiary fossil Eleofimbris (Cyperaceae). – The Southw. Natur. 33: 110-112.

Gabel ML, Backlund DC, Haffner J. 1992. Sedge (Cyperaceae) achenes from the Late Barstovian of Nebraska. – J. Paleontology 66: 525-529.

Galbreath EC. 1974. Stipoid grass “seeds” from the Oligocene and Miocene deposits of northeastern Colorado. – Trans. Illinois State Acad. Sci. 67: 366-368.

Gale MD, Devos KM. 1998. Comparative genetics in the grasses. – Proc. Natl. Acad. Sci. U.S.A. 95: 1971-1974.

Galetto L, Bernardello LM. 1992. Extrafloral nectaries that attract ants in Bromeliaceae: structure and nectar composition. – Can. J. Bot. 70: 1101-1106.

Galley C, Linder HP. 2007. The phylogeny of the Pentaschistis clade (Danthonioideae, Poaceae) based on chloroplast DNA, and the evolution and loss of complex characters. – Evolution 61: 864-884.

Gandhi KN, Barkworth ME. 2003. Proposal to conserve the name Munroa (Gramineae) with that spelling. – Taxon 52: 137-138.

Gao Q, Yang Z-L. 2010. Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. – Mycorrhiza 20: 281-287.

Garbari F. 1972. Il genere Paspalum L. (Gramineae) in Italia. – Atti Soc. Tosc. Sci. Nat. Pisa Mem., Ser. B, 79: 52-65.

Gardner CS. 1982. A systematic study of Tillandsia subgenus Tillandsia. – Ph.D. diss., Texas A. & M. University, Corpus Cristi, Texas.

Gardner CS. 1986a. Inferences about pollination in Tillandsia (Bromeliaceae). – Selbyana 9: 76-87.

Gardner CS. 1986b. Preliminary classification of Tillandsia based on floral characters. – Selbyana 9: 130-146.

Gaut BS, Clegg MT. 1991. Molecular evolution of alcohol dehydrogenase 1 in members of the grass family. – Proc. Natl. Acad. Sci., U.S.A. 90: 2060-2064.

Gaut BS, Morton BR, McCaig BC, Clegg MT. 1996. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. – Proc. Natl. Acad. Sci. U.S.A. 93: 10274-10279.

Gaut BS, Clark LG, Wendel JF, Muse SV. 1997. Comparison of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). – Mol. Biol. Evol. 14: 769-777.

Gehrke BS, Martín-Bravo S, Muasya M, Luceño M. 2010. Monophyly, phylogenetic position and the role of hybridization in Schoenoxiphium Nees (Cariceae, Cyperaceae). – Mol. Phylogen. Evol. 56: 380-392.

Geng B-J, Yi T-P. 1982. Bashania, a new bamboo genus from western China. – J. Nanjing Univ. (Nat. Sci.) 3: 722-732.

Gervais C. 1968. Sur un critère anatomique nouveau utilisable dans la taxinomie chez les avoines vivaces. – Ber. Schweiz. Bot. Ges. 78: 369-372.

Gervais C. 1973. Contribution à l’étude cytologique et taxinomique des avoines vivaces (G. Helictotrichon Bess. et Avenochloa Holub). – Denkschr. Schweiz. naturf. Ges. 88.

Ghamkhar K, Marchant AD, Wilson KL, Bruhl JJ. 2007 [2008]. Phylogeny of Abildgaardieae (Cyperaceae) inferred from ITS and trnL-F data. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 149-164.

Ghasemkhani M, Akhani H, Sahebi J, Scholz H. 2008. The genera Aristida and Stipagrostis (Poaceae) in Iran. – Willdenowia 38: 135-148.

Gibbs-Russell GE. 1986. Significance of different centers of diversity in subfamilies of Poaceae in southern Africa. – Palaeoecol. Africa 17: 183-192.

Gibbs-Russell GE. 1987. Taxonomy of the genus Ehrharta (Poaceae) in southern Africa: the Setacea group. – Bothalia 17: 67-73.

Gibbs-Russell GE, Ellis RP. 1987. Species groups in the genus Ehrharta (Poaceae) in southern Africa. – Bothalia 17: 51-65.

Gibbs-Russell GE, Ellis RP. 1988. Taxonomy and leaf anatomy of the genus Ehrharta (Poaceae) in southern Africa: the Dura group. – Bothalia 18: 165-171.

Gibbs-Russell GE, Watson L, Koekemoer M, Smook L, Barker NP, Anderson HM, Dallwitz MJ. 1990. Grasses of southern Africa. – Mem. Bot. Surv. South Africa 58: 1-437.

Giles BE, Lefkovitch LP. 1986. A taxonomic investigation of the Hordeum murinum complex (Poaceae). – Plant Syst. Evol. 153: 181-187.

Gilg E. 1891. Beiträge zur vergleichenden Anatomie der xerophilen Familie der Restionaceae. – Engl. Bot. Jahrb. Syst. 13: 541-606.

Gilg-Benedict C. 1930a. Restionaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 15a, W. Engelmann, Leipzig, pp. 8-27.

Gilg-Benedict C. 1930b. Centrolepidaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 15a, W. Engelmann, Leipzig, pp. 27-33.

Gillespie LJ, Soreng RJ. 2005. A phylogenetic analysis of the bluegrass genus Poa based on cpDNA restriction site data. – Syst. Bot. 30: 84-105.

Gillespie LJ, Archambault A, Soreng RJ. 2007. Phylogeny of Poa (Poaceae) based on trnT-trnF sequence data: major clades and basal realtionships. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 420-434.

Gillespie LJ, Soreng RJ, Bull, RD, Jacobs SWL, Refulio-Rodriguez NF. 2008. Phylogenetic relationships in subtribe Poinae (Poaceae, Poeae) based on nuclear ITS and plastid trnT-trnF sequences. – Botany 86: 938-967.

Gillespie LJ, Soreng RJ, Jacobs SWL. 2009. Phylogenetic relationships of Australian Poa (Poaceae: Poinae), including molecular evidence for two new genera, Saxipoa and Sylvipoa. – Aust. Syst. Bot. 22: 413-436.

Gillespie LJ, Soreng RJ, Paradis M, Bull RD. 2010. Phylogeny and reticulation in subtribe Poinae and related subtribes (Poaceae) based on nrITS, ETS, and trnTLF data. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 589-617.

Gilliland HB. 1971. Grasses of Malaya. – In: Burkill HM (ed), A revised flora of Malaya 3, Government Printing Office, Singapore.

Gilly CL. 1941a. The genus Everardia. – Bull. Torrey Bot. Club 68: 20-31.

Gilly CL. 1941b. A new cyperaceous genus from Northern South America. – Bull. Torrey Bot. Club 68: 330-332.

Gilly CL. 1942. The genus Cephalocarpus Nees (Cyperaceae). – Bull. Torrey Bot. Club 69: 290-297.

Gilly CL. 1943. An Afro-South-American cyperaceous complex. – Brittonia 5: 1-20.

Gilly CL. 1952. Phylogenetic development of the inflorescence and generic relationships in the Kobresiaceae. – Iowa State College J. Sci. 26: 210-212.

Gilmartin AJ. 1968. Taxonomic notes on Ecuadorian Bromeliaceae. – Phytologia 16: 153-167.

Gilmartin AJ. 1972. Bromeliaceae of Ecuador. – Monogr. Phanerog. 4, J. Cramer, Lehre.

Gilmartin AJ. 1981. Morphological variation within five angiosperm families: Asclepiadaceae, Bromeliaceae, Melastomataceae, Piperaceae, and Rubiaceae. – Syst. Bot. 6: 331-345.

Gilmartin AJ. 1983. Evolution of mesic and xeric habits in Tillandsia ad Vriesea (Bromeliaceae). – Syst. Bot. 8: 233-242.

Gilmartin AJ, Brown GK. 1986a. Cladistic tests of hypotheses concerning the evolution of xerophytes and mesophytes in Tillandsia subg. Phytarrhiza (Bromeliaceae). – Amer. J. Bot. 73: 387-397.

Gilmartin AJ, Brown GK. 1986b. Glomeropitcairnia, an enigmatic tillandsioid genus. – J. Bromeliad Soc. 36: 104-106.

Gilmartin AJ, Brown GK. 1987. Bromeliales, related monocots, and resolution of relationships among Bromeliaceae subfamilies. – Syst. Bot. 12: 493-500.

Gilmartin AJ, Brown GK, Varadarajan GS, Neighbours M. 1989. Status of Glomeropitcairnia within evolutionary history of Bromeliaceae. – Syst. Bot. 14: 339-348.

Gilmour CN, Starr JR, Naczi RFC. 2013. Calliscirpus, a new genus for two narrow endemics of the California Floristic Province, C. criniger and C. brachythrix sp. nov. (Cyperaceae). – Kew Bull. 68: 85-105.

Giraldo-Cañas D. 2005. Las especies colombianas del género Digitaria (Poaceae: Panicoideae: Paniceae). – Caldasia 27: 25-87.

Gitaí J, Horres R, Benko-Iseppon AM. 2005. Chromosomal features and evolution of Bromeliaceae. – Plant Syst. Evol. 253: 65-80.

Giulietti AM. 1978. Modificações taxonômicos no gênero Eriocaulon L. – Bol. Bot. Univ. São Paulo 6: 39-47.

Giulietti AM. 1984. Estudos taxonômicos no gênero Leiothrix Ruhl. – These de Livre docencia, Universidad de São Paulo, Brazil.

Giulietti AM, Hensold NC. 1990. Padrões de distribuição geográfica dos gêneros de Eriocaulaceae. – Acta Bot. Brasilica 4: 133-158.

Giulietti AM, Hensold NC. 1991a. Nomenclatural changes and range extension in Leiothrix flavescens (Bong.) Ruhl. (Eriocaulaceae). – Novon 1: 45-49.

Giulietti AM, Hensold NC. 1991b. Synonymization of the genera Comanthera and Carptotepala with Syngonanthus (Eriocaulaceae). – Ann. Missouri Bot. Gard. 78: 460-464.

Giulietti AM, Meikle RD. 1982. A problematic transatlantic disjunction in Paepalanthus (Eriocaulaceae). – Kew Bull. 37: 291-293.

Giulietti AM, Monteiro WR, Mayo SJ, Stephens J. 1984. A preliminary survey of testa sculpture in Eriocaulaceae. – Beitr. Biol. Pflanzen 62: 189-209.

Giulietti AM, Amaral MCE, Bittrich V. 1995. Phylogenetic analysis of inter- and infrageneric relationships of Leiothrix Ruhland (Eriocaulaceae). – Kew Bull. 50: 55-71.

Giulietti AM, Scatena VL, Sano PT, Parra LR, de Queiroz LP, Harley RM, Menezes NL, Ysepon AMB., Salatino A, Satino ML, Vilegas W, Santos LC, Ricci CV, Bonfim MCP, Miranda EB. 2000. Multidisciplinary studies on neotropical Eriocaulaceae. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 580-589.

Giulietti AM, Hensold N, Parra LR, Gomes de Andrade MJ, Berg C van den, Harley RM. 2012. The synonymization of Philodice with Syngonanthus (Eriocaulaceae). – Phytotaxa 60: 50-56.

Giussani LM, Cota-Sánchez JH, Zuloaga FO, Kellogg EA. 2001. A molecular phylogeny of the grass subfamily Panicoideae (Poaceae) shows multiple origins of C4 photosynthesis. – Amer. J. Bot. 88: 1993-2012.

Giussani LM, Zuloaga FO, Quarín CL, Cota-Sánchez JG, Ubayasena K, Morrone O. 2009. Phylogenetic relationships in the genus Paspalum (Poaceae: Panicoideae: Paniceae): an assessment of the Quadrifaria and Virgata informal groups. – Syst. Bot. 34: 32-43.

Givnish TJ, Burkhardt EL, Happel R, Weintraub J. 1984. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. – Amer. Natur. 124: 479-497.

Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, Burkhardt EM. 1997. Molecular evidence and adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guayana Shield. – In: Givnish TJ, Sytsma KJ (eds), Molecular evolution and adaptive radiation, Cambridge University Press, New York, pp. 259-311.

Givnish TJ, Evans TM, Zjhra ML, Patterson TB, Berry PE, Sytsma KJ. 2000. Molecular evolution, adaptive radiation, and geographic diversification in the amphiatlantic family Rapateaceae: evidence from ndhF and morphology. – Evolution 54: 1915-1937.

Givnish TJ, Milliam KC, Evans TM, Hall JC, Pires JC, Berry PE, Sytsma KJ. 2004. Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. – Intern. J. Plant Sci. 165(Suppl.): S35-S54.

Givnsh TJ, Milliam KC, Berry PE, Sytsma KJ. 2007. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. – Aliso 23: 3-26.

Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB. 2006 [2008]. Phylogeny, biogeography, and ecological evolution in Bromeliaceae: insights from ndhF sequences. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 3-26.

Givnish TJ, Leebens-Mack JH, Ames Sevillano M, McNeal JR, Steele PR, Davis JI, Ané C, Soltis DE, Soltis PS. 2010. Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. – Ann. Missouri Bot. Gard. 97: 584-616.

Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. – Amer. J. Bot. 98: 872-895.

Givnish TJ, Barfuss MHJ, Ee BV, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ. 2014. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. – Molec. Phylogen. Evol. 71: 55-78.

Glémin S, Bataillon T. 2009. A comparative review of the evolution of grasses under domestication. – New Phytol. 183: 273-290.

Goebel K. 1895. Ein Beitrag zur Morphologie der Gräser. – Flora 81: 17-29.

Goetghebeur P. 1977. Studies in Cyperaceae 1. Taxonomic notes on Ascolepis and Marisculus, a new genus of the tribe Cypereae. – Bull. Jard. Bot. Nat. Belgique 47: 435-447.

Goetghebeur P. 1980. Studies in Cyperaceae 2. Contribution towards a revision of the mainly African genus Ascolepis Nees ex Steudel. – Adansonia sér. 2, 19: 269-305.

Goetghebeur P. 1985. Studies in Cyperaceae 6. Nomenclature of the suprageneric taxa in the Cyperaceae. – Taxon 34: 617-632.

Goetghebeur P. 1986. Genera Cyperacearum. Een bijdrage tot de kennis van de morfologie, systematiek en fylogenese van de Cyperaceae-genera. – Ph.D. diss., Rijksuniversiteit Gent, Belgium.

Goetghebeur P. 1989. Studies in Cyperaceae 9. Problems in the lectotypification and infrageneric taxonomy of Cyperus L. – Bull. Soc. Roy. Bot. Belg. 122: 103-114.

Goetghebeur P. 1998. Cyperaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 141-190.

Goetghebeur P, Borre A van den. 1989. Studies in Cyperaceae 8. A revision of Lipocarpha, including Hemicarpha and Rikliella. – Wageningen Agric. Univ. Papers 89-1: 1-87.

Goetghebeur P, Coudijzer J. 1984. Studies in Cyperaceae 3. Fimbristylis and Abildgaardia in Central Africa. – Bull. Jard. Bot. Natl. Belg. 54: 65-89.

Goetghebeur P, Coudijzer J. 1985. Studies in Cyperaceae 5. The genus Bulbostylis in Central Africa. – Bull. Jard. Bot. Natl. Belg. 55: 236-238.

Goetghebeur P, Simpson DA. 1991. Critical notes on Actinoscirpus, Bolboschoenus, Isolepis, Phylloscirpus and Amphiscirpus (Cyperaceae). – Kew Bull. 46: 169-178.

Goetghebeur P, Vorster P. 1988. Studies in Cyperaceae 7. The genus Alinula J. Raynal: a reappraisal. – Bull. Jard. Bot. Nat. Belgique 58: 457-465.

Goh WL, Chandran S, Lin R-S, Xia N-H, Wong KM. 2010. Phylogenetic relationships among Southeast Asian climbing bamboos (Poaceae: Bambusoideae) and the Bambusa complex. – Mol. Phylogen. Evol. 38: 764-773.

Golovnina KA, Glushkov SA, Blinov AG, Mayorov VI, Adkison LR, Goncharov NP. 2007. Molecular phylogeny of the genus Triticum L. – Plant Syst. Evol. 264: 195-216.

Gómez P LD. 1972. Karatophyllum bromelioides L. D. Gómez (Bromeliaceae), nov. gen. et sp., del terciário medio de Costa Rica. – Rev. Biol. Trop. 20: 221-229.

Gomes-da-Silva J, da Costa Vargens FA, de Oliveira Arruda R do C, da Costa AF. 2012. A morphological cladistic analysis of the Vriesea corcovadensis group (Bromeliaceae: Tillandsioideae), with anatomical descriptions: new evidence of the non-monophyly of the genus. – Syst. Bot. 37: 641-654.

Gómez-Martínez R. 1998. A systematic study of the grass tribe Paniceae with special emphasis on the genus Axonopus. – Ph.D. diss., University of Reading, England.

Gómez-Martínez R, Culham A. 2000. Phylogeny of the subfamily Panicoideae with emphasis on the tribe Paniceae: evidence from the trnL-F cpDNA region. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, Australia, pp. 136-140.

Gómez-Sánchez M, Koch SD. 1998. Estudio anatómico comparativo de la lámina foliar de Eragrostis (Poaceae: Chlorioideae) de México. – Acta Bot. Mexicana 43: 33-56.

Gómez-Sánchez M, Dávila-Aranda P, Valdés-Reyna J. 2001. Estudio anatómico de Swallenia (Poaceae: Eragrostideae: Monanthochlinae), un género monotípico de Norte América. – Madroño 48: 152-161.

Goncharov NP. 2011. The genus Triticum L. taxonomy: the present and the future. – Plant Syst. Evol. 295: 1-11.

González-Elizondo MS, Peterson PM. 1997. A classification of and key to the supraspecific taxa in Eleocharis (Cyperaceae). – Taxon 46: 433-449.

González-Elizondo MS, Reznicek AA. 1996. New Eleocharis (Cyperaceae) from Venezuela. – Novon 6: 356-365.

González-Elizondo MS, Tena-Flores JA, Alarcón-Herrera MT, Flores-Tavizón E, Barajas-Acosta N. 2005. An arsenic-tolerant new species of Eleocharis (Cyperaceae) from Chihuahua, Mexico. – Brittonia 57: 150-154.

Gonzalo R, Aedo C, Nickrent DL, García MA. 2012. A numerical taxonomic investigation of Stipa Sect. Smirnovia and S. Sect. Subsmirnovia (Poaceae). – Syst. Bot. 37: 655-670.

Gonzalo R, Aedo C, García MA. 2013. Taxonomic revision of the Eurasian Stipa Subsections Stipa and Tirsae (Poaceae). – Syst. Bot. 38: 344-378.

Goossens AP. 1938. A study of the South African species of Sporobolus R. Br. with special reference to leaf anatomy. – Trans. Roy. Soc. South Afr. 26: 173-223.

Gordon-Gray KD. 1968. Studies in Cyperaceae in Southern Africa V. – J. South Afr. Bot. 34: 371-396.

Gordon-Gray KD. 1971. Fimbristylis and Bulbostylis: generic limits as seen by a student of Southern African species. – Mitt. Bot. Staatssamml. München 10: 549-574.

Gordon-Gray KD. 1995. Cyperaceae in Natal. – Strelitzia 2: 1-218.

Gorenflot R. 1976. Le complexe polyploïde du Phragmites australis (Cav.) Trin. ex. Steud. (P. communis Trin.). – Bull. Soc. Bot. France 123: 261-267.

Gould FW. 1960. Chromosome numbers in southwestern grasses. – Amer. J. Bot. 47: 873-877.

Gould FW. 1968a. Chromosome numbers of Texas grasses. – Can. J. Bot. 46: 1315-1325.

Gould FW. 1968b. Grass systematics. – New York.

Gould FW. 1975. The grasses of Texas. – Texas A & M University Press, College Station, Texas.

Gould FW. 1979. The genus Bouteloua (Poaceae). – Ann. Missouri Bot. Gard. 66: 348-416.

Gould FW, Shaw RB. 1983. Grass systematics. 2nd ed. – Texas A & M University Press, College Station, Texas.

Gould FW, Soderstrom TR. 1967. Chromosome numbers of tropical American grasses. – Amer. J. Bot. 54: 676-683.

Govaerts R. 2006. World checklist of Eriocaulaceae. – The Board of Trustees of the Royal Botanic Gardens, Kew. http://www.kew.org/wcsp/, accessed 16 October 2009.

Govaerts R, Simpson DA, Goetghebeur P, Wilson KL, Egorova T, Bruhl J. 2007. World checklist of Cyperaceae. – The Board of Trustees of the Royal Botanic Gardens, Kew. http://www.kew.org/wcsp/, accessed 16 October 2009.

Govaerts R, Simpson DA, Goetghebeur P, Wilson KL, Egorova T, Bruhl J. 2012. World Checklist of Cyperaceae. – The Board of Trustees of the Royal Botanic Gardens, Kew. http://www.kew.org/wcsp/monocots/, accessed 1 March 2012.

Govil GM, Lavania S. 1982. Floral vasculature of Eriocaulon L. – J. Indian Bot. Soc. 61: 371-376.

Govindappa DA. 1956. Embryological studies in Xyris pauciflora Willd. – Proc. Indian Acad. Sci., Sect. B, 42: 47-57.

Govindappa DA (Arekal GD), Ramaswamy SN. 1980. Embryology of Eriocaulon hookerianum Stapf and the systematic position of Eriocaulaceae. – Bot. Not. 133: 295-309.

Govindarajalu E. 1975. Studies in Cyperaceae 14. Endomorphic evidences for placing Cyperus hyalinus under the new subgenus Queenslandiella. – Reinwardtia 9: 187-195.

Graef PE. 1955. Ovule and embryo sac development in Typha latifolia. – Amer. J. Bot. 42: 806-809.

Gram K. 1961. The inflorescence of the grasses. – Bot. Tidsskr. 56: 293-313.

Grande Allende JR. 2014. Novitates agrostologicae, IV. Additional segregates from Panicum incertae sedis. – Phytoneuron 2014-22: 1-6.

Grant JR, Till W. 2005. Proposal to reject the name Dendropogon (Bromeliaceae: Tillandsioideae). – Taxon 54: 549.

Grass Phylogeny Working Group (GPWG). 2000. A phylogeny of the grass family (Poaceae), as inferred from eight character sets. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, Australia, pp. 3-7.

Grass Phylogeny Working Group (GPWG). 2001. Phylogeny and subfamilial classification of the grasses (Poaceae). – Ann. Missouri Bot. Gard. 88: 373-457.

Grass Phylogeny Working Group (GPWG). 2011. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. – New Phytol. 193: 304-312.

Grebenstein B, Röser M, Sauer W, Hemleben V. 1998. Molecular phylogenetic relationships in Aveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 rDNA sequences. – Plant Syst. Evol. 213: 233-250.

Greuning JV van, Schijff HP van der. 1973. Chlorenchyma and sclerenchyma in the culms of Willdenowia Thunb. and Hypodiscus Nees. – Ber. Deutsch. Bot. Ges. 86: 537-550.

Greuning JV van, Schijff HP van der. 1974. External morphology of the genera Hypodiscus Nees and Willdenowia Thunb. and key to genera and species based on external morphological properties. – Kirkia 9: 331-347.

Grob A. 1896. Beiträge zur Anatomie der Epidermis der Gramineenblätter. – Bibl. Bot. 36: 1-122.

Groß E. 1988a. Bromelienstudien IV. Zur Morphologie der Bromeliaceen-Samen unter Berücksichtigung systematisch-taxonomischer Aspekte. – Trop. Subtrop. Pflanzenwelt 64: 415-625.

Groß E. 1988b. Über die Keimung der Bromeliaceen. – Beitr. Biol. Pflanzen 63: 101-113.

Guaglianone ER. 1970. Un nuevo carácter, útil en la distinción genérica entre Fimbristylis Vahl y Bulbostylis Kunth (Cyperaceae). – Darwiniana 16: 40-48.

Guaglianone ER. 1979. Sobre Rhynchospora rugosa (Vahl) Gale (Cyperaceae) y algunas especies afines. – Darwiniana 22: 155-311.

Guaglianone ER, Ueno O. 1991. A disjunct species in Eleocharis (Cyperaceae). – Darwiniana 30: 223-229.

Guala II GF. 1986. The relation of space and geography to cladogenic events in Agenium and Homozeugos (Poaceae: Andropogoneae) in South America and Africa. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 159-166.

Guala II GF. 1995a. Andropogon crispifolius (Poaceae: Andropogoneae): a new species from the cerrado of central Brazil. – Nord. J. Bot. 15: 59-62.

Guala II GF. 1995b. A cladistic analysis and revision of the genus Apoclada (Poaceae: Bambusoideae: Bambusodae). – Syst. Bot. 20: 207-223.

Guala II GF. 2003. A new genus of bamboo from Cerrados of Brazil (Poaceae: Bambusoideae). – Bamboo Sci. Cult. 17: 1-3.

Guala II GF, Bogler D, Sadle J, Francisco-Ortega J. 2000. Molecular evidence for polyphyly in the genus Apoclada (Poaceae: Bambusoideae). – Bamboo Sci. Cult. 14: 15-20.

Guarise NJ, Vegetti AC. 2008. The inflorescences structure of Cyperus L. section Luzuloidei Kunth (Cyperaceae). – Plant Syst. Evol. 271: 41-63.

Guarise NJ, Vegetti AC, Pozner R. 2012. Multiple origins of congested inflorescences in Cyperus s.s. (Cyperaceae): developmental and structural evidence. – Amer. J. Bot. 99: 1276-1288.

Guédès M. 1967. Stipules médianes et stipules ligulaires chez quelques Liliacées, Joncacées et Cypéracées. – Beitr. Biol. Pflanzen 43: 59-103.

Guerreiro C, Rodríguez MF, Rúgolo de Agrasar ZE. 2013. Culm anatomy: a contribution to the identification of vegetative Andean woody bamboos in southernmost America. – Kew Bull. 68: 209-218.

Guglieri A, Longhi-Wagner HM, Zuloaga FO. 2006. Panicum complanatum (Poaceae: Panicoideae: Paniceae), a new species for southeastern Brazil. – Syst. Bot. 31: 506-511.

Guignard JL. 1961. Recherches sur l’embryogénie des Graminées: rapports des Graminées avec les autres Monocotylédones. – Ann. Sci. Nat. Bot., 12th ser., 2: 491-610.

Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK. 2010. Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. – J. Mol. Evol. 70: 149-166.

Guldahl AS, Borgen L, Nordal I. 2001. Variation in the Festuca brachyphylla (Poaceae) complex in Svalbard, elucidated by chromosome numbers and isozymes. – Bot. J. Linn. Soc. 137: 107-126.

Guo J-H, Skinner DZ, Liang G-H. 1996. Phylogenetic relationships of sorghum taxa inferred from mitochondrial DNA restriction fragment analysis. – Genome 39: 1027-1034.

Guo Y-L, Ge S. 2005. Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. – Amer. J. Bot. 92: 1548-1558.

Guo Z-H, Li D-Z. 2004. Phylogenetics of the Thamnocalamus group and its allies (Gramineae: Bambusoideae): inference from the sequences of GBSSI gene and ITS spacer. – Mol. Phylogen. Evol. 30: 1-12.

Guo Z-H, Chen Y-Y, Li D-Z, Yang J-B. 2001. Genetic variation and evolution of the alpine bamboos (Poaceae: Bambusoideae) using DNA sequence data. – J. Plant Res. 114: 315-322.

Guo Z-H, Chen Y-Y, Li D-Z. 2002. Phylogenetic studies on Thamnocalamus group and its allies (Bambusoideae: Poaceae) based on ITS sequence data. – Mol. Phylogen. Evol. 22: 20-30.

Gupta PK. 1963. Meiotic studies in some members of the tribe Paniceae. – Curr. Sci. 32: 180-181.

Gupta PK, Singh RV. 1977. Variations in chromosomes and flavonoids in Setaria Beauv. – Nucleus 20: 167-171.

Guterrez M, Edwards GE, Brown WV. 1976. PEP carboxykinase containing species in the Brachiaria group of the subfamily Panicoideae. – Biochem. Syst. Ecol. 4: 47-49.

Guzmán R, Anaya MC, Santana M. 1984. El género Otatea (Bambusoideae), en México y Centroamérica. – Bol. Inst. Bot. 5: 2-20.

Hackel E. 1882. Monographia Festucarum Europaearum. – Kassel, Berlin.

Hackel E. 1887. Gramineae (echte Gräser). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(2), W. Engelmann, Leipzig, pp. 1-97; Nachträge zu II(2), pp. 39-47.

Hackel E. 1899. Enumeratio Graminum Japoniae. Verzeichnis der Gräser Japans. – Bull. Herb. Boissier 7: 701-726.

Hackel E. 1901. Neue Gräser. – Österr. Bot. Zeitschr. 51: 372-373.

Hadač E. 1961. The family Cyperaceae in Iraq. – Bull. Coll. Sci. 6: 1-27.

Haines RW. 1967. Prophylls and branching in Cyperaceae. – J. East Afr. Nat. Hist. Soc. 26: 51-70.

Haines RW. 1971. Amphicarpy in East African Cyperaceae. – Mitt. Bot. Staatssamml. München 10: 534-538.

Haines RW. 1983. The sedges and rushes of East Africa. Appendix 3A. – Nairobi.

Haines RW, Lye KA. 1971. Studies in African Cyperaceae IV. Lipocarpha R. Br., Hemicarpha Nees and Isolepis R. Br. – Bot. Not. 124: 473-482.

Haines RW, Lye KA. 1972. Studies in African Cyperaceae VII. Panicle morphology and possible relationships in Sclerieae and Cariceae. – Bot. Not. 125: 331-343.

Haines RW, Lye KA. 1973. Studies in African Cyperaceae IX. The morphology of Coleochloa Gilly and Afrotrilepis J. Rayn. – Bot. Not. 126: 330-339.

Haines RW, Lye KA. 1976. Studies in African Cyperaceae XIV. The genus Hellmuthia Steud. – Bot. Not. 129: 61-67.

Haines RW, Lye KA. 1977. Studies in African Cyperaceae XV. Amphicarpy and spikelet structure in Trianoptiles solitaria. – Bot. Not. 130: 235-240.

Haines RW, Lye KA. 1978. Studies in African Cyperaceae XVII. Kyllingiella R. Haines and K. Lye, gen. nov. – Bot. Not. 131: 175-177.

Haines RW, Lye KA. 1983. The sedges and rushes of East Africa. – East African Natural History Society, Nairobi.

Håkansson A. 1954. Meiosis and pollen mitosis in X-rayed and untreated spikelets of Eleocharis palustris. – Hereditas 40: 325-345.

Håkansson A. 1958. Holocentric chromosomes in Eleocharis. – Hereditas 44: 531-540.

Halbritter H. 1988. Bromeliaceae: Pollenmorphologie und Systematik. Die Entwicklung des Pollens von Tillandsia sinuosa L. B. Smith. – Ph.D. diss., Universität Wien, Austria.

Halbritter H. 1992. Morphologie und systematische Bedeutung des Pollens der Bromeliaceae. – Grana 31: 197-212.

Halbritter H, Till W. 1998. Pollen morphology of Nidularium and related genera. – In: Leme EMC (ed), Canistropis – bromeliads of the Atlantic forest, Salamandra Rio de Janeiro, pp. 112-121.

Halbritter H, Weber M, Hesse M. 2010. Unique aperture stratification Carex (Cyperaceae) pollen. – Grana 49: 1-11.

Hall BM. 1955. Genetic analysis of interspecific hybrids in the genus Bromus, section Ceratochloa. – Genetics 40: 175-192.

Hall JB, Morton AJ, Hooper SS. 1976. Application of principal component analyses with constant character number in a study of the Bulbostylis/Fimbristylis (Cyperaceae) complex in Nigeria. – Bot. J. Linn. Soc. 73: 333-354.

Hamann U. 1962. Beitrag zur Embryologie der Centrolepidaceen mit Bemerkungen über den Bau der Blüten und Blütenstände und die systematische Stellung der Familie. – Ber. Deutsch. Bot. Ges. 75: 153-171.

Hamann U. 1963. Über die Entwicklung und den Bau des Spaltöffnungsapparates der Centrolepidaceen. – Bot. Jahrb. Syst. 82: 316-320.

Hamann U. 1975. Neue Untersuchungen zur Embryologie und Systematik der Centrolepidaceen. – Bot. Jahrb. Syst. 96: 154-191.

Hamasha HR, Hagen KB von, Röser M. 2012. Stipa (Poaceae) and allies in the Old World: molecular phylogenetics realigns genus circumscription and gives evidence on the origin of American and Australian lineages. – Plant Syst. Evol. 298: 351-367.

Hamby RK, Zimmer EA. 1988. Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). – Plant Syst. Evol. 160: 29-37.

Hamlin BG. 1959. A revision of the genus Uncinia (Cyperaceae-Caricoideae) in New Zealand. – Dominion Mus. Bull. (Wellington) 19.

Hammel BE, Reeder JR. 1979. The genus Crypsis (Gramineae) in the United States. – Syst. Bot. 4: 267-280.

Hammer K. 1980. Zur Taxonomie und Nomenklatur der Gattung Aegilops L. – Feddes Repert. 91: 225-258.

Hamoud MA, Haroun SA, Macleod RD, Richards AJ. 1994. Cytological relationships of selected species of Panicum L. – Biologia Plantarum 36: 37-45.

Hansen DJ, Dayanandan P, Kaufman PB, Brotherson JD. 1976. Ecological adaptations of salt marsh grass, Distichlis spicata (Gramineae), and environmental factors affecting its growth and distribution. – Amer. J. Bot. 63: 635-650.

Hansen I, Potztal E. 1954. Beiträge zur Anatomie und Systematik der Leptureae. – Bot. Jahrb. Syst. 76: 251-270.

Harada I. 1947. Chromosome numbers in Pandanus, Sparganium and Typha. – Cytologia 14: 214-218.

Harborne JB. 1979. Correlations between flavonoid chemistry, anatomy and geography in the Restionaceae. – Phytochemistry 18: 1323-1327.

Harborne JB, Clifford HT. 1969. Flavonoid patterns of the Restionaceae. Gossypetin in Restio and a new flavone in Hypolaena. – Phytochemistry 8: 2071-2075.

Harborne JB, Boardley M, Linder HP. 1985. Variations in flavonoid patterns within the genus Chondropetalum (Restionaceae). – Phytochemistry 24: 273-278.

Harborne JB, Williams CA, Briggs BG, Johnson LAS. 2000. Flavonoid patterns and the phylogeny of the Restionaceae. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 672-675.

Hardion L, Verlaque R, Baumel A, Juin M, Vila B. 2012. Revised systematics of Mediterranean Arundo (Poaceae) based on AFLP fingerprints and morphology. – Taxon 61: 1217-1226.

Hardy CR, Linder HP. 2007 [2008]. Phylogeny and historical ecology of Rhodocoma (Restionaceae) from the Cape floristic region. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpon MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 213-226 [Aliso 23: 213-226].

Hardy CR, Moline P, Linder HP. 2008. A phylogeny for the African Restionaceae and new perspectives on morphology’s role in generating complete species phylogenies for large clades. – Intern. J. Plant Sci. 169: 377-390.

Harlan JR, Brooks MH, Borgaonkar DS, Wet JMJ de. 1964. Nature and inheritance of apomixis in Bothriochloa and Dichanthium. – Bot. Gaz. 125: 41-46.

Harms H. 1930. Bromeliaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 15a, W. Engelmann, Leipzig, pp. 65-159.

Harris PJ, Hartley RD. 1976. Detection of bound ferulic acid in cell-walls of Gramineae by ultraviolet fluorescence microscopy. – Nature 259: 508-510.

Hartley W. 1950. The global distribution of tribes of the Gramineae in relation to historical and environmental factors. – Aust. J. Agric. Res. 1: 355-373.

Hartley W. 1958. Studies on the origin, evolution, and distribution of the Gramineae II. The tribe Paniceae. – Aust. J. Bot. 6: 343-357.

Hartley W. 1964. The distribution of the grasses. – In: Bernard C (ed), Grasses and grasslands, MacMillan, London, pp. 29-46.

Hartley W. 1973. Studies on the origin, evolution, and distribution of the Gramineae V. The subfamily Festucoideae. – Aust. J. Bot. 21: 201-234.

Hartley W, Slater C. 1960. Studies on the origin, evolution, and distribution of the Gramineae III. The tribes of the subfamily Eragrostoideae. – Aust. J. Bot. 8: 256-276.

Hartvig P. 1986. Chromosome numbers in Nordic populations of the Carex muricata group (Cyperaceae). –Symb. Bot. Ups. 27(2) 127-138.

Harz CO. 1880-1882. Beiträge zur Systematik der Gramineen. – Linnaea 43: 1-30.

Hatfield RD, Marita JM, Frost K, Grabber J, Ralph J, Lu F, Kim H. 2009. Grass lignin acylation:p-coumaroyl transferase activity and cell wall characteristics of C3 and C4 grasses. – Planta 229: 1253-1267.

Hattersley PW. 1984. Characterization of C4 type leaf anatomy in grasses (Poaceae). Mesophyll: bundle sheath area ratios. – Ann. Bot., N. S., 53: 163-179.

Hattersley PW. 1987. Variations in photosynthetic pathway. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 49-64.

Hattersley PW, Browning AJ. 1981. Occurrence of the suberized lamella in leaves of grasses of different photosynthetic types I. In parenchymatous bundle sheaths and PCR (“Kranz”) sheaths. – Protoplasma 109: 371-401.

Hattersley PW, Esen A. 1988. Prolamin size diversity in the Poaceae. – Biochem. Syst. Ecol. 16: 457-465.

Hattersley PW, Johnson JL. 1991. Chloroplast DNA reassociation and grass phylogeny. – Plant Syst. Evol. 176: 21-31.

Hattersley PW, Watson L. 1976. C4 grasses: an anatomical criterion for distinguishing between NADP-malic enzyme species and PCK or NAD-malic enzyme species. – Aust. J. Bot. 24: 297-308.

Hattersley PW, Watson L. 1992. Diversification of photosynthesis. – In: Chapman GP (ed), Grass evolution and domestication, Cambridge University Press, Cambridge, pp. 38-116.

Hattersley PW, Wright K. 1982. Systematics of Gramineae: a cluster analysis study. – Taxon 31: 9-36.

Hayek A. 1925. Zur Systematik der Gramineen. – Österr. Bot. Zeitschr. 74: 249-255.

Hedberg I. 1976. A cytotaxonomic reconnaissance of tropical African Anthoxanthum L. (Gramineae). – Bot. Not. 129: 85-90.

Hedberg O. 1952. Cytological studies in East African mountain grasses. – Hereditas 38: 256-266.

Hedberg O. 1967. Chromosome numbers of vascular plants from arctic and sub-arctic North America. – Ark. f. Bot., Ser. II, 6(6): 309-326.

Hedberg O, Hedberg I. 1994. The genus Colpodium (Gramineae) in Africa. – Nord. J. Bot. 14: 601-607.

Heilborn O. 1918. Zur Embryologie und Zytologie einiger Carex-Arten. – Svensk Bot. Tidskr. 12: 212-219.

Heilborn O. 1922. Die Chromosomenzahlen der Gattung Carex. – Svensk Bot. Tidskr. 16: 271-274.

Heilborn O. 1924. Chromosome numbers, species formation, and phylogeny in Carex. – Hereditas 5: 129-216.

Heilborn O. 1928. Chromosome studies in Cyperaceae. – Hereditas 11: 182-192.

Heilborn O. 1939. Chromosome studies in Cyperaceae III-IV. – Hereditas 25: 224-240.

Henzen FA, Vegetti AC. 1994. Typology of the inflorescences in Cyperus corymbosus var. subnodosus and C. rotundus (Cyperaceae). – Beitr. Biol. Pflanzen 68: 263-273.

Helfgott DM, Mason-Gamer RJ. 2004. The evolution of North American Elymus (Triticeae, Poaceae) allotetraploids: evidence from phosphoenolpyruvate carboxylase gene sequences. – Syst. Bot. 29: 850-861.

Henderson S, Schäfer H. 2003. Synopsis of the genus Rostraria (Poaceae) in the Azores. – Bot. J. Linn. Soc. 141: 125-131.

Hendrichs M, Oberwinkler F, Begerow D, Bauer R. 2004. Carex, subgenus Carex (Cyperaceae) – a phylogenetic approach using ITS sequence. – Plant Syst. Evol. 246: 89-107.

Hendrichs M, Michalski S, Begerow D, Oberwinkler F, Hellwig FH. 2004. Phylogenetic relationships in Carex, subgenus Vignea (Cyperaceae), based on ITS sequences. – Plant Syst. Evol. 246: 109-125.

Henrard JT. 1926. A critical revision of the genus Aristida I. – Meded. Rijks Herb. Leiden 54.

Henrard JT. 1927. A critical revision of the genus Aristida II. – Meded. Rijks Herb. Leiden 54A.

Henrard JT. 1928. A critical revision of the genus Aristida III. – Meded. Rijks Herb. Leiden 54B.

Henrard JT. 1929. A monograph of the genus Aristida I. – Meded. Rijks Herb. Leiden 58.

Henrard JT. 1932a. A monograph of the genus Aristida II. – Meded. Rijks Herb. Leiden 58A.

Henrard JT. 1932b. A monograph of the genus Aristida III. – Meded. Rijks Herb. Leiden 58B.

Henrard JT. 1950. Monograph of the genus Digitaria. – Universitaire Pers Leuven, Leiden, Netherlands.

Hensold NC. 1988. Morphology and systematics of Paepalanthus subgenus Xeractis (Eriocaulaceae). – Syst. Bot. Monogr. 23: 1-150.

Hensold NC. 1991. Revisionary studies in Eriocaulaceae of Venezuela. – Ann. Bissouri Bot. Gard. 78: 424-440.

Hensold NC, Giulietti AM. 1991. Revision and redefinition of the genus Rondonanthus Herzog. – Ann. Missouri Bot. Gard. 78: 441-459.

Herrera-Arrieta Y. 1998. A revision of the Muhlenbergia montana (Nutt.) Hitchc. complex (Poaceae: Chloridoideae). – Brittonia 50: 23-50.

Hess H. 1955. Zur Kenntnis der Eriocaulaceae von Angola und dem unteren Belgischen Kongo. – Ber. Schweiz. Bot. Ges. 65: 115-204.

Hieronymus G. 1873. Beiträge zur Kenntnis der Centrolepidaceen. – Abhandl. Naturf. Ges. Halle 12: 115-222.

Hieronymus G. 1886. Über Blüte und Blütenstand der Centrolepidaceen. – Engl. Bot. Jahrb. Syst. 7: 319-330.

Hieronymus G. 1888a. Restionaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(4), W. Engelmann, Leipzig, pp. 3-10.

Hieronymus G. 1888b. Centrolepidaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(4), W. Engelmann, Leipzig, pp. 11-16.

Hieronymus G. 1888c. Eriocaulaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(4), W. Engelmann, Leipzig, pp. 21-27.

Hilu KW. 1984. Leaf epidermes of Andropogon sect. Leptopogon (Poaceae) in North America. – Syst. Bot. 9: 247-257.

Hilu KW. 1985. Trends of variation and systematics of Poaceae. – Taxon 34: 102-114.

Hilu KW. 1986. Chloroplast DNA in the systematics and evolution of the Poaceae. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 65-72.

Hilu KW. 1994. Evidence from RAPD markers in the evolution of Echinochloa Millets (Poaceae). – Plant Syst. Evol. 189: 247-257.

Hilu KW. 2004. Phylogenetics and chromosomal evolution in the Poaceae (grasses). – Aust. J. Bot. 52: 13-22.

Hilu KW. 2007a. Skewed distribution of species number in grass genera: is it a taxonomic artefact? – In: Hodkinson TR, Parnell JAN (eds), Reconstructing the Tree of Life: taxonomy and systematics of species rich taxa, Syst. Assoc. Spec. Vol. Ser. 72, CRC Press, Boca Raton, Florida.

Hilu KW. 2007b. A century of progress in grass systematics. – Kew Bull. 62: 355-373.

Hilu KW, Alice LA. 1999. Evolutionary implications of matK indels in Poaceae. – Amer. J. Bot. 86: 1735-1741.

Hilu KW, Alice LA. 2000. Phylogenetic relationships in subfamily Chloridoideae (Poaceae) based on matK sequences: a preliminary assessment. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and Evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Collingwood, Victoria, pp. 173-179.

Hilu KW, Alice LA. 2001. A phylogeny of Chloridoideae (Poaceae) based on matK sequences. – Syst. Bot. 26: 386-405.

Hilu KW, Esen A. 1988. Prolamin size diversity in the Poaceae. – Biochem. Syst. Ecol. 16: 457-465.

Hilu KW, Esen A. 1990. Prolamins in immunological Studies in the Poaceae I. Subfamily Arundinoideae. – Plant Syst. Evol. 173: 57-70.

Hilu KW, Esen A. 1993. Prolamin and immunological studies in the Poaceae III. Subfamily Chloridoideae. – Amer. J. Bot. 80: 104-113.

Hilu KW, Johnson JL. 1991. Chloroplast DNA reassociation and grass phylogeny. – Plant Syst. Evol. 176: 21-31.

Hilu KW, Randall JL. 1984. Convenient method for studying grass leaf epidermis. – Taxon 33: 413-415.

Hilu KW, Wright K. 1982. Systematics of Gramineae: a cluster analysis study. – Taxon 31: 9-36.

Hilu KW, Alice LA, Liang H. 1999. Phylogeny of Poaceae inferred from matK sequences. – Ann. Missouri Bot. Gard. 86: 835-851.

Hinchliff CE, Roalson EH. 2009. Stem architecture in Eleocharis subgenus Limnochloa (Cyperaceae): evidence of dynamic morphological evolution in a group of pantropical sedges. – Amer. J. Bot. 96: 1487-1499.

Hinchliff CE, Roalson EH. 2013. Using supermatrices for phylogenetic inquiry: an example using the sedges. – Syst. Biol. 62: 205-219.

