[Capparales+Malvales]


CAPPARALES Juss. ex Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 218. Jan-Apr 1820 [‘Capparideae’]

Brassicales Bromhead in Edinburgh New Philos. J. 24: 416. Apr 1838; Capparanae Reveal in Phytologia 76: 3. 2 Mai 1994

Fossils Dressiantha bicarpellata from the Turonian Raritan Formation in New Jersey (late Cretaceous) comprises somewhat zygomorphic flowers with four sepals, five petals, five antepetalous stamens with disporangiate monothecal anthers containing tricolporate pollen grains, a ring of basally connate alternipetalous staminodia, and two basally connate carpels inserted on top of a well developed gynophore.

Habit Usually bisexual (sometimes monoecious, andromonoecious, gynomonoecious, polygamomonoecious, dioecious, or polygamodioecious), evergreen or deciduous trees, shrubs or suffrutices, or perennial, biennial or annual herbs (rarely lianas).

Vegetative anatomy Phellogen ab initio superficially or deeply seated (subepidermal or pericyclic), or absent. Secondary lateral growth usually normal (sometimes anomalous, from concentric cambia) or absent. Vessel elements with simple or scalariform (rarely reticulate) perforation plates; lateral pits usually alternate (rarely opposite or scattered), simple or bordered pits. Vestured pits often present. Imperforate tracheary xylem elements usually fibre tracheids or libriform fibres (sometimes tracheids) with simple or bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse (sometimes diffuse-in-aggregates), or paratracheal scanty vasicentric, confluent, or banded (rarely aliform, lozenge-aliform or confluent). Wood elements often storied. Intraxylary phloem rarely present. Sieve tube plastids usually S0 or Ss type (rarely Pcs type). Nodes 1:1, 1:2, 2:2 or ≥3:≥3, unilacunar to trilacunar (rarely multilacunar), with one or three leaf traces (rarely two or more traces). Laticifers sometimes present. Calciumcarbonate, calciumsulfate and/or calciumoxalate crystals (as prismatic crystals, sometimes druses) often frequent (sometimes also silica).

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple, furcate or many-branched (occasionally T-shaped malpighiaceous hairs), stalked or unstalked, medifixed (with two branches parallel to epidermis), stellate (with several or many branches, from common point, parallel to epidermis), candelabra-shaped, dendritic, peltate or lepidote (rarely prickles), or absent; glands or glandular hairs unicellular or multicellular, uniseriate, simple (occasionally peltate, sometimes with calciumcarbonate), or absent.

Leaves Alternate (usually spiral, rarely distichous; rarely opposite), simple or pinnately or palmately compound (sometimes twice or three times compound), entire or pinnately or palmately lobed, sometimes coriaceous or succulent (rarely almost absent), with conduplicate, supervolute, involute, flat or curved ptyxis. Stipules intrapetiolar or cauline (sometimes replaced by glands, extrafloral nectaries or spines), or absent; leaf sheath absent. Petiole vascular bundle transection arcuate or annular. Venation usually pinnate (sometimes palmate, rarely flabellate). Stomata usually anomocytic or anisocytic (sometimes paracytic, rarely helicocytic, cyclocytic, tetracytic, staurocytic, etc.). Cuticular wax crystalloids sometimes as rosettes of platelets (Fabales type) or tubuli, or absent. Stomatal (including guard cells) or idioblastic myrosin cells (with myrosinase) usually frequent. Mesophyll often with crystalliferous cells containing calciumoxalate crystals or druses, or with sclerenchymatous idioblasts containing dendrosclereids or other types of sclereids. Epidermis usually with mucilage cells; epidermal cells sometimes with crystals. Leaf margin serrate, sinuate or entire.

Inflorescence Terminal or axillary, corymb, panicle, thyrsoid, raceme, spike or umbel (rarely catkin), or solitary axillary. Bracts and floral prophylls (bracteoles) usually absent.

Flowers Actinomorphic, zygomorphic or bisymmetric. Hypanthium sometimes present. Usually hypogyny (rarely half epigyny). Receptacle in zygomorphic flowers sometimes with nectariferous appendage or gland inside adaxial sepal; often elongated into androgynophore or gynophore. Sepals (two to) four or five (to ten), usually with imbricate (sometimes valvate, contorted or open) aestivation, in one or two whorls, usually caducous, usually free (rarely connate or absent). Petals (two to) four to six (to nine), with imbricate, valvate or contorted (rarely open) aestivation, alternisepalous, often clawed, usually free (rarely absent). Nectariferous disc usually extrastaminal or intrastaminal, annular, or absent; nectariferous glands of various shape, inserted on disc, perianth or stamen, or absent. Disc present or absent.

Androecium Stamens usually four, five or 2+4 (sometimes eight to ten, rarely one, two or up to c. 250), in one or several whorls, usually haplostemonous or diplostemonous (rarely triplostemonous). Filaments usually in one whorl, usually free (sometimes more or less connate), usually free from tepals (sometimes adnate at base to petals, epipetalous). Anthers basifixed or dorsifixed, versatile or non-versatile, usually tetrasporangiate (rarely disporangiate), usually introrse (sometimes latrorse or extrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia usually absent (sometimes four to ten).

Pollen grains Microsporogenesis simultaneous. Pollen grains usually 3–4-colpate (sometimes 3–4-colporate or 3–4-colporoidate, rarely 2–11-colpate, 2–11-colporate, hexacolporoidate or inaperturate), shed as monads, bicellular or tricellular at dispersal. Exine tectate or semitectate, usually with columellate (rarely acolumellate, sometimes granular) infratectum, perforate, finely punctate, reticulate, microreticulate, striate, foveolate, scabrate, spinulate or smooth.

Gynoecium Pistil composed of two to six (to eight) connate and often paracarpous carpels. Ventral carpellary vascular bundles fused and highly developed. Ovary usually superior (rarely semi-inferior), trilocular or ab initio unilocular, and later usually bilocular with membranous secondary septum (rarely quinquelocular to octalocular), usually sessile (sometimes stipitate, with gynophore). Style single, simple, bilobate or trilobate, or absent, or stylodia (four or) five free. Stigma one, capitate or lobate, or stigmas (four or) five, truncate or punctate (sometimes flabellate or almost petaloid), usually papillate, Dry type. Pistillodium usually absent (male flowers sometimes with pistillodium). Strongly developed fused ventral carpellary vascular bundles often present.

Ovules Placentation axile, apical or parietal (sometimes intrusively parietal, rarely basal-parietal, basal or laminar). Ovules one to more than 300 per carpel, in one or two rows, usually anatropous or campylotropous (rarely amphitropous), ascending, horizontal or pendulous, apotropous or epitropous, usually bitegmic (sometimes unitegmic), usually crassinucellar (rarely weakly crassinucellar to incompletely tenuinucellar). Micropyle usually bistomal (rarely endostomal), sometimes Z-shaped (zig-zag). Nucellar cap sometimes present. Hypostase often present. Archespore usually unicellar (sometimes bicellular or multicellular). Megagametophyte usually monosporous, Polygonum type (rarely disporous, Allium type, or modified Drusa type). Synergids sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustorium chalazal, lateral or absent. Embryogenesis usually onagrad (sometimes asterad, rarely solanad).

Fruit Usually a loculicidal and/or septicidal capsule (often dehiscing from base upwards by usually two valves, with membranous secondary septum and persistent replum consisting of placental tissue (sometimes a nut; rarely berry, pumpkin fruit, drupe, samara, schizocarp, drupaceous syncarp, or an assemblage of follicles).

Seeds Aril usually absent (elaiosome rarely present). Seed coat usually endotestal (sometimes exotegmic, rarely also mesotegmic). Testa sometimes vascularized and multiplicative (outer testal epidermis sometimes modified into mucilaginous sarcotesta). Exotestal cells sometimes palisade, thick-walled. Mesotestal cell walls sometimes sclerified or tanniniferous. Endotestal cell walls sometimes sclerified and crystalliferous. Tegmen often multiplicative. Exotegmen and mesotegmen usually crushed. Exotegmen sometimes (rarely also mesotegmen) sclerified, fibrous or non-fibrous. Endotegmic cell walls sometimes tanniniferous and lignified. Perisperm rarely developed. Endosperm copious or sparse, oily, or absent. Embryo curved, plicate or straight, well differentiated, oily, with or without chlorophyll. Cotyledons two (or three). Germination usually phanerocotylar (sometimes cryptocotylar).

Cytology x = (4–)8(–15) Endoplasmic reticulum with protein-rich dilated organelle-like cisternae.

DNA Plastid gene infA lost/defunct. Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, delphinidin, ellagic and gallic acids, caffeic acid, oleanolic acid derivatives, proanthocyanidins (prodelphinidins), protoalkaloids, pyrrolidine alkaloids, piperidine alkaloids, glucosinolates (mustard oil glycosides with R-N=C=S group, i.e. 2-hydroxy-2-methylpropylic benzylglucosinolate, 3,4-dihydroxybenzyl glucosinolate, phenethylglucosinolate, etc.), derived from phenylalanine, tyrosine, methionine, valine, isoleucine and/or leucine, saponins, cyanogenic compounds, hydroxyproline betaines, mustard oils based on glucotropaeolin, glucocapparin, glucocleomin, cholinesters (sinapin, cochlearin, hesperalin, isoferuloylcholin, p-cumaroylcholin, etc.) etc., erucic acid, n-eicose-11-enoic acid, docosadienoic acid and other unsaturated fatty acids, sinapic acid, ferulic acid, benzylisothiocyanate, methoxybenzylisothiocyanates, cucurbitacins, myo-inositol, sweet-tasting proteins (brazzein, pentadin), and aromatic m-carboxycinnamic acids and proteolytic enzymes (papain, carpain) present. Myricetin, tannins and other polyphenolic compounds rare.

More than 130 different kinds of glucosinolates are known. Digested into glucose and aglucones by thioglucoside glucohydrolase (myrosinase, a β-thioglucohydrolase), when tissues are wounded. The aglucones are transformed into thiocyanates (mustard oils with R-N=C=S), toxic isothiocyanates and often toxic or non-toxic nitriles and other compounds.

Systematics Capparales are sister-group to Malvales.

Akaniaceae and Tropaeolaceae have the following potential synapomorphies in common (Stevens 2001 onwards): young stem with separate vascular bundles; vessel elements with scalariform perforation plates; axial parenchyma sparse vasicentric; absence of floral prophylls (bracteoles); flowers obliquely zygomorphic, large; presence of perianth tube or hypanthium; petals clawed; stamens eight, with short connective prolongations; style elongated; placentation apical or apical-axile; ovules one or two per carpel, epitropous; and testa vascularized.

The clade [[Moringaceae+Caricaceae]+[Setchellanthaceae+[Limnanthaceae+[[Koeberliniaceae+[Bataceae+Salvadoraceae]]+[Emblingiaceae+[Pentadiplandraceae+[Gyrostemonaceae+[Borthwickiaceae+Resedaceae]]+Tovariaceae+Brassicaceae]]]]] has the common feature: more than six ovules per carpel.

Moringaceae and Caricaceae share the following potential synapomorphies (Stevens 2001 onwards): woody habit, with stout stems (often pachycaul); cambium storied; nodes also multilacunar; presence of ER-dependent vacuoles; stipules modified into glands; colleters present on petiole and/or lamina; leaf venation palmate; cuticular wax crystalloids as rosettes of platelets; inflorescence thyrse; flowers pentamerous, whitish; carpels antesepalous; ovary longitudinally sulcate; style hollow; placentation parietal, with placental vascular strands opposite ventral bundles; ovules numerous per carpel; micropyle bistomal; outer integument five or six cell layers thick; testa multiplicative; and mesotesta lignified.

The clade [Setchellanthaceae+[Limnanthaceae+[[Koeberliniaceae+[Bataceae+Salvadoraceae]]+[Emblingiaceae+[Pentadiplandraceae+[[Gyrostemonaceae+[Borthwickiaceae+Resedaceae]+Tovariaceae+Brassicaceae]]]] have the following synapomorphies, according to Stevens (2001 onwards): nodes 1:1; and extension of 3’ terminus of plastid gene rbcL.

The clade [Limnanthaceae+[[Koeberliniaceae+[Bataceae+Salvadoraceae]]+[Emblingiaceae+ [Pentadiplandraceae+[[Gyrostemonaceae+[Borthwickiaceae+Resedaceae]]+Tovariaceae+Brassicaceae]]]] is characterized by the potential synapomorphy (Stevens 2001 and onwards): root hairs arranged in vertical rows. Indole glucosinolates sometimes present.

The clade [[Koeberliniaceae+[Bataceae+Salvadoraceae]]+[Emblingiaceae+[Pentadiplandraceae+[[Gyrostemonaceae+[Borthwickiaceae+Resedaceae]]+Tovariaceae+Brassicaceae]]]]: style/stylodia short or absent; ovules campylotropous; seed coat exotegmic; exotegmen fibrous; embryo strongly curved; and glucosinolates synthesized from chain-elongated branched-chain amino acids.

The [Koeberliniaceae+[Bataceae+Salvadoraceae]] clade is characterized by the following features: absence of idioblastic myrosin cells; flowers tetramerous; pollen grains tricolporoidate; pistil composed of two connate carpels; fruit indehiscent; exotestal cells well developed; and x = 11. Adaptations to dry and/or salt environments are very common.

Bataceae and Salvadoraceae share the characteristics: storied wood; non-bordered perforation plates; wide, multiseriate wood rays; nodes 1:2, unilacunar with two traces; opposite leaves; bracts with apical colleters; secondary veins palmate, ascending from at or near leaf base; paracytic stomata; basal placentation; two ovules per carpel; non-fibrous exotegmen; absence of endosperm; and straight to somewhat curved embryo.

The clade [Emblingiaceae+[Pentadiplandraceae+[[Gyrostemonaceae+[Borthwickiaceae+Resedaceae]]+ Tovariaceae+Brassicaceae]] have the following potential synapomorphies, according to Stevens (2001 onwards): cisternae of endoplasmic reticulum dilated and vacuole-like; cuticular wax crystalloids absent; inflorescence terminal, racemose; floral prophylls (bracteoles) absent; floral development open; petals clawed; nectary extrastaminal; ovules inserted in two rows; endotesta crystalliferous; extension of 3’ terminus of plastid gene rbcL; glucosinolates synthesized also from valine/isoleucine and/or leucine and indole glucosinolates from tryptophane.

Gyrostemonaceae and Resedaceae share the synapomorphies: absence of idioblastic myrosin cells; unicellular hairs; presence of stylodia; calyx persistent in fruit; and presence of funicular aril.

Tiganophytaceae (Swanepoel & al. 2020). Tiganophyton (1; T. karasense; the arid Karas Region in southeastern Namibia).

Cladogram of Capparales based on DNA sequence data (Rodman & al. 1996; Rodman & al. 1998, Hall & al. 2004; Su & al. 2012). Forchhammeria (Stixaceae) is often identified as sister to Resedaceae (Cardinal-McTeague & al. 2016). Forchhammeria, Tirania and Resedaceae form an unresolved trichotomy in some analyses. The sister-group relationship between Tovariaceae and Brassicaceae is disputable. – Tiganophytaceae are sister to Salvadoraceae (incl. Batis) and Koeberlinia spinosa successive sister to those two clades, according to Swanepoel & al. (2020). Tiganophyton karasense is a small evergreen shrub with aerial branches differentiated into long and short shoots. The dimorphic leaves are alternate and the singly borne flowers are bisexual and laterally flattened. The calyx, corolla and androecium are tetramerous. The sepals are connate and the petals free. The disc is staminal and nectariferous glands are absent. The style is gynobasic (provisional interpretation by Swanepoel & al. 2020). The bilobate bilocular ovary is supported by an S-shaped gynophore. Each locule is biovulate. The nut-like fruit is dry and one-seeded. The plant contains glucosinolates.

AKANIACEAE Stapf

( Back to Capparales )

Stapf in Bull. Misc. Inform. 1912: 380. 13 Dec 1912, nom. cons.

Bretschneideraceae Engl. et Gilg, Engler’s Syllabus, ed. 9-10: 218. 6 Nov 1924, nom. cons.; Akaniales Doweld in Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 60. 9 Oct 2000

Genera/species 2/2

Distribution Southeastern China, Vietnam, Taiwan, Thailand, eastern Australia.

Fossils Uncertain. Fossil leaves attributed to Akania have been found in Paleocene layers in Argentina.

Habit Bisexual, evergreen or deciduous trees.

Vegetative anatomy Phellogen ab initio subepidermal. Primary medullary strands usually wide. Young stem with separate vascular bundles. Vessel elements with simple and/or scalariform (sometimes reticulate) perforation plates; lateral pits alternate, simple and/or bordered pits. Imperforate tracheary xylem elements libriform fibres with simple (Bretschneidera) or bordered (Akania) pits, septate or non-septate. Wood rays multiseriate, heterocellular. Axial parenchyma paratracheal scanty vasicentric or banded. Wood elements not storied. Sieve tube plastids ? type (Akania) or P type (?) (Bretschneidera). Nodes 3:3, trilacunar with three leaf traces. Bark and inflorescences with idioblastic and stomatal myrosin cells (in Akania sometimes absent). Calciumoxalate in Akania as druses and single crystals.

Trichomes Hairs simple (Akania).

Leaves Alternate (spiral), imparipinnate, in Akania large, coriaceous, with supervolute to curved ptyxis. Stipules small or absent; leaf sheath absent. Petiole vascular bundle transection? Petiolules swollen or articulated. Venation pinnate. Stomata in Akania present in groups, in Bretschneidera evenly dispersed. Cuticular waxes absent; cuticular cracks distinct. Leaflet margins spinose-serrate (Akania) or entire (Bretschneidera).

Inflorescence Terminal, raceme (Bretschneidera) or axillary panicle (Akania). Floral prophylls (bracteoles) absent.

Flowers Actinomorphic (Akania) or obliquely zygomorphic (Bretschneidera). Hypanthium or perianth tube cupular. Hypogyny or perigyny. Sepals five, with imbricate aestivation, free (Akania) or connate (Bretschneidera). Petals five, with contorted or imbricate aestivation, often clawed, inner petals smaller than outer, free. Nectariferous disc in Bretschneidera annular, intrastaminal; nectary and disc absent in Akania.

Androecium Stamens five outer and three to five inner or three (rarely four), diplostemonous; abaxial stamen in antepetalous whorl (Akania), in Bretschneidera bent down and inserted below one petal. Filaments hairy at base, inserted at receptacular base (in Bretschneidera at nectariferous disc), free from each other and from tepals. Anthers subbasifixed (Akania) or dorsifixed (Bretschneidera), versatile, tetrasporangiate, latrorse (Akania) or introrse (Bretschneidera), longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (rarely dicolpate), shed as monads, bicellular at dispersal. Exinc semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of three (or five) connate carpels. Ovary superior or semi-inferior, trilocular (or quinquelocular), stipitate (with gynophore). Style single, simple, narrow (in Bretschneidera bent down). Stigma small, capitate (Bretschneidera), trilobate (in Bretschneidera hollow), type? Pistillodium absent.

Ovules Placentation apical-axile. Ovules two (or three) per carpel, anatropous (Akania) or campylotropous (Bretschneidera), pendulous, epitropous?, bitegmic, crassinucellar. Micropyle bistomal. Outer integument approx. five cell layers thick, multiplicative, vascularized. Inner integument two or three cell layers thick. Hypostase present. Megagametophyte in Akania monosporous, Polygonum type; in Bretschneidera disporous, 8-nucleate, Allium type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A septicidal coriaceous capsule.

Seeds Aril absent. Testa vascularized, multiplicative. Exotestal cells palisade, thick-walled. Mesotesta thick, with thick sclerified cell walls. Endotesta thickened. Tegmen not multiplicative, thin, more or less crushed. Exotegmen non-fibrous. Perisperm not developed. Endosperm copious(Akania) or absent (Bretschneidera). Embryo large, straight, well differentiated, chlorophyll? Cotyledons two, large, thick. Germination phanerocotylar.

Cytology n = 9 (Bretschneidera)

DNA

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, proanthocyanidins (prodelphinidins), alkaloids, and glucosinolates (2-hydroxy-2-methylpropylic and 3,4-dihydroxybenzylic glucosinolate, synthesized from tyrosine, in Bretschneidera also from valine/isoleucine and/or leucine) present. Cyanogenic compounds? Ellagic acid and saponins not found.

Use Ornamental plants (Bretschneidera)?

Systematics Akania (1; A. bidwillii; coastal areas in southern Queensland and northeastern New South Wales), Bretschneidera (1; B. sinensis; Yunnan, Hunan, northern Vietnam, Taiwan, Thailand).

Akaniaceae are sister to Tropaeolaceae.

BATACEAE Mart. ex Perleb

( Back to Capparales )

Perleb, Clav. Class.: 17. Jan-Mar 1838 [‘Batideae’], nom. cons.

Batales Engl., Syllabus, ed. 5: 111. Jul 1907 [‘Batidales’]

Genera/species 1/2

Distribution Coasts of southern New Guinea and northern Australia, tropical and subtropical coasts in America and the Galápagos Islands.

Fossils Unknown.

Habit Dioecious (B. maritima) or monoecious (B. argillicola), evergreen suffrutices or shrubs. Succulent halophytes or xerophytes. Young stems quadrangular in cross-section.

Vegetative anatomy Phellogen ab initio in pericyclic fibre bundles. Secondary lateral growth often absent. Vessel elements with simple perforation plates (with rudimentary borders); lateral pits usually alternate (rarely opposite), bordered pits. Vestured pits present. Imperforate tracheary xylem elements fibre tracheids with bordered pits, non-septate? Wood rays usually multiseriate, heterocellular. Axial parenchyma apotracheal or paratracheal scanty vasicentric. Wood elements (including parenchyma) sometimes storied. Sieve tube plastids S type. Nodes 2?:2, bilacunar? with two leaf traces. Myrosin cells stomatal; idioblastic myrosin cells absent. Crystals?

Trichomes Hairs usually absent.

Leaves Opposite, simple, entire, fleshy, reduced, with ? ptyxis. Stipules very small, without vascular bundles, intrapetiolar or cauline, often caducous; leaf sheath absent. Leaf traces? disappearing adjacent to nodes; leaf supported by two vascular bundles from stem margins. Venation consisting of two bundles. Stomata paracytic or anomocytic. Cuticular wax crystalloids? Myrosin cells stomatal. Leaf margin entire.

Inflorescence Axillary, racemose, in Batis maritima cone-like dense catkin (strobilus); in Batis argillicola loose spike. Bracts in male inflorescences with cochleariform and imbricate aestivation; bracts in female inflorescence small and partially incorporated in fleshy spike. Floral prophylls (bracteoles) absent?

Flowers Zygomorphic (male flowers) or actinomorphic? (female flowers), minute. Female flowers in Batis maritima connate. Hypogyny? Sepals? (bracteoles?) in male flowers two, unequal in size (adaxial flowers larger than and overlapping abaxial flowers), median, enclosing flower (Batis argillicola), or four, connate (Batis maritima), absent in female flowers. Petals? in male flowers four, clawed, free or connate at base, absent in female flowers. Nectary absent. Disc absent.

Androecium Stamens four, haplostemonous, antesepalous?, alternipetalous. Filaments free from each other and from tepals. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective slightly prolonged apically. Tapetum secretory, with binucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains 3(–4)-colpor(oid)ate, shed as monads, bicellular at dispersal. Exine pertectate, with acolumellate infratectum and undifferentiated ectexine, microverrucate, almost smooth. Ectexine spongy, undifferentiated.

Gynoecium Pistil composed of two connate carpels; carpel divided by secondary septum. Ovary largely quadrilocular (unilocular at base); ovaries of adjacent flowers more or less connate and adnate to bract bases. Style very short or absent. Stigma capitate-penicillate to slightly bilobate, persistent, papillate, type? Male flowers often with rudimentary pistillodium.

Ovules Placentation basal-parietal. Ovules two per carpel, collateral, anatropous, ascending, epitropous, bitegmic, crassinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Nucellar cap present. Megagametophyte monosporous, Polygonum type? Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit A drupaceous syncarp composed of fused flowers (Batis maritima), or a drupe with four one-seeded pyrenes (Batis argillicola). Endocarp lignified.

Seeds Aril absent. Seed coat exotestal? Testa membranous, multiplicative? Tegmen multiplicative? Exotegmen non-fibrous? Perisperm not developed. Endosperm absent. Embryo almost straight, well differentiated, chlorophyll? Cotyledons two, carnose. Germination phanerocotylar.

Cytology n = 11 (Batis maritima)

DNA

Phytochemistry Hydroxyproline betaines, benzylglucosinolate and myrosinase present. Ellagic acid, proanthocyanidins, alkaloids, and cyanogenic compounds not found. Tannins?

Use Occasionally as vegetables.

Systematics Batis (2; B. argillicola: coasts of southern New Guinea and Queensland; B. maritima: tropical and subtropical Atlantic and Pacific coasts of America and the Galápagos Islands, introduced in the Hawaiian Islands.

Batis is sister to Salvadoraceae.

BORTHWICKIACEAE Su, Wang, Zhang et Chen

( Back to Capparales )

Su, Wang, Zhang et Chen in Taxon 61(3): 608. Jun 2012

Genera/species 1/1

Distribution Yunnan, Burma.

Fossils Unknown.

Habit Bisexual, evergreen shrub or small tree.

Vegetative anatomy Phellogen? Secondary lateral growth? Vessel elements with simple? perforation plates; lateral pits alternate?, simple? or bordered? pits. Vestured pits? Imperforate tracheary xylem elements ? with bordered? pits, non-septate? Wood rays? Axial parenchyma? Sieve tube plastids S type? Nodes? Myrosin cells? Crystals?

Trichomes Hairs unicellular or multicellular?, simple.

Leaves Opposite, palmately ternate compound (trifoliolate), with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection? Venation palmate. Stomata ?-cytic. Cuticular wax crystalloids? Leaflet margins entire.

Inflorescence Terminal raceme. Inflorescence bracts caducous.

Flowers Actinomorphic. Hypogyny. Sepals five to eight, spiral, with imbricate? aestivation, membranous, connate into tube. Petals five to eight, with proximally valvate and distally imbricate aestivation. Androgynophore present. Nectary conical, ascending from petal base to staminal base, surrounding androgynophore. Disc absent.

Androecium Stamens c. 60 to c. 70. Filaments free from each other and from tepals. Anthers dorsifixed?, versatile?, tetrasporangiate, latrorse?, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads?, ?-cellular at dispersal. Exine tectate, with columellate? infratectum, perforate.

Gynoecium Pistil composed of four to six connate carpels. Ovary superior, quadrilocular to sexalocular, stipitate (androgynophore). Style single, simple. Stigma capitate?, type? Pistillodium absent.

Ovules Placentation axile, with ovules in two rows. Ovules several per carpel, bitegmic?, crassinucellar? Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous?, Polygonum type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A many-seeded loculicidal capsule, dehiscing along ventral suture from base to apex, with persistent 4–6-ridged axis.

Seeds Aril? Testa? Tegmen? Perisperm not developed? Endosperm sparse or absent? Embryo curved, poorly differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Unknown.

Systematics Borthwickia (1; B. trifoliata; southern Yunnan, eastern and northern Burma).

Borthwickia is sister, with high bootstrap support, to a trichotomy comprising Resedaceae, Forchhammeria and [Tirania+Stixis] (Su & al. 2012).

BRASSICACEAE Burnett

( Back to Capparales )

Burnett, Outl. Bot.: 854, 1093, 1123. Feb 1835, nom. cons.

Capparaceae Juss., Gen. Plant.: 242. 4 Aug 1789 [‘Capparides’], nom. cons.; Cruciferae Juss., Gen. Plant.: 237. 4 Aug 1789, nom. cons. et nom. alt.; Drabaceae Martinov, Tekhno-Bot. Slovar: 215. 3 Aug 1820; Erysimaceae Martinov, Tekhno-Bot. Slovar: 238. 3 Aug 1820 [‘Erysimoides’]; Sisymbriaceae Martinov, Tekhno-Bot. Slovar: 583. 3 Aug 1820; Thlaspiaceae Martinov, Tekhno-Bot. Slovar: 633. 3 Aug 1820 [‘Thlaspiceae’]; Cleomaceae Bercht. et J. Presl., Přir. Rostlin 2(64): 253. 1825 [‘Cleomeae’]; Stanleyaceae Nutt. in J. Acad. Nat. Sci. Philadelphia 7: 85. 28 Oct 1834 [‘Stanleae’]; Arabidaceae Döll, Rhein. Fl.: 573. 24-27 Mai 1843 [‘Arabideae’]; Raphanaceae Horan., Char. Ess. Fam.: 169. 30 Jun 1847 [‘Cruciferae s. Raphanaceae’]; Schizopetalaceae A. Juss. in V. V. D. d’Orbigny, Dict. Univ. Hist. Nat. 11: 419. 9 Sep 1848 [‘Schizopetaleae’]; Isatidaceae Döll, Fl. Baden 3: 1310. 30-31 Dec 1861; Oxystylidaceae Hutch., Evol. Phylog. Fl. Pl.: 516. 28 Aug 1969

Genera/species 340–342?/3.205–3.355

Distribution Cosmopolitan except continental Antarctica.

Fossils Fossil fruits and seeds of Brassicaceae have been described from Oligocene onwards. Fossil pollen grains from the Late Cretaceous of New Zealand have been assigned to Brassicaceae.

Habit Usually bisexual (rarely monoecious, andromonoecious or dioecious), usually perennial, biennial or annual herbs (sometimes evergreen or deciduous shrubs, suffrutices, rarely lianas or small trees). Some species are succulents and some are aquatic. Many species are xerophytes.

Vegetative anatomy Mycorrhiza usually absent. Root hairs absent in Capparoideae and Cleomoideae. Phellogen ab initio usually deeply (cortical etc.; rarely superficially) seated. Cortical and medullary vascular bundles usually absent. Secondary lateral growth usually normal (sometimes anomalous from concentric cambia, e.g., in Boscia) or absent. Vessel elements with simple perforation plates; lateral pits usually alternate (rarely opposite or scattered), bordered pits. Vestured (also on lateral vessel walls) and non-vestured pits present. Imperforate tracheary xylem elements usually fibre tracheids (sometimes libriform fibres) with simple or bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, usually homocellular (sometimes heterocellular). Axial parenchyma apotracheal diffuse, or paratracheal scanty vasicentric, confluent, or banded. Wood elements often storied. Secondary phloem in Capparoideae stratified into hard fibrous and soft parenchymatous layers. Intraxylary phloem present in some genera. Sieve tube plastids usually S type (rarely Pcs type). Endodermis sometimes prominent. Nodes 1:1–3 or 3:3, unilacunar or trilacunar (rarely multilacunar), with one or three leaf traces. Myrosin cells idioblastic. Calciumcarbonate, calciumsulphate and calciumoxalate crystals (prismatic crystals, sometimes druses) present in many representatives (in Capparis also silica).

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple, furcate or many-branched (occasionally T-shaped malpighiacean hairs), stalked or sessile, medifixed (with two branches parallel to epidermis), stellate (with several or many branches, from common point, parallel to epidermis), candelabra-shaped, dendritic, peltate or lepidote (rarely prickles), often with calciumcarbonate (usually as calcite), or absent; glandular hairs unicellular or multicellular (in Cleomoideae peltate) or absent.

Leaves Alternate (usually spiral, rarely distichous; rarely opposite), usually simple (rarely pinnately or palmately compound), entire or (usually pinnately) lobed, sometimes coriaceous (rarely succulent), with conduplicate ptyxis. Stipules usually absent (rarely present, sometimes replaced by glands or extrafloral nectaries; in Capparis and Cleome sometimes as spines); leaf sheath absent. Petiole vascular bundle transection annular or arcuate. Venation usually pinnate (sometimes palmate, in Pringlea flabellate). Stomata usually anomocytic or anisocytic (sometimes helicocytic, rarely cyclocytic, tetracytic, staurocytic, etc.). Cuticular wax crystalloids as transversely ridged rodlets, chemically dominated by ketones etc. Stomatal myrosin cells absent. Mesophyll cells often with sclerenchymatous idioblasts (with sclereids of different types, e.g., dendrosclereids in Boscia). Epidermis usually with mucilaginous idioblasts; epidermal cells sometimes crystalliferous. Leaf margin serrate, lobate or entire. Extrafloral nectaries rarely present on lamina (e.g. in Crataeva).

Inflorescence Terminal or axillary, raceme, corymb, often branched, spike or umbel-like, or solitary axillary. Bracts and floral prophylls (bracteoles) usually suppressed.

Flowers Usually bisymmetric (sometimes zygomorphic or actinomorphic), often small. Usually hypogyny (rarely half epigyny). Receptacle flat, wide or elongate (sometimes laciniate at apex or with corona), in zygomorphic flowers often with nectariferous appendage or gland inside adaxial sepal; often prolonged into short or long androgynophore or gynophore. Sepals usually 2+2, decussate (rarely three, five or six), usually with imbricate (sometimes valvate or open) aestivation, in one or two whorls, usually caducous, usually free (rarely connate at base; at anthesis rarely forming caducous calyptra). Petals (two to) four (to six), usually with imbricate (rarely contorted or open) aestivation, alternisepalous, of equal size or one pair of larger petals and one pair of smaller petals, usually clawed, free (rarely absent). Nectariferous disc usually extrastaminal (sometimes intrastaminal), annular (sometimes with three or four small episepalous appendages), or absent; nectariferous glands of various shape and insertion (on disc, perianth or stamen).