Hinchliff CE, Lliully A, AE, Carey T, Roalson EH. 2010. The origins of Eleocharis (Cyperaceae) and the status of Websteria, Egleria, and Chillania. – Taxon 59: 709-719.

Hipp AL. 2007. Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). – Evolution 61: 2175-2194.

Hipp AL, Rothrock PE, Roalson EH. 2009. The evolution of chromosome arrangements in Carex (Cyperaceae). – Bot. Rev. 75: 96-109.

Hipp AL, Reznicek AA, Rothrock PE, Weber JA. 2006. Phylogeny and classification of Carex section Ovales (Cyperaceae). – Intern. J. Plant Sci. 167: 1029-1048.

Hirahara T, Katsuyama T, Hoshino T. 2007. Suprageneric phylogeny of Japanese Cyperaceae based on DNA sequences from chloroplast ndhF and 5.8 S nuclear ribosomal DNA. – Acta Phytotaxon. Geobot. 58: 57-68.

Hiremath SC, Salimath SS. 1991. Quantitative nuclear DNA changes in Eleusine (Gramineae). – Plant Syst. Evol. 178: 225-233.

Hitchcock AS. 1920. The genera of grasses of the United States with special reference to the economic species. – Bull. U.S.D.A. 772: 1-307.

Hitchcock AS. 1925a. The North American species of Stipa. – Contr. U.S. Natl. Herb. 24: 215-262.

Hitchcock AS. 1925b. Synopsis of the South American species of Stipa. – Contr. U.S. Natl. Herb. 24: 263-289.

Hitchcock AS. 1927. The grasses of Ecuador, Peru and Bolivia. – Contr. U.S. Natl. Herb. 24: 291-556.

Hitchcock AS. 1935. Manual of the grasses of the United States. – U.S.D.A. Misc. Publ. 200, Washington, D.C.

Hitchcock AS. 1936. Manual of the grasses of the West Indies. – United States Government Printing Office, Washington, D.C.

Hitchcock AS. 1951. Manual of the grasses of the United States. 2nd ed. rev. by A. Chase. – U.S.D.A. Misc. Publ. 200, Washington, D.C.

Hitchcock AS, Chase A. 1910. The North American species of Panicum. – Contr. U.S. Natl. Herb. 15: 1-396.

Hitchcock AS, Chase A. 1915. Tropical North American species of Panicum. – Contr. U.S. Natl. Herb. 17: 459-539.

Hitchcock AS, Chase A. 1950. Manual of the grasses of the United States. 2nd ed. (rev. by A. Chase). – U.S.D.A. Misc. Publ. 200, Washington, D.C.

Hochuli PA. 1979. Ursprung und Verbreitung der Restionaceen. – Vierteljahrsschr. Naturf. Ges. Zürich 124: 109-131.

Hodgon J, Bruhl JJ, Wilson KL. 2006. Systematic studies in Lepidosperma (Cyperaceae: Schoeneae) with particular reference to L. laterale. – Aust. Syst. Bot. 19: 273-288.

Hodkinson TR, Renvoize SA, Chonghaile GN, Stapleton CMA, Chase MW. 2000. A comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in Phyllostachys (Bambusoideae, Poaceae). – J. Plant Res. 113: 259-269.

Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA. 2002. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spaces. – J. Plant Res. 115: 381-392.

Hodkinson TR, Savolainen V, Jacobs SWL, Bouchenak-Khelladi Y, Kinney MS, Salamin N. 2007. Supersizing: progress in documenting and understanding grass species richness. – In: Hodkinson TR, Parnell JAN (eds), Reconstructing the Tree of Life: taxonomy and systematics of species rich taxa, Syst. Assoc. Spec. Vol. Ser. 72, CRC Press, Boca Raton, Florida.

Hodkinson TR, Salamin N, Chase MW, Bouchenak-Khelladi Y, Renvoize SA, Savolainen V. 2007 [2008]. Large trees, supertrees, and diversification of the grass family. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 248-258 [Aliso 23: 248-258].

Hodkinson TR, Ni Chonghaile G, Sungkaew S, Chase MW, Salamin N, Stapleton CMA. 2010. Phylogenetic analyses of plastid and nuclear DNA sequences indicate a rapid late Miocene radiation of the temperate bamboo tribe Arundinarieae (Poaceae, Bambusoideae). – Plant Ecol. Divers. 3: 109-120.

Hohendorff U. 1981. Embryologische Untersuchungen an Eriocaulaceen. – Thesis, Universität Bochum, Germany.

Hojsgaard D, Honfi AI, Rua G, Daviña J. 2009. Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). – Genet. Res. Crop Evol. 56: 533-545.

Hollowell VC. 1987. Systematics of the subtribe Parianinae (Poaceae: Bambusoideae: Olyreae). – Ph.D. diss., University of South Carolina, Columbia, South Carolina.

Hollowell VC. 1997. Systematic relationships of Pariana and associated Neotropical taxa. – In: Chapman GP (ed), The bamboos, Academic Press, London, pp. 45-60.

Holm T. 1891. A study of some anatomical characters of North American Gramineae III. – Bot. Gaz. (Chicago) 16: 275-281.

Holm T. 1896. Studies in the Cyperaceae I. On the monopodial ramification in certain North American species of Carex. – Amer. J. Sci. 1: 348-350.

Holm T. 1899. Studies in the Cyperaceae IX. The genus Lipocarpha. – Amer. J. Sci. 7: 171-183.

Holm T. 1900. Studies in the Cyperaceae XIII. Carex willdenowii and its allies. – Amer. J. Sci. 10: 33-47.

Holm T. 1901. Some new anatomical characters for certain Gramineae. – Beih. Bot. Centralbl. 11: 101-133.

Holm T. 1903. Studies in the Cyperaceae XX. “Greges Caricum”. – Amer. J. Sci. 16: 445-464.

Holmen K. 1964. Cytotaxonomical studies in the arctic Alaskan flora. The genus Festuca. – Bot. Not. 117: 109-118.

Holst BK. 1997. Bromeliaceae. – In: Steyermark JA, Berry PE, Holst BK (eds), Flora of the Venezuelan Guayana 3, Timber Press, Portland, Oregon, pp. 548-676.

Holttum RE. 1948. The spikelet in Cyperaceae. – Bot. Rev. 14: 525-541.

Holttum RE. 1956. The classification of the bamboos. – Phytomorphology 6: 73-90.

Holttum RE. 1958. The bamboos of the Malay Peninsula. – Gard. Bull. Singapore 16: 1-135.

Holub J. 1958. Bemerkungen zur Taxonomie der Gattung Helictotrichon Bess. – In: Nemec B & al. (ed), Philip Maximilian Opiz und seine Bedeutung für die Pflanzentaxonomie, Verlag der Tschekoslowakischen Akademien der Wissenschaften, Praha, pp. 101-133.

Holub J. 1962. Ein Beitrag zur Abgenzung der Gattungen in der Tribus Aveneae: die Gattung Avenochloa Holub. – Acta Horti Bot. Prag. 1962: 75-86.

Holub J. 1976. A newly adopted restriction of illegitimity in generic names and its consequence for Avenochloa Holub 1962. – Folia Geobot. Phytotaxon. 11: 281-300.

Holub J. 1977. Notes on some species of Avenula and Helictotrichon. – Preslia 49: 203-221.

Honfi AI, Quarín CL, Valls JF. 1990 [1991]. Estudios cariológicos en gramíneas sudamericanas. – Darwiniana 30: 87-94.

Hooper SS. 1972. New taxa, names and combinations in Cyperaceae for the “Flora of West Tropical Africa”. – Kew Bull. 26: 577-583.

Hooper SS. 1983. Remirea or Mariscus? – New support for a monotypic genus in Cyperaceae. – Kew Bull. 38: 479-480.

Hooper SS. 1984. Two montane forest species of Carex in Yemen and Northeast Africa: new distributional records and a new variety. – Kew Bull. 39: 747-751.

Hooper SS. 1985. Notes on tropical African sedges: Mariscus, Schoenoplectus & Pycreus. – Kew Bull. 40: 781-784.

Hooper SS. 1986a. A concept of the cyperoid spikelet and its terminology, illustrated by new species of Lipocarpha (Cyperaceae). – Kew Bull. 41: 423-428.

Hooper SS. 1986b. Volkiella (Cyperaceae), a specialised cyperoid genus re-examined. – Kew Bull. 41: 945-948.

Hooper SS, Raynal J. 1969. New species and names in African Pycreus P. Beauv. (Cyperaceae). – Kew Bull. 23: 313-314.

Hooper SS, Simpson DA. 1997. A new species of Scirpodendron (Cyperaceae) with a discussion of the inflorescence in the genus. – Kew Bull. 52: 683-687.

Horn SP, Clark LG. 1992. Pollen viability in Chusquea subtessellata (Poaceae: Bambusoideae). – Biotropica 24: 577-579.

Horn af Rantzien H. 1946. Notes on the Mayacaceae of the Regnellian Herbarium in the Riksmuseum, Stockholm. – Svensk Bot. Tidskr. 40: 405-424.

Hornung-Leoni CT, Sosa V. 2005. Morphological variation in Puya (Bromeliaceae): an allometric study. – Plant Syst. Evol. 256: 35-53.

Hornung-Leoni CT, Sosa V. 2008. Morphological phylogenetics of Puya subgenus Puya (Bromeliaceae). – Bot. J. Linn. Soc. 156: 93-110.

Horres R, Zizka G. 1995. Untersuchungen zur Blattsukkulenz bei Bromeliaceae. – Beitr. Biol. Pflanzen 69: 43-76.

Horres R, Zizka G, Kahl G, Weising K. 2000. Molecular systematics of Bromeliaceae: evidence from trnL(UAA) intron sequences of the chloroplast genome. – Plant Biol. 2: 306-315.

Horres R, Schulte K, Weising K, Zizka G. 2007 [2008]. Systematics of Bromelioideae (Bromeliaceae): evidence from molecular and anatomical studies. – In: Columbus JT, Friar EA, Porter JM, prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 27-43.

Hoshikawa K. 1969. Underground organs of the seedlings and the systematics of Gramineae. – Bot. Gaz. 130: 192-203.

Hoshino T. 1981. Karyomorphological and cytogenetical studies on aneuploidy in Carex. – J. Sci. Hiroshima Univ., Ser. B., Div. II, Bot. 17: 155-238.

Hoshino T, Davidse G. 1988. Chromosome numbers of grasses (Poaceae) from southern Africa I. – Ann. Missouri Bot. Gard. 75: 866-873.

Hosoyama Y, Hoshida K, Takeoka S, Miyata S. 2002. On the inter-generic hybrid Sasaella ramosa. – Proc. Inst. Natl. Sci. Nihon Univ. 37: 209-216.

Hsiao C, Wang RR-C, Dewey DR. 1986. Karyotype analysis and genome relationships of 22 diploid species in the tribe Triticeae. – Can. J. Genet. Cytol. 28: 109-120.

Hsiao C, Chatterton NJ, Asay KH, Jensen KB. 1994. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. – Genome 37: 112-120.

Hsiao C, Chatterton NJ, Asay KH, Jensen KB. 1995a. Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. – Theor. Appl. Gen. 90: 389-398.

Hsiao C, Chatterton NJ, Asay KH, Jensen KB. 1995b. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. – Genome 38: 211-223.

Hsiao C, Jacobs SWL, Barker NP, Chatterton NJ. 1998. A molecular phylogeny of the subfamily Arundinoideae (Poaceaee) based on sequences of rDNA. – Aust. Syst. Bot. 11: 41-52.

Hsiao C, Jacobs SWL, Chatterton NJ, Asay KH. 1999. A molecular phylogeny of the grass family (Poaceae) based on the sequences of nuclear ribosomal DNA (ITS). – Aust. Syst. Bot. 11: 667-688.

Hsu CC. 1965. The classification of Panicum (Gramineae) and its allies, with special reference to the characters of lodicule, style-base and lemma. – J. Fac. Sci. Univ. Tokyo, sect. III (Botany), 9: 43-150.

Hsueh C-J, Yi T-P. 1980. Two new genera of Bambusoideae from S.W. China 2. Qiongzhuea Hsueh et Yi. – Acta Bot. Yunn. 2: 91-99.

Hsueh C-J, Yi T-P, Li D-Z. 1996. Validation of Qiongzhuea and correlated species names (Gramineae, Bambusoideae). – Taxon 45: 217-221.

Hubbard CE. 1946. Henrardia, a new genus of the Gramineae. – Blumea, Suppl. 3: 10-21.

Hubbard CE. 1954. Grasses. – London.

Humphreys AM, Antonelli A, Pirie MD, Linder HP. 2010. Ecology and evolution of the diaspore “burial syndrome”. – Evolution 65: 1163-1180.

Humphreys AM, Pirie MD, Linder HP. 2010. A plastid tree can bring order to the chaotic generic taxonomy of Rytidosperma Steud. s.l. (Poaceae). – Mol. Phylogen. Evol. 55: 911-928.

Hunter AM, Orlovich DA, Lloyd KM, Lee WG, Murphy DJ. 2004. The generic position of Austrofestuca littoralis and the reinstatement of Hookerochloa and Festucella (Poaceae) based on evidence from nuclear (ITS) and chloroplast (trnL-trnF) DNA sequences. – New Zealand J. Bot. 42: 253-262.

Hunter AWS. 1934. A karyosystematic investigation in the Gramineae. – Can. J. Res. 11: 213-241.

Hunziker JH. 1989. Chromosome studies on Anomochloa and other Bambusoideae (Gramineae). – Darwiniana 29: 41-45.

Hunziker JH, Stebbis GL. 1987. Chromosomal evolution in the Gramineae. – In: Soderstrom TR, Hilu KH, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 179-187.

Hunziker JH, Wulff AF, Soderstrom TR. 1982. Chromosome studies on the Bambusoideae (Gramineae). – Brittonia 34: 30-35.

Hunziker JH, Wulff AF, Soderstrom TR. 1989. Chromosome studies on Anomochloa and other Bambusoideae (Gramineae). – Darwiniana 29: 41-45.

Hunziker JH, Zuloaga GO, Morrone O, Escobar A. 1998. Estudios cromosómicos en Paniceas sudamericanas (Poaceae: Panicoideae). – Darwiniana 35: 29-36.

Hurcombe R. 1946. Chromosome studies in Cynodon. – South Afr. J. Sci. 42: 144-146.

Hurcombe R. 1947. A cytological and morphological study of cultivated Cynodon species. – J. South Afr. Bot. 13: 107-117.

Hutton EM. 1961. Inter-variety variation in Rhodes grass (Chloris gayana Kunth). – J. Br. Grassl. Soc. 16: 23-29.

Huygh W, Larridon I, Reynders M, Muasya AM, Govaerts R, Simpson DA, Goetghebeur P. 2010. Nomenclature and typification of names of genera and subdivisions of genera in Cypereae (Cyperaceae) 1. Names of genera in the Cyperus clade. – Taxon 59: 1883-1890.

Ibrahim DG, Burke T, Ripley BS, Osborne CP. 2009. A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis. – Ann. Bot. 103: 127-136.

Idrobo JM. 1954. Xiridáceas de Colombia. – Caldasia 6: 184-260.

Inda LA, Segarra-Moragues JG, Müller J, Peterson PM, Catalán P. 2008. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. – Mol. Phylogen. Evol. 46: 932-957.

Inglis C. 1994. Checklist of economically important Cyperaceae. – Cyperaceae Newsl. 13: 13-15.

Ingram AL, Doyle JJ. 2003. The origin and evolution of Eragrostis tef (Poaceae) and related polyploids: evidence from nuclear waxy and plastid rps16. – Amer. J. Bot. 90: 116-122.

Ingram AL, Doyle JJ. 2004. Is Eragrostis (Poaceae) monophyletic? Insights from nuclear and plastid sequence data. – Syst. Bot. 29: 545-552.

Ingram AL, Doyle JJ. 2007. Eragrostis (Poaceae): monophyly and infrageneric classification. – Aliso 23: 595-604.

Ingram AL, Christin PA, Osborne CP. 2011. Molecular phylogenies disprove a hypothesized C4 reversion in Eragrostis walteri (Poaceae). – Ann. Bot. 107: 321-325.

Ishii A, Miyata S, Hosoyama Y. 2003. The maternal species of hannouzasa (Sasaella ramosa). – Bamboo J. 20: 12-18.

Ivanova NA. 1939. The genus Kobresia Willd., its morphology and systematics. – Bot. Žurn. 24: 455-503. [In Russian with English summary]

Jabaily RS, Sytsma KJ. 2013. Historical biogeography and life-history evolution of Andean Puya (Bromeliaceae). – Bot. J. Linn. Soc. 171: 201-224.

Jacobs BF, Kingston JD, Jacobs BL. 1999. The origin of grass-dominated ecosystems. – Ann. Missouri Bot. Gard. 86: 590-643.

Jacobs SWL. 1985. A new grass genus from Australia. – Kew Bull. 40: 659-661.

Jacobs SWL. 1987. Systematics of the chloridoid grasses. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 277-286.

Jacobs SWL. 1990. Notes on Australian grasses (Poaceae). – Telopea 3: 601-603.

Jacobs SWL. 1992. New taxa and a new combination in Triodia (Poaceae). – Telopea 4: 653-659.

Jacobs SWL. 2001a. The genus Lachnagrostis (Gramineae) in Australia. – Telopea 9: 439-448.

Jacobs SWL. 2001b. Four new species of Agrostis (Gramineae) from Australia. – Telopea 9: 679-683.

Jacobs SWL. 2002. Corrections to and a new combination in Lachnagrostis (Gramineae). – Telopea 9: 837-838.

Jacobs SWL. 2004a. Thedachloa, a new grass genus (Gramineae: Paniceae) from the northern Kimberley, Western Australia. – Telopea 10: 635-637.

Jacobs SWL. 2004b. The tribe Triodieae (Chloridoideae: Gramineae). – Telopea 10: 701-704.

Jacobs SWL, Everett J. 1996. Austrostipa, a new genus, and new names for the Australasian species formerly included in Stipa (Gramineae). – Telopea 6: 579-595.

Jacobs SWL, Everett J. 1997. Jarava plumosa (Gramineae), a new combination for the species formerly known as Stipa papposa. – Telopea 7: 301-302.

Jacobs SWL, Highet J. 1988. Re-evaluation of the characters used to distinguish Enteropogon from Chloris (Poaceae). – Telopea 3: 217-221.

Jacobs SWL, Lapinpuro L. 1986. The Australian species of Amphibromus (Poaceae). – Telopea 2: 715-729.

Jacobs SWL, McClay KL, Simon BK. 1993. Review of Dichelachne (Gramineae) in Australia. – Telopea 5: 325-328.

Jacobs SWL, Everett J, Barkworth ME. 1995. Clarification of morphological terms used in the Stipeae (Gramineae), and a reassessment of Nassella in Australia. – Taxon 44: 33-41.

Jacobs SWL, Everett J, Barkworth ME, Hsiao C. 2000. Relationships within the stipoid grasses (Gramineae). – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, 1998, Vol. 2, CSIRO Publ., Melbourne, pp. 75-82.

Jacobs SWL, Bayer R, Everett J, Arriaga MO, Barkworth ME, Sabin-Badereau A, Torres MA, Vazquez FM, Bagnall N. 2007 [2008]. Systematics of the tribe Stipeae (Gramineae) using molecular data. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 349-361.

Jacobs SWL, Gillespie LJ, Soreng RJ. 2008. New combinations in Hookerochloa and Poa (Gramineae). – Telopea 12: 273-278.

Jacobsen N, Bothmer R von. 1992. Supraspecific groups in the genus Hordeum. – Hereditas 116: 21-24.

Jacobsen N, Bothmer R von. 1995. Taxonomy in the Hordeum murinum complex (Poaceae). – Nord. J. Bot. 15: 449-458.

Jacques-Félix H. 1961. Observations sur la variabilité morphologique de Coix lacrima-jobi. – J. Agric. Trop. Bot. Appl. 8: 44-56.

Jacques-Félix H. 1962. Les graminées d’Afrique tropicale. – Institut de Recherches Agronomiques Tropicales et des Culture Vivrières, Paris.

Jain SK. 1970. The genus Manisuris L. (Poaceae) in India. – Bull. Bot. Surv. India 12: 6-17.

Jakob SS, Blattner FR. 2006. A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. – Mol. Biol. Evol. 23: 1602-1612.

Jakob SS, Meister A, Blattner FR. 2004. The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. – Mol. Biol. Evol. 21: 860-869.

Janetzky W, Vareschi E. 1993. Phytotelmata in bromeliads as microhabitats for limnetic organisms. – In: Barthlott W, Naumann CM, Schmidt-Loske K, Schuchmann K-L (eds), Animal-plant interactions in tropical environments, Zool. Forschungsinst. Mus. A. Koenig, Bonn, pp. 199-209.

Janzen DH. 1976. Why bamboos wait so long to flower. – Ann. Rev. Ecol. Syst. 7: 347-391.

Jarvie JK. 1992. Taxonomy of Elytrigia sect. Caespitosae and sect. Junceae (Gramineae: Triticeae). – Nord. J. Bot. 12: 155-169.

Jarvie JK, Barkworth ME. 1990. Isozyme similarity in Thinopyrum and its relatives (Triticeae: Gramineae). – Genome 33: 885-891.

Jenkins TJ. 1933. Interspecific and intergeneric hybrids in herbage grasses. Initial crosses. – J. Genet. 28: 205-264.

Jermy AC, Charter AO, David RW. 1982. Sedges of the British Isles (a new edition of British sedges). 2nd ed. – Botanical Society of the British Isles 1: 1-268.

Jiang Z-H. 2007. Bamboo and rattan in the world. – China Forestry Publ. Hous, Beijing.

Jiménez-Mejías P, Escudero M, Guerra-Cárdenas S, Lye KA, Luceño M. 2011. Taxonomic delimitation and drivers of speciation in the Ibero-North African Carex sect. Phacocystis river-shore group (Cyperaceae). – Amer. J. Bot. 98: 1855-1867.

Jiménez-Mejías P, Martín-Bravo S, Luceño M. 2012. Systematics and taxonomy of Carex sect. Ceratocystis (Cyperaceae) in Europe: a molecular and cytogenetic approach. – Syst. Bot. 37: 382-398.

Jiménez-Mejías P, Martinetto E. 2013. Toward an accurate taxonomic interpretation of Carex fossil fruits (Cyperaceae): a case study in section Phacocystis in the Western Palearctic. – Amer. J. Bot. 100: 1580-1603.

Jirasek V. 1969. Morphologie der Schüppchen (Lodiculae) von Gräsern und ihre Terminologie. Ein weiterer Beitrag zur Kenntnis des Baues der Lodiculae. – Acta Univ. Carol. Biol. 1968: 321-344.

Jirasek V. 1970. Beitrag zur Kenntnis zweizelliger Haare bei Gräsern mit Benützung von Pfeifengräsen – Molinia caerulea (L.) Moench s.l. – Acta Univ. Carol. Biol. 1969: 383-402.

Jirasek V, Jozifova M. 1968. Morphology of lodicules, their variability and importance in the taxonomy of the Poaceae family. – Bol. Soc. Argentina Bot. 12: 324-349.

Johnson BL. 1945. Cytotaxonomic studies in Oryzopsis. – Bot. Gaz. 107: 1-32.

Johnson LAS. 1993. New species of Juncus (Juncaceae) in eastern Australia. – Telopea 5: 309-318.

Johnson LAS, Briggs BG. 1981. Three old southern families: Myrtaceae, Proteaceae, and Restionaceae. – In: Keast A (ed), Ecological biogeography of Australia, Junk, Utrecht, pp. 427-469.

Johnson LAS, Briggs BG. 1986a. A new species and a new genus of Restionaceae from Tasmania. – Telopea 2: 737-740.

Johnson LAS, Briggs BG. 1986b. Alexgeorgea nitens, a new combination in Restionaceae. – Telopea 2: 781-782.

Johnson LAS, Cutler DF. 1973. Empodisma: a new genus of Australasian Restionaceae. – Kew Bull. 28: 381-385.

Johnston CR, Watson L. 1976. Microhairs: a universal characteristic of non-festucoid grass genera? – Phytomorphology 26: 297-301.

Johnston CR, Watson L. 1981. Germination flaps in grass lemmas. – Phytomorphology 31: 78-85.

Jones BMG, Ponti J, Tavasolli A, Dixon PA. 1978. Relationships of the Ethiopian cereal t’ef (Eragrostis tef (Zucc.) Trotter): evidence from morphology and chromosome number. – Ann. Bot., N. S., 42: 1369-1373.

Jones E, Hodkinson T, Parnell J, Chase MW. 2007 [2008]. The Juncaceae-Cyperaceae interface: a combined plastid gene analysis. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana botanical Garden, Claremont, California, pp. 3-26.

Jones S, Burke S, Duvall M. 2014. Phylogenomics, molecular evolution, and estimated ages of lineages from the deep phylogeny of Poaceae. – Plant Syst. Evol. 300: 1421-1436.

Jones SD. 1994. A new species of Carex (Cyperaceae: Phaestoglochin) from Oklahoma and Texas: typification of section Phaestoglochin, and notes in sections Bracteosae and Phaestoglochin. – Sida 16: 341-353.

Jørgensen RB, 1986. Relationships in the barley genus (Hordeum): an electrophoretic examination of proteins. – Hereditas 104: 273-291.

Judziewicz EJ. 1984. Scrotochloa – a new genus of paleotropical pharoid grasses. – Phytologia 56: 299-304.

Judziewicz EJ. 1987. Taxonomy and morphology of the tribe Phareae (Poaceae: Bambusoideae). – Ph.D. diss. University of Wisconsin, Madison, Wisconsin.

Judziewicz EJ. 1990. A new South American species of Sacciolepis (Poaceae: Panicoideae: Paniceae), with a summary of the genus in the New World. – Syst. Bot. 15: 415-420.

Judziewicz EJ. 1992. A revision of Atractantha (Poaceae: Bambusoideae: Bambuseae). – Ann. Missouri Bot. Gard. 79: 160-183.

Judziewicz EJ. 1998. A revision of Myriocladus (Poaceae: Bambusoideae: Bambuseae). – Brittonia 50: 430-446.

Judziewicz EJ. 2009. Toliara (Poaceae, Chloridoideae, Cynodonteae), a new grass genus endemic to southern Madagascar. – Adansonia, sér. III, 31: 273-277.

Judziewicz EJ, Clark LG. 1993. The South American species of Arthrostylidium (Poaceae: Bambusoideae: Bambuseae). – Syst. Bot. 18: 80-99.

Judziewicz EJ, Clark LG. 2007 [2008]. Classification and biogeography of New World grasses: Anomochlooideae, Pharoideae, Ehrhartoideae, and Bambusoideae. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 303-314.

Judziewicz EJ, Soderstrom TR. 1989. Morphological, anatomical, and taxonomic studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). – Smithsonian Contr. Bot. 68: 1-52.

Judziewicz EJ, Tyrrell CD. 2007. Aulonemia yanachagensis (Poaceae: Bambusoideae: Bambuseae): a new species from central Peru. – Brittonia 59: 83-87.

Judziewicz EJ, Clark LG, Londoño X, Stern MJ. 1999. American bamboos. – Smithsonian Institution Press, Washington, D.C.

Judziewicz EJ, Soreng RJ, Davidse G, Peterson PM, Filgueiras TS, Zuloaga FO. 2000. Catalogue of New World grasses (Poaceae) I. Subfamilies Anomochlooideae, Bambusoideae, Ehrhartoideae, and Pharoideae. – Contr. U.S. Natl. Herb. 39: 1-128.

Jung J, Choi H-K. 2010. Systematic rearrangement of Korean Scirpus L. s.l. (Cyperaceae) as inferred from nuclear ITS and chloroplast rbcL sequences. – J. Plant Biol. 53: 222-232.

Kabeer KAA, Nair VJ. 2007. Polypogon nilgiricus – a new species of Poaceae from India. – Nord. J. Bot. 25: 9-11.

Kabuye CHS, Renvoize SA. 1975. The genus Alloeochaete, Tribe Danthonieae (Gramineae). – Kew Bull. 30: 569-577.

Kaczmarek RM. 1914. Priority of Hierochloa. – Amer. Midl. Natur. 3: 198.

Kahler AL, Krzakowa M, Allard RW. 1981. Isozyme phenotypes in five species of Bromus sect. Genea. – Bot. Jahrb. Syst. 102: 401-409.

Kakudidi EKZ, Lazarides M, Carnahan JA. 1988. A revision of Enneapogon (Poaceae, Pappophoreae) in Australia. – Aust. Syst. Bot. 1: 325-353.

Kalliola R, Renvoize SA. 1994. One or more species of Gynerium (Poaceae)? – Kew Bull. 49: 305-320.

Kam YK, Maze J. 1974. Studies on the relationships and evolution of supraspecific taxa utilizing developmental data II. Relationships and evolution of Oryzopsis hymenoides, O. virescens, O. kingii, O. micrantha, and O. asperifolia. – Bot. Gaz. 135: 227-247.

Kamra S, Sidhu M, Cheema PC. 1988. Cytomorphological studies on some members of Cyperaceae from North India. – J. Cytol. Genet. 23: 14-37.

Kanno A, Hirai A. 1992. Comparative studies of the structure of chloroplast DNA from four species of Oryza: cloning and physical maps. – Theor. Appl. Gen. 83: 791-798.

Katayama H, Ogihara Y. 1993. Structural alterations of the chloroplast genome found in grasses are not common in monocots. – Curr. Genet. 23: 160-165.

Katayama H, Ogihara Y. 1996. Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. – Curr. Genet. 29: 572-581.

Kaul RB. 1971. Diaphragms and aerenchyma in Scirpus validus. – Amer. J. Bot. 58: 808-816.

Kaul RB. 1972. Adaptive leaf architecture in emergent and floating Sparganium. – Amer. J. Bot. 59: 270-278.

Kelchner SA, Clark LG. 1997. Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). – Mol. Phylogen. Evol. 8: 385-397.

Kelchner SA, Bamboo Phylogeny Group. 2013. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. – Mol. Phylogen. Evol. 67: 404-413.

Kellogg EA. 1989. Comments on genomic genera in the Triticeae. – Amer. J. Bot. 76: 796-805.

Kellogg EA. 1990a. Ontogenetic studies of florets in Poa (Gramineae): allometry and heterochrony. – Evolution 44: 1978-1989.

Kellogg EA. 1990b. Variation and species limits in agamospermous grasses. – Syst. Bot. 15: 112-123.

Kellogg EA. 1992a. Tools for studying the chloroplast genome in the Triticeae (Gramineae): an EcoRI map, a diagnostic deletion, and support for Bromus as an outgroup. – Amer. J. Bot. 79: 186-197.

Kellogg EA. 1992b. Restriction site variation in the chloroplast genomes of the monogenomic Triticeae. – Hereditas 116: 43-47.

Kellogg EA. 1998. Relationships of cereal crops and other grasses. – Proc. Natl. Acad. Sci. U.S.A. 95: 2005-2010.

Kellogg EA. 2000a. Molecular and morphological evolution in the Andropogoneae. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 149-158.

Kellogg EA. 2000b. The grasses: a case study in macro-evolution. – Ann. Rev. Ecol. Syst. 31: 217-238.

Kellogg EA. 2001. Evolutionary history of the grasses. – Plant Physiol. 125: 1198-1205.

Kellogg EA. 2006. Beyond taxonomy: prospects for understanding morphological diversity in the grasses (Poaceae). – Darwiniana 44: 7-17.

Kellogg EA. 2007. Floral displays: genetic control of grass inflorescences. – Curr. Opinion Plant Biol. 10: 26-31.

Kellogg EA. 2009. The evolutionary history of Ehrhartoideae, Oryzeae, and Oryza. – Rice 2: 1-14.

Kellogg EA, Appels R. 1995. Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. – Genetics 140: 325-343.

Kellogg EA, Birchler JA. 1993. Linking phylogeny and genetics: Zea mays as a tool for phylogenetic studies. – Syst. Biol. 4: 415-439.

Kellogg EA, Campbell CS. 1987. Phylogenetic analyses of the Gramineae. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 310-322.

Kellogg EA, Linder HP. 1995. Phylogeny of Poales. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 511-542.

Kellogg EA, Watson L. 1993. Phylogenetic studies of a large data set I. Bambusoideae, Andropogonoideae, and Pooideae (Gramineae). – Bot. Rev. 59: 273-343.

Kellogg EA, Appels R, Mason-Gamer RA. 1996. When genes tell different stories: the diploid genera of Triticeae (Gramineae). – Syst. Bot. 21: 321-347.

Kellogg EA, Aliscioni S, Morrone O, Pensiero J, Zuloaga F. 2009. A phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and related genera based on the chloroplast gene ndhF. – Intern. J. Plant Sci. 17: 117-131.

Keng Y-L, Chen S-L. 1963. A revision of the genus Roegneria C. Koch of China. – J. Nanjing Univ. (Nat. Sci.) 3: 1-92.

Kennedy PB. 1899. The structure of the caryopsis of grasses with reference to their morphology and classification. – U.S.D.A. Div. Agrostol. Bull. 19: 1-44.

Kerby K, Kuspira J. 1987. The phylogeny of polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). – Genome 29: 722-737.

Kerguélen M. 1975. Les Gramineae (Poaceae) de la flore française. Essai de mise au point taxonomique et nomenclaturale. – Lejeunia 75.

Kerguélen M, Plonka F. 1988. Le genre Festuca dans la flore française. Taxons nouveaux, observations nomenclaturales et taxinomiques. – Bull. Soc. Bot. Centre-Ouest, sér. II, 19: 15-30.

Kerguélen M, Plonka F. 1989. Les Festuca de la flore de France (Corse comprise). – Bull. Soc. Bot. Centre-Ouest, sér. II, Num. Spéc. 10.

Kern JH. 1955. Florae Malesianae precursores X. Notes on Malaysian and some S. E. Asian Cyperaceae III. – Blumea 8: 110-169.

Kern JH. 1958. Florae Malesianae precursores XXI. Notes on Malaysian and some S. E. Asian Cyperaceae VII. Acta Bot. Neerl. 7: 786-800.

Kern JH. 1961. Florae Malesianae precursores XXX. The genus Scleria in Malaysia. – Blumea 11: 140-218.

Kern JH. 1962. New look at some Cyperaceae mainly from the tropical standpoint. – Advanc. Sci. 19: 141-148.

Kern JH. 1974. Cyperaceae I. – In: Steenis CGGJ van (ed), Flora Malesiana I, 7(3), Junk, Den Haag, pp. 435-753.

Kern JH (†), Nooteboom HP. 1979. Cyperaceae II. – In: Steenis CGGJ van (ed), Flora Malesiana I, 9(1), Sijthoff & Noordhoff International Publ., Alphen aan den Rijn, The Netherlands, pp. 107-187.

Kern VG, Guarise NJ, Vegetti AC. 2008. Inflorescence structure in species of Spartina Schreb. (Poaceae: Chloridoideae: Cynodonteae). – Plant Syst. Evol. 273: 51-61.

Kerstens S, Verbelen J-P. 2002. Cellulose orientation in the outer epidermal wall of angiosperm roots: implications for biosystematics. – Ann. Bot. 90: 669-676.

Killeen TJ. 1990. The grasses of Chiquitanía, Santa Cruz, Bolivia. – Ann. Missouri Bot. Gard. 77: 125-201.

Killeen TJ, Agrasar ZE R de. 1992. Taxonomy and reproductive biology of Digitaria dioica and D. neesiana (Gramineae: Paniceae). – Syst. Bot. 17: 594-606.

Kim C, Choi H-K. 2011. Molecular systematic and character evolution of Typha (Typhaceae) inferred from nuclear and plastid DNA sequence data. – Taxon 60: 1417-1428.

Kim C, Tang H, Paterson AH. 2009. Duplication and divergence of grass genomes: integrating the chloridoids. – Trop. Plant Biol. 2: 51-62.

Kim CM, Dolan L. 2011.Root hair development involves asymmetric cell division in Brachypodium distachyon and symmetric division in Oryza sativa. – New Phytol. 192: 601-610.

Kimpouni V. 1992. Trois espèces nouvelles du genre Syngonanthus (Eriocaulaceae) pour la Flore d’Afrique centrale (Zaire, Rwanda, Burundi). – Fragm. Flor. Geobot. 37: 147-155.

King MG, Roalson EH. 2008. Exploring evolutionary dynamics of nrDNA in Carex subgenus Vignea (Cyperaceae). – Syst. Bot. 33: 514-524.

Kinges H. 1961. Merkmale des Gramineenembryos, ein Beitrag zur Systematik der Gräser. – Bot. Jahrb. Syst. 81: 50-93.

Kiran Raj MS, Sivadasan M, Veldkamp JF, Alfarhan AH, Thomas J. 2013. Nanooravia gen. nov., subtribe Dimeriinae (Poaceae-Panicoideae-Andropogoneae) from India. – Nord. J. Bot. 31: 161-165.

Kircher E. 1977. Embryologische Untersuchungen an Xyris capensis Thunb. – Thesis, Universität Bochum, Germany.

Kircher P. 1986. Untersuchungen zur Blüten- und Infloreszenzmorphologie, Embryologie und Systematik der Restionaceen im Vergleich mit Gramineen und verwandten Familien. – Diss. Bot. 94: 1-219.

Kirpes CC. 1993. Arrangement of pollen in the anthers of grasses (Poaceae) and related families. – M.Sc. thesis, Iowa State University, Ames, Iowa.

Kirpes CC, Clark LG, Lersten NR. 1996. Systematic significance of pollen arrangement in microsporangia of Poaceae and Cyperaceae: review and observations on representative taxa. – Amer. J. Bot. 83: 1609-1622.

Kirschner J. 1993. Taxonomic survey of Luzula sect. Luzula (Juncaceae) in Europe. – Folia Geobot. Phytotaxon. 28: 141-182.

Kirschner J. 2001. Taxonomic and nomenclatural notes on Luzula and Juncus (Juncaceae). – Taxon 50: 1107-1113.

Kirschner J et al. 2003. Species Plantarum, Flora of the World 6. Juncaceae. Rostkovia to Luzula; 7. Juncus subgen. Juncus; 8. Juncus subgen. Agathyron. – Australian Biological Resources Studies, Canberra.

Kjellqvist E, Löve Á. 1963. Chromosome numbers of some Carex species from Spain. – Bot. Not. 116: 241-248.

Klokov MV, Ossycznjuk V. 1976. Stipeae Ucrainicae. – Novosti Sist. Vyssh. Nizsh. Rast. 1975: 7-92.

Klopper KC, Spies JJ, Visser B. 1998. Cytogenetic studies in the genus Pentaschistis (Poaceae: Arundinoideae). – Bothalia 28: 231-238.

Knapp WM, Naczi RFC. 2008. Taxonomy, morphology, and geographic distribution of Juncus Longii (Juncaceae). – Syst. Bot. 33: 685-694.

Knobloch IW. 1968. A checklist of crosses in the Gramineae. – East Lansing, Michigan.

Knowles PF. 1944. Interspecific hybridization of Bromus. – Genetics 29: 128-140.

Knox RB. 1967. Apomixis: seasonal and population differences in a grass. – Science 157: 325-326.

Kobayashi M. 1997. Phylogeny of world bamboos analysed by restriction fragment length polymorphisms of chloroplast DNA. – In: Chapman GP (ed), The bamboos, Academic Press, London, pp. 227-234.

Köbele CP, Tillich H-J. 2001. Die Infloreszensen der Juncaceae. – Sendtnera 7: 137-161.

Köbele CP, Tillich H-J. 2002. The aberrant inflorescence of Luzula elegans Lowe (Juncaceae) compared to other Luzula species. – Sendtnera 8: 77-84.

Koch SD, Sánchez Vega I. 1985. Eragrostis mexicana, E. neomexicana, E. orcuttiana, and E. virescens: the resolution of a taxonomic problem. – Phytologia 58: 377-381.

Körnicke F. 1867. Eriocaulaceae. – Ann. Mus. Bot. Lugd.-Bat. 3: 162-164, 238-241.

Körnicke F. 1873. Monographie der Rapateaceen. – Linnaea 37: 417-494.

Kowal T. 1958. A study on the morphology of fruits of Europaean genera from the subfamilies Scirpoideae Pax, Rhynchosporoideae Aschers. et Graebner and som genera of Caricoideae Pax. – Monogr. Bot. 6: 97-141.

Koyama T. 1957. Taxonomic studies of Cyperaceae 7: the systematic position of Carex sect. Decorae with a taxonomic treatment of the Japanese species. – Bot. Mag. (Tokyo) 70: 347-357.

Koyama T. 1958. Taxonomic study of the genus Scirpus Linné. – J. Fac. Sci. Univ. Tokyo, sect. III, Bot. 7: 271-366.

Koyama T. 1959. Taxonomic study of Cyperaceae 9. – Bull. Arts Sci. Div., Univ. Ryukyus (Math. Nat. Sci.) 3: 65-76.

Koyama T. 1961. Classification of the family Cyperaceae 1. – J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 8: 37-148.

Koyama T. 1962a. Classification of the family Cyperaceae 2. – J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 8: 149-278.

Koyama T. 1962b. The genus Scirpus Linn. Some North American aphylloid species. – Can. J. Bot. 40: 913-937.

Koyama T. 1965. Interrelationships between the tribes Lagenocarpeae and Sclerieae (Cyperaceae). – Bull. Torrey Bot. Club 92: 250-265.

Koyama T. 1967. Cyperaceae-Mapanioideae. – In: Maguire B (ed), The botany of the Guayana Highland 7, Mem. New York Bot. Gard. 17: 23-79.

Koyama T. 1969. Delimitation and classification of the Cyperaceae-Mapanioideae. – In: Gunckel JE (ed), Current topics in plant science, New York, London, pp. 201-228.

Koyama T. 1970. The American species of the genus ‘Hypolytrum’ (Cyperaceae). – Darwiniana 16: 49-92.

Koyama T. 1971. Systematic interrelationships among Sclerieae, Lagenocarpeae and Mapanieae (Cyperaceae). – Mitt. Bot. Staatssamml. München 10: 604-617.

Koyama T. 1976. Nomenclatural remarks on some Cyperaceae from southeastern Asia. – J. Jap. Bot. 51: 316-317.

Koyama T. 1982. The genus Lipocarpha R. Brown, its morphology and systematic position in the family Cyperaceae. – Acta Phytotaxon. Geobot. 33: 218-226.

Koyama T, Maguire B. 1965. Cyperaceae-Lagenocarpeae. – In: Maguire B (ed), The botany of the Guayana Highland 6, Mem. New York Bot. Gard. 12: 8-54.

Kožuharov SI, Petrova AV. 1981. Caryological studies on Bulgarian Poaceae. – Bol. Soc. Brot., ser. II, 53: 1161-1175.

Kožuharov SI, Petrova AV, Ehrendorfer F. 1981. Evolutionary patterns in some bromegrass species (Bromus, Gramineae) of the Balkan Peninsula. – Bot. Jahrb. Syst. 102: 381-391.

Kral R. 1966. Xyris (Xyridaceae) of the continental United States and Canada. – Sida 2: 177-260.

Kral R. 1971. A treatment of Abildgaardia, Bulbostylis and Fimbristylis (Cyperaceae) for North America. – Sida 4: 57-227.

Kral R. 1988. The genus Xyris (Xyridaceae) in Venezuela and contiguous northern South America. – Ann. Missouri Bot. Gard. 75: 522-722.

Kral R. 1992. A treatment of American Xyridaceae exclusive of Xyris. – Ann. Missouri Bot. Gard. 79: 819-885.

Kral R. 1998. Xyridaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 461-469.

Kral R. 1999. 212A. Xyridaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 63, Nord. J. Bot., Copenhagen, pp. 15-36.

Kral R, Wanderley MGL. 1988. Ten novelties in Xyris (Xyridaceae) from the Planalto of Brazil. – Ann. Missouri Bot. Gard. 75: 352-372.

Kral R, Wanderley MGL. 1993. Five new taxa of Xyris (Xyridaceae) from Brazil. – Kew Bull. 48: 577-588.

Krapp F, Barros Pinangé D, Benko-Iseppon A, Leme E, Weising K. 2014. Phylogeny and evolution of Dyckia (Bromeliaceae) inferred from chloroplast and nuclear sequences. – Plant Syst. Evol. 300: 1591-1614.

Krassilov VA, Dobruskina IA. 1998. A graminoid plant from the Cretaceous of the Middle East. – Paleontol. J. 32: 429-434.

Krattinger K. 1978. Biosystematische Untersuchungen innerhalb der Gattung Typha L. – Mitt. Bot. Mus. Univ. Zürich 298: 1-270.

Kraus JE, Sajo MG, Dias-Leme CL, Wanderley MGL. 1994. Aspectos morphológicos do desenvolvimento pós-seminal em species de Xyris L. (Xyridaceae). – Hoehnea 21: 29-38.

Kreczetovicz VI. 1936. Are the sedges of subgenus Primocarex Kük. primitive? – Bot. Žurn. 21: 395-425. [In Russian with English summary]

Kreczetovicz VI. 1937. Cyperacearum novitiates. – Not. Syst. 7: 27-37.

Krishnan S, Samson NP, Ravichandran P, Narasimhan D, Dayanandan P. 2000. Phytoliths of Indian grasses and their potential use in identification. – Bot. J. Linn. Soc. 132: 241-252.

Kristiansen KA, Cilieborg M, Drábková L, Jørgensen T, Petersen G, Seberg O. 2005. DNA taxonomy – the riddle of Oxychloë (Juncaceae). – Syst. Bot. 30: 284-289.

Kronfeld M. 1887. Über Raphiden bei Typha. – Bot. Centralbl. 29: 154-156.

Kronfeld M. 1889. Monographie der Gattung Typha Tourn. (Typhinae Agdh., Typhaceae Schur-Engl.). – Verh. Zool.-Bot. Ges. Wien 39: 89-190.

Krügel P. 1993. Biologie und Ökologie der Bromelienfauna von Guzmania weberbaueri im amazonischen Peru ergänzt durch eine umfassende Boibliographie der Bromelien-Phytotelmata. – Biosyst. Ecol. Ser. 2: 1-93.

Krupko S. 1962. Embryological and cytological investigations in Hypodiscus aristatus Nees (Restionaceae). – J. South Afr. Bot. 28: 21-44.

Krupko S. 1963. Macrosporogenesis and embryo sac development in Chondropetalum hookerianum (Mast.) Pillans (Restionaceae). – Acta Soc. Bot. Polon. 32: 17-190.

Krupko S. 1966. Some loose embryological and cytological observations on members of the Restionaceae family. – Bull. Soc. Amis Sci. Poznan, Ser. D, 7: 59-67.

Kubitzki K. 1966. Untersuchungen über den Blütenbau von Oreobolus R. Br. – Bot. Jahrb. Syst. 85: 80-87.

Kubitzki K. 1998a. Thurniaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 455-457.

Kubitzki K. 1998b. Typhaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 457-461.

Kükenthal G. 1913. Cyperaceae novae III. – Feddes Repert. 12: 91-95.

Kükenthal G. 1935-1936. Cyperaceae-Scirpoideae-Cypereae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, Wilhelm Engelmann, Leipzig, IV, 20, pp. 1-160, 161-671.

Kükenthal G. 1940. Neue Cyperaceen aus dem Malayischen und Papuanischen Gebiet I. – Bull. Jard. Bot. Buitenzorg, sér. III, 16: 300-323.

Kükenthal G. 1943. Zur Kenntnis der Gattung Rhynchospora. – Boissiera 7: 100-104.

Kükenthal G. 1944. Vorarbeiten zu einer Monographie der Rhynchosporoideae 14. – Feddes Repert. Spec. Nov. Regni Veget. 53: 187-219.

Kükenthal G, Peter A. 1936-1937. Plantarum novarum Africae orientalis descriptiones (Cyperaceae). – Feddes Repert. 40, Anhang: 123-142.

Kukkonen I. 1964. Facts and speculations about the factors affecting the distribution of Anthracoidea scirpi as a parasite of Trichophorum cespitosum. – Ann. Univ. Turku A 2: 140-148.

Kukkonen I. 1967a. Gedanken und Probleme zur Systematik der Familie Cyperaceae. Eine Zusammenfassung. – Aquilo, Ser. Bot. 6: 18-42.

Kukkonen I. 1967b. Vegetative anatomy of Uncinia (Cyperaceae). – Ann. Bot., N. S., 31: 523-544.

Kukkonen I. 1967c. Spikelet morphology and anatomy of Uncinia Pers. (Cyperaceae). – Kew Bull. 21: 93-97.

Kukkonen I. 1978. Two new species of Schoenoxiphium (Cyperaceae). – Bot. Not. 131: 263-267.

Kukkonen I. 1983. The genus Schoenoxiphium (Cyperaceae). A preliminary account. – Bothalia 14: 819-823.

Kukkonen I. 1984a. On the inflorescence structure in the family Cyperaceae. – Ann. Bot. Fenn. 21: 257-264.

Kukkonen I. 1984b. New infraspecific taxa and nomenclatural combinations in Carex (Cyperaceae) in the Flora Iranica area. – Ann. Bot. Fenn. 21: 383-389.

Kukkonen I. 1986a. Special features of the inflorescence structure in the family Cyperaceae. – Ann. Bot. Fenn. 23: 107-119.

Kukkonen I. 1986b. Schoenoxiphium. – In: Hilliard OM, Burtt BL (eds), Notes of some plants of Africa chiefly from Natal XIII, Notes Roy. Bot. Gard. Edinb. 43: 345-405.

Kukkonen I. 1990. On the genus Eleocharis (Cyperaceae) in the Flora Iranica area, with revised infrageneric classification and nomenclature. – Ann. Bot. Fenn. 27: 109-117.

Kukkonen I. 1994. Definition of descriptive terms for the Cyperaceae. – Ann. Bot. Fenn. 31: 37-43.

Kukkonen I, Timonen T. 1979. Species of Ustilaginales, especially of the genus Anthracoidea, as tools in plant taxonomy. – Symb. Bot. Ups. 22: 166-176.

Kukkonen I, Toivonen H. 1988. Taxonomy of wetland carices. – Aquatic Bot. 30: 5-22.

Kupicha FK, Cope TA. 1985. Three new grasses from the ‘Flora Zambesiaca’ area. – Kew Bull. 40: 89-91.

Kuwabara Y. 1961. On the shape and direction of leaves of the grass seedling. – J. Jap. Bot. 36: 368-373.

La Cour LF. 1952. The Luzula system analyzed by x-rays. – Heredity 6(Suppl.): 77-81.

Ladd PG. 1977. Pollen morphology of some members of the Restionaceae and related families, with notes on the fossil record. – Grana 16: 1-14.

Ladizinsky G, Zohary D. 1971. Notes on species delimitation, species relationships and polyploidy in Avena L. – Euphytica 20: 380-395.

Laessle AM. 1961. A micro-limnological study of Jamaican bromeliads. – Ecology 42: 499-517.

Lægaard S. 1987. The genus Aciachne (Poaceae). – Nord. J. Bot. 7: 667-672.

Lægaard S. 1990. Three new species of Muhlenbergia and Uniola (Poaceae) from Northern Peru. – Nord. J. Bot. 10: 437-441.

Lægaard S. 1997. 214(1). Gramineae (part 1). – In: Harling G, Andersson L (eds), Flora of Ecuador 57, Nord. J. Bot., Copenhagen, pp. 1-54.

Lægaard S, Peterson PM. 2001. 214(2). Gramineae (part 2). Subfam. Chloridoideae. – In: Harling G, Andersson L (eds), Flora of Ecuador 68, Botanical Institute, Göteborg University, pp. 1-129.

Lakshmanan KK. 1967. Embryological studies in the Bromeliaceae I. Lindmannia penduliflora (C. H. Wright) Stapf. – Proc. Indian Acad. Sci., Sect. B, 65: 49-55.

Lambertini C, Gustafsson MHG, Frydenberg J, Lissner J, Speranza M, Brix H. 2006. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. – Plant Syst. Evol. 258: 161-182.

Lamont BB. 1974. The biology of dauciform roots in the sedge Cyathochaete avenacea. – New Phytol. 73: 985-996.

Lamont BB. 1978. The root system of sedges. – Aust. Plants 9: 258-261.

Lange D. 1995. Untersuchungen zur Systematik und Taxonomie der Gattung Helictotrichon Besser ex J. A. Schultes & J. H. Schultes (Poaceae) in Südosteuropa und Vorderasien. – Bibl. Bot. 144.

Lanning FC. 1972. Ash and silica in Juncus. – Bull. Torrey Bot. Club 99: 196-198.

Lanning FC, Eleuterius LN. 1989. Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. – Ann. Bot., N. S., 63: 395-410.

Laren L van, Gordon-Gray KD, Browning J. 1989. Studies in Cyperaceae in southern Africa 15. A review of Rhynchospora brownii (Cyperaceae) and its relationships with the African R. angolensis and the South American R. barrosiana. – South Afr. J. Bot. 55: 498-508.

Larridon I, Reynders M, Huygh W, Bauters K, Vrijdaghs A, Leroux O, Muasya AM, Simpson DA, Goetghebeur P. 2011. Taxonomic changes in C3 Cyperus (Cyperaceae) supported by molecular data, morphology, embryography, ontogeny and anatomy. – Plant Ecol. Evol. 144: 327-356.

Larridon I, Reynders M, Huygh W, Bauters K, Putte K van de, Muasya AM, Boeckx P, Simpson DA, Vrijdaghs A, Goetghebeur P. 2011. Affinities in C3 Cyperus lineages (Cyperaceae) revealed using molecular phylogenetic data and carbon isotope analysis. – Bot. J. Linn. Soc. 167: 19-46.

Larridon I, Huygh W, Reynders M, Muasya AM, Govaerts R, Simpson DA, Goetghebeur P. 2011. Nomenclature and typification of names of genera and subdivisions of genera in Cypereae (Cyperaceae) 2. Names of subdivisions of Cyperus. – Taxon 60: 868-884.

Larridon I, Bauters K, Reynders M, Huygh W, Muasya AM, Simpson DA, Goetghebeur P. 2013. Towards a new classification of the giant paraphyletic genus Cyperus (Cyperaceae): phylogenetic relationships and generic delimitation in C4 Cyperus. – Bot. J. Linn. Soc. 172: 106-126.

Larsen K. 1972. Flagellariaceae, Hanguanaceae. – Flora of Thailand 2(2): 162-166.

Larson S. 1990. Genetic diversity in the Tripsacum and Zea chloroplast genome and nuclear ribosomal DNA: phylogeny and rates of evolution. – M.Sc. thesis, University of Minnesota, Minneapolis, Minnesota.

Larson S, Doebley J. 1994. Restriction site variation in the chloroplast genome of Tripsacum (Poaceae): phylogeny and rates of sequence evolution. – Syst. Bot. 19: 21-34.

Launert E. 1971. 200. Gramineae (Bambuseae-Pappophoreae). – In: Fernandes A, Launert E, Wild H (eds), Flora Zambesiaca 10 (Part 1), Crown Agents for Oversea Governments and Administrations, London.

Laurent M. 1904. Recherches sur le développement des Joncées. – Ann. Sci. Nat. Bot. 19: 97-194.

Lavania UC. 1987. Chromosomal instability in lemon grass, Cymbopogon flexuosus (Steudel) Wats. – Genetica 72: 211-215.

Lazarides M. 1972. A revision of Australian Chlorideae (Gramineae). – Aust. J. Bot., Suppl. Ser. 5.

Lazarides M. 1977. The genus Whiteochloa C. E. Hubbard (Poaceae, Paniceae). – Brunonia 1: 69-93.

Lazarides M. 1979a. Micraira Fuell. (Poaceae, Micrairoideae). – Brunonia 2: 67-84.

Lazarides M. 1979b. Hygrochloa, a new genus of aquatic grasses from the Northern Territory. – Brunonia 2: 85-91.

Lazarides M. 1980a. The genus Leptochloa Beauv. (Poaceae, Eragrostideae) in Australia and Papua New Guinea. – Brunonia 3: 247-269.

Lazarides M. 1980b. Aristida L. (Poaceae, Aristideae) in Australia. – Brunonia 3: 271-333.

Lazarides M. 1995. The genus Eriachne (Eriachneae, Poaceae). – Aust. Syst. Bot. 8: 355-452.

Lazarides M. 1997a. A revision of Eragrostis (Eragrostideae, Eleusininae, Poaceae) in Australia. – Aust. Syst. Biol. 10: 77-187.

Lazarides M. 1997b. A revision of Triodia including Plectrachne (Poaceae, Eragrostideae, Triodiinae). – Aust. Syst. Biol. 10: 381-489.

Lazarides M, Watson L. 1986. Cyperochloa, a new genus in the Arundinoideae Dumortier (Poaceae). – Brunonia 9: 215-221.

Lazarides M, Webster RD. 1984. Yakirra (Paniceae, Poaceae), a new genus for Australia. – Brunonia 7: 289-296.

Lazarides M, Lenz J, Watson L. 1991. Clausospicula, a new Australian genus of grasses (Poaceae, Andropogoneae). – Aust. Syst. Bot. 4: 391-405.

Lazarides M, Hacker JB, Andrew MH. 1991. Taxonomy, cytology and ecology of indigenous Australian sorghums (Sorghum Moench: Andropogoneae: Poaceae). – Aust. Syst. Bot. 4: 591-635.

Leach GJ. 2000. Notes and new species of Eriocaulon (Eriocaulaceae) from Australia. – Aust. Syst. Bot. 13: 755-772.

Lebgue T, Valerio A. 1986. Manual para identificar las gramíneas de Chihuahua. – Talleres Graficos del Gobierno de Estado Chihuahua, Mexico.

Le Cohu M-C. 1967. Recherches taxinomiques sur les Carex du Massif Armoricain. – Bot. Rhedonica, sér. A, no 3: 1-213.

Lee DW, Fairbrothers DE. 1972. Taxonomic placement of the Typhales within the monocotyledons: preliminary serological investigation. – Taxon 21: 39-44.

Lee DW, Pin YK, Yew LF. 1975. Serological evidence on the distinctness of the monocotyledonous families Flagellariaceae, Hanguanaceae, and Joinvilleaceae. – Bot. J. Linn. Soc. 70: 77-81.

Lehnebach CA. 2012. Re-evaluating species limits in Uncinia angustifolia, U. caespitosa s.str., U. rupestris, U. viridis and U. zotovii (Cyperaceae). – Aust. Syst. Bot. 24: 405-420.

Lehväslaiho H, Saura A, Lokki J. 1987. Chloroplast DNA variation in the grass tribe Festuceae. – Theor. Appl. Gen. 74: 298-302.

Leistner OA (ed), Gibbs-Russell GE, Watson L, Koekemoer M, Smook L, Barker NP, Anderson HM, Dallwitz MJ. 1990. Grasses of southern Africa. – Mem. Bot. Surv. South Africa 58: 1-437.

Leme EMC. 1997. Canistrum. Bromélias da Mata Atlântica. – Salamandra Consultoria Editorial Ltda, Rio de Janeiro.

Leme EMC. 2003. Nominal extinction and the taxonomist’s responsibility: the example of Bromeliaceae in Brazil. – Taxon 52: 299-302.

Leme EMC. 1998. Canistropsis. Bromélias da Mata Atlântica. – GMT Editores Ltda, Rio de Janeiro.

Leme EMC. 2000. Nidularium. Bromélias da Mata Atlântica. – Sexante Arts, Rio de Janeiro.

Leme EMC, Costa A. 1994. Vriesea saundersii e V. botafogensis, duas espécies distintas. – Bromélia 1: 11-18.

Leme EMC, Kollmann LJC. 2013. Miscellaneous new species of Brazilian Bromeliaceae. – Phytotaxa 108: 1-40.

Leme EMC, Marigo LC. 1993. Bromeliads in the Brazilian wilderness. – Marigo Comunicação Visual, Rio de Janeiro.

Leme EMC, Rezende B. 2002. On the revalidation of Aechmea cariocae L. B. Sm. – J. Bromeliad Soc. 52: 262-268.

Lerman JC, Raynal J. 1972. La teneur en isotopes stables du carbone chez les Cypéracées: sa valeur taxonomique. – Compt. Rend. Acad. Sci. Paris, sér. D, 275: 1391-1394.

Le Roux LG, Kellogg EA. 1999. Floral development and the formation of unisexual spikelets in the Andropogoneae (Poaceae). – Amer. J. Bot. 86: 354-366.

Leseberg CH, Duvall MR. 2009. The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals. – J. Mol. Evol. 69: 311-318.

Léveillé-Bourret É, Gilmour CN, Starr JR, Naczi RFC, Spalink D, Sytsma KJ. 2014. Searching for the sister to sedges (Carex): resolving relationships in the Cariceae-Dulichieae-Scirpeae clade (Cyperaceae). – Bot. J. Linn. Soc. 176: 1-21.

Levering CA, Thomson WW. 1971. The ultrastructure of the salt gland of Spartina foliosa. – Planta 97: 183-196.

Levyns MR. 1943. A revision of Trianoptiles Fenzl. – J. South Afr. Bot. 9: 21-26.

Levyns MR. 1944. Notes on Scirpus and descriptions of three new species. – J. South Afr. Bot. 10: 25-32.

Levyns MR. 1945. A comparative study of the inflorescence in four species of Schoenoxiphium and its significance in relations to Carex and its allies. – J. South Afr. Bot. 11: 79-89.

Lewton-Brain L. 1904. On the anatomy of the leaves of British grasses. – Trans. Linn. Soc. London, Bot., Ser. II, 6: 315-359.

Li D-Z. 1996a. Proposal to conserve the name Sinarundinaria Nakai (Gramineae) with a conserved type. – Taxon 45: 321-322.

Li D-Z. 1996b. Proposal to conserve the name Sasa (Gramineae) with a conserved type. – Taxon 45: 543-544.

Li D-Z. 1997. The Flora of China Bambusoideae project – problems and current understanding of bamboo taxonomy in China. – In: Chapman GP (ed), The bamboos, Academic Press, London, pp. 61-81.

Li D-Z, Stapleton CMA, Xia N-H. 2005. New combinations for Chinese bamboos (Poaceae, Bambuseae). – Novon 15: 599-601.

Li M-R, Jones MB. 1994. Kranzkette, a unique C4 anatomy occurring in Cyperus japonicus leaves. – Photosynthetica 30: 117-131.

Li M-R, Wedin DA, Tieszen LL. 1999. C3 and C4 photosynthesis in Cyperus (Cyperaceae) in temperate eastern North America. – Can. J. Bot. 77: 18-209.

Li X-L, Liu S, Spong W-Q, Chen R-Y, Wang Y-Z. 1999. Chromosome number of forty species of scattered bamboos. – Acta Phytotaxon. Sin. 37: 541-544.

Li X-L, Lin R-S, Fung H-L, Qi Z-X, Song W-Q, Chen R-Y. 2001. Chromosome numbers of some caespitose bamboos native in or introduced to China. – Acta Phytotaxon. Sin. 39: 433-442.

Li Y-H, Lubke RA, Phipps JB. 1966. Studies in Arundinelleae (Gramineae) IV. Chromosome numbers of 23 species. – Can. J. Bot. 44: 387-393.

Liang H, Hilu KW. 1996. Application of the matK gene sequences to grass systematics. – Can. J. Bot. 74: 125-134.

Lin S-Y, Hao J-J, Xin H, Ding Y-L. 2009. The megasporogenesis, microsporogenesis and the development of their female and male gametophyte in Menstruocalamus sichuanensis. – J. Nanjing Forest Univ. (Nat. Sci. Ed.) 33: 9-12.

Linde-Laursen I, Bothmer R von, Jacobsen N. 1980. Giemsa C-banding in Asiatic taxa of Hordeum section Stenostachys with notes on chromosome morphology. – Hereditas 93: 235-254.

Linde-Laursen I, Bothmer R von, Jacobsen N. 1986. Giemsa C-banded karyotypes of Hordeum taxa from North America. – Can. J. Genet. Cytol. 28: 42-62.

Linde-Laursen I, Bothmer R von, Jacobsen N. 1992. Relationships in the genus Hordeum: Giemsa C-banded karyotypes. – Hereditas 116: 111-116.

Linder HP. 1984. A phylogenetic classification of the genera of the African Restionaceae. – Bothalia 15: 11-76.

Linder HP. 1985. Conspectus of the African species of Restionaceae. – Bothalia 15: 387-503.

Linder HP. 1986. A review of the tropical African and Malagasy Restionaceae. – Kew Bull. 41: 99-106.

Linder HP. 1987. The evolutionary history of the Poales/Restionales: a hypothesis. – Kew Bull. 42: 297-318.

Linder HP. 1991a. A review of the southern African Restionaceae. – Contr. Bolus Herb. 14: 209-264.

Linder HP. 1991b. Confidence limits in phylogenies: an example from the African Restionaceae. – Taxon 40: 253-266.

Linder HP. 1992a. The structure and evolution of the female flower of the African Restionaceae. – Bot. J. Linn. Soc. 109: 401-425.

Linder HP. 1992b. The gynoecia of Australian Restionaceae: morphology, anatomy and systematic implications. – Aust. Syst. Bot. 5: 227-245.

Linder HP. 1995a. Ceratocaryum pulchrum, a new restioid from the Bredasdorp plains. – South Afr. J. Bot. 61: 222-225.

Linder HP. 1995b. Restio mlanjiensis, a new species of Restionaceae from south-central Africa. – Kew Bull. 50: 623-625.

Linder HP. 1999. Rytidosperma vickeryae – a new danthonioid grass from Kosciuszko (New South Wales, Australia): morphology, phylogeny and biogeography. – Aust. Syst. Bot. 12: 743-755.

Linder HP. 2000. Vicariance, climate change, anatomy and phylogeny of Restionaceae. – Bot. J. Linn. Soc. 134: 159-177.

Linder HP. 2001a. On areas of endemism, with an example from the African Restionaceae. – Syst. Biol. 50: 892-912.

Linder HP. 2001b. Two new species of Ceratocaryum (Restionaceae). – Kew Bull. 56: 465-477.

Linder HP, Barker NP. 2000. Biogeography of the Danthonieae. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 231-238.

Linder HP, Barker NP. 2005. From Nees to now – changing questions in the systematics of the grass subfamily Danthonioideae. – Nova Acta Leop. 92, 342: 29-44

Linder HP, Caddick LR. 2001. Restionaceae seedlings: morphology, anatomy and systematic implications. – Feddes Repert. 112: 59-80.

Linder HP, Ellis RP. 1990a. A revision of Pentaschistis (Arundineae: Poaceae). – Contr. Bolus Herb. 12: 1-124.

Linder HP, Ellis RP. 1990b. Vegetative morphology and interfire survival strategies in the Cape fynbos grasses. – Bothalia 20: 91-103.

Linder HP, Ferguson IK. 1985. On the pollen morphology and phylogeny of the Restionales and Poales. – Grana 24: 65-76.

Linder HP, Hardy CR. 2010. A generic classification of the Restioneae (Restionaceae), southern Africa. – Bothalia 40: 1-35.

Linder HP, Mann DM. 1998. The phylogeny and biogeography of Thamnochortus (Restionaceae). – Bot. J. Linn. Soc. 128: 319-357.

Linder HP, Rudall PJ. 1993. The megagametophyte in Anarthria (Anarthriaceae, Poales) and its implications for the phylogeny of the Poales. – Amer. J. Bot. 80: 1455-1464.

Linder HP, Rudall PJ. 2005. Evolutionary history of Poales. – Ann. Rev. Ecol. Syst. 36: 107-124.

Linder HP, Verboom GA. 1996. Generic limits in the Rytidosperma (Danthonieae, Poaceae) complex. – Telopea 6: 597-627.

Linder HP, Vlok JH. 1991. The morphology, taxonomy and evolution of Rhodocoma (Restionaceae). – Plant Syst. Evol. 175: 139-160.

Linder HP, Thompson JF, Ellis RP, Perold SM. 1990. The occurrence, anatomy and systematic implications of the glands in Pentaschistis and Prionanthium (Poaceae, Arundinoideae, Arundineae). – Bot. Gaz. (Crawfordsville) 151: 221-233.

Linder HP, Verboom GA, Barker NP. 1997. Phylogeny and evolution in the Crinipes group of grasses (Arundinoideae: Poaceae). – Kew Bull. 52: 91-110.

Linder HP, Briggs BG, Johnson LAS. 1998a. Anarthriaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 19-21.

Linder HP, Briggs BG, Johnson LAS. 1998b. Ecdeiocoleaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 195-197.

Linder HP, Briggs BG, Johnson LAS. 1998c. Restionaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 425-445.

Linder HP, Briggs BG, Johnson LAS. 2000. Restionaceae: a morphological phylogeny. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 1, CSIRO Publ., Melbourne, pp. 653-660.

Linder HP, Eldenäs P, Briggs BG. 2003. Contrasting patterns of radiation in African and Australian Restionaceae. – Evolution 57: 2688-2702.

Linder HP, Hardy CR, Rutschmann F. 2005. Taxon sampling effects in molecular clock dating: an example from the African Restionaceae. – Mol. Phylogen. Evol. 35: 569-582.

Linder HP, Baeza M, Barker NP, Galley C, Humphreys AM, Lloyd KM, Orlovich DA, Pirie MD, Simon BK, Walsh N, Verboom GA. 2010. A generic classification of the Danthonioideae (Poaceae). – Ann. Missouri Bot. Gard. 97: 306-364.

Lindquist B. 1932. Taxonomical remarks on Juncus alpinus Vill. and some related species. – Bot. Not. 85: 313-372.

Liphschitz N, Waisel Y. 1974. Existence of salt glands in various genera of the Gramineae. – New Phytol. 73: 507-512.

Lipkin R. 1983. Systematics of the arctic grass genus Dupontia R. Br. – M.Sc. thesis, University of Alaska, Fairbanks, Alaska.

Lisowski S. 1999. Xyris nouveaux (Xyridaceae) du Haut-Katanga (Congo-Kinshasa). – Syst. Geogr. Plants 69: 205-214.

Litardière R de. 1945. Contribution à l’étude du genre Festuca. – Candollea 10: 103-146.

Litke R. 1968. Über den Nachweis tertiärer Gramineen. – Monatsber. Deutsch. Akad. Wiss. Berlin 19: 462-471.

Liu Q, Zhao N-X, Hao G, Hu X-Y, Liu Y-X. 2005. Caryopsis morphology of the Chloridoideae (Gramineae) and its systematic implications. – Bot. J. Linn. Soc. 148: 57-72.

Liu Q, Zhao N-X, Hao G. 2005a. The phylogeny of the Chloridoideae (Gramineae): a cladistic analysis. – J. Trop. Subtrop. Bot. 13: 432-442.

Liu Q, Zhao N-X, Hao G. 2005b. Inflorescence structures and evolution in subfamily Chloridoideae (Gramineae). – Plant Syst. Evol. 251: 183-198.

Liu Q, Zhang D-X, Peterson PM. 2010. Lemma micromorphological characters in the Chloridoideae (Poaceae) optimized on a molecular phylogeny. – South Afr. J. Bot. 76: 196-209.

Liu Z, Chen Z, Pan J, Li X, Su M, Wang L, Li H, Liu G. 2008. Phylogenetic relationships in Leymus (Poaceae: Triticeae) revealed by the nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. – Mol. Phylogen. Evol. 46: 278-289.

Lizarazu MA, Nicola MV, Salariato DL. 2014. Taxonomic re-evaluation of Panicum sections Tuerckheimiana and Valida (Poaceae: Panicoideae) using morphological and molecular data. – Taxon 63: 265-274.

Llauradó M. 1984. El género Paspalum L. a Catalunya. – Bull. Inst. Catalana Hist. Nat., Secc. Bot. 51: 101-108.

Lobin W. 1982. Beitrag zur Kenntnis der Cyperaceae (Phanerogamae, Monocotyledoneae) der Kapverdischen Inseln. – Courier Forschungsinst. Senckenberg 52: 265-276.

Lock JM. 1998. Notes on the genus Xyris (Xyridaceae) in East Africa. – Kew Bull. 53: 883-895.

Lock JM. 1999a. Xyridaceae. – In: Beentje HJ, Whitehouse CM (eds), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-24.

Lock JM. 1999b. A synopsis of Xyris (Xyridaceae) in South-Central Africa. – Kew Bull. 54: 301-326.

Lock JM. 2001 [2002]. Monographs and revisions of African genera. Short communications: Xyris (Xyridaceae) in Africa: a progress report. – Syst. Geogr. Plants 71: 443-445.

Lock JM. 2002. New species of Xyris (Xyridaceae) from Tanzania. – Kew Bull. 57: 445-450.

Lonard RI, Gould FW. 1974. The North American species of Vulpia (Gramineae). – Madroño 22: 217-230.

Londoño X, Clark LG. 1998. Eight new taxa and two new reports of Bambuseae (Poaceae: Bambuseae) from Colombia. – Novon 8: 408-428.

Londoño X, Clark LG. 2002a. A revision of the Brazilian bamboo genus Eremocaulon (Poaceae: Bambuseae: Guaduinae). – Syst. Bot. 27: 703-721.

Londoño X, Clark LG. 2002b. Three new taxa of Guadua (Poaceae: Bambusoideae) from South America. – Novon 12: 64-76.

Londoño X, Peterson PM. 1991. Guadua sarcocarpa (Poaceae: Bambuseae), a new species of Amazonian bamboo with fleshy fruits. – Syst. Bot. 16: 630-638.

Londoño X, Peterson PM. 1992. Guadua chacoensis (Poaceae: Bambuseae), its taxonomic identity, morphology, and affinities. – Novon 2: 41-47.

Longhi-Wagner HM. 1994. Aristidia (Poaceae): two new species from Brazil. – Kew Bull. 49: 817-821.

Longhi-Wagner HM. 2005. New neotropical taxa in the genus Ctenium (Poaceae-Chloridoideae-Cynodonteae). – Kew Bull. 60: 123-127.

Longhi-Wagner HM, Cope TA. 2014. The genus Ctenium (Poaceae: Chloridoideae: Chlorideae) in Africa. – Kew Bull. 69: 9541.

Longhi-Wagner HM, Renvoize SA. 2004. The genus Ctenium (Poaceae-Cynodonteae) in Bolivia. – Kew Bull. 59: 305-309.

Loos GH. 1996. Zur Identität von Carex leersiana Rauschert, C. chaberti F. W. Schultz, C. polyphylla Kar. und Kir. und C. guestphalica (Boenn. ex Rchb.) Boenn. ex O. F. Lang. – Feddes Repert. 107: 61-74.

López A, Morrone O. 2012. Phylogenetic studies in Axonopus (Poaceae, Panicoideae, Paniceae) and related genera: morphology and molecular (nuclear and plastid) combined analyses. – Syst. Bot. 37: 671-676.

López J, Devesa JA. 1991. Contribución al conocimiento de la anatomía foliar de las Aveneae (Poaceae, Pooideae) del Centro-Oeste de España. – Anales Jard. Bot. Madrid 48: 171-187.

López MG, Prata AP, Thomas WW. 2007. New synonymy and new distributional records in Bulbostylis (Cyperaceae) from South America. – Brittonia 59: 88-96.

Lorch J. 1962. A revision of Crypsis Ait. s.l. (Gramineae). – Bull. Res. Counc. Israel 11D: 91-116.

Lorougnon G. 1973. Le vecteur pollinique chez les Mapania et les Hypolytrum, cypéracées du sous-bois des forêts tropicales ombrophiles. – Bull. Jard. Bot. Natl. Belg. 45: 181-184.

Lourteig A. 1999. 211. Mayacaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 63, Nord. J. Bot., Copenhagen, pp. 7-11.

Louis-Marie F. 1928. The genus Trisetum in America. – Rhodora 30: 209-223, 237-245.

Loureiro J, Kopecký D, Castro S, Santos C, Silveira P. 2007. Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp. – Plant Syst. Evol. 269: 89-105.

Lourteig A. 1952. Mayacaceae. – Notulae Syst. (Paris) 14: 234-248.

Lourteig A. 1968. Étude sur Uncinia compacta R. Br. (Cyperaceae). – Bull. Comité Natl. Français Rech. Antarctique – Biol. 23: 25-31.

Louzada RB. 2008. Taxonomia e citogenética das espécies de inflorescência séssil do gênero Orthophytum Beer (Bromeliaceae). – Instituto de Botânica, São Paulo, pp. 1-102.

Louzada RB, Wanderley M das GL. 2010. Revision of Orthophytum (Bromeliaceae): the species with sessile inflorescences. – Phytotaxa 13: 1-26.

Louzada RB, Schulte K, Graças L. Wanderley M das, Silvestro D, Zizka G, Barfuss MHJ, Palma-Silva C. 2014. Molecular phylogeny of the Brazilian endemic genus Orthophytum (Bromelioideae, Bromeliaceae) and its implications on morphological character evolution. – Molec. Phylogen. Evol. 77: 54-64.

Löve Á. 1984. Conspectus of the Triticeae. – Feddes Repert. 95: 425-521.

Lu B-R. 1993. Biosystematic investigations of Asiatic wheatgrasses – Elymus L. (Triticeae, Poaceae). – Svalöv.

Lu B-R. 1995. Taxonomy and morphology of the Elymus parviglumis group (Triticeae: Poaceae). – Nord. J. Bot. 15: 3-37.

Lu B-R, Salomon B. 1993. Two new Tibetan species of Elymus (Poaceae: Triticeae) and their genomic relationships. – Nord. J. Bot. 13: 353-367.

Lucas H, Jahier J. 1988. Phylogenetic relationships in some diploid species of Triticinae: cytogenetic analysis of interspecific hybrids. – Theor. Appl. Gen. 75: 498-502.

Luceño M. 1992. Cytotaxonomic studies in Iberian and Macaronesian species of Carex (Cyperaceae). – Willdenowia 22: 149-165.

Luceño M. 1994. Monografía del género Carex L. en la Península Ibérica e Islas Baleares. – Ruizia 14: 1-139.

Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EE, Crossman CC, Dubcovsky J, Gill BS, Gu Y-Q, Hadam J, Heo H, Huo N, Lazo GR, Lundy KE, Ma Y, Matthews DE, Mcguire PE, Morrell PL, Nicolet CM, Qualset CO, Renfro J, Tabano D, Talbert LE, Tian A, Toleno DM, Warburton ML, You F-M, Zhang W-J, Dvorak J. 2009. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. – Proc. Natl. Acad. Sci. U.S.A. 106: 15780-15785.

Luo S, Peng J, Li K, Wang M, Kuang H. 2011. Contrasting evolutionary patterns of the Rp1 resistance gene family in different species of Poaceae. – Mol. Biol. Evol. 28: 313-325.

Luther HE. 1989. A provisional checklist of the Bromeliaceae of Ecuador. – Phytologia 67: 312-330.

Luther HE. 1992. Three new species of Bromeliaceae from Ecuador. – Nord. J. Bot. 12: 219-221.

Luther HE. 1994. A new species and two new combinations of Ecuadorian Bromeliaceae (Tillandsioideae). – Nord. J. Bot. 14: 327-329.

Luther HE. 2002. An alphabetical list of bromeliad binomials. – The Bromeliad Society International, Sarasota, Florida.

Luther HE. 2003. Miscellaneous new taxa of Bromeliaceae XVI. – Brittonia 54: 279-285. – Erratum: 57 (2005): 202.

Luther HE. 2006. An alphabetical list of bromeliad binomials. – The Bromeliad Society International, Sarasota, Florida.

Luther HE, Norton KF. 2008. Epiphytism in Bromeliaceae: a synopsis. – Selbyana 29: 215-216.

Luther HE, Sieff E. 1991. An alphabetical list of bromeliad binomials. – The Bromeliad Society, Inc., Orlando, Florida.

Lye KA. 1971a. Studies in African Cyperaceae II. The genus Oxycaryum Nees. – Bot. Not. 124: 280-286.

Lye KA. 1971b. Studies in African Cyperaceae III. A new species of Schoenoplectus and some new combinations. – Bot. Not. 124: 287-291.

Lye KA. 1971c. The generic concept of Bulbostylis Kunth ex C. B. Cl. – Mitt. Bot. Staatssamml. München 10: 539-547.

Lye KA. 1971d. Moderne oppfatning av slekta Scirpus L. – Blyttia 29: 141-147.

Lye KA. 1972a. Studies in African Cyperaceae V. Sphaerocyperus K. Lye, gen. nov. – Bot. Not. 125: 212-216.

Lye KA. 1972b. Studies in African Cyperaceae VI. New species and combinations in Kyllinga – Bot. Not. 125: 217-219.

Lye KA. 1973. Studies in African Cyperaceae VIII. The taxonomic position of Abildgaardia Vahl and Nemum Hamilton. – Bot. Not. 126: 325-329.

Lye KA. 1974a. Studies in African Cyperaceae X. New taxa and combinations in Fuirena Rottb. – Bot. Not. 127: 109-112.

Lye KA. 1974b. Studies in African Cyperaceae XI. New taxa and combinations in Abildgaardia Vahl. – Bot. Not. 127: 493-497.

Lye KA. 1974c. Studies in African Cyperaceae XII. New taxa and combinations in Fimbristylis Vahl. – Bot. Not. 127: 498-499.

Lye KA. 1981a. Studies in African Cyperaceae 18. Two new subgenera of Cyperus. – Nord. J. Bot. 1: 57-61.

Lye KA. 1981b. Studies in African Cyperaceae 19. The genera Anosporum Nees and Sorostachys Steudel. – Nord. J. Bot. 1: 186-191.

Lye KA. 1981c. Studies in African Cyperaceae 20. New taxa and combinations in Pycreus Beauv. – Nord. J. Bot. 1: 617-622.

Lye KA. 1981d. Studies in African Cyperaceae 21. New taxa and combinations in Kyllinga Rottb. – Nord. J. Bot. 1: 741-747.

Lye KA. 1981e. Studies in African Cyperaceae 22. New taxa and combinations in Abildgaardia Vahl II. – Nord. J. Bot. 1: 749-758.

Lye KA. 1982a. Studies in African Cyperaceae 23. New taxa and combinations in Fimbristylis Vahl II. – Nord. J. Bot. 2: 333-335.

Lye KA. 1982b. Studies in African Cyperaceae 24. New taxa and combinations in Ascolepis and Isolepis. – Nord. J. Bot. 2: 561-566.

Lye KA. 1983a. Studies in African Cyperaceae 25. New taxa and combinations in Cyperus L. – Nord. J. Bot. 3: 213-232.

Lye KA. 1983b. Studies in African Cyperaceae 26. New taxa and combinations in Abildgaardia Vahl III. – Nord. J. Bot. 3: 233-239.

Lye KA. 1984b. Studies in African Cyperaceae 27. Miscellaneous new taxa and combinations. – Nord. J. Bot. 3: 241-244.

Lye KA. 1987. Studies in African Cyperaceae 28. New taxa and combinations in Abildgaardia Vahl IV. – Nord. J. Bot. 7: 39-50.

Lye KA. 1988. Two new yellow species of Cyperus L. from Africa. – Candollea 43: 505-511.

Lye KA. 1989. A new species of Nemum (Cyperaceae) from West Africa. – Lidia 2: 33-36.

Lye KA. 1992. The history of the genus Mariscus (Cyperaceae). – Lidia 3: 37-72.

Lye KA. 1996a. A new species of Eriocaulon (Eriocaulaceae) from Ethiopia. – Nord. J. Bot. 16: 63-68.

Lye KA. 1996b. Eight new species of Cyperus (Cyperaceae) from Somalia. – Nord. J. Bot. 16: 367-377.

Lye KA. 2003. Schoenoplectiella Lye, gen. nov. (Cyperaceae). – Lidia 6: 20-29.

Lye KA, Haines RW. 1970. Studies in African Cyperaceae I. A new species of Scirpus (Cyperaceae) from Mt. Elgon. – Bot. Not. 123: 430-432.

Lye KA, Haines RW. 1974. Studies in African Cyperaceae XIII. New taxa and combinations in Isolepis R. Br. – Bot. Not. 127: 522-526.

Lye KA, Haines RW. 1977. Studies in African Cyperaceae XVI. New taxa of Isolepis R. Br. – Bot. Not. 130: 311-313.

Ma P-F, Guo Z-H, Li D-Z. 2012. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses. – PloS One 7: e30297.

Ma P-F, Zhang Y-X, Zeng C-X, Guo Z-H, Li D-Z. 2014. Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (Poaceae). – Syst. Biol. 63: 933-950.

McClintock D. 1983. New combinations in some temperate bamboos, and a new variety. – Kew Bull. 38: 485-486.

McClure FA. 1966. The bamboos. A fresh perspective. – Harvard University Press, Cambridge, Massachusetts.

McClure FA. 1973. Genera of bamboos native to the New World. – Smithsonian Contr. Bot. 9: 1-148.

Macfarlane TD. 1987. Poaceae subfamily Pooideae. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 265-276.

Macfarlane TD, Watson L. 1980. The circumscription of Poaceae subfamily Pooideae, with notes on some controversial genera. – Taxon 29: 645-666.

Macfarlane TD, Watson L. 1982. The classification of Poaceae subfamily Pooideae. – Taxon 31: 178-203.

McInerney FA, Strömberg CAE, White JWC. 2011. The Neogene transition from C3 to C4 grasslands in North America: stable carbon isotope ratios of fossil phytoliths. – Paleobiology 37: 23-49.

McNeill J. 1979. Diplachne and Leptochloa (Poaceae) in North America. – Brittonia 31: 399-404.

McNeill J, Wiersema JH, Gandhi K. 2010. The complex nomenclature of Panicum sect. or subg. Agrostoidea and of P. agrostoides. – Taxon 59: 1581-1584.

McWilliams EL. 1968. Natural and cultivated bromeliads in southeastern Brazil. – Bromeliad Soc. Bull. 18: 123-137.

McWilliams EL. 1974. Chromosome number and evolution. – In: Smith LB, Downs RJ (eds), Bromeliaceae. Flora Neotropica 14, Hafner Press, New York, pp. 33-40.

Magalhães R, Mariath J. 2012. Seed morphoanatomy and its systematic relevance to Tillandsioideae (Bromeliaceae). – Plant Syst. Evol. 298: 1881-1895.

Maguire B. 1958a. Xyridaceae. – In: Maguire B, Wurdack JJ et al. (eds), The botany of the Guayana Highland III, Mem. New York Bot. Gard. 10: 1-19.

Maguire B. 1958b. Rapateaceae. – In: Maguire B, Wurdack JJ et al. (eds), The botany of the Guayana Highland III, Mem. New York Bot. Gard. 10: 19-49.

Maguire B. 1965. Rapateaceae. – In: Maguire B, Wurdack JJ et al. (eds), The botany of the Guayana Highland VI, Mem. New York Bot. Gard. 12: 69-102.

Maguire B. 1979. Additions to the Rapateaceae. – Acta Amazonica 9: 267-269.

Maguire B, Smith LB. 1963. Xyridales. – In: Maguire B, Wurdack JJ et al. (eds), The botany of the Guyana Highland V, Mem. New York Bot. Gard. 10: 7-37.

Maguire B, Wurdack JJ. 1960. Xyridaceae. – In Maguire B, Wurdack JJ et al. (eds), The botany of the Guyana Highland IV, Mem. New York Bot. Gard. 10: 11-15.

Maguire B, Wurdack JJ. 1965. The botany of the Guyana Highland VI. – Mem. New York Bot. Gard. 12: 69-102.

Mahelka V, Kopecky D. 2010. Gene capture from across the grass family in the allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as evidenced by ITS, GBSSI, and molecular cytogenetics. – Mol. Biol. Evol. 27: 1370-1390.

Mai DH. 2000. Die mittelmiozänen und obermiozänen Floren aus der Meuroer und Raunoer Folge in der Lausitz. Teil 1. Farnpflanzen, Koniferen und Monocotyledonen. – Palaeontographica, Ser. B, 256: 1-68.

Maier R, Neckermann K, Igloi G, Kossel H. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. – J. Mol. Biol. 251: 614-628.

Makde KH. 1982. Pollen development in the Cyperaceae. – J. Indian Bot. Soc. 61: 242-249.

Makde KH, Untawale AG. 1989. Contribution to the embryology of Fimbristylis Vahl with a brief discussion on its systematic position. – Beitr. Biol. Pflanzen 64: 231-242.

Malato-Beliz J. 1970. Gramíneas da Ilha de Maio (Arquipélago de Cabo Verde). – Bot. Soc. Brot., ser. II, 44: 251-277.

Malcev AI. 1930. Ovsjugi i ovsy Sectio Euavena Griseb. – Trudy Prikl. Bot. Suppl. 38.

Malcomber ST, Kellogg EA. 2005. SEPALLATA gene diversification: brave new whorls. – Trends Plant Sci. 10: 427-435.

Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA. 2006. Developmental gene evolution and the origin of grass inflorescence diversity. – Adv. Bot. Res. 44: 423-479.

Malheiros N, Gardé A. 1947. Contribuiçoes para o estudo citológico do género Luzula Link. – Agron. Lusit. 9: 75-79.

Malheiros N, Castro D, Câmara A. 1947. Cromosomas sem centrómero localizado; o casa da Luzula purpurea Link. – Agron. Lusitana 9: 51-74.

Malik CP, Thomas PT. 1966. Karyotypic studies in some Lolium and Festuca species. – Caryologia 19: 167-196.

Malmanche LA. 1919. Contribution à l’étude anatomique des eriocaulonacées et des familles voisines: restiacées, centrolépidacées, xyridacées, philydracées, mayacacées. – Thèse Fac. Sci., Paris, Imprimeries Girault, St. Cloud, Paris.

Malme GOA. 1925. Xyridologische Beiträge. – Ark. f. Bot. 19(13): 1-8.

Malme GOA. 1930. Xyridaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 15a, W. Engelmann, Leipzig, pp. 35-38.

Malme GOA. 1933. Beiträge zur Kenntnis der südamerikanischen Xyridazeen. – Ark. f. Bot. 25(12): 1-18.

Manning JC, Linder HP. 1990. A cladistic analysis of patterns of endothecial thickenings in the Poales/Restionales. – Amer. J. Bot. 77: 196-210.

Mant JG, Bayer RJ, Crisp MD, Trueman JWH. 2000. A phylogeny of Triodieae (Poaceae: Chloridoideae) based on the ITS region of nrDNA: Testing conflict between anatomical and inflorescence characters. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 213-217.

Mantovani A, Venda A, Almeida V, Costa A, Forzza R. 2012. Leaf anatomy of Quesnelia (Bromeliaceae): implications for the systematics of core bromelioids. – Plant Syst. Evol. 298: 787-800.

Marchant AD, Briggs BG. 2007. Ecdeiocoleaceae and Joinvilleaceae, sisters to Poaceae (Poales): evidence from rbcL and matK data. – Telopea 11: 437-450.

Marchant CJ. 1967. Chromosome evolution in the Bromeliaceae. – Kew Bull. 21: 161-168.

Marek S. 1958. A study of the anatomy of fruits of Europaean genera in the subfamilies Scirpoideae Pax, Rhynchosporoideae Aschers. et Graebner and some genera of Caricoideae Pax. – Monogr. Bot. 6: 151-177.

Marhold K, Hroudová Z, Ducháček M Zákravský P. 2004. The Bolboschoenus maritimus group (Cyperaceae), in Central Europe, including B. laticarpus, spec. nova. – Phyton 44: 1-21.

Maria GA, López MG. 2010. Development and morphology of the gynoecium and nutlet in two South-American Bulbostylis (Cyperaceae) species. – Flora 205: 211-220.

Markgraf-Dannenberg I. 1976. Die Gattung Festuca in Griechenland. – Veröff. Geobot. Inst. ETH Stiftung Rübel Zürich 56: 92-182.

Markgraf-Dannenberg I. 1981. The genus Festuca (Gramineae) in Turkey: new taxa and new names. – Willdenowia 11: 201-210.

Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A. 2004. Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. – Plant Syst. Evol. 249: 139-149.

Martin CE. 1994. Physiological ecology of the Bromeliaceae. – Bot. Rev. 60: 1-82.