Androecium Stamens usually 2+4 (rarely one, two, four or up to c. 250), usually haplostemonous or diplostemonous, two outer stamens usually shorter than four inner stamens (tetradynamous), centrifugally developing from four primordia. Filaments filiform (sometimes with appendages), usually in one whorl, usually free (two median ones rarely connate), articulated, free from tepals. Anthers basifixed or dorsifixed, sometimes versatile, tetrasporangiate, introrse or extrorse, longicidal (dehiscing by longitudinal slits); connective sometimes slightly prolonged. Tapetum secretory, with binucleate (to quadrinucleate) cells. Staminodia (four to approx. ten, median-dorsal) present in some zygomorphic species.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (sometimes tricolporate, tricolporoidate, 2–11-colpate, 2–11-colporate or inaperturate), shed as monads, usually tricellular at dispersal (in Capparoideae often bicellular). Exine tectate or semitectate, with columellate infratectum, perforate or reticulate (sometimes smooth, spinulate or finely punctate).

Gynoecium Pistil composed of two (to eight to twelve?) paracarpously connate carpels. Ovary usually superior (rarely semi-inferior), first unilocular, later usually bilocular (in Capparoideae and Cleomoideae sometimes multilocular) with thin secondary septum, usually sessile (in Capparoideae and Cleomoideae usually stipitate, with long gynophore). Style single, usually simple (rarely bifid), often persistent, or absent. Stigma usually one, punctate or capitate (occasionally somewhat lobate), usually papillate, Dry type. Male flowers sometimes with pistillodium?

Ovules Placentation parietal (sometimes intrusively). Ovules one to more than 300 per carpel, usually anatropous or campylotropous (through intrusion of chalazal vascular bundle; rarely amphitropous), usually pendulous or horizontal, bitegmic, usually crassinucellar (rarely tenuinucellar). Micropyle usually bistomal (Z-shaped; rarely endostomal). Outer integument two or three cell layers thick. Inner integument one to four cell layers thick. Endothelium (integumental tapetum) present. Hypostase often present. Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustorium chalazal. Embryogenesis usually onagrad (rarely solanad). Suspensor of various shape, filamentous. Polyembryony occurs.

Fruit A usually septicidal (rarely also loculicidal) capsule, siliqua, dehiscing from base upwards by usually two valves, usually with membranous secondary commissural septum and persistent replum (absent in Capparoideae) consisting of placental tissue (sometimes a nut; rarely a berry, pumpkin fruit, drupe, samara, or schizocarp, lomentum).

Seeds Aril usually absent (present in some Capparoideae). Oily elaiosome present in some species. Seed coat usually endotestal (in Capparoideae and Cleomoideae usually exotegmic, rarely also mesotegmic). Testa non-multiplicative, often winged. Exotesta often palisade. Outer testal layers often mucilaginous. Endotestal cell walls often U-shaped, inner walls thickened, and unthickened wall facing periphery of seed. Tegmen multiplicative. Exotegmic cell walls often (rarely also mesotegmic cells walls) sclerified, fibrous (Capparoideae, Cleomoideae) or non-fibrous (Brassicoideae); exo- and mesotegmen degenerating. Endotegmic cell walls often lignified, often tanniniferous. Perisperm developed in Cadaba, Capparis, Cleome, and Crateva. Endosperm one to more than two cell layers thick or absent. Embryo usually curved or plicate (rarely straight), well differentiated, oily, with chlorophyll. Cotyledons two, flattened or plicate, oily. Radicula dorsal or lateral, usually present in testal pouch. Germination usually phanerocotylar (sometimes cryptocotylar).

Cytology n = (7–)10(–80) (Capparoideae); n = (9–)10(–19)20(–35) (Cleomoideae); n = 4–128; x = (4–)8(–13) (Brassicoideae+Atamisquea: n = 8) – Polyploidy and aneuploidy frequently occurring. Agamospermy present in, e.g., Boechera. Endoplasmic reticulum with protein-rich, wide, organelle-like cisternae.

DNA Plastid gene ndhF with insertion of 6 bp in at least some Capparoideae. Plastid gene infA transferred to nucleus (Arabidopsis). Ancestral KCS6/5 (β-ketoacyl coenzyme A synthases) gene duplicated.

Phytochemistry Flavonols (kaempferol, quercetin; Capparoideae), anthocyanins, ellagic acid, proanthocyanidins (Capparoideae), pyrrolidine alkaloids (Capparoideae), cyanogenic compounds, glucosinolates (synthesized from phenylalanine and/or tyrosine and methionin, chain-extended), methyl glucosinolates (glucocapparine and glucocleomine; Capparoideae and Cleomoideae), sinapic acid, sinapine, cochlearine etc. (choline esters of sinapic acid; seeds of Brassicoideae), ferulic acid, erucic acid, n-eicose-11-enoic acid (Brassicoideae), docosadienoic acid (Brassicoideae), erucic acid, quaternary ammonium compounds (i.a. betaines; Capparoideae and Cleomoideae), and phytoalexins (Brassicoideae) present. Tannins almost absent. Heavy metals accumulated in some species.

Use Ornamental plants, vegetables (Brassica spp., Lepidium sativum, Nasturtium spp.), spices (Brassica spp., Capparis spinosa, Armoracia rusticana, Eutrema wasabi), seed oils (Brassica, Raphanus, Sinapis), forage plants, dyeing substances (Isatis tinctoria), genetic research (Arabidopsis thaliana model plant).

Systematics Brassicaceae is part of a polytomy also comprising Pentadiplandraceae to Tovariaceae.

The taxonomy of Brassicoideae below follows Al-Shehbaz & al. (2006), German & al. (2009) and Warwick & al. (2010).

Neothorelia (1; N. laotica; Thailand, northern Laos) has six sepals and six petals, androgynophore, and very small pollen grains. Its position is unclear, although it may belong somewhere within Brassicaceae or Resedaceae. Neothorelia laotica has sometimes been assigned to Capparoideae (Capparaceae; Williams & Chayamarit 2005).

Capparoideae Burnett, Outlines Bot.: 867. Feb 1835 [‘Capparidae’]

12?/430–440. ‘Crateva’ (10; tropical and subtropical regions; paraphyletic); ‘Capparis’ (c 250; tropical and subtropical regions; diphyletic), Boscia (c 30; tropical and southern Africa, Madagascar, the Arabian Peninsula), Maerua (c 75; tropical regions in the Old World), Bachmannia (1; B. woodii; Mozambique to KwaZulu-Natal and Eastern Cape), Ritchiea (c 30; tropical Africa), Buchholzia (2; B. coriacea, B. tholloniana; tropical West Africa), Euadenia (3; E. brevipetala, E. eminens, E. trifoliolata; tropical Africa), Cladostemon (1; C. kirkii; Mozambique, Zimbabwe, Swaziland, KwaZulu-Natal), Dhofaria (1; D. macleishii; Oman), Cadaba (c 30; southern Africa, Madagascar, Indian Ocean islands, the Arabian Peninsula, India, Australia), Apophyllum (1; A. anomalum; eastern Australia; in Brassicoideae?). – Tropical and subtropical regions. Usually trees or shrubs (sometimes herbs or lianas). Rhizoids (root hairs) absent. Petiole vascular bundle transection annular or arcuate. Leaf base in Crateva glanduliferous. Sclereids present. Inflorescence usually raceme (sometimes fascicle). Flowers actinomorphic or zygomorphic. Sepals usually free (sometimes connate; sepals and petals sometimes fused into tube). Petals four to numerous (sometimes absent). Stamens (one to) four to numerous, centrifugally developing. Filaments usually long. Tectum with various sculpturing. Pistil composed of two to twelve connate carpels; when two carpels, then transversely orientated (superposed-oblique). Gynophore long. Locules sometimes divided by secondary septa. Style usually absent. Outer integument approx. two cell layers thick. Inner integument three or four cell layers thick. Fruit usually indehiscent, baccate (rarely a transversely dehiscent schizocarp or a septicidal capsule). Endotesta sometimes crystalliferous. Tegmen multiplicative, up to six cell layers thick. Exotegmen radially enlarged, sclerified. Anticlinal endotegmic cell walls with lignified bands. n = (7–)10(to more than 15). Insertion of 6 bp in plastid gene ndhF. Methyl glucosinolates and pyrrolidine alkaloids present. – ‘Crateva’ is probably sister group to the remaining Capparoideae. ‘Capparis’ seems to consist of one American clade and one Old World clade, not immediately related to one another.

[Cleomoideae+Brassicoideae]

Usually herbaceous, often annuals. Inflorescence corymb. Stamens six. Pistil composed of two connate carpels. Septicidal capsule with persistent placental vascular strands. Placenta lignified. Seeds 0,5–4 mm long.

Cleomoideae Burnett, Outlines Bot.: 867. Feb 1835 [‘Cleomidae’]

6/260–270. Haptocarpum (1; H. bahiense; eastern Brazil), Cleomella (c 10; southwestern Canada, United States, Mexico), Isomeris (1; I. arborea; California, Mexico), Wislizenia (1–3; W. californica, W. palmeri, W. refracta; southwestern United States, Baja California), Oxystylis (1; O. lutea; Death Valley in southeastern California), Cleome  (c 250; tropical and subtropical regions on both hemispheres). – Tropical, subtropical and warm-temperate, with their largest diversity in America. Usually bisexual (some species of Cleome monoecious, with basal male flowers) herbs (Isomeris shrub). C4 photosynthesis rare (some species of Cleome). Rhizoids (root hairs) absent. Petiole vascular bundle transection arcuate. Leaves usually palmately compound (occasionally simple, palmately lobed). Stipules usually absent. Inflorescence racemose (corymb?). Bracts usually foliaceous. Flowers zygomorphic (sometimes initially bisymmetric). Sepals four, with abaxial sepal often much larger than and in bud covering remaining floral parts. Petals four, clawed. Stamens six. Filaments long. Anthers spirally twisted at dehiscence. Tectum with various sculpturing, often spinulate. Pistil usually composed of two (sometimes four, orthogonally orientated) connate carpels. Gynophore usually present (androgynophore sometimes present). Placenta usually thin, lignified, loop-shaped, persistent in fruit. Outer integument two or three cell layers thick. Inner integument two to ten cell layers thick. Parietal tissue three to five cell layers thick. Nucellar cap approx. two cell layers thick. Endothelium usually absent. Fruit usually capsular (in the Dipterygium group of Cleome a winged single-seeded nut). Seeds usually without aril. Exotegmic cells radially enlarged, sclerified. Endotegmic periclinal cell walls with lignified bands. Suspensor sometimes massive, haustorial. Cotyledons usually incumbent. n = more than 9. Genome duplication present (perhaps c. 20 million years old). Methyl glucosinolates present.

Cladogram of Cleomoideae and Capparoideae based on DNA sequence data (Hall & al. 2002).

Cladogram (simplified) of Cleomoideae pro parte based on DNA sequence data (Riser & al. 2013).

Brassicoideae Prantl, Lehrbuch Bot.: 255. 1 Mar-15 Apr 1880 [‘Brassiceae’]

322–324/2.515–2.645. Cosmopolitan, with their largest diversity in temperate regions in the Northern Hemisphere. Usually herbs (sometimes shrubs, rarely trees). Mycorrhiza absent (vesicular-arbuscular mycorrhiza possibly inhibited by glucosinolates; arbuscular mycorrhiza reported from Thlaspi). Phellogen at least usually deeply seated. Intraxylary phloem rare. Hairs sometimes furcate, stellate or T-shaped. Stipules absent. Stomata anisocytic. Inflorescence racemose (corymbose). Bracts usually absent (sometimes foliaceous). Flowers usually bisymmetric (rarely zygomorphic), with closed development. Petals rarely lobate or fimbriate. Stamens (two, four or) six (24 in Megacarpaea polyandra), two outer often shorter than four inner (tetradynamous), approximately as long as petals. Lateral nectary lobes positioned outside inner stamens. Pollen grains tricellular at dispersal. Tectum often reticulate. Pistil composed of two connate carpels. Ovary usually with commissural septum (absent in Pringlea). Style usually short (rarely long). Gynophore usually absent. Stigma commissural (possibly indicating a basically quadricarpellate gynoecium with axile placentation). Outer integument two to four (or five) cell layers thick. Inner integument (two or) three to eight (to 15) cell layers thick. Parietal tissue approx. one cell layer thick. Hypostase present. Endothelium present. Archespore sometimes multicellular. Fruit usually a siliqua (often explosively dehiscent) with persistent lignified placental strands and membranous secondary septum, replum (fruit occasionally latiseptate or angustiseptate). Seed plicate, but seed coat not bulging inwards. Testa often mucilaginous, three-layered. Radial exotestal cell walls reticulately thickened. Endotesta palisade, lignified, often with U-shaped thickenings, without crystals. Tegmen often multiplicative, non-persistent. Chalazal endosperm cyst present (possibly involved in transport of metabolites into seed; transfer cells present around cyst). Endosperm one-layered. Embryo plicate (sometimes spirally twisted). Cotyledons sometimes conduplicate-incumbent. Radicula not present in testal pouch. x = 4 (before Ata duplication), 7, 8 (after Ata duplication) (–13). Sporophytic self-incompatibility frequent. Duplication of whole genome (Ata palaeopolyploidization). Duplication of nuclear gene PHYB leading to gene PHYD. Nortropane alkaloids sometimes present. Methyl glucosinolates absent. Nickel or zinc accumulated in many species. Selenium accumulated in, e.g., Stanleya pinnata. –Aethionemateae (Aethionemodae) are sister-group to the remaining Brassicoideae.

Aethionemateae Al-Shehbaz, Beilstein et E. A. Kellogg in Plant Syst. Evol. 259: 110. 19 Jul 2006

1/c 55. Aethionema (c 55; the Mediterranean, southeastern Europe and southwestern Asia to Afghanistan). – Annual or perennial herbs or shrubs. Hairs absent. Petal claw three-veined. Nectaries two, lateral. Gynoecium sessile or almost sessile. Ovules (one or) two to four (to eight) per carpel. Fruit a flattened, winged angustiseptate silicula, often nut-like. Testa sometimes mucilaginous. x = 7, 8, 11, 12, 14, 16, 18, 21, 22, 24, 30. Nortropane alkaloids present. – Aethionema is sister to Brassicodae = the remaining Brassicoideae (Koch & al. 2001, etc.).

Brassicodae V. E. Avet. in Biol. Žurn. Armenii 43: 602. 12 Oct 1990 [‘Brassicidinae’]

321–323/2.460–2.590. Eglandular hairs sometimes branched, stellate or T-shaped. Inflorescence rarely with glandular stipules. Pollen grains covered by tryphine (not Pollenkitt). Genome duplication present. – The phylogenetic relationships among the main clades are in part very uncertain.

Scoliaxoneae Al-Shehbaz & S. I. Warwick in Taxon 60: 1161. 4 Aug 2011

1/1. Scoliaxon (1; S. mexicanus; northeastern Mexico). – Hairs simple or branched, minute. Fruit a globose siliqua. – Scoliaxon is not included in any of the studies by German & al. (2009) or Warwick & al. (2010). In the analyses by Warwick & al. (2011) it was identified as a basal lineage.

[Erysimeae+[Cardamineae+[[[Descurainieae+Yinshanieae]+[Lepidieae+Smelowskieae]]+[Camelineae+[[Boechereae+[Halimolobeae+Oreophytoneae]]+[Turritideae+[[Crucihimalayeae+Physarieae]+Pachycladinae+Microlepidieae+[Dipoma+Hemilophia]+Alyssopsideae]]]]]]]

Erysimeae Dumort., Fl. Belg.: 123. 1827

1/c 180. Erysimum (c 180; Europe, Macaronesia, the Mediterranean, Africa, temperate Asia, North America). – Hairs sometimes malpighiaceous. Cardenolides present.

[Cardamineae+[[[Descurainieae+Yinshanieae]+[Lepidieae+Smelowskieae]]+[Camelineae+[[Boechereae+[Halimolobeae+Oreophytoneae]]+[Turritideae+[[Crucihimalayeae+Physarieae]+Pachycladinae+Microlepidieae+[Dipoma+Hemilophia]+Alyssopsideae]]]]]]

Cardamineae Dumort., Fl. Belg.: 124. 1827

c 12/c 345. Aplanodes (2; A. doidgeana: KwaZulu-Natal; A. sisymbrioides: Eastern Cape, Lesotho), Armoracia (3; A. macrocarpa, A. rusticana, A. sisymbrioides; eastern Europe to Siberia, eastern North America), Barbarea (22; Europe, northern Asia, North America), Cardamine (c 200; cosmopolitan), Iodanthus (1; I. pinnatifidus; eastern United States from Connecticut and Minnesota to Texas and Alabama), Leavenworthia (8; southern and southeastern United States), Nasturtium (c 15; temperate regions on the Northern Hemisphere), Ornithocarpa (2; O. fimbriata, O. torulosa; Mexico), Planodes (2; southern United States, northern Mexico), Rorippa (c 85; nearly cosmopolitan, especially temperate regions), Selenia (5; S. aurea, S. dissecta, S. geniculata, S. grandis, S. jonesii; southern United States, Mexico), Sisymbrella (1; S. aspera; western Mediterranean). – Hairs simple or absent. Cotyledons accumbent. Fruit latiseptate or terete (in Armoracia angustiseptate). x = 8. Plastid trnF pseudogene present.

[[[Descurainieae+Yinshanieae]+[Lepidieae+Smelowskieae]]+[Camelineae+[[Boechereae+[Halimolobeae+Oreophytoneae]]+[Turritideae+[[Crucihimalayeae+Physarieae]+Pachycladinae+Microlepidieae+[Dipoma+ Hemilophia]+Alyssopsideae]]]]]

[[Descurainieae+Yinshanieae]+[Lepidieae+Smelowskieae]]

[Descurainieae+Yinshanieae]

Descurainieae Al-Shehbaz, Beilstein et E. A. Kellogg in Plant Syst. Evol. 259: 111. 19 Jul 2006

6/c 47. Descurainia (c 35; Europe, Macaronesia, the Mediterranean, Asia, North and South America), Robeschia (1; R. schimperi; the Middle East; in Descurainia?), Trichotolinum (1; T. deserticola; Patagonia; in Descurainia?), Hornungia (5; H. alpina, H. aragonensis, H. pauciflora, H. petraea, H. procumbens; Europe, the Mediterranean, one species, H. procumbens, a widespread weed), Ianhedgea (1; I. minutiflora; southwestern Asia to China), Tropidocarpum (4; T. californicum, T. capparideum, T. gracile, T. lanatum; California, Mexico, Chile). – Europe, Macaronesia, the Mediterranean, Asia, North and South America. Hairs usually dendritic (rarely dichotomous). Cotyledons incumbent. x = 6(Hornungia), 7.

Yinshanieae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 229. Mai 2010

1/7–13. Yinshania (7–13; China, northern Vietnam). – Hairs simple, dichotomous or absent. Fruit a latiseptate or angustiseptate silicula. Cotyledons incumbent. – Yinshania is sister to Descurainieae, according to Warwick & al. (2010).

[Lepidieae+Smelowskieae]

Lepidieae DC. in Mém. Mus. Hist. Nat. 7(1): 240. 20 Apr 1821 [‘Lepidineae’]

3/175–220. Cyphocardamum (1; C. aretioides; Afghanistan), Lepidium (175–220; temperate and subtropical regions), Lithodraba (1; L. mendociensis; Argentina). – Cosmopolitan. Hairs simple or absent. Ovule one per locule. Fruit angustiseptate. Seeds often mucilaginous. Cotyledons diplecolobal. x = 8.

Smelowskieae Al-Shehbaz, Beilstein et E. A. Kellogg in Plant Syst. Evol. 259: 111. 19 Jul 2006

1/25. Smelowskia (25; Pakistan to Central and northeastern Asia, northwestern North America). – Hairs branched. Seeds not mucilaginous. Cotyledons incumbent. x = 6 (also n = 10–12). – Smelowskia is sister to Lepidieae.

[Camelineae+[[Boechereae+[Halimolobeae+Oreophytoneae]]+[Turritideae+[[Crucihimalayeae+Physarieae]+Pachycladinae+Microlepidieae+[Dipoma+Hemilophia]+Alyssopsideae]]]]

Camelineae DC. in Mém. Mus. Hist. Nat. 7(1): 239. 20 Apr 1821

8/36. Arabidopsis (11; Europe, tropical African mountains, temperate Asia, North America), Camelina (8; central and southeastern Europe, eastern Mediterranean to central Asia), Capsella (8; eastern Mediterranean, western Asia), Catolobus (1; C. pendulus; eastern Europe, temperate Asia), Chrysochamela (4; C. draboides, C. elliptica, C. noeana, C. velutina; eastern Mediterranean to Russia), Neslia (1; N. paniculata; southeastern Europe, the Mediterranean, southwestern Asia), Noccidium (2; N. hastulatum, N. tuberculatum; southwestern Asia), Pseudoarabidopsis (1; P. toxophylla; Central Asia to western China). – Europe, temperate Asia, northern North America. Hairs simple, stalked or sessile, or stellate. Fruit usually a terete, latiseptate or quadrangular (in Capsella angustiseptate) siliqua (in Camelina, Capsella and Neslia a silicula). x = (6–)8(–11) (x = 4 in Stenopetalum; x = 5 in Arabidopsis thaliana). – Camelineae are probably non-monophyletic.

[[Boechereae+[Halimolobeae+Oreophytoneae]]+[Turritideae+[[Crucihimalayeae+Physarieae]+Pachycladinae+Microlepidieae+[Dipoma+Hemilophia]+Alyssopsideae]]]

[Boechereae+[Halimolobeae+Oreophytoneae]]

Boechereae Al-Shehbaz, Beilstein et E. A. Kellogg in Plant Syst. Evol. 259: 111. 19 Jul 2006

8/c 118. Anelsonia (1; A. eurycarpa; western United States), Boechera (c 110; the Russian Far East, Canada, Greenland, the United States, northern Mexico), Borodinia (1; B. macrophylla; eastern Siberia), Cusickiella (2; C. douglasii, C. quadricostata; western United States), Nevada (1; N. holmgrenii; Nevada), Phoenicaulis (1; P. cheiranthoides; western North America), Polyctenium (1; P. fremontii; western North America), Sandbergia (1; S. whitedii; northwestern United States). – The Russian Far East, North America. Hairs usually branched (in Nevada simple; in Boechera few or absent). x = 7.

[Halimolobeae+Oreophytoneae]

Halimolobeae Al-Shehbaz, Beilstein et E. A. Kellogg in Plant Syst. Evol. 259: 111. 19 Jul 2006

5/45. Exhalimolobos (10; Mexico to South America), Halimolobos (10; southwestern United States to Central America), Mancoa (9; Central and South America), Pennellia (10; southwestern United States, Mexico, Guatemala, Bolivia, northern Argentina), Sphaerocardamum (6; S. compressum, S. divaricatum, S. macropetalum, S. macrum, S. nesliiforme, S. stellatum; Mexico). – Southwestern United States to South America. Hairs branched. Seeds mucilaginous as wet. x = 8. Plastid trnF pseudogene present.

Oreophytoneae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 229. Mai 2010

2/6. Murbeckiella (5; M. boryi, M. huetii, M. pinnatifida, M. sousae, M. zanonii; southwestern Europe, western Mediterranean, the Caucasus), Oreophyton (1; O. falcatum; tropical mountains in East and Northeast Africa). – Southwestern Europe, northwestern Africa, tropical East Africa. Hairs simple or multifurcate, stipitate, or absent. Fruit a latiseptate siliqua. Cotyledons incumbent.

[Turritideae+[[Crucihimalayeae+Physarieae]+Pachycladinae+Microlepidieae+[Dipoma+Hemilophia]+Alyssopsideae]]

Turritideae Buchenau, Fl. Nordwestdeut. Tiefebene: 258. 28 Apr 1894 [‘Turritinae’]

1/4. Turritis (4; T. brassica, T. chilensis, T. glabra, T. laxa; Europe, Africa, western Asia; T. brassica: mountains in central and southern Europe). – Fruit a siliqua, tetrangular in cross-section. Hairs simple or stellate.

[[Crucihimalayeae+Physarieae]+Microlepidieae+[Dipoma+Hemilophia]+Alyssopsideae]

[Crucihimalayeae+Physarieae]

Crucihimalayeae D. German et Al-Shehbaz in Nord. J. Bot. 28: 647. 15 Dec 2010

3/14. Crucihimalaya (12; Central Asia, the Himalayas, Mongolia), Ladakiella (1; L. klimesii; Ladak in northwestern India), Transberingia (1; T. bursifolia; eastern Russia, western North America, southwestern Greenland). – Northeastern Asia, one species also in North America and southwestern Greenland.

Physarieae B. L. Rob., Syn. Fl. N. Amer. 1: 100. 1895

7/133–138. Dimorphocarpa (4; D. candicans, D. membranacea, D. pinnatifida, D. wislizeni; southwestern Canada, western United States), Dithyrea (2; D. californica, D. maritima; southwestern United States, northwestern Mexico), Lyrocarpa (3; L. coulteri, L. linearifolia, L. xantii; California, Mexico), Nerisyrenia (9; southern United States, Mexico), Paysonia (8; southeastern United States), Physaria (105–110; southwestern Canada, western United States, northwestern Mexico), Synthlipsis (2; S. densiflora, S. greggii; southern United States, Mexico). – Southwestern Canada to northern Mexico, Bolivia, Argentina. Hairs usually sessile, stellate (in Paysonia also simple, dichotomous and stalked substellate). Pollen grains with at least four colpi. Ovules two or more per locule. Fruit an angustiseptate or inflated silicula (in Nerisyrenia sometimes a siliqua). x = 8 (n = 4–11).

Microlepidieae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 228. Mai 2010 (incl. Pachycladinae O. E. Schulz in Engler et Prantl, Nat. Pflanzenfam. 86: 19, 181. 22 Jul 1924)

16/55. Pachycladon (10; the Southern Alps in New Zealand, Tasmania), Menkea (6; M. australis, M. crassa, M. draboides, M. lutea, M. sphaerocarpa, M. villosula; southern Australia), Cuphonotus (2; C. andraeanus, C. humistratus; arid regions in Australia), Irenepharsus (3; I. magicus, I. phasmatodes, I. trypherus; southeasternmost South Australia, southeastern Victoria and New South Wales), ‘Arabidella’ (7; A. chrysodema, A. eremigena, A. filifolia, A. glaucescens, A. nasturtium, A. procumbens, A. trisecta; drier regions in Australia; polyphyletic), Phlegmatospermum (4; P. cochlearinum, P. drummondii, P. eremaeum, P. richardsii; drier regions in southern Australia), Harmsiodoxa (3; H. blennodioides, H. brevipes, H. puberula; arid regions in Australia), Stenopetalum (10; Australia), Drabastrum (1; D. alpestre; eastern Victoria, southeastern New South Wales), Pachymitus (1; P. cardaminoides; southeastern South Australia, western Victoria, southern New South Wales), Ballantinia (1; B. antipoda; south central Victoria, Tasmania), Geococcus (1; G. pusillus; southern semi-arid regions in Australia), Carinavalva (1; C. glauca; central Australia), Microlepidium (2; M. alatum, M. pilosulum; southwestern Western Australia, coastal South Australia), Scambopus (1; S. curvipes; South Australia), Blennodia (2; B. canescens, B. pterosperma; central Australia). – Australia, New Zealand. Hairs simple or bi- to multifurcate, or sometimes stellate or absent. Fruit an angustiseptate silicula or a terete siliqua. Cotyledons incumbent.

Dipoma clade

1 or 2/1 or 6. Dipoma (1; D. iberideum; southwestern China); Hemilophia (5; H. franchetii, H. pulchella, H. rockii, H. serpens, H. sessilifolia; southwestern China). – Southwestern China. Hairs simple or more or less malpighiaceous (sometimes slightly dichotomous). Fruit a terete or slightly angustiseptate siliqua (Dipoma) or a silicula (Hemilophia). – Dipoma fell into a tetrachotomy also consisting of Physarieae, Microlepidieae and Alyssopsideae, according to Warwick & al. (2010). Hemilophia may possibly belong in this clade.

Alyssopsideae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 228. Mai 2010

4/9. Alyssopsis (2; A. mollis, A. trinervis; Iran to Central Asia), Calymmatium (2; C. draboides, C. notorrhizum;Central Asia), Dielsiocharis (2; D. bactriana, D. kotschyi; Iran, Tajikistan), Olimarabidopsis (3; O. cabulica, O. pumila, O. umbrosa; eastern Mediterranean to western China). – East Mediterranean to China. Hairs bi- or multifurcate, stalked. Cotyledons accumbent or incumbent.

Alysseae DC. in Mém. Mus. Hist. Nat. 7(1): 231. 20 Apr 1821 [‘Alyssineae’]

24/150–220. Alyssum (100–170; Europe, the Mediterranean and North Africa to the Middle East, western, Central and East Asia; non-monophyletic?), Hormathophylla (1; H. halimifolia; western Mediterranean), Lutzia (1; L. fruticosa; Crete, Karpathos, Astipalea, Kasos), Irania (5; I. compacta, I. membranacea, I. multicaulis, I. pendula, I. umbellata; Iraq, Iran, Afghanistan), Clastopus (2; C. erubescens, C. vestitus; Turkey, Iran, Iraq), Physoptychis (3; P. caspica, P. haussknechtii, P. purpurascens; eastern Turkey to northwestern Iran), Pterygostemon (1; P. spathulatus; northwestern China, eastern Kazakhstan), Degenia (1; D. velebitica; Croatia), Acuston (1; A. lunarioides; Crete and the Kikladhes in Greece), Alyssoides (1; A. utriculata; southern and southeastern Europe, Turkey), Resetnikia (1; R. triquetra; coast of Croatia), Brachypus (1; B. asper; eastern Turkey and Armenia to Iraq, Iran and Central Asia), Fibigia (6; F. clypeata, F. eriocarpa, F. lunarioides, F. macrocarpa, F. obovata, F. suffruticosa; eastern Mediterranean and Ukraine to Iran and Afghanistan), Phyllolepidum (2; P. cyclocarpum, P. rupestre; the Apennines, the Balkan Peninsula, Turkey), Bornmuellera (9; the Balkan Peninsula, Turkey), Takhtajaniella (1; T. globosa; Azerbaijan), Cuprella (2; C. antiatlantica, C. homalocarpa; Morocco, Egypt to Turkey, the Middle East, Iran, Pakistan and the Arabian Peninsula), Aurinia (7; A. corymbosa, A. gionae, A. leucadea, A. moreana, A. petraea, A. saxatilis, A. sinuata; Europe, Turkey), Berteroa (5; B. gintlii, B. incana, B. mutabilis, B. obliqua, B. orbiculata; temperate regions in Eurasia), Lepidotrichum (1; L. uechtritzianum; westernmost coast of the Black Sea in Bulgaria and Turkey), Galitzkya (3; G. macrocarpa, G. potaninii, G. spathulata; Central Asia and Russia to northwestern China and Mongolia), Meniocus (4–7; M. aureus, M. hirsutus, M. linifolius, M. serpyllifolius; Spain, northwestern Africa, southeastern Europe, Ukraine and Turkey to Iran, the Middle East, the Arabian Peninsula, Central Asia, Mongolia and China), Clypeola (9; the Mediterranean and East Europe to the Middle East, Iran, Central Asia and the Arabian Peninsula), Odontarrhena (87; South and Southeast Europe, Turkey, the Caucasus to the Middle East, Central Asia and East Asia, one species, O. obovata, in Alaska and western Canada). – Mainly southern and southeastern Europe, northwestern Africa and southwestern Asia. Hairs stellate. Filaments usually with appendages. Siliqua usually latiseptate or terete (rarely angustiseptate). Seeds often winged. x = 8. – Alysseae are plausible sister-group to the remaining Brassicodae with moderate support (parsimony bootstrap value of 79%).

[Megacarpaeeae+[Heliophileae+Notothlaspideae]]

Megacarpaeeae Kamelin ex D. German in Komarovia 6(2): 83. 19 May 2010

2/12. Megacarpaea (9; Europe, western and Central Asia, the Himalayas, western China), Pugionium (3; P. cornutum, P. dolabratum, P. pterocarpum; Russia, Mongolia, northern China). – Eastern Europe to Central Asia. Hairs simple. Fruit in Megacarpaea a deeply bilobate silicula with single-seeded lobes.

[Heliophileae+Notothlaspi]

Heliophileae DC. in Mém. Mus. Hist. Nat. 7(1): 256. 20 Apr 1821

1/c 90. Heliophila (c 90; southern Africa, especially Northern, Western and Eastern Cape). – Hairs simple or absent. Fruit a siliqua. Cotyledons diplecolobal. x = 10.

Notothlaspideae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 229. Mai 2010

1/2. Notothlaspi (2; N. australe, N. rosulatum; the Southern Alps in New Zealand). – Hairs simple or absent. Fruit a silicle, angustiseptate. Cotyledons incumbent. – Notothlaspi is sister to Heliophila, according to Warwick & al. (2010).

Iberideae Webb et Berthel., Hist. Nat. Iles Canaries 3(2,1): 92. Nov 1837

2/29. Iberis (27; Europe, the Mediterranean, northwestern Africa), Teesdalia (2; T. coronopifolia, T. nudicaulis; Europe, the Mediterranean, southwestern Asia). – Europe, the Mediterranean, northwestern Africa, southwestern Asia. Hairs simple or absent. Flowers often zygomorphic. Fruit usually strongly angustiseptate, with two seeds.

[Chamireae+[Conringieae+[Coluteocarpeae]]

Chamireae Sond. in Abh. Naturwiss. Verein Hamburg 1: 267. 1846

1/1. Chamira (1; C. circaeoides; Western Cape). – Annual herb. – Chamira may be sister to the clade [Conringieae+Noccaeeae].

[Conringieae+Coluteocarpeae]

Conringieae D. A. German et Al-Shehbaz in Harvard Pap. Bot. 13: 169. 30 Jun 2008

2/8. Conringia (6; C. austriaca, C. clavata, C. grandiflora, C. orientalis, C. persica, C. planisiliqua; southern Europe, the Mediterranean to Central Asia), Zuvanda (2; Z. exacoides, Z. meyeri; southwestern Asia). – Europe to Central Asia. Hairs absent. Fruit a siliqua.

Coluteocarpeae V. I. Dorof. In Turczinanowia 7(3): 51. 28 Sep 2004

3/c 125. Coluteocarpus (1; C. reticulatus; mountains in southwestern Asia), Noccaea (c 120; Europe, North Africa, temperate Asia, North America, Mexico, Patagonia), Pseudosempervivum (4; P. amanum, P. aucheri, P. gurulkanii, P. sempervivum; Turkey, Armenia). – Europe, the Mediterranean, temperate Asia, North America, Patagonia. Hairs absent. Fruit angustiseptate. x = 7.

[Thlaspideae+[Eutremeae+[Brassiceae+Bivonaeeae]+Thelypodieae+[Isatideae+[Sisymbrieae+Ochthodieae]]]]]

Thlaspideae DC. in Mém. Mus. Hist. Nat. 7(1): 234. 20 Apr 1821 [‘Thlaspideae’]

12/36. Thlaspi (4; T. arvense, T. ceratocarpum, T. huetii, T. kochianum; temperate regions of the Northern Hemisphere), Mummenhoffia (2; M. alliacea, M. olivieri; central and southern Europe, East African high mountains), Didymophysa (2; D. aucheri, D. fedtschenkoana; Iran to Central Asia and western Himalayas), Peltaria (4; P. alliacea, P. angustifolia, P. emarginata, P. turkmena; eastern Mediterranean to Iran and Central Asia), Pseudocamelina (3; P. aphragmodes, P. campylocarpa, P. glaucophylla; Iran, northern Iraq, northern Pakistan), Peltariopsis (2; P. grossheimii, P. planisiliqua; eastern Turkey, the Caucasus, northern Iran), Graellsia (8; Morocco, Turkey to Pakistan), Parlatoria (1; P. cakiloidea; Iran), Pachyphragma (1; P. macrophyllum; the Caucasus), Pseudovesicaria (1; P. digitata; the Caucasus), ‘Alliaria’ (3; A. auriculata, A. brachycarpa, A. petiolata; Europe, temperate Asia; diphyletic), Lysakia (1; L. rostrata; northern Iran), Sobolewskia (4; S. caucasica, S. clavata, S. sibirica, S. truncata; eastern Mediterranean to the Caucasus). – Europe, the Mediterranean, southwestern and Central Asia, the Himalayas. Hairs simple or absent. Seed coat striate or coarsely reticulate. x = 7.

[Eutremeae+[Brassiceae+Bivonaeeae]+Thelypodieae+[Isatideae+[Sisymbrieae+Ochthodieae]]]]

Eutremeae Al-Shehbaz, Beilstein et E. A. Kellogg in Plant Syst. Evol. 259: 112. 19 Jul 2006

3/34. Chalcanthus (1; C. renifolius; mountains in Iran, Afghanistan and Central Asia), Eutrema (26; Russia, Central Asia, the Himalayas, eastern Tibet, East Asia, Colorado), Pegaeophyton (7; P. angustiseptatum, P. minutum, P. nepalense,P. purii, P. scapiflorum, P. sulphureum, P. watsonii; Central Asia, the Himalayas to western China). – East Europe, temperate Asia, one species also in North America. Hairs simple or absent. Fruit a siliqua. Cotyledons incumbent. x = 7.

[[Brassiceae+Bivonaeeae]+Thelypodieae+[Isatideae+[Sisymbrieae+Ochthodieae]]]

[Brassiceae+Bivonaeeae]

Brassiceae DC. in Mém. Mus. Hist. Nat. 7(1): 242. 20 Apr 1821

c 36/c 275. Nasturtiopsis (1; N. arabica; North Africa to Israel); Ammosperma (2; A. cinerea, A. variabile; North Africa), Brassica (c 165; Europe, the Mediterranean, temperate Asia), Cakile (c 6; C. arabica, C. constricta, C. edentula, C. geniculata, C. lanceolata, C. maritima; coasts in Europe, the Mediterranean, the Arabian Peninsula and North America; incl. Didesmus?, Erucaria?), Didesmus (2; D. aegyptius, D. bipinnatus; eastern Mediterranean; in Cakile?), Erucaria (10; eastern Mediterranean, the Arabian Peninsula, Iran; in Cakile?), Carrichtera (1; C. annua; Macaronesia, the Mediterranean to Iran), Cordylocarpus (1; C. muricatus; Morocco, Algeria), Crambella (1; C. teretifolia; Morocco), Enarthrocarpus (5; E. arcuatus, E. clavatus, E. lyratus, E. pterocarpus, E. strangulatus; eastern Mediterranean, North Africa), Crambe (c 35; Europe, Macaronesia, the Mediterranean, mountains in northern tropical Africa, western Asia), Douepea (2; D. arabica, D. tortuosa; the Arabian Peninsula, Pakistan), Eremophyton (1; E. chevallieri; Morocco, Algeria, Libya), Fezia (1; F. pterocarpa; Morocco), Foleyola (1; F. billotii; western Sahara), Fortuynia (1; F. garcinii; Iran, Afghanistan, Baluchistan), Guiraoa (1; G. arvensis; Spain), Hemicrambe (3; H. fruticosa, H. fruticulosa, H. socotrana; Morocco, Socotra), Henophyton (1; H. deserti; Morocco to Libya), Kremeriella (1; K. cordylocarpus; northwestern Africa), Moricandia (8; the Mediterranean to Pakistan), Morisia (1; M. monanthos; Corsica, Sardinia), Muricaria (1; M. prostrata; Morocco, Libya), Otocarpus (1; O. virgatus; Algeria), Physorhynchus (2; P. brahuicus, P. chamaerapistrum; southern Iran to northwestern India), Pseuderucaria (2; P. clavata, P. teretifolia; Morocco to Israel), Psychine (1; P. stylosa; North Africa), Quezeliantha (1; Q. tibestica; Sahara), Raffenaldia (2; R. platycarpa, R. primuloides; Morocco, Algeria), Rytidocarpus (1; R. moricandioides; Morocco), Savignya (1; S. parviflora; arid regions in North Africa to the Middle East), Schouwia (1; S. purpurea; North Africa, the Arabian Peninsula), Succowia (1; S. balearica; the Canary Islands, western Mediterranean), Vella (>6; V. anremerica, V. bourgaeana, V. lucentina, V. mairei, V. pseudocytisus, V. spinosa; western Mediterranean), Zilla (2; Z. macroptera, Z. spinosa; North Africa to the Arabian Peninsula), Orychophragmus (3; O. limprichtianus, O. violaceus, O. ziguiensis; China). – Europe, the Mediterranean, central and southern Africa, southwestern Asia, the Atlantic coast of North America. Hairs simple or absent. Fruit usually transversely segmented (heteroarthrocarpous; not in Nasturtiopsis). Cotyledons usually conduplicate (not in Nasturtiopsis). – Brassica in the present sense includes Brassica s.str. (c 40; Europe, the Mediterranean, temperate Asia), Ceratocnemum (1; C. rapistroides; Morocco), Coincya (6; C. cheiranthus, C. cintrana, C. johnstonii, C. monensis, C. richeri, C. wrightii; southern Europe, the Mediterranean), Diplotaxis (c 25; Europe, the Mediterranean to northwestern India), Eruca (1; E. vesicaria; the Mediterranean, northeastern Africa), Erucastrum (c 25; Europe, Macaronesia, the Mediterranean), Hirschfeldia (1; H. incana; the Mediterranean), Raphanus (4; R. caudatus, R. confusus, R. indicus, R. raphanistrum; Europe, the Mediterranean to Central Asia), Rapistrum (2; R. perenne, R. rugosum; Europe, the Mediterranean, West Asia), Sinapidendron (4; S. angustifolium, S. frutescens, S. rupestre, S. sempervivifolium; Madeira), Sinapis (6; S. alba, S. allionii, S. arvensis, S. circinata, S. flexuosa, S. pubescens; Europe, the Mediterranean), Trachystoma (3; T. aphanoneurum, T. ballii, T. labasii; Morocco). Orychophragmus comprises herbs with hairs simple or absent, filaments free from each other, fruit a terete or slightly quadrangular silicula, and cotyledons conduplicate.

Bivonaeeae M. A. Koch et Warwick in Taxon 61: 89. 21 Feb 2012

1/1. Bivonaea (1; B. lutea; Sardinia, Sicily, northwestern Africa). – Fruit a silicula with winged valves.

Thelypodieae Prantl in Engler et Prantl, Nat. Pflanzenfam. III, 2: 154. Mar 1891

29/c 260. Chaunanthus (4; C. acuminatus, C. gracielae, C. mexicanus, C. petiolatus; Mexico), Chilocardamum (4; C. castellanosii, C. longistylum, C. onuridifolium, C. patagonicum; southern Argentina), Chlorocrambe (1; C. hastata; Oregon, Utah), Dictyophragmus (3; D. englerianus, D. lactucoides, D. punensis; Peru, Argentina), Dryopetalon (8; southwestern North America), Englerocharis (2; E. pauciflora, E. peruviana; the Andes), Eremodraba (2; E. intricatissima, E. schulzii; Peru, northern Chile), ‘Hesperidanthus’ (5; H. argillaceus, H. barnebyi, H. jaegeri, H. linearifolius, H. suffrutescens; western North America; polyphyletic), Hollermayera (1; H. silvatica; Chile), Ivania (1; I. juncalensis; northern Chile), Mostacillastrum (c 30; Peru, Bolivia, Argentina), Neuontobotrys (13; Chile, Argentina), Parodiodoxa (1; P. chionophila; mountains in northern Argentina), Petroravenia (1; P. eseptata; Argentina), Phlebolobium (1; P. maclovianum; the Falkland Islands), Phravenia (1; P. vireckii; northern Mexico), Polypsecadium (c 15; northern and western South America), Pringlea (1; P. antiscorbutica; Prince Edward Islands, Crozet Islands, Kerguélen Islands, Heard Island), Romanschulzia (14; Central America), Sarcodraba (4; S. andina, S. dusenii, S. karraikensis, S. subterranea; the Andes), Sibara (13; western and southern North America), Stanleya (6–7; S. albescens, S. bipinnata, S. confertiflora, S. lata, S. pinnata, S. tomentosa, S. viridiflora; western North America), Streptanthus (c 55; western and southern North America; paraphyletic?), Thelypodiopsis (15; North America, Mexico, Guatemala), Thelypodium (19; western North America, Central America), Thysanocarpus (5; T. conchuliferus, T. curvipes, T. erectus, T. laciniatus, T. radians; western United States), Warea (4; W. amplexifolia, W. carteri, W. cuneifolia, W. sessilifolia; southeastern United States), Weberbauera (c 20; the Andes in Peru, Bolivia and Argentina), Zuloagocardamum (1; Z. jujuyensis; northwesternmost Argentina). – North, Central and South America, subantarctic islands.

[Isatideae+[Sisymbrieae+Ochthodieae]]

Isatideae DC. in Mém. Mus. Hist. Nat. 7(1): 241. 20 Apr 1821

5/c 34. Chartoloma (1; C. platycarpum; Central Asia), Glastaria (1; G. glastifolia; southwestern Turkey, Syria, Iraq), Isatis (c 30; Europe, the Mediterranean to Central Asia; paraphyletic), Myagrum (1; M. perfoliatum; Central Europe, the Mediterranean to northwestern India), Schimpera (1; S. arabica; eastern Mediterranean to southern Iran). – Europe, Central and Southwest Asia. Hairs simple or absent. Fruit nutlike, one- or two-seeded, often pendent. x = 7.

[Sisymbrieae+Ochthodieae]

Sisymbrieae DC. in Mém. Mus. Hist. Nat. 7(1): 237. 20 Apr 1821 [‘Sisymbreae’]

1/44. Sisymbrium (44; Europe, the Mediterranean, northern and southern Africa, Asia, one species in North America). – Hairs simple or absent. Stigma bilobate. Fruit a terete siliqua. x = 7.

Ochthodieae Bunge in Arb. Naturf. Ver. Riga 1: 170. 1847

2/2. Ochthodium (1; O. aegyptiacum; eastern Mediterranean); Pseudofortuynia (1; P. esfandiarii; Iran). – Eastern Mediterranean, Iran. Fruit a silicula (in Ochthodium lignified and indehiscent). – Ochthodium and Pseudofortuynia form a clade with weak bootstrap support (less than 60%, according to Warwick & al. 2010), which may be sister to Sisymbrium.

[[Buniadeae+Kernereae]+[Asteae+[Schizopetaleae+[Cremolobeae+Eudemeae+Aphragmeae]]]]

[Buniadeae+Kernereae]

Buniadeae DC. in Mém. Mus. Hist. Nat. 7(1): 245. 20 Apr 1821

1/3. Bunias (3; B. cochlearioides, B. erucago, B. orientalis; southern and eastern Europe, the Mediterranean, western Asia). – Hairs simple or branched, glandular, or absent. Fruit an indehiscent silicula.

Kernereae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 228. Mai 2010

2/2. Kernera (1; K. saxatilis; mountains in central and southern Europe), Rhizobotrya (1; R. alpina; western Dolomites in central Europe). – Central Europe. Hairs simple or dichotomous, stalked, or absent. Fruit a siliqua, terete or latiseptate. Cotyledons accumbent.

[Asteae+[Schizopetaleae+[Cremolobeae+Eudemeae+Aphragmeae]]]

Asteae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 228. Mai 2010

1/1. Asta (1; A. schaffneri; Mexico). – Hairs absent. Cotyledons incumbent. . – Asta may be closely allied to Kernereae.

[Schizopetaleae+[Cremolobeae+Eudemeae+Aphragmeae]]

Schizopetaleae R. Br. ex Barnéoud in Ann. Mag. Nat. Hist., ser. 1, 16: 68. Jul 1845

2/20. Atacama (1; A. nivea; northern Chile); Mathewsia (9; southern Peru, northern Chile), Schizopetalon (10; the Andes in northern central Chile and northwestern Argentina). – Southern Peru, northern Chile, northwestern Argentina, mainly in the Atacama desert. Hairs usually simple (sometimes branched) or absent. Fruit usually a siliqua. x = (10–)14. – Atacama was recovered as sister to Teesdalia (Iberideae) in the analysis by Toro-Núñoz & al. (2015). – Schizopetaleae may be sister-group to Cremolobeae.

[Cremolobeae+Eudemeae+Aphragmeae]

Cremolobeae R. Br. in D. Denham et B. H. Clapperton, Narr. Travels Africa: 212. Mar-Apr 1826

3/32. Aimara (1; A. rollinsii; northwestern Chile), Cremolobus (7; C. bolivianus, C. chilensis, C. peruvianus, C. rhomboideus, C. stenophyllus, C. subscandens, C. suffruticosus; the Andes in Peru, Chile and Argentina), Menonvillea (24; the Andes in Chile and Argentina). – Peru, Chile, Argentina. Herbs or shrublets. Hairs simple. Fruit a silicula.

Eudemeae Al-Shehbaz, Warwick, Mummenh. et M. A. Koch in Plant Syst. Evol. 285: 228. Mai 2010

9–10/42–43. Alshehbazia (1; A. hauthalii; the Andes in southernmost Chile and southernmost Argentina), Xerodraba (8; southern Argentina), Onuris (6; O. alismatifolia, O. graminifolia, O. hatcheriana, O. papillosa, O. reichei, O. spegazziniana; Chile, Patagonia), Stenodraba (9; the Andes in Chile and Argentina; diphyletic?), Aschersoniodoxa (4; A. cachensis, A. mandoniana, A. pilosa, A. rusbyi; the Andes), Brayopsis (6; B. alpaminae, B. calycina, B. colombiana, B. diapensioides, B. gamosepala, B. monimocalyx; the Andes), Dactylocardamum (1; D. imbricatifolium; Peru), Delpinophytum (1; D. patagonicum; Patagonia), Eudema (6; E. friesii, E. hauthalii, E. incurva, E. nubigena, E. rupestris, E. werdermannii; the Andes). – The Andes (especially Chile), Patagonia. Hairs simple or dichotomous, stalked, or absent. Fruit a siliqua or silicula, latiseptate or angustiseptate. Cotyledons incumbent. – Horwoodia (1; H. dicksoniae; the Arabian Peninsula to Iraq) was recovered with relatively low support as sister to Eutremeae in the analysis by Toro-Núñez & al. (2015).

Aphragmeae D. A. German et Al-Shehbaz in Harvard Pap. Bot. 13: 168. 30 Jun 2008

1/12. Aphragmus (12; the Himalayas, Siberia, the Russian Far East, Alaska, Yukon). – Hairs simple or dichotomous, small. Fruit a siliqua or silicula. x = 7. – Aphragmus may be closely allied to Eudemeae.

[Calepineae+[Subularieae+[[[Arabideae+Stevenieae]+Biscutelleae]+[[Cochlearieae+Asperuginoides]+[Anchonieae+[Euclidieae+[Dontostemoneae+Chorisporeae]+[Hesperideae+Anastaticeae]]]]]]]

Calepineae Horan, Char. Ess. Fam: 169. 17 Jun 1847

3/7. Calepina (1; C. irregularis; southern and southwestern Europe, Macaronesia, the Mediterranean), ‘Goldbachia’ (5; G. ikonnikovii, G. laevigata, G. pendula, G. tetragona, G. verrucosa; southeastern Russia, Southwest to Central Asia; paraphyletic), Leiocarpaea (1; L. cochlearioides; southestern Russia, western Asia). – Southern Europe, the Mediterranean, Southwest and Central Asia. Hairs simple (often papillary) or absent. Fruit a silicula or siliqua (in ‘Goldbachia’ articulated with single-seeded segments; in Spirorhynchus nut-like).

[Subularieae+[[[Arabideae+Stevenieae]+Biscutelleae]+[[Cochlearieae+Asperuginoides]+[Anchonieae+[Euclidieae+[Dontostemoneae+Chorisporeae]+[Hesperideae+Anastaticeae]]]]]]

Subularieae DC. in Mém. Mus. Hist. Nat. 7(1): 257. 20 Apr 1821

3/4. Idahoa (1; I. scapigera; western United States), Petrocallis (1; P. pyrenaica; mountains in southwestern and central Europe), Subularia (2; S. aquatica: temperate regions in Europe, Asia and North America; S. monticola: mountains in tropical East and Central Africa). – Temperate regions on the Northern Hemisphere. Hairs simple or absent. Fruit a latiseptate silicula. – This clade has weak support (parsimony bootstrap value less than 50%), according to Warwick & al. (2010).

[[[Arabideae+Stevenieae]+Biscutelleae]+[[Cochlearieae+Asperuginoides]+[Anchonieae+[Euclidieae+[Dontostemoneae+Chorisporeae]+[Hesperideae+Anastaticeae]]]]]

[[Arabideae+Stevenieae]+Biscutelleae]

[Arabideae+Stevenieae]

Arabideae DC. in Mém. Mus. Hist. Nat. 7(1): 229. 20 Apr 1821

17/490–495. Abdra (2; A. aprica, A. brachycarpa; the United States), ’Arabis’ (c 60; temperate regions on the Northern Hemisphere, tropical African mountains; paraphyletic), Athysanus (1; A. pusillus; western United States), Aubrieta (16; southern Europe to Iran), Draba (c 390; temperate regions on the Northern Hemisphere, the Andes), Drabella (1; D. muralis; Europe to Turkey and the Caucasus, Morocco), Pachyneurum (1; P. grandiflorum; Central Asia), Baimashania (2; B. pulvinata, B. wangii; Yunnan, Qinghai), Pseudodraba (1; P. hystrix; mountains in Afghanistan and Pakistan), Sinoarabis (1; S. setosifolia; Xizang), Arcyosperma (1; A. primulifolium; Nepal), Borodiniopsis (1; B. alaschanica; western China), Botschantzevia (1; B. karatavica; Kazakhstan), Dendroarabis (1; D. fruticulosa; Altai), Parryodes (1; P. axilliflora; Bhutan), Scapiarabis (4; S. ariana, S. karategina, S. popovii, S. saxicola; northern Pakistan, Central Asia, Tajikistan, Afghanistan, Xinjiang), Tomostima (6; western North America, the Andes). – Temperate regions on the Northern Hemisphere, tropical African mountains, the Andes. Hairs branched. Cotyledons usually accumbent (in Berteroella incumbent). Seeds not mucilaginous. x = 8 (polyploidy frequent in Draba).

Stevenieae Al-Shehbaz, D. German et M. A. Koch in Plant Divers. Evol. 129: 72. 22 Mar 2011

3/8. Macropodium (2; M. nivale, M. pterospermum; Central Asia, Sakhalin, Japan), Pseudoturritis (1; P. turrita; southern and southeastern Europe), Stevenia (5; S. alyssoides, S. cheiranthoides, S. incarnata, S. maximowiczii, S. sergievskajae; China, the Korean Peninsula, Japan, the Russian Far East). – Europe, Central and East Asia.

Biscutelleae Dumort., Fl. Belg.: 118. 1827

5/61. Heldreichia (1; H. bupleurifolia; Turkey to Afghanistan), Biscutella (46; central and southern Europe, the Mediterranean), Megadenia (1; M. pygmaea; Siberia, China), Ricotia (9; eastern Mediterranean), Lunaria (4; L. annua, L. elongata, L. rediviva, L. telekiana; Europe). – Europe, the Mediterranean, Asia. Fruit a compressed silicula (in Biscutella didymous, indehiscent); Ricotia has a silique or a latiseptate silicula; Lunaria has a latiseptate silicula and an unusually long gynophore. – Biscutelleae are sister to [Arabideae+Stevenieae].

[[Cochlearieae+Asperuginoides]+[Anchonieae+[Euclidieae+[Dontostemoneae+Chorisporeae]+[Hesperideae+Anastaticeae]]]]

[Cochlearieae+Asperuginoides]

Cochlearieae Buchenau, Fl. Nordwestdeut. Tiefebene: 245. 28 Apr 1894 [‘Cochleariinae’]

2/c 35. Cochlearia (c 30; Western Europe, the western Mediterranean, northwestern Africa, Arctic regions in northeastern Asia, Alaska and northern Canada), Ionopsidium (5; I. abulense, I. acaule, I. albiflorum, I. prolongoi, I. savianum; western Mediterranean). – Europe, the Mediterranean, North Africa, northeastern Asia, Alaska, northern Canada. Hairs absent. Stigma entire. Fruit a terete or angustiseptate silicula. Seeds biseriate. x = 6–7. – Cochlearieae may be sister-group to the remaining Brassicodae. A sister-group relationship between Cochlearieae and Asperuginoides is weakly supported in the analyses by Warwick & al. (2010).

Asperuginoides clade

1/1. Asperuginoides (1; A. axillaris; Turkey and eastwards to Central Asia and Pakistan). – Hairs stellate. Fruit a dorsally compressed silicula, covered with anchor-shaped hairs (glochids). – Asperuginoides may be sister to Cochlearieae, although its position in Brassicaceae is very uncertain.

[Anchonieae+[Euclidieae+[Dontostemoneae+Chorisporeae]+[Hesperideae+Anastaticeae]]]

Anchonieae DC. in Mém. Mus. Hist. Nat. 7(1): 242. 20 Apr 1821

9/66–68. Anchonium (2; A. billardieri, A. elichrysifolium; West and Central Asia), Eremoblastus (1; E. caspicus; western Kazakhstan to Central Asia), Iskandera (2; I. alaica, I. hissarica; Central Asia), ’Matthiola’ (48–50; western Europe, Macaronesia, the Mediterranean; polyphyletic), Micrantha (1; M. multicaulis; Iran), Microstigma (3; M. brachycarpum, M. deflexum, M. sajanense; Siberia, Mongolia, China), Sterigmostemum (6; S. acanthocarpum, S. caspicum, S. incanum, S. longistylum, S. ramosissimum, S. sulphureum; southeastern Russia, western Kazakhstan, Southwest and Central Asia), Synstemon (2; S. lulianlianus, S. petrovii; China), Zerdana (1; Z. anchonioides; mountains in Iran). – Europe, temperate Asia. Hairs branched; glandular hairs multicellular with multiseriate stalk. Stigma often strongly bilobate. x = 7 (x = 5–8 in Matthiola).

[Euclidieae+[Dontostemoneae+Chorisporeae]+[Hesperideae+Anastaticeae]]

Euclidieae DC. in Mém. Mus. Hist. Nat. 7(1): 236. 20 Apr 1821

28/165. Anzhengxia (1; A. yechengnica; Xinjiang Prov. in China), Atelanthera (1; A. perpusilla; Central Asia, the Himalayas), Braya (23; northern circumpolar, mountains in Central and North Europe, Central Asia, the Himalayas), Catenulina (1; C. hedysaroides; Central Asia), Christolea (5; C. borealis, C. crassifolia, C. maidantalica, C. niyaensis, C. parryoides; Central Asia, the Himalayas, East Asia), Cryptospora (3; C. falcata, C. inconspicua, C. trichocarpa; Central Asia), Cymatocarpus (3; C. grossheimii, C. heterophyllus, C. pilosissimus; Transcaucasia to Central Asia), Dichasianthus (1; D. subtilissimus; Central Asia), Dilophia (2; D. ebracteata, D. salsa; Central Asia to western China), Euclidium (1; E. syriacum; eastern Europe to the Middle East), Lachnoloma (1; L. lehmannii; Iran to China), Leiospora (8; Russia to East Asia), Lepidostemon (5; L. everestianus, L. glaricola, L. gouldii, L. pedunculosus, L. rosularis; the Himalayas), Leptaleum (1; L. filifolium; eastern Mediterranean to Central Asia and Baluchistan), Metashangrilaia (1; M. forrestii; Xizang, Yunnan, Bhutan), Neotorularia (13; the Mediterranean to Central Asia and Afghanistan), Octoceras (1; O. lehmannianum; Iran and Afghanistan to Central Asia), Pycnoplinthopsis (1; P. bhutanica; Bhutan), Pycnoplinthus (1; P. uniflora; the Himalayas), Rhammatophyllum (9; Central Asia), Rudolf-kamelinia (1; R. korolkowii; Central Asia, western China, northern India), Shangrilaia (1; S. nana; Yunnan), Sisymbriopsis (5; S. mollipila, S. pamirica, S. schugnana, S. shuanghuica, S. yechengnica; Tajikistan, China), Solms-laubachia (33; China, one species also in Sikkim), Spryginia (7; S. afghanica, S. crassifolia, S. falcata, S. gracilis, S. pilosa, S. undulata, S. winkleri; Central Asia), Streptoloma (2; S. desertorum, S. sumbarense; Central Asia to Afghanistan), Strigosella (24; the Mediterranean to western and Central Asia, North Africa), Tetracme (10; eastern Mediterranean to Central Asia and Baluchistan). – Europe, temperate and arctic Asia, arctic and alpine North America. Hairs usually branched (rarely simple or absent). Multicellular glands absent. Stigma entire or bilobate. Fruit often a terete to quadrangular siliqua or silicula. Cotyledons incumbent. x = 7(–8).

[[Dontostemoneae+Chorisporeae]+[Hesperideae+Anastaticeae]]

[Dontostemoneae+Chorisporeae]

Dontostemoneae Al-Shehbaz et Warwick in Harvard Pap. Bot. 12(2): 431. 21 Dec 2007

2/19. Clausia (6; C. agideliensis, C. aprica, C. kasakhorum, C. podlechii, C. robusta, C. trichosepala; southeastern Europe to Central and East Asia), Dontostemon (13; Siberia, Mongolia, China). – Southeastern Europe to Siberia and East Asia. Perennial herbs. Eglandular hairs simple or dichotomous; glandular hairs when present multicellular, multiseriate. Fruit a terete or latiseptate often tardily dehiscent siliqua. Radicula accumbent.

Chorisporeae Ledeb., C. A. Mey. et Bunge, Fl. Altaic. 3: 104. Jul-Dec 1831

4/57. ’Chorispora’ (13; eastern Mediterranean to Central Asia; paraphyletic), Diptychocarpus (1; D. strictus; eastern Europe to Central Asia), Litwinowia (1; L. tenuisissima; southwestern Asia to China), Parrya (42; northern temperate and arctic regions on the Northern Hemisphere, circumpolar). – Europe, temperate Asia, northern North America. Hairs simple; glandular hairs multicellular with multiseriate stalk. Stigma connivent. Fruit a siliqua or a moniliform schizocarp (lomentum) with one-seeded nutlike mericarps. x = 7 (in Chorispora also x = 9).

[Hesperideae+Anastaticeae]

Hesperideae Prantl in Engler et Prantl, Nat. Pflanzenfam. III, 2: 154. Mar 1891

2/c 30. Hesperis (29–30; Europe, the Mediterranean to Iran, Central Asia and western China), Tchihatchewia (1; T. isatidea; Turkey). – Europe, temperate Asia. Hairs usually simple and/or dichotomous (rarely dendritic); glandular hairs with uniseriate stalk and unicellular head (glands rarely absent). Stigmatic lobes decurrent. Fruit a siliqua. x = 6–10.

Anastaticeae DC. in Mém. Mus. Hist. Nat. 7(1): 236. 20 Apr 1821

13/96. Anastatica (1; A. hierochuntica; Morocco to southern Iran), Cithareloma (2; C. lehmannii, C. vernum; Iran, Central Asia), Diceratella (10; northeastern tropical Africa, Iran), Eigia (1; E. longistyla; Israel to northwestern Arabian Peninsula), Eremobium (1; E. aegyptiacum; North Africa, the Middle East), Farsetia (28; Morocco to northwestern India, mountains in Tanzania), Lachnocapsa (1; L. spathulata; Socotra), Lobularia (5; L. arabica, L. canariensis, L. libyca, L. marginata, L. maritima; Macaronesia, the Mediterranean to the Arabian Peninsula),‘Malcolmia’ (35; the Mediterranean to Afghanistan; polyphyletic), Maresia (3; M. meyeri, M. nana, M. pulchella; the Mediterranean to the Caspian area and southern Iran), Morettia (3; M. canescens, M. parviflora, M. philaeana; North Africa to the Arabian Peninsula), Notoceras (1; N. bicorne; the Canary Islands, the Mediterranean to northwestern India), Parolinia (5; P. filifolia, P. intermedia, P. ornata, P. platypetala, P. schizogynoides; the Canary Islands). – Macaronesia and the Mediterranean to Central Asia and northwestern India and East African mountains. Hairs simple or branched, or absent. Fruit a siliqua or a latiseptate silicula.

Strict consensus tree (simplified) of Brassicoideae based on DNA sequence data (Warwick & al. 2010).

Bayesian inference tree (simplified) of Brassicoideae based on DNA sequence data (German & al. 2009).

Unplaced Brassicoideae

Andrzeiowskia (1; A. cardamine; southeastern Europe, southwestern Asia), Raphanorhyncha (1; R. crassa; Mexico), Veselskya (1; V. griffithiana; Afghanistan).

CARICACEAE Dumort.

( Back to Capparales )

Dumortier, Anal. Fam. Plant.: 37, 42. 1829, nom. cons.

Papayaceae Blume, Bijdr. 15: 940. Jul-Dec 1826, nom. illeg.; Papayales Blume in C. F. P. von Martius, Consp. Regn. Veg.: 32. Sep-Oct 1835 [‘Papayaceae’], nom. illeg.; Caricales L. D. Benson, Pl. Classif.: 648. 1957

Genera/species 6/c 34

Distribution Tropical Africa, tropical America.

Fossils Unknown.

Habit Usually dioecious (sometimes monoecious, andromonoecious, gynomonoecious, or polygamomonoecious; rarely bisexual), evergreen trees or shrubs (rarely perennial herbs or climbing shrubs; in Jarilla and Jacaratia corumbensis with a stout tuberous stem). Stem usually unbranched, often spiny.

Vegetative anatomy Phellogen? Xylem, except vessel elements, unlignified. Vessel elements with simple perforation plates; lateral pits alternate or scalariform, bordered? pits. Non-vestured pits present. Imperforate tracheary xylem elements? Wood rays multiseriate?, heterocellular? Axial parenchyma paratracheal vasicentric, usually non-lignified. Wood elements often storied. Secondary phloem stratified into hard fibrous and soft parenchymatous layers. Phloem fibres as isolated strands. Sieve tube plastids S type. Nodes ≥3:≥3?, trilacunar or multilacunar with three or more? leaf traces. Parenchyma with cellular (multinucleate as mature), articulated, anastomosing laticifers containing latex-like exudate. Idioblastic myrosin cells absent. Calciumoxalate druses present.