Martinelli G. 1994. Reproductive biology of Bromeliaceae in the Atlantic rainforest of southeastern Brazil. – Ph.D. diss., University of St. Andrews, England.

Martínez AMS, Salazar GA, Aranda PD. 2007. Phylogenetic relationships of Zeugites (Poaceae: Centothecoideae) inferred from plastid and nuclear DNA sequences and morphology. – Syst. Bot. 32: 722-730.

Martínez-y-Pérez JL, Sosa V, Mejia-Saules T. 2006. Species delimitation in the Luziola peruviana (Poaceae) complex. – Brittonia 58: 362-375.

Martínez-y-Pérez JL, Mejía-Saulés T, Sosa V. 2008. A taxonomic revision of Luziola (Poaceae: Oryzeae). – Syst. Bot. 33: 702-718.

Martinovský JO. 1967. Neue submediterrane Stipa-Arten und die taxonomische Einteilung der Federgrassippen der Serie Pulcherrimae Martinovský. – Preslia 39: 260-275.

Martinovský JO. 1972. Beitrag zur Kenntnis der Gattung Stipa XXIV. Studien über einige submediterrane Federgrassippen. – Preslia 44: 7-23.

Martinovský JO. 1976. Neue Stipa-Sippen und einige Ergänzungen der früher beschriebenen Stipa-Taxa. – Preslia 48: 186-188.

Martins S, Alves M. 2009. Anatomical features of species of Cyperaceae from northeastern Brazil. – Brittonia 61: 189-200.

Martins S, Scatena VR. 2011. Bundle sheath ontogeny in Kranz and non-Kranz species of Cyperaceae (Poales). – Aust. J. Bot. 59: 554-562.

Maruyama I, Okamura H, Murata G. 1979. On a new hybrid genus Hibanobambusa. – Acta Phytotaxon. Geobot. 30: 148-152. [In Japanese]

Mary Z, Pattan Shetty JK, Yoganarasimhan SN. 1985. Pharmacognostical studies on Flagellaria indica L. (Flagellariaceae). – J. Econ. Taxon. Bot. 6: 1-8.

Mason-Gamer RJ. 2001. Origin of North American Elymus (Poaceae: Triticeae) allotetraploids based on granule-bound starch synthase gene sequences. – Syst. Bot. 26: 757-768.

Mason-Gamer RJ. 2004. Reticulate evolution, introgression, and intertribal gene capture in an allohexploid grass. – Syst. Biol. 53: 25-37.

Mason-Gamer RJ. 2005. The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae). – Amer. J. Bot. 92: 1045-1058.

Mason-Gamer RJ. 2008. Allohexaploidy, introgression, and the complex phylogenetic history of Elymus repens. – Mol. Phylogen. Evol. 47: 598-611.

Mason-Gamer RJ, Kellogg EA. 1996. Chloroplast DNA analysis of the monogenomic Triticeae: phylogenetic implications and genome-specific markers. – In: Jauhaur P (ed), Methods of genome analysis in plants: their merits and pitfalls, CRC Press, Boca Raton, Florida, pp. 301-325.

Mason-Gamer RJ, Kellogg EA. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). – Syst. Biol. 45: 524-545.

Mason-Gamer RJ, Kellogg EA. 2000. Phylogenetic analysis of the Triticeae using the starch synthase gene, and a preliminary analysis of some North American Elymus species. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 102-109.

Mason-Gamer RJ, Burns MM, Naum M. 2010a. Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids: analyses of three nuclear gene trees. – Mol. Phylogen. Evol. 54: 10-22.

Mason-Gamer RJ, Burns MM, Naum BM. 2010b. Reticulate evolutionary history of a complex group of grasses: phylogeny of Elymus StStHH allotetraploids based on three nuclear genes. – PloS One 5, e10989.

Mathews S, Sharrock RA. 1996. The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. – Mol. Biol. Evol. 13: 1141-1150.

Mathews S, Tsai RC, Kellogg EA. 2000. Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. – Amer. J. Bot. 87: 96-107.

Mathews S, Spangler RE, Mason-Gamer RJ, Kellogg EA. 2002. Phylogeny of Andropogoneae inferred from phytochrome B, GBSSI, and ndhF. – Intern. J. Plant Sci. 163: 441-450.

Mattei G, Tropea C. 1908. Graminacee proviste di nettarii estranuziali. – Boll. R. Orto. Bot. (Palermo) 7: 113-117.

Mattfeld J. 1936. Zur Morphologie und Systematik der Cyperaceae. – Proc. Zesde Intern. Bot. Congres 1: 330-332.

Matthei OR. 1965. Estudio crítico de las gramíneas del género Stipa en Chile. – Gayana, Bot. 13: 1-137.

Matthei OR. 1975. Der Briza-Komplex in Südamerika: Briza, Calotheca, Chascolytrum, Poidium (Gramineae). – Willdenowia 8: 1-168.

Matthei OR. 1986. El género Bromus L. (Poaceae) en Chile. – Gayana, Bot. 43: 47-110.

Matthei O, Marticorena C, Rodríguez R, Kalin Arroyo M, Muñoz M, Squeo FA, Arancio G. 1998. Nuevas citas y nuevas combinaciones en Poaceae para la flora de Chile. – Gayana, Bot. 54: 189-192.

Mavrodiev EV. 2000. A new species of cat-tail (Typha L.) from sect. Engleria (Leonova) N. Tzvel. – Feddes Repert. 111: 571-575.

Mavrodiev EV. 2002. Two new species of Typha L. (Typhaceae Juss.) from the Far East of Russia and from Mongolia. – Feddes Repert. 113: 281-288.

Mayorga NC. 1999. La tribu chlorideae (Gramineae) para Colombia. – Tesis Facultad de Ciencias, Dpto. de Biología, Universidad Nacional de Colombia, Bogotá, Colombia.

Maze J. 1972. Notes on the awn anatomy of Stipa and Oryzopsis (Gramineae). – Syesis 5: 169-171.

Maze J, Lin S-C. 1975. A study of the mature megagametophyte of Stipa elmeri. – Can. J. Bot. 53: 2958-2977.

Medina E. 1974. Dark CO2 fixation, habitat preference and evolution within the Bromeliaceae. – Evolution 28: 677-686.

Meert M, Goetghebeur P. 1979. Comparative floral morphology of Bisboeckelereae and Cariceae (Cyperaceae) on the basis of the anthoid concept. – Bull. Soc. Roy. Bot. Belg. 112: 128-143.

Meeuse ADJ. 1975. Interpretative floral morphology of the Cyperaceae on the basis of the anthoid concept. – Acta Bot. Neerl. 24: 291-304.

Mehra PN, Chaudhary JD. 1981. Male meiosis in some grasses of the tribe Paniceae from northeastern India I. Genus Paspalum. – Cytologia 46: 265-278.

Mehra PN, Sachdeva SK. 1975. Cytology of some W. Himalayan Cyperaceae. – Cytologia 40: 497-515.

Mehra PN, Sharma ML. 1975. Cytological studies in some central and eastern Himalayan grasses II. The Paniceae. – Cytologia 40: 75-89.

Mehra PN, Khosla PK, Kohli BL, Koonar JS. 1968. Cytological studies in the North Indian grasses I. – Res. Bull. Panjab Univ. 19: 157-230.

Meikle RD. 1948. Tropical African plants XX. Eriocaulon adamesii Meikle, sp. nov. – Kew Bull. 3: 472-473.

Meikle RD. 1950. Eriocaulon nigericum Meikle, sp. nov. – In: Brenan JPM (ed), More new plants from the Idanre Hills, Nigeria, Kew Bull. 5: 231-232.

Meikle RD. 1954. Revision of the Flora of West Tropical Africa VI (ed. R. W. J. Keay), Eriocaulaceae. – Kew Bull. 9: 275.

Meikle RD. 1968. Notes on Eriocaulaceae of West Tropical Africa. – Kew bull. 22: 141-144.

Mejia-Saulés T, Bisby FA. 2000. Preliminary views on the tribe Meliceae (Gramineae: Pooideae). – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 83-88.

Mejia-Saulés T, Bisby FA. 2003. Silica bodies and hooked papillae in lemmas of Melica species (Gramineae: Pooideae). – Bot. J. Linn. Soc. 141: 447-463.

Melderis A. 1956. New taxa of afroalpine grasses. – Svensk Bot. Tidskr. 50: 535-547.

Melderis A. 1978. Taxonomic notes on the tribe Triticeae (Gramineae), with special reference to the genera Elymus L. s.l., and Agropyron Gaertn. s.l. – Bot. J. Linn. Soc. 76: 369-384.

Meney KA, Pate JS (eds). 1999. Australian rushes. Biology, identification and conservation of Restionaceae and allied families. – University of Western Australia Press, Nedlands, Western Australia.

Meney KA, Pate JS, Dixon KW. 1990. Comparative morphology, anatomy, phenology and reproductive biology of Alexgeorgea spp. (Restionaceae) from south-western Western Australia. – Aust. J. Bot. 38: 523-541.

Meney KA, Dixon KW, Scheltema M, Pate JS. 1993. Occurrence of vesicular mycorrhizal fungi in dryland species of Restionaceae and Cyperaceae from SW Western Australia. – Aust. J. Bot. 41: 733-737.

Meney KA, Pate JS, Dixon KW. 1996. New species of Restionaceae from Western Australia. – Telopea 6: 649-666.

Meney KA, Pate JS, Hickman EJ. 1999. Morphological and anatomical descriptions of Restionaceae and allied families and their distribution. – In: Meney KA, Pate JS (eds), Australian rushes. Biology, identification and conservation of Restionaceae and allied families, University of Western Australia Press, Nedlands, Western Australia, pp. 161-461.

Menezes de Sequeira M, Castroviejo S. 2007. Holcus azoricus M. Seq. & Castrov. (Poaceae), a new species from the Azores Islands. – Bot. J. Linn. Soc. 154: 259-267.

Merxmüller H, Czech G. 1953. Eine neue Gattung der Cyperaceae. – Mitt. Bot. Staatssamml. München I(8): 317-323.

Messing J, Bennetzen JL. 2008. Grass genome structure and evolution. – In: Volff JN (ed), Genome dynamics Vol. 4. Plant Genomes, Karger, Basel, pp. 41-56.

Metcalfe CR. 1960. Anatomy of the monocotyledons I. Gramineae. – Clarendon Press, Oxford.

Meyer FJ. 1933. Beiträge zur vergleichenden Anatomie der Typhaceae (Gattung Typha). – Beitr. Bot. Centralbl. 51: 335-376.

Meyer NR, Yaroshevskaya AS. 1976. The phylogenetic significance of the development of pollen grain walls in Liliaceae, Juncaceae and Cyperaceae. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine, Linnaean Society Symposium Series No. 1, pp. 91-100.

Mez C. 1904. Physiologische Bromeliaceen-Studien I. Die Wasser-Ökonomie der extreme atmosphärischen Tillandsien. – Jahrb. Wissensch. Bot. 40: 157-229.

Michael PW, Vickery JW. 1975. Two new species and a new combination in Echinochloa. – Telopea 1: 44-48.

Michael PW, Vickery JW. 1980. Three new annual species of Echinochloa from Northern Australia. – Telopea 2: 25-29.

Michalska A. 1953. Cytological investigations on Luzula. – Acta Soc. Bot. Polon. 22: 169-186.

Michelangeli FA, Davis JI, Stevenson DW. 2003. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. – Amer. J. Bot. 90: 93-106.

Mirjalili SA, Bennett SJ, Poorazizi E. 2008. A phenetic analysis on the genus Lolium (Poaceae) in Iran. – Plant Syst. Evol. 274: 203-208.

Mitchell WM. 1967. Taxonomic synopsis of Bromus section Bromopsis (Gramineae) in Alaska. – Can. J. Bot. 45: 1309-1313.

Mlada J. 1977. The histological structure of the grass embryo and its significance for the taxonomy of the family Poaceae. – Acta Univ. Carol. Biol. 1974: 51-156.

Mlodzianowski F. 1964. The structure and the later stages of development in the embryo sac of Thamnochortus fruticosus Berg (Restionaceae). – Bull. Soc. Amis Sci. Lett. Poznan, Ser. D, 4: 3-11.

Moffett AA. 1944. Note on the cytology of Rhodes grass. – Rhod. Agr. J. 41: 11-13.

Moffett AA, Hurcombe RE. 1949. Chromosome numbers in South African grasses. – Heredity 3: 369-373.

Mohammed AH, Gould FW. 1966. Biosystematic studies in the Bouteloua curtipendula complex V. Megasporogenesis and embryo sac development. – Amer. J. Bot. 53: 166-169.

Mohlenbrock RH, Drapalik DJ. 1960. Eleocharis, subseries Palustres, in Illinois. – Amer. Midl. Natur. 64: 224.

Moinuddin M, Vahidy AA, Ali SI. 1994. Chromosome counts in Arundinoideae, Chloridoideae, and Pooideae (Poaceae) from Pakistan. – Ann. Missouri Bot. Gard. 81: 784-791.

Molina AM. 1996. Revisión taxonómica del género Eustachys Desv. (Poaceae: Chloridoideae, Cynodonteae) de Sudamérica. – Candollea 51: 225-272.

Molina AM, Rúgolo de Agrasar ZE. 2004. Revisión taxonómica de las especies del género Chloris (Poaceae: Chloridoideae) en Sudamérica. – Candollea 59: 347-428.

Molina A, Acedo C, Llamas F. 2006a. Typification of some Hudson plant names in Carex. – Taxon 55: 1009-1013.

Molina A, Acedo C, Llamas F. 2006b. Delimitación taxonómica de Carex grupo muricata (Cyperaceae) en Europa. Resultados preliminares. – Bull. Soc. Hist. Nat. Toulouse 141: 57-61.

Molina A, Acedo C, Llamas F. 2008. Taxonomy and new taxa in Eurasian Carex (Section Phaestoglochin, Cyperaceae). – Syst. Bot. 33: 237-250.

Molina A, Acedo C, Llamas F. 2012. A comparative study of the inflorescence in the genus Carex (Cyperaceae). – Syst. Bot. 37: 365-381.

Moline PM, Linder HP. 2005. Molecular phylogeny and generic delimitation in the Elegia group (Restionaceae, South Africa) based on a complete taxon sampling and four chloroplast DNA regions. – Syst. Bot. 30: 759-772.

Molloy BPJ, Edgar E, Heenan PB, De Lange PJ. 1999. New species of Poa (Gramineae) and Ischnocarpus (Brassicaceae) from limestone, North Otago, South Island, New Zealand. – New Zealand J. Bot. 37: 41-50.

Monoyer A. 1934. Contribution à l’anatomie du genre Scirpus. – Bot. Arch. Univ. Liège11: 1-185.

Monteiro-Scannavacca WR, Mazzoni SC. 1978. Embryological studies in Leiothrix fluitans (Mart.) Ruhl. (Eriocaulaceae). – Rev. Brasil. Bot. 1: 59-64.

Monteiro WR, Giulietti AM, Moraes Castro M de. 1984. Aspects of leaf structure of some species of Eriocaulon (Eriocaulaceae) from Serra do Cipó (Minas Gerais, Brasil). – Rev. Brasil. Bot. 7: 137-147.

Monteiro WR, Moraes Castro M de, Giulietti AM. 1985. Aspects of leaf structure of some species of Leiothrix Ruhl. (Eriocaulaceae) from Serra do Cipó (Minas Gerais, Brasil). – Rev. Brasil. Bot. 8: 109-125.

Moore G, Guaglianone ER, Zartman C. 2003. Rhynchospora pseudomacrostachya, a new Brazilian species of Cyperaceae. – Brittonia 54: 340-343.

Moore RJ, Calder JA. 1964. Some chromosome numbers of Carex species of Canada and Alaska. – Can. J. Bot. 42: 1387-1391.

Morakinyo JA, Olorode O. 1988. Cytogenetic studies in Sorghum bicolor (L.) Moench. – Cytologia 53: 653-658.

Moraldo B. 1986. Il genere Stipa L. (Gramineae) in Italia. – Webbia 40: 203-278.

Mora-Osejo LE. 1960. Beiträge zur Entwicklungsgeschichte und vergleichenden Morphologie der Cyperaceen. – Beitr. Biol. Pflanzen 35: 293-341.

Mora-Osejo LE. 1966. Las inflorescencias parciales de ultimo orden de Uncinia Pers. y la agrupación sistemática de las Caricoideae Kükenthal. – Caldasia, Bot. 9: 277-293.

Mora-Osejo LE. 1982. Consideraciones sobre la morfoligía, anatómica y posición sistemática de Vesicarex Steyermark (Cyperaceae). – Acta Biol. Colombiana 1: 31-41.

Mora-Osejo LE. 1989. La bioforma de Bulbostylis leucostachya Kunth (Cyperaceae) y de otras monocotiledoneas arboriformes tropicales. – Rev. Acad. Colomb. Ci. 17: 215-230.

Morden CW. 1985. A biosystematic study of the Muhlenbergia repens complex (Poaceae). – Ph.D. diss., Texas A & M University, College Station, Texas.

Morikawa T, Leggett JM. 1990. Isozyme polymorphism in natural populations of Avena canariensis from the Canary Islands. – Heredity 64: 403-411.

Morillo IMR. 1996. Systematics, phylogeny, and chromosome number evolution of Cryptanthus (Bromeliaceae). – Ph.D. diss., University of Missouri, St. Louis, Missouri.

Morong T. 1888. Studies in the Typhaceae. – Bull. Torrey Bot. Club 15: 1-8.

Morong T. 1891. Notes on the North American species of Eriocauleae. – Bull. Torrey Bot. Club 28: 351-362.

Morris LM, Duvall MR. 2010. The chloroplast genome of Anomochloa marantoidea (Anomochlooideae, Poaceae) comprises a mixture of grass-like and unique features. – Amer. J. Bot. 97: 620-627.

Morrison JW. 1959. Cytogenetic studies in the genus Hordeum I. Chromosome morphology. – Can. J. Bot. 37: 527-538.

Morrison JW, Rajhathy T. 1959. Cytogenetic studies in the genus Hordeum III. Pairing in some interspecific and intergeneric hybrids. – Can. J. Genet. Cytol. 1: 65-77.

Morrone O, Zuloaga FO. 1991. Revisión del género Streptostachys (Poaceae: Panicoideae: Paniceae), su posición sistemática dentro de la tribu Paniceae. – Ann. Missouri Bot. Gard. 78: 359-376.

Morrone O, Zuloaga FO. 1992. Revisión de las especies sudamericanas natives e introducidas de los géneros Brachiaria y Urochloa (Poaceae: Panicoideae: Paniceae). – Darwiniana 31: 43-109.

Morrone O, Zuloaga FO. 1993. Sinopsis del género Urochloa (Poaceae: Panicoideae: Paniceae) para México y América Central. – Darwiniana 32: 59-75.

Morrone O, Zuloaga FO. 2003. New species of Paspalum (Poaceae: Panicoideae: Paniceae) from Brazil. – Syst. Bot. 28: 307-312.

Morrone O, Zuloaga FO. 2009. Keratochlaena, el nombre correcto para Sclerochlamys (Poaceae, Paniceae). – Darwiniana 47: 231.

Morrone O, Filgueiras TS, Zuloaga FO, Dubcovsky J. 1993. Revision of Anthaenantiopsis (Poaceae: Panicoideae: Paniceae). – Syst. Bot. 18: 434-453.

Morrone O, Hunziker JH, Zuloaga FO, Escobar A. 1995. Números cromosómicos en Paniceae sudamericanas (Poaceae: Panicoideae). – Darwiniana 33: 53-60.

Morrone O. Zuloaga FO, Carbonó E. 1995. Revisión del grupo Racemosa del género Paspalum (Poaceae: Panicoideae: Paniceae). – Ann. Missouri Bot. Gard. 82: 82-116.

Morrone O, Zuloaga FO, Arriaga MO, Pozner R, Aliscioni SS. 1998. Revisión sistemática y análisis cladístico del género Chaetium (Poaceae: Panicoideae: Paniceae). – Ann. Missouri Bot. Gard. 85: 404-424.

Morrone O, Zuloaga FO, Davidse G, Filgueiras TS. 2001. Canastra, a new genus of Paniceae (Poaceae, Panicoideae) segregated from Arthropogon. – Novon 11: 429-436.

Morrone O, Escobar A, Zuloaga FO. 2006. Chromosome studies in American Panicoideae (Poaceae). – Ann. Missouri Bot. Gard. 93: 647-657.

Morrone O, Scataglini A, Zuloaga FO. 2007. Cyphonanthus, a new genus segregated from Panicum (Poaceae: Panicoideae: Paniceae) based on morphological, anatomical and molecular data. – Taxon 56: 521-532.

Morrone O, Denham SS, Aliscioni S, Zuloaga FO. 2008. Parodiophyllochloa, a new genus segregated from Panicum (Paniceae, Poaceae) based on morphological and molecular data. – Syst. Bot. 33: 66-76.

Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, Zuloaga FO. 2012. Phylogeny of the Paniceae (Poaceae: Panicoideae) integrating plastid DNA sequences and morphology into a new classification. – Cladistics 28: 333-356.

Morton BR, Clegg MT. 1993. A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). – Curr. Genet. 24: 357-365.

Morton BR, Gaut BS, Clegg MT. 1996. Evolution of alcohol dehydrogenase genes in the palm and grass families. – Proc. Natl. Acad. Sci. U.S.A. 93: 11735-11739.

M’Ribu K, Hilu KW. 1996. Application of random amplified polymorphic DNA to study genetic diversity in Paspalum scrobiculatum L. (Kodo millet, Poaceae). – Gen. Res. Crop Evol. 43: 203-210.

Mtotomwema K. 1990. New species of Kyllinga (Cyperaceae) from tropical Africa. – Nord. J. Bot. 9: 637-641.

Muasya AM. 1998. A synopsis of Fuirena (Cyperaceae) for the Flora of tropical East Africa. – Kew Bull. 53: 187-202.

Muasya AM, Baquar SR. 1995. Taxonomic studies in the Fuirena pubescens complex (Cyperaceae) in Kenya. – Nord. J. Bot. 15: 407-410.

Muasya AM, Lange PJ de. 2010. Ficinia spiralis (Cyperaceae), a new genus and combination for Desmoschoenus spiralis. – New Zealand J. Bot. 48: 31-39.

Muasya AM, Simpson DA. 2002. A monograph of the genus Isolepis R. Br. (Cyperaceae). – Kew Bull. 57: 257-362.

Muasya AM, Simpson DA, Chase MW, Culham A. 1998. An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. – Plant Syst. Evol. 211: 257-271.

Muasya AM, Bruhl JJ, Simpson DA, Culham A, Chase MW. 2000. Suprageneric phylogeny of Cyperaceae: a combined analysis. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 1, CSIRO Publ., Melbourne, pp. 593-601.

Muasya AM, Simpson DA, Chase MW, Culham A. 2000. Phylogenetic relationships within the heterogeneous Scirpus s. lat. (Cyperaceae) inferred from rbcL and trnL-F sequence data. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 1, CSIRO Publ., Melbourne, pp. 610-614.

Muasya AM, Simpson DA, Chase MW, Culham A. 2001. A phylogeny of Isolepis (Cyperaceae) inferred using plastid rbcL and trnL-F sequence data. – Syst. Bot. 26: 342-353.

Muasya AM, Simpson DA, Chase MW. 2001 [2002]. Generic relationships and character evolution in Cyperus s.l. (Cyperaceae). – Syst. Geogr. Plants 71: 539-544.

Muasya AM, Simpson DA, Chase MW. 2002. Phylogenetic relationships in Cyperus L. s.l. (Cyperaceae) inferred from plastid DNA sequence data. – Bot. J. Linn. Soc. 138: 145-153.

Muasya AM, Simpson DA, Verboom GA, Goetghebeur P, Naczi RFC, Chase MW, Smets E. 2009. Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. – Bot. Rev. 75: 2-21.

Muasya AM, Vrijdaghs A, Simpson DA, Chase MW, Goetghebeur P, Smets E. 2009. What is a genus in Cypereae: phylogeny, character homology assessment and generic circumscription in Cypereae. – Bot. Rev. 75: 52-66.

Muasya AM, Reynders M, Goetghebeur P, Simpson DA, Vrijdaghs A. 2012. Dracoscirpoides (Cyperaceae) – a new genus from Southern Africa, its taxonomy and floral ontogeny. – South Afr. J. Bot. 72: 104-115.

Mühlberg H. 1970. Wuchsformen der Gattung Brachypodium (Poaceae). – Feddes Repert. 81: 119-130.

Müller C. 1983. Untersuchungen an südamerikanischen Gramineen I. 2 neue Varietäten südamerikanischer Chloris-Arten. – Feddes Repert. 94: 625-630.

Müller C. 1985. Untersuchungen an südamerikanischen Gramineen II. Bestimmungsschlüssel der Chloris-Arten Südamerikas. – Feddes Repert. 96: 269-277.

Müller J. 2006. Novelties in Festuca (Gramineae-Poeae) from southern Bolivia. – Brittonia 58: 42-45.

Müller J, Catalán P. 2006. Notes on the infrageneric classification of Festuca L. (Gramineae). – Taxon 55: 139-144.

Müller-Doblies U. 1969a [1970]. Über die Blütenstände und Blüten sowie zur Embryologie von Sparganium. – Bot. Jahrb. Syst. 89: 359-450.

Müller-Doblies D. 1969b [1970]. Über die Verwandtschaft von Typha und Sparganium in Infloreszenz- und Blütenbau. – Bot. Jahrb. Syst. 89: 451-562.

Munro SL, Linder HP. 1997. The embryology and systematic relationships of Prionium serratum (Juncaceae: Juncales). – Amer. J. Bot. 84: 850-860.

Munro SL, Linder HP. 1998. The phylogenetic position of Prionium (Juncaceae) within the order Juncales based on morphological and rbcL sequence data. – Syst. Bot. 23: 43-55.

Munro SL, Kirschner J, Linder HP. 2001. Species plantarum. Flora of the world 5. Prioniaceae. – Australian Biological Resources, Canberra.

Müntzing A. 1933. Apomictic and sexual seed formation in Poa. – Hereditas 17: 131-154.

Müntzing A. 1940. Further studies on apomixis and sexuality in Poa. – Hereditas 26: 115-190.

Murphy MA. 2003. Relationships among taxa of Elymus (Poaceae: Triticeae) in Australia: reproductive biology. – Aust. Syst. Bot. 16: 633-642.

Murphy MA, Jones CE. 1999. Observations on the genus Elymus (Poaceae: Triticeae) in Australia. – Aust. Syst. Bot. 12: 593-604.

Naczi RFC. 1992. Systematics of Carex section Griseae (Cyperaceae). – Ph.D. diss., University of Michigan, Ann Arbor, Michigan.

Naczi RFC. 2009. Insights on using morphologic data for phylogenetic analysis in sedges (Cyperaceae). – Bot. Rev. 75: 67-95.

Naczi RFC, Ford BA. 2001. Systematics of the Carex jamesii complex (Cyperaceae: sect. Phyllostachyae). – Sida 19: 853-884.

Naczi RFC, Ford BA (eds). 2008. Sedges: uses, diversity, and systematics of the Cyperaceae. – Missouri Botanical Garden Press, St. Louis, Missouri.

Nadot S, Bajon R, Lejeune B. 1994. The chloroplast gene rps4 as a tool for the study of Poaceae phylogeny. – Plant Syst. Evol. 191: 27-38.

Nagahama N, Vegetti AC, Anton AM, Norrmann GA. 2013. Synflorescence analysis in South American species of Andropogon section Leptopogon (Andropogoneae, Poaceae): a tool to identify different ploidy levels. – Phytotaxa 82: 45-63.

Nagels A, Muasya AM, Huysmans S, Vrijdaghs A, Smets E, Vinckier S. 2008. Pollen diversity in Cyperaceae. – South Afr. J. Bot. 74: 374.

Nagels A, Muasya AM, Huysmans S, Vrijdaghs A, Smets E, Vinckier S. 2009. Palynological diversity and major evolutionary trends in Cyperaceae. – Plant Syst. Evol. 277: 117-142.

Nakai T. 1925. Two new genera of Bambusaceae, with special remarks on the related genera growing in eastern Asia. – J. Arnold Arbor. 6: 145-153.

Nakamatte E, Lye KA. 2007. AFLP-based differentiation in north Atlantic species of Carex sect. Phacocystis. – Nord. J. Bot. 25: 318-328.

Namaganda M, Lye KA. 2007. The species distinction of the narrow-leaved Festuca from East Africa based on AFLP fingerprinting and morphology. – Nord. J. Bot. 25: 85-95.

Namaganda M, Lye KA. 2008. A taxonomic comparison between tropical African and related European broad-leaved species of Festuca L. (Poaceae). – South Afr. J. Bot. 74: 295-305.

Nannfeldt JA. 1977. The species of Anthracoidea (Ustilaginales) on Carex subgen. Vignea with special regard to the Nordic species. – Bot. Not. 130: 351-375.

Napper DM. 1963. Cyperaceae of East Africa I. – J. East Afr. Nat. Hist. Soc. 24: 1-18.

Napper DM. 1964. Cyperaceae of East Africa II. – J. East Afr. Nat. Hist. Soc. 24: 23-46.

Napper DM. 1965. Cyperaceae of East Africa III. – J. East Afr. Nat. Hist. Soc. 25: 1-27.

Napper DM. 1971a. Flagellariaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-3.

Napper DM. 1971b. Typhaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-6.

Napper DM. 1971c. Cyperaceae of East Africa V. – J. East Afr. Nat. Hist. Soc. Nat. Mus. 28, no. 124.

Negby M, Koller D. 1962. Homologies in the grass embryo: a reevaluation. – Phytomorphology 12: 289-296.

Negby M, Sargent JA. 1986. The scutellum of Avena: a structure to maximize exploitation of endosperm reserves. – Bot. J. Linn. Soc. 93: 247-258.

Negritto MA, Anton AM. 2006. Three new species of Poa from the Andes of Colombia and Peru. – Syst. Bot. 31: 83-88.

Nelmes E. 1947. Two critical groups of British sedges. – Rep. Bot. Exchange Club, Brit. Isles 13: 99-105.

Nelmes E. 1949. Notes on Cyperaceae XX. The genus Uncinia in Malaysia. – Kew Bull. 1949: 140-145.

Nelmes E. 1951a. Facts and speculations on phylogeny in the tribe Cariceae of the Cyperaceae. – Kew Bull. 6: 427-436.

Nelmes E. 1951b. The genus Carex in Malaysia. – Reinwardtia 1: 221-450.

Nelmes E. 1952. Facts and speculations on phylogeny in the tribe Cariceae of the Cyperaceae. – Kew Bull. 1951: 427-436.

Nelmes E. 1953. Notes on Cyperaceae XXXI. The African genus Coleochloa. – Kew Bull. 8: 373-381.

Nelmes E. 1955a. Notes on Cyperaceae XXXIII. The African species of Hypolytrum. – Kew Bull. 10: 63-82.

Nelmes E. 1955b. Notes on Cyperaceae XXXIV. Allies of Carex flava L. in the southern hemisphere. – Kew Bull. 10: 83-88.

Nelmes E. 1955c. Notes on Cyperaceae XXXVIII. Scleria Berg., Sect. Hypoporum (Nees) Endl. in Africa. – Kew Bull. 13: 415-453.

Nemirovich-Danchenko EN. 1983. The structure of the seed-coat in the representatives of the Bromeliaceae. – Bot. Žurn. 68: 1094-1101. [In Russian]

Neves SS, Swire-Clark G, Hilu KH, Baird WV. 2005. Phylogeny of Eleusine (Poaceae: Chloridoideae) based on nuclear ITS and plastid trnT-trnF sequences. – Mol. Phylogen. Evol. 35: 395-419.

Nevski SA. 1933. Agrostologische Studie über das System der Tribe Horeae Benth. – Trudy Bot. Inst. Akad. Nauk SSSR, Ser. I, Fl. Sist. Vysš. Rast. 1: 9-32.

Nevski SA. 1936. Conspectus Loliearum, Nardearum, Leptuearum hordecarumque florae Unionis Rerum Publicarum Sovieticarum Socialisticarum. – Trudy Bot. Inst. Akad. Nauk SSR, ser. I, 2: 33-90.

Newell TK. 1969. A study of the genus Joinvillea (Flagellariaceae). – J. Arnold Arbor. 50: 527-555.

Newell TK, Stone BC. 1967. Flagellaria (Chortodes) plicata Hooker fil. is a Joinvillea. – Taxon 16: 192-194.

Newmaster SG, Balasubramaniam V, Murugesan M, Ragupathy S. 2008. Tripogon cope (Poaceae: Chloridoideae), a new species supported by morphometric analysis and a synopsis of Tripogon in India. – Syst. Bot. 33: 695-701.

Newton RJ, Bond WJ, Farrant JM. 2002. Seed development, morphology and quality testing in selected species of nut-fruited Restionaceae. – South Afr. J. Bot. 68: 226-230.

Neyland R. 2002. A phylogeny inferred from large-subunit (26S) ribosomal DNA sequences suggests that the family Dasypogonaceae is closely aligned with the Restionaceae allies. – Aust. Syst. Bot. 15: 749-754.

Ng’uni D, Geleta M, Fatih M, Bryngelsson T. 2010. Phylogenetic analysis of Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. – Ann. Bot. 105: 471-480.

Nguyen HN, Tran VT. 2012. Nianhochloa gen. nov. (Poaceae, Bambusoideae), a new bamboo genus endemic to Bidoup Mountain, southern Vietnam. – Adansonia 34: 257-264.

Nicholls MS, Cook CDK. 1986. The function of pollen tetrads in Typha (Typhaceae). – Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich 94: 112-119.

Ní Chonghaile G. 2002. Systematics of the woody bamboos (tribe Bambuseae). – Ph.D. diss., University of Dublin, Trinity College, Dublin.

Nicora EG. 1941. Contribucion al estudio histologico de las glandulas epidermicas de algunas especies de Eragrostis. – Darwiniana 5: 316-321.

Nicora EG. 1995. Los generos Diplachne y Leptochloa (Gramineae: Eragrosteae) de la Argentina y paises limitrofes. – Darwiniana 33: 233-256.

Nicora EG, Rúgolo de Agrasar Z. 1987. Los géneros de gramíneas de América Austral. – Hemisferio Sur, Buenos Aires.

Nielson EL. 1939. Grass studies III. Additional somatic chromosome complements. – Amer. J. Bot. 26: 366-371.

Nijalingappa BH-M. 1975. Cytological studies in Fimbristylis (Cyperaceae). – Cytologia 40: 177-183.

Niño SM, Clark LG, Dorr LJ. 2006. Una nueva especie de Chusquea (Poaceae: Bambusoideae) de la Cordillera de Mérida, Venezuela. – Brittonia 58: 46-51.

Nogueira FM, Fagundes NF, Kuhn SA, Fregonezi JN, Mariath JEA. 2015. Ovary and ovule anatomy in the nidularioid complex and its taxonomic utility (Bromelioideae: Bromeliaceae). – Bot. J. Linn. Soc. 177: 66-77

Noltie HJ. 1999. Notes relating to the flora of Bhutan XXXXVIII. Gramineae I, Tribe Stipeae. – Edinb. J. Bot. 56: 285-291.

Nordenskiöld H. 1951. Cyto-taxonomical studies in the genus Luzula I. Somatic chromosomes and chromosome numbers. – Hereditas 37: 325-355.

Nordenskiöld H. 1956. Cyto-taxonomical studies in the genus Luzula II. – Hereditas 42: 7-73.

Nordenskiöld H. 1961. Tetrad analysis and the course of meiosis in three hybrids of Luzula campestris. – Hereditas 47: 203-238.

Nordenskiöld H. 1964. The effect of X-irradiation on diploid and polyploidy Luzula. – Hereditas 51: 344-374.

Nordenskiöld H. 1969. The genus Luzula in Australia. – Bot. Not. 122: 69-89.

Norlindh T. 1972. Notes on the variation and taxonomy in the Scirpus maritimus complex. – Bot. Not. 125: 397-405.

Norrmann GA, Quarín CL, Killeen TJ. 1994. Chromosome numbers in Bolivian grasses (Gramineae). – Ann. Missouri Bot. Gard. 81: 768-774.

Norstog K. 1963. Apomixis and polyembyony in Hierochloë odorata. – Amer. J. Bot. 50: 815-821.

Novara LJ. 1976. Contribución al conocimiento de las inflorescencias de Juncus y su significación taxonómica. – Kurtziana 9: 41-61.

Novikov VS. 1990a. Conspectus of the system of the genus Juncus L. (Juncaceae). – Bjull. Moskovsk. Obšč. Isp. Prir., Odt. Biol. 95(5): 111-125. [In Russian]

Novikov VS. 1990b. The synopsis of the genus Luzula DC. system (Juncaceae). – Bjull. Moskovsk. Obšč. Isp. Prir., Odt. Biol. 95(6): 63-70. [In Russian]

Núñez O. 1952. Investigaciones cariosistemáticas en las gramíneas Argentinas de la tribu Paniceae. – Rev. Fac. Agron. Univ. Nac. La Plata 28: 229-255.

Núñez O. 1968. El problema de la pálea de Oryza L. – Bol. Soc.Argent. Bol. 12: 57-97.

Nygren A. 1946. The genesis of some Scandinavian species of Calamagrostis. – Hereditas 32: 131-262.

Nygren A. 1949a. Studies on vivipary in the genus Deschampsia. – Hereditas 35: 27-32.

Nygren A. 1949b. Apomictic and sexual reproduction in Calamagrostis purpurea. – Hereditas 35: 285-300.

Nygren A. 1950. Cytological and embryological studies in arctic Poae. – Symb. Bot. Ups. 10(4).

Nygren A. 1954. Investigations on North American Calamagrostis. – Hereditas 40: 377-397.

Nygren A. 1962. Artificial and natural hybridization in European Calamagrostis. – Symb. Bot. Upsal. 10(4): 1-64.

Ogden EL. 1897. Leaf structure of Jouvea and of Eragrostis obtusiflora. – In: Studies on American grasses, U. S. Department of Agriculture, Division of Agrostology, Bull. No. 8, pp. 12-20.

Ogihara Y, Tsunewaki K. 1988. Diversity and evolution of the chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. – Theor. Appl. Gen. 76: 321-332.

Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T et al. 2002. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. – Mol. Genet. Gen. 266: 740-746.

Ohrnberger D. 1999. The bamboos of the world: annotated nomenclature and literature of the species and the higher and lower taxa. – Elsevier, Amsterdam.

Ohwi J. 1936. Cyperaceae Japonicae I. A synopsis of the Caricoideae of Japan, including Saghalien, Kuriles, Iorea and Formosa. – Mem. Coll. Sci. Kyoto Imp. Univ., Ser. B, Biol. 11: 229-530.

Ohwi J. 1941. Stipeae (Gramineae) of Japan, Manchuria, and Northern China. – J. Jap. Bot. 17: 399-405.

Ohwi J. 1942. Gramina Japonica. – Acta Phytotaxon. Geobot. 11: 27-56.

Oja T. 1998. Isoenzyme diversity and phylogenetic affinities in the section Bromus of the genus Bromus (Poaceae). – Biochem. Syst. Ecol. 28: 403-413.

Oliveira JA, Arbones E, Bregu R. 1995. Diversidad genetica en poblaciones naturales de Lolium canariense. – In: Proceedings of 35th Reunion Cientifica de la Sociedad Española para el Estudio de los Pastos, Centro de Investigación y Technología Agrarias & Universidad de la Laguna, Tenerife, Spain, pp. 21-24.

Oliveira RC. 2004. Estudo taxonômico das espécies de Paspalum L., grupo Plicatula (Poaceae-Panicoideae-Paniceae) no Brasil. – Ph.D. diss., University of Campinas, Campinas, São Paulo, Brazil.

Oliveira RC, Rua GH. 2005. A new species of Paspalum (Poaceae, Paniceae) from Central Brazil. – Syst. Bot. 30: 530-532.

Oliveira RC, Valls JFM. 2002. Taxonomia de Paspalum L., grupo Linearia (Gramineae-Paniceae) do Brasil. – Rev. Brasileira Bot. 25: 371-389.

Oliveira RP de. 2001. A tribo Olyreae (Poaceae: Bambusoideae) no estado da Bahia, Brasil. – Master’s thesis, Universidade Estadual de Feira de Santan, Brazil.

Oliveira RP de, Longhi-Wagner HM, Hollowell VC. 2004. A new species of Pariana (Poaceae: Bambusoideae: Olyreae) endemic to the Atlantic moist forest in the State of Bahia, Brazil. – Novon 14: 208-211.

Oliveira RP de, Longhi-Wagner HM, Leite KRB. 2008. A contribuição da anatomia foliar para a taxonomia de Raddia Bertol. (Poaceae: Bambusoideae). – Acta Bot. Brasilica 22: 1-19.

Oliveira RP de, Borba EL, Longhi-Wagner HM. 2008. Morphometrics of herbaceous bamboos of the Raddia brasiliensis complex (Poaceae-Bambusoideae): implications for the taxonomy of the genus and new species from Brazil. – Plant Syst. Evol. 270: 159-182.

Oliveira RP de, Longhi-Wagner HM, Leite KRB, Hollowell VC. 2008. Pariana multiflora (Poaceae, Bambusoideae, Olyreae), a new species from eastern Brazil, with notes on the leaf anatomy of the genus. – Syst. Bot. 33: 262-266.

Oliveira RP de, Borba EL, Longhi-Wagner HM, Pereira ACS, Lambert SM. 2008. Genetic and morphological variability in the Raddia brasiliensis complex (Poaceae: Bambusoideae). – Plant Syst. Evol. 274: 25-35.

Oliveira RP de, Clark LG, Schnadelbach AS, Monteiro SHN, Borba EL, Longhi-Wagner HM, Berg C van den. 2014. A molecular phylogeny of Raddia and its allies within the tribe Olyreae (Poaceae, Bambusoideae) based on noncoding plastid and nuclear spacers. – Molec. Phylogen. Evol. 78: 105-117.

Oliveira Furtado de Sousa L de, Wendt T, Brown GK, Tuthill DE, Evans TM. 2007. Monophyly and phylogenetic relationships in Lymania (Bromeliaceae: Bromelioideae) based on morphology and chloroplast DNA sequences. – Syst. Bot. 32: 264-270.

Olivier J, Otto T, Roddaz M, Antoine P-O, Londoño X, Clark LG. 2009. First macrofossil evidence of a pre-Holocene thorny bamboo cf. Guadua (Poaceae: Bambusoideae: Bambuseae: Guaduinae) in south-western Amazonia (Madre de Dios – Peru). – Rev. Palaeobot. Palynol. 153: 1-7.

Ong HC, Palmer JD. 2006. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus. – BMC Evol. Biol. 6: 55. http://www.biomedcentral.com/1471-2148/6/55

Oostermeijer JGB. 1989. Myrmecochory in Polygala vulgaris L., Luzula campestris (L.) DC., and Viola curtisii Forster in a Dutch dune area. – Oecologia 78: 302-311.

Oriani A, Scatena VL. 2007. Intracellular papillae of Actinocephalus (Eriocaulaceae-Poales) roots and their interaction with fungi: a light and transmission electron microscopy study. – Micron 38: 611-617.

Oriani A, Scatena VL. 2011. Reproductive biology of Abolboda pulchella and A. poarchon (Xyridaceae: Poales). – Ann. Bot. 107: 611-619.

Oriani A, Scatena VL, Sano PT. 2008. Morphological architecture of Actinocephalus (Koern.) Sano (Eriocaulaceae-Poales). – Flora 203: 341-349.

Oriani A, Sano PT, Scatena VL. 2009. Pollination biology of Syngonanthus elegans (Eriocaulaceae-Poales). – Aust. J. Bot. 57: 94-105.

Oriani A, Scatena VL. 2012. Floral anatomy of xyrids (Poales): contributions to their reproductive biology, taxonomy, and phylogeny. – Intern. J. Plant Sci. 173: 767-779.

Oriani A, Scatena VL. 2013. The taxonomic value of floral characters in Rapateaceae (Poales-Monocotyledons). – Plant Syst. Evol. 299: 291-303.

Oriani A, Scatena VL. 2014. Ovule, fruit and seed development in Abolboda (Xyridaceae, Poales): implications for taxonomy and phylogeny. – Bot. J. Linn. Soc. 175: 144-154.

Oross JW, Thomson WW. 1982. The ultrastructure of the salt glands of Cynodon and Distichlis (Poaceae). – Amer. J. Bot. 69: 939-949.

Ortiz-Diaz J-J., Culham A. 2000. Phylogenetic relationships of the genus Sporobolus (Poaceae: Eragrostideae) based on nuclear ribosomal DNA ITS sequences. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, CSIRO, Collingwood, Australia, pp. 184-188.

Ortlieb U, Winkler S. 1977. Ökologische Differenzierungsmuster in der Evolution der Bromeliaceen. – Bot. Jahrb. Syst. 97: 586-602.

Osborne CP. 2008. Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? – J. Ecol. 96: 35-45.

Oteng-Yeboah AA. 1975. Morphology, anatomy and taxonomy of the genus Remirea Aublet (Cyperaceae). – Boissiera 24A: 197-205.

Ovadiahu-Yavin Z. 1969. Cytotaxonomy of the genus Bromus of Palestine. – Israel J. Bot. 18: 195-216.

Owen TP, Thomson WW. 1991. Structure and function of a specialized cell wall in the trichomes of the carnivorous bromeliad Brocchinia reducta. – Can. J. Bot. 69: 1700-1706.

Owen TP, Benzing DH, Thomson WW. 1988. Apoplastic and ultrastructural characterizations of the trichomes from the carnivorous bromeliad Brocchinia reducta. – Can. J. Bot. 66: 941-948.

Padhye MD, Makde KH. 1982. Pollen morphology of Cyperaceae. – J. Palynol. 16: 71-81.

Page JS. 1978. A scanning electron microscope survey of grass pollen. – Kew Bull. 32: 313-319.

Page VM. 1947. Leaf anatomy of Streptochaeta and the relation of this genus to the bamboos. – Bull. Torrey Bot. Club 74: 232-239.