Trichomes Eglandular hairs absent; stem and leaves (especially basal adaxial parts of lamina) in Carica with multicellular, uniseriate, simple glandular hairs; leaves in Carica and Jacaratia with adaxial glandular hairs crowned by multicellular head. Stem apex and inflorescence in Carica with colleters.

Leaves Alternate (spiral), usually palmately compound (leaflets sometimes pinnately lobed) or palmately lobed (leaves rarely entire or pinnately lobed), with flat-curved to involute ptyxis. Stipules usually absent (in Vasconcellea stipulata modified into spines); leaf sheath absent. Petiole vascular bundle transection? Venation usually palmate (rarely pinnate). Stomata anomocytic. Cuticular wax crystalloids as rosettes (Fabales type). Lamina with laticifers. Myrosin cells stomatal. Mesophyll with cells containing calciumoxalate druses. Leaf margin serrate or entire.

Inflorescence Axillary, thyrsoid.

Flowers Actinomorphic. Hypogyny. Sepals (four or) five, with open aestivation, free or entirely or partially connate. Petals (four or) five, with contorted or valvate aestivation, in male flowers connate into tube, in female flowers free or connate in lower part. Nectaries in Carica and Jacaratia on pistillodium in male flowers; female flowers without nectaries. Disc absent.

Androecium Stamens usually (four or) five longer antesepalous and (four or) five shorter antepetalous, diplostemonous (in Carica sometimes four or five, antesepalous). Filaments sometimes hairy at base (in Carica and Jarilla submoniliform hairs), free or connate at base, adnate to petals (epipetalous). Anthers dorsifixed to subbasifixed, versatile?, usually tetrasporangiate (anthers of inner stamens rarely disporangiate), introrse, longicidal (dehiscing by longitudinal slits); connective often dorsally widened, often with glandular apex. Tapetum secretory. Staminodia in male flowers sometimes (four or) five (absent in female flowers).

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate or reticulate.

Gynoecium Pistil composed by (four or) five connate carpels. Ovary superior, unilocular (Carica, Horovitzia, Jarilla) or divided by septa and secondarily (quadrilocular or) quinquelocular (Cylicomorpha, Jacaratia, Vasconcellea). Stylodia (four or) five, short, free, or style single, (quadrilobate or) quinquelobate, or absent. Stigmas flabellate or almost petaloid (rarely one capitate-truncate stigma), papillate, Dry type. Female flowers in Jacaratia with white broad stigmas resembling stamens of male flowers. Male flowers often with pistillodium.

Ovules Placentation intrusively parietal (when ovary unilocular) or axile (when ovary multilocular). Ovules usually numerous per carpel, anatropous, bitegmic, crassinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument four to six cell layers thick. Megagametophyte usually monosporous, Polygonum type (rarely tetrasporous). Synergids with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis via irregular early divisions.

Fruit A many-seeded berry.

Seeds Aril usually absent (sometimes present). Seed coat testal. Testa multiplicative, with outer epidermis modified into mucilaginous sarcotesta. Mesotestal cell walls with tannins and lignified ridges. Endotesta crystalliferous sclerotesta, sometimes lignified. Tegmen not or only poorly multiplicative. Exotegmen fibrous or non-fibrous, lignified. Endotegmen unspecialized. Perisperm not developed. Endosperm copious, carnose, oily and proteinaceous. Embryo straight, well differentiated, without chlorophyll. Cotyledons two, wide, flattened. Hypocotyl swollen (often tuberous). Epicotyl swollen. Germination phanerocotylar.

Cytology n = 9

DNA

Phytochemistry Oleanolic acid derivatives, gallic acid, alkaloids, saponins, benzylglucosinolates synthesized from phenylalanine and/or tyrosine, benzylisothiocyanate (in wax layer of fruit), myo-inositol, and proteolytic enzymes (carpain, papain in latex) present. Cyclopentenoid cyanogenic glycosides? Flavonols, ellagic acid and proanthocyanidins not found.

Use Ornamental plants, fruits, papain for medical and technical purposes (softening of meat, tanning of leather).

Systematics Jacaratia (7; J. chocoensis, J. corumbensis, J. digitata, J. dolichaula, J. heptaphylla, J. mexicana, J. spinosa; southern Mexico, Central America, tropical South America), Cylicomorpha (2; C. parviflora, C. solmsii; tropical Africa), Carica (1; C. papaya; southern Mexico, Central America, the West Indies, tropical and subtropical South America), Jarilla (3; J. chocola, J. heterophylla, J. nana; Mexico, Guatemala), Vasconcellea (c 20; southern Mexico, Central America, the West Indies, tropical and subtropical South America), Horovitzia (1; H. cnidoscoloides; Oaxaca in Mexico).

Caricaceae are sister to Moringa (Moringaceae).

Jacaratia may be sister to the remaining Caricaceae, although Horovitzia and Vasconcellea are not analysed. Sometimes, Cylicomorpha is sister to the remainder.

Cladogram of Caricaceae based on DNA sequence data (Olson 2002).

EMBLINGIACEAE (Pax) Airy Shaw

( Back to Capparales )

Airy Shaw in Kew Bull. 18: 257. 8 Dec 1965

Genera/species 1/1

Distribution Westernmost Western Australia.

Fossils Unknown.

Habit Bisexual, more or less woody procumbent suffrutex. Xerophyte.

Vegetative anatomy Phellogen ab initio cortical. Cambium storied? Vessel elements with simple perforation plates; lateral pits usually alternate (sometimes opposite). Imperforate tracheary xylem elements fibre tracheids? with bordered pits. Wood rays uniseriate or biseriate, homocellular? Axial parenchyma? Sieve tube plastids S type? Nodes? Mesophyll with branched sclereids. Crystals?

Trichomes Hairs prickly; glandular hairs absent?

Leaves Opposite, simple, entire, with ? ptyxis. Stipules minute; leaf sheath absent. Petiole vascular bundle transection? Venation pinnate? Stomata anomocytic. Cuticular wax crystalloids? Leaf margin entire.

Inflorescence Flowers axillary, solitary. Floral prophylls (bracteoles) absent.

Flowers Zygomorphic, resupinate (twisted 180°). Hypogyny. Sepals five, with ? aestivation, connate into tube in lower half; median sepal abaxial; calyx tube adaxially split to base into two halves. Petals two, with valvate aestivation, latero-abaxial, alternisepalous, sessile?, only with epidermis connate slipper-shaped. Nectary extrastaminal, triangular, inserted on receptacle between petal bases and staminal bases. Receptacle elongated into flattened adaxially curved androgynophore, at apex more or less hidden behind petals.

Androecium Stamens four abaxial fertile, and four or five adaxial staminodial, diplostemonous, forming ring (torus) at apex of androphore; median stamens absent. Filaments connate at base, free from tepals. Anthers basifixed?, non-versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum glandular? Staminodia four or five.

Pollen grains Microsporogenesis simultaneous? Pollen grains usually shortly tricolporate (sometimes tetracolporate) with bulging apertures, shed as monads, tricellular? at dispersal. Exine tectate, with columellate? infratectum, punctate, smooth?

Gynoecium Pistil composed of two or three connate carpels. Ovary superior, bilocular or trilocular (unilocular?), shortly bialate, sessile, on androgynophore. Style absent. Stigma somewhat bilobate or trilobate, type? Pistillodium absent.

Ovules Placentation axile-basal. Ovule one per carpel, ?-tropous, bitegmic?, crassinucellar? Funicle lobed. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A one-seeded nutlike fruit. Pericarp thin, fused with seed.

Seeds Aril formed from apex of outer integument. Testa thick (multiplicative?). Exotesta? Endotesta? Tegmen? Perisperm not developed. Endosperm sparse. Embryo curved (conduplicate-involute), well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Glucosinolates?

Use Unknown.

Systematics Emblingia (1; E. calceoliflora; westernmost Western Australia).

Emblingia is sister to the clade [Pentadiplandraceae+[[Gyrostemonaceae+Resedaceae]+ Stixaceae]+Tovariaceae+Brassicaceae].

GYROSTEMONACEAE (Endl.) A. Juss.

( Back to Capparales )

de Jussieu in V. V. D. d’Orbigny, Dict. Univ. Hist. Nat. 6: 450. 1845 [‘Gyrostemoneae’], nom. cons.

Gyrostemonales Takht., Divers. Classif. Fl. Pl.: 123. 24 Apr 1997; Gyrostemonanae Takht., Divers. Classif. Fl. Pl.: 123. 24 Apr 1997

Genera/species 5/18

Distribution Australia, Tasmania, with their highest diversity in southwestern Western Australia.

Fossils Unknown.

Habit Usually dioecious (in Walteranthus monoecious), evergreen or deciduous shrubs or small trees (Cypselocarpus and Tersonia annual or biennial herbs). Xerophytes.

Vegetative anatomy Phellogen ab initio subepidermal. Cambium more or less storied. Vessel elements with simple perforation plates; lateral pits alternate or scalariform, simple pits. Non-vestured pits present. Imperforate tracheary xylem elements tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, homocellular. Axial parenchyma, usually paratracheal scanty vasicentric or in tangential bands (sometimes apotracheal diffuse or diffuse-in-aggregates). Wood elements partially storied (shorter imperforate tracheary elements storied). Sieve tube plastids Ss type. Nodes? Myrosin cells idioblastic. Secretory cavities absent. Crystals absent.

Trichomes Hairs unicellular (papilla-like) or absent.

Leaves Alternate (spiral), simple, entire, often carnose or coriaceous, with flat ptyxis. Stipules minute or absent; leaf sheath absent. Petiole vascular bundle transection arcuate. Venation pinnate or leaves one-veined. Stomata anomocytic. Cuticular wax crystalloids absent. Stomatal myrosin cells absent. Leaf margin entire.

Inflorescence Terminal or axillary, simple or compound raceme or spike, or flowers solitary axillary.

Flowers Actinomorphic, small. Receptacle flattened, discoid. Hypogyny. Tepals (sepals?) four or five (to eight), in one whorl, with imbricate aestivation, persistent, connate into cup. Petals probably absent. Nectary absent. Disc usually central.

Androecium Stamens seven to more than 100, usually in one whorl inserted on receptacular margin (in some species of Gyrostemon in several whorls covering receptacle), centripetally developing. Filaments very short or absent, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Female flowers with or without staminodia?

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (sometimes dicolpate or tetracolpate), shed as monads, bicellular at dispersal. Exine tectate, with granular infratectum, psilate to scabrate. Ectexine spongy, undifferentiated.

Gynoecium Pistil composed of usually several to numerous (up to c. 60; in Gyrostemon few; in Cypselocarpus one) free or connate carpels usually in one whorl (sometimes two whorls); when two carpels, then transversely orientated. Ovary superior, unilocular (apocarpy) or several- to multilocular (as many as carpels). Stylodia as many as carpels (sometimes marginal), free or connate in lower part (rarely cleft). Stigmas decurrent, large and often wide, type?; stigmatic ring forming corona. Male flowers sometimes with pistillodium?

Ovules Placentation apical-axile (when syncarpy) or marginal (when apocarpy). Ovule one per carpel, campylotropous (anatropous?), apotropous, bitegmic, crassinucellar. Micropyle bistomal. Outer integument two cell layers thick. Inner integument five cell layers thick. Archespore unicellular (Gyrostemon) or bicellular to quadricellular (Codonocarpus). Nucellar cap absent. Hypostase present. Obturator absent. Megagametophyte monosporous, Polygonum type. Porogamy. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A dry or carnose schizocarp, with two to numerous ventrally (Gyrostemon) or marginally (Codonocarpus) dehiscing samaroid to follicular mericarps, a syncarp or nutlet (Cypselocarpus, Tersonia, Walteranthus), often with persistent calyx.

Seeds Funicular exostomal aril formed from apex of outer integument, surrounding hilum. Testa not multiplicative. Exotestal cells compressed. Endotestal cells small, cuboid. Tegmen not multiplicative. Exotegmen fibrous. Exotegmic cells elongate, thick-walled. Remaining tegmic cells crushed. Perisperm not developed. Endosperm copious, carnose, oily. Embryo curved, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = 14

DNA

Phytochemistry Glucosinolates (synthesized from?) and cyanogenic compounds present. Ellagic acid and proanthocyanidins not found. Tannins?

Use Unknown.

Systematics Codonocarpus (3; C. attenuatus, C. cotinifolius, C. pyramidalis; South Australia, Victoria, New South WalesAustralia), Gyrostemon (12; Australia, Tasmania, with their highest diversity in southwestern Western Australia), Tersonia (1; T. cyathiflora; southwestern Western Australia), Cypselocarpus (1; C. haloragoides; southwestern Western Australia), Walteranthus (1; W. erectus; southwestern Western Australia).

Gyrostemonaceae may be sister to Resedaceae, although Prijanto (1970) observed remarkable similarities in pollen morphology between Batis (Bataceae) and Gyrostemonaceae.

A phylogenetic analysis of Gyrostemonaceae is needed.

KOEBERLINIACEAE Engl.

( Back to Capparales )

Engler in Engler et Prantl, Nat. Pflanzenfam., III, 6: 319. 14 Mai 1895, nom. cons.

Genera/species 1/2

Distribution Southern United States, northern Mexico, tropical Bolivia.

Fossils Unknown.

Habit Bisexual, evergreen shrubs or small trees. Xerophytes. Branches photosynthesizing, terminating in an elongated spine. Prophylls basal on branches and spines.

Vegetative anatomy Phellogen ab initio pericyclic. Cortex with bast bundles and brachysclereids and in older parts secretory resinous ducts. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Vestured and non-vestured pits present. Imperforate tracheary xylem elements tracheids and fibre tracheids with bordered pits, non-septate (also vasicentric tracheids). Wood rays usually multiseriate, homocellular. Axial parenchyma usually apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric. Wood elements not storied. Sieve tube plastids S type? Nodes? Intercellular canals present. Phloem with resinous ducts. Idioblastic myrosin cells present. Crystals? Druses absent.

Trichomes Hairs unicellular; glandular hairs absent.

Leaves Alternate (spiral), simple, entire, very small, scale-like, early caducous, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection? Venation? Stomata sunken. Cuticular wax crystalloids? Idioblastic myrosin cells present. Leaf margin entire.

Inflorescence Axillary, umbel-like raceme.

Flowers Actinomorphic, small and indistinct. Hypogyny. Sepals usually 2+2, decussate (sometimes five), with imbricate aestivation, free. Petals four (or five), diagonal, with imbricate aestivation, shortly clawed, caducous, free. Nectaries inserted at staminal bases. Disc absent.

Androecium Stamens 4+4 (or 5+5), diplostemonous. Filaments flattened, with basal appendages, free from each other and from tepals. Anthers dorsifixed, versatile?, tetrasporangiate, introrse (antesepalous stamens) or latrorse (antepetalous stamens), longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate to multinucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–4)-colporate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, striate-reticulate.

Gynoecium Pistil composed of two connate carpels, obliquely orientated. Ovary superior, bilocular (or trilocular), shortly stipitate (gynophore present). Style single, simple, subulate, persistent. Stigma slightly bifid, minutely expanded, type? Pistillodium absent.

Ovules Placentation axile. Ovules approx. ten per carpel, campylotropous, apotropous or epitropous, bitegmic, tenuinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument two cell layers thick, non-multiplicative. Inner integument three cell layers thick. Obturator absent. Apical cells of megasporangium much enlarged (functioning as “obturator”?). Hypostase absent. Parietal tissue absent. Megasporangial epidermal cells radially enlarged. Megagametophyte monosporous, Polygonum type. Antipodal cells ephemeral. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A one- or two-seeded berry, with persistent style.

Seeds Arilloid small, surrounding hilum (developed from apex of outer integument or exostome). Seed coat exotestal-tegmic. Testa non-multiplicative. Exotesta with massive cuticle and tannin-like substance; exotestal cells large and thick-walled. Endotestal cells tiny. Tegmen non-multiplicative. Exotegmen fibrous, with elongate cells and strongly thickened lignified cell walls. Mesotegmen crushed. Endotegmic cells thick-walled, with tannin-like substance, almost collapsed. Perisperm not developed. Endosperm sparse, thin. Embryo curved, well differentiated, with chlorophyll. Cotyledons two, incumbent. Germination?

Cytology x = 11

DNA

Phytochemistry Virtually unknown. Ellagic acid? Tannins? Glucosinolates not found.

Use Unknown.

Systematics Koeberlinia (2; K. spinosa: southern United States, northern Mexico; K. holacantha: Santa Cruz in tropical Bolivia).

Koeberlinia is sister to [Bataceae+Salvadoraceae].

LIMNANTHACEAE R. Br.

( Back to Capparales )

Brown in London Edinburgh Philos. Mag. & J. Sci. 3: 70. Jul 1833 [’Limnantheae’], nom. cons.

Limnanthales R. Br. in C. F. P. von Martius, Consp. Regn. Veg.: 56. Sep-Oct 1835 [’Limnantheae’]; Limnanthineae Engl., Syllabus, ed. 2: 143. Mai 1898

Genera/species 1/7

Distribution Western United States, northwestern Mexico.

Fossils Unknown.

Habit Bisexual, annual herbs. Helophytes, sometimes aquatic. Main root early wilting and replaced by adventitious roots.

Vegetative anatomy Phellogen absent. Primary vascular tissue cylinder of vascular bundles. Secondary lateral growth absent. Wood elements often only in root-stem junction. Vessel elements with simple perforation plates; lateral pits alternate to pseudoscalariform, simple pits. Non-vestured pits present. Xylem without imperforate tracheary elements. Wood rays uniseriate or biseriate, homocellular. Axial parenchyma paratracheal scanty. Wood non-storied. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Myrosin cells idioblastic. Wood without crystals.

Trichomes Hairs unicellular (sometimes verrucose) or absent; glandular hairs absent.

Leaves Alternate (spiral), once or twice pinnately compound, or simple and pinnately lobed, with conduplicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Myrosin cells abundant; stomatal myrosin cells absent. Tanniniferous idioblasts present. Leaf margin serrate. Apices of leaf and leaflets sometimes with hydathodes.

Inflorescence Terminal, raceme or flowers solitary axillary. Bracts and floral prophylls (bracteoles) sometimes absent.

Flowers Actinomorphic. Hypogyny or half epigyny. Sepals three or (four or) five, with valvate to somewhat imbricate aestivation, persistent, free or slightly connate at base, comparatively large. Petals three or (four or) five, with dextrorsely contorted aestivation, caducous, free. Nectaries present on swollen abaxial bases of antesepalous (alternipetalous, rarely also antepetalous) stamens, or absent. Disc absent.

Androecium Stamens usually 3+3 or 5+5 (rarely three or 4+4), of two different lengths with longest stamens antesepalous, usually diplostemonous. Filaments free from each other and from tepals. Anthers dorsifixed, versatile, tetrasporangiate, ab initio introrse, subsequently extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains zonocolporate (syncolpate?) of unique type with two zonocolpi parallel to equator alternatively one colpus parallel to and encircling equator, heteropolar with smaller distal and larger proximal pole, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, microperforate, striate, spinulate.

Gynoecium Pistil composed of two or three or (four or) five carpels, bulging (seemingly almost free in lower part); when three median carpels abaxial then carpels antesepalous; carpellary walls without vascular bundles. Ovaries superior or partially semi-inferior, two or three or (four or) five, unilocular, free. Style gynobasic, filiform, hollow, bilobate to quinquelobate. Stigmas minutely capitate to punctate, papillate, Dry type. Pistillodium absent.

Ovules Placentation basal-parietal. Ovule one per carpel, anatropous, ascending, apotropous (or epitropous?), unitegmic, tenuinucellar. Integument 14 to 16 cell layers thick. Parietal tissue absent. Archespore multicellular. Megagametophyte tetrasporous, pseudomonosporous (quadrinucleate or sexanucleate with one nucleus developing), modified Drusa type (one or two antipodal cells absent). Synergids sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria laterally micropylar (on funicular side) or absent. Embryogenesis onagrad. Suspensor uniseriate.

Fruit A schizocarp, with persistent and sometimes accrescent calyx and with (two or) three or five muriculate (spinulate) one-seeded nutlike mericarps.

Seeds Aril absent. Testa pachychalazal, thick, vascularized. Tegmen absent. Perisperm not developed. Endosperm absent. Embryo straight, well differentiated, with chlorophyll. Cotyledons two, thick, cordate, with backwardly directed lobes, with amyloid (xyloglucans). Germination phanerocotylar. Radicula ephemeral.

Cytology n = 5

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, delphinidin, ellagic acid, non-hydrolyzable tannins, caffeic acid and other polyphenols, glucosinolates (m-methoxybenzyl isothiocyanate) synthesized from phenylalanine and/or tyrosine, and erucic acid and other similar fatty acids (in seeds) present. Saponins and cyanogenic compounds not found. Carbohydrate stored as oligosaccharides with isokestose bonds.

Use Ornamental plants (Limnanthes douglasii).

Systematics Limnanthes (7; L. alba, L. bakeri, L. douglasii, L. floccosa, L. macounii, L. montana, L. vinculans; western United States, northwestern Mexico).

Limnanthaceae are sister to a clade comprising Koeberliniaceae to Brassicaceae.

MORINGACEAE Martinov

( Back to Capparales )

Martinov, Tekhno-Bot. Slovar: 404. 3 Aug 1820 [’Moringeae’], nom. cons.

Moringales R. Br. in C. F. P. von Martius, Consp. Regn. Veg.: 51. Sep-Oct 1835 [‘Moringeae’]

Genera/species 1/12–13

Distribution Semiarid regions in northeastern Africa, southern Angola, Namibia, southern Madagascar, southern Arabian Peninsula, southern Iran, Pakistan, India.

Fossils Unknown.

Habit Bisexual, deciduous trees or shrubs (sometimes pachycaul, sometimes stem succulents). Roots thick and fleshy, sometimes with root tubers.

Vegetative anatomy Phellogen? Primary medullary strands narrow. Medulla often with central lysigenous mucilage canals. Vessel elements with simple perforation plates; lateral pits alternate, simple or bordered pits. Vestured or non-vestured pits present. Imperforate tracheary xylem elements libriform fibres with simple pits, non-septate. Wood rays uniseriate to multiseriate, homocellular. Axial parenchyma paratracheal aliform, lozenge-aliform, confluent, or vasicentric. Wood elements partially storied. Sieve tube plastids S type. Nodes ?, multilacunar. Stem, leaves and flowers with myrosine cells and cells containing protein-rich cisternae from endoplasmic reticulum. Wood rays, phloem parenchyma and cortex with schizogenous intercellular ducts containing gums (rubber). Prismatic calciumoxalate crystals abundant. Cortex or xylem sometimes with druses. Phloem rays sometimes with crystals or sclereids.

Trichomes Hairs unicellular, simple, or absent.

Leaves Alternate (spiral), twice or three times imparipinnate, usually with persistent rhachis, with ? ptyxis. Stipules and stipulules as stalked glandular hairs or absent; leaf sheath absent. Petiole vascular bundle transection? Leaf base and articulations with distinct glands. Venation pinnate (to palmate). Stomata anomocytic. Cuticular wax crystalloids as rosettes of platelets (Fabales type). Epidermis often with mucilaginous idioblasts. Mesophyll with cells containing calciumoxalate druses. Leaflet margins entire. Extrafloral nectaries sometimes present between leaflets.

Inflorescence Axillary, thyrsoid or paniculate.

Flowers Usually transversely (obliquely) zygomorphic (sometimes actinomorphic). Hypanthium cupular or shortly tubular, often oblique (partially formed by inwardly bent receptacle), with basal whorl of nectaries. Hypogyny. Sepals five, with imbricate aestivation, petaloid, often unequal in size, free. Petals five, with imbricate aestivation; median petal adaxial and usually larger than recurved posterior petal pair, or abaxial; two lateral petals erect (anterior petal largest), free. Nectariferous disc annular, intrastaminal, at hypanthial base.

Androecium Stamens five, antepetalous-antesepalous. Filaments unequal in length, hairy at base, inserted at margin of nectariferous disc, free from each other and from tepals. Anthers declinate, dorsifixed, versatile?, usually disporangiate (rarely tetrasporangiate), introrse, longicidal (dehiscing by longitudinal slits; forming tube, through which style grows). Tapetum secretory. Staminodia three to five, extrastaminal, more or less antesepalous, alternating with fertile stamens.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–4)-colporate, shed as monads, usually bicellular (rarely tricellular) at dispersal. Exine tectate, with granular infratectum, sparsely perforate to punctate, psilate.

Gynoecium Pistil composed of (two or) three (or four) connate carpels. Ovary superior, unilocular, curved, stipitate (with gynophore). Style single, simple, narrow, curved, hollow (with stylar canal). Stigma capitate to truncate-porate (punctate?), hollow, type? Pistillodium absent.

Ovules Placentation parietal. Ovules numerous per carpel, anatropous, pendulous, apotropous?, bitegmic, crassinucellar. Micropyle bistomal to exostomal, Z-shaped (zig-zag). Outer integument ? cell layers thick, vascularized. Inner integument approx. three cell layers thick. Parietal tissue approx. three layers thick. Endothelium present. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad.

Fruit Three- to twelve-angled narrowly elongate explosion (explosively dehiscent) loculicidal capsule.

Seeds Seeds usually three-angled to three-winged. Aril absent. Testa vascularized, multiplicative. Mesotesta thick, multiplicative; outer and inner parts of cell walls with spiral thickenings; middle part strongly thickened. Tegmen thin, usually not multiplicative. Exotegmen not fibrous. Perisperm not developed. Endosperm usually absent. Embryo large, straight, well differentiated, oily, with chlorophyll. Cotyledons two (or three). Hypocotyl swollen (often tuberous). Epicotyl sometimes swollen. Germination phanerocotylar or cryptocotylar. Leaves in young plants palmately compound or simple, palmately veined.

Cytology n = 11, 14

DNA

Phytochemistry Flavonols (kaempferol, quercetin) and glucosinolates (synthesized from phenylalanine and/or tyrosine, and from valine/isoleucine and/or leucine) and alkaloids present. Ellagic acid, tannins, proanthocyanidins, saponins, and cyanogenic compounds not found.

Use Ornamental plants (e.g. Moringa oleifera), vegetables, oil plants, medicinal plants, spices, water purification (seeds).

Systematics Moringa (12–13; northeastern Africa, southern Angola, Namibia, southern Madagascar, southern Arabian Peninsula, southern Iran, Pakistan, India).

Moringa is sister to Caricaceae.

PENTADIPLANDRACEAE Hutch. et Dalziel

( Back to Capparales )

Hutchinson et Dalziel, Fl. W. Trop. Afr. 1: 461. Jul 1928

Genera/species 1/1

Distribution Tropical West and Central Africa, southwestern tropical Africa.

Fossils Unknown.

Habit Polygamomonoecious, evergreen shrub or liana.

Vegetative anatomy Phellogen? Secondary lateral growth sometimes anomalous? Vessel elements with simple? perforation plates; lateral pits?, simple pits. Non-vestured pits present. Imperforate tracheary xylem elements ? with bordered pits. Wood rays? Axial parenchyma? Wood elements storied? Sieve tube plastids S type? Nodes 1:1, unilacunar with one leaf trace, or 3:3, trilacunar with three traces. Myrosin cells present. Crystals?

Trichomes Hairs unicellular, simple.

Leaves Alternate (spiral), simple, entire, with ? ptyxis. Stipules minute; leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Epidermis with mucilaginous idioblasts. Leaf margin entire.

Inflorescence Axillary, short corymbose raceme.

Flowers Actinomorphic to bisymmetric. Hypogyny. Sepals five, with valvate aestivation, sometimes persistent, free or somewhat connate at base. Petals five, with imbricate aestivation, often clawed, arched below around nectaries/androgynophore and connivent through lanate hairs at edges. Nectariferous disc extrastaminal, annular, thick, fleshy, as short androgynophore.

Androecium Stamens (nine or) ten (to 13), diplostemonous or triplostemonous. Filaments filiform, branched or simple?, free or connate at base, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, latrorse, longicidal (dehiscing by longitudinal slits); connective slightly prolonged. Tapetum secretory? Female flowers with ten staminodia.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, tricellular? at dispersal. Exine semitectate, with columellate infratectum, microreticulate.

Gynoecium Pistil composed of (three to) five connate antesepalous carpels. Ovary superior, (trilocular to) quinquelocular, shortly stipitate (gynophore). Style single, simple, long. Stigma short, (trilobate to) quinquelobate, type? Male flowers with pistillodium.

Ovules Placentation axile. Ovules approx. ten per carpel (in two or three rows), anatropous?, bitegmic, crassinucellar? Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A many-seeded berry (containing brazzein, a protein with extremely sweet taste).

Seeds Aril absent. Testa lanate, with external layer of white, wooly, elongate cells. Tegmen? Perisperm not developed. Endosperm absent. Embryo strongly curved, without chlorophyll. Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Insufficiently known. Alkaloids, benzyl and 4-methoxybenzyl glucosinolates synthesized from phenylalanine and/or tyrosine, saponins, sweet-tasting proteins (brazzein, c. 2.000 times sweeter than saccharose, pentadin) present. Ellagic acid? Tannins?

Use Sweetening.

Systematics Pentadiplandra (1; P. brazzeana; Nigeria to Angola).

Pentadiplandra is part of an unresolved polytomy also including Gyrostemonaceae, Resedaceae, Tovariaceae, and Brassicaceae.

RESEDACEAE Martinov

( Back to Capparales )

Martinov, Tekhno-Bot. Slovar: 541. 3 Aug 1820, nom. cons.

Resedales Bercht. et J. Presl, Přir. Rostlin: 218. Jan-Apr 1820 [‘Resedaceae’]; Astrocarpaceae A. Kern., Pflanzenleben 2: 688. 6-13 Jun 1891 [’Asterocarpaceae’]; Resedineae Engl., Syllabus, ed. 2: 123. Mai 1898; Stixaceae Doweld, New Syllabus Pl. Fam.: 746. Apr 2007

Genera/species 6/c 95

Distribution Mostly dry areas in the southwestern United States, Mexico, Central America, the West Indies, Macaronesia, northern and eastern Africa, South Africa, the Mediterranean, Europe (except northern parts), the Arabic Peninsula, Socotra, western Asia to northwestern India, western Central Asia, western Siberia, southeastern Himalayas, Hainan, Southeast Asia, Malesia.

Fossils Unknown.

Habit Usually bisexusal (in ‘Ochradenus’ sometimes androdioecious, in Forchhammeria dioecious), evergreen or deciduous shrubs or suffrutices, or perennial, biennial or annual herbs, rarely climbing. Some species are xerophytes.

Vegetative anatomy Roots rarely with mycorrhiza. Phellogen? Secondary lateral growth sometimes anomalous from successive cambia. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Vestured and non-vestured pits present. Imperforate tracheary xylem elements libriform fibres with usually simple (sometimes bordered) pits, non-septate. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty, confluent, vasicentric, or marginal-banded. Wood elements not storied. Intraxylary phloem sometimes concentric. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Myrosin cells idioblastic. Stem and foliar epidermis sometimes with mucilaginous idioblasts. Crystals? Endoplasmic reticulum with ER-dependent cisternae.

Trichomes Hairs usually unicellular (in Tirania multicellular, uniseriate), simple; glandular hairs absent?

Leaves Alternate (spiral), simple or pinnately compound (rarely trifoliolate), entire or pinnately lobed, with ? ptyxis. Stipules small, intrapetiolar, often as glands, or absent; leaf sheath absent (in Tirania as spines). Petiole vascular bundle transection? Venation pinnate (rarely palmate) or leaves one-veined. Stomata anomocytic. Cuticular wax crystalloids? Stomatal myrosin cells absent. Epidermis with or without mucilaginous idioblasts. Mesophyll usually without calciumoxalate crystals (in Forchhammeria with sclerenchymatous cells). Leaf margin sinuate or entire. In Caylusea large water absorbing hairs present along leaf margin.

Inflorescence Usually terminal (sometimes axillary), simple or compound raceme, spike or panicle (in Forchhammeria trifoliata sometimes cymose; flowers in Tirania solitary axillary). Floral prophylls (bracteoles) absent.

Flowers Zygomorphic, usually small. Hypogyny or half epigyny. Sepals (four to) six (to eight), with valvate or somewhat imbricate aestivation, persistent, usually free (occasionally somewhat connate at base); sepals in Tirania six, in Forchhammeria numerous (bracts?) and in Stixis three to numerous, with imbricate aestivation. Petals (two or four to) six (to eight), with valvate or open aestivation, unequally sized (two adaxial petals largest, lateral petals smaller and less split, abaxial petals smallest), clawed, caducous or persistent, usually free (petals absent in ‘Ochradenus’), usually with adaxial ligule (absent in ‘Oligomeris’) inserted between claw and apically usually fringed limb; petals in Tirania six, with imbricate aestivation, absent in Forchhammeria and Stixis. Gynophore or androgynophore present in some species; androgynophore present in Stixis. Nectariferous disc extrastaminal (or sometimes absent), often widest adaxially, with nectariferous gland on abaxial side; nectary sometimes petaloid (nectariferous disc absent in ‘Oligomeris’).