Page VM. 1951. Morphology of the spikelet of Streptochaeta. – Bull. Torrey Bot. Club 78: 22-37.

Paisooksantivatana Y, Pohl RW. 1992. Morphology, anatomy and cytology of the genus Lithachne (Poaceae: Bambusoideae). – Rev. Biol. Trop. 40: 47-72.

Palaci CA, Brown GK, Tuthill DE. 2004. The seeds of Catopsis (Bromeliaceae: Tillandsioideae). – Syst. Bot. 29: 518-527.

Palla E. 1888a. Über die Gattung Scirpus. – Verhandl. Zool.-Bot. Ges. Wien 38, Sitzungsberichte, p. 49.

Palla E. 1888b. Zur Kenntnis der Gattung Scirpus. – Engl. Bot. Jahrb. Syst. 10: 293-301.

Palla E. 1900. Die Gattungen der mitteleuropäischen Scirpoideen. – Allg. Bot. Zeitschr. 6: 199-201, 213-217.

Palla E. 1905. Über den morphologischen Wert der Blüte der Gattungen Lipocarpha und Platylepis. – Ber. Deutsch. Bot. Ges. 23: 316-323.

Palla E. 1908. Über Hemicarpha. – Österr. Bot. Zeitschr. 58: 417-422.

Palmer PG, Tucker AE. 1981. A scanning electron microscopy survey of the epidermis of East African grasses I. – Smithsonian Contr. Bot. 49: 1-84.

Panajiotidis S, Athanasiadis N, Symeonidis L, Karataglis S. 2000. Pollen morphology in relation to the taxonomy and phylogeny of some native Greek Aegilops species. – Grana 39: 126-132.

Parihar SK, Tripathi SN. 1989. Karyotypes of Pennisetum species. – J. Indian Bot. Soc. 68: 295-299.

Parker PF. 1972. Studies in Dactylis II. natural variation, distribution and systematics of the Dactylis smithii Link complex in Madeira and other Atlantic islands. – New Phytol. 71: 371-378.

Parmelee J, Savile BDO. 1954. Life history and relationship of rusts of Sparganium and Acorus. – Mycologia 46: 823-836.

Parodi LR. 1919. Las Chlorídeas de la República Argentina. – Rev. Fac. Agron. Veterin. 2: 233-335.

Parodi LR. 1925. Notas sobre gramíneas de la Flora Argentina. – Physis (Buenos Aires) 8: 59-81.

Parodi LR. 1935. Notas sobre gramíneas Argentinas. – Physis (Buenos Aires) 11: 497-498.

Parodi LR. 1943. Gramíneas austroamericanas nuevas o críticas II. – Not. Mus. La Plata, Bot. 8(40): 75-100.

Parodi LR. 1944. Revisión de las gramíneas australes americanas del género Piptochaetium. – Rev. Mus. La Plata, Secc. Bot. 6: 213-310.

Parodi LR. 1945. Una nueva especie de Gramínea del género Chloris y sus relaciones con Gymnopogon. – Rev. Argent. Agron. 12: 45-50.

Parodi LR. 1946. The Andean species of the genus Stipa allied to Stipa obtusa. – Blumea 3: 63-70.

Parodi LR. 1947. Las especies de gramineas del género Nassella de la Argentina y Chile. – Darwiniana 7: 369-395.

Parodi LR. 1953. Gramíneas argentinas nuevas o críticas II. – Rev. Argent. Agron. 20: 11-30.

Parodi LR. 1960. Las especies de Stipa del subgénero Pappostipa de la Argentina y Chile. – Rev. Argent. Agron. 27: 65-106.

Parodi LR. 1961. Gramíneas argentinas nuevas o críticas III. – Rev. Argent. Agron. 28: 100-125.

Parodi LR, Nicora EG. 1977. Novedades en el genero Hordeum (Gramineae). – Hickenia 1: 55-62.

Parolly G, Scholz H. 2004. Oreopoa gen. novum, two other new grasses and further remarkable records from Turkey. – Willdenowia 34: 145-158.

Parra LR. 2000. Redelimitação e revisão de Syngonanthus sect. Eulepis (Bong. ex Körn.) Ruhland – Ericaulaceae. – Ph.D. diss., Universidade de São Paulo, São Paulo.

Parra LR, Giulietti AM. 1997. Nomenclatural and taxonomic changes in Brazilian Syngonanthus (Eriocaulaceae). – Willdenowia 27: 227-233.

Parra LR, Giulietti AM, Andrade MJG de, Berg C van den. 2010. Reestablishment and new circumscription of Comanthera (Eriocaulaceae). – Taxon 59: 1135-1146.

Pate JS, Delfs JC. 1999. Anatomical features of Restionaceae and allied families. – In: Meney KA, Pate JS (eds), Australian rushes. Biology, identification and conservation of Restionaceae and allied families, University of Western Australia Press, Nedlands, Western Australia, pp. 57-70.

Pate JS, Meney KA, Dixon KW. 1991. Contrasting growth and morphological characteristics of fire-sensitive (obligate seeder) and fire-resistant (resprouter) species of Restionaceae (S. Hemisphere restiads) from south-western Australia. – Aust. J. Bot. 39: 505-525.

Patel CM, Patel DS. 1964. The morphological and embryological studies in Eriocaulon cinereum R. Br. – J. Gujarat Univ. 7: 58-70.

Patel CM, Shah CK. 1960. The embryology of Kyllingia triceps Rottb. – Vidya. J. Gujarat Univ. 3: 61-74.

Paterson A, Bowers JE, Chapman BA. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. – Proc. Natl. Acad. Sci. U.S.A. 101: 9903-9908.

Paunero E. 1953. Las especies españolas del género Anthoxanthum L. – An. Inst. Bot. AJ Cavanilles 12: 401-442.

Paunero E. 1963. El género Ctenopsis De Not. en la flora española. – An. Inst. Bot. Cavanilles 21: 357-386.

Paunero E. 1964. Notos sobre gramíneas 2. Consideraciones acerca de las especies españolas del genera Vulpia Gmel. – An. Inst. Bot. Cavanilles 22: 83-114.

Pavlick LE. 1995. Bromus L. of North America. – Victoria.

Pax F. 1886. Beiträge zur Morphologie und Systematik der Cyperaceen. – Engl. Bot. Jahrb. Syst. 7: 287-318.

Pax F. 1887. Cyperaceae (Riedgräser). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien II(2), W. Engelmann, Leipzig, pp. 98-126.

Pée-Laby E. 1898. Étude anatomique de la feuille des Graminées de la France. – Ann. Sci. Nat., Bot., sér. 8, 8: 227-346.

Peichoto MC, Arbo MM, Rúgolo de Agrasar ZE, Neffa VS. 2007. Identity of Schizachyrium sulcatum and S. brevifolium (Poaceae: Andropogoneae). – Brittonia 59: 65-78.

Peichoto MC, Mazza SM, Neffa VGS. 2008. Morphometric analysis of Schizachyrium condensatum (Poaceae) and related species. – Plant Syst. Evol. 276: 177-189.

Peñailillo P. 1996. Anatherostipa, un Nuevo género de Poaceae (Stipeae). – Gayana, Bot. 53: 277-284.

Peñailillo P. 2002. El género Jarava Ruiz et Pav. (Stipeae-Poaceae): delimitacion y nuevas combinaciones. – Gayana Bot. 59: 27-34.

Peñailillo P. 2005. Los géneros nativos de la tribu Stipeae (Poaceae, Pooideae) en Chile. – Teoria 14: 125-140.

Peng S, Yang H-Q, Li D-Z. 2008. Highly heterogeneous generic delimitation within the temperate bamboo clade (Poaceae: Bambusoideae): evidence from GBSSI and ITS sequences. – Taxon 57: 799-810.

Peng Y-Y, Wei Y-M, Baum BR, Jiang Q-T, Lan X-J, Dai S-F, Zheng Y-L. 2010. Phylogenetic investigation of Avena diploid species and the maternal genome donor of Avena polyploids. – Taxon 59: 1472-1482.

Pensiero JF. 1999. Las especies sudamericanas del género Setaria (Poaceae, Paniceae). – Darwiniana 37: 37-151.

Pénzes A. 1936. Notes on Bromus. – Bot. Közlem. 33: 98-138.

Perak JT. 1943. Numero de cromosomas de algunas especies de Hordeum espontáneas en Argentina. – An. Inst. Fitotec. S. Catalina 3: 7-11.

Pereira MP, Pérez GE, Balbuena ES. 2007. European sweet vernal grasses (Anthoxanthum: Poaceae, Pooideae, Aveneae): a morphometric taxonomical approach. – Syst. Bot. 32: 43-59.

Perreta MG, Vegetti AC. 2002. The inflorescence of Cyperus giganteus Vahl (Cyperaceae). – Feddes Repert. 113: 256-260.

Perreta MG, Vegetti AC. 2006. Structure and development of the branching system in Melica sarmentosa Nees (Poaceae). – Feddes Repert. 117: 264-271.

Perreta MG, Tivano JC, Vegetti AC. 2000. Forma de crecimiento en Leptochloa chloridiformis (Poaceae). – Darwiniana 38: 219-226.

Perreta MG, Ramos JC, Vegetti AC. 2009. Development and structure of the grass inflorescence. – Bot. Rev. 75: 377-396.

Petersen G, Seberg O. 1997. Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. – Mol. Phylogen. Evol. 7: 217-230.

Petersen G, Seberg O. 2003. Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. – Syst. Bot. 28: 293-306.

Petersen G, Seberg O, Baden C. 2004. A phylogenetic analysis of the genus Psathyrostachys (Poaceae) based on one nuclear gene, three plastid genes, and morphology. – Plant Syst. Evol. 249: 99-110.

Petersen G, Seberg O, Aagesen L, Frederiksen S. 2004. An empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae). – Mol. Phylogen. Evol. 30: 733-742.

Petersen G, Seberg O, Hyde M, Berthelsen K. 2006. Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). – Mol. Phylogen. Evol. 39: 70-82.

Petersen G, Aagesen L, Seberg O, Larsen ID. 2011. When is enough, enough in phylogenetics? A case in point from Hordeum (Poaceae). – Cladistics 27: 428-446.

Petersen G, Seberg O, Salomon B. 2011. The origin of the H, St, W, and Y genomes in allotetraploid species of Elymus L. and Stenostachys Turcz. (Poaceae: Triticeae). – Plant Syst. Evol. 291: 197-210.

Peterson PM. 1989. Lemma micromorphology in the annual Muhlenbergia (Poaceae). – Southw. Natur. 34: 61-71.

Peterson PM. 1997. A classification of and key to the supraspecific taxa in Eleocharis (Cyperaceae). – Taxon 46: 433-449.

Peterson PM. 2000. Systematics of the Muhlenbergiinae (Chloridoideae: Eragrostideae). – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 195-212.

Peterson PM, Annable CR. 1990. A revision of Blepharoneuron (Poaceae: Eragrostideae). – Syst. Bot. 15: 515-525.

Peterson PM, Rieseberg LH. 1987. Flavonoids of the annual Muhlenbergia (Poaceae). – Biochem. Syst. Ecol. 15: 647-652.

Peterson PM, Vega IS. 2007. Eragrostis (Poaceae: Chloridoideae: Eragrostideae: Eragrostidinae) of Peru. – Ann. Missouri Bot. Gard. 94: 745-790.

Peterson PM, Annable CR, Franceschi VR. 1989. Comparative leaf anatomy of the annual Muhlenbergia (Poaceae). – Nord. J. Bot. 8: 575-583.

Peterson PM, Webster RD, Valdés-Reyna J. 1995. Subtribal classification of the New World Eragrostideae (Poaceae: Chloridoideae). – Sida 16: 529-544.

Peterson PM, Webster RD, Valdés-Reyna J. 1997. Genera of New World Eragrostideae (Poaceae; Chloridoideae). – Smithsonian Contr. Bot. 87: 1-50.

Peterson PM, Soreng RJ, Davidse G. 1998. Proposal to conserve the name Elionurus (Poaceae, Andropogoneae) with that spelling. – Taxon 47: 737-738.

Peterson PM, Soreng RJ, Davidse G, Filgueiras TS, Zuloaga FO, Judziewicz EJ. 2001. Catalogue of New World grasses (Poaceae) II. Subfamily Chloridoideae. – Contr. U. S. Natl. Herb. 41: 1-255.

Peterson PM, Columbus JT, Pennington SJ. 2007 [2008]. Classification and biogeography of New World grasses: Chloridoideae. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 580-594.

Peterson PM, Romaschenko K, Johnson G. 2010a. A phylogeny and classification of the Muhlenbergiinae (Poaceae: Chloridoideae: Cynodonteae) based on plastid and nuclear DNA sequences. – Amer. J. Bot. 97: 1532-1554.

Peterson PM, Romaschenko K, Johnson G. 2010b. A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetics trees. – Mol. Phylogenet. Evol. 55: 580-598.

Peterson PM, Romaschenko K, Barker NP, Linder HP. 2011. Centropodieae and Ellisochloa, a new tribe and genus in Chloridoideae (Poaceae). – Taxon 60: 1113-1122.

Peterson PM, Romaschenko K, Snow N, Johnson G. 2012. A molecular phylogeny and classification of Leptochloa (Poaceae: Chloridoideae: Chlorideae) sensu lato and related genera. – Ann. Bot. 109: 1317-1330.

Peterson PM, Romaschenko K, Arrieta YH. 2014. A molecular phylogeny and classification of the Cteniinae, Farragininae, Gouiniinae, Gymnopogoninae, Perotidinae, and Trichoneurinae (Poaceae: Chloridoideae: Cynodonteae). – Taxon 63: 275-286.

Peterson PM, Romaschenko K, Arrieta YH, Saarela JM. 2015. A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). – Taxon 63: 1212-1243.

Petrova LR, Tsvelev NN. 1974. On the evolution of inflorescence in Poaceae: on the nature and functions of lodicules. – Bot. Žurn. 59: 1713-1720. [In Russian with English summary]

Petrova OA. 1975. On the main chromosome numbers in the genus Milium. – Bot. Žurn. 60: 393-394. [In Russian]

Pfeiffer HH. 1920. Über die Stellung der Gattung Caustis R. Br. im natürlichen System 2. – Ber. Deutsche Bot. Ges. 38: 207-216.

Pfeiffer HH. 1921a. Revision der Gattung Ficinia Schrad. – Bremen.

Pfeiffer HH. 1921b. Beiträge zur Morphologie und Systematik der Gattungen Lagenocarpus und Cryptangium. – Ber. Deutsch. Bot. Ges. 39: 125-134.

Pfeiffer HH. 1921c. Conspectus Cyperacearum in America meridionali nascentium I. Genus Heleocharis R. Br. – Clavis analytica. – Herbarium 57: 65-68.

Pfeiffer HH. 1922. De novis et criticis speciebus generum saepe ignotorum Scleriearum. – Feddes Repert. 18: 375-385.

Pfeiffer HH. 1925. Vorarbeiten zur systematischen Monographie der Cyperaceae-Mapanieae. – Bot. Arch. 12: 446-472.

Pfeiffer L. 1927. Untersuchungen zur vergleichenden Anatomie der Cyperaceen 1. Anatomie der Blätter. – Beih. Bot. Centralbl. 44, Abt. 1: 90-176.

Pfeiffer HH. 1930. Decas Cyperacearum criticarum vel emendatarum III. – Feddes Repert. 29: 171-186.

Pfeiffer HH. 1942. Polarisationsmikroskopische Befunde an den Pollentetraden einiger Cyperaceen-Arten. – Veröff. Deutsch. Kolon. Ûbersee-Mus. 3: 238-243.

Philcox D. 1992a. Notes on South American Bromeliaceae. – Kew Bull. 47: 261-276.

Philcox D. 1992b. Notes on South American Bromeliaceae: corrections. – Kew Bull. 47: 544.

Philipson MN. 1977. Haustorial synergids in Cortaderia (Gramineae). – New Zealand J. Bot. 15: 777-778.

Philipson MN, Connor HE. 1984. Haustorial synergids in danthonioid grasses. – Bot. Gaz. 145: 78-82.

Philipson WR. 1985. Is the grass gynoecium monocarpellary? – Amer. J. Bot. 72: 1954-1961.

Phillips SM. 1973. The genus Dinebra Jacq. (Gramineae). – Kew Bull. 28: 411-418.

Phillips SM. 1974. Studies in the Gramineae XXV. – Kew Bull. 29: 267-270.

Phillips SM. 1982. A numerical analysis of the Eragrostideae (Gramineae). – Kew Bull. 37: 133-162.

Phillips SM. 1986a. Agrostis kilimandscharica (Gramineae) and its allies in eastern Africa. – Kew Bull. 41: 131-140.

Phillips SM. 1986b. Four new grasses from North East tropical Africa. – Kew Bull. 41: 1027-1030.

Phillips SM. 1987. Notes on Eragrostis (Gramineae) from northeast tropical Africa. – Kew Bull. 42: 929-931.

Phillips SM. 1989. The genus Poa (Gramineae) in Ethiopia. – Kew Bull. 44: 127-137.

Phillips SM. 1991a. Four new species of Eragrostis (Gramineae) from northeast tropical Africa. – Kew Bull. 46: 111-117.

Phillips SM. 1991b. Some new species of Gramineae from Ethiopia. – Kew Bull. 46: 535-537.

Phillips SM. 1994a. Notes on some Eriocaulon species from Ceylon. – Kew Bull. 49: 287-303.

Phillips SM. 1994b. Two new species of Hyparrhenia (Gramineae) from Ethiopia. – Kew Bull. 49: 537-542.

Phillips SM. 1995. A new species of Eriocaulon (Eriocaulaceae) from Ceylon, with notes on some other Ceylonese species. – Kew Bull. 50: 733-738.

Phillips SM. 1996a. Eriocaulon schimperi (Eriocaulaceae) and some related species in eastern Africa. – Kew Bull. 51: 333-342.

Phillips SM. 1996b. Some new African taxa of Eriocaulon, with notes on their systematic position. – Kew Bull. 51: 625-647.

Phillips SM. 1997a. Eriocaulaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-41.

Phillips SM. 1997b. The Eriocaulon transvaalicum complex and some other species of Eriocaulon from Africa. – Kew Bull. 52: 51-72.

Phillips SM. 1997c. The genus Syngonanthus (Eriocaulaceae) in Eastern and Southern Africa. – Kew Bull. 52: 73-89.

Phillips SM. 1998. Two new species of Eriocaulon from West Africa. – Kew Bull. 53: 943-948.

Phillips SM. 2000. Two more new species of Eriocaulon from West Africa. – Kew Bull. 55: 195-202.

Phillips SM. 2002. The genus Tripogon (Poaceae) in China. – Kew Bull. 57: 911-924.

Phipps JB. 1967a. Studies in the Arundinelleae (Gramineae) VI. Development of generic concepts. – Bol. Soc. Broter., Ser. II, 41: 27-55.

Phipps JB. 1967b. Studies in the Arundinelleae (Gramineae) VIII. The phylogeny – a hypothesis. – Kirkia 15: 477-517.

Piech K. 1924. Zur Entwicklung der Pollenkörner bei Scirpus lacustris L. – Bull. Acad. Polon. Sci. Lettr., Sér. B, 1924: 113-123.

Piech K. 1928a. Über die Entstehung der generativen Zelle bei Scirpus uniglumis Link durch “freie Zellbildung”. – Planta 6: 96-117.

Piech K. 1928b. Zytologische Studien an der Gattung Scirpus. – Bull. Intern. Acad. Polon. Sci. Lettres 1928: 1-43.

Pienaar R de V. 1953. Cytological studies in some South African species of the genus Eragrostis Host. – Ph.D. diss., University of Witwatersrand, Johannesburg, Republic of South Africa.

Pienaar R de V, Littlejohn GM, Sears ER. 1988. Genomic relationships in Thinopyrum. – South Afr. J. Bot. 54: 541-550.

Piérart P. 1951. Les espèces du genre Scleria Berg. du Congo Belge et Ruanda Urundi. – Lejeunea Mém. 13: 1-70.

Pierce S. 2007 [2008]. The jewelled armor of Tillandsia – multifaceted or elongated trichomes provide photoprotection. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 44-52.

Pierce S, Maxwell K, Griffiths H, Winter K. 2001. Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. – Amer. J. Bot. 88: 1371-1389.

Pignotti L, Mariotti LM. 2004. Micromorphology of Scirpus (Cyperaceae) and related genera in South-West Europe. – Bot. J. Linn. Soc. 145: 45-58.

Pilger R. 1906. Gramineae andinae II. – Engl. Bot. Jahrb.Syst. 37: 373-381.

Pilger R. 1920. Gramineae austro-americanae imprimis Weberbauerianae V. – Engl. Bot. Jahrb. Syst. 56: 23-30.

Pilger R. 1930a. Mayacaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Augl., Bd. 15a, W. Engelmann, Leipzig, pp. 33-35.

Pilger R. 1930b. Thurniaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 15a, W. Engelmann, Leipzig, pp. 58-59.

Pilger R. 1930c. Rapateaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 15a, W. Engelmann, Leipzig, pp. 59-65.

Pilger R. 1940. Gramineae III. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 14e, W. Engelmann, Leipzig.

Pilger R (†), Potztal E. 1954a. Beiträge zur Flora von Südwestafrika I. Gramineae. – Willdenowia 1: 199-274.

Pilger R (†), Potztal E. 1954b. Das System der Gramineae unter Ausschluß der Bambusoideae. – Bot. Jahrb. Syst. 76: 281-384.

Pilger R (†), Potztal E. 1956. Gramineae II. Nachtrag zu Band 14e, Gramineae III. – In: Engler A (†), Harms H (†), Mattfeld J (†), Melchior H, Werdermann E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 14d, Duncker & Humblot, Berlin.

Pilger R. 1954. Das System der Gramineae. – Bot. Jahrb. Syst. 76: 281-384.

Pillans NS. 1928. The African genera and species of Restionaceae. – Trans. Roy. Soc. South Africa 16: 207-439.

Pillay M. 1993. Chloroplast genome organization of bromegrass, Bromus inermis Leyss. – Theor. Appl. Gen. 86: 281-287.

Pillay M, Hilu KW. 1990. Chloroplast DNA variation in diploid and polyploidy species of Bromus (Poaceae) subgenera Festucaria and Ceratochloa. – Theor. Appl. Gen. 80: 326-332.

Pillay M, Hilu KW. 1995. Chloroplast-DNA restriction site analysis in the genus Bromus (Poaceae). – Amer. J. Bot. 82: 239-249.

Pimentel M, Estévez G, Sahuquillo E. 2007. European sweet vernal grasses (Anthoxanthum, Poaceae; Pooideae; Aveneae): a morphometric taxonomical approach. – Syst. Bot. 32: 43-59.

Pimentel M, Sahuquillo E, Catalán P. 2007. Genetic diversity and spatial correlation patterns unravel the biogeographic history of the European sweet vernal grasses (Anthoxanthum L., Poaceae). – Mol. Phylogen. Evol. 44: 667-684.

Pimentel M, Sahuquillo E, Torrecilla Z, Popp M, Catalán P, Brochmann C. 2013. Hybridization and long-distance colonization at different time scales: towards resolution of long-term controversies in the sweet vernal grasses (Anthoxanthum). – Ann. Bot. 112: 1015-1030.

Piper CV. 1906. North American species of Festuca. – Contr. U.S. Natl. Herb. 10: 1-48.

Piperno D, Pearsall DM. 1998. The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. – Smithsonian Contr. Bot. 85: 1-40.

Piperno D, Sues H-D. 2005. Dinosaurs dined on grass. – Science 310: 1126-1128.

Pirie MD, Humphreys AM, Galley C, Barker NP, Verboom GA, Orlovich D, Draffin SJ, Lloyd K, Baeza CM, Negritto M, Ruiz E, Sanchez JHC, Reimer E, Linder HP. 2008. A novel supermatrix approach improves resolution of phylogenetic relationships in a comprehensive sample of danthonioid grasses. – Mol. Phylogen. Evol. 48: 1106-1119.

Pirie MD, Humphreys AM, Barker NP, Linder HP. 2009. Reticulation, data combination, and inferring evolutionary history: an example from Danthonioideae (Poaceae). – Syst. Biol. 58: 612-628.

Pirie MD, Humphreys AM, Antonelli A, Galley C, Linder HP. 2012. Model uncertainty in ancestral area reconstruction: a parsimonious solution? – Taxon 61: 652-664.

Pittendrigh CS. 1948. The bromeliad-Anopheles-malaria complex in Trinidad I. The bromeliad flora. – Evolution 2: 58-89.

Pleines T, Blattner FR. 2008. Phylogeographic implications of an AFLP phylogeny of the American diploid Hordeum species (Poaceae: Triticeae). – Taxon 57: 875-881.

Plowman AB. 1906. The comparative anatomy and phylogeny of the Cyperaceae. – Ann. Bot. 20: 1-30.

Plunkett GM. 1994. A molecular-phylogenetic approach to the “family-pair dilemma” in Apiales and Cyperales. – Ph.D. diss., Washington State University, Pullman, Washington.

Plunkett GM, Soltis DE, Soltis PS, Brooks RE. 1995. Phylogenetic relationships between Juncaceae and Cyperaceae: insights from rbcL sequence data. – Amer. J. Bot. 82: 520-525.

Poddubnaya-Arnoldi VA. 1978. Cytoembryological characteristics of the Poaceae. – Bull. Main Bot. Gard. 109: 57-60. [In Russian]

Pohl RW. 1969. Muhlenbergia, subgenus Muhlenbergia (Gramineae) in North America. – Amer. Midl. Natur. 82: 512-542.

Pohl RW. 1972. New taxa of Hierochloë, Pariana and Triplasis from Costa Rica. – Iowa State J. Res. 47: 71-78.

Pohl RW. 1980a. On the flowering of bamboos in Central America. – Brenesia 19: 465-475.

Pohl RW. 1980b. Gramineae. – In: Burger W (ed), Flora Costaricensis, Fieldiana Bot. N, ser. 4: 1-608.

Pohl RW, Clark LG. 1992. New chromosome counts for Chusquea and Aulonemia (Poaceae: bambusoideae). – Amer. J. Bot. 79: 478-480.

Pohl RW, Davidse G. 1971. Chromosome numbers of Costa Rican grasses. – Brittonia 23: 293-324.

Pohl RW, Lersten NR. 1975. Stem aerenchyma as a character separating Hymenachne and Sacciolepis (Gramineae: Panicoideae). – Brittonia 27: 223-227.

Poilecot P. 1999. Les Poaceae du Niger. Description, illustration, écologie, utilisations. – Boissiera 56.

Poinar GO Jr. 2004. Programinis burmitis gen. et sp. nov., and P. laminatus sp. nov., early Cretaceous grass-like monocots in Burmese amber. – Aust. Syst. Bot. 17: 497-504.

Poinar GO Jr. 2011. Silica bodies in the Early Cretaceous Programinis laminatus (Angiospermae: Poales). – Palaeodivers. 4: 1-6.

Poinar GO Jr, Columbus JT. 1992. Adhesive grass spikelet with mammalian hair in Dominican amber: first fossil evidence of epizoochory. – Experientia 48: 906-908.

Pollock CJ, Cairns AJ. 1991. Fructan metabolism in grasses and cereals. – Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 77-101.

Porembski S, Barthlott W. 1995. On the occurrence of a velamen radicum in Cyperaceae and Velloziaceae. – Nord. J. Bot. 15: 625-629.

Portal R. 1995. Bromus de France. – Vals-près-Le Puy.

Portal R. 2004. Quelques Bromus sur la sellette. – Bull. Assoc. Bot. Digitalis 3: 18-30.

Potztal E. 1951. Anatomisch-systematische Untersuchungen an den Gattungen Arrhenatherum und Helictotrichon. – Bot. Jahrb. Syst. 75: 321-332.

Potztal E. 1952. Über die Blattanatomie der Isachneae. – Bot. Jahrb. Syst. 75: 551-569.

Potztal E. 1953. Über die Anatomie von Micraira subulifolia F. Muell. – Bot. Jahrb. Syst. 76: 134-138.

Potztal E. 1954. Die Anatomie der Gräser und ihre Bedeutung für die Systematik. – Ber. Deutsch. Bot. Ges. 66: (19)-(21).

Potztal E. 1957. Beschreibung einiger systematischer Gruppen der Gräser. – Willdenowia 1: 771-772.

Potztal E. 1959. Zwei neue Gräser aus dem südlichen Chile. – Willdenowia 2: 166-169.

Poulsen VA. 1888. Anatomiske Studier over Eriocaulaceerne. – Vidensk. Medd. Danske Naturhist. Foren. 1888: 221-385.

Pozzobon MT, Machado ACC, Vaio M, Valls JFM, Peñaloza APS, Santos S dos, Côrtes AL, Rua GH. 2008. Cytogenetic studies in Paspalum (Gramineae) reveal new diploid species and accessions. – Ciência Rural 38: 1292-1299.

Prakash N. 1969. The floral development and embryology of Centrolepis fascicularis. – Phytomorphology 19: 285-291.

Prasad V, Strömberg CAE, Alimohammadian H, Sahni H. 2005. Dinosaur coprolites and the early evolution of grasses and grazers. – Science 310: 1177-1180.

Prat H. 1932. L’épiderme des Graminées: étude anatomique et systématique. – Ann. Sci. Nat. Bot., sér. 10, 14: 117-324.

Prat H. 1936. La systématique des Graminées. – Ann. Sci. Nat., Bot., sér. 10, 18: 165-258.

Prat H. 1960. Vers une classification naturelle des Graminées. – Bull. Soc. Bot. France 107: 32-79.

Prendergast HDV, Hattersley PW. 1987. Australian C4 grasses (Poaceae): leaf blade anatomical features in relation to C4 acid decarboxylation types. – Aust. J. Bot. 35: 355-382.

Prendergast HDV, Hattersley PW, Stone NE. 1987. New structural/biochemical associations in leaf blades of C4 grasses (Poaceae). – Aust. J. Plant Phys. 14: 403-420.

Preston JC, Kellogg EA. 2006. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). – Genetics 174: 421-437.

Preston JC, Kellogg EA. 2008. Discrete developmental roles for temperate cereal grass VERNALIZATION1/FRUITFULL-like genes in flowering competency and the transition to flowering. – Plant Physiol. 146: 265-276.

Preston JC, Christensen A, Malcomber ST, Kellogg EA. 2009. MADS-box gene expression and implications for developmental origins of the grass spikelet. – Amer. J. Bot. 96: 1419-1429.

Pritchard AJ. 1970. Meiosis and embryo sac development in Urochloa mosambicensis and three Paspalum species. – Aust. J. Agric. Res. 21: 649-652.

Probatova NS. 1973. Poacearum species novae et rariores ex Oriente extreme. – Nov. Syst. Plant. Vasc. 10: 68-79. [In Russian]

Probatova NS. 1974. De genere novo Arctopoa (Griseb.) Probat. (Poaceae). – Novost. Sist. Vyssh. Rast. 11: 44-54. [In Russian]

Probatova NS, Sokolovskaya AP. 1980. A karyotaxonomic study of the grasses of the Altai Mts. – Bot. Žurn. 65: 509-520. [In Russian]

Probatova NS, Yurtzev BA. 1984. New taxa of the family Poaceae from the north-east of the USSR. – Bot. Žurn. 69: 688-692. [In Russian]

Proença SL, Sajo M das G. 2008. Rhizome and root anatomy of 14 species of Bromeliaceae. – Rodriguésia 59: 113-128.

Prychid CJ, Bruhl JJ. 2013. Floral ontogeny and gene protein localization rules out euanthial interpretation of reproductive units in Lepironia (Cyperaceae, Mapanioideae, Chrysitricheae). – Ann. Bot. 112: 161-177.

Punt W. 1975. The Northwest European pollen flora 5. Sparganiaceae and Typhaceae. – Rev. Palaeobot. Palynol. 19: 75-88.

Quarín CL. 1977. Recuentos cromosómicos en gramíneas de Argentina subtropical. – Hickenia 1: 73-78.

Quarín CL, Burson BL. 1983. Cytogenetic relations among Paspalum notatum var. saurae, P. pumilum, P. indecorum, and P. vaginatum. – Bot. Gaz. 144: 433-438.

Quezada IM, Gianoli E. 2011. Crassulacean acid metabolism photosynthesis in Bromeliaceae: an evolutionary key innovation. – Bot. J. Linn. Soc. 104: 480-486.

Quintanar A, Catalán P, Castroviejo S. 2006. Adscription of Parafestuca albida (Lowe) E. B. Alexeev to Koeleria Pers. – Taxon 55: 664-670.

Quintanar A, Castroviejo S, Catalán P. 2007. Phylogeny of the tribe Aveneae (Pooideae, Poaceae) inferred from plastid trnT-F and nuclear ITS sequences. – Amer. J. Bot. 94: 1554-1569.

Quintanar A, Catalán P, Castroviejo S. 2010. A review of the systematics and phylogenetics of the Koeleriinae (Poaceae: Poeae). – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 539-556.

Raab TK, Lipson DA, Monson RK. 1999. Soil amino acid utilization among species of Cyperaceae: plant and soil processes. – Ecology 80: 2408-2419.

Radhakrishnaiah M, Nageshwar G, Narayana LL. 1984. Chemotaxonomy of Pandanus and Typha. – Curr. Sci. 53: 759-760.

Ragonese AM, Guaglianone ER, Dizeo de Strittmatter C. 1984. Desarrollo del pericarpio con cuerpos de silice de dos especies de Rhynchospora Vahl (Cyperaceae). – Darwiniana 25: 27-41.

Rajhathy T, Morrison JM. 1961. Cytogenetic studies in the genus Hordeum V. H. jubatum and the new world species. – Can. J. Genet. Cytol. 3: 378-390.

Ramadan T. 2001. Dynamics of salt secretion by Sporobolus spicatus (Vahl) Kunth from sites of differing salinity. – Ann. Bot. 87: 259-266.

Ramaswamy SN. 1975. Embryology and systematic position of Eriocaulaceae. – Ph.D. diss., University of Mysore, India.

Ramaswamy SN, Arekal GD. 1982. Embryology of Eriocaulon xeranthemum Mart. (Eriocaulaceae). – Acta Bot. Neerl. 31: 41-54.

Ramaswamy SN, Raju MVS. 1982. The embryo sac of Xyris schoenoides Mart. (Xyridaceae). – Bull. Torrey Bot. Club 109: 325-329.

Ramaswamy SN, Arekal GD, Gaju MVS. 1983. Developmental anatomy of seed coat and pericarp in two species of Eriocaulon L. (Eriocaulaceae). – Bull. Torrey Bot. Club 110: 287-291.

Ramírez I. 1991. Systematic revision of Neoregelia subgenus Hylaeaicum (Bromeliaceae). – M.Sc. thesis, St. Louis, Missouri.

Ramírez IM, Brown GK. 2001. The origin of the low chromosome number in Cryptanthus (Bromeliaceae). – Syst. Bot. 26: 722-726.

Ramos COC, Borba EL, Funch LS. 2005. Pollination in Brazilian Syngonanthus (Eriocaulaceae) species: evidence for entomophily instead of anemophily. – Ann. Bot. 96: 387-397.

Randall JL, Hilu KW. 1986. Biosystematic studies of North American Trisetum spicatum (Poaceae). – Syst. Bot. 11: 567-578.

Ranker TA, Soltis DE, Soltis PS, Gilmartin AJ. 1990. Subfamilial phylogenetic relationships of the Bromeliaceae: evidence from chloroplast DNA restriction site variation. – Syst. Bot. 15: 425-434.

Rao PN, Nirmala A. 1990. Cytogenetic variation and fertility in Coix aquatica (Maydeae). – Proc. Indian Sci. Congress Assoc. 77: 135.

Rao TA, Naidu TRB. 1981. On the epidermal fibrelike sclereids in the two sibling genera of the Poaceae. – Curr. Sci. 50: 958-959.

Raole VM, Desai RJ. 2008. Desmostachya pingalaiae sp. nov. from Gujarat, India. – Nord. J. Bot. 26: 196-198.

Rath SP, Patnaik SN. 1974. A note on the cytotaxonomy of East Indian species of the genus Fuirena Rottb. – Bot. Mag. (Tokyo) 87: 333-338.

Rath SP, Patnaik SN. 1978. Cytological studies in Cyperaceae with special reference to its taxonomy II. – Cytologia 43: 643-653.

Rath SP, Mahaptra J, Patnaik SN. 1973. Cytotaxonomic studies in the genus Cyperus L. (s.l.). – Proc. Indian Sci. Congr. Assoc. 60: 314-316.

Rauh W. 1981. Bromelien. 2. Aufl. – Eugen Ulmer, Stuttgart.

Rauh W. 1990. Bromelien. Tillandsien und andere kulturwürdige Bromelien. 3. Aufl. – Eugen Ulmer, Stuttgart.

Ravi N, Mohanan N, Shaju T, Kiran Raj MS, Rajesh R. 1998. Three new species of Ischaemum L. (Poaceae) from Kerala, India. – Rheedea 8: 149-158.

Ravi N, Mohanan N, Kiran Raj MS, Shaju T, Rajesh R. 2000. Two new species of Poaceae from Kerala, India. Rheedea 10: 91-98.

Ravi N, Mohanan N, Shaju T, Kiran Raj MS, Rajesh R. 2001. Three more new species of Ischaemum L. (Poaceae) from Kerala, India. – Bot. Bull. Acad. Sin. 42: 223-230.

Raymond M. 1949. Notes sur le genre Carex II. La valeur taxonomique de C. arctogena. – Contr. Inst. Bot. Univ. Montréal 64: 37-41.

Raymond M. 1959. Carices Indo-chinenses nec non Siamenses. – Mém. Jard. Bot. Montréal 53: 1-125.

Raymond M. 1966. Studies in the flora of Thailand 39. Cyperaceae. – Dansk Bot. Ark. 23: 311-374.

Raynal J. 1963. Notes cypérologiques 1. Afrotrilepis, nouveau genre africain. – Adansonia, sér. II, 3: 250-265.

Raynal J. 1964. Notes cypérologiques 2. Deux nouveaux Scleria ouest-africains. – Adansonia, sér. II, 4: 148-155.

Raynal J. 1967a. Notes cypérologiques 7. Sur quelques Lipocarpha africains. – Adansonia, sér. II, 7: 81-87.

Raynal J. 1967b. Notes cypérologiques 8. Le genre Actinoschoenus Benth. – Adansonia, sér. II, 7: 89-95.

Raynal J. 1968a. Notes cypérologiques 11. Sur quelques Scirpus et Ascolepis de l’ancien monde. – Adansonia, sér. II, 8: 85-104.

Raynal J. 1968b. Notes cypérologiques 14. Mapania rhynchocarpa, nouvelle espèce ouest-africaine. – Adansonia, sér. II, 8: 417-422.

Raynal j. 1968c. Notes cypérologiques 15. Les Hypolytrummapanioides’ d’Afrique équatoriale. – Adansonia, sér. II, 8: 423-430.

Raynal J. 1971a. Répartition géographique des Rhynchospora africains et malgaches. – Mitt. Bot. Staatssamml. München 10: 135-148.

Raynal J. 1971b. Quelques notes morphologiques sur les Cyperacées. – Mitt. Bot. Staatssamml. München 10: 589-603.

Raynal J. 1972. Répartition et évolution des modes de photosynthèse chez les Cypéracées. – Compt. Rend. Acad. Sci. Paris, sér. D, 275: 2231-2234.

Raynal J. 1973. Notes cypérologiques 19. Contribution à la classification de la sous-famille des Cyperoideae. – Adansonia, sér. II, 13: 145-171.

Raynal J. 1974. Notes cypérologiques 22. Les Costularia de Nouvelle-Calédonie. – Adansonia, sér. II, 14: 337-377.

Raynal J. 1976a. Notes cypérologiques 25. Le genre Schoenoplectus I. Sur quelques espèces sud-africaines. – Adansonia, sér. II, 15: 537-542.

Raynal J. 1976b. Notes cypérologiques 26. Le genre Schoenoplectus II. L’amphicarpie et la sect. Supini. – Adansonia, sér. II, 16: 119-155.

Raynal J. 1977. Notes cypérologiques 31. Mélanges nomenclaturaux (Cyperoideae). – Adansonia, sér. II, 17: 43-47.

Raynal J. 1978. Notes cypérologiques 33. Mélanges nomenclaturaux (2). – Adansonia, sér. II, 17: 273-280.

Read RW. 1968. A new combination in Vriesea (Bromeliaceae). – Phytologia 16: 457-458.

Read RW, Baensch HU. 1994. Ursulaea; a new genus of Mexican bromeliads. – J. Bromeliad Soc. 44: 205-211.

Reeder JR. 1943. The status of Distichlis dentata. – Bull. Torrey Bot. Club 70: 53-57.

Reeder JR. 1953. The embryo of Streptochaeta and its bearing on the homology of the coleoptile. – Amer. J. Bot. 40: 77-80.

Reeder JR. 1957. The embryo in grass systematics. – Amer. J. Bot. 44: 756-768.

Reeder JR. 1960. The systematic position of the grass genus Anthephora. – Trans. Amer. Microsc. Soc. 79: 211-218.

Reeder JR. 1962. The bambusoid embryo: a reappraisal. – Amer. J. Bot. 49: 639-641.

Reeder JR. 1965. The tribe Orcuttieae and the subtribes of the Pappophoreae (Gramineae). – Madroño 18: 18-28.

Reeder JR. 1967. Notes on Mexican grasses VI. Miscellaneous chromosome numbers. – Bull. Torrey Bot. Club 94: 1-17.

Reeder JR. 1971. Notes on Mexican grasses IX. Miscellaneous chromosome numbers 3. – Brittonia 23: 105-117.

Reeder JR. 1977. Chromosome numbers in western grasses. – Amer. J. Bot. 64: 102-110.

Reeder JR. 1982. Systematics of the tribe Orcuttieae (Gramineae) and the description of new segregate genus, Tuctoria. – Amer. J. Bot. 69: 1082-1095.

Reeder JR, Reeder CG. 1968. Parodiella, a new genus of grasses from the high Andes. – Bol. Soc. Argent. Bot. 12: 268-283.

Reeder JR, Reeder CG. 1980. Systematics of Bouteloua breviseta and B. ramosa (Gramineae). – Syst. Bot. 5: 312-321.

Reeder JR, Singh DN. 1968. Chromosome numbers in the tribe Pappophoreae (Gramineae). – Madroño 19: 183-187.

Reeder JR, Toolin LJ. 1989. Notes on Pappophorum (Gramineae: Pappophoreae). – Syst. Bot. 14: 349-358.

Refulio-Rodriguez NF, Columbus JT, Gillespie LJ, Peterson PM, Soreng RJ. 2012. Molecular phylogeny of Dissanthelium (Poaceae: Pooideae) and its taxonomic implications. – Syst. Bot. 37: 122-133.

Reid CS, Carter R, Urbatsch LE. 2014. Phylogenetic insights into New World Cyperus (Cyperaceae) using nuclear ITS sequences. – Brittonia 66: 292-305.

Reihmann D. 1977. Vergleichende Embryologie und systematische Stellung der Juncaceae mit neuen Beiträgen zur Samenentwicklung von Juncus und Luzula. – Thesis, Universität Bochum, Germany.

Reimer E, Cota-Sánchez JH. 2007. An SEM survey of the leaf epidermis in danthonioid grasses (Poaceae: Danthonioideae). – Syst. Bot. 32: 60-70.

Reinert F, Russo CAM, Salles LO. 2003. The evolution of CAM in the subfamily Pitcairnioideae (Bromeliaceae). – Bot. J. Linn. Soc. 80: 261-268.

Reinheimer R, Kellogg EA. 2009. Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. – Plant Cell 21: 2591-2605.

Reinheimer R, Vegetti AC. 2008. Inflorescence diversity and evolution in the PCK clade (Poaceae: Panicoideae: Paniceae). – Plant Syst. Evol. 275: 133-167.

Reinheimer R, Pozner R, Vegetti AC. 2005. Inflorescence, spikelet, and floral development in Panicum maximum and Urochloa plantaginea (Poaceae). – Amer. J. Bot. 92: 565-575.

Reinheimer R, Vegetti AC, Rua GH. 2013. Macroevolution of panicoid inflorescences: a history of contingency and order of trait acquisition. – Ann. Bot. 112: 1613-1628.

Renata R, Zuloaga FO, Vegetti AC, Pozner R. 2009. Diversification of inflorescence development in the PCK clade (Poaceae: Panicoideae: Paniceae). – Amer. J. Bot. 96:549-564.

Renvoize SA. 1978. Studies in the Gramineae XLIII. The genus Panicum group Lorea (Gramineae). – Kew Bull. 32: 419-428.

Renvoize SA. 1981. The subfamily Arundinoideae and its position in relation to a general classification of the Gramineae. – Kew Bull. 36: 85-102.

Renvoize SA. 1982a. A survey of leaf-blade anatomy in grasses I. Andropogoneae. – Kew Bull. 37: 315-321.

Renvoize SA. 1982b. A new genus and several new species of grasses from Bahia (Brazil). – Kew Bull. 37: 323-333.

Renvoize SA. 1982c. A survey of leaf-blade anatomy in grasses II. Arundinelleae. – Kew Bull. 37: 489-495.

Renvoize SA. 1982d. A survey of leaf-blade anatomy in grasses III. Garnotieae. – Kew Bull. 37: 497-500.

Renvoize SA. 1983. A survey of leaf-blade anatomy in grasses IV: Eragrostideae. – Kew Bull. 38: 469-478.

Renvoize SA. 1984a. New grasses from Bahia. – Kew Bull. 39: 179-183.

Renvoize SA. 1984b. New combinations of grasses from Bahia. – Kew Bull. 39: 184.

Renvoize SA. 1985a. A note on Jansenella (Gramineae). – Kew Bull. 40: 470.

Renvoize SA. 1985b. A survey of leaf blade anatomy in grasses V: the bamboo allies. – Kew Bull. 40: 509-535.

Renvoize SA. 1985c. A survey of leaf-blade anatomy in grasses VI: Stipeae. – Kew Bull. 40: 731-736.