Androecium Stamens (three to) 16 to 22 (to more than 50; in ’Ochradenus’ numerous; in ’Oligomerislinifolia three), usually in one whorl (sometimes in several whorls), centrifugally developing from annular primordium. Filaments usually free (sometimes connate at base), free from tepals; filaments in Forchhammeria inserted on annular outgrowth surrounding base of androgynophore, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); anthers in Forchhammeria with short unicellular hairs provided with cuticular longitudinal folds, dorsifixed to basifixed, often versatile, tetrasporangiate, latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenes simultaneous. Pollen grains tricolpate, tricolporate or tricolporoidate, shed as monads, bicellular at dispersal; pollen grains in Stixis (2–)3(–4)-colporoidate and very small, in Forchhammeria tricolporate. Exine tectate or semitectate, with columellate infratectum, reticulate, microreticulate or microperforate, foveolate, striate or rugulate.

Gynoecium Pistil composed of (two or) three to six (to eight), connate or apically and adaxially often incompletely paracarpously connate, antesepalous carpels (in ’Ochradenus’ finally closed); when carpels three, then median carpel often adaxial (carpels in Caylusea connate only at base; carpels in Sesamoides free, apocarpy). Ovary superior or semi-inferior, usually unilocular (sometimes bilocular to multilocular), shortly stipitate (gynophore and sometimes androgynophore); one locule and one seed in Forchhammeria usually degenerating; ovary sessile in Tirania. Style usually absent (sometimes single, simple or branched). Stigmas two to five, usually small and narrow (in Forchhammeria fleshy), commissural and/or dorsal, non-papillate, Dry type. Pistillodium absent.

Ovules Placentation usually parietal (in e.g. Tirania axile; in Caylusea basal; in Sesamoides laminal). Ovules two to numerous (in Forchhammeria and Sesamoides usually one, rarely two) per carpel, anatropous (to hemianatropous?) to campylotropous, pendulous or ascending, bitegmic, usually crassinucellar (rarely tenuinucellar). Micropyle usually endostomal (sometimes bistomal). Outer integument approx. two cell layers thick. Inner integument three or four cell layers thick. Hypostase present. Archespore multicellular. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit Usually a soft, thin-walled one- to many-seeded capsule apically open between stigmas (in Sesamoides an assemblage of follicles, carpidia; in some species of ’Ochradenus’ baccate with fleshy pericarp).

Seeds Aril usually present, formed from apex of outer integument. Elaiosome (carunculi?; lipid-rich tissue adjacent to hilum) present in some species. Testa non-multiplicative. Exotesta? Endotestal cells cuboid, with thickened unlignified walls and often crystalliferous. Tegmen non-multiplicative. Exotegmic cells fibrous, with lignified walls. Endotegmen crystalliferous. Perisperm not developed. Endosperm sparse or absent. Embryo large, curved or plicate, well differentiated, oily, with chlorophyll (at least in some species of Reseda). Cotyledons two, sometimes unequal (to very unequal) in size. Germination phanerocotylar, hypogeous or epigeous.

Cytology x = 5–15 – Polyploidy and aneuploidy frequent.

DNA

Phytochemistry Flavonols (kaempferol, quercetin), methylated flavonols, cyanogenic compounds, glucosinolates (synthesized from phenylalanine and/or tyrosine), and aromatic m-carboxycinnamic acids present. Ellagic acid, tannins, and proanthocyanidins not found. BCAA glucosinolates absent. Sinapic acid not accumulated. Methyl glucosinolates (synthesized from phenylalanine and/or tyrosine and methionin?) present in Forchhammeria.

Use Ornamental plants, vegetables (Caylusea abyssinica), dyeing sources (Reseda luteola), perfumes (Reseda odorata).

Systematics Stixis (7; S. hookeri, S. obtusifolia, S. ovata, S. philippinensis, S. scandens, S. scortechinii, S. suaveolens; northeastern India, Bhutan, Burma, southwestern China, Hainan, northern Thailand, Vietnam, the Lesser Sunda Islands), Tirania (1; T. purpurea; southern Vietnam); Forchhammeria (c 10; California, Mexico, Central America, the West Indies); Caylusea (6; C. abyssinica, C. canescens, C. hexagyna, C. jaberi, C. latifolia, C. moquiniana; the Cape Verde Islands, North and East Africa, Southwest Asia to northwestern India), Sesamoides (6; S. interrupta, S. minor, S. prostrata, S. purpurascens, S. spathulifolia, S. suffruticosa; southwestern Europe, Madeira, western Mediterranean), Reseda (c 65; Europe, the Canary Islands, the Mediterranean to Central Asia).

Resedaceae may be sister to Gyrostemonaceae.

Caylusea is sister to [Reseda+Sesamoides] (Martín-Bravo & al. 2007).

Borthwickiaceae and Stixaceae were included in Resedaceae by APG IV (2016).

Tirania is sister to Stixis (Su & al. 2012, Cardinal-McTeague & al. 2016). The clade [Stixis+Tirania] is sister-group to the remaining Resedaceae, and Forchhammeria successive sister to the rest, according to Cardinal-McTeague & al. (2016). All these genera, together with Borthwickiaceae, were included in Resedaceae by APG IV (2016).

Bayesian inference tree (simplified) of Resedaceae based on DNA sequence data (Martín-Bravo & al. 2007). Stixis, Tirania and Forchhammeria were not included in the analysis.

SALVADORACEAE Lindl.

( Back to Capparales )

Lindley, Intr. Nat. Syst. Bot., ed. 2: 269. 13 Jun 1836, nom. cons.

Azimaceae Wight et Gardner in Calcutta J. Nat. Hist. 6: 52. Apr 1845; Salvadorineae Engl., Syllabus, ed. 2: 171. Mai 1898; Salvadorales R. Dahlgren ex Reveal in Phytologia 74: 174. 25 Mar 1993

Genera/species 3/11

Distribution Africa, Madagascar, the southern Arabian Peninsula, Pakistan, India, Sri Lanka, southern China, Southeast Asia, West Malesia, the Philippines, often in drier regions.

Fossils Unknown.

Habit Bisexual, polygamomonoecious, dioecious, or polygamodioecious, evergreen shrubs (sometimes climbing) or small trees. Xerophytes, sometimes spiny.

Vegetative anatomy Phellogen ab initio superficial. Primary vascular tissue a cylinder of vascular bundles. Secondary lateral growth anomalous, from simple cambial cylinder. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Vestured pits present in Salvadora. Imperforate tracheary xylem elements libriform fibres with simple pits, non-septate. Wood rays uniseriate or multiseriate, homocellular (or slightly heterocellular). Axial parenchyma paratracheal scanty vasicentric, or banded. Wood elements partially storied. Intraxylary (concentric or diffuse) phloem present in Dobera and Salvadora. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace (Salvadora), or 1:2, unilacunar with two traces (Azima, Salvadora). Myrosin cells absent. Prismatic calciumoxalate crystals abundant. Wood rays with rhomboidal calciumoxalate crystals. Endoplasmic reticulum with proteinaceous vacuole-like dilated cisternae.

Trichomes Hairs usually simple (sometimes peltate to lepidote) or absent.

Leaves Opposite, simple, entire, usually coriaceous, with flat to curved ptyxis (Salvadora). Stipules very small; leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata usually paracytic (sometimes anomocytic or anisocytic). Cuticular wax crystalloids as platelets. Mesophyll with cells containing calciumoxalate druses. Leaf margin entire.

Inflorescence Terminal or axillary, simple raceme or compound, fasciculate inflorescence. Floral prophylls (bracteoles) usually present.

Flowers Usually actinomorphic (occasionally somewhat zygomorphic), obliquely orientated, small. Short hypanthium present in Salvadora. Hypogyny. Sepals two to four (or five), with imbricate to contorted aestivation, connate at base into tube. Petals two to four (or five), with imbricate to contorted aestivation, often with glands (staminodia?) on adaxial side, free (Azima, Dobera) or connate at base (Salvadora). Antepetalous nectariferous glands (probably not staminal) alternating with stamens (in Dobera extrastaminal, in Salvadora interstaminal) or absent (Azima).

Androecium Stamens two to four (or five), haplostemonous, antesepalous, alternipetalous. Filaments free (Azima) or connate at base (Dobera), free from or adnate at base to petals (Salvadora). Anthers dorsifixed, versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent (or possibly as glands?).

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporoidate (sometimes hexacolporoidate), shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, punctate, perforate, reticulate or striate.

Gynoecium Pistil composed of two connate carpels, in Salvadora obliquely orientated. Ovary superior, bilocular (Azima) or unilocular (pseudomonomerous; Dobera, Salvadora); in Dobera and Azima apically quadrilocular due to apical secondary septum; ovary shortly stipitate (gynophore) in Salvadora. Style single, simple, short. Stigma capitate (Salvadora) or slightly bilobate (Azima, Dobera), type? Male flowers with pistillodium.

Ovules Placentation basal-parietal (when ovary unilocular) or axile-basal (when ovary bilocular). Ovules one or two per carpel, anatropous, ascending, apotropous, bitegmic, crassinucellar. Micropyle usually endostomal (sometimes exostomal). Outer integument approx. ten to 15 cell layers thick (in Azima vascularized). Inner integument three to five cell layers thick. Obturator dome-shaped, chalazal, present in Salvadora (absent in Azima and Dobera). Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria absent. Embryogenesis asterad.

Fruit Usually a one-seeded berry or one-seeded drupe.

Seeds Aril absent. Seed coat exotestal. Testa multiplicative. Exotestal cells palisade, somewhat thickened, crystalliferous, with inner walls mucilaginous. Endotesta present. Tegmen non-multiplicative. Exotegmen fibrous or non-fibrous, finally crushed; exotegmic cell walls unlignified. Endotegmen crushed. Perisperm not developed. Endosperm absent. Embryo straight, well differentiated, chlorophyll? Cotyledons two, cordate, thick, plano-convex, oily. Germination?

Cytology n = 11 (Azima), 12 (Salvadora)

DNA

Phytochemistry Flavonols (quercetin), piperidine alkaloids, mustard oils based on glucotropaeolin, and cyanogenic compounds present. Ellagic acid, tannins, and proanthocyanidins not found.

Use Fruits, vegetables, perfumes (Dobera), tooth-brushes.

Systematics Azima (4; A. angustifolia, A. pubescens, A. sarmentosa, A. tetracantha; eastern and southern Africa and Madagascar to Sri Lanka, Southeast Asia, Hainan, the Philippines and the Lesser Sunda Islands), Dobera (2; D. glabra, D. loranthifolia; tropical East Africa, southern Arabian Peninsula to northwestern India), Salvadora (5; S. alii, S. angustifolia, S. australis, S. oleoides, S. persica; tropical and subtropical Africa from South Africa to northeastern Africa and east to tropical Asia).

Salvadoraceae are sister to Batis (Bataceae).

Judging from morphological data, Azima may be sister to [Dobera+Salvadora].

SETCHELLANTHACEAE Iltis

( Back to Capparales )

Iltis in Taxon 48: 260. 17 Mai 1999

Genera/species 1/1

Distribution Northern and south-central Mexico.

Fossils Unknown.

Habit Bisexual, evergreen shrub with pungent smell and well differentiated long and short shoots. Xerophyte.

Vegetative anatomy Phellogen ab initio superficial. Primary medullary rays narrow. Primary vascular tissue cylinder, without separate vascular bundles. Vessel elements with simple perforation plates; lateral pits alternate. Non-vestured pits present. Imperforate tracheary xylem elements fibre tracheids with bordered pits, non-septate? (also vasicentric tracheids). Wood rays uniseriate. Axial parenchyma usually paratracheal scanty (sometimes apotracheal diffuse or diffuse-in-aggregates, or banded). Wood elements not storied. Sieve tube plastids S type? Nodes 1:1, unilacunar with one leaf trace. Myrosin cells absent. Crystals rare (rhomboidal) or absent; druses present in cortical parenchyma cells.

Trichomes Unicellular T-shaped malpighiacean hairs, situated on basal multicellular podium, with branches parallel to longitudinal axis of organ (as in Brassicaceae).

Leaves Alternate (spiral), simple, entire, isobifacial, often coriaceous, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection? Venation pinnate or palmate; secondary veins subbasal (inserted near leaf base). Stomata anomocytic. Cuticular wax crystalloids? Leaf margin entire.

Inflorescence Flowers axillary, solitary.

Flowers Actinomorphic, large. Receptacle elongated into short androphore and relatively short gynophore. Hypogyny. Sepals (five or) six (or seven), with valvate? aestivation, swollen at base, connate into calyptra and at anthesis irregularly dehiscing with one or two valves, caducous or persistent. Petals (five or) six (or seven), with imbricate aestivation, clawed, caducous, free. Nectary absent? Disc absent.

Androecium Stamens (c. 40 to) c. 60 to 76 (from six staminal primordia), in five to seven vertical alternipetalous rows of staminal pairs on receptacle, centrifugally developing. Filaments free from each other (seemingly?), free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolpate, shed as monads, ?-cellular at dispersal. Exine semitectate, with columellate infratectum, striato-rugulate.

Gynoecium Pistil composed of three carpels, connate along their prolonged adaxial margins; commissural fusion of marginal ventral carpellary vascular bundles. Ovary superior, trilocular. Style single, simple, short, trifid. Stigmas subcapitate, type? Pistillodium absent.

Ovules Placentation axile. Ovules ten to 14 per carpel, arranged in two rows, anatropous, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A septifragal capsule, dehiscing with three valves and with persistent thin central columella corresponding to replum.

Seeds Seed at cotyledonary end aleate, stellate in transverse section. Aril absent. Testa multiplicative?, soft, thin, aleately expanded at chalazal end. Tegmen multiplicative? Exotegmen non-fibrous. Endotegmen? Perisperm not developed. Endosperm sparse, one cell layer thick. Embryo flat, straight, chlorophyll? Cotyledons two, cordate. Germination phanerocotylar.

Cytology n = ?

DNA

Phytochemistry Uniknown. Glucosinolates synthesized from phenylalanine and/or tyrosine?

Use Unknown.

Systematics Setchellanthus (1; S. caeruleus; northern and south-central Mexico).

Setchellanthus is sister to Capparales except Tropaeolaceae, Akaniaceae, Moringaceae and Caricaceae.

TOVARIACEAE Pax

( Back to Capparales )

Pax in Engler et Prantl, Nat. Pflanzenfam., III, 2: 207. Mar 1891, nom. cons.

Tovariales Nakai, Chosakuronbun Mokuroku [Ord. Fam. Trib. Nov.]: 239. 20 Jul 1943

Genera/species 1/2

Distribution Tropical America.

Fossils Unknown.

Habit Bisexual, annual or perennial herbs, or evergreen shrubs or suffrutices (sometimes climbing or arborescent). Leaves when dry with coumarin-like scent.

Vegetative anatomy Phellogen? Vessel elements with simple perforation plates; lateral pits alternate or scalariform, simple pits. Non-vestured pits present. Imperforate tracheary xylem elements libriform fibres with simple pits, septate. Wood rays uniseriate or multiseriate, heterocellular? Axial parenchyma scanty vasicentric. Wood elements not storied. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace? Myrosin cells idioblastic or stomatal. Crystals? Cells with organelle-like expanded ER-cisternae absent.

Trichomes Hairs unicellular, simple, or absent.

Leaves Alternate (spiral), trifoliolate, with ? ptyxis. Stipules cauline or present on leaf base, minute, early caducous; leaf sheath absent. Petiole vascular bundle transection arcuate. Venation palmate. Stomata anomocytic. Cuticular wax crystalloids? Leaflet margins entire.

Inflorescence Terminal, raceme.

Flowers Bisymmetric, small. Hypogyny. Sepals (six to) eight (to ten), with imbricate or open aestivation, in one whorl, caducous, free. Petals (six to) eight (or nine), with imbricate aestivation, in one whorl, often shortly clawed, free. Nectariferous disc largely extrastaminal, lobate, with nectaries between staminal bases.

Androecium Stamens (six to) eight (to ten), haplostemonous, antesepalous, alternipetalous. Filaments widened at base, sometimes hairy, free from each other and from tepals. Anthers with short unicellular hairs provided with cuticular longitudinal folds, basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3-colpor(oid)ate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of (five or) six (to eight) connate alternisepalous carpels. Ovary superior, incompletely sexalocular (sometimes quinque-, septa- or octalocular), sometimes stipitate (gynophore short or absent). Style single, simple, short, persistent, or absent. Stigma peltate or sexalobate to octalobate, type? Pistillodium absent.

Ovules Placentation axile in lower part of ovary to intrusively parietal in upper part. Ovules numerous per carpel, in several rows, ab initio anatropous, finally (after fertilization) campylotropous, bitegmic, crassinucellar. Funicle long. Micropyle bistomal, Z-shaped (zig-zag). Outer integument approx. two cell layers thick. Inner integument approx. three cell layers thick. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A many-seeded berry. Two of innermost pericarp layers lignified.

Seeds Aril absent. Seed coat testal-tegmic? Testa non-multiplicative. Exotestal cells enlarged, with tannins and thickened walls. Endotestal cells small. Tegmen non-multiplicative. Exotegmic cells fibrous, with reticulately thickened walls. Endotegmen tanniniferous. Perisperm not developed. Endosperm sparse, thin, oily. Embryo curved along periphery of seed, well differentiated, oily, chlorophyll? Cotyledons two, flattened. Germination?

Cytology n = 14

DNA

Phytochemistry Insufficiently known. Glucosinolates (not synthesized from phenylalanine or tyrosine) and cyanogenic compounds present. Tannins?

Use Unknown.

Systematics Tovaria (2; T. diffusa, T. pendula; southern Mexico, Central America, Jamaica, northwestern South America, especially in the Andes, to Peru and Bolivia).

Tovaria is part of a polytomy comprising Pentadiplandraceae to Brassicaceae.

TROPAEOLACEAE Juss. ex DC.

( Back to Capparales )

de Candolle, Prodr. 1: 683. med Jan 1824, nom. cons.

Tropaeolales Bercht. et J. Presl, Přir. Rostlin: 220. Jan-Apr 1820 [‘Tropaeoleae’]

Genera/species 1/80–100

Distribution Mountain areas from southern Mexico to Tierra del Fuego, southern Brazil to southern Argentina.

Fossils Unknown.

Habit Bisexual, perennial or annual herbs, usually climbing with petioles or pedicel tendrils, more or less fleshy (sometimes slightly succulent). Several species form root or stem tubers from rhizome or from hypocotyl.

Vegetative anatomy Phellogen ab initio superficial to deeply seated. Primary vascular tissue cylinder of separate vascular bundles. Endodermis sometimes significant. Pericyclic fibres absent. Vessels present in root and stem. Vessel elements with usually simple (sometimes reticulate, scalariform or intermediate between scalariform and multiperforate) perforation plates; lateral pits alternate, simple pits. Non-vestured pits present. Imperforate tracheary xylem elements usually tracheids (libriform fibres present in stem; also scarce vasicentric tracheids) with simple or bordered pits, non-septate. Wood rays uniseriate (in root) or multiseriate, heterocellular. Axial parenchyma paratracheal scanty vasicentric. Wood elements not storied. Sieve tube plastids Ss type. Nodes 3:3, trilacunar with three leaf traces. Myrosine cells only idioblastic. Crystals?

Trichomes Hairs multicellular (few-celled), uniseriate, simple, or absent; glandular hairs sometimes present.

Leaves Usually alternate (sometimes opposite in lower parts), usually simple (sometimes palmately compound), entire or palmately lobed, often peltate, with flat ptyxis. Stipules small, fimbriate or more or less foliaceous or absent (often present only in seedlings), usually caducous; leaf sheath absent. Petiole often climbing. Petiole vascular bundle transection annular. Venation palmate. Stomata anomocytic, without subsidiary cells. Cuticular wax crystalloids as clustered tubuli (Berberis type), chemically dominated by nonacosan-10-ol. Lamina sometimes gland-dotted. Epidermis sometimes with mucilaginous idioblasts. Myrosine cells containing myrosinase abundant; stomatal myrosin cells absent. Leaf margin serrate or entire.

Inflorescence Flowers usually axillary solitary (rarely in axillary umbel-like inflorescence). Floral prophylls (bracteoles) present or absent.

Flowers Zygomorphic, often large. Hypogyny. Sepals five, with imbricate or valvate aestivation, petaloid; adaxial, or adaxial and two lateral sepals expanded into nectariferous spur (rarely absent), usually free (sometimes three connate), caducous. Petals usually two upper adaxial and three lower abaxial (lower petals often absent), with imbricate aestivation, often clawed, free. Nectary extrastaminal, continuing into spur. Disc absent. Hairs on lower margin of abaxial (anterior) petals forming barrier against small non-pollinating insects (nectar thieves).

Androecium Stamens 4+4 (two antepetalous – median – stamens suppressed). Filaments filiform, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse-latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent. During anthesis in Tropaeolum majus, stamens bend forth successively one after the other to nectariferous spur liberating their pollen grains and subsequently returning to their original position; style finally bending against spur.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (sometimes dicolporate), shed as monads, tricellular at dispersal. Exine semitectate, with columellate infratectum, reticulate (sometimes partially striate).

Gynoecium Pistil composed of three connate carpels; median carpel adaxial. Ovary superior, trilocular. Style single, narrow, short. Stigma trilobate, non-papillate, Dry type. Pistillodium absent.

Ovules Placentation apical-axile. Ovules two per carpel (one degenerating), anatropous, pendulous, epitropous, bitegmic, tenuinucellar, pachychalazal (massive chalaza becoming meristematic and forming seed coat). Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Two uppermost cells of proembryo several times dividing and forming basal system of haustoria (at least in Tropaeolum majus). Peripheral cells of basal cell mass (adjacent to suspensor and on opposite side of funicle) forming rhizomorphic suspensor haustorium, penetrating integument below micropyle, growing around ovule and into carpellary wall. Additional suspensor haustorium developing from peripheral cells of basal cell mass adjacent to funicle, growing through integument and funicle and reaching placental vascular bundle, growing further along placenta. Embryogenesis solanad.

Fruit A schizocarp with usually three (rarely one) drupaceous or nutlike mericarps (rarely a samara). Carpophore rarely present.

Seeds Seeds pachychalazal (seed coat formed by chalaza). Aril absent. Testa multiplicative, indistinct (outer integument disappearing during maturation). Part of mesotesta suberized. Endotesta (inner epidermis) lacking crystalliferous and sclerotic cells. Tegmen non-multiplicative. Exotegmen not developing into sclerotic layer. Perisperm not developed. Endosperm absent. Embryo large, straight, well differentiated, with chlorophyll. Cotyledons two, thick, plano-convex, with amyloid (xyloglucans). Germination cryptocotylar.

Cytology n = 12–15, 21

DNA

Phytochemistry Flavonols (kaempferol, quercetin), benzyl and 4-methoxybenzyl glucosinolates (synthesized from phenylalanine and/or tyrosine and valine/isoleucine and/or leucine), erucic acid, eicosenoic acid, and cucurbitacins present. Ellagic acid, proanthocyanidins and cyanogenic compounds not found.

Use Ornamental plants, vegetables (Tropaeolum tuberosum etc.), pickled unripe fruits.

Systematics Tropaeolum (80–100; mountain regions in southern Mexico to Tierra del Fuego, southern Brazil to southern Argentina).

Tropaeolum is sister to Akaniaceae.


Literature

Abdallah MS. 1967. The Resedaceae. A taxonomical revision of the family. – Meded. Landbouwh. Wageningen 67-68: 1-98.

Abdallah MS, De Wit HCD. 1978. The Resedaceae. A taxonomical revision of the family (final installment). – Meded. Landbouwh. Wageningen 78: 99-416.

Abraham M. 1885. Bau und Entwicklungsgeschichte der Wandverdickungen in den Samenoberhautzellen einiger Cruciferen. – Jahrb. Wiss. Bot. 16: 599-637.

Agerbirk N, Warwick SI, Hansen PR, Olsen CE. 2008. Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. – Phytochemistry 69: 2937-2949.

Aguinagalde I, Gómez-Campo C. 1984. The phylogenetic significance of flavonoids in Crambe (Cruciferae). – Bot. J. Linn. Soc. 89: 277-288.

Ahluwalia K. 1962. Morphological and embryological studies in the families Zygophyllaceae and Salvadoraceae I. Embryology and systematic position of Peganum harmala Linn.; II. Some embryological aspects of Salvadora persica Linn. – M.Sc. thesis, University of Delhi, India.

Ahuja YR, Bhaduri PN. 1956. The embryology of Brassica campestris L. var. toria Duth. & Full. – Phytomorphology 6: 63-67.

Akhani H. 2003. Notes on the flora of Iran: 4. Two new records and synopsis of the new data on Iranian Cruciferae since Flora Iranica. – Candollea 58: 369-385.

Alam Z. 1936. Cytological studies of some Indian oleiferous Cruciferae III. – Ann. Bot. 50: 85-102.

Alexander I. 1952. Entwicklungsstudien an Blüten von Cruciferen und Papaveraceen. – Planta 41: 125-144.

Alexander PJ, Windham MD, Govindarajulu R, Al-Shehbaz IA, Bailey CD. 2010. Molecular phylogenetics and taxonomy of the genus Thysanocarpus (Brassicaceae). – Syst. Bot. 35: 559-577.

Alexander PJ, Windham MD, Beck JB, Al-Shehbaz IA, Allphin L, Bailey CD. 2013. Molecular phylogenetics and taxonomy of the genus Boechera and related genera (Brassicaceae: Boechereae). – Syst. Bot. 38: 192-209.

Aleykutty KM, Inamdar JA. 1978a. Studies in the vessels of some Capparaceae. – Flora 167: 103-109.

Aleykutty KM, Inamdar JA. 1978b. Structure, ontogeny, and taxonomic significance of trichomes and stomata in some Capparidaceae. – Feddes Repert. 89: 19-30.

Allender CJ, Allainguillaume J, Lynn J, King GJ. 2007. Simple sequence repeats reveal uneven distribution of genetic diversity in chloroplast genomes of Brassica oleracea L. and (n = 9) wild relatives. – Theor. Appl. Gen. 114: 609-618.

Al-Shehbaz IA. 1973. The biosystematics of the genus Thelypodium (Cruciferae). – Contr. Gray Herb. 204: 3-148.

Al-Shehbaz IA. 1977. Protogyny in the Cruciferae. – Syst. Bot. 2: 327-333.

Al-Shehbaz IA. 1982. Rollinsia, a new genus of Cruciferae from Mexico. – Taxon 31: 421-422.

Al-Shehbaz IA. 1989a. New or noteworthy Draba (Brassicaceae) from South America. – J. Arnold Arbor. 70: 427-430.

Al-Shehbaz IA. 1989b. Dactylocardamum (Brassicaceae): a remarkable new genus from Peru. – J. Arnold Arbor. 70: 515-521.

Al-Shehbaz IA. 1989c. Systematics and phylogeny of Schizopetalon (Brassicaceae). – Havard Pap. Bot. 1: 10-46.

Al-Shehbaz IA. 1989d. The South American genera Brayopsis and Englerocharis (Brassicaceae). – Nord. J. Bot. 8: 619-625.

Al-Shehbaz IA. 1990a. The genus Aschersoniodoxa (Brassicaceae). – Syst. Bot. 15: 387-393.

Al-Shehbaz IA. 1990b. The South American Eremodraba (Brassicaceae). – Ann. Missouri Bot. Gard. 77: 602-604.

Al-Shehbaz IA. 1990c. Generic limits and taxonomy of Brayopsis and Eudema (Brassicaceae). – J. Arnold Arbor. 71: 93-109.

Al-Shehbaz IA. 1990d. A note on the Chilean endemic Draba thlaspiformis (Brassicaceae). – J. Arnold Arbor. 71: 385-387.

Al-Shehbaz IA. 1991. Novelties in Draba (Brassicaceae) from Venezuela, Ecuador, and Peru. – Novon 1: 67-70.

Al-Shehbaz IA. 1992. Draba barclayana (Brassicaceae), a new species from Colombia. – Novon 2: 4-5.

Al-Shehbaz IA. 1994a. Petroravenia (Brassicaceae), a new genus from Argentina. – Novon 4: 191-196.

Al-Shehbaz IA. 1994b. Three new South American species of Draba (Brassicaceae). – Novon 4: 197-202.

Al-Shehbaz IA. 1999. Generic placement of species excluded from Arabidopsis (Brassicaceae). – Novon 9: 296-307.

Al-Shehbaz IA. 2000a. A revision of Pegaeophyton (Brassicaceae). – Edinburgh J. Bot. 57: 157-170.

Al-Shehbaz IA. 2000b. Baimashania (Brassicaceae), a new genus from China. – Novon 10: 320-322.

Al-Shehbaz IA. 2000c. What is Nasturtium tibeticum (Brassicaceae)? – Novon 10: 334-336.

Al-Shehbaz IA. 2001. A review of gamosepaly in the Brassicaceae and a revision of Desideria, with a critical evaluation of related genera. – Ann. Missouri Bot. Gard. 87: 549-563.

Al-Shehbaz IA. 2002a. Noccaea nepalensis, a new species from Nepal, and four new combinations in Noccaea (Brassicaceae). – Adansonia, sér. III, 24: 89-92.

Al-Shehbaz IA. 2002b. New species of Alyssum, Aphragmus, Arabis, and Sinosophiopsis (Brassicaceae) from China and India. – Novon 12: 309-313.

Al-Shehbaz IA. 2002c. Six new species of Draba (Brassicaceae) from the Himalayas. – Novon 12: 314-318.

Al-Shehbaz IA. 2003a. Proposal to conserve the name Smelowskia against Redowskia (Brassicaceae). – Taxon 52: 360-361.

Al-Shehbaz IA. 2003b. Transfer of most North American species of Arabis to Boechera (Brassicaceae). – Novon 13: 381-391.

Al-Shehbaz IA. 2003c. A synopsis of Tropidocarpum (Brassicaceae). – Novon 13: 392-395.

Al-Shehbaz IA. 2003d. Aphragmus bouffordii, a new species from Tibet and a synopsis of Aphragmus (Brassicaceae). – Harvard Pap. Bot. 8: 25-27.

Al-Shehbaz IA. 2004a. Novelties and notes on miscellaneous Asian Brassicaceae. – Novon 14: 153-157.

Al-Shehbaz IA. 2004b. Two new species of Draba (Brassicaceae): D. miehorum from Tibet and D. sagasteguii from Peru. – Novon 14: 249-252.

Al-Shehbaz IA. 2004c. A synopsis of the South American Neuontobotrys (Brassicaceae). – Novon 14: 253-257.

Al-Shehbaz IA. 2004d. A synopsis of the South American Weberbauera (Brassicaceae). – Novon 14: 258-268.

Al-Shehbaz IA. 2005a. Proposal to conserve the name Erucastrum against Kibera and Hirschfeldia (Brassicaceae). – Taxon 54: 204-205.

Al-Shehbaz IA. 2005b. Nomenclatural notes on Eurasian Arabis (Brassicaceae). – Novon 15: 519-524.

Al-Shehbaz IA. 2005c. Hesperidanthus (Brassicaceae) revisited. – Harvard Pap. Bot. 10: 47-51.

Al-Shehbaz IA. 2006a. The genus Sisymbrium in South America, with synopses of the genera Chilocardamum, Mostacillastrum, Neuontobotrys, and Polypsecadium (Brassicaceae). – Darwiniana 44: 341-358.

Al-Shehbaz IA. 2006b. New or noteworthy taxa of Argentinean and Chilean Brassicaceae (Cruciferae). – Darwiniana 44: 359-362.

Al-Shehbaz IA. 2007a. Two new species of Draba and Eutrema (Brassicaceae) from Sichuan, China. – Harvard Pap. Bot. 11: 277-279.

Al-Shehbaz IA. 2007b. Generic limits of Dryopetalon, Rollinsia, Sibara, and Thelypodiopsis (Brassicaceae), and a synopsis of Dryopetalon. – Novon 17: 397-402.

Al-Shehbaz IA. 2007c. Arabis elgonensis (Brassicaceae), a new species from Mount Elgon, Uganda. – Harvard Pap. Bot. 12: 387-388.

Al-Shehbaz IA. 2007d. The North American genus Sandbergia (Boechereae, Brassicaceae). – Harvard Pap. Bot. 12: 425-427.

Al-Shehbaz IA. 2010a. The legacy of Asa Gray’s South American botany: examples of amphitropical disjunctions from the Brassicaceae. – Harvard Pap. Bot. 15: 205-208.

Al-Shehbaz IA. 2010b. Ivania juncalensis, a second species in the Chilean endemic Ivania (Brassicaceae). – Harvard Pap. Bot. 15: 343-345.

Al-Shehbaz IA. 2010c. A synopsis of the genus Sibara (Brassicaceae). – Harvard Pap. Bot. 15: 139-147.

Al-Shehbaz IA. 2010d. Menonvillea zuloagaensis and Mostacillastrum hunzikeri (Brassicaceae), two new species from Argentina. – Darwiniana 48: 59-63.

Al-Shehbaz IA. 2012a. A generic and tribal synopsis of the Brassicaceae (Cruciferae). – Taxon 61: 931-954.

Al-Shehbaz IA. 2012b. Notes on miscellaneous species of the tribe Thelypodieae (Brassicaceae). – Harvard Pap. Bot. 17: 3-10.

Al-Shehbaz IA. 2013. Clypeola is united with Alyssum (Brassicaceae). – Harvard Pap. Bot. 18: 125-128.

Al-Shehbaz IA. 2016. A revision of the Mexican endemic Asta (Brassicaceae). – Novon 25: 8-11.

Al-Shehbaz IA. 2017. Five new species of Lepidium (Brassicaceae): L. pabotii (Iran), L. arequipa (Peru), and L. lapazianum, L. linearilobum, and L. stephan-beckii (Bolivia). – Novon 25: 403-413.

Al-Shehbaz IA, Al-Shammary KI. 1987. Distribution and chemotaxonomic significance of glucosinolates in certain Middle-Eastern Cruciferae. – Biochem. Syst. Ecol. 15: 559-569.

Al-Shehbaz IA, Appel O. 2002. A synopsis of the Central Asian Rhammatophyllum (Brassicaceae). – Novon 12: 1-4.

Al-Shehbaz IA, Cano A. 2011. Englerocharis dentata and Eudema peruviana (Brassicaceae), two new species from Peru. – Harvard Pap. Bot. 16: 275-278.

Al-Shehbaz IA, Fuentes AF. 2008. Polypsecadium apolobamba (Brassicaceae), a new species from Bolivia. – Novon 18: 1-3.

Al-Shehbaz IA, German DA. 2013. A synopsis of the genus Parrya (Brassicaceae). – Kew Bull. 68: 457-475.

Al-Shebaz IA, German DA. 2014. A synopsis of the genus Braya (Brassicaceae). – Harvard Pap. Bot. 19: 161-174.

Al-Shebaz IA, German DA. 2016. Three new genera in the tribe Euclidieae (Brassicaceae). – Novon 25: 12-17.

Al-Shehbaz IA, Guang Y. 2000a. A reconsideration of the genus Eurycarpus (Brassicaceae). – Novon 10: 346-348.

Al-Shehbaz IA, Guang Y. 2000b. A revision of the Chinese endemic Orychophragmus (Brassicaceae). – Novon 10: 349-353.

Al-Shehbaz IA, Iltis H. 1993. Romanschulzia mexicana (Brassicaceae), a remarkable new species from Guerrero Mexico. – Novon 3: 96-98.

Al-Shehbaz IA, Koch MA. 2003. Drabopsis is united with Draba (Brassicaceae). – Novon 13: 172-173.

Al-Shehbaz IA, Marticorena C. 1990. Menonvillea rollinsii (Brassicaceae), a new shrubby species from Chile. – J. Arnold Arbor. 71: 135-138.

Al-Shehbaz IA, Mummenhoff K. 2005. Transfer of the South African genera Brachycarpaea, Cycloptychis, Schlechteria, Silicularia, and Thlaspeocarpa to Heliophila (Brassiacaceae). – Novon 15: 385-397.

Al-Shehbaz IA, Mummenhoff K. 2011. Stubendorffia and Winklera belong to the expanded Lepidium (Brassicaceae). – Edinburgh J. Bot. 68: 165-171.

Al-Shehbaz IA, O’Kane Jr SL. 1995. Placement of Arabidopsis parvula in Thellungiella (Brassicaceae). – Novon 5: 309-310.

Al-Shehbaz IA, O’Kane SL Jr. 1999. Ianhedgea (Brassicaceae), a new generic name replacing the illegitimate Microsisymbrium. – Edinburgh J. Bot. 56: 321-327.

Al-Shehbaz IA, O’Kane SL Jr. 2002a. Taxonomy and phylogeny of Arabidopsis (Brassicaceae). – In: Somerville CR, Meyerowitz EM (eds), The Arabidopsis Book, American Society of Plant Biologists, Rockville, Maryland, pp.doi/10.1199/tab.0001, http://www.aspb.org/publications/arabidopsis

Al-Shehbaz IA, O’Kane SL Jr. 2002b. Lesquerella is united with Physaria (Brassicaceae). – Novon 12: 319-329.

Al-Shehbaz IA, Price RA. 1998. Delimitation of the genus Nasturtium (Brassicaceae). – Novon 8: 124-126.

Al-Shehbaz IA, Price RA 2001. The Chilean Agallis and Californian Tropidocarpum (Brassicaceae) are congeneric. – Novon 11: 292-293.

Al-Shehbaz IA, Warwick SI. 1997. The generic disposition of Quidproquo confusum and Sinapis aucheri (Brassicaceae). – Novon 7: 219-220.

Al-Shehbaz IA, Warwick SI. 2005. A synopsis of Eutrema (Brassicaceae). – Harvard Pap. Bot. 10: 129-135.

Al-Shehbaz IA, Warwick SI. 2006. A synopsis of Smelowskia (Brassicaceae). – Harvard Pap. Bot. 11: 91-99.

A.-Shebaz IA, Warwick SI. 2007. Two new tribes (Dontostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). – Harvard Pap. Bot. 12: 429-433.

Al-Shehbaz IA, Windham MD. 2007. New or noteworthy North American Draba (Brassicaceae). – Harvard Pap. Bot. 12: 409-419.

Al-Shehbaz IA, Yang G. 1998. Notes on Chinese Cardamine (Brassicaceae). – Harvard Pap. Bot. 3: 73-77.

Al-Shehbaz IA, Yang G. 2006. A synopsis of Eutrema (Brassicaceae). – Harvard Pap. Bot. 10: 129-135.

Al-Shehbaz IA, Yang G, Lu L-L, Cheo T-Y. 1998. Delimitation of the Chinese genera Yinshania, Hilliella, and Cochleariella (Brassicaceae). – Harvard Pap. Bot. 3: 79-94.

Al-Shehbaz IA, O’Kane SL Jr, Price RA. 1999. Generic placement of species excluded from Arabidopsis (Brassicaceae). – Novon 9: 296-307.

Al-Shehbaz IA, An ZY, Yang G. 1999. A revision of Sisymbriopsis (Brassicaceae). – Novon 9: 308-312.

Al-Shehbaz IA, Arai K, Ohba H. 1999. A new species of Hemilophia (Brassicaceae) from China. – Novon 9: 8-10.

Al-Shehbaz IA, Arai K, Ohba H. 2000. A revision of the genus Lignariella (Brassicaceae). – Harvard Pap. Bot. 5: 113-121.

Al-Shehbaz IA, Taiyien C, Guang Y. 2000. The status of Synstemon (Brassicaceae) and the discovery of a second species. – Novon 10: 99-103.

Al-Shehbaz IA, Mummenhoff K, Appel O. 2002. Cardaria, Coronopus, and Stroganowia are united with Lepidium (Brassicaceae). – Novon 12: 5-11.

Al-Shehbaz IA, Bartholomew B, Abbas A, Tumur A. 2002. New or noteworthy species of Brassicaceae for the flora of China. – Novon 12: 309-313.

Al-Shehbaz IA, Yue J, Sun H. 2004. Shangrilaia (Brassicaceae), a new genus from China. – Novon 14: 271-274.

Al-Shehbaz IA, Beilstein MA, Kellogg EA. 2006. Systematics and phylogeny of the Brassicaceae (Cruciferae). An overview. – Plant Syst. Evol. 259: 89-120.

Al-Shehbaz IA, Mutlu B, Dönmez AA. 2007. The Brassicaceae (Cruciferae) of Turkey, updated. – Turk. J. Bot. 31: 327-336.

Al-Shehbaz IA, German DA, Karl R, Jordon-Thaden I, Koch MA. 2011. Nomenclatural adjustments in the tribe Arabideae. – Plant Divers. Evol. 129: 71-76.

Al-Shehbaz IA, Navarro E, Cano A. 2012. Aschersoniodoxa peruviana (Brassicaceae), a remarkable new species from Peru and a synopsis of the genus. – Kew Bull. 67: 483-486.

Al-Shehbaz IA, Cano A, Trinidad H, Navarro E. 2013. New species of Brayopsis, Descurainia, Draba, Neuontobotrys and Weberbauera (Brassicaceae) from Peru. – Kew Bull. 68: 219-231.

Amin A. 1978. Cytological studies on Farsetia aegyptica Turra in Egypt. – United Arab. Rep. J. Bot. 21: 207-210.

An CH (ZX). 1981. New materials for Chinese Cruciferae. – Bull. Bot. Res. North-East Forest Inst. 1: 97-107.

Ančev M. 2000. The trichomes of Alyssum (Brassicaceae). – Bot. Chron. 13: 151-168.

Ančev M, Deneva B. 1997. Pollen morphology of seventeen species from family Brassicaceae (Cruciferae). – Phytol. Balcanica 3: 75-82.

Ančev M, Goranova V. 2006. Trichome morphology of eleven genera of the tribe Alysseae (Brassicaceae) occurring in Bulgaria. – Willdenowia 36 (Spec. issue): 193-204.

Ancibor E. 1984. Estudio anatómico de la vegetación de la Puna d Jujuy: V Anatomía de Aschersoniodoxa mandoniana (Wedd.) Gilg et Muschler y Parodiodoxa chionophila (Speg.) O. E. Schulz. – Parodiana 3: 103-111.

Anderson JK, Warwick SI. 1999. Chromosome number evolution in the tribe Brassiceae (Brassicaceae): evidence from isozyme number. – Plant Syst. Evol. 215: 255-285.

Andersson L. 1995. 70. Tovariaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 45, Nord. J. Bot., Copenhagen, pp. 15-21.

Andersson L, Andersson S. 2000. A molecular phylogeny of Tropaeolaceae and its systematic implications. – Taxon 49: 721-736.

Appel O. 1998. The status of Teesdaliopsis and Teesdalia (Brassicaceae). – Novon 8: 218-219.

Appel O. 1999. The so-called “beak”, a character in the systematics of Brassicaceae? – Bot. Jahrb. Syst. 121: 85-98.

Appel O, Al-Shehbaz IA. 1997a. Re-evaluation of the tribe Heliophileae (Brassicaceae). – Mitt. Inst. Allg. Bot. Hamburg 27: 85-92.

Appel O, Al-Shehbaz IA. 1997b. Generic limits and taxonomy of Hornungia, Pritzelago, and Hymenolobus (Brassicaceae). – Novon 7: 338-340.

Appel O, Al-Shehbaz IA. 2001. Dolichorhynchus is united with Douepea (Brassicaceae). – Novon 11: 296-297.

Appel O, Al-Shehbaz IA. 2002. Cruciferae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 75-174.

Appel O, Bayer C. 2002. Tovariaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 397-399.

Appelquist LA. 1976. Lipids in the Cruciferae. – In: Vaughan JG, Macleod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 221-277.

Aradhya MK, Manshardt RM, Zee F, Morden CW. 1999. A phylogenetic analysis of the genus Carica L. (Caricaceae) based on fragment length variation in a cpDNA intergenic spacer region. – Genet. Resourc. Crop Evol. 46: 579-586.

Aránega R. 1992. Estudio biosistemático de Reseda L. sect. Leucoreseda DC. (Resedaceae) en el Mediterráneo Occidental. – Ph.D. diss., Universidad Complutense de Madrid, Spain.

Aránega R. 1994. Notas sobre Reseda sect. Leucoreseda DC. en la Península Ibérica. – An. Jard. Bot. Madrid 52: 216-221.

Aránega R. 2005. Aclaraciones taxonómicas y nomenclaturales sobre Reseda decursiva Forssk. y Reseda gayana Boiss. en Andalucia. – Acta Bot. Malacit. 30: 189-197.

Arber A. 1931. Studies in floral morphology I. On some structural features of the cruciferous flower. – New Phytol. 30: 11-41.

Arber A. 1942. Studies in flower structure VII. On the gynoecium of Reseda with a consideration of paracarpy. – Ann. Bot., N. S., 6: 43-48.

Arias T, Pires JC. 2012. A fully resolved chloroplast phylogeny of the brassica crops and wild relatives (Brassicaceae: Brassiceae): novel clades and potential taxonomic implications. – Taxon 61: 980-988.

Arias T, Beilstein MA, Tang M, McKain MR, Pires JC. 2014. Diversification times among Brassica (Brassicaceae) crops suggest hybrid formation after 20 million years of divergence. – Amer. J. Bot. 101: 86-91.

Arwidsson T. 1935. Capparidaceae. – In: Norlindh T, Weimarck H (eds), Beiträge zur Kenntnis der Flora von Süd-Rhodesia III, Bot. Not. 1935: 357-360.

Aryavand A. 1975. Contribution à l’étude cytotaxinomique de quelques Crucifères de l’Iran et de la Turquie. – Bull. Soc. Neuchâtel. Sci. Nat. 98: 43-58.

Aryavand A. 1978. Contribution à l’étude cytotaxinomique de quelques Crucifères de l’Iran 2. – Bull. Soc. Neuchâtel. Sci. Nat. 101: 95-106.

Aryavand A. 1983. Contribution à l’étude cytotaxinomique de quelques Crucifères de l’Iran 3. – Bull. Soc. Neuchâtel. Sci. Nat. 106: 123-130.

Aryavand A. 1996. Numerical taxonomic study of the Iranian species of Alyssum L. based on morphological characters. – J. Sci. Iran 7: 129-136.

Arnal C, Loiseau J. 1946. L’éperon de la fleur du Tropaeolum majus. – Compt. Rend. Acad. Sci. Paris 223: 361-364.

Arunalakshmi V. 1985. Embryological studies in Capparidaceae. Life history of Niebuhria apetala DC. – J. Indian Bot. Soc. 64: 17-24.

Arunalakshmi V. 1989. Structure and development of seed coat in Cleome. – J. Indian Bot. Soc. 68: 116-121.

Askerova RK. 1985. Zuvanda, a new genus of the family Brassicaceae. – Bot. Žurn. 70: 522-524.

Avetisian VE. 1963. Speciarum caucasicarum generis Isatis synopsis critica. – Not. Syst. Geogr. Inst. Bot. Thbilis. 23: 73-86.

Avetisian VE. 1976. Some modifications of the system of the family Brassicaceae. – Bot. Žurn. 61: 1198-1203. [In Russian]

Avetisian VE. 1983. The system of the family Brassicaceae. – Bot. Žurn. 68: 1297-1305. [In Russian]

Avetisian VE. 1990. A review of the system of Brassicaceae of flora of Caucasus. – Bot. Žurn. 75: 1029-1032. [In Russian]

Avetisian VE. 2013. On the distribution of tenus Takhtajaniella (Brassicaceae). – Takhtajania 2: 114.

Aytac Z, Aksoy A. 2000. A new species of Bornmuellera Hausskn. (Brassicaceae) from South Anatolia, Turkey. – Bot. J. Linn. Soc. 134: 485-490.

Aytac Z, Nordt B, Parolly G. 2006. A new species of Noccaea (Brassicaceae) from South Anatolia, Turkey. – Bot. J. Linn. Soc. 150: 409-416.

Backer CA. 1951. Salvadoraceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(3), Noordhoff-Kolff N. V., Batavia, pp. 224-225.

Badillo VM. 1971. Monografía de la família Caricaceae. – Publ. Asociación de Profesores, Fac. Agron., Univ. Centr. Venezuela, Maracay.

Badillo VM. 1983. 131. Caricaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 20, Swedish Natural Science Research Council, Stockholm, pp. 27-48.

Badillo VM. 1993. Caricaceae. Segundo esquema. – Rev. Fac. Agron. Univ. Centr. Venez. Alcance (Maracay) 43.

Baehni C, Macbride JF. 1937. Remarques sur les Cruciferae – Sisymbrieae. – Candollea 7: 291-296.

Bailey CD. 2001. Systematics of Sphaerocardamum (Brassicaceae). – Ph.D. diss., Cornell University, Ithaca, New York.

Bailey CD, Doyle JJ. 1999. Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants: comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae. – Mol. Phylogen. Evol. 13: 20-30.

Bailey CD, Price RA, Doyle JJ. 2002. Systematics of the halimolobine Brassicaceae: evidence from three loci and morphology. – Syst. Bot. 27: 318-332.

Bailey CD, Koch MA, Mayer M, Mummenhof K, Okane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA. 2006. Toward a global phylogeny of the Brassicaceae. – Mol. Biol. Evol. 23: 2142-2160.

Bailey CD, Al-Shehbaz IA, Rajanikanth G. 2007. Generic limits in tribe Halimolobeae and description of the new genus Exhalimolobos (Brassicaceae). – Syst. Bot. 32: 140-156.

Baillargeon G. 1985. Raphanus boissieri Al-Shehbaz, an illegitimate synonym for Quidproquo confusum Greuter & Burdet. – Cruciferae Newsl. 10: 8-9.

Baillargeon G. 1986. Eine taxonomische Revision der Gattung Sinapis (Cruciferae: Brassiceae). – PhD. diss., Universität Berlin, Germany.

Baillon H. 1886. Quelques nouveaux types de la flore du Congo. – Bull. Mens. Soc. Linn. Paris 1: 609-612.

Baker HG. 1976. “Mistake” pollination as a reproductive system with special reference to the Caricaceae. – In: Burley J, Styles BT (eds), Tropical trees – variation, breeding and conservation, Linn. Soc. Symp. Ser. 2, Academic Press, London, pp. 161-169.

Ball PW. 1963. A review of Malcolmia maritima and allied species. – Feddes Repert. 68: 179-186.

Ball PW. 1990. Notes on the genus Erysimum L. in Europe. – Bot. J. Linn. Soc. 103: 200-213.

Banach-Pogan E. 1955. Dalsze badania cytologiczne nad gatunkami rodzaju Cardamine L. – Acta Soc. Bot. Polon. 24: 275-286.

Bannier JP. 1923. Untersuchungen über apogame Fortpflanzung bei einigen elemataren Arten von Erophila verna. – Rec. Trav. Bot. Néerl. 20: 1-106.

Barcley AS, Gentry HS, Jones Q. 1962. The search for new industrial crops 2: Lesquerella as a source of new oilseeds. – Econ. Bot. 16: 95-100.

Barker MS, Vogel H, Schranz ME. 2009. Paleopolyploidy in Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. – Genome Biol. Evol. 2009: 391-399.

Barnhart JH. 1910. Koeberliniaceae. – North Amer. Flora 25: 101-102.

Barrett RL, Roalson EH, Ottewell K, Byrne M, Govindwar SP, Yadav SR, Tamboli AS, Gholave AR. 2017. Resolving generic boundaries in Indian-Australasian Cleomaceae: circumscription of Areocleome, Arivela, and Corynandra as distinct genera. – Syst. Bot. 42: 694-708.

Bartish IV, Aïnouche A, Jia D, Bergstrom D, Chown SL, Winkworth RC, Hennion F. 2012. Phylogeny and colonization history of Pringlea antiscorbutica (Brassicaceae), an emblematic endemic from the south Indian Ocean Province. – Mol. Phylogen. Evol. 65: 748-756.

Bateman AJ. 1955a. Self-incompatibility systems in angiosperms 3. Cruciferae. – Heredity 9: 53-68.

Bateman AJ. 1955b. Note on dioecy in the Cruciferae. – Heredity 9: 415.

Baum DA, Yoon HS, Oldham RL. 2005. Molecular evolution of the transcription factor LEAFY in Brassicaceae. – Mol. Phylogen. Evol. 37: 1-14.

Bawa KS. 1980. Mimicry of male by female flowers and intrasexual competition for pollinators in Jacaratia dolichocaula (D. Smith) Woodson (Caricaceae). – Evolution 34: 467-474.

Bayer A. 1905. Beiträge zur systematischen Gliederung der Cruciferen. – Bot. Centralbl. 18: 119-180.

Bayer C. 2000. On the identity of Cotylonychia Stapf (Sterculiaceae). – Kew Bull. 55: 499-500.

Bayer C, Appel O. 2002a. Akaniaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 21-24.

Bayer C, Appel O. 2002b. Bataceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 30-32.

Bayer C, Appel O. 2002c. Limnanthaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 220-224.

Bayer C, Appel O. 2002d. Pentadiplandraceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 329-331.

Bayer C, Appel O. 2002. Tropaeolaceae. . – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 400-404.

Beck JB, Al-Shehbaz IA, Schaal BA. 2006. Leavenworthia (Brassicaceae) revisited: testing classic systematic and mating system hypotheses. – Syst. Bot. 31: 151-159.

Beck JB, Al-Shehbaz IA, O’Kane SL, Schaal BA. 2007. Further insights into the phylogeny of Arabidopsis (Brassicaceae) from nuclear Atmyb2 flanking sequence. – Mol. Phylogen. Evol. 42: 122-130.

Beentje HJ. 1989. Two new species of Boscia and Maerua (Capparaceae) from Kenya. – Kew Bull. 44: 743-745.

Behnke H-D. 1977a. Phloem ultrastructure and systematic position of Gyrostemonaceae. – Bot. Not. 130: 255-260.

Behnke H-D. 1977b. Dilatierte ER-Zisternen, ein mikromorphologisches Merkmal der Capparales? – Ber. Deutsch. Bot. Ges. 90: 241-251.

Behnke H-D, Eschlbeck G. 1978. Dilated cisternae in Capparales – an attempt towards the characterization of a specific endoplasmatic reticulum. – Protoplasma 97: 351-363.

Behnke H-D, Turner BL. 1971. On specific sieve-tube plastids in Caryophyllales: further investigations with special reference to the Bataceae. – Taxon 20: 731-737.

Beilstein MA, Windham MD. 2003. A phylogenetic analysis of western North American Draba (Brassicaceae) based on nuclear ribosomal DNA sequences from the ITS region. – Syst. Bot. 28: 584-592.

Beilstein MA, Al-Shehbaz IA, Kellogg EA. 2006. Brassicaceae phylogeny and trichome evolution. – Amer. J. Bot. 93: 607-619.

Beilstein MA, Al-Shehbaz IA, Mathews Sarah, Kellogg EA. 2008. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. – Amer. J. Bot. 95: 1307-1327.

Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S. 2010. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. – Proc. Natl. Acad. Sci. U.S.A. 107: 18724-18728.

Belyaeva LE, Fursa NS, Smichenko AA. 1977. The embryology of Syrenia cana (Pill. et Mitt.) Neilr. (Brassicaceae) I. Development of the embryo and endosperm. – Bot. Žurn. 62: 1453-1461. [In Russian]

Ben´tez de Rojas CE. 1974. Characteres microscopicos de la epidermis foliar en Caricaceae. Genero Carica. – Rev. Fac. Agron. Maracay VII: 195-274.

Bennett RN, Hick AJ, Dawson GW, Wallsgrove RM. 1995. Glucosinolate biosynthesis. Further chracterization of the aldoxime-forming microsomal monooxygenases in oilseed rape leaves. – Plant Physiol. 109: 299-305.

Bergh E van den, Hofberger JA, Schranz ME. 2016. Flower power and the mustard bomb: comparative analysis of gene and genome duplications in glucosinolate biosynthetic pathway evolution in Cleomaceae and Brassicaceae. – Amer. J. Bot. 103: 1212-1222.

Berkutenko AN. 1979. Notulae systematicae de genere Draba L. in parte boreali-orientale URSS. – Novit. Syst. Plant. Vasc. 16: 119-125. [In Russian]

Berkutenko AN. 2003. On the genus Borodinia (Cruciferae). – Bot. Žurn. 88: 129-133. [In Russian]

Berkutenko AN. 2005. New combination in the genus Arabis L. (Cruciferae), or once more on the genus Borodinia N. busch. – Nov. Sist. Vysš. Rast. 37: 91-94. [In Russian]

Berry PE. 1992. A new lowland species of Tropaeolum (Tropaeolaceae) from the Venezuelan Guayana. – Novon 2: 182-184.

Bersier JD. 1960. L’ovule et la placentation dans le genre Tropaeolum. – Arch. Sci. Genève 13: 566-567.

Bertoli IC. 1967. Ricerche sulla cariologia di alcuni generi di Cruciferae della sezione Brassicinae. – Atti Accad. Naz. Sci. Lett. Arti Modena, Ser. 6(9): 41-46.

Bhalla PL, Malik CP. 1982. Localization and activity of some glycosidases during early embryogenesis in Tropaeolum majus L. – J. Indian Bot. Soc. 61: 91-94.

Bhalla PL, Singh MB, Malik CP. 1979. Physiology and sexual reproduction VI. Embryogenesis in Tropaeolum majus L.: enzyme changes. – Acta Bot. Indica 7: 72-86.

Bhalla PL, Singh MB, Malik CP. 1982. Post-fertilization developmental time table for Tropaeolum majus. – Acta Bot. Indica 10: 201-205.

Bhide A, Schliesky S, Reich M, Weber AP, Becker A. 2014. Analysis of the floral transcriptome of Tarenaya hassleriana (Cleomaceae), a member of the sister group to the Brassicaceae: towards understanding the base of morphological diversity in Brassicales. – BMC Genom. 15: 1-16.

Björkman R. 1976. Properties and function of plant myrosinases. – In: Vaughan JG, MacLeod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 191-205.

Blanc G, Wolfe KH. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. – Plant Cell 16: 1667-1678.

Blanc G, Hokamp K, Wolfe KH. 2003. A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. – Genome Res. 13: 137-144.

Bleeker W. 2007. Interspecific hybridization in Rorippa (Brassicaceae): patterns and processes. – Syst. Biodiv. 5: 311-319.

Bleeker W, Huthmann M, Hurka H. 1999. Evolution of hybrid taxa in Nasturtium R. Br. (Brassicaceae). – Folia Geobot. Phytotaxon. 34: 421-433.

Bleeker W, Weber-Sparenberg C, Hurka H. 2002. Chlorolast DNA variation and biogeography in the genus Rorippa Scop. (Brassicaceae). – Plant Biol. 4: 104-111.

Bleeker W, Franzke A, Pollmann K, Brown AHD, Hurka H. 2002. Phylogeny and biogeography of southern hemisphere high-mountain Cardamine species (Brassicaceae). – Aust. Syst. Bot. 15: 575-581.

Blua MJ, Hanscom Z. 1986. Isolation and characterization of glucocapparin in Isomeris arborea Nutt. – J. Chem. Ecol. 12: 1449-1458.

Böcher TW. 1951. Cytological and embryological studies in the amphi-apomictic Arabis holboellii complex. – Biol. Skr. 6: 1-59.

Böcher TW. 1966. Experimental and cytological studies on plant species IX. Some Arctic and montane crucifers. – Biol. Skr. Dan. Vid. Selsk. 14(7): 1-74.

Böcher TW. 1969. Further studies in Arabis holboellii and allied species. – Bot. Tidsskr. 64: 141-161.

Boczantzeva VV. 1976. New genus Asterotricha (Cruciferae) from Kazakhstan. – Bot. Žurn. 61: 930-931. [In Russian]

Boczantzeva VV. 1977. Chromosome numbers of two species from the family Cruciferae. – Bot. Žurn. 62: 1504-1505. [In Russian]

Boczantzeva VV. 1997. The genus Arabis (Brassicaceae) in middle Asia and Kazakhstan. – Bot. Žurn. 82: 115-119.

Boeke JH. 1971. Location of the postgenital fusion in the gynoecium of Capsella bursa-pastoris. – Acta Bot. Neerl. 20: 570-576.

Boelcke O. 1964. Notas sobre especies de ‘Lepidium’ de la Argentina. – Darwiniana 13: 506-528.

Boelcke O. 1984. El Género Onuris (Cruciferae) endémico de la Patagonia. – Parodiana 3: 53-65.

Boesewinkel FD. 1990. Ovule and seed development of Tovaria pendula Ruiz & Pavon. – Bot. Jahrb. Syst. 111: 389-401.

Bokhari MH, Hedge IC. 1975. Anatomical characters in Capparis spinosa and its allies. – Notes Roy. Bot. Gard. Edinb. 34: 231-240.

Bolenbaugh A. 1928. Microsporogenesis in Tropaeolum majus with special reference to the cleavage process in tetrad formation. – Bull. Torrey Bot. Club 55: 105-115.

Bolle F. 1936. Resedaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 659-692.

Bolt Jørgensen L. 1981. Myrosin cells and dilated cisternae of the endoplasmatic reticulum in the order Capparales. – Nord. J. Bot. 1: 433-445.

Bolt Jørgensen L. 1995. Stomatal myrosin cells in Caricaceae. Taxonomic implications for a glucosinolate-containing family. – Nord. J. Bot. 15: 523-540.

Bolt Jørgensen L. 1981a. Myrosin cells and dilated cisternae of the endoplasmic reticulum in the order Capparales. – Nord. J. Bot. 1: 433-445.

Bolt Jørgensen L, Behnke H-D, Mabry TJ. 1977. Protein-accumulating cells and dilated cisternae of the endoplasmic reticulum in three glucosinolate-containing genera: Armoracia, Capparis, Drypetes. – Planta 137: 215-224.

Bones A, Iversen T-H. 1985. Myrosin cells and myrosinase. – Israel J. Bot. 34:351-376.

Bones AM, Rossiter JT. 2006. The enzymic and chemically induced decomposition of glucosinolates. – Phytochemistry 67: 1053-1067.

Bonnet ALM. 1963. Contribution à l’étude caryologique du genre Alyssum L. (s. lat.). – Nat. Monspel., sér. Bot., 15: 41-52.

Borgen L. 1987. Lobularia (Cruciferae). A biosystematic study with special reference to the Macaronesian region. – Opera Bot. 91: 1-96.

Borgen L. 1996. Genetic differentiation in endemic Lobularia (Brassicaceae) in the Canary Islands. – Nord. J. Bot. 16: 487-503.

Borsos O. 1967. Über einige Rorippa- und Veronica-Arten. – Acta Bot. Acad. Sci. Hung. 13: 1-10.

Botschantzev VP. 1972a. On Parrya R. Br., Neuroloma Andrz. and some other genera (Cruciferae). – Bot. Žurn. 57: 667-673. [In Russian]

Botschantzev VP. 1972b. The genus Strigosella Boiss. and its relation to the genus Malcolmia R. Br. (Cruciferae). – Bot. Žurn. 57: 1033-1046. [In Russian]

Botschantzev VP. 1980. Two new genera of the family Cruciferae. – Bot. Žurn. 65: 425-427.

Botschantzev VP. 1984. Rod Stroganowia Kar. et Kir. (Cruciferae). – Nov. Sist. Vysš. Rast. 21: 72-81.

Botschantzev VP, Seifulin EM. 1988. Alyssopsis Boiss. (Cruciferae): genus novum florae Asiae Mediae. – Nov. Sist. Vysš. Rast. 25: 89-91. [In Russian]

Botschantzev VP, Vvedensky AI. 1948. Cruciferae novae ex Asia Media. – Bot. Mater. Gerb. Inst. Bot. Zool. Akad. Nauk Uzbeksk. S.S.R. 12: 3-12.

Bottomley W, White DE. 1950. The chemistry of Western Australian plants II. The essential oil of Codonocarpus cotinifolius (Desf.) F. Muell. – J. Proc. Roy. Aust. Chem. Inst. 17: 31-32.

Boufford DE, Kjær A, Øgaard Madsen J, Skrydstrop T. 1989. Glucosinolates in Bretschneideraceae. – Biochem. Syst. Ecol. 17: 375-379.

Bouman F. 1975. Integument initiation and testa development in some Cruciferae. – Bot. J. Linn. Soc. 70: 213-229.

Bowman JL. 2006. Molecules and morphology: comparative developmental genetics of the Brassicaceae. – Plant Syst. Evol. 259: 199-215.

Bowman JL, Smyth DR. 1998. Patterns of petal and stamen reduction in Australian species of Lepidium L. (Brassicaceae). – Intern. J. Plant Sci. 159: 65-74.

Bowman JL, Brüggemann H, Lee J-L, Mummenhoff K. 1999. Evolutionary changes in floral structure within Lepidium L. (Brassicaceae). – Intern. J. Plant Sci. 160: 917-929.

Bramwell D. 1970. A revision of the genus Parolinia Webb (Cruciferae) in the Canary Islands. – Bot. Not. 123: 394-400.

Brea M, Zucol AF, Bargo MS, Fernicola JC, Vizcaíno SF. 2017. First Miocene record of Akaniaceae in Patagonia (Argentina): a fossil wood from the early Miocene Santa Cruz formation and its palaeobiogeographical implications. – Bot. J. Linn. Soc. 183: 334-347.

Brochmann C. 1992a. Polyploid evolution in arctic-alpine Draba (Brassicaceae). – Sommerfeltia Suppl. 4: 1-37.

Brochmann C. 1992b. Pollen and seed morphology of Nordic Draba (Brassicaceae): phylogenetic and ecological implications. – Nord. J. Bot. 12: 657-673.

Brochmann C, Soltis PS, Soltis DE. 1992a. Recurrent formation and polyphyly of Nordic polyploids in Draba (Brassicaceae). – Amer. J. Bot. 79: 673-688.

Brochmann C, Soltis PS, Soltis DE. 1992b. Multiple origins of the octoploid Scandinavian endemic Draba cacuminum: electrophoretic and morphological evidence. – Nord. J. Bot. 12: 257-272.

Brochmann C, Stedje B, Borgen L. 1992. Gene flow across ploidal levels in Draba (Brassicaceae). – Evol. Trends Plants 6: 125-134.

Brochmann C, Soltis DE, Soltis PS. 1992. Electrophoretic relationships and phylogeny of Nordic polyploids in Draba (Brassicaceae). – Plant Syst. Evol. 182: 35-70.

Brochmann C,Borgen L, Stedje CB. 1993. Crossing relationships and chromosome numbers of Nordic populations of Draba (Brassicaceae), with emphasis on the D. alpina complex. – Nord. J. Bot. 13: 121-147.