Renvoize SA. 1985d. A survey of leaf-blade anatomy in grasses VII: Pommereulleae, Orcuttieae & Pappophoreae. – Kew Bull. 40: 737-744.

Renvoize SA. 1985e. A review of Tribolium (Gramineae). – Kew Bull. 40: 795-799.

Renvoize SA. 1986a. A survey of leaf-blade anatomy in grasses VIII: Arundinoideae. – Kew Bull. 41: 323-338.

Renvoize SA. 1986b. A survey of leaf blade anatomy in grasses IX: Centothecoideae. – Kew Bull. 41: 339-342.

Renvoize SA. 1987a. A survey of leaf-blade anatomy in grasses X: Bambuseae. – Kew Bull. 42: 201-207.

Renvoize SA. 1987b. A survey of leaf-blade anatomy in grasses XI: Paniceae. – Kew Bull. 42: 739-768.

Renvoize SA. 1987c. New grasses from Paraná, Brazil. – Kew Bull. 42: 921-925.

Renvoize SA. 1988. Hatschbachs Paraná Grasses. – Royal Botanic Gardens, Kew.

Renvoize SA. 1989. New species of Panicum (Gramineae) from southern tropical Africa. – Kew Bull. 44: 543-546.

Renvoize SA. 1994. Notes on Sporobolus & Bromus (Gramineae) from the Andes. – Kew Bull. 49: 543-546.

Renvoize SA. 1995a. Three new species of Panicum group Lorea (Gramineae) from the Pico das Almas, Bahia, Brazil. – Kew Bull. 50: 161-164.

Renvoize SA. 1995b. Two new species of Eriochloa (Gramineae) from South America. – Kew Bull. 50: 343-347.

Renvoize SA. 1998. Gramíneas de Bolivia. – Royal Botanic Gardens, Kew.

Renvoize SA, Clayton WD. 1985. Two new tribal names in Gramineae. – Kew Bull. 40: 478.

Renvoize SA, Clayton WD. 1992. Classification and evolution of grasses. – In: Chapman GP (ed), Grass evolution and domestication, Cambridge University Press, Cambridge, London, pp. 3-37.

Renvoize SA, Zuloaga FO. 1984. The genus Panicum group Lorea (Gramineae). – Kew Bull. 39: 185-202.

Renvoize SA, Zuloaga FO. 1995. Three new species of Panicum group Lorea (Gramineae) from the Pico das Almas, Bahia, Brazil. – Kew Bull. 50: 161-164.

Renvoize SA, Lock JM, Denny P. 1984. A remarkable new grass genus from the southern Sudan. – Kew Bull. 39: 455-461.

Renvoize S, Vega AS, Rúgolo de Agrasar ZE. 2006. 214(3). Gramineae (part 3). Subfam. Panicoideae. – In: Harling G, Persson C (eds), Flora of Ecuador 78, Department of Plant and Environmental Sciences, Göteborg University, pp. 1-216.

Repka R. 2003. The Carex muricata aggregate in the Czech Republic: multivariate analysis of quantitative morphological characters. – Preslia (Praha) 75: 233-248.

Repka R, Danihelka J. 2005. Typification of the name Carex muricata var. lamprocarpa Wallr. and its nomenclatural consequences. – Preslia (Praha) 77: 129-136.

Retallack GJ, Dugas DP, Bestland EA. 1990. Fossil soils and grasses of a middle Miocene East African grassland. – Science 247: 1325-1328.

Reutemann AG, Guarise NJ, López MG, Vegetti AC. 2009. Structure of the inflorescences of selected South American species of Abildaardia Vahl, Bulbostylis Kunth, and Fimbristylis Vahl (Abildgaardieae-Cyperoideae-Cyperaceae). – Plant Syst. Evol. 283: 93-110.

Rex M, Patzolt K, Schulte K, Zizka G, Vásquez R, Ibisch PL, Weising K. 2007. AFLP analysis of genetic relationships in the genus Fosterella L. B. Smith (Pitcarnioideae, Bromeliaceae). – Genome 50: 90-105.

Rex M, Schulte K, Zizka G, Peters J, Vasquez R, Ibisch PL, Weising K. 2009. Phylogenetic analysis of Fosterella L. B. Sm. (Pitcairnioideae, Bromeliaceae) based on four chloroplast DNA regions. – Mol. Phylogen. Evol. 51: 472-485.

Reynders M, Goetghebeur P. 2010. Reestablishment of Pycreus section Tuberculati (Cyperaceae). – Blumea 55: 226-230.

Reynders M, Huygh W, Larridon I, Muasya AM, Govaerts R, Simpson DA, Goetghebeur P. 2011. Nomenclature and typification of names of genera and subdivisions of genera in the Cypereae (Cyperaceae) 3. Names in segregate genera of Cyperus. – Taxon 60: 885-895.

Reynders M, Vrijdaghs A, Muasya AM, Larridon I, Goetghebeur P, Smets E. 2012. Evolution of the gynoecium in Cyperoideae (Cyperaceae): congenital fusion of carpels facilitates pistil modifications. Combining evidence from floral ontogeny and anatomy. – Plant Ecol. Evol. 145: 96-125.

Reznicek AA. 1982. Two new species of Carex (Cyperaceae) from southern Mexico. – Syst. Bot. 7: 340-344.

Reznicek AA. 1986. The taxonomy of Carex sect. Hymenochlaenae (Cyperaceae) in Mexico and Central America. – Syst. Bot. 11: 56-87.

Reznicek AA. 1990. Evolution in sedges (Carex, Cyperaceae). – Can. J. Bot. 68: 1409-1432.

Reznicek AA, Catling PM. 1986. Vegetative shoots in the taxonomy of sedges (Carex, Cyperaceae). – Taxon 35: 495-501.

Ricci CV, Patricio MCB, Salatino MLF, Antonio A, Giulietti AM. 1996. Flavonoids of Syngonanthus Ruhland (Eriocaulaceae): taxonomic implications. – Biochem. Syst. Ecol. 24: 577-583.

Richards JH, Bruhl JJ, Wilson KW. 2006. Morphology and development of reproductive structures in Exocarya (Cyperaceae, Mapanioideae, Chrysitricheae). – Amer. J. Bot. 93: 1081-1090.

Ridley NN. 1894. The Cyperaceae of the West Coast of Africa in the Welwitsch Herbarium. – Trans. Linn. Soc., Ser. II, Bot. 2: 121-171.

Rikli M. 1895. Beiträge zur vergleichenden Anatomie der Cyperaceen mit besonderer Berücksichtigung der inneren Parenchymscheide. – Jahrb. Wiss. Bot. 27: 485-580.

Ripley B, Frole K, Gilbert M. 2010. Difference in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) panicoid grasses. – Ann. Bot. 105: 493-503.

Roalson EH. 2005. Phylogenetic relationships in the Juncaceae inferred from nuclear ribosomal DNA internal transcribed spacer sequence data. – Intern. J. Plant Sci. 166: 397-413.

Roalson EH, Columbus JT. 1999. Glume absence in the Orcuttieae (Gramineae: Chloridoideae) and a hypothesis of intratribal relationships. – Aliso 18: 67-70.

Roalson EH, Friar EA. 2000. Infrageneric classification of Eleocharis (Cyperaceae) revisited: evidence from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. – Syst. Bot. 25: 323-336.

Roalson EH, Friar EA. 2004a. Phylogenetic relationships and biogeographic patterns in North American members of Carex section Acrocystis (Cyperaceae) using nrDNA ITS and ETS sequence data. – Plant Syst. Evol. 243: 175-187.

Roalson EH, Friar EA. 2004b. Phylogenetic analysis of the nuclear alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) and combined analyses of Adh and nuclear ribosomal ITS and ETS sequences for inferring species relationships. – Mol. Phylogen. Evol. 33: 671-686.

Roalson EH, Columbus JT, Friar EA. 2001. Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. – Syst. Bot. 26: 318-341.

Roalson EH, McCubbin AG, Whitkus R. 2007 [2008]. Chromosome evolution in Cyperales. – In: Columbus JT, Friar EA, Porter JM, Rince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 62-71.

Roalson EH, Hinchcliff CE, Treviswan R, Silva CRM da. 2010. Phylogenetic relationships in Eleocharis (Cyperaceae): C4 photosynthesis origins and patterns of diversification in the spikerushes. – Syst. Bot. 35: 257-271.

Robertson IH. 1981. Chromosome numbers in Brachypodium Beauv. (Gramineae). – Genetica 56: 55-60.

Robinson H. 1969. A monograph on foliar anatomy of the genera Connellia, Cottendorfia and Navia (Bromeliaceae). – Smithsonian Contr. Bot. 2: 1-41.

Robinson H, Taylor DC. 1999. The status of the pitcairnioid genera of the Bromeliaceae. – Harvard Papers Bot. 4: 195-202.

Rodionov AV, Kim ES, Punina EO, Machs EM, Tyupa NB, Nosov NN. 2007. Evolution of chromosome numbers in the tribes Aveneae and Poeae inferred from comparative analysis of the internal transcribed spacers ITS1 and ITS2 of nuclear 45S rRNA genes. – Bot. Žurn. 92: 57-71.

Roig FA. 1964. Las Gramíneas Mendocinas del género Stipa I. Taxonomía. – Rev. Fac. Ci. Agrar. Univ. Nac. Cuyo 11: 3-110.

Rojas PF. 1997. New species and new combinations for the tribe Stipeae (Poaceae) in Bolivia. – Gayana, Bot. 54: 163-182.

Romaschenko K, Garcia-Jacas N, Peterson PM, Soreng RJ, Futorna O, Susanna A. 2008. Molecular phylogenetic analysis of the American Stipeae (Poaceae) resolves Jarava sensu lato polyphyletic: evidence for a new genus, Pappostipa. – J. Bot. Res. Inst. Texas 2: 165-192.

Romaschenko K, Peterson PM, Soreng RJ, Garcia-Jacas N, Susanna A. 2010. Phylogenetics of Stipeae (Poaceae: Pooideae) based on plastid and nuclear DNA sequences. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 511-537.

Romaschenko K, Peterson PM, Soreng RJ, Futorna O, Susanna A. 2011. Phylogenetics of Piptatherum s.l. (Poaceae: Stipeae): evidence for a new genus, Piptatheropsis, and resurrection of Patis. – Taxon 60: 1703-1716.

Romaschenko K, Garcia-Jacas N, Peterson PM, Soreng RJ, Vilatersana R, Susanna A. 2014. Miocene-Pliocene speciation, introgression, and migration of Patis and Ptilagrostis (Poaceae: Stipeae). – Molec. Phylogen. Evol. 70: 244-259.

Romero-Zarco C. 1984a. Revsión taxonómica del género Avenula (Dumort.) Dumort. en la Península Ibérica e Islas Baleares. – Lagascalia 13: 39-146.

Romero-Zarco C. 1984b. Revisión del género Helictotrichon Besser ex Schultes & Schultes fil. (Gramineae) en la Península Ibérica I. Estudio taxonómico. – Anales Jard. Bot. Madrid 41: 98-124.

Romero-Zarco C. 1985a. Revisión del género Arrhenatherum Beauv. (Gramineae) en la peninsula Ibérica. – Acta Bot. Malac. 10: 123-154.

Romero-Zarco C. 1985b. Estudio taxonónomico del género Pseudarrhenatherum Rouy (Gramineae) en la Península Ibérica. – Lagascalia 13: 255-273.

Romero-Zarco C. 1985c. Revisión del género Helictotrichon Besser ex Schultes & Schultes fil. (Gramineae) en la Península Ibérica II. Estudio experimental. – Anales Jard. Bot. Madrid 42: 133-154.

Romero-Zarco C. 1993. Observaciones sobre las Avenula del grupo marginata en Andalucia. – Acta Bot. Malac. 18: 147-151.

Romero-Zarco C. 1996. Sinópsis del género Avena L. (Poaceae, Aveneae) en España peninsular y Baleares. – Lagascalia 18: 171-198.

Romero-Zarco C. 2007. Helictotrichon devesae, a new endemic grass species from Castilla-La Mancha (Central Spain). – Anales Jard. Bot. Madrid 64: 205-211.

Romero-Zarco C. 2011. Helictochloa Romero Zarco (Poaceae), a new genus of oat grass. – Candollea 66: 87-103.

Rondeau R, Rouch C, Besnard G. 2005. NADP-malate dehydrogenase gene evolution in Andropogoneae (Poaceae): gene duplication followed by sub-functionalization. – Ann. Bot., N. S., 96: 1307-1314.

Ronse De Craene L-P, Smets E, Clinckemaillie D. 2001. Floral ontogenetic evidence in support of the Willdenowia clade of South African Restionaceae. – J. Plant Res. 114: 329-342.

Ronse De Craene L-P, Linder HP, Smets EF. 2002. Ontogeny and evolution of the flowers of South African Restionaceae with special emphasis on the gynoecium. – Plant Syst. Evol. 231: 225-258.

Roodt R, Spies JJ, 2003a. Chromosome studies in the grass subfamily Chloridoideae I. Basic chromosome numbers. – Taxon 52: 557-566.

Roodt R, Spies JJ. 2003b. Chromosome studies in the grass subfamily Chloridoideae II. An analysis of polyploidy. – Taxon 52: 736-746.

Roodt-Wilding R, Spies JJ. 2006. Phylogenetic relationships in southern African chloridoid grasses (Poaceae) based on nuclear and chloroplast sequence data. – Syst. Biodiv. 4: 401-415.

Rosa MM, Scatena VL. 2003. Floral anatomy of Eriocaulon elichrysoides and Syngonanthus caulescens (Eriocaulaceae). – Flora 198: 188-199.

Rosa MM, Scatena VL. 2007. Floral anatomy of Paepalanthoideae (Eriocaulaceae, Poales) and their nectariferous structures. – Ann. Bot. 99: 131-139.

Roscoe MV. 1927. Cytological studies in the genus Typha. – Bot. Gaz. 84: 392-406.

Rosen DJ, Hatch SL. 2007. A new species of Eleocharis subgen. Limnochloa (Cyperaceae) from Bolivia. – Brittonia 59: 377-379.

Rosengurtt B, Izaguirre de Artucio P. 1968. Nuevas especies de Chloris de Uruguay y Paraguay. – Bot. Soc. Argent. Bot. 12: 117-131.

Rosengurtt B, Arrillaga de Maffei BR, Izaguirre de Artucio P. 1970. Gramíneas uruguayas. – Universidad de la República, Montevideo.

Rosengurtt B, Laguardia A, Arrillaga de Maffei BR. 1972. El character lipido del endosperma central en especies de Gramineas. – Bol. Fac. Agron. Univ. Montevideo 124: 1-43.

Röser M. 1989. Karyologische, systematische und chorologische Untersuchungen an der Gattung Helictotrichon Besser ex Schultes & Schultes im westlichen Mittelmeergebiet. – Diss. Bot. 145.

Röser M. 1996. Ecogeography of the grass genus Helictotrichon (Poaceae: Aveneae) in the Mediterranean and adjacent regions. – Plant Syst. Evol. 203: 181-281.

Röser M. 1997. Patterns of diversification in Mediterranean oat grasses (Poaceae: Aveneae). – Lagascalia 19: 101-120.

Röser M. 1998. Character evolution of the genus Helictotrichon (Poaceae: Aveneae) reconsidered in view of recent results in Ibero-Mauritanian and Eurasian species. – Flora 193: 425-447.

Röser M. 2012. Stipellula, a new genus, and new combinations in feather grasses (Poaceae tribe Stipeae). – Schlechtendalia 24: 91-93.

Röser M, Döring E, Winterfeld G, Schneider J. 2009. Generic realignments in the grass tribe Aveneae (Poaceae). – Schlechtendalia 19: 27-38.

Röser M, Winterfeld G, Grebenstein B, Hemleben V. 2001. Molecular diversity and physical mapping of 5S rDNA in wild and cultivated oat grasses (Poaceae: Aveneae). – Mol. Phylogen. Evol. 21: 198-217.

Roshevits R Yu. 1951. De genere Piptatherum P. B. notae criticae. – Bot. Mater. Gerb. Bot. Inst. Komarova Akad. Nauk S.S.S.R. 14: 78-129.

Roth I. 1955. Zur morphologischen Deutung des Grasembryos und verwandter Embryotypen. – Flora 142: 564-600.

Rothrock PE, Reznicek AA, Hipp AL. 2009. Taxonomic study of the Carex tenera group (Cyperaceae). – Syst. Bot. 34: 297-311.

Rourke JP. 1974. On restios and roofs. – Veld Flora 4: 57-59.

Rouy G. 1921. Le Thorea longifolia deviant le Pseudarrhenatherum longifolium Rouy. – Bull. Soc. Bot. France 68: 401-402.

Row HC, Reeder JR. 1957. Root-hair development as evidence of relationships among genera in the Gramineae. – Amer. J. Bot. 44: 596-601.

Rowlatt U. 1992. Architecture of the leaf of the greater reed mace, Typha latifolia L. – Bot. J. Linn. Soc. 110: 161-170.

Royen P van. 1953. Xyridaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(4), Noordhoff-Kolff N. V., Batavia, pp. 366-376.

Rua GH. 1993. The synflorescence of Paspalidium rarum (Poaceae) and the alternative hypothesis about the evolution of some poaceous inflorescences. – Aust. Syst. Bot. 6: 261-267.

Rua GH. 1996. The inflorescences of Paspalum L. (Poaceae, Paniceae): the Quadrifaria group and the evolutionary pathway towards the fully homogenized, truncated common type. – Plant Syst. Evol. 201: 199-209.

Rua GH, Aliscioni SS. 2002. A morphology-based cladistic analysis of Paspalum sect. Pectinata (Poaceae). – Syst. Bot. 27: 489-501.

Rua GH, Boccaloni KB. 1996. The inflorescences of Digitaria phaeotrix: morphological and developmental aspects. – Flora 191: 117-119.

Rua GH, Gróttola MC. 1997. Growth form models within the genus Paspalum L. (Poaceae, Paniceae). – Flora 192: 65-80.

Rua GH, Speranza PR, Vaio M, Arakaki M. 2010. A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. – Plant Syst. Evol. 288: 227-243.

Rua GH, Valls JFM. 2012. On the taxonomic status of the genus Thrasyopsis (Poaceae, Panicoideae, Paspaleae): new combinations in Paspalum. – Phytotaxa 73: 60-66.

Rua GH, Weberling F. 1995. Growth form and inflorescence structure of Paspalum L. (Poaceae, Paniceae): a comparative morphological approach. – Beitr. Biol. Pflanzen 69: 363-431.

Rua GH, Oliveira RC, Valls JFM. 2006. Ophiochloa bryoides (Poaceae, Paniceae), a new grass species from Central Brazil. – Syst. Bot. 31: 493-496.

Rua GH, Valls JFM, Graciano-Ribeiro D, Oliveira RC. 2008. Four new species of Paspalum (Poaceae, Paniceae) from Central Brazil, and resurrection of an old one. – Syst. Bot. 33: 267-276.

Rua GH, Speranza PR, Vaio M, Arakaki M. 2010. A phylogenetic analysis of the genus Paspalum (Poaceae) based on cpDNA and morphology. – Plant Syst. Evol. 288: 227-243.

Rudall PJ. 1990. Development of the ovule and megagametophyte in Ecdeiocolea monostachya. – Aust. Syst. Bot. 3: 265-274.

Rudall PJ, Linder HP. 1988. Megagametophyte and nucellus in Restionaceae and Flagellariaceae. – Amer. J. Bot. 75: 1777-1786.

Rudall PJ, Sajo MG. 1999. Systematic position of Xyris: flower and seed anatomy. – Intern. J. Plant Sci. 160: 795-808.

Rudall PJ, Stuppy W, Cunniff J, Kellogg EA, Briggs BG. 2005. Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. – Amer. J. Bot. 92: 1432-1443.

Rudall PJ, Prychid CJ, Gregory T. 2014. Epidermal patterning and silica phytoliths in grasses: an evolutionary history. – Bot. Rev. 80: 59-71.

Rúgolo de Agrasar ZE. 1974. Las especies del género Digitaria (Gramineae) de la Argentina. – Darwiniana 19: 65-166.

Rúgolo de Agrasar ZE. 2006. Las especies del género Deyeuxia (Poaceae, Pooideae) de la Argentina y notas nomenclaturales. – Darwiniana 44: 131-293.

Rúgolo de Agrasar ZE, Rodriguez MF. 2002. Cauline anatomy of native woody bamboos in Argentina and neighbouring areas: epidermis. – Bot. J. Linn. Soc. 138: 45-55.

Rúgolo de Agrasar ZE, Sulekic AA. 2006. Una nueva especie de Gymnopogon (Poaceae, Cynodonteae) pará la Argentina. – Darwiniana 44: 504-507.

Rúgolo de Agrasar ZE, Vega AS. 2004. Tripogon nicorae, a new species and synopsis of Tripogon (Poaceae: Chloridoideae) in America. – Syst. Bot. 29: 874-882.

Rúgolo de Agrasar ZE, Vega AS. 2007. Novedades taxonómicas y synopsis del género Digitaria (Poaceae, Panicoideae, Paniceae) en América Central. – Darwiniana 45: 92-119.

Ruhland W. 1900. Kritische Revision der afrikanischen Arten der Gattung Eriocaulon L. – Engl. Bot. Jahrb. Syst. 27: 65-85.

Ruhland W. 1930. Eriocaulaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Augl., Bd. 15a, W. Engelmann, Leipzig, pp. 39-57.

Ruiz-Sanchez E, Sosa V. 2010. Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data. – Mol. Phylogen. Evol. 54: 344-356.

Ruiz-Sanchez E, Sosa V, Mejía-Saules MT. 2008. Phylogenetics of Otatea inferred from morphology and chloroplast DNA sequence data, and recircumscription of Guaduinae (Poaceae: Bambusoideae). – Syst. Bot. 33: 277-283.

Ruiz-Sanchez E, Sosa V, Mejía-Saules MT. 2011. Molecular phylogenetics of the Mesoamerican bamboo Olmeca (Poaceae, Bambuseae): implications for taxonomy. – Taxon 60: 89-98.

Runemark H. 1962. A revision of Parapholis and Monerma in the Mediterranean. – Bot. Not. 115: 1-17.

Runemark H, Heneen WK. 1968. Elymus and Agropyron, a problem of generic delimitation. – Bot. Not. 121: 51-79.

Rychlewski J. 1962. Cyto-embryological studies in the apomictic species Nardus stricta L. – Acta Biol. Cracov., Ser. Bot., 4: 1-23.

Saarela JM, Ford BA. 2001. Taxonomy of the Carex backii complex (Section Phyllostachyae, Cyperaceae). – Syst. Bot. 26: 704-721.

Saarela JM, Graham SW. 2010. Inference of phylogenetic relationships among the subfamilies of grasses (Poaceae: Poales) using meso-scale exemplar-based sampling of the plastid genome. – Botany 88: 65-84.

Saarela JM, Peterson PM, Soreng RJ, Chapman RE. 2003. A taxonomic revision of the eastern North American and eastern Asian disjunct genus Brachyelytrum (Poaceae): evidence from morphology, phytogeography and AFLPs. – Syst. Bot. 28: 674-692.

Saarela JM, Peterson PM, Keane RM, Cayouette J, Graham SW. 2007. Molecular phylogenetics of Bromus (Poaceae: Pooideae) based on chloroplast and nuclear DNA sequence data. – Aliso 23: 450-467.

Saarela JM, Liu Q, Peterson PM, Soreng RJ, Paszko B. 2010. Phylogenetics of the grass ’Aveneae-Type Plastid DNA Clade’ (Poaceae: Pooideae, Poeae) based on plastid and nuclear ribosomal DNA sequence data. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 557-587.

Sabelli PA, Larkins BA. 2009. The development of endosperm in grasses. – Plant Physiol. 149: 14-26.

Sack FD. 1994. Structure of the stomatal complex of the monocot Flagellaria indica. – Amer. J. Bot. 81: 339-344.

Saez L, Rossello JA. 2000. A new species of Agrostis (Gramineae) in the A. alpina complex. – Bot. J. Linn. Soc. 133: 359-370.

Sahni M. 1989. Cytological variability in genus Setaria P. Beauv. from Punjab Plains. – Aspects of Plant Sciences 11: 467-473.

Sahni M, Bir SS. 1985. SOCGI plant chromosome number reports – III. – J. Cytol. Genet. 20: 205-206.

Sahuquillo E, Lumaret R. 1995. Variation in the subtropical group of Dactylis glomerata L. I. Evidence from allozyme polymorphism. – Biochem. Syst. Ecol. 23: 407-418.

Saint-Yves A. 1922. Les Festuca (subgen. Eu-Festuca) de l’Afrique du Nord et des Îles Atlantiques. – Candollea 1: 1-63.

Saint-Yves A. 1925. Contribution à l’étude des Festuca (subgen. Eu-Festuca) de l’Amérique du Nord et du Méxique. – Candollea 2: 229-316.

Saint-Yves A. 1928. Contribution à l’étude des Festuca (subgen. Eu-Festuca) de l’Orient, Asie et région méditerranéenne voisine. – Candollea 3: 321-466.

Saint-Yves A. 1931. Contribution à l’étude des Avena sect. Avenastrum (Eurasie et region méditerranéenne). – Candollea 4: 353-504.

Saint-Yves A. 1934. Contribution à l’étude des Brachypodium (Europe et Région méditerranéenne). – Candollea 5: 427-493.

Sajo MG, Rudall PJ. 1999. Systematic vegetative anatomy and ensiform leaf development in Xyris (Xyridaceae). – Bot. J. Linn. Soc. 130: 171-182.

Sajo MG, Rudall PJ. 2012. Morphological evolution in the graminid clade: comparative floral anatomy of the grass relatives Flagellariaceae and Joinvilleaceae. – Bot. J. Linn. Soc. 170: 393-404.

Sajo MG, Prychid CJ, Rudall PJ. 2004. Structure and development of the ovule in Bromeliaceae. – Kew Bull. 59: 261-267.

Sajo MG, Rudall PJ, Prychid CJ. 2004. Floral anatomy of Bromeliaceae, with particular reference to the evolution of epigyny and septal nectaries in commelinid monocots. – Plant Syst. Evol. 247: 215-231.

Sajo MG, Furness CA, Prychid CJ, Rudall PJ. 2005. Microsporogenesis and anther development in Bromeliaceae. – Grana 44: 65-74.

Sajo MG, Longhi-Wagner HM, Rudall PJ. 2007. Floral development and embryology in the early-divergent grass Pharus. – Intern. J. Plant Sci. 168: 181-191.

Sajo MG, Longhi-Wagner HM, Rudall PJ. 2008. Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet. – Plant Syst. Evol. 275: 245-255.

Sajo MG, Furness CA, Rudall PJ. 2009. Microsporogenesis is simultaneous in the early-divergent grass Streptochaeta, but successive in the closest grass relative, Ecdeiocolea. – Grana 48: 27-37.

Sajo MG, Pabón-Mora N, Jardim J, Stevenson DW, Rudall PJ. 2012. Homologies of the flower and inflorescence in the early-divergent grass Anomochloa (Poaceae). – Amer. J. Bot. 99: 614-628.

Sakamoto S. 1967. Genome analysis of the genus Eremopyrum. – Wheat Inform. Serv. 23-24: 21-22.

Sakamoto S. 1973. Patterns of phylogenetic differentiation in the tribe Triticeae. – Rep. Kihara Inst. Biol. 24: 11-31.

Sakamoto S. 1974. Intergeneric hybridization among three species of Heteranthelium, Eremopyrum and Hordeum, and its significance for the genetic relationships within the tribe Triticeae. – New Phytol. 73: 341-350.

Sakamoto S. 1979. Generic relationships among four species of the genus Eremopyrum in the tribe Triticeae. Gramineae. – Mem. Coll. Agron. Kyoto Univ. 114: 1-27.

Sakamoto S, Muramatsu M. 1965. Morphological and cytological studies on various species of Gramineae collected in Pakistan, Afghanistan, and Iran. – Result of the Kyoto University Scientific expedition to the Karakorane and Hindukush 1955, 1: 119-140.

Sakamoto S, Muramatsu M. 1966. Cytogenetic studies in the tribe Triticeae II. Tetraploid and hexaploid hybrids of Agropyron. – Jap. J. Genet. 41: 155-168.

Salamin N, Hodkinson TR, Savolainen V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). – Syst. Bot. 51: 136-150.

Salariato DL, Giussani LM, Morrone O, Zuloaga FO. 2009. Rupichloa, a new genus segregated from Urochloa (Poaceae) based on morphological and molecular data. – Taxon 58: 381-391.

Salariato DL, Zuloaga FO, Giussani LM, Morrone O. 2010. Molecular phylogeny of the subtribe Melinidinae (Poaceae: Panicoideae: Paniceae) and evolutionary trends in the homogenization of inflorescences. – Mol. Phylogen. Evol. 56: 355-369.

Salariato DL, Morrone O, Zuloaga FO. 2012. Mayariochloa, a new monotypic genus segregated from Scutachne (Poaceae, Panicoideae, Paniceae). – Syst. Bot. 37: 105-116.

Salatino A, Faria Salatino M, Santos D dos, Patricio M. 2000. Distribution and evolution of secondary metabolites in Eriocaulaceae, Lythraceae and Velloziaceae from “campos rupestres”. – Gen. Mol. Biol. 23: 931-940.

Sales F. 1993. Taxonomy and nomenclature of Bromus sect. Genea. – Edinburgh J. Bot. 50: 1-31.

Salgado-Labouriau ML, Rinaldi M. 1990. Palynology of Gramineae of the Venezuelan mountains. – Grana 29: 119-128.

Salgado-Labouriau ML, Nilsson S, Rinaldi M. 1992. Exine sculpture in Pariana pollen (Gramineae). – Grana 32: 243-249.

Salomon B. 1994. Taxonomy and morphology of the Elymus semicostatus group (Poaceae). – Nord. J. Bot. 14: 7-21.

Salomon B, Lu B-R. 1992. Genomic groups, morphology, and sectional delimitation in Eurasian Elymus (Poaceae, Triticeae). – Plant Syst. Evol. 180: 1-13.

Salomon B, Bothmer R von, Yang J-L, Lu B-R. 1988. Notes on the perennial Triticeae species in northern Pakistan. – Bot. Jahrb. Syst. 110: 7-15.

Salse J, Piegu B, Cooke R, Delseny M. 2004. New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. – Plant J. 38: 396-409.

Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, CalcagnoT, Cooke R, Delseny M, Feuillet C. 2008. Identification and characterisation of shared duplications between rice and wheat provide new insight into grass genome evolution. – Plant Cell 20: 11-24.

Salse J, Abrouk M, Murat F, Quraishi UM, Feuillet C. 2009. Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. – Brief Bioinform. 10: 619-630.

Sánchez E. 1971. Anatomía foliar de las Chlorideae (Gramineae) argentinas. – Kurtziana 6: 103-218.

Sanchez E. 1979. Estructura Kranz en tallos de Gramineae (Eragrosteae). – Kurtziana 12-13: 113-118.

Sanchez E. 1981a. Desarrollo de la estructura Kranz en tallos de Gramineae. – Lilloa 35: 37-40.

Sanchez E. 1981b. Variación del a estructura Kranz en el tallo de Diandrochloa glomerata (Walter) Burkart. – Lilloa 35: 41-46.

Sanchez E. 1984. Estudios anatómicos en el género Munroa (Poaceae, Chloridoideae, Eragrostideae). – Darwiniana 25: 43-57.

Sanchez E, Arriaga M, Ellis R. 1989. Kranz distinctive cells in the culm of Arundinella (Arundinelleae; Panicoideae; Poaceae). – Bothalia 19: 45-52.

Sánchez-Ken JG, Davila Aranda P. 1995. Numeros cromosomicos de algunas especies Mexicanas de Aristida (Poaceae: Aristideae). – Ann. Missouri Bot. Gard. 82: 593-595.

Sánchez-Ken JG, Clark LG. 2007 [2008]. Phylogenetic relationships within the Centothecoideae + Panicoideae clade (Poaceae) based on ndhF and rpl16 intron sequences and structural data. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 487-502.

Sánchez-Ken JG, Clark LG. 2010. Phylogeny and a new tribal classification of the Panicoideae s.l. (Poaceae) based on plastid and nuclear sequence data and structural data. – Amer. J. Bot. 97: 1732-1748.

Sánchez-Ken JG, Clark LG, Kellogg EA, Kay EE. 2007. Reinstatement and emendation of subfamily Micrairoideae (Poaceae). – Syst. Bot. 32: 71-80.

Sano PT. 2004. Actinocephalus (Körn.) Sano (Paepalanthus sect. Actinocephalus), a new genus of Eriocaulaceae, and other taxonomic and nomenclatural changes involving Paepalanthus Mart. – Taxon 53: 99-107.

Santos-Gonçalves AP. 2005. Taxonomic and morpho-anatomical studies in Colanthelia (Poaceae: Bambusoideae: Bambuseae). – Ph.D. diss., Universidade Estadual de Campinas, Instituto de Biologia, Brazil.

Sanyal B. 1972. Cytological studies in Indian Cyperaceae II. Tribe Cypereae. – Cytologia 37: 33-42.

Sanyal B, Sharma A. 1972. Cytological studies in Indian Cyperaceae I. Tribe Scirpeae. – Cytologia 37: 13-32.

Sarkar P. 1955. A karyomorphological study on the genus Eremopyrum. – Wheat Inform. Serv. 2: 17-19.

Sarkar P. 1958. Cytotaxonomic studies on Eremopyrum. – Can. J. Bot. 36: 539-546.

Sasan R;, Bidochka MJ. 2012. The insect-pathogenic fungus Metarhizium roberstii (Clavicipitaceae) is also an endophyte that stimulates plant root development. – Amer. J. Bot. 99: 101-107.

Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL. 2007. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. – Theor. Appl. Gen. 115: 571-590.

Sass C, Specht CD. 2010. Phylogenetic estimation of the core bromelioids with an emphasis on the genus Aechmea (Bromeliaceae). – Mol. Phylogen. Evol. 55: 559-571.

Satake Y. 1933. Systematic and anatomical studies on some Japanese plants II. Juncaceae. – J. Fac. Sci. Univ. Tokyo, sect. III, 4: 131-224.

Sauer W. 1984. Die Gattung Avenula (Dumort.) Dumort. auf der Balkanhalbinsel. – Acta Bot. Croat. 43: 315-328.

Sauer W, Chmelitschek H. 1976. Beiträge zur Kenntnis ausdauernder Wildhafer: die Gattung Avenula (Dumort.) Dumort. in den Ostalpen. – Mitt. Bot. Staatssamml. München 12: 513-608.

Saura F. 1941. Cariologia de algunas especies del género Paspalum. – Publ. Inst. Gen. Univ. Buenos Aires 2: 41-48.

Savile DBO. 1990. Relationships of Poaceae, Cyperaceae, and Juncaceae reflected by their fungal parasites. – Can. J. Bot. 68: 731-734.

Savile DBO, Calder JA. 1953. Phylogeny of Carex in the light of parasitism by the smut fungi. – Can. J. Bot. 31: 164-174.

Sazima I, Vogel S, Sazima M. 1989. Bat pollination of Encholirium glaziovii, a terrestrial bromeliad. – Plant Syst. Evol. 168: 167-179.

Scataglini MA, Giussani LM, Denham SS, Zuloaga FO, Morrone O. 2007. Una aproximación a la filogenia de Paspalum (Poaceae, Panicoideae, Paniceae) utilizando tres marcadores de ADN de cloroplasto. – Darwiniana 45: 124-125.

Scataglini MA, Zuloaga FO, Giussani L, Denham S, Morrone O. 2014. Phylogeny of New World Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. – Plant Syst. Evol. 300: 1051-1070.

Scataglini MA, Lizarazu MA, Zuloaga FO. 2014. A peculiar amphitropical genus of Paniceae (Poaceae, Panicoideae). – Syst. Bot. 39: 1108-1119.

Scatena VL, Bouman F. 2001. Embryology and seed development of Paepalanthus sect. Actinocephalus (Koern.) Ruhland (Eriocaulaceae). – Plant Biol. 3: 341-350.

Scatena VL, Giulietti AM, Borba EL, Berg C van den. 2005. Anatomy of Brazilian Eriocaulaceae: correlation with taxonomy and habitat using multivariate analyses. – Plant Syst. Evol. 253: 1-22.

Schaffner JH. 1897. The development of the stamens and carpels of Typha latifolia. – Bot. Gaz. 24: 93-102.

Schardl CL. 2010. The Epichloeae, symbionts of the grass subfamily Pooideae. – Ann. Missouri Bot. Gard. 97: 646-665.

Schardl CL, Leuchtmann A, Chung KR, Penny D, Siegel MR. 1997. Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. – Mol. Biol. Evol. 14: 133-143.

Schardl CL, Leuchtmann A, Spiering MJ. 2004. Symbioses of grasses with seedborne fungal endophytes. – Ann. Rev. Plant Biol. 55: 315-340.

Schill R, Dannenbaum C, Jentzsch E-M. 1988. Untersuchungen an Bromeliennarben. – Beitr. Biol. Pflanzen 63: 221-252.

Schippmann U. 1991. Revision der europäischen Arten der Gattung Brachypodium Palisot de Beauvois (Poaceae). – Boissiera 45: 1-249.

Schmid B. 1983. Notes on the nomenclature and taxonomy of the Carex flava group in Europe. – Watsonia 14: 309-319.

Schmidt W. 2003. Iron solutions: acquisition strategies and signalling pathways in plants. – Trends Plant Sci. 8: 188-193.

Schmidt Jabaily R, Sytsma K. 2010. Phylogenetics of Puya (Bromeliaceae): placement, major lineages, and evolution of Chilean species. – Amer. J. Bot. 97: 337-356.

Schneider J, Döring E, Hilu KW, Röser M. 2009. Phylogenetic structure of the grass subfamily Pooideae based on comparison of plastid matK gene-3’trnK exon and nuclear ITS sequences. – Taxon 58: 405-424.

Schneider J, Winterfeld G, Hoffmann MH. Röser M. 2011. Duthieeae, a new tribe of grasses (Poaceae) identified among the early diverging lineages of subfamily Pooideae: molecular phylogenetics, morphological delineation, cytogenetics and biogeography. – Syst. Biodiv. l9: 27-44.

Schneider M. 1932. Untersuchungen über die Embryobildung und -entwicklung der Cyperaceen. – Beih. Bot. Centralbl. 49: 649-674.

Schneider M del P, Vegetti AC. 1993. The synflorescence in species of Sorghinae (Andropogoneae-Poaceae). – Beitr. Biol. Pflanzen 67: 225-239.

Schnepf E, Benner U. 1978. Die Morphologie der Nektarausscheidung bei Bromeliaceen II. Experimentelle und quantitatve Untersuchungen bei Billbergia nutans. – Biochem. Physiol. Pflanzen 173: 23-36.

Schoenebeck B. 1924. Die Antipodenvermehrung der Typhaceen. – Ber. Deutsch. Bot. Ges. 42: 296-299.

Scholz H. 1968. Systematik und Verbreitung einiger Taxa der Gattung Poa, Sektion Ochlopoa, im Mittelmeergebiet. – Ber. Deutsch. Bot. Ges. 81: 17-21.

Scholz H. 1969. Bemerkungen zu einigen Stipagrostis-Arten (Gramineae) aus Afrika und Arabien. – Österr. Bot. Zeitschr. 117: 284-292.

Scholz H. 1971a. Zur Systematik der Gattung Bromus L. Subgenus Bromus (Gramineae). – Willdenowia 6: 139-159.

Scholz H. 1971b. Zwei neue Gramineen-Arten aus Libyen und einige nomenklatorische Änderungen. – Willdenowia 6: 291-296.

Scholz H. 1972.Der Stipagrostis plumosa-Komplex (Gramineae) in Nord-Afrika. – Willdenowia 6: 519-552.

Scholz H. 1981. Der Bromus-pectinatus-Komplex (Gramineae) im Nahen und Mittleren Osten. – Bot. Jahrb. Syst. 102: 471-495.

Scholz H. 1982. Über Mikro- und Makrohaare einiger Piptatherum- und Stipa-Arten (Stipeae, Gramineae). – Willdenowia 12: 235-240.

Scholz H. 1986. Poa studies 5. The genus Poa (Gramineae) in Greece: annotated check-list and key to the species. – Willdenowia 15: 393-400.

Scholz H. 1988. Ene neue Stipagrostis (Gramineae) aus den Sand-Wüsten Irans und Afghanistan. – Willdenowia 17: 107-109.

Scholz H. 1989. Floristisches und taxonomisches über einige Gramineae von Rhodos und Symi (Ost-Ägäis, Griechenland). – Willdenowia 19: 105-110.

Scholz H. 1990. Neue und wenig bekannte Gramineen-Taxa. – Willdenowia 19: 405-412.

Scholz H. 1991a. Stipa tunetana, eine neue Art aus Tunesien, und das St. lagascae-Aggregat (Gramineae). – Willdenowia 20: 77-80.

Scholz H. 1991b. Notizen zur Gramineenflora von Kos und Nisyros (Ost-Ägäis, Griechenland). – Willdenowia 21: 131-141.

Scholz H. 1995a. Bromus regnii (Gramineae), a new endemic serpentine annual brome grass from Cyprus. – Willdenowia 25: 235-238.

Scholz H. 1995b. Monerma P. Beauv. (Poaceae) not an illegitimate name. – Feddes Repert. 106: 169-171.

Scholz H. 1996. Two new Eragrostis taxa (Gramineae). – Willdenowia 26: 229-232.

Scholz H. 1998. Notes on Bromus danthoniae and relatives (Gramineae). – Willdenowia 28: 143-150.

Scholz H. 1999. Short notes on Phleum sect. Achnodon (Gramineae). – Willdenowia 29: 45-49.

Scholz H. 2000a. Old and new taxa of the genus Catapodium (Gramineae). – Bot. Chron. 13: 95-104.

Scholz H. 2000b. New Aristida and Stipagrostis taxa (Gramineae). – Willdenowia 30: 273-277.

Scholz H. 2002. Panicum riparium H. Scholz – eine neue indigene Art der Flora Mitteleuropas. – Feddes Repert. 113: 273-280.

Scholz H. 2006. Kikuyuochloa, genus novum (Poaceae: Paniceae). – Feddes Repert. 117: 512-518.

Scholz H. 2007. Notes on Aegilops (Poaceae). – Willdenowia 37: 431-434.

Scholz H. 2008. Some comments on the genus Bromus (Poaceae) and three new species. – Willdenowia 38: 411-422.

Scholz H, Böcker R. 1996. Ergänzungen und Anmerkungen zur Grasflora (Poaceae) der Kanaren. – Willdenowia 25: 571-582.

Scholz H, Müller J. 2004. Stapfochloa (Poaceae: Cynodonteae, Chloridinae), a new genus from Africa. – Willdenowia 34: 129-133.

Scholz H, Scholz U. 1983. Flore descriptive des Cypéracées et Graminées du Togo. – J. Cramer, Vaduz.

Scholz H, Stierstorfer C, Gaisberg MV. 2000. Lolium edwardii sp. nova (Gramineae) and its relationship with Schedonorus sect. Plantynia Dumort. – Feddes Repert. 111: 561-565.

Schönland S. 1922. South African Cyperaceae. – Mem. Bot. Survey South Afr. (Pretoria) 3.

Schouten Y, Veldkamp JF. 1985. A revision of Anthoxanthum including Hierochloë (Gramineae) in Malesia and Thailand. – Blumea 30: 319-351.

Schulte K, Zizka G. 2008. Multi locus plastid phylogeny of Bromelioideae (Bromeliaceae) and the taxonomic utility of petal appendages and pollen characters. – Candollea 63: 209-255.

Schulte K, Horres R, Zizka G. 2005. Molecular phylogeny of Bromelioideae and its implications on biogeography and the evolution of CAM in the family. – Sencken. Biol. 85: 113-125.

Schulte K, Barfuss MHJ, Zizka G. 2009. Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. – Mol. Phylogen. Evol. 51: 327-339.

Schultze-Motel W. 1959a. Entwicklungsgeschichtliche und vergleichend-morphologische Untersuchungen im Blütenbereich der Cyperaceae. – Bot. Jahrb. Syst. 78: 129-170.

Schultze-Motel W. 1959b. Dulichieae, eine neue Tribus der Cyperaceae-Scirpoideae. – Willdenowia 2: 170-175.

Schulz A. 1887. Zur Morphologie der Cariceae. – Ber. Deutsch. Bot. Ges. 5: 27-43.

Schulz-Schaeffer J. 1960. Cytological investigations in the genus Bromus III. The cytotaxonomic significance of the satellite chromosomes. – J. Heredity 51: 269-277.

Schulz-Schaeffer J, Jurasits P. 1962. Biosystematic investigations in the genus Agropyron I. Cytological studies of species karyotypes. – Amer. J. Bot. 49: 940-953.

Schumann K. 1892. Morphologische Studien IV. Sproßaufbau und Blüthenentwicklung in Scirpus setaceus L. – Leipzig.

Schürhoff PN. 1920. Die Antipodenvermehrung der Sparganiaceae. – Ber. Deutsch. Bot. Ges. 38: 346-349.

Schuster J. 1910. Über die Morphologie der Grasblüte. – Flora (Jena) 100: 213-266.

Schuyler AE. 1971a. Two new species of Scirpus (Cyperaceae) in Southern Africa. – Notul. Natl. Acad. Nat. Sci. Philadelphia 438.

Schuyler AE. 1971b. Scanning electron microcscopy of achene epidermis in species of Scirpus. – Proc. Acad. Nat. Sci. Philadelphia 123: 29-52.

Schwab CA. 1972. Floral structure and embryology of Diarrhena (Gramineae). – Diss. Abstr. Intern. B. The Sciences and Engineering 32: 3812-3813.

Schwabe H. 1948. Contribución a la anatomía foliar de algunas Agrostideas. Las especies Argentinas de los generos Muhlenbergia y Lycurus, sus relaciones con especies Americanas y las relaciones intragenericas de Muhlenbergia, Lycurus, Sporobolus y Epicampes. – Lilloa 16: 141-160.

Schwabe H. 1949. Contribucion al studio anatómico de las especies argentinas del género Sporobolus y sus relaciones con los géneros afines. – Bol. Soc. Argent. Bot. 2: 253-270.

Schweickerdt H. 1937. A revision of the South African species of Helictotrichon Bess. ex Schultes. – Bothalia 3: 185-203.

Scogin R. 1985. Floral anthocyanins in the genus Puya. – Biochem. Syst. Ecol. 13: 387-389.

Scrivanti LR, Anton AM, Zygadlo JA. 2009. Essential oil composition of Bothriochloa Kuntze (Poaceae) from South America and their chemotaxonomy. – Biochem. Syst. Ecol. 37: 206-213.

Seberg O. 1986. Schoenoides, a new genus of Cyperaceae from Tasmania. – Willdenowia 16: 181-186.

Seberg O. 1988. Taxonomy, phylogeny and biogeography of the genus Oreobolus R. Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. – Bot. J. Linn. Soc. 96: 119-195.

Seberg O, Frederiksen S. 2001. A phylogenetic analysis of the monogenomic Triticeae (Poaceae) based on morphology. – Bot. J. Linn. Soc. 136: 75-97.

Seberg O, Linde-Laursen I. 1996. Eremium, a new genus of the Triticeae (Poaceae) from Argentina. – Syst. Bot. 21: 3-15.

Seberg O, Frederiksen S, Baden C, Linde-Laursen I. 1991. Peridictyon, a new genus from the Balkan Peninsula, and its relationship with Festucopsis (Poaceae). – Willdenowia 21: 87-104.

Sede SM, Morrone O, Giussani LM, Zuloaga FO. 2008. Phylogenetic studies in Paniceae (Poaceae): a realignment of section Lorea of Panicum. – Syst. Bot. 33: 284-300.

Sede SM, Zuloaga FO, Morrone O. 2009. Phylogenetic studies in the Paniceae (Poaceae-Panicoideae): Ocellochloa, a new genus from the New World. – Syst. Bot. 34: 684-692.

Sede SM, Morrone O, Aliscioni SS, Giussani LM, Zuloaga FO. 2009. Oncorachis and Sclerochlamys, two new segregated genera from Streptostachys (Poaceae, Panicoideae, Paniceae): a revision based on molecular, morphological and anatomical characters. – Taxon 58: 365-374.

Sendulsky T. 2001. Merostachys Spreng. (Poaceae, Bambusoideae, Bambuseae): a new species from Brazil and critical notes on “Group Speciosa”. – Kew Bull. 56: 627-638.

Sendulsky T, Soderstrom TR. 1984. Revision of the South American genus Otachyrium (Poaceae: Panicoideae). – Smithsonian Contr. Bot. 57: 1-24.

Sendulsky T, Filguerias TS, Burman AG. 1987. Fruits, embryos and seedlings. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institute Press, Washington, D.C., pp. 31-36.

Sequeira M, Diaz-Pérez A, Santos-Guerra A, Catalán P. 2009. Karyological analysis of the five native Macaronesian Festuca (Gramineae) grasses supports a distinct diploid origin of two schizoendemic groups. – An. Jard. Bot. Madrid 66: 55-63.

Serebryakova TY. 1969. Branching and tillering in the Poaceae family. – J. Bot. Soc. U.S.S.R. 54: 858-871. [In Russian]

Sha L-N, Fan X, Zhang H-Q, Kang H-Y, Wang Y, Wang X-L, Zhang L, Ding C-B, Yang R-W, Zhou Y-H. 2014. Phylogenetic relationships in Leymus (Triticeae; Poaceae): evidence from chloroplast trnH-psbA and mitochondrial coxII intron sequences. – J. Syst. Evol. 52: 722-734.

Shah CK. 1962. Pollen development in some members of the Cyperaceae. – Plant embryology, a symposium, 1960, CSIR, New Delhi, pp. 81-93.

Shah CK. 1963. The life history of Juncus bufonius. – J. Indian Bot. Soc. 42: 238-251.

Shah CK. 1965. Embryogeny in some Cyperaceae. – Phytomorphology 15: 1-9.

Shah CK. 1967. A taxonomic evaluation of the families Cyperaceae and Juncaceae. – Bull. Indian Natl. Inst. Sci., Sect. B, 34: 248-256.

Shah CK. 1968. Development of pericarp and seed coat in the Cyperaceae. – Naturaliste Canad. 95: 39-48.

Shah CK. 1974. Morphology and embryology of the family Cyperaceae. – Adv. Plant Morph. 1972: 102-112.

Shah CK, Neelakandan N. 1971. Embryogeny in some Cyperaceae II. – Beitr. Biol. Pflanzen 47: 215-227.

Shahid-Masood M, Nishikawa T, Fukuoka S, Njenga P, Tsudzuki T, Kadowaki K. 2004. The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. – Gene 340: 133-139.

Shama Kumari K. 1960. Cytogenetic investigations in Paniceae: occurrence of apospory in a diploid species of PanicumP. antidotale Retz. – Curr. Sci. 29: 191.

Shane MW, Dixon KW, Lambers H. 2005. The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). – New Phytol. 165: 887-898.

Shapter FM, Henry RJ, Lee LS. 2008. Endosperm and starch grain morphology in wild cereal relatives. – Plant Gen. Res. 6: 85-97.

Sharma A, Bal AK. 1956. A cytological investigation of some members of Cyperaceae. – Phyton 6: 7-22.

Sharma AK, De DN. 1956. Cytology of some of the millets. – Caryologia 8: 294-308.

Sharma AK, Ghosh I. 1971. Cytotaxonomy of the family Bromeliaceae. – Cytologia 36:237-247.

Sharma M. 1965. Pollen morphological studies of Eriocaulon Linn. from India. – Palyn. Bull. 1: 45-48.

Sharma ML. 1979. Some considerations on the phylogeny and chromosomal evolution in grasses. – Cytologia 44: 679-685.

Sharp D, Simon BK. 2002. AusGrasses. Grasses of Australia. CD ROM. – CSIRO Publ., Collingwood, Australia.

Shekhovtsov SV, Shekhovtsova IN, Peltek SE. 2012. Phylogeny of Siberian species of Carex sect. Vesicariae based on nuclear and plastid markers. – Nord. J. Bot. 30: 343-351.

Shen D, Wang S, Chen H, Zhu Q-H, Helliwell C, Fan L. 2009. Molecular phylogeny of miR390-guided trans-acting siRNA genes (TAS3) in the grass family. – Plant Syst. Evol. 283: 125-132.

Shetty BV, Subramanyam K. 1964. Cytology of Flagellaria indica Linn. – Curr. Sci. 33: 279-280.

Shiels DR, Hurlbut DL, Lichtenwald SK, Monfils AK. 2014. Monophyly and phylogeny of Schoenoplectus and Schoenoplectiella (Cyperaceae): evidence from chloroplast and nuclear DNA sequences. – Syst. Bot. 39: 132-144.

Shrestha S, Adkins SW, Graham GC, Loch DS. 2003. Phylogeny of the Sporobolus indicus complex, based on internal transcribed spacer (ITS) sequences. – Aust. Syst. Bot. 16: 165-176.

Siqueiros-Delgado ME, Ainouche M, Columbus JT, Ainouche A. 2013. Phylogeny of the Bouteloua curtipendula complex (Poaceae: Chloridoideae) based on nuclear ribosomal and plastid DNA sequences from diploid taxa. – Syst. Bot. 38: 379-389.

Signorini MA, Foggi B, Nardi E. 2003. Taxonomic and nomenclatural notes on Festuca (Poaceae): the Festuca vizzavonae and ”F. cyrnea” problem. – Taxon 52: 591-594.

Silva C, Silva L, Andrade CJ, Trevisan R, González-Elizondo M, Vanzela A. 2012. Ornamentation of achene silica walls and its contribution to the systematics of Eleocharis (Cyperaceae). – Plant Syst. Evol. 298: 391-398.

Silva Filho PJS da, Trevisan R, Boldrini II. 2013. Taxonomic novelties in Rhynchospora (Cyperaceae). – Phytotaxa 149: 1-11.

Simon BK. 1990. A key to Australian grasses. – Queensland Department of Primary Industries, Brisbane.

Simon BK. 1992a. A revision of the genus Aristida (Poaceae) in Australia. – Aust. Syst. Bot. 5: 129-226.

Simon BK. 1992b. Studies in Australian grasses 6. Alexfloydia, Cliffordiochloa and Dallwatsonia, three new panicoid grass genera from Eastern Australia. – Austrobaileya 3: 669-681.

Simon BK. 1999. Steinchisma hians (Elliot) Nash, the correct name for Fasciculochloa sparshottiorum B. K. Simon & C. M. Weiller. – Austrobaileya 5: 583-584.

Simon BK. 2003. Steinchisma laxa (Sw.) Zuloaga, the correct name for Cliffordiochloa parvispiculata B. K. Simon. – Austrobaileya 6: 561-562.

Simon BK. 2007 [2008]. Grass phylogeny and classification: conflict of morphology and molecules. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 259-266.

Simon BK, Jacobs SWL. 1990. Gondwanan grasses in the Australian flora. – Austrobaileya 3: 239-260.

Simon BK, Jacobs SWL. 1999. Revision of the genus Sporobolus (Poaceae, Chloridoideae) in Australia. – Aust. Syst. Bot. 12: 375-448.

Simon BK, Jacobs SWL. 2003. Megathyrsus, a new generic name for Panicum subgenus Megathyrsus. – Austrobaileya 6: 571-574.

Simon BK, Weiller CM. 1995. Fasciculochloa, a new grass genus (Poaceae: Paniceae) from south-eastern Queensland. – Austrobaileya 4: 369-379.

Simpson DA. 1987. Notes on Brazilian Cyperaceae II. New species of Cyperus and Eleocharis from Bahia. – Kew Bull. 42: 897-901.

Simpson DA. 1988. Notes on Brazilian Cyperaceae III. Some problems in Eleocharis. – Kew Bull. 43: 127-134.

Simpson DA. 1989a. Some interesting geographical disjunctions in Mapania sect. Mapania (Cyperaceae). – Kew Bull. 44: 139-142.

Simpson DA. 1989b. Notes on Brazilian Cyperaceae IV. Taxonomic changes and new taxa in Cyperus, Pycreus and Mariscus. – Kew Bull. 44: 279-287.

Simpson DA. 1990. A revision of Cyperus sect. Leucocephali. – Kew Bull. 45: 485-501.

Simpson DA. 1992. A revision of the genus Mapania. – The Royal Botanic Gardens, Kew.

Simpson DA. 1993a. Notulae cyperologicae 10. Genera of Cyperaceae recognised at Kew. – Cyperaceae Newsl. 12: 8-12.

Simpson DA. 1993b. Notes on Brazilian Cyperaceae VI. New species and a new combination in Cyperaceae from Brazil. – Kew Bull. 48: 699-713.

Simpson DA. 1995. Relationships within Cyperales. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 497-509.

Simpson DA. 1996. New taxa and combinations in Mapania (Cyperaceae) from South America. – Kew Bull. 51: 729-740.

Simpson DA, Muasya AM. 2004. Three new species of Cyperus (Cyperaceae) from Eastern and Southern Africa. – Kew Bull. 59: 593-598.

Simpson DA, Noltie HJ. 1995. The status of the genus Microschoenus. – Kew Bull. 50: 169-170.

Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW. 2003. Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. – Amer. J. Bot. 90: 1071-1086.

Simpson DA, Muasya AM, Chayamarit K, Parnell JAN, Suddee S, Wilde BDE, Jones MB, Bruhl JJ, Pooma R. 2005. Khaosokia caricoides, a new genus an species of Cyperaceae from Thailand. – Bot. J. Linn. Soc. 149: 357-364.

Simpson DA, Muasya AM, Alves MV, Bruhl JJ, Dhooge S, Chase MW, Furness CA, Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Reznicek AA, Nieuwborg R, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Zhang X. 2007 [2008]. Phylogeny of Cyperaceae based on DNA sequence data – a new rbcL analysis. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 72-83.

Simpson MG. 1988. A critique of ‘Bromeliales, related monocots, and resolution of relationships among Bromeliaceae subfamilies’. – Syst. Bot. 13: 610-614.

Sindhu A, Chintamanani S, Brandt AS, Zanis M, Scofield SR, Johal GS. 2008. A guardian of grasses: specific origin and conservation of a unique disease-resistance gene in the grass lineage. – Proc. Natl. Acad. Sci. U.S.A. 105: 1762-1767.

Singh DN, Goodward MBE. 1960. Cytological studies in the Gramineae. – Heredity 15: 193-197.

Singh RJ, Röbbelen G. 1975. Comparison of somatic Giemsa banding pattern in several species of rye. – Zeitschr. Pflanzenzüchtung 74: 270-285.

Sinha N, Kellogg E. 1996. Parallelism and diversity in multiple origins of C4 photosynthesis in the grass family. – Amer. J. Bot. 83: 1458-1470.

Sinha RRP, Bhardwaj AK, Singh RK. 1990. SOCGI plant chromosome numbers reports IX. – J. Cytol. Gen. 25: 140-143.

Skendzic EM, Columbus JT, Cerros-Tlatilpa R. 2007 [2008]. Phylogenetics of Andropogoneae (Poaceae: Panicoideae) based on nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 530-544 [Aliso 23: 530-544].

Skvarla JJ, Larson DA. 1963. Nature of cohesion within pollen tetrads of Typha latifolia. – Science 140: 173-175.

Skvortsov AK. 1977. Once more on the morphological nature of the parts of embryo and seedling. – Bull. Moscow Soc. Natur. 82: 96-111. [In Russian with English summary]

Slageren MW van. 1994. Wild wheats: a monograph of Aegilops L. and Amblypyrum (Jaub. & Spach) Eig (Poaceae). – Papers Wageningen Agric. Univ. 94(7).

Slingsby JA, Verboom GA. 2006. Phylogenetic relatedness limits co-occurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. – Amer. Nat. 168: 14-27.

Slingsby JA, Britton MN, Verboom GA. 2014. Ecology limits the diversity of the Cape flora: phylogenetics and diversification of the genus Tetraria. – Molec. Phylogen. Evol. 72: 61-70.

Small JK. 1901. Juncoides in the South Eastern States. – Torreya 1: 73-75.

Šmarda P, Bures P, Horova L, Foggi B, Rossi G. 2008. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. – Ann. Bot. 101: 421-433.

Šmarda P, Šmerda J, Knoll A, Bureš P, Danihelka J. 2007. Revision of Central European taxa of Festuca ser. Psammophilae Pawlus: morphometrical, karyological and AFLP analysis. – Plant Syst. Evol. 266: 197-232.

Smith AC. 1978. Flagellaria. – Allertonia 1: 341-344.

Smith BG, Harris PJ. 1999. The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique. – Biochem. Syst. Ecol. 27: 33-53.

Smith BS, Brown WV. 1973. The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. – Amer. J. Bot. 60: 505-513.

Smith DL. 1966. Development of the inflorescence in Carex. – Ann. Bot., N. S., 30: 475-486.

Smith DL. 1967. The experimental control of inflorescence development in Carex. – Ann. Bot., N. S., 31: 19-30.

Smith DL, Faulkner JS. 1976. The inflorescence of Carex and related genera. – Bot. Rev. 42: 53-81.

Smith JAC. 1989. Epiphytic bromeliads. – In: Lüttge U (ed), Vascular plants as epiphytes, evolution and ecophysiology, Springer, Berlin, pp. 108-138.

Smith JAC, Griffiths H, Luttge H. 1986. Comparative ecophysiology of CAM and C3 bromeliads I. The ecology of the Bromeliaceae in Trinidad. – Plant Cell Envir. 9: 359-376.

Smith LB. 1930-1954. Studies in the Bromeliaceae I-XVII. – Contr. Gray/Reed Herb.

Smith LB. 1934. Geographical evidence on the lines of evolution in the Bromeliaceae. – Bot. Jahrb. Syst. 66: 446-468.

Smith LB. 1955. The Bromeliaceae of Brazil. – Smithsonian Misc. Coll. 126: 1-290.

Smith LB. 1960. Notes on the Bromeliaceae XIV. – Phytologia 7: 169-172.

Smith LB. 1966. The great bromeliad hoax. – Bromeliad Soc. Bull. 16: 4-5.

Smith LB. 1967. Notes on Bromeliaceae XXV. – Phytologia 14: 457-465.

Smith LB. 1984. Bromeliaceae. – In: Steyermark J, Maguire B et al. (eds), Nuevos taxa de la Guayana Venezolana, Acta Bot. Venez. 4: 1-45.

Smith LB. 1986. Revision of the Guayana Highland Bromeliaceae. – Ann. Missouri Bot. Garden 73: 689-721.

Smith LB. 1988. New key to the genera of the Bromeliaceae. – Beitr. Biol. Pflanzen 63: 403-411.

Smith LB, Downs RJ. 1974. Flora Neotropica. Monograph 14:1. Bromeliaceae 1. Pitcairnioideae. – New York Botanical Garden, Hafner Press, New York, pp. 1-660.

Smith LB, Downs RJ. 1977. Flora Neotropica. Monograph 14:2. Bromeliaceae 2. Tillandsioideae. – New York Botanical Garden, Hafner Press, New York, pp. 661-1492.

Smith LB, Downs RJ. 1979. Flora Neotropica. Monograph 14:3. Bromeliaceae 3. Bromelioideae. – New York Botanical Garden, Hafner Press, New York, pp. 1493-2142.

Smith LB, Kress WJ. 1989. New or restored genera of Bromeliaceae. – Phytologia 66: 70-79.

Smith LB, Kress WJ. 1990. New genera of Bromeliaceae. – Phytologia 69: 271-274.

Smith LB, Looser G. 1934. Notas sobre las Bromeliáceas Chilenas. – Rev. Univ. (Santiago) 18: 1075-1081.

Smith LB, Spencer MA. 1992. Reduction of Streptocalyx (Bromeliaceae: Bromelioideae). – Phytologia 72: 96-98.

Smith LB, Spencer MA. 1993. Racinaea, a new genus of Bromeliaceae (Tillandsioideae). – Phytologia 74: 151-160.

Smith LB, Till W. 1998. Bromeliaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 74-99.

Smith PM. 1970. Taxonomy and nomenclature of the brome-grasses (Bromus L. s.l.). – Notes Roy. Bot. Gard. Edinb. 3: 361-375.

Smith PM. 1972. Serology and species relationships in annual bromes (Bromus L. sect. Bromus). – Ann. Bot., N. S., 36: 1-30.

Smith PM. 1985. Observations on Turkish brome-grasses I. Some new taxa, new combinations and notes on typification. – Notes Roy. Bot. Gard. Edinb. 42: 491-501.

Smith PM, Sales F. 1993. Bromus L. sect. Bromus: taxonomy and relationship of some species with small spikelets. – Edinburgh J. Bot. 50: 149-171.

Smith RW. 1910. The floral development and embryogeny of Eriocaulon septangulare. – Bot. Gaz. 49: 281-289.

Smith SG. 1987. Typha: its taxonomy and the ecological significance of hybrids. – Arch. Hydrobiol. 27: 129-138.

Smith SY, Collinson ME, Simpson DA, Rudall PJ, Marone F, Stampanoni M. 2009. Elucidating the affinities and habitat of ancient, widespread Cyperaceae: Volkeria messelensis gen. et sp. nov., a fossil mapanioid sedge from the Eocene of Europe. – Amer. J. Bot. 96: 1506-1518.

Smith SY, Collinson ME, Rudall PJ, Simpson DA. 2010. Cretaceous and Paleogene fossil record of Poales: review and current research. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 333-356.

Smith TW, Waterway MJ. 2008. Evaluating the taxonomic status of the globally rare Carex roanensis and allied species using morphology and amplified fragment length polymorphisms. – Syst. Bot. 33: 525-535.

Smithson E. 1957. Comparative anatomy of the Flagellariaceae. – Kew Bull. 11(1956): 491-501.

Snell RS. 1936. Anatomy of the spikelets and flowers of Carex, Kobresia, and Uncinia. – Bull. Torrey Bot. Club 63: 277-295.

Snogerup S. 1958. Studies in the genus Juncus. Some cytological observations. – Bot. Not. 111: 249-250.

Snogerup S. 1963. Studies in the genus Juncus III. Observations on the diversity of chromosome numbers. – Bot. Not. 116: 142-156.

Snogerup S. 1978. A revision of the Juncus atratus group. – Bot. Not. 131: 189-196.

Snogerup S. 1993. A revision of Juncus subgen. Juncus (Juncaceae). – Willdenowia 23: 23-73.

Snow N. 1996. The phylogenetic utility of lemmatal micromorphology in Leptochloa s.l. and related genera in subtribe Eleusininae (Poaceae, Chloridoideae, Eragrostideae). – Ann. Missouri Bot. Gard. 83: 504-529.

Snow N. 1997. Phylogeny and systematics of Leptochloa P. Beauv. sensu lato (Poaceae, Chloridoideae). – Ph.D. diss. , Washington University, St. Louis, Missouri.

Snow N. 1998a. A new species of Leptochloa (Poaceae, Chloridoideae) from Sri Lanka. – Novon 8: 183-186.

Snow N. 1998b. Caryopsis morphology of Leptochloa sensu lato (Poaceae, Chloridoideae). – Sida 18: 271-282.

Snow N. 2000. A new Leptochloa (Poaceae, Chloridoideae) from Papua New Guinea and the Torres Strait Islands of Australia. – Novon 10: 238-241.

Snow N, Peterson PM. 2012a. Systematics of Trigonochloa (Poaceae, Chloridoideae, Chlorideae). – PhytoKeys 13: 25-38.

Snow N, Peterson PM. 2012b. Nomenclatural notes on Dinebra, Diplachne, Disakisperma and Leptochloa (Poaceae: Chloridoideae). – Phytoneuron 2012-71: 1-2.

Snow N, Peterson PM, Romaschenko K. 2013. Systematics of Disakisperma (Poaceae, Chloridoideae, Chlorideae). – PhytoKeys 26: 21-70.

Snow N, Simon BK. 1997. Leptochloa southwoodii (Poaceae: Chloridoideae), a new species from south-east Queensland. – Austrobaileya 5: 137-143.

Snyder LA. 1957. Apomixis in Paspalum secans. – Amer. J. Bot. 44: 318-324.

Soderstrom TR. 1967. Taxonomic study of subgenus Podosemum and section Epicampes of Muhlenbergia (Gramineae). – Contr. U.S. Natl. Herb. 34: 75-189.

Soderstrom TR. 1980. A new species of Lithachne (Poaceae: Bambusoideae). – Brittonia 32: 495-501.

Soderstrom TR. 1981a. Some evolutionary trends in the Bambusoideae (Poaceae). – Ann. Missouri Bot. Gard. 68: 15-47.

Soderstrom TR. 1981b. The grass subfamily Centothecoideae. – Taxon 30: 614-616.

Soderstrom TR. 1998. Aulonemia fulgor (Poaceae: Bambusoideae), a new species from Mexico. – Brittonia 40: 22-31.

Soderstrom TR, Calderón CE. 1971. Insect pollination in tropical rain forest grasses. – Biotropica 3: 1-16.

Soderstrom TR, Calderón CE. 1974. Primitive forest grasses and evolution of the Bambusoideae. – Biotropica 6: 141-153.

Soderstrom TR, Calderón CE. 1978a. The species of Chusquea (Poaceae: Bambusoideae) with verticillate buds. – Brittonia 30: 154-164.

Soderstrom TR, Calderón CE. 1978b. Chusquea and Swallenochloa (Poaceae: Bambusoideae): generic relationships and new species. – Brittonia 30: 297-312.

Soderstrom TR, Calderón CE. 1979. A commentary on the bamboos (Poaceae: Bambusoideae). – Biotropica 11: 161-172.

Soderstrom TR, Decker HF. 1964. Reederochloa, a new genus of dioecious grasses from Mexico. – Brittonia 16: 334-339.

Soderstrom TR, Decker HF. 1965. Allolepis: a new segregate of Distichlis (Gramineae). – Madroño 18: 33-39.

Soderstrom TR, Decker HF. 1973. Calderonella, a new genus of grasses, and its relationships to the centostecoid genera. – Ann. Missouri Bot. Gard. 60: 427-441.

Soderstrom TR, Ellis RP. 1987. The position of the bamboo genera and allies in a system of grass classification. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 225-238.

Soderstrom TR, Judziewicz EJ. 1987. Systematics of the amphi-atlantic bambusoid genus Streptogyna (Poaceae). – Ann. Missouri Bot. Gard. 74: 871-888.

Soderstrom TR, Londoño X. 1987. Two new genera of Brazilian bamboos related to Guadua (Poaceae: Bambusoideae: Bambuseae). – Amer. J. Bot. 74: 27-39.

Soderstrom TR, Londoño X. 1988. A morphological study of Alvimia (Poaceae: Bambuseae), a new Brazilian bamboo with fleshy fruit. – Amer. J. Bot. 75: 819-839.

Soderstrom TR, Zuloaga FO. 1989. A revision of the genus Olyra and the new segregate genus Parodiolyra (Poaceae: Bambusoideae: Olyreae). – Smithsonian Contr. Bot. 69: i-iv, 1-79.

Soderstrom TR, Ellis RP, Judziewicz EJ. 1987. The Phareae and Streptogyneae (Poaceae) of Sri Lanka: a morphological-anatomical study. – Smithsonian Contr. Bot 65: 1-26.

Soderstrom TR, Hilu KH, Campbell CS, Barkworth ME (eds). 1987. Grass systematics and evolution. – Smithsonian Institution Press, Washington, D.C.

Soderstrom TR, Judziewicz EJ, Clark LG. 1988. Distribution patterns in neotropical bamboos. – In: Vanzolini PE, Heyer WR (eds), Proceedings of the Neotropical biotic distribution pattern workshop, Rio de Janeiro, 1987, Academia Brasileira de Ciências, Rio de Janeiro, pp. 120-156.

Søgaard B, Wettstein-Knowles P von. 1987. Barley: genes and chromosomes. – Carlsberg Res. Commun. 52: 123-196.

Sohns ER. 1955. Cenchrus and Pennisetum: fascicle morphology. – J. Washington Acad. Sci. 45: 135-143.

Sokoloff DD, Remizova MV, Linder HP, Rudall PJ. 2009. Morphology and development of the gynoecium in Centrolepidaceae: the most remarkable range of variation in Poales. – Amer. J. Bot. 96: 1925-1940.

Sokoloff DD, Remizowa MV, Rudall PJ. 2009. A new species of Centrolepis (Centrolepidaceae: Poales) from Northern Australia, with remarkable inflorescence architecture. – Bot. Žurn. 94: 92-100.

Sokoloff DD, Remizowa MV, Linder HP, Macfarlane T, Rudall PJ. 2010. Arrangement of reproductive units in Centrolepis (Poales: Centrolepidaceae): cincinnus or spikelet? – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 425-436.

Sokolovskaya AP, Probatova NS. 1979. Chromosome numbers of some grasses (Poaceae) of the U.S.S.R. flora III. – Bot. Žurn. 64: 1245-1258.

Soltis DE, Gilmartin AJ, Rieseberg L, Gardner S. 1987. Genetic variation in the epiphytes Tillandsia ionantha and T. recurvata (Bromeliaceae). – Amer. J. Bot. 74: 531-537.

Soreng RJ. 1990. Chloroplast-DNA phylogenetics and biogeography in a reticulating group: study in Poa (Poaceae). – Amer. J. Bot. 77: 1383-1400.

Soreng RJ. 1991. Systematics of the ‘Epiles’ group of Poa (Poaceae). – Syst. Bot. 16: 507-528.

Soreng RJ. 1998. An infrageneric classification for Poa in North America, and other notes on sections, species, and subspecies of Poa, Puccinellia, and Dissanthelium (Poaceae). – Novon 8: 187-202.

Soreng RJ (ed). 2003. Catalogue of New World grasses (Poaceae) IV. Subfamily Pooideae. – Contr. U.S. Natl. Herb. 48.

Soreng RJ. 2010. Coleataenia Griseb. (1879): the correct name for Sorengia Zuloaga & Morrone (2010) (Poaceae: Paniceae). – J. Bot. Res. Inst. Texas 4: 691-692.

Soreng RJ, Davis JI. 1998. Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site character sets. – Bot. Rev. (Lancaster) 64: 1-85.

Soreng RJ, Davis JI. 2000. Phylogenetic structure in Poaceae subfamily Pooideae as inferred from molecular and morphological characters: misclassification versus reticulation. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 61-74.

Soreng RJ, Gillespie LJ. 2007. Nicoraepoa (Poaceae, Poeae), a new South American genus based on Poa subg. Andinae, and emendation of Poa sect. Parodiochloa of the Sub-Antarctic Islands. – Ann. Missouri Bot. Gard. 94: 821-849.

Soreng RJ, Peterson PM. 2012. Revision of Poa L. (Poaceae, Pooideae, Poeae, Poinae) in Mexico: new records, re-evaluation of P. ruprechtii, and two new species, P. palmeri and P. wendtii. – PhytoKeys 15: 1-104.

Soreng RJ, Davis JI, Doyle JJ. 1990. A phylogenetic analysis of chloroplast DNA restriction site variation in Poaceae subfam. Pooideae. – Plant Syst. Evol. 172: 83-97.

Soreng RJ, Peterson PM, Davidse G, Judziewicz EJ, Zuloaga FO, Filgueiras TS, Morrone O. 2003. Catalogue of New World grasses (Poaceae) IV. Subfamily Pooideae. – Contr. U.S. Natl. Herb. 48: 1-730.

Soreng RJ, Davis JI, Voionmaa MA. 2007. A phylogenetic analysis of Poaceae tribe Poeae sensu lato based on morphological characters and sequence data from three plastid-encoded genes: evidence for reticulation, and a new classification of the tribe. – Kew Bull. 62: 425-454.

Soreng RJ, Gillespie LJ, Jacobs SWL. 2009. Saxipoa and Sylvipoa – two new genera and a new classification for Australian Poa (Poaceae: Poinae). – Aust. Syst. Bot. 22: 401-412.

Soreng RJ, Bull RD, Gillespie LJ. 2010. Phylogeny and reticulation in Poa based on plastid trnTLF and nrITS sequences with attention to diploids. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 619-643.

Sørensen T. 1953. A revision of the Greenland species of Puccinellia Parl. with contributions to our knowledge of the Arctic Puccinellia flora in general. – Meddel. Grønland 136(3): 1-179.

Sørensen T. 1954. New species of Hierochloë, Calamagrostis and Braya. – Meddel. Grønland 136(8): 1-24.

Soros CL, Bruhl JJ. 2000. Multiple evolutionary origins of C4 photosynthesis in the Cyperaceae. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 629-636.

Spalton LM. 2001. Brome-grasses with small lemmas. – Bot. Soc. Brit. Isles News 87: 21-23.

Spangler RE. 1986. Andropogoneae systematics and generic limits in Sorghum. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 167-170.

Spangler RE. 2003. Taxonomy of Sarga, Sorghum and Vacoparis (Poaceae: Andropogoneae). – Aust. Syst. Bot. 16: 279-299.

Spangler RE, Zaitchik B, Russo E, Kellogg EA. 1999. Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. – Syst. Bot. 24: 267-281.

Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr. 2007. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. – Mol. Ecol. 16: 1701-1711.

Spegazzini C. 1901. Stipeae platenses. – An. Mus. Nac. Montevideo 4: 1-173.

Spegazzini C. 1925. Stipeae platenses. Novae v. criticae. – Rev. Argent. Bot. 1: 9-51.

Speranza PR. 2009. Evolutionary patterns in the Dilatata group (Paspalum, Poaceae). – Plant Syst. Evol. 282: 43-56.

Spies JJ. 1982. Stomatal area as an anatomical criterion for the determination of chromosome number in the Eragrostis curvula complex. – Bothalia 14: 119-122.

Spies JJ, Du Plessis H, Barker NP, Wyk SMC van. 1990. Cytogenetic studies in the genus Chaetobromus. – Genome 33: 646-658.

Spies JJ, Merwe E van der, Du Plessis H, Saayman EJL. 1991. Basic chromosome numbers and polyploid levels in some South African and Australian grasses (Poaceae). – Bothalia 21: 163-170.

Spies JJ, Davidse G, Du Plessis H. 1992. Cytogenetic studies in the genus Tribolium (Poaceae: Arundineae). – Amer. J. Bot. 79: 689-700.

Spies JJ, Spies SK, Wyk SMC van, Malan AF, Liebenberg EJL. 1996. Cytogenetic studies of the subfamily Pooideae (Poaceae) in South Africa 1. The tribe Aveneae, subtribe Aveninae. – Bothalia 26: 53-61.

Spies JJ, Wyk SMC van, Nieman IC, Liebenberg EJL. 1997. Cytogenetic studies in some representatives of the subfamily Pooideae (Poaceae) in South Africa 3. The tribe Poeae. – Bothalia 27: 75-82.

Srivastava SK. 2011. The occurrence of the fossil genus Graminidites in the Maastrichtian Scollard Formation, Alberta, Canada, and its palaeoecological and palaeogeographical significance. – Bot. J. Linn. Soc. 167: 235-248.

Stančik D. 2004. Festuca dinirica and F. guaramacalana (Poaceae, Loliinae), two new species from the Venezuelan Andes. – Novon 14: 341-344.

Standley LA. 1987. Anatomical and chromosomal studies of Carex section Phacocystis in eastern North America. – Bot. Gaz. 148: 507-518.

Stapf O. 1927. Lecomtella madagascariensis, A. Camus. – Hookers’s Icones plantarum, Tabula 3123.

Stapleton CMA. 1994a. The bamboos of Nepal and Bhutan II: Arundinaria, Thamnocalamus, Borinda, and Yushania (Gramineae: Poaceae, Bambusoideae). – Edinb. J. Bot. 51: 275-295.

Stapleton CMA. 1994b. The bamboos of Nepal and Bhutan III: Drepanostachyum, Himalayacalamus, Ampelocalamus, Neomicrocalamus and Chimonobambusa (Gramineae: Poaceae, Bambusoideae). – Edinburgh J. Bot. 51: 301-330.

Stapleton CMA. 1997. The morphology of woody bamboos. – In: Chapman GP (ed), The bamboos, Linnean Society of London Symposium Series, Academic Press, London, pp. 251-267.

Stapleton CMA. 2013. Bergbambos and Oldeania, new genera of African bamboos (Poaceae, Bambusoideae). – PhytoKeys 25: 87-103.

Stapleton CMA, Xia N-H. 2004. Qiongzhuea and Dendrocalamopsis (Poaceae-Bambusoideae): publication by descriptio generico-specifico and typification. – Taxon 53: 526-528.

Stapleton CMA, Chonghaile GN, Hodkinson TR. 2004. Sarocalamus, a new Sino-Himalayan bamboo genus (Poaceae: Bambusoideae). – Novon 14: 345-349.

Starr JR, Ford BA. 2001. The taxonomic and phylogenetic utility of vegetative anatomy and fruit epidermal silica bodies in Carex section Phyllostachys (Cyperaceae). – Can. J. Bot. 79: 362-379.

Starr JR, Ford BA. 2009. Phylogeny and evolution in Cariceae (Cyperaceae): current knowledge and future directions. – Bot. Rev. 75: 110-137.

Starr JR, Bayer RJ, Ford BA. 1999. The phylogenetic position of Carex section Phyllostachys and its implications for phylogeny and subgeneric circumscription in Carex (Cyperaceae). – Amer. J. Bot. 86: 563-577.

Starr JR, Harris SA, Simpson DA. 2003. Potential of the 5’ and 3’ ends of the intergenic spacer (IGS) of rDNA in the Cyperaceae: new sequences for lower level phylogenies in sedges with an example from Uncinia. – Intern. J. Plant Sci. 164: 213-227.

Starr JR, Harris SA, Simpson DA. 2004. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: generic relationships and evolutionary scenarios. – Syst. Bot. 29: 528-544.

Starr JR, Gravel G, Bruneau A, Muasya AM. 2007 [2008]. Phylogenetic implications of a unique 5.8S nrDNA insertion in Cyperaceae. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California [Aliso 23], pp. 84-98.

Stebbins GL. 1947. The origin of the complex of Bromus carinatus and its phytogeographic implications. – Contr. Gray Herb. Harvard Univ. 165: 42-55.

Stebbins GL. 1956. Cytogenetics and evolution of the grass family. – Amer. J. Bot. 43: 890-905.

Stebbins GL. 1972. The evolution of the grass family. – In: Younger VB, McKell CM (eds), The biology and utilization of grasses, Academic Press, New York, pp. 1-17.

Stebbins GL. 1975. The role of polyploid complexes in the evolution of North American grasslands. – Taxon 24: 91-106.

Stebbins GL. 1981a. Coevolution of grasses and herbivores. – Ann. Missouri Bot. Gard. 68: 75-86.

Stebbins GL. 1981b. Chromosomes and evolution in the genus Bromus (Gramineae). – Bot. Jahrb. Syst. 102: 359-379.

Stebbins GL. 1982. Major trends of evolution in the Poaceae and their possible significance. – In: Estes JR, Tyrl RJ, Brunken JN (eds), Grasses and grasslands, University of Oklahoma Press, Norman, Oklahoma, pp. 3-36.

Stebbins GL. 1983. Cytogenetics and phylogeny in the family Poaceae. – Amer. J. Bot. 70: 96-97.

Stebbins GL. 1987. Grass systematics and evolution: past, present and future. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 359-367.

Stebbins GL, Crampton B. 1961. A suggested revision of the grass genera of temperate North America. – In: Recent advances in botany, from lectures and symposia presented to the IX International Botanical Congress, Montreal 1959, vol. 1, University of Toronto Press, Toronto, pp. 133-145.

Stebbins GL, Love RM. 1941. A cytological study of California forage grasses. – Amer. J. Bot. 28: 371-382.

Stebbins GL, Tobgy HA. 1944. The cytogenetics of hybrids in Bromus 1. Hybrids within the section “Ceratochloa”. – Amer. J. Bot. 31: 1-11.

Stebbins GL, Zohary D. 1959. Cytogenetic and evolutionary studies in the genus Dactylis I. Morphology, distribution, and interrelationship of the diploid subspecies. – Univ. Calif. Publ. Bot. 31(1).

Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens-Mack J, Pires JC. 2012. Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. – Amer. J. Bot. 99: 330-348.

Stephenson SN. 1972. A putative Distichlis x Monanthocloë (Poaceae) hybrid from Baja California, Mexico. – Madroño 21: 125-127.

Stevenson DW. 1983. Systematic implications of the floral morphology of the Mayacaceae. – Amer. J. Bot. 70(5, pt. 2): 32.

Stevenson DW. 1998. Mayacaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 294-296.

Stevenson DW, Colella M, Boom B. 1998. Rapateaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 415-424.

Steyermark JA. 1984. Flora of the Venezuelan Guyana 1. – Ann. Missouri Bot. Gard. 71: 297-340.

Stieber MT. 1982. Revision of Ichnanthus sect. Ichnanthus (Gramineae, Panicoideae). – Syst. Bot. 7: 85-115.

Stieber MT. 1987. Revision of Ichnanthus sect. Foveolatus (Gramineae, Panicoideae). – Syst. Bot. 12: 187-216.

St. John H. 1941. Teratological Typha. – Rhodora 43: 85-91.

St. John H. 1978. Revision of Joinvillea (Joinvilleaceae). Pacific plant studies 37. – Phytologia 40: 369-374.

St. John H. 1984. Pacific plant studies 41. Machaerina and Uncinia (Cyperaceae) on Rapa, Austral Islands. – Nord. J. Bot. 4: 57-60.

Stock WD, Chuba DK, Verboom GA. 2004. Distribution of South African C3 and C4 species of Cyperaceae in relation to climate and phylogeny. – Aust. Ecol. 29: 313-319.

Stoeva M, Popova E. 1997. A taxonomic study of Carex sect. Phaestoglochin and sect. Stellulatae (Cyperaceae) in Bulgaria. – Bocconea 5: 787-796.

Stoll M, Begerow D, Piepenbring M, Oberwinkler F. 2003. Co-evolution of “smut fungi” (Ustilaginales) and grasses (Poaceae). – Palm. Hortus Francofurt. 7: 135.

Stone BC. 1981. Nomenclature of Joinvillea (Joinvilleaceae). – Gard. Bull. (Singapore) III, 34: 223-225.

Stover EL. 1934. Development and differentiation of tissue in the stem tips of grasses. – Ohio J. Sci. 34: 150-159.

Strandhede S-O. 1965a. Chromosome studies in Eleocharis, subser. Palustres III. Observations on Western European taxa. – Opera Bot. 9(2): 1-86.

Strandhede S-O. 1965b. Chromosome studies in Eleocharis, subser. Palustres IV. A possible case of an extra, reductional division giving rise to hemi-haploid pollen nuclei. – Bot. Not. 118: 243-253.

Strandhede S-O. 1966. Morphologic variation and taxonomy in European Eleocharis, subser. Palustres. – Opera Bot. 10(2): 1-187.

Strandhede S-O. 1967. Eleocharis, Subser. Eleocharis in North America. Taxonomical comments and chromosome numbers. – Bot. Not. 120: 355-368.

Strandhede S-O. 1973. Pollen development in the Eleocharis palustris group (Cyperaceae) II. Cytokinesis and microspore degeneration. – Bot. Not. 126: 255-265.

Streetman LJ. 1963a. Reproduction of the lovegrasses, the genus Eragrostis I. E. chloromelas Steud., E. curvula (Schrad.) Nees, E. lehmaniana Nees and E. superba Peyr. – Wrightia 3: 41-51.

Streetman LJ. 1963b. Reproduction of the lovegrasses, the genus Eragrostis II. E. bicolor Nees, E. plana Nees, E. intermedia Hitchc. and E. obtusa Munro. – Wrightia 3: 52-60.

Strehl T, Winkler S. 1982. Vergleichende Untersuchungen über die Trichome der Bromeliaceen. – Beitr. Biol. Pflanzen 56: 415-438.

Strehl T, Winkler S. 1983. Vergleichende Studien zum Bau der Bromeliaceenwurzeln. – Beitr. Biol. Pflanzen 58: 219-235.

Strömberg CAE. 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. – Proc. Natl. Acad. Sci. U.S.A. 102: 11980-11984.

Strömberg CAE, McInerney FA. 2011. The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths. – Paleobiology 37: 50-71.

Strömberg CAE, Werdelin L, Friis EM, Saraç Gl. 2007. The spread of grass-dominated habitats in the Eastern Mediterranean during the Cainozoic: phytolith evidence. – Palaeogeogr. Palaeoclim. Palaeoecol. 250: 18-49.

Strydom A, Spies JJ. 1994. A cytotaxonomic study of some representatives of the tribe Cynodonteae (Chloridoideae, Poaceae). – Bothalia 24: 92-96.

Stuckert T. 1904. Contribución al conocimiento de las gramináceas argentinas. – An. Mus. Nac. Hist. Nat. Buenos Aires, ser. III, 4: 43-161.

Stuckert T. 1906. Segunda contribución al conocimiento de las gramináceas argentinas. – An. Mus. Nac. Hist. Nat. Buenos Aires, ser. III, 6: 409-555.

Stuckert T. 1911. Tercera contribución al concimiento de las gramináceas argentinas. – An. Mus. Nac. Hist. Nat. Buenos Aires, ser. III, 14: 1-214.

Stützel T. 1984. Blüten- und infloreszenzmorphologische Untersuchungen zur Systematik der Eriocaulaceen. – Diss. Bot. 71: 1-108.

Stützel T. 1985a. Die epipetalen Drüsen der Gattung Eriocaulon (Eriocaulaceae). – Beitr. Biol. Pflanzen 60: 271-276.

Stützel T. 1985b. Die Bedeutung monothecat-bisporangiater Antheren als systematisches Merkmal zur Gliederung der Eriocaulaceae. – Bot. Jahrb. Syst. 105: 433-438.

Stützel T. 1987. On the morphological and systematic position of the genus Moldenkeanthus (Eriocaulaceae). – Plant Syst. Evol. 156: 133-141.

Stützel T. 1988. Untersuchungen zur Wurzelanatomie der Eriocaulaceen. – Flora 180: 223-239.

Stützel T. 1990. “Appendices” am Gynoeceum der Xyridaceen. – Beitr. Biol. Pflanzen 65: 275-299.

Stützel T. 1998. Eriocaulaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 197-207.

Stützel T, Gansser N. 1995. Floral morphology of North American Eriocaulaceae and its taxonomic implications. – Feddes Repert. 106: 495-502.

Stützel T, Trovó M. 2013. Inflorescences in Eriocaulaceae: taxonomic relevance and practical implications. – Ann. Bot. 112: 1505-1522.

Stützel T, Weberling F. 1982. Untersuchungen über Verzweigung und Infloreszenzaufbau von Eriocaulaceen. – Flora 172: 105-112.

Subils R. 1973. Poliembrionía en especies Argentinas de Tillandsia (Bromeliaceae). – Kurtziana 7: 266-267.

Subramanyam K, Narayana HS. 1972. Some aspects of the floral morphology and embryology of Flagellaria indica L. – In: Murty YS, Johri BM, Mohan Ram HY, Varghese TM (eds), Advances in plant morphology, Trakashan, Neerut, India, pp. 211-217.

Suessenguth K. 1943. Einige neue Gattungen und Arten der Cyperaceae aus Südamerika. – Bot. Jahrb. Syst. 73: 113-125.

Suessenguth K, Beyerle R. 1935. Über die Xyridaceengattung Abolboda Humb. et Bonpl. – Bot. Jahrb. Syst. 67: 132-142.

Sujatha DM, Manga V, Rao MVS, Murty JSR. 1989. Meiotic studies in some species of Pennisetum (L.) Rich. (Poaceae). – Cytologia 54: 641-652.

Sulekic AA. 2006. Una nueva especie de Paspalum (Poaceae, Paniceae) para la Argentina. – Darwiniana 44: 127-130.

Sulman JD, Drew BT, Drummond C, Hayasaka E, Sytsma KJ. 2013. Systematics, biogeography, and character evolution of Sparganium (Typhaceae): diversification of a widespread, aquatic lineage. – Amer. J. Bot. 100: 2023-2039.