Brock A, Herzfeld T, Paschke R, Koch M, Dräger B. 2006. Brassicaceae contain nortropane alkaloids. – Phytochemistry 67: 2050-2057.

Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y. 1979. Hyperaccumulation of nickel by Alyssum L. (Cruciferae). – Proc. Roy. Soc. London, Ser. B, Biol. Sci. 203: 387-403.

Brown RC, Lemmon BE, Nguyen H. 2004. Comparative anatomy of the chalazal endosperm cyst in seeds of the Brassicaceae. – Bot. J. Linn. Soc. 144: 375-394.

Brückner C. 1996. Carpelloid stamens in Papaveraceae Juss. and Brassicaceae Burnett (Cruciferae Juss.) and their bearing on theories of gynoecium organization. – Feddes Repert. 107: 321-337.

Brückner C. 2000. Clarification of the carpel number in Papaverales, Capparales, and Berberidaceae. – Bot. Rev. 66: 155-307.

Brunotte C. 1900. Recherches embryogéniques et anatomiques sur quelques espèces des genres Impatiens (L.) et Tropaeolum (L.). – Ph.D. diss., l’Université de Paris, France.

Buchenau F. 1896. Der Blütenbau von Tropaeolum. – Abh. Nat. Ver. Bremen 13: 383-407.

Buchner R, Halbritter H, Pfunder G, Hesse M. 1990. Pollen of Limnanthes douglasii: a reinvestigation. – Grana 29: 207-211.

Burger W. 1991. 100. Tropaeolaceae. – Fieldiana Bot. 28: 21-23.

Burow M, Losansky A, Müller R, Plock A, Kliebenstein DJ, Wittstock U. 2009. The genetic basis on constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis. – Plant Physiology 149: 561-574.

Burtt BL. 1948. Farsetia socotrana B. L. Burtt, nom. nov. – Kew. Bull. 1948: 162.

Burtt BL. 1949. On Farsetia hamiltonii Royle. – Kew Bull. 1948: 495-498.

Burtt BL. 1951. The genus Ricotia. – Kew Bull. 1: 123-132.

Busch A, Zachgo S. 2007. Control of corolla monosymmetry in the Brassicaceae Iberis amara. – Proc. Natl. Acad. Sci. U.S.A. 104: 16714-16719.

Busch A, Horn S, Mühlhausen A, Mummenhoff K, Zachgo S. 2012. Corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family. – Mol. Evol. Ecol. 29: 1241-1254.

Buttler KP. 1967. Zytotaxonomische Untersuchungen an Mittel- und Südeuropäischen Draba-Arten. – Mitt. Bot. Staatssamml. München 6: 275-362.

Cacho NI, Burrell AM, Pepper AE, Strauss SY. 2014. Novel nuclear markers inform the systematics and the evolution of serpentine use in Streptanthus and allies (Thelypodieae, Brassicaceae). – Mol. Phylogen. Evol. 72: 71-81.

Cai L, Ma H. 2016. Using nuclear genes to reconstruct angiosperm phylogeny at the species level: a case study with Brassicaceae species. – J. Syst. Evol. 54: 438-452.

Cardinal-McTeague WM, Sytsma KJ, Hall JC. 2016. Biogeography and diversification of Brassicales: a 103 million year tale. – Mol. Phylogen. Evol. 99: 204-224.

Carlquist SJ. 1971. Wood anatomy of Macaronesian and other Brassicaceae. – Aliso 7: 365-384.

Carlquist SJ. 1978. Wood anatomy and relationships of Bataceae, Gyrostemonaceae, and Stylobasiaceae. – Allertonia 1: 297-330.

Carlquist SJ. 1985. Vegetative anatomy and familial placement of Tovaria. – Aliso 11: 69-76.

Carlquist SJ. 1996. Wood anatomy of Akaniaceae and Bretschneideraceae: a case of near-identity and its systematic implications. – Syst. Bot. 21: 607-616.

Carlquist SJ. 1998a. Wood and bark anatomy of Caricaceae: correlations with systematics and habit. – IAWA J. 19: 191-206.

Carlquist SJ. 1998b. Wood anatomy of Resedaceae. – Aliso 16: 127-135.

Carlquist SJ. 2002. Wood and bark anatomy of Salvadoraceae: ecology, relationships, histology of interxylary phloem. – J. Torrey Bot. Club 129: 10-20.

Carlquist SJ. 2016. Wood anatomy of Brassicales: new information, new evolutionary concepts. – Bot. Rev. 82: 24-90.

Carlquist SJ, Donald CJ. 1996. Wood anatomy of Limnanthaceae and Tropaeolaceae in relation to habit and phylogeny. – Sida 17: 333-342.

Carlquist SJ, Miller RB. 1999. Vegetative anatomy and relationships of Setchellanthus caeruleus (Setchellanthaceae). – Taxon 48: 289-302.

Carlquist SJ, Hansen BF, Iltis HH, Olson ME, Geiger DL. 2013 [2014]. Forchhammeria and Stixis (Brassicales): stem and wood anatomical diversity, ecological and phylogenetic significance. – Aliso 31: 59-75.

Carlsen T, Bleeker W, Hurka H, Elven R, Brochmann C. 2009. Biogeography and phylogeny of Cardamine (Brassicaceae). – Ann. Missouri Bot. Gard. 96: 215-236.

Carlsen T, Elven R, Brochmann C. 2010. The evolutionary history of Beringian Smelowskia (Brassicaceae) inferred from combined microsatellite and DNA sequence data. – Taxon 59: 427-438.

Carlström A. 1984. A revision of Cleome series Ornithopodioides Tzvelev (Capparaceae). – Willdenowia 14: 119-130.

Carvalho FA, Renner SS. 2012. A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. – Mol. Phylogen. Evol. 65: 46-53.

Carvalho FA, Filer D, Renner SS. 2015. Taxonomy in the electronic age and an e-monograph of the papaya family (Caricaceae) as an example. – Cladistics 31: 321-329.

Cecchi L. 2011. A reappraisal of Phyllolepidum (Brassicaceae), a neglected genus of the European flora, and its relationships in tribe Alysseae. – Plant Biosyst. 145: 818-831.

Cecchi L, Gabrielli R, Arnetoli M, Gonnelli C, Hasko A, Selvi F. 2010. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data. – Ann. Bot. (Oxford) 106: 751-767.

Cecchi L, Colzi I, Coppi A, Gonnelli C, Selvi F. 2013. Diversity and biogeography of Ni-hyperaccumulators of Alyssum section Odontarrhena (Brassicaceae) in the central western Mediterranean: evidence from karyology, morphology and DNA sequence data. – Bot. J. Linn. Soc. 173: 269-289.

Çelik N, Akpulat HA, Donmez E. 2007. A new species of Physoptychis (Brassicaceae) from Central Anatolia, Turkey. – Bot. J. Linn. Soc. 154: 393-396.

Çetin Ö, Duran A, Martin E, Tuştaş S. 2012 A taxonomic study of the genus Fibigia Medik. (Brassicaceae). – Afr. J. Biotechn. 11: 109-119.

Chaban IA, Yakovev MS. 1974. The embryology of Reseda lutea L. I. Megasporogenesis and development of embryo-sac. – Bot. Žurn. 59: 24-37. [In Russian with English summary]

Chadefaud M. 1974. Sur la formule florale de la capucine (Tropaeolum majus L.). – Bull. Bot. Soc. Fr. 121: 347-357.

Chandler GT, Bayer RJ. 2000. Phylogenetic placement of the enigmatic Western Australian genus Emblingia based on rbcL sequences. – Plant Species Biology 15: 67-72.

Charlesworth D, Liu FL, Zhang L. 1998. The evolution of the alcohol dehydrogenase gene family by loss of introns of the genus Leavenworthia (Brassicaceae). – Mol. Biol. Evol. 15: 552-559.

Chaturvedi M, Gupta S. 1983. Studies on the pollen morphology of some Capparis L. (Capparaceae) species. – Proc. Indian Acad. Sci., Sect. B, Plant Sci. 93: 29-34.

Chauhan E. 1979. Pollination by ants in Coronopus didymus (L.) Sm. – Intern. Quart. J. Plant Sci. Res. 6: 39-40.

Chaw S-M, Peng C-I. 1987. Palynological notes on Bretschneidera sinensis Hemsl. – Bot. Bull. Acad. Sin. (Taipei) 28: 55-60.

Chen H, Deng T, Yue J, Al-Shehbaz IA, Sun H. 2016. Molecular phylogeny reveals the non-monophyly of tribe Yinshanieae (Brassicaceae) and description of a new tribe, Hillielleae. – Plant Div. 38: 171-182.

Cheng S, van den Bergh E, Zeng P, Zhong X, Xu J, Liu X, Hofberger J, Bruijn S, Bhide AS, Bian C, Chen J, Fan G, Kaufmann K, Hall JC, Becker A, Shi C, Zheng Z, Li W, Lu M, Tao Y, Xu X, Wang J, Zou H, Quan Z, Hibberd J, Lim BL, Zhu X, Zhang G, Schranz ME. 2013. Insights into crucifer evolution by sequencing the sister-lineage species Tarenaya hassleriana. – Plant Cell 25: 2813-2830.

Chew FS. 1979. Cabbage butterflies as indicators of chemical relationships among some Nearctic Cruciferae. – Symb. Bot. Ups. 22(4): 100-106.

Choi Y-J, Shin H-D, Thines M. 2009. The host range of Albugo candida extends from Brassicaceae through Cleomaceae to Capparaceae. – Mycol. Progr. 8: 329-335.

Clauss MJ, Koch MA. 2006. Arabidopsis and its poorly known relatives. – Trends Plant Sci. 11: 449-459.

Clemente Muñoz M, Hernandez Bermejo JE. 1978. El aparato nectarigeno en la tribu Brassiceae (Cruciferae). – Ann. Inst. Bot. Cavanilles 35: 279-296.

Cole RA. 1976. Isothiocyanates, nitriles and thiocyanates as products of autolysis of glucosinolate in Cruciferae. – Phytochemistry 15: 759-762.

Contandriopoulos J. 1970. Contribution à l’étude cytotaxinomique des Alysseae Adams de Grèce. – Ber. Schweiz. Bot. Ges. 79: 313-334.

Cornejo X, Iltis HH. 2005. Studies in the Capparaceae XXIII: Capparis coimbrana, a new species from Bolivia. – Brittonia 57: 155-161.

Cornejo X, Iltis HH. 2006. New combinations in Capparaceae sensu stricto for flora of Ecuador. – Harvard Pap. Bot. 11: 17-18.

Cornejo X, Iltis HH. 2008a. New combinations in South American Capparaceae. – Harvard Pap. Bot. 13: 117-120.

Cornejo X, Iltis HH. 2008b. A revision of Colicodendron Mart. (Capparaceae s.s.). – J. Bot. Res. Inst. Texas 2: 75-93.

Cornejo X, Iltis HH. 2008c. The reinstatement of Capparidastrum (Capparaceae). – Harvard Pap. Bot. 13: 229-236.

Cornejo X, Iltis HH, Tomb AS. 2008. Anisocapparis y Monilicarpa: dos nuevos géneros de Capparaceae de América del Sur. – J. Bot. Res. Inst. Texas 2: 61-74.

Coulthart M, Denford KE. 1982. Isozyme studies in Brassica I. Electrophoretic techniques for leaf enzymes and comparison of B. napus, B. rapa, and B. oleracea using phosphoglucoisomerase. – Can. J. Plant Sci. 62: 621-630.

Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K. 2010. Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). – Mol. Biol. Evol. 27: 55-71.

Crespo MB. 1993. Reseda valentina (Resedaceae), a legitimate name. – Willdenowia 23: 103-106.

Crespo MB, Lledó MD, Fay MF, Chase MW. 2000. Subtribe Vellinae (Brassiceae, Brassicaceae): a combined analysis of ITS nrDNA sequences and morphological data. – Ann. Bot. 86: 53-62.

Crespo MB, Rios S, Vivero JL, Prados J, Hernandez-Bermejo E, Lledo MD. 2005. A new spineless species of Vella (Brassicaceae) from the high mountains of south-eastern Spain. – Bot. J. Linn. Soc. 149: 121-128.

Crété P. 1936. Développement et structure du tégument seminal chez le Reseda luteola L. – Bull. Soc. Bot. France 83: 43-46.

Crété R. 1951. Embryogénie des Capparidacées: développement de l’embryon chez le Cleome graveolens Rafin. – Compt. Rend. Acad. Sci. 233: 562-564.

Crisp P. 1976. Trends in the breeding and cultivation of cruciferous crops. – In: Vaughan JG, Macleod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 69-118.

Curtis PJ, Made PM. 1971. Cucurbitacins from the Cruciferae. – Phytochemistry 10: 3081-3083.

Czapik R. 1974. Embryology of five species of the Arabis hirsuta complex. – Acta Biol. Cracov. 17: 13-25.

Dammer U. 1893. Batidaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, III(1a), W. Engelmann, Leipzig, pp. 118-120.

D’Arbaumont J. 1890. Nouvelles observations sur les cellules à mucilage des graines de Crucifères. – Ann. Sci. Nat., Bot. VII, 11: 125-181.

D’Arcy WG. 1979. Flora of Panama, part IV, family 73A. Capparaceae-Tovarioideae. – Ann. Missouri Bot. Gard. 676: 117-121.

Das VSR, Rao KN. 1975. Phytochemical phylogeny of the Brassicaceae (Cruciferae) from the Capparidaceae. – Naturwissenschaften 62: 577-578.

Dass H, Nybom N. 1967. The relationships between Brassica nigra, Brassica campestris, and Brassica oleracea, and their amphidiploid hybrids studied by means of numerical chemotaxonomy. – Can. J. Genet. Cytol. 9: 880-890.

Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM. 2011. The genome of the extremophile crucifer Thellungiella parvula. – Nat. Genet. 43: 913-918.

Dathan ASR, Singh D. 1970. Female gametophyte and seed of Carica candamarensis Hook. f. – Plant Sci. (Lucknow) 2: 52-60.

Datta PC. 1971. Chromosomal biotypes of Carica papaya Linn. – Cytologia 36: 555-562.

Datta RM, Mitra IN. 1947. The systematic position of the family Moringaceae based on a study of Moringa pterigosperma Gaertn. (M. oleifera Lam.). – J. Bombay Nat. Hist. Soc. 47: 355-358.

Dave YS, Patel ND, Desai SV. 1974. Pericarpal studies in the developing fruit of Horse-radish (Moringa oleifera Lamk.). – Flora 163: 398-404.

David E. 1938. Embryologische Untersuchungen an Myoporaceen, Salvadoraceen, Sapindaceen und Hippocrateaceen. – Planta 28: 680-703.

Daxenbichler ME, Etten CH von, Brown FS. 1964. Oxazolidinethiones and volatile isothiocyanates in enzyme-treated seed meals from 65 species of Cruciferae. – Agric. Food Chem. 12: 127-130.

Daxenbichler ME, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG. 1991. Glucosinolate composition of seeds from 297 species of wild plants. – Phytochemistry 30: 2623-2638.

Delaveau P, Koudogbo B, Pousset J-L. 1973. Alkaloides chez les Capparidaceae. – Phytochemistry 12: 2983-2985.

Denford KE. 1975. Isoenzyme studies in members of the genus Brassica. – Bot. Not. 128: 455-462.

Deng Y, Hu Z. 1995. The comparative morphology of the floral nectaries of Cruciferae. – Acta Phytotax. Sin. 33: 209-220.

Den Outer RW, Veenendaal WLH van. 1981. Wood and bark anatomy of Azima tetracantha Lam. (Salvadoraceae). – Acta Bot. Neerl. 30: 199-207.

Detling LE. 1936. The genus Dentaria in the Pacific states. – Amer. J. Bot. 23: 570-576.

Devi HM, Lakshmi VA. 1989. Reproductive behaviour of Cleome aspera Koenig (Capparaceae). – J. Jap. Bot. 64: 10-17.

Devi S. 1952. Studies in the order Parietales III. Vascular anatomy of the flower of Carica papaya L., with special reference to the structure of the gynoecium. – Proc. Indian Acad. Sci., Sect. B, 36: 59-69.

DeWolf GP. 1962. Notes on African Capparidaceae III. – Kew Bull. 16: 75-83.

Díaz L CL, Lomelí S JA 1992. Revisión del género Jarilla Rusby (Caricaceae). – Acta Bot. Mex. 20: 77-99.

Dierschke T, Mandáková T, Lysak MA, Mummenhoff K. 2009. A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. – Ann. Bot. 104: 681-688.

Dirmenci T, Satil F, Tumen G. 2006. A new species of Matthiola R. Br. (Brassicaceae) from Turkey. – Bot. J. Linn. Soc. 151: 431-435.

Dixon GR. 2007. Vegetable brassicas and related crucifers. – CABI North America, Cambridge, Massachusetts.

Dobeš C, Mitchell-Olds T, Koch MA. 2004a. Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. x divaricarpa, and A. holboellii (Brassicaceae). – Mol. Ecol. 13: 349-370.

Dobeš C, Mitchell-Olds T, Koch MA. 2004b. Intraspecific diversification in North American Boechera stricta (= Arabis drummondii), Boechera x divaricarpa, and Boechera holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers – an integrative approach. – Amer. J. Bot. 91: 2087-2101.

Dobeš C, Koch M, Sharbel TF. 2006. Embryology, karyology, and modes of reproduction in the North American genus Boechera (Brassicaceae): a compilation of seven decades of research. – Ann. Missiouri Bot. Gard. 93: 517-534.

Dobeš C, Sharbel TF, Koch M. 2007. Towards understanding the dynamics of hybridization and apomixis in the evolution of the genus Boechera (Brassicaceae). – Syst. Biodiv. 5: 321-331.

Dolan L, Costa S. 2001. Evolution and genetics of root hair stripes in the root epidermis. – J. Experim. Bot. 52: 413-417.

Dole JA, Sun M. 1992. Field and genetic survey of the endangered Butte county meadowfoam – Limnanthes floccosa subsp. californica (Limnanthaceae). – Cons. Biol. 6: 549-558.

Dorn RD. 2003. A new species of Boechera (Brassicaceae) from Utah and Colorado. – Brittonia 55: 1-3.

Dorofeyev VI. 2004. System of family Cruciferae B. Juss. (Brassicaceae Burnett). – Turczaninowia 7: 43-52. [In Russian]

Doskotch RW, Ray AB, Beal JL. 1971. Codonocarpine, a new lunaria-type alkaloid from Codonocarpus australis A. Cunn. – J. Chem. Soc., Sect. D, 1971: 300-301.

Doweld AB. 1996a. The systematic relevance of fruit and seed anatomy and morphology of Akania (Akaniaceae). – Bot. J. Linn. Soc. 120: 379-389.

Doweld AB. 1996b. The carpology and taxonomic relationships of Bretschneidera (Bretschneideraceae). – Acta Bot. Malacitania 21: 79-90.

Drury WH, Rollins RC. 1952. The North American representatives of Smelowskia (Cruciferae). – Rhodora 54: 85-119.

Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires JC, Leebens-Mack J, dePamphilis CW. 2010. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. – BMC Evol. Biol. 10: 61; doi: 10.1186/1471-2148-10-61.

Dudley TR. 1964a. Studies in Alyssum: Near Eastern representatives and their allies I. – J. Arnold Arbor. 45: 57-100.

Dudley TR. 1964b. Synopsis of the genus Alyssum. – J. Arnold Arbor. 45: 358-373.

Dudley TR. 1964c. Synopsis of the genus Aurinia in Turkey. – J. Arnold Arbor. 45: 390-400.

Dudley TR. 1965a. Studies in Alyssum: Near Eastern representatives and their allies II. Section Meniocus and section Psilonema. – J. Arnold Arbor. 46: 181-217.

Dudley TR, Cullen J. 1965. Studies in the Old World Alysseae Hayek. – Feddes Repert. 7: 218-228.

Dugand A. 1941. El género Capparis en Colombia. – Caldasia 2: 29-54.

Dugand A. 1968. Acerca de unas Capparis de la flora Colombiana. – Caldasia 10: 219-229.

Duman H. 2001. A new species of Arabis L. (Brassicaceae) from South Anatolia. – Bot. J. Linn. Soc. 137: 87-90.

Duman H, Duran A. 2001. A new species of Arabis L. (Brassicaceae) from south Anatolia. – Israel J. Plant Sci. 49: 237-240.

Duran A, Ocak A. 2005. Hesperis turkmendaghensis (sect. Hesperis) (Cruciferae/Brassicaceae), a new species from the Central Anatolia region, Turkey. – Bot. J. Linn. Soc. 147: 239-247.

Durkee AB, Harborne JB. 1973. Flavonol glycosides in Brassica and Sinapis. – Phytochemistry 12: 1085-1089.

Dutt BSM. 1978a. Anther in Moringa concanensis Nimmo. – Curr. Sci. 47: 589.

Dutt BSM. 1978b. Embryo development in Moringa concanensis Nimmo. – Curr. Sci. 47: 693.

Dutt BSM. 1979. Ovule and seed of Moringa concanensis Nimmo. – Curr. Sci. 48: 652-654.

Dutt BSM, Narayana LL, Parvathi A. 1978. Floral anatomy of Moringa concanensis Nimmo. – Indian J. Bot. 1: 35-39.

Dutt BSM, Narayana LL, Radhakrishnaiah M, Nageshwar G. 1984. Systematic position of Moringa. – J. Econ. Tax. Bot. 5: 577-580.

Dvořák F. 1968a. A contribution to the study of the variability of the nectaries. – Preslia 40: 13-17.

Dvořák F. 1968b. Study of the characters of the genus Parrya R. Br. – Přirod Fak. Univ. Purk. Brno 497: 343-359.

Dvořák F. 1969. Study of the genus Malcolmia R. Br. II. – Spisy Přírod. Univ. Purkyně Brně, L 36, 1969: 75-101.

Dvořák F. 1970. Study of the characters of the genus Malcolmia R. Br. I. – Feddes Repert. 81: 387-416.

Dvořák F. 1971. On the evolutionary relationship in the family Brassicaceae. – Feddes Repert. 82: 357-372.

Dvořák F. 1972. Study of the evolutional relationship of the tribe Hesperideae. – Folia Fac. Sci. Nat. Univ. Purkynianae Brun. Biol. 13: 1-82.

Dvořák F. 1973a. The importance of the indumentum for the investigation of evolutional relationship in the family Brassicaceae. – Österr. Bot. Zeitschr. 121: 155-164.

Dvořák F. 1973b. Infrageneric classification of Hesperis L. – Feddes Repert. 84: 259-271.

Dvořák F, Konarikova V. 1970. Study of the characters of the genus Malcolmia R. Br. 1. – Feddes Repert. 81: 387-416.

Eames AJ. 1930. Crucifer carpels. – Amer. J. Bot. 17: 638-656.

Eames AJ, Wilson CL. 1928. Carpel morphology in the Cruciferae. – Amer. J. Bot. 15: 251-270.

Eames AJ, Wilson CL. 1930. Crucifer carpels. – Amer. J. Bot. 17: 638-656.

Easterly NW. 1963. Chromosome numbers of some northwestern Ohio Cruciferae. – Castanea 28: 39-42.

Ebel AL. 1998. Notes on genus Aphragmus Andrz. (Brassicaceae). – Turczaninowia 1: 20-27.

Eckardt T. 1959 [1960]. Das Blütendiagramm von Batis P. Br. – Ber. Deutsch. Bot. Ges. 72: 411-418.

Eckardt T. 1971. Anlegung und Entwicklung der Blüten von Gyrostemon ramulosus Desf. – Bot. Jahrb. Syst. 90: 434-446.

Edger PP, Tang M, Bird KA, Mayfield DR, Conant G, Mummenhoff K, Koch MA, Pires JC. 2014. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (Mustards). – PLoS One 9: e101341.

Edger PP, Hall JC, Harkess A, Tang M, Coombs J, Mohammadin S, Schranz ME, Xiong Z, Leebens-Mack J, Meyers BC, Sytsma KJ, Koch MA, Al-Shehbaz IA, Pires C. 2018. Brassicales phylogeny inferred from 72 plastid genes: a reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses. – Amer. J. Bot. 105: 463-469.

Eigsti OJ. 1936. Cytological studies in the Resedaceae. – Bot. Gaz. 98: 363-369.

Eilert U, Wolters B, Nahrstedt A. 1981. The antibiotic principle of seeds of Moringa oleifera and Moringa stenopetala. – Planta Med. 42: 55-61.

Ekman E. 1926. Zur Kenntnis der nordischen Hochgebirgs-Drabae II. – Kungl. Sv. Vetensk. Akad. Handl., ser. III, 2: 1-56.

Ekman E. 1931. Contribution to the Draba flora of Greenland III. Some notes on the arctic, especially the Greenland Drabas of the sections Aizopsis and Chrysodraba DC. – Svensk Bot. Tidskr. 25: 465-494.

Ekman E. 1932. Contribution to the Draba flora of Greenland IV. – Svensk Bot. Tidskr. 26: 133-142.

Ekman E. 1933. Contribution to the Draba flora of Greenland V. – Svensk Bot. Tidskr. 27: 97-103.

Ekman E. 1941. Notes on the genus Draba. A posthumous, unfinished fragment. – Svensk Bot. Tidskr. 35: 133-142.

Elffers J, Taylor P. 1958. Resedaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-6.

Elffers J, Graham RA, Dewolf GP. 1964. Capparidaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-88.

El Hadidi MN, El Naggar SM, Hedge IC. 1988. Taxonomic studies on Cruciferae in Egypt 1. Checklist and key to the genera. – Taeckholmia 1: 73-86.

El-Menshawi B, Karawya, M, Wassel G. 1980. Glucosinolates in the genus Zilla (Brassicaceae). – Lloydia 43: 534-536.

El Migirab S, Berger Y, Jadot J. 1977. Isothiocyanates, thiourées et thiocarbamates isolés de Pentadiplandra brazzeana. – Phytochemistry 16: 1719-1721.

El Naggar SM. 1987. Studies of the family Cruciferae in Egypt. – Ph.D. diss., Assiut University, Egypt.

El Naggar SM. 1992. Systematic studies on the tribe Brassiceae (Cruciferae) in Egypt. – Feddes Repert. 103: 515-522.

El Naggar SM. 1993. Numerical taxonomy of the tribe Lepidieae and some other genera. – Feddes Repert. 104: 201-208.

El Naggar SM. 2002. Taxonomic significance of pollen morphology in some taxa of Resedaceae. – Feddes Repert. 113: 518-527.

El Naggar SM, El Hadidi MN. 1998. The tribe Alysseae Hayek (Brassicaceae) in Egypt. – J. Union Arab Biol. Cairo 6(B): 501-520.

Elven R, Al-Shehbaz IA. 2008. Draba simmonsii (Brassicaceae), a new species of the D. micropetala complex from the Canadian Arctic Archipelago. – Novon 18: 325-329.

Endress PK. 1992. Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. – Intern. J. Plant Sci. (Suppl.) 153: S106-S122.

Engel K, Schmidt B. 1972. – In: Löve Á (ed), IOPB chromosome number reports 37, Taxon 21: 495.

Engler A. 1895. Koeberliniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Bd. III(6), W. Engelmann, Leipzig, pp. 319-321.

Engler A 1902. Cruciferae africanae. – Engl. Bot. Jahrb. Syst. 32: 98-100.

Erbar C, Leins P. 1997a. Different patterns of floral development in whorled flowers, exemplified by Apiaceae and Brassicaceae. – Intern. J. Plant Sci. 158(Suppl.): S49-S64.

Erbar C, Leins P. 1997b. Studies on the early floral development in Cleomoideae (Capparaceae) with emphasis on the androecial development. – Plant Syst. Evol. 206: 119-132.

Erdtman G, Leins P, Melville R, Metcalfe CF. 1969. On the relationships of Emblingia. – Bot. J. Linn. Soc. 62: 169-186.

Erickson LR, Straus NA, Beversdorf WD. 1983. Restriction patterns reveal origins of chloroplast genomes in Brassica amphiploids. – Theor. Appl. Gen. 65: 201-206.

Esmailbegi S, Lysak MA, Rahiminejad MR, Mirtadzadini M, Mummenhoff K, Al-Shehbaz IA. 2017. A taxonomic revision of the genus Pseudocamelina (Brassicaceae, tribe Thlaspideae). – Phytotaxa 313: 117-129.

Esmailbegi S, Al-Shehbaz IA, Pouch M, Mandáková T, Mummenhoff K, Rahiminejad MR, Mirtadzadini M, Lysak MA. 2018. Phylogeny and systematics of the tribe Thlaspideae (Brassicaceae) and the recognition of two new genera. – Taxon 67: 324-340.

Ettlinger MG, Hodgkins JE. 1956. The mustard oil of papya seed. – J. Org. Chem. 21: 204-205.

Ettlinger MG, Lundeen AJ. 1956. The mustard oil of Limnanthes douglasii seed, m-methoxybenzyl isothiocyanate. – J. Amer. Chem. Soc. 78: 1952-1954.

Evenari M, Gutterman Y. 1973. Some notes on Salvadora persica L. in Sinai and its use as a toothbrush. – Flora 162: 118-125.

Exell AW. 1960. 13. Cruciferae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 181-194.

Ezelarab GE, Dormer KJ. 1966. The organization of the primary vascular system in the Rhoeadales. – Ann. Bot., N. S., 30: 123-132.

Fabbri LR, Valla JJ. 1998. Aspectos de la biología reproductiva de Tropaeolum pentaphyllum (Tropaeolaceae). – Darwiniana 36: 51-58.

Farenholtz H. 1931. Tropaeolaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 67-82.

Fathima T, Kusma Kumari P. 1970. Embryological studies in Capparidaceae I. Sporogenesis and the development of gametophytes in Cleome viscosa Linn. – Proc. Indian Acad. Sci., Sect. B, 72: 207-215.

Fawcett W, Rendle AB. 1914. Notes on Jamaican species of Capparis. – J. Bot. 52: 142-144.

Fay MF, Christenhusz MJM. 2010. Brassicales – an order of plants characterized by shared chemistry. – Curtis’s Bot. Mag. 27: 165-196.

Feeny P. 1977. Defensive ecology of the Cruciferae. – Ann. Missouri Bot. Gard. 64: 221-234.

Fenwick GR, Heaney RK, Mullin WJ. 1983. Glucosinolates and their breakdown products in food and food plants. – CRC Crit. Rev. Food Sci. Nutr. 18: 123-201.

Feodorova TA, Voznesenskaya EV, Edwards GE, Roalson EH. 2010. Biogeographic patterns of diversification and the origins of C4 in Cleome (Cleomaceae). – Syst. Bot. 35: 811-826.

Ferguson IK. 1985. The pollen morphology of Moringaceae. – Kew Bull. 40: 25-34.

Fernald ML. 1934. Draba in temperate northeastern America. – Rhodora 36: 241-261, 285-305, 314-344, 353-371, 392-404.

Fernández J. 1973. Sobre la dispersion meridional de Tropaeolum tuberosum R. P. – Bol. Soc. Arg. Bot. 15: 106-112.

Fernández Peralta AM, González Aguilera JJ. 1982. Cytogenetic and evolutionary studies on the Spanish species of Reseda L.: Section Luteola Dumort. (Resedaceae). – Taxon 31: 1-8.

Fici S. 2017. A taxonomic revision of the genus Capparis (Capparaceae) in New Caledonia. – New Zealand J. Bot. 55: 407-423.

Finlayson AJ. 1976. The seed protein contents of some Cruciferae. – In: Vaughan JG, Macleod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 279-306.

Fisch KJ, Weberling F. 1990. Untersuchungen zur Morphologie und zur der Blüten von Tovaria pendula Ruiz & Pavón und Tovaria diffusa Fawcett & Rendle (Tovariaceae). – Bot. Jahrb. Syst. 111: 365-387.

Fischer JB. 1980. The vegetative and reproductive structure of papaya (Carica papaya). – Lloydia 1: 191-207.

Fisel KJ, Weberling F. 1990. Untersuchungen zur Morphologie und Ontogenie der Blüten von Tovaria pendula Ruiz & Pavon und Tovaria diffusa (Macfad.) Fawcett & Rendle (Tovariaceae). – Bot. Jahrb. Syst. 111: 365-387.

Fisher JB. 1980. The vegetative and reproductive structure of papaya (Carica papaya). – Lyonia 1: 191-208.

Floyd AG. 1977. Family Akaniaceae. – Forest Commiss. New South Wales 32: 80-83.

Foster LT. 1943. Morphological and cytological studies in Carica papaya. – Bot. Gaz. 105: 116-126.

Franceschini MC, Tressens SG. 2004. Morphology of fruits, seeds and embryos of Argentinian Capparis L. (Capparaceae). – Bot. J. Linn. Soc. 145: 209-218.

Franchet MA. 1887. Sur les Cleome a petals appendiculés. – J. Bot. (Morot) 1: 17-19, 37-41.

Francisco-Ortega J, Fuertes-Aguilar J, Gomez-Campo C, Santos-Guerra A, Jansen RK. 1999. Internal transcribed spacer sequence phylogeny of Crambe L. (Brassicaceae): molecular data reveal two Old World disjunctions. – Mol. Phylogen. Evol. 11: 361-380.