Sun G. 2014. Molecular phylogeny revealed complex evolutionary process in Elymus species. – J. Syst. Evol. 52: 706-711.

Sun G, Komatsuda T. 2010. Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. – Mol. Phylogen. Evol. 56: 727-733.

Sun Y, Skinner DZ, Liang G-H, Hulbert SH, 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. – Theor. Appl. Gen. 89: 26-32.

Sun Y, Xia N, Lin R. 2005. Phylogenetic analysis of Bambusa (Poaceae: Bambusoideae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. – Biochem. Genet. 43: 603-612.

Sun Y, Xia N, Stapleton CMA. 2006. Relationships between Bambusa species (Poaceae, Bambusoideae) revealed by random amplified polymorphic DNA. – Biochem. Syst. Ecol. 34: 417-423.

Sungkaew S. 2008. Taxonomy and systematics of Dendrocalamus (Bambuseae; Poaceae). – Ph.D. diss., University of Dublin, Trinity College, Dublin, Ireland.

Sungkaew S, Teerawatananon A, Parnell JAN, Stapleton CMA, Hodkinson TR. 2008. Phuphanochloa, a new bamboo genus (Poaceae: Bambusoideae) from Thailand. – Kew Bull. 63: 669-673.

Sungkaew S, Stapleton CM, Salamin N, Hodkinson TR. 2009. Non-monophyly of the woody bamboos (Bambuseae; Poaceae): a multi-gene region phylogenetic analysis of Bambusoideae s.s. – J. Plant Res. 122: 95-108.

Sungkaew S, Stapleton CMA, Hodkinson TR. 2010. Phylogenetics of Dendrocalamus (Poaceae: Bambusoideae, Bambuseae, Bambusionae) and its related genera based on combined multi-gene analyses. – In: Seberg O, Petersen G, Barfod AS, Davis JI (eds), Diversity, phylogeny, and evolution in the monocotyledons, Aarhus University Press, Århus, pp. 497-510.

Sur PR. 2001. A revision of the genus Ischaemum Linn. (Poaceae) in India. – J. Econ. Taxon. Bot. 25: 407-438.

Süssenguth K. 1943. Einige neue Gattungen der Cyperaceae aus Südamerika. – Bot. Jahrb. Syst. 73: 113-125.

Suzuki S. 1978. Index to Japanese Bambusaceae. – Gakken Co. Ltd., Tokyo.

Svenson HK. 1929. Monographic studies in the genus Eleocharis. – Rhodora 31: 121-135.

Svenson HK. 1934. Monographic studies in the genus Eleocharis. – Rhodora 36: 377-389.

Svenson HK. 1929. Monographic studies in the genus Eleocharis. – Rhodora 39: 271-272.

Svenson HK. 1939. Monographic studies in the genus Eleocharis. – Rhodora 41: 13-19; 43-77; 95-104.

Swallen JR. 1931. Five new grasses from Colombia. – J. Washington Acad. Sci. 21: 14-16.

Swallen JR. 1965. The grass genus Luziola. – Ann. Missouri Bot. Gard. 52: 472-475.

Swallen JR. 1966. Notes on grasses. – Phytologia 14: 65-98.

Swallen JR. 1967. New species of Paspalum. – Phytologia 14: 358-389.

Swallen JR. 1968. Acostia, a new genus of grasses from Ecuador. – Bol. Soc. Argent. Bot. 12: 109-110.

Swami UBS. 1963. The chromosome numbers in some of the grasses of Andra Pradesh, India. – Curr. Sci. 32: 267-268.

Sykes GR, Christensen AH, Peterson PM. 1997. A chloroplast DNA analysis of Chaboissaea (Poaceae: Eragrostideae). – Syst. Bot. 22: 291-302.

Syme AE. 2012. Diversification rates in the Australasian endemic grass Austrostipa: 15 million years of constant evolution. – Plant Syst. Evol. 298: 221-227.

Syme AE, Murphy DJ, Holmes GD, Gardner S, Fowler R, Cantrill DJ. 2012. An expanded phylogenetic analysis of Austrostipa (Poaceae: Stipeae) to test infrageneric relationships. – Aust. Syst. Bot. 25: 1-10.

Szidat L. 1922. Die Samen der Bromeliaceen in ihrer Anpassung an den Epiphytismus. – Bot. Archiv 1: 29-46.

Takahashi H, Sohma K. 1984. Development of pollen tetrads in Typha latifolia L. – Pollen Spores 26: 5-18.

Takahashi K, Watano Y, Shimizu T. 1994. Allozyme evidence for intersectional and intergeneric hybridization in the genus Sasa and its related genera (Poaceae: Bambusoideae). – J. Phytogeogr. Taxon. 42: 49-60.

Talavera S. 1978. Aportación al studio cariologico de las gramíneas españolas. – Lagascalia 7: 133-142.

Tanaka N. 1939a. Chromosome studies in Cyperaceae IV. Chromosome numbers of Carex species. – Cytologia 10: 51-58.

Tanaka N. 1939b. Chromosome studies in Cyperaceae V. Pollen development of Carex grallatoria Maxim. var. heteroclita Kückenth. ex Matsum. – Jap. J. Genet. 15: 153-157.

Tanaka N. 1941. Chromosome studies in Cyperaceae XII. Pollen development in five genera, with special reference to Rhynchospora. – Bot. Mag. Tokyo 55: 55-65.

Tanaka N. 1942a. Chromosome studies in Cyperaceae XIX. Chromosome numbers of Carex (Vignea I). Med. & Biol. 2: 215-219.

Tanaka N. 1942b. Chromosome studies in Cyperaceae XX. Chromosome numbers of Carex (Vignea II). – Med. & Biol. 2: 220-224.

Tanaka N. 1942c. Chromosome studies in Cyperaceae XV. Chromosome numbers of Eucarex species (5). – Med. & Biol. 2: 421-424.

Tanaka N. 1942d. Chromosome studies in Cyperaceae XVI. Chromosome numbers of Eucarex species (6). – Med. & Biol. 2: 425-428.

Tanaka N. 1948. Chromosome studies in Cyperaceae, with special reference to the problem of aneuploidy. – Biol. Contr. Japan 4: 1-327.

Tang L, Zou X-H, Achoundong G, Potgieter C, Second G Zhang D-Y, Ge S. 2010. Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments. – Mol. Phylogen. Evol. 54: 266-277.

Tanji S. 1925. Chromosome numbers of wild barleys. – Bot. Mag. (Tokyo) 39: 55-57.

Tatanov IV. 2004. Vnutrirodovaja sistema roda Bolboschenus (Aschers.) Palla (Cyperaceae). – Novosti Sist. Vysš. Rast. 36: 80-95.

Tateoka T. 1954. Karyotaxonomic studies in Poaceae I. – Ann. Rep. Natl. Inst. Genet., Misima 4: 45-47.

Tateoka T. 1955. Karyotaxonomic studies in Poaceae III. – Ann. Rep. Natl. Inst. Genet., Misima 6: 73-74.

Tateoka T. 1957a. Notes on some grasses III. 5. Affinities of the genus Brylkinia; 6. Systematic position of the genus Diarrhena. – Bot. mag. (Tokyo) 70: 8-12.

Tateoka T. 1957a. Notes on some grasses IV. Systematic position of the genus Brachyelytrum. – J. Jap. Bot. 32: 111-114.

Tateoka T. 1957b. Miscellaneous papers on the phylogeny of Poaceae X. Proposition of a new phylogenetic system of Poaceae. – J. Jap. Bot. 32: 275-287.

Tateoka T. 1960. Cytology in grass systematics: a critical review. – Nucleus 3: 81-110.

Tateoka T. 1962a. Starch grains of endosperm in grass systematics. – Bot. Mag. (Tokyo) 75: 336-343.

Tateoka T. 1962b. A cytological study of some Mexican grasses. – Bull. Torrey Bot. Club 89: 77-81.

Tateoka T. 1963. Notes on some grasses XIII. Relationship between Oryzeae and Ehrharteae, with special reference to leaf anatomy and histology. – Bot. Gaz. (Chicago) 124: 264-270.

Tateoka T. 1964. Notes on some grasses XVI. Embryo structure of the genus Oryza in relation to systematics. – Amer. J. Bot. 51: 539-543.

Tateoka T. 1965a. Chromosome numbers of some grasses from Madagascar. – Bot. Mag. (Tokyo) 78: 306-311.

Tateoka T. 1965b. Chromosome numbers of some East African grasses. – Amer. J. Bot. 52: 864-869.

Tateoka T. 1986. Chromosome numbers in the tribe Stipeae (Poaceae) in Japan. – Bull. Natl. Sci. Mus. Tokyo, Ser. B, 12: 151-154.

Tateoka T, Inoue S, Kawano S. 1959. Notes on some grasses IX. Systematic significance of bicellular microhairs of leaf epidermis. – Bot. Gaz. (Chicago) 121: 80-91.

Tejavathi DH. 1987. Seed development in some members of Cyperaceae. – Beitr. Biol. Pflanzen 62: 43-55.

Teppner H. 2002. Poaceae in the greenhouses of the Botanic Garden of the Institute of Botany in Graz (Austria, Europe). – Fritschiana (Graz) 31: 1-42.

Terauchi T, Ogihara Y, Tsunewaki K. 1987. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops VI. Complete nucleotide sequences of the rbcL genes encoding H- and L-type rubisco large subunits in common wheat and Aegilops crassa 4x. – Jap. J. Genet. 62: 375-388.

Termeh F. 1975. Contribution à l’étude de quelques graminées nouvelles pour la flore de l’Iran. – Publ. Dep. Bot. Plant Pest Diseases Res. Inst. 5.

Terrell EE. 1968. A taxonomic revision of the genus Lolium. – Techn. Bull. U.S. Dept. Agric. 1392.

Terrell EE. 1971. Survey of occurrences of liquid or soft endosperm in grass genera. – Bull. Torrey Bot. Club 98: 264-268.

Terrell EE, Robinson H. 1974. Luziolinae, a new subtribe of oryzoid grasses. – Bull. Torrey Bot. Club 101: 235-245.

Terry RG, Brown GK. 1996. A study of evolutionary relationships in Bromeliaceae based on comparison of DNA sequences from the chloroplast gene ndhF. – J. Bromeliad Soc. 46: 107-112, 123.

Terry RG, Brown GK, Olmstead RG. 1997a. Examination of subfamilial phylogeny in Bromeliaceae using comparative sequencing of the plastid locus ndhF. – Amer. J. Bot. 84: 664-670.

Terry RG, Brown GK, Olmstead RG. 1997b. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) using ndhF sequences. – Syst. Bot. 22: 333-345.

Thanikaimoni G. 1965. Contribution to the pollen morphology of Eriocaulaceae. – Pollen Spores 7: 181-191.

Theile HL, Clifford HT, Rogers RW. 1996. Diversity in the grass pistil and its taxonomic significance. – Aust. Syst. Bot. 9: 903-912.

The International Brachypodium Initiative. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. – Nature 463: 763-768.

Thimm U. 1985. Zur Embryologie, Blüten- und Fruchtanatomie der isolierten Juncales-Gattungen Prionia und Thurnia. – Diploma Thesis, Universität Bochum, Germany.

Thomas WW. 1984a. The systematics of Rhynchospora section Dichromena. – Mem. New York Bot. Gard. 37: 1-116.

Thomas WW. 1984b. Insect pollination of Cymophyllus fraseri (Andrews) Mackenzie. – Castanea 49: 94-95.

Thomas WW, Davidse G. 1989. Koyamaea neblinensis, a new genus and species of Cyperaceae (Sclerioideae) from Cerro de la Neblina, Venezuela and Brazil. – Syst. Bot. 14: 189-196.

Thomas WW, Araújo AC, Alves MV. 2009. A preliminary molecular phylogeny of the Rhynchosporeae (Cyperaceae). – Bot. Rev. 75: 22-29.

Thomasson JR. 1978. Epidermal patterns of the lemma in some fossil and living grasses and their phylogenetic significance. – Science 199: 975-977.

Thomasson JR. 1980. Paleoeriocoma (Gramineae, Stipeae) from the Miocene of Nebraska: taxonomic and phylogenetic significance. – Syst. Bot. 5: 233-240.

Thomasson JR. 1981. Micromorphology of the lemma in Stipa robusta and Stipa viridula (Gramineae: Stipeae): taxonomic significance. – S. W. Natur. 26: 211-214.

Thomasson JR. 1982. Fossil grass anthoecia and other plant fossils from arthropod burrows in the Miocene of Western Nebraska. – J. Paleontology 56: 1011-1017.

Thomasson JR. 1985. Miocene fossil grasses: possible adaptations in reproductive bracts (lemma and palea). – Ann. Missouri Bot. Gard. 72: 843-851.

Thomasson JR. 1986a. Fossil grasses: 1820-1986 and beyond. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 159-167.

Thomasson JR. 1986b. Lemma epidermal features in the North American species of Melica and selected species of Briza, Catabrosa, Glyceria, Neostapfia, Pleuropogon, and Schizachne (Gramineae). – Syst. Bot. 11: 253-262.

Thomasson JR. 1987. Fossil grasses: 1820-1986 and beyond. – In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds), Grass systematics and evolution, Smithsonian Institution Press, Washington, D.C., pp. 159-167.

Thomasson JR. 2005. Berriochloa gabelii and Berriochloa hulettii (Gramineae: Stipeae), two new grass species from the late Miocene Ash Hollow Formation of Nebrfaska and Kansas. – J. Paleontol. 79: 185-199.

Thomasson JR, Nelson ME, Zarkzewski RJ. 1986. A fossil grass (Gramineae: Chloridoideae) from the Miocene with Kranz anatomy. – Science 233: 876-878.

Thompson BE, Bartling L, Whipple C, Hall DH, Sakai H, Schmidt R, Hake S. 2009. bearded ear encodes a MADS box transcription factor critical for maize floral development. – Plant Cell 21: 2578-2590.

Tieghem P van. 1897. Morphologie de l’embryon et de la plantule chez les Graminées et les Cyperacées. – Ann. Sci. Nat. Bot. Biol. Vég. 8: 259-309.

Tiemann A. 1985. Untersuchungen zur Embryologie, Blütenmorphologie und Systematik der Rapateaceen und der Xyridaceen-Gattung Abolboda (Monocotyledoneae). – Diss. Bot. 82: 1-202.

Tietze M. 1906. Physiologiche Bromeliaceen-Studien II. Die Entwicklung der Wasseraufnehmenden Bromeliaceen-Trichome. – Zeitschr. Naturwiss. 78: 1-49.

Till W. 1984. Sippendifferenzierung innerhalb von Tillandsia subgenus Diaphoranthema in Südamerika mit besonderer Berücksichtigung des Andenostrandes und der angrenzenden Gebiet. – Ph.D. diss., Botantisches Institut, Universität Wien, Austria.

Till W. 1992. Systematics and evolution of the tropical-subtropical Tillandsia subgenus Diaphoranthema (Bromeliaceae). – Selbyana 13: 88-94.

Tillich H-J. 1996. Seeds and seedlings in Hanguanaceae and Flagellariaceae (monocotyledons). – Sendtnera 3: 187-197.

Tillich H-J. 2007. Seedling diversity and homologies of seedling organs in the order Poales (monocotyledons). – Ann. Bot. 100: 1413-1429.

Tillich H-J, Sill E. 1999. Morphological and anatomical systematics of Hanguana Blume (Hanguanaceae) and Flagellaria L. (Flagellariaceae) with a description of a new species, Hanguana bogneri spec. nov. – Sendtnera 6: 215-238.

Timonen T. 1985. Synflorescence morphology and anatomy in Kobresia laxa (Cyperaceae). – Ann. Bot. Fenn. 22: 153-171.

Timonen T. 1989. Synflorescence structure of Schoenoxiphium lanceum (Cyperaceae). – Ann. Bot. Fenn. 26: 319-342.

Timonen T. 1993. Synflorescence structure of some hetero-, homo- and monostachyae sedges (Carex, Cyperaceae). – Ann. Bot. Fenn. 30: 21-42.

Timonen T. 1998. Inflorescence structure in the sedge tribe Cariceae (Cyperaceae). – Publ. Bot. Univ. Helsinki 26: 1-35.

Tinney FW. 1940. Cytology of parthenogenesis in Poa pratensis. – J. Agric. Res. 60: 351-360.

Toderash LG. 1979. Chromosome numbers of four species of the genus Carex L. – Izv. Akad. Nauk. Moldavsk. SSR, Ser. Biol. Khim. (Kishinev) 4: 82-87. [In Russian]

Toivonen H. 1981. Spontaneous Carex hybrids of Heleonastes and related sections in Fennoscandia. – Acta Bot. Fenn. 116: 1-51.

Tomlinson PB. 1969. Commelinales-Zingiberales. – In: Metcalfe CR (ed), Anatomy of the monocotyledons 3, Oxford.

Tomlinson PB. 1970. Dichotomous branching in Flagellaria indica (monocotyledons). – Bot. J. Linn. Soc. 63 [Suppl.] 1: 1-14.

Tomlinson PB, Posluszny U. 1977. Features of dichotomizing apices in Flagellaria indica (Monocotyledones). – Amer. J. Bot. 64: 1057-1065.

Tomlinson PB, Smith AC. 1970. Joinvilleaceae, a new family of monocotyledons. – Taxon 19: 887-889.

Toolin L, Reeder JR. 2000. The status of Setaria macrostachya and its relationship to S. vulpiseta (Gramineae). – Syst. Bot. 25: 26-32.

Torrecilla P, Catalán P. 2002. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. – Syst. Bot. 27: 241-251.

Torrecilla P, López-Rodríguez JA, Stancik D, Catalán P. 2003. Systematics of Festuca sects. Eskia Willk., Pseudatropis Kriv., Amphigenes (Janka) Tzvel., Pseudoscariosa Kriv. and Scariosae Hack. based on analysis of morphological characters and DNA sequences. – Plant Syst. Evol. 239: 113-139.

Torres AM. 1993. Revisión del género Stipa (Poaceae) en la provincia de Buenos Aires. – Monogr. Comis. Invest. Ci. [ Buenos Aires], Comisión de Investigaciones Científicas, La Plata, 12: 3-62.

Torres AM. 1997a. Nassella (Gramineae) del noroeste de la Argentina. – Monogr. Comis. Invest. Ci. [Buenos Aires], Comisión de Investigaciones Científicas, La Plata, 13: 5-45.

Torres AM. 1997b. Stipa (Gramineae) del noroeste de la Argentina. – Monogr. Comis. Invest. Ci. [Buenos Aires], Comisión de Investigaciones Científicas, La Plata, 13: 46-67.

Torres AM. 1997c. Nicoraella (Gramineae) un nuevo género para America del Sur. – Monogr. Comis. Invest. Ci. [Buenos Aires], Comisión de Investigaciones Científicas, La Plata, 13: 69-77.

Torres Gonzalez AM, Morton CM. 2005. Molecular and morphological phylogenetic analysis of Brachiaria and Urochloa (Poaceae). – Mol. Phylogen. Evol. 37: 36-44.

Tournay R. 1961. La nomenclature des sections du genre Bromus L. (Gramineae). – Bull. Jard. Bot. État 31: 289-299.

Tovar O. 1993. Las gramíneas (Poaceae) del Perú. – Ruizia 13: 9-480.

Trabut ML. 1889. Révision des caractères des Stipa gigantea Lag., Lagascae R. et Sch., Letourneuxii sp. nov., Fontanesii Parlat.; Cleistogamie chez les Stipa. – Bull. Soc. Bot. France 36: 404-407.

Traiperm P, Boonkerd T, Chantaranothai P, Simpson DA. 2012. Notes on the genus Ischaemum (Poaceae). – Kew Bull. 67: 75-79.

Tran VT, Nguyen HN, Xia N-H. 2013. Annamocalamus H. N. Nguyen, N.-H. Xia & V. T. Tran, a new genus of bamboo (Poaceae) from Vietnam. – Candollea 68: 159-165.

Trethewey JAK, Campbell LM, Harris PJ. 2005. (1->3),(1->4)-ß-D-glucans in the cell walls of the Poales (sensu lato): an immunogold labelling study using a monoclonal antibody. – Amer. J. Bot. 92: 1660-1674.

Trigas P, Constantinidis T, Touloumenidou T. 2009. A new hexaploid species of Centaurea section Acrolophus (Asteraceae) from Evvia Island, Greece. – Bot. J. Linn. Soc. 158: 762-774.

Triplett JK. 2008. Phylogenetic relationships among the temperate bamboos (Poaceae: Bambusoideae) with an emphasis on Arundinaria and allies. – Iowa State University, Amers, Iowa.

Triplett JK, Clark LG. 2010. Phylogeny of the temperate bamboos (Poaceae: Bambusoideae: Bambuseae) with an emphasis on Arundinaria and allies. – Syst. Bot. 35: 102-120.

Triplett JK, Oltrogge KA, Clark LG. 2010. Phylogenetic relationships and natural hybridization among the North American woody bamboos (Poaceae: Bambusoideae: Arundinaria). – Amer. J. Bot. 97: 471-492.

Trofimovskaja AJ, Kobylianskij VD. 1964. Classification of wild barleys for breeding purposes. – Bull. Appl. Bot. Genet. Plant Breeding 36: 53-88.

Trovó M, Sano PT. 2010. Taxonomic survey of Paepalanthus section Diphyomene (Eriocaulaceae). – Phytotaxa 14: 49-55.

Trovó M, Stützel T. 2013. On the morphological position of Paepalanthus subgenus Psilandra (Eriocaulaceae). – Plant Syst. Evol. 299: 115-121.

Trovó M, Andrade MJG, Sano PT, Ribeiro PL, Berg C. 2013. Molecular phylogenetics and biogeography of Neotropical Paepalanthoideae with emphasis on Brazilian Paepalanthus (Eriocaulaceae). – Bot. J. Linn. Soc. 171: 225-243.

Tucker GC. 1982. A new species of Cyperus (Cyperaceae) from Costa Rica and Mexico. – Syst. Bot. 7: 345-347.

Tucker GC. 1983. The taxonomy of Cyperus (Cyperaceae) in Costa Rica and Panama. – Syst. Bot. Monogr. 2.

Tucker GC, Miller NG. 1990. Achene microstructure in Eriophorum (Cyperaceae): taxonomic implications and paleobotanical applications. – Bull. Torrey Bot. Club 117: 266-283.

Tulloch AP. 1973. Composition of leaf surface waxes of Triticum species: variation with age and tissue. – Phytochemistry 12: 2225-2232.

Tulloch AP. 1981. Composition of epicuticular waxes from 28 genera of Gramineae: differences between subfamilies. – Can. J. Bot. 59: 1213-1221.

Tulloch AP, Baum BR, Hoffman LL. 1980. A survey of epicuticular waxes among genera of Triticeae 2. Chemistry. – Can. J. Bot. 58: 2602-2615.

Türpe AM. 1984. Revision of the South American species of Schizachyrium (Gramineae). – Kew Bull. 39: 169-178.

Tutin G. 1936. A revision of the genus Pariana (Gramineae). – Bot. J. Linn. Soc. 50: 337-362.

Tyrrell CD, Santos-Gonçalves AP, Londoño X, Clark LG. 2012. Molecular phylogeny of the arthrostylidioid bamboos (Poaceae: Bambusoideae: Bambuseae: Arthrostylidiinae) and new genus Didymogonyx. – Mol. Phylogen. Evol. 65: 136-148.

Tzvelev NN. 1964. De genere Colpodium Trin. – Nov. Sist. Vysh. Rast. 1964: 5-19. [In Russian]

Tzvelev NN. 1973a. Conspectus specierum tribus Triticeae Dum. familiae Poaceae in Flora URSS. – Nov. Syst. Plant. Vasc., 10: 19-59. [In Russian]

Tzvelev NN. 1973b. Notae de graminis florae URSS 7. – Nov. Syst. Plant Vasc. 10: 79-98. [In Russian]

Tzvelev NN. 1974. Notulae de tribu Stipeae Dum. (Fam. Poaceae) in URSS. – Novosti Sist. Vysš. Rast. 11: 4-21. [In Russian]

Tzvelev NN. 1976. Grasses of the Soviet Union. – Nauka Publ., Leningrad. [In Russian]

Tzvelev NN. 1977. On the origin and evolution of feathergrasses (Stipa L.). – In: Lebedev DV, Karamysheva ZV (eds), Problemy ekologii, geobotaniki, botanicheskoi geografii i floristiki, Academiya Nauk SSSR, Leningrad, pp. 139-150. [In Russian]

Tzvelev NN. 1983. Grasses of the Soviet Union. Transl. from Russian by B. R.Sharma, Smithsonian Institution. – Amerind Publ. Co., New Delhi.

Tzvelev NN. 1989. The system of grasses (Poaceae) and their evolution. – Bot. Rev. 55: 141-203.

Tzvelev NN. 2005. O proishozhdenii i evolyutzii kovyley (Stipa L.) [On the origin and evolution of feathergrasses (Stipa L.)]. – In: Geltman DV (ed), Problemy teoreticheskiy morfologii i evolyutzii vysšikh rasteniy, Tovarischestvo nauchnykh izdaniy KMK, Moskwa & St.-Petersburg, pp. 332-349.

Tzvelev NN, Bolchovskieh V. 1965. On the genus Zingeria P. Smirn. and related genera in the family Gramineae – a karyosystematic study. – Bot. Žurn. 50: 1317-1320. [In Russian]

Überfeld M. 1925. Beiträge zur Kenntniss des sexuellen Dimorphismus der Restionaceae. – Engl. Bot. Jahrb. Syst. 60: 176-206.

Uchikawa L. 1935. Karyological studies in Japanese bamboo II. Further studies on chromosome numbers. – Jap. J. Gen. 11: 308-313.

Ueno O, Koyama T. 1987. Distribution and evolution of C4 syndrome in Rhynchospora (Rhynchosporeae-Cyperaceae). – Bot. Mag. (Tokyo) 100: 63-85.

Ueno O, Samejima M. 1989. Structural features of NAD-malic enzyme type C4 Eleocharis: an additional report of C4 acid decarboxylation types of the Cyperaceae. – Bot. Mag. (Tokyo) 102: 393-402.

Ueno O, Takeda T, Maeda E. 1988. Leaf ultrastructure of C4 species possessing different Kranz anatomical types in the Cyperaceae. – Bot. Mag. (Tokyo) 101: 141-152.

Ueno O, Samejima M, Koyama T. 1989. Distribution and evolution of C4 syndrome in Eleocharis, a sedge group inhabiting wet and aquatic environments, based on culm anatomy and carbon isotope ratios. – Ann. Bot., N. S., 64: 425-438.

Uitten H. 1935. Principia, genus novum Cyperacearum Africanum. – Recl. Trav. Bot. Néerland. 32: 282-285.

Unwin MM. 2004. Molecular systematics of the Eriocaulaceae Martinov. – Ph.D. diss., Miami University, Oxford, Ohio.

Uphof JCT. 1924. The physiological anatomy of Mayaca fluviatilis. – Ann. Bot. 38: 389-393.

Utley J. 1978. A revision of the Costa Rican thecophylloid Vrieseas (Bromeliaceae). – Ph.D. diss., Duke University, Durham, North Carolina.

Utley J. 1983. A revision of the Middle American thecophylloid Vrieseas (Bromeliaceae). – Tulane Stud. Zool. Bot. 24: 1-81.

Valdés B. 1973. Revisión de lase species anuales del género Anthoxanthum (Gramineae). – Lagascalia 3: 99-141.

Valdés B, Scholz H. 2006. The Euro+Med treatment of Gramineae – a generic synopsis and some new names. – Willdenowia 36: 657-669.

Valdés-Reyna J, Hatch SL. 1991. Lemma micromorphology in the Eragrostideae (Poaceae). – Sida 14: 531-549.

Valdés-Reyna J, Morden CW, Hatch SL. 1986. Gouldochloa, a new genus of centothecoid grasses from Tamaulipas, Mexico. – Syst. Bot. 11: 112-119.

Vallenback P, Jaarola M, Ghatnekar L, Bengtsson BO. 2008. Origin and timing of the horizontal transfer of a PgiC gene from Poa to Festuca ovina. – Mol. Phylogen. Evol. 46: 890-896.

Valls JFM. 1978. A biosystematics study of Leptochloa with special emphasis on Leptochloa dubia (Gramineae: Chloridoideae). – PhD. diss., Texas A & M University, College Station, Texas.

Vanky K. 1995. Taxonomical studies on Ustilaginales 12. – Mycotaxon 54: 215-238.

Vanky K. 1996. New Ustilaginales on Cyperaceae from Australia. – Mycotaxon 58: 167-183.

Vanzela ALL, Luceno M, Guerra M. 2000. Karyotype evolution and cytotaxonomy in Brazilian species of Rhynchospora Vahl (Cyperaceae). – Bot. J. Linn. Soc. 134: 557-566.

Varadarajan GS. 1986a. Taxonomy and evolution of the subfamily Pitcairnioideae (Bromeliaceae). – Ph.D. diss., Washington State University, Pullman, Washington.

Varadarajan GS. 1986b. Habitats of Brocchinia, a descriptive account. – J. Bromeliad Soc. 36: 209-216.

Varadarajan GS. 1987a. Explorations for Pitcairnioideae in South America 1. – J. Bromeliad Soc. 37: 16-25.

Varadarajan GS. 1987b. Explorations for Pitcairnioideae in South America 2. – J. Bromeliad Soc. 37: 62-66.

Varadarajan GS, Brown GK. 1988. Morphological variation of some floral features of the subfamily Pitcairnioideae (Bromeliaceae) and their significance in pollination biology. – Bot. Gaz. 149: 82-91.

Varadarajan GS, Forero E. 1987. Genus Pitcairnia (Bromeliaceae): new taxa from Colombia, nomenclatural changes, and species complexes. – Syst. Bot. 12: 410-415.

Varadarajan GS, Gilmartin AJ. 1983. Phenetic and cladistic analyses of North American Chloris (Poaceae). – Taxon 32: 380-386.

Varadarajan GS, Gilmartin AJ. 1987. Foliar scales in the subfamily Pitcairnioideae (Bromeliaceae). – Syst. Bot. 12: 562-571.

Varadarajan GS, Gilmartin AJ. 1988a. Seed morphology of the subfamily Pitcairnioideae (Bromeliaceae) and its systematic implications. – Amer. J. Bot. 75: 808-818.

Varadarajan GS, Gilmartin AJ. 1988b. Phylogenetic relationships of groups of genera within the subfamily Pitcairnioideae (Bromeliaceae). – Syst. Bot. 13: 283-293.

Varadarajan GS, Gilmartin AJ. 1988c. Taxonomic realignments within the subfamily Pitcairnioideae (Bromeliaceae). – Syst. Bot. 13: 294-299.

Vasey G. 1893. Descriptions of new grasses from Mexico. – Contr. U.S. Natl. Herb. 1: 281-285.

Vazques Pardo FM, Devesa JA. 1996. Revisión del género Stipa L. y Nassella Desv. (Poaceae) en la Península Ibérica e Islas Baleares. – Acta Bot. Malac. 21: 125-189.

Vázquez FM, Barkworth ME. 2004. Resurrection and emendation of Macrochloa (Gramineae: Stipeae). – Bot. J. Linn. Soc. 144: 483-495.

Vázquez FM, Ramos S. 2007. Two new taxa and a new combination for Stipa (Gramineae: Stipeae) in Tunisia. – Bot. J. Linn. Soc. 153: 439-444.

Vedel F, Lebacq P, Quetier F. 1980. Cytoplasmic DNA variation and relationships in cereal genomes. – Theor. Appl. Gen. 58: 219-224.

Vega AS, Rugolo de Agrasar ZE. 2002. Digitaria killeenii (Poaceae: Panicoideae: Paniceae), a new species from Bolivia. – Syst. Bot. 27: 252-256.

Vega AS, Rua GH, Fabbri LT, Rúgolo de Agrasar ZE. 2009. A morphology-based cladistic analysis of Digitaria (Poaceae, Panicoideae, Paniceae). – Syst. Bot. 34: 312-323.

Vega AS, Rúgolo de Agrasar ZE, Axelrod FS. 2010. A new species of Tarigidia (Poaceae, Panicoideae, Paniceae) from Puerto Rico and additional evidence for a hybrid origin of the genus. – Syst. Bot. 35: 96-101.

Vegetti AC. 1991. Sobre politelia en las inflorescencias de Poaceae. – Kurtziana 21: 267-278.

Vegetti AC. 1992a. Typology of the inflorescence in species of Schoenoplectus (Cyperaceae) of Austral America. – Beitr. Biol. Pflanzen 67: 241-249.

Vegetti AC. 1992b. La sinflorescencia en Schizachyrium tenerum y S. salzmannii. – Darwiniana 31: 341-344.

Vegetti AC. 1993a. Contribution to the study of the synflorescence in Themeda Forssk. (Andropogoneae-Poaceae). – Beitr. Biol. Pflanzen 67: 251-258.

Vegetti AC. 1993b. Tipología de la sinflorescencia en Hemarthria altissima. – Parodiana 8: 69-75.

Vegetti AC. 1994a. Typology of the inflorescence in species of Isolepis. – Beitr. Biol. Pflanzen 68: 21-26.

Vegetti AC. 1994b. Tipología de la sinflorescencia en Andropogoneae (Poaceae). – Ph.D. diss., Universidad Nacional de Córdoba, Argentina.

Vegetti AC. 1997a. Sobre la estructura de la inflorescencia en especies de Anthistiriinae (Poaceae-Andropogoneae). – Candollea 52: 87-103.

Vegetti AC. 1997b. Sobre la estructura de la inflorescencia en especies de Rottboelliinae (Poaceae-Andropogoneae). – Candollea 52: 475-495.

Vegetti AC. 1997c. The structure of the paracladial zone in Luziolinae (Oryzeae-Poaceae). – Beitr. Biol. Pflanzen 70: 101-106.

Vegetti AC. 1998. Sobre la estructura de la inflorescencia en especies de Saccharinae, Germainiinae, Dimerliinae e Ischaeminae (Poaceae-Andropogoneae). – Candollea 53: 51-70.

Vegetti AC. 1999. Typology of the synflorescence of Andropogoneae (Poaceae), additional comments. – Feddes Repert. 110: 111-126.

Vegetti AC. 2000. Typology of synflorescences in Oryzeae (Poaceae). – Phyton (Horn) 40: 71-88.

Vegetti AC. 2002. Caracterización de los sistemas de ramificación en especies de Oryzeae (Poaceae). – Candollea 57: 251-260.

Vegetti AC, Anton AM. 1995. Some evolution trends in the inflorescence of Poaceae. – Flora 190: 225-228.

Vegetti AC, Anton AM. 1996. The synflorescence in Poaceae. – Flora 191: 231-234.

Vegetti AC, Anton AM. 2000. The grass inflorescence. – In: Jacobs SWL, Everett J (eds), Grasses: systematics and evolution, Proceedings of the 2nd International Conference on the Comparative Biology of Monocotyledons, 1998, Sydney, Australia, Vol. 2, CSIRO Publ., Melbourne, pp. 29-31.

Vegetti AC, Tivano JC. 1991a. Inflorescence typology in Schoenoplectus californicus (Cyperaceae). – Beitr. Biol. Pflanzen 66: 323-345.

Vegetti AC, Tivano JC. 1991b. La inflorescencia en Aciachne (Poaceae). – Bol. Soc. Argent. Bot. 27: 91-96.

Vegetti AC, Tivano JC. 1992. Synflorescence in Schizachyrium microstachyum (Poaceae). – Beitr. Biol. Pflanzen 66: 165-178.

Vegetti AC, Weberling F. 1996. The structure of the paracladial zone in Poaceae. – Taxon 45: 453-460.

Veken P van der. 1955. Trois taxa nouveaux de Cypéracées du Congo Belge. – Bull. Jard. Bot. État, Bruxelles 25: 143-147.

Veken P van der. 1965. Contribution à l’embryographie systématique des Cyperaceae-Cyperoideae. – Bull. Jard. Bot. État, Bruxelles 35: 285-354.

Veldkamp JF. 1973. Notes on Malesian grasses VI. A revision of Digitaria Haller (Gramineae) in Malesia. – Blumea 21: 1-80.

Veldkamp JF. 1985. Anemanthele Veldk. (Gramineae: Stipeae), a new genus from New Zealand. – Acta Bot. Neerl. 34: 105-109.

Veldkamp JF. 1996. Proposal to conserve the name Brachiaria (Trin.) Griseb. (Gramineae) with a conserved type. – Taxon 45: 319-320.

Veldkamp JF, Nowack R. 1994. Vietnamochloa aurea (Gramineae: Eragrostideae), a new genus and species from Vietnam. – Bull. Mus. Natl. Hist. Nat., Section B, Adansonia 16: 213-218.

Veldkamp JF, deKoning R, Sosef MSM. 1986. Generic delimitation of Rottboellia and related genera (Gramineae). – Blumea 31: 281-307.

Veldkamp JF, Eriks M, Smit SS. 1991. Bromus (Gramineae) in Malesia. – Blumea 35: 483-497.

Venturelli M, Bouman F. 1986. Embryology and seed development in Mayaca fluviatilis (Mayacaceae). – Acta Bot. Neerl. 35: 497-516.

Venturelli M, Bouman F. 1988. Development of ovule and seed in Rapateaceae. – Bot. J. Linn. Soc. 97: 267-294.

Verbelen JP. 1970. Systematische embryografie van de Cyperaceae-Rhynchosporineae. – Biol. Jaarb. Dodonaea 38: 151-166.

Verboom GA. 2006. A phylogeny of the schoenoid sedges (Cyperaceae: Schoeneae) based on plastid DNA sequences, with special reference to the genera found in Africa. – Mol. Phylogen. Evol. 38: 79-89.

Verboom GA, Linder HP, Barker NP. 1994. Haustorial synergids: an important character in the systematics of danthonioid grasses (Arundinoideae: Poaceae). – Amer. J. Bot. 81: 1601-1610.

Verboom GA, Linder HP, Stock WD. 2003. Phylogenetics of the grass genus Ehrharta: evidence for radiation in the summer-arid zone of the South African Cape. – Evolution 57: 1008-1021.

Verboom GA, Linder HP, Stock WD. 2004. Testing the adaptive nature of radiation: growth form and life history divergence in the African grass genus Ehrharta (Poaceae: Ehrhartoideae). – Amer. J. Bot. 91: 1364-1370.

Verboom GA, Ntsohi R, Barker NP. 2006. Molecular phylogeny of African Rytidosperma-affiliated danthonioid grasses reveals generic polyphyly and convergent evolution in spikelet morphology. – Taxon 55: 337-348.

Verloove F. 2001. A revision of the genus Panicum (Poaceae, Paniceae) in Belgium. – Syst. Geogr. Plants 71: 53-72.

Verloove F. 2005. A synopsis of Jarava Ruiz & Pav. and Nassella E. Desv. (Stipa L. s.l.) (Poaceae: Stipeae) in southwestern Europe. – Candollea 60: 97-117.

Verloove F. 2008. Studies within the genus Digitaria Haller (Poaceae, Panicoideae) in southwestern Europe. – Candollea 63: 227-233.

Verloove F, Gullón ES. 2012. A taxonomic revision of non-native Cenchrus s.str. (Paniceae, Poaceae) in the Mediterranean area. – Willdenowia 42: 67-75.

Verloove F, Reynders M. 2007. Studies in the genus Paspalum (Paniceae, Poaceae) in Europe 2. The Quadrifaria group. – Willdenowia 37: 423-430.

Versieux LM. 2009. Checklist and one new species of Bromeliaceae from Pico do Itambé, Minas Gerais, Brazil. – Bot. J. Linn. Soc. 158: 709-715.

Versieux LM, Wanderley M das Graças Lapa. 2007. Two new species of Alcantarea (Bromeliaceae, Tillandsioideae) from Brazil. – Brittonia 59: 57-64.

Versieux LM, Louzada RB, Viana PL, Mota N, Wanderley M das GL. 2010. An illustrated checklist of Bromeliaceae from Parque Estadual do Rio Preto, Minas Gerais, Brazil, with notes on phytogeography and one new species of Cryptanthus. – Phytotaxa 10: 1-16.

Viana PL, Filgueiras TS, Clark LG. 2013. Cambajuva (Poaceae: Bambusoideae: Bambuseae: Arthrostylidiinae), a new woody bamboo genus from southern Brazil. – Syst. Bot. 38: 97-103.

Vicentini A, Barber JC, Alscioni SS, Giussani LM, Kellogg EA. 2008. The age of the grasses and clusters of origins of C4 photosyntesis. – Global Change Biol. 14: 2963-2977.

Vicioso C. 1959. Estudio monográfico sobre el género Carex en España. – Bol. Inst. Forest. Invest. Exp. 79: 1-205.

Vickery JW. 1975. Contributions to the taxonomy of Australian grasses III. – Telopea 1: 40-43.

Vickery JW. 1980. Four new species of Stipa (Poaceae). – Telopea 2: 11-15.

Vickery JW, Jacobs SWL. 1980. Nassella and Oryzopsis in New South Wales. – Telopea 2: 17-23.

Vickery JW, Jacobs SWL, Everett J. 1986. Taxonomic studies in Stipa (Poaceae) in Australia. – Telopea 3: 1-132.

Vieira CM. 1999. Quesnelia Gaudich. (Bromelioideae: Bromeliaceae) do estado do Rio de Janeiro. – M.Sc. thesis, University of Rio de Janeiro, Brazil.

Vieira RC, Gomes DMS, Sarahyba LS, Arruda RCO. 2002. Leaf anatomy of three herbaceous bamboo species. – Brazilian J. Biol. 62(4B): 907-922.

Vierhapper F. 1906. Zur Systematik der Gattung Avena. – Verh. Zool.-Bot. Ges. Wien 56: 369-370.

Vierhapper F. 1930. Juncaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Augl., Bd. 15a, W. Engelmann, Leipzig, pp. 192-224.

Vignal C. 1984. Étude phytodermologique de la sous-famille des Chloridoideae (Gramineae). – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia: Botanique Phytochimie 6: 279-295.

Villamil CB. 1969. El género Monanthochloë (Gramineae). Estudios morfológicos y taxonómicos con especial referencia a la especie Argentina. – Kurtziana 5: 369-391.

Visser NC, Spies JJ, Venter HJT. 1998. Meiotic chromosome behavior in Cenchrus ciliaris (Poaceae: Panicoideae). – Bothalia 28: 83-90.

Vitta FA. 2002. Trilepis tenuis (Cyperaceae: Trilepideae), a new species from Rio de Janeiro, southeastern Brazil. – Brittonia 54: 120-123.

Voight PW. 1971. Discovery of sexuality in Eragrostis curvula (Schrad.) Nees. – Crop Sci. 11: 424-425.

Voight PW, Bashaw EC. 1972. Apomixis and sexuality in Eragrostis curvula (Schrad.) Nees. – Crop Sci. 12: 843-847.

Voight PW, Bashaw EC. 1976. Facultative apomixes in Eragrostis curvula. – Crop Sci. 16: 803-806.

Voight PW, Burson BL, Sherman RA. 1992. Mode of reproduction in cytotypes of Lehmann lovegrass. – Crop Sci. 32: 118-121.

Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R. 2005. Architecture of floral branch systems in maize and related grasses. – Nature 436: 1119-1126.

Vollmann F. 1903. Der Formenkreis der Carex muricata und seine Verbreitung in Bayern. – Denkschr. K. Bayer. Bot. Ges. Regensburg 2(8): 55-90.

Vorontsova MS, Simon BK. 2012. Updating classifications to reflect monophyly: 10 to 20 percent of species names change in Poaceae. – Taxon 61: 735-746.

Vorontsova MS, Ratovonirina G, Randriamboavonjy T. 2013. Revision of Andropogon and Diectomis (Poaceae: Sacchareae) in Madagascar and the new Andropogon itremoensis from the Itremo Massif. – Kew Bull. 68: 193-207.

Vorster TB, Liebenberg H. 1977. Cytogenetic studies in the Eragrostis curvula complex. – Bothalia 12: 215-221.

Vorster TB, Liebenberg H. 1984. Classification of embryo sacs in the Eragrostis curvula complex. – Bothalia 15: 167-174.

Voshell SM, Baldini RM, Kumar R, Tatalovich N, Hilu KW. 2011. Canary grasses (Phalaris, Poaceae): molecular phylogenetics, polyploidy and floret evolution. – Taxon 60: 1306-1316.

Voster P. 1990. Anatomy of the South African species of Mariscus (Cyperaceae), and its relation to environmental conditions. – Mitt. Inst. Allg. Bot. Hamburg 23: 367-386.

Vrijdaghs A. 2006. A floral ontogenetic approach to homology questions in non-mapanioid Cyperaceae. – PhD diss., K. U. Leuven, Leuven, Belgium.

Vrijdaghs A, Goetghebeur P, Muasya AM, Smets E, Caris P. 2004. The nature of the perianth in Fuirena (Cyperaceae). – South Afr. J. Bot. 70: 587-594.

Vrijdaghs A, Caris P, Goetghebeur P, Smets E. 2005. Floral ontogeny in Scirpus, Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth. – Ann. Bot. 95: 1199-1209.

Vrijdaghs A, Goetghebeur P, Muasya AM, Caris P, Smets E. 2005. Floral ontogeny in Ficinia and Isolepis (Cyperaceae), with focus on the nature and origin of the gynophore. – Ann. Bot. 96: 1247-1264.

Vrijdaghs A, Goetghebeur P, Smets E, Muasya AM. 2006. The floral scales in Hellmuthia (Cyperaceae, Cyperoideae) and Paramapania (Cyperaceae, Mapanioideae): an ontogenetic study. – Ann. Bot. 98: 619-630.

Vrijdaghs A, Goetghebeur P, Smets E, Caris P. 2007 [2008]. The Schoenus spikelet: a rhipidium? A floral ontogenetic answer. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Poales, Rancho Santa Ana Botanical Garden, Claremont, California, [Aliso 23] pp. 204-209.

Vrijdaghs A, Muasya AM, Goetghebeur P, Caris P, Nagels A, Smets E. 2009. A floral ontogenetic approach to questions of homology within the Cyperoideae (