Francisco-Ortega J, Fuertes-Aguilar J, Kim SC, Santos-Guerra A, Crawford DJ, Jansen RK. 2002. Phylogeny of the Macaronesian endemic Crambe section Dendrocrambe (Brassicaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. – Amer. J. Bot. 89: 1984-1990.

Franzke A, Hurka H. 2000. Molecular systematics and biogeography of the Cardamine pratensis complex (Brassicaceae). – Plant Syst. Evol. 224: 213-234.

Franzke A, Mummenhoff K. 1999. Recent hybrid speciation in Cardamine (Brassicaceae) – conversion of nuclear ribosomal ITS sequences in statu nascendi. – Theor. Appl. Gen. 98: 831-834.

Franzke A, Pollmann K, Bleeker W, Kohrt R, Hurka H. 1998. Molecular systematics of Cardamine and allied genera (Brassicaceae): ITS and noncoding chloroplast DNA. – Folia Geobot. Phytotaxon. 33: 225-240.

Franzke A, Hurka H, Janssen D, Neuffer B, Friesen N, Markov M, Mummenhoff K. 2004. Molecular signals for Late Tertiary/Early Quaternay range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). – Mol. Ecol. 13: 2789-2795.

Franzke A, German D, Al-Shehbaz IA, Mummenhoff K. 2009. Arabidopsis’s family ties: molecular phylogeny and age estimates in the Brassicaceae. – Taxon 58: 425-437.

Franzke A, Lysák MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. 2011. Cabbage family affairs: the evolutionary history of Brassicaceae. – Trends Plant Sci. 16: 108-116.

Franzke A, Koch MA, Mummenhoff K. 2016. Turnip time travels: age estimates in Brassicaceae. – Trends Plant Sci. 21: 554-561.

Franzke A, Samani B-RS, Neuffer B, Mummenhoff K, Hurka H. 2017. Molecular evidence in Diplotaxis (Brassicaceae) suggests a Quaternary origin of the Cape Verdean flora. – Plant Syst. Evol. 303: 467-479.

Freeling M, Lyons E, Pedersen M, Alam M, Ming R, Lisch D. 2008. Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. – Genome Res. 18: 1924-1937.

Freeman JL, Quinn CF, Lindblom SD, Klamper EM, Pilon-Smits EAH. 2009. Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats. – Amer. J. Bot. 96: 1075-1085.

Friedrich H-C. 1956. Studien über die natürliche Verwandtschaft der Plumbaginales und Centrospermae. – Phyton 6: 221-263.

Fries M. 1936. Über die Chromosomenzahl bei zwei Limnanthes-Arten. – Svensk Bot. Tidskr. 30: 440-442.

Friesen N, German DA, Hurka H, Herden T, Oyuntsetseg B, Neuffer B. 2016. Dated phylogenies and historical biogeography of Dontostemon and Clausia (Brassicaceae) mirror the palaeogeographical history of the Eurasian steppe. – J. Biogeogr. doi:10.1111/jbi.12658

Frohne D. 1962. Das Verhältnis von vergleichender Serobotanik zur vergleichender Phytochemie, dargestellt an serologischen Untersuchungen im Bereich der “Rhoeadales”. – Planta Medica 10: 283-297.

Fuchs C. 1975. Ontogenèse foliaire et acquisition de la forme chez le Tropaeolum peregrinum L. I. Les premiers stades de l’ontogenèse du lobe médian. – Ann. Sci. Nat., Bot. XII Biol. Vég. 16: 321-389.

Fuchs C. 1976. Ontogenèse foliaire et acquisition de la forme chez le Tropaeolum peregrinum L. II. Le développement du lobe après la formation des lobules. – Ann. Sci. Nat., Bot. XII Biol. Vég. 17: 121-158.

Fuentes-Soriano S. 2004. A taxonomic revision of Pennellia (Brassicaceae). – Harvard Pap. Bot.: 173-202.

Fuentes-Soriano S, Al-Shehbaz I. 2013. Phylogenetic relationships of mustards with multiaperturate pollen (Physarieae, Brassicaceae) based on the plastid ndhF gene: implications for morphological diversification. – Syst. Bot. 38: 178-191.

Fulcher WE. 1972. An anatomical and morphological study of Batis maritima L. with systematic implications. – Diss. Abstr. Int., Sect. B, 32: 6885.

Fursa NS, Belyaeva LE, Avetisian VE. 1986. Natural compounds of the family Brassicaceae as possible chemotaxonomic characters. – Report 4. Glucosinolates, alkaloids, sinapine. – Rastitel’n. Resursy 22: 449-474.

Gadek PA, Quinn CJ, Rodman JE, Karol KG, Conti E, Price RA, Fernando ES. 1992. Affinities of the Australian endemic Akaniaceae: new evidence from rbcL sequences. – Aust. Syst. Bot. 5: 717-724.

Galloway GL, Malmberg RL, Price RA. 1998. Phylogenetic utility of the nuclear gene arginine decarboxylase: an example from Brassicaceae. – Mol. Biol. Evol. 15: 1312-1320.

Gandolfo MA, Dibbern MC, Romero EJ. 1988. Akania patagonica n. sp. and additional material on Akania americana Romero & Hickey (Akaniaceae), from Paleocene sediments of Patagonia. – Bull. Torrey Bot. Club 115: 83-88.

Gandolfo MA, Nixon KC, Crepet WL. 1998. A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Capparales). – Amer. J. Bot. 85: 964-974.

Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, González CC, Wilf P, Cúneo NR, Johnson KR. 2011. Oldest known Eucalyptus macrofossils are from South America. – PloS ONE 6(6): e21084.

Garaventa A. 1940. El género Mathewsia en Chile. – Rev. Univ. (Santiago) 25: 255-267.

Garnock-Jones PJ. 1978. Rorippa (Cruciferae, Arabideae) in New Zealand. – New Zealand J. Bot. 16: 119-122.

Garnock-Jones PJ. 1991. Seed morphology and anatomy of the New Zealand genera Cheesemania, Ischnocarpus, Iti, Notothlaspi, and Pachycladon (Brassicaceae). – New Zealand J. Bot. 29: 71-82.

Garnock-Jones PJ, Johnson PN. 1987. Iti lacustris (Brassicaceae), a new genus and species from southern New Zealand. – New Zealand J. Bot. 25: 603-610.

Garnock-Jones PJ, Jonsell B. 1988. Rorippa divaricata (Brassicaceae): a new combination. – New Zealand J. Bot. 26: 479-480.

Garnock-Jones PJ, Norton DA. 1995. Lepidium naufragorum (Brassicaceae), a new species from Westland, and notes on other coastal species of Lepidium. – New Zealand J. Bot. 33: 43-51.

Gaur YD. 1968. Preliminary studies in titrable acidity in xerophytic plants: Salvadora persica L. and Prosopis juliflora D.C. – Experientia 24: 239-240.

Gauthier B, Rousseau C. 1973. L’écologie du Floerkea proserpinacoides Willd. à l’îsle aux Grues, Montmagny (Québec). – Nat. Can. 100. 371-383.

Gazet du Chatelier G. 1946. Le diagramme de la fleur des Crucifères. – Rec. Trav. Inst. Bot. 2: 5-9.

Gazzani S, Li M, Maistri S, Scarponi E, Graziola M, Barbaro E, Wunder J, Furini A, Saedler H, Varotto C. 2009. Evolution of MIR168 paralogs in Brassicaceae BMC. – Evol. Biol. 9: 62.

Gentry HS, Miller RW. 1965. The search for new industrial crops IV. Prospectus of Limnanthes. – Econ. Bot. 19: 25-32.

George AS. 1982. Gyrostemonaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 362-379.

George AS. 2002. Gyrostemonaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 213-217.

German DA. 2003. Notes on the genus Alyssum (Cruciferae) in Kazakhstan. – Turczaninowia 6: 45-57. [In Russian]

German DA. 2004. New taxa of the genus Erysimum L. (Cruciferae) from the Kazakhstanian Altai. – Turczaninowia 7: 14-18. [In Russian]

German DA. 2005. Contribution to the taxonomy of Arabidopsis s.l. The status of Transberingia and two new combinations in Crucihimalaya (Cruciferae). – Turczaninowia 8: 5-15.

German DA. 2008. Six new synonyms in the central Asian Cruciferae (Brassicaceae). – Nord. J. Bot. 26: 38-40.

German DA. 2009. New data on the species composition and distribution of Mongolian mustards (Cruciferae). – Bot. Žurn. 94: 1149-1158. [in Russian]

German DA. 2010. A check-list and the system of the Cruciferae of Altai. – Komarovia 6: 83-92.

German DA. 2011. Taxonomical confusions in the Cruciferae of North and Central Asia I. Alyssum fischerianum and Alyssum canescens. – Turczaninowia 14: 18-28.

German DA. 2014a. New synonyms and combinations in Eurasian Brassicaceae (Cruciferae). – Phytotaxa 173: 31-40.

German DA. 2014b. Revised typifications and nomenclatural notes in N Eurasian Cruciferae. – Willdenowia 44: 351-361.

German DA. 2014c. Some new and revised typifications in North Eurasian Cruciferae. – Turczaninowia 17: 29-41.

German DA, Al-Shehbaz IA. 2008a. Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae and Erysimeae) in the Brassicaceae (Cruciferae). – Harvard Pap. Bot. 13: 165-170.

German DA, Al-Shehbaz IA. 2008b. Dendroarabis, a new Asian genus of Brassicaceae. – Harvard Pap. Bot. 13: 289-291.

German DA, Al-Shehbaz IA. 2010. Nomenclatural novelties in miscellaneous Asian Brassicaceae (Cruciferae). – Nord. J. Bot. 28: 646-651.

German DA, Ebel AL. 2005. Generic placement of Arabidopsis rupicola (Cruciferae). – Turczaninowia 8: 5-12.

German DA, Friesen NW. 2014. Shehbazia (Shehbazieae, Cruciferae), a new monotypic genus and tribe of hybrid origin from Tibet. – Turczaninowia 17: 17-23.

German DA, Friesen N, Neuffer B, Al-Shehbaz IA, Hurka H. 2009. Contribution to ITS phylogeny of the Brassicaceae, with special reference to some Asian taxa. – Plant Syst. Evol. 283: 33-56.

German DA, Grant JR, Lysak MA, Al-Shehbaz IA. 2011. Molecular phylogeny and systematics of the tribe Chorisporeae (Brassicaceae). – Plant Syst. Evol. 294: 65-86.

Ghasi S, Nwodobo E, Ofili JO. 2000. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in highfat diet fed wistar rats. – J. Ethnopharm. 69: 21-25.

Gibbs PE, Marshall D, Brunton D. 1978. Studies on the cytology of Oxalis tuberosa and Tropaeolum tuberosum. – Notes Bot. Gard. Edinb. 37: 215-220.

Gibson AC. 1979. Anatomy of Koeberlinia and Canotia revisited. – Madroño 26: 1-12.

Gilg E. 1897. Zwei neue Capparidaceengattungen aus Afrika. – Engl. Bot. Jahrb. Syst. 24: 307-309.

Gilg E. 1904. Capparidaceae africanae. – Engl. Bot. Jahrb. Syst. 33: 202-230.

Gilg E, Benedict C. 1915a. Monographische Zusammenstellung sämtlicher Capparidaceae des tropischen und subtropischen Afrika. – Engl. Bot. Jahrb. Syst. 53: 144-274.

Gilg E, Benedict C. 1915b. Cercopetalum Gilg. – Engl. Bot. Jahrb. Syst. 53: 265-268.

Gilg E, Benedict C. 1915c. Nachträge und Verbesserungen zu der “Monographischen Zusammenstellung sämtlicher Capparidaceae des tropischen und subtropischen Africa”. – Engl. Bot. Jahrb. Syst. 53: 452-454.

Gilg E, Muschler R. 1909. Aufzählung aller zur Zeit bekannten südamerikansichen Cruciferen. – Engl. Bot. Jahrb. Syst. 42: 437-487.

Gill JJB. 1965. Diploids in the genus Cochlearia. – Watsonia 6: 188-189.

Gill JJB. 1971. Cytogenetic studies in Cochlearia L. – Ann. Bot., N. S., 35: 947-956.

Gill JJB. 1973. Cytogenetic studies in Cochlearia L. (Cruciferae). the origins of C. officinalis L. and C. micacea Marshall. – Genetica 44: 217-234.

Gill LS, Karatela YY, Lamina BL, Husaini SWH. 1985. Cytology and histomorphology of Moringa oleifera Lam. (Moringaceae). – Feddes Repert. 96: 299-305.

Glover JR, Chapple CCS, Rothwell S, Tober I, Ellis BE. 1988. Allylglucosinolate biosynthesis in Brassica carinata. – Phytochemistry 27: 1345-1348.

Gmelin R, Kjaer A. 1970a. Glucosinolates in the Caricaceae. – Phytochemistry 9: 591-593.

Gmelin R, Kjaer A. 1970b. Glucosinolates in Matthiola fruticulosa and related species: a reinvestigation. – Phytochemistry 9: 569-573.

Goffman FD, Thies W, Velasco L. 1999. Chemotaxonomic value of tocopherols in Brassicaceae. – Phytochemistry 50: 793-798.

Goldblatt P. 1976. Chromosome number and its significance in Batis maritima (Bataceae). – J. Arnold Arbor. 57: 526-530.

Goldblatt P. 1978. Chromosome number in two cytologically unknown New World families, Tovariaceae and Vivianiaceae. – Ann. Missouri Bot. Gard. 65: 776-777.

Goldblatt P, Nowicke JW, Mabry TJ, Behnke H-D. 1976. Gyrostemonaceae: status and affinity. – Bot. Not. 129: 201-206.

Gómez SA. 1953. Capparidáceas Argentinas. – Lilloa 26: 279-341.

Gómez-Campo C. 1978. Studies on Cruciferae VI. Geographical distribution and conservation status of Boleum Desv., Guiraoa Coss. and Euzomodendron Coll. – An. Inst. Bot. A. J. Cavanilles 35: 165-176.

Gómez-Campo C. 1980. Morphology and morphotaxonomy of the tribe Brassiceae. – In: Tsunoda S, Hinata K, Gómez-Campo C (eds), Brassica crops and wild allies, Japan Scientific Societies Press, Tokyo, pp. 3-31.

Gómez-Campo C. 1981. Studies on Cruciferae VIII. Nomenclatural adjustments in Diplotaxis DC. – An. Jard. Bot. Madrid 38: 29-35.

Gómez-Campo C. 1982. Studies on Cruciferae IX. Erucastrum rifanum (Emberger & Maire) Gómez-Campo, comb. nov. – An. Jard. Bot. Madrid 38: 353-356.

Gómez-Campo C. 1983. Studies on Cruciferae X. Concerning some West Mediterranean species of Erucastrum. – An. Jard. Bot. Madrid 40: 63-72.

Gómez-Campo C. 1984. Studies on Cruciferae XI. Erucastrum ifniense Gómez-Campo, sp. nov., and its allies. – An. Jard. Bot. Madrid 41: 83-85.

Gómez-Campo C. 1999. Taxonomy. – In: Gómez-Campo C (ed), Biology of Brassica coenospecies, Elsevier, Amsterdam, pp. 3-32.

Gómez-Campo C, Hinata K. 1980. A check-list of chromosome numbers in the tribe Brassiceae. – In: Tsunoda S, Hinata K, Gómez-Campo C (eds), Brassica crops and wild allies, Japan Scientific Societies Press, Tokyo, pp. 51-63.

Gómez-Campo C, Tortosa ME. 1974. The taxonomic and evolutionary significance of some juvenile characters in the Brassiceae. – Bot. J. Linn. Soc. 69: 105-124.

González Aguilera JJ, Fernández Peralta AM. 1981. Caryology and evolution in Sesamoides (Resedaceae). – Plant Syst. Evol. 139: 147-154.

González Aguilera JJ, Fernández Peralta AM. 1983. The nature of polyploidy in Reseda sect. Leucoreseda (Resedaceae). – Plant Syst. Evol. 142: 223-237.

González Aguilera JJ, Fernández Peralta AM. 1984. Phylogenetic relationships in the family Resedaceae. – Genetica 64: 185-197.

González Aguilera JJ, Fernández Peralta AM, Sañudo A. 1980a. Estudios citogenéticos y evolutivos en especies españolas de la familia Resedaceae L. sección Glaucoreseda DC. – An. Inst. Bot. Cavanilles 36: 311-320.

González Aguilera JJ, Fernández Peralta AM, Sañudo A. 1980b. Cytogenetic and evolutive studies on the Spanish species of the family Resedaceae L.: sections Phyteuma L. and Resedastrum Duby. – Bol. Soc. Brot. 53: 519-536.

Goodson BE, Santos-Guerra A, Jansen RK. 2006. Molecular systematics of Descurainia (Brassicaceae) in the Canary Islands: biogeographic and taxonomic implications. – Taxon 55: 671-682.

Goodson BE, Rehman SK, Jansen RK. 2011. Molecular systematics and biogeography of Descurainia (Brassicaceae) based on nuclear ITS and non-coding chloroplast DNA. – Syst. Bot. 36: 957-980.

Gori C. 1957. Sull’embryologia e citologia di alcune specie del genere Reseda. – Caryologia 10: 391-401.

Gowler ZR. 1998. A taxonomic revision of the genus Matthiola R. Br. (Cruciferae) and related genera. – Ph.D. diss., University of Edinburgh, Scotland.

Green ML. 1925. Standard species of the Linnean genera of Tetradynamia. – Bull. Misc. Inform. Kew 1925: 49-58.

Greene CW. 1978. A nomarski interference study of megasporogenesis and megagametogenesis in Smelowskia calycina (Cruciferae). – Amer. J. Bot. 65: 353-358.

Greene EL. 1900. Studies in the Cruciferae – III. – Pittonia 4: 187-207.

Gregory T, Chandler GT, Bayer RJ. 2000. Phylogenetic placement of the enigmatic Western Australian genus Emblingia based on rbcL sequences. – Plant Species Biology 15: 67-72.

Grennan AK. 2009. Identification of genes involved in metal transport in plants. – Plant Physiology 149: 1623-1624.

Grillo O, Draper D, Venora G, Martínez-Laborde JB. 2012. Seed image analysis and taxonomy of Diplotaxis DC. (Brassicaceae, Brassiceea). – Syst. Biodiv. 10: 57-70.

Grubb CD, Abel S. 2006. Glucosinolate metabolism and its control. – Trends Plant Sci. 11: 89-100.

Grundt HH. 2003. The arctic-alpine polyploid Draba lactea and its low-ploid relatives – evolution and taxonomy. – Ph.D. diss., Faculty of Mathematics and Natural Sciences, University of Oslo.

Grundt HH, Popp M, Brochmann C, Oxelman B. 2004. Polyploid origins in a circumpolar complex in Draba (Brassicaceae) inferred from cloned nuclear DNA sequences and fingerprints. – Mol. Phylogen. Evol. 32: 695-710.

Grundt HH, Elven R, Brochmann C. 2005. A rare case of self-incompatibility in arctic plants: Draba palanderiana (Brassicaceae). – Flora 200: 321-325.

Grundt HH, Obermayer R, Borgen L. 2005. Ploidal levels in the arctic alpine polyploid Draba lactea (Brassicaceae) and its low-ploid relatives. – Bot. J. Linn. Soc. 147: 333-347.

Guignard L. 1890. Recherches sur la localization des principes actifs des Crucifères. – J. Bot. (Morot) 4: 385-394, 412-430, 435-455.

Guignard L. 1893. Recherches sur la localisation des principés actifs chez les Capparidées, Tropéolées, Limnanthées, Résédacées (suite). – J. Bot. (Morot) 7: 393-400.

Guinea E. 1963. El género Biscutella. – An. Inst. Bot. Cavanilles 21: 387-405.

Günthart A. 1902. Beiträge zur Blütenbiologie der Cruciferen, Crassulaceen und der Gattung Saxifraga. – Bibl. Bot. 58: 1-97.

Gustafsson M, Bentzer B, Bothmer R von, Snogerup S. 1976. Meiosis in Greek Brassica of the oleracea group. – Bot. Not. 129: 73-84.

Hadač E, Chrtek J. 1973. A contribution to the Brassicaceae of Iraq. – Acta Univ. Carol., Biol. 1971: 231-265.

Hakki MI. 1974. Embryologische und morphologische Beobachtungen an Succowia balearica (L.) Medik. (Brassicaceae). – Bot. Jahrb. Syst. 94: 360-382.

Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. – Ann. Rev. Plant Biol. 57: 303-333.

Hall JC. 2003. Systematics and floral evolution of Capparaceae and other core Brassicales. – Ph.D. diss., University of Wisconsin, Madison, Wisconsin.

Hall JC. 2008. Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. – Botany 86: 682-696.

Hall JC, Sytsma KJ, Iltis HH. 2002. Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. – Amer. J. Bot. 89: 1826-1842.

Hall JC, Iltis HH, Sytsma KJ. 2004. Molecular phylogenetics of core Brassicales, placement of orphan genera Emblingia, Forchhammeria, Tirania, and character evolution. – Syst. Bot. 29: 654-669.

Hall JC, Tisdale TE, Donoghue K, Wheeler A, Al-Yahya MA, Kramer EM. 2011. Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae). – Amer. J. Bot. 98: 1989-2003.

Hannig E. 1901. Untersuchungen über die Scheidewände der Cruciferenfrüchte. – Bot. Zeitung Berlin, 2. Abt., 59: 207-245.

Hansen BF. 1977. A monograph of Forchhammeria (Capparidaceae). – M.Sc. thesis, University of Wisconsin, Madison, Wisconsin.

Hao G, Al-Shehbaz IA, Ahani H, Liang Q, Mao K, Wang Q, Liu J. 2017. An integrative study of evolutionary diversification of Eutrema (Eutremeae, Brassicaceae). – Bot. J. Linn. Soc. 184: 204-223.

Harberd DJ. 1972. A contribution to the cytotaxonomy of Brassica (Cruciferae) and its allies. – Bot. J. Linn. Soc. 65: 1-23.

Harberd DJ. 1976. Cytotaxonomic studies of Brassica and related genera. – In: Vaughan JG, Macleod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 47-68.

Harberd DJ, McArthur ED. 1972a. The chromosome constitution of Diplotaxis muralis (L.) DC. – Watsonia 9: 131-135.

Harberd DJ, McArthur ED. 1972b. Cytotaxonomy of Rhynchosinapis and Hutera (Cruciferae-Brassiceae). – Heredity 28: 254-257.

Harberd DJ, McArthur ED. 1980. Meiotic analysis of some species and genus hybrids in the Brassiceae. – In: Tsunoda S, Hinata K, Gómez-Campo C (eds), Brassica crops and wild allies, Japan Scientific Societies Press, Tokyo, pp. 65-87.

Harms H. 1925. Caricaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 510-522.

Harms H. 1940. Akaniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19b1, W. Engelmann, Leipzig, pp. 173-175.

Harriman NA. 1965. The genus Dentaria L. (Cruciferae) in eastern North America. – Ph.D. diss, Vanderbilt University, Nashville, Tennessee.

Hasapis X, MacLeod AJ, Moreau M. 1981. Glucosinolates of nine Cruciferae and two Capparaceae species. – Phytochemistry 20: 2355-2358.

Hauptli H, Webster BD, Jain S. 1978. Variation in nutlet morphology of Limnanthes. – Amer. J. Bot. 65: 615-624.

Hauser LA, Crovello TJ. 1982. Numerical analysis of generic relationships in Thelypodieae (Brassicaceae). – Syst. Bot. 7: 249-268.

Hayek A. 1911. Entwurf eines Cruciferen-Systems auf phylogenetischer Grundlage. – Beih. Bot. Centralbl. 27: 127-335.

Heap JW. 1997. Biology and control of Reseda lutea L. 1. Seed biology and seedling growth. – Aust. J. Agr. Res. 48: 511-515.

Hedge IC. 1969. Elbursia: a new genus of Cruciferae from Iran. – Notes Roy. Bot. Gard. Edinb. 29: 181-184.

Hedge IC. 1976. A systematic and geographical survey of the Old World Cruciferae. – In: Vaughan JG, MacLeod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 1-45.

Hedge IC, Kjaer A, Malver O. 1980. Dipterygium – Cruciferae or Capparaceae? – Notes Roy. Bot. Gard. Edinb. 38: 247-250.

Heel WA van. 1958. Additional investigations on Batis argillicola van Royen. – Nova Guinea, N. S., 9: 1-7.

Heenan PB. 1999. Artificial intergeneric hybrids between the New Zealand endemic Ischnocarpus and Pachycladon (Brassicaceae). – New Zealand J. Bot. 37: 595-601.

Heenan PB. 2009. A new species of Pachycladon (Brassicaceae) from limestone in eastern marlborough, New Zealand. – New Zealand J. Bot. 47: 155-161.

Heenan PB, Garnock-Jones PJ. 1999. A new species combination in Cheesemania (Brassicaceae). – New Zealand J. Bot. 37: 235-241.

Heenan PB; Mitchell AD. 2003. Phylogeny, biogeography and adaptive radiation of Pachycladon (Brassicaceae) in the mountains of South Island, New Zealand. – J. Biogeogr. 30: 1737-1749.

Heenan PB, Mitchell AD, Koch M. 2002. Molecular systematics of the New Zealand Pachycladon (Brassicaceae) complex: generic circumscription and relationships to Arabidopsis sens. lat. and Arabis sens. lat. – New Zealand J. Bot. 40: 543-562.

Heenan PB, Goeke DG, Houliston GJ, Lysak MA. 2012. Phylogenetic analyses of ITS and rbcL DNA sequences for sixteen genera of Australian and New Zealand Brassicaceae result in the expansion of the tribe Microlepidieae. – Taxon 61: 970-979.

Heilborn O. 1927. Chromosome numbers in Draba. – Hereditas 9: 59-68.

Heimerl A. 1934. Gyrostemonaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 165-173.

Heinricher E. 1888. Die Eiweißschläuche der Cruciferen und verwandte Elemente in der Rhoeadinenreihe. – Mitt. Bot. Inst. Graz 1: 1-92.

Hellwig F. 1891. Resedaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 237-241.

Hempel FD, Feldman LJ. 1994. Bi-directional inflorescence development in Arabidopsis thaliana: acropetal initiation of flowers and basipetal initiation of paraclades. – Plant 192: 276-286.

Hemsley JH. 1958. Caricaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-4.

Hennig L. 1929. Beiträge zur Kenntnis der Resedaceen-Blüte und Frucht. – Planta 9: 507-563.

Hernández-Bermejo JE, Clemente-Muñoz M, Pujadas Salvá A, Hidalgo B. 1986. Algunas consideraciones sobre Biscutella L. sect. Laevigatae Malinow. en el sur de España. – Lagascalia 14: 197-202.

Hernández-Hernández T, Colorado WB, Sosa V. 2013. Molecular evidence for the origin and evolutionary history of the rare American desert monotypic family Setchellanthaceae. – Org. Divers. Evol. 13: 485-496.

Hershkovitz MA, Hernández-Pellicer CC, Arroyo MTK. 2006. Ribosomal DNA evidence for the diversification of Tropaeolum sect. Chilensia (Tropaeolaceae). – Plant Syst. Evol. 260: 1-24.

Hewson HJ. 1981. The genus Lepidium L. (Brassicaceae) in Australia. – Brunonia 4: 217-308.

Hewson HJ. 1982a. Capparaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 207-231.

Hewson HJ. 1982b. Brassicaceae (Cruciferae). – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 231-357.

Hewson HJ. 1982c. The genus Lepidium L. (Brassicaceae) in New Guinea. – Brunonia 5: 73-78.

Hewson HJ. 1982d. Irenepharsus, a new genus in Brassicaceae in Australia. – J. Adelaide Bot. Gard. 6: 1-4.

Hewson HJ. 1985. Akaniaceae. – In: George AS (ed), Flora of Australia 25, Australian Government Publ. Service, Canberra, pp. 2-4.

Hildebrand F. 1879. Vergleichende Untersuchungen über die Saftdrüsen der Cruciferen. – Jahrb. Wiss. Bot. 12: 10-40.

Hinata K, Nishio T. 1980. Self-incompatibility in crucifers. – In: Tsunoda S, Hinata K, Gómez-Campo C (eds), Brassica crops and wild allies, Japan Scientific Societies Press, Tokyo, pp. 223-234.

Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W. 2006. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. – Plant Cell 18: 1931-1946.

Hitchcock CL. 1941. A revision of the Drabas of Western North America. – Univ. Washington Publ. Biol. 11: 1-132.

Hitchcock CL. 1945. The South American species of Lepidium. – Lilloa 11: 75-134.

Hofberger JA, Lyons E, Edger PP, Pires JC, Schranz EM. 2013. Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. – Genome Biol. Evol. 5: 2155-2173.

Hofmann U. 1987. Der Bau des Gynoeceums von Tropaeolum und Pelargonium. – Bot. Jahrb. Syst. 108: 439-448.

Hofmann U, Ludewig J. 1985. Morphologie und systematische Stellung von Limnanthes douglasii R. Brown, einem repräsentativen Vertreter der Limnanthaceae. – Bot. Jahrb. Syst. 105: 401-431.

Höglund A-S, Lenman M, Rask L. 1992. Myrosinase is localized to the interior of myrosin grains and is not associated to the surrounding tonoplast membrane. – Plant Sci. 85: 165-170.

Hohmann N, Wolf EM, Lysak MA, Koch MA. 2015. A time-calibrated road map of Brassicaceae species radiation and evolutionary history. – Plant Cell 27: 2770-2784.

Holmes WC, Yip KL, Rushing AE. 2008. Taxonomy of Koeberlinia (Koeberliniaceae). – Brittonia 60: 171-184.

Holmgren NH. 2004. Nevada: a new genus for Smelowskia holmgrenii (Brassicaceae). – Brittonia 56: 238-244.

Holmgren PK. 2004. Lectotypifications and a new combination in western North American Cleomaceae. – Brittonia 56: 103-106.

Hopkins RJ, Dam RJ van, Loon JJA van. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. – Ann. Rev. Entomology 54: 57-83.

Horovitz A, Galil J. 1972. Gynodioecism in East Mediterranean Hirschfeldia incana, Cruciferae. – Bot. Gaz. (London) 133: 127-131.

Horovitz S, Micheletti de Zerpa D, Arnal H. 1953. Frecuencias de equilibrio de las formas sexuales en poblaciones de Carica papaya L. – Agron. Trop. 3: 149-174.

Hosaka K, Kianian SF, McGrath JM, Quiros CF. 1990. Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphi-diploids and n = 9 diploid species. – Genome 33: 131-142.

Huang C-H, Sun R, Hu Y, Zeng LP, Zhang N, Cai LM, Zhang Q, Koch MA, Al-Shehbaz IA, Edger PP, Pires JC, Tan D-Y, Zhong Y, Ma H. 2016. Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution. – Mol. Biol. Evol. 33: 394-412.

Hufford L. 1996. Developmental morphology of female flowers of Gyrostemon and Tersonia and floral evolution among Gyrostemonaceae. – Amer. J. Bot. 83: 1471-1487.

Hunt GM, Holloway PJ, Baker EA. 1976. Ultrastructure and chemistry of Clarkia elegans leaf wax: a comparative study with Brassica leaf waxes. – Plant Sci. Letters 6: 353-360.

Hurka H, Paetsch M, Bleeker W, Neuffer B. 2005. Evolution within the Brassicaceae. – Nova Acta Leopoldina, N. F., 92: 113-127.

Hutchinson J, Dalziel JM. 1928. Pentadiplandraceae. – In: Dalziel JM (ed), Flora of West Tropical Africa 1, The Crown Agents for the Colonies, London, p. 461.

Huynh K-L. 1968. Morphologie du pollen des Tropaeolacées et des Balsaminacées. – Grana Palynol. 8: 88-184, 277-516.

Huynh K-L. 1970. Quelques caractères cytologiques, anatomiques, et embryologiques distinctifs du genre Tropaeolum et du genre Impatiens, et position taxinomique de la famille des Balsaminacées. – Bull. Soc. Neuchatel. Sci. Nat. 93: 165-177.

Huynh K-L. 1971. The morphological development of the pollen of Limnanthes douglasii (Limnanthaceae). – Grana 11: 58-61.

Huynh K-L. 1982. Le pollen du Limnanthes douglasii (Limnanthaceae) en microscopie électronique. – Pollen Spores 24: 211-234.

Hyam RD, Jury SL. 1990. A review of the genus Graellsia Boiss., including Draba L. sect. Helicodraba Schultz. – Bot. J. Linn. Soc. 102: 9-22.

Iljinska AP. 2005. Species of the genus Alyssum L. (sect. Alyssum) in the flora of Ukraine. – Ukrain. Bot. J. 62: 223-234.

Iltis HH. 1957. Studies in the Capparidaceae III. Evolution and phylogeny of the western North American Cleomoideae. – Ann. Missouri Bot. Gard. 44: 77-119.

Iltis HH. 1958. Studies in the Capparidaceae IV. Polanisia Raf. – Brittonia 10: 33-58.

Iltis HH. 1959. Studies in the Capparidaceae VI. Cleome sect. Physostemon: taxonomy, geography and evolution. – Brittonia 11: 123-162.

Iltis HH. 1965. Studies in the Capparidaceae IX. Capparis pachaca and C. oxysepala: taxonomy and geography. – Southw. Natur. 10: 57-64.

Iltis HH. 1967. Studies in the Capparidaceae XI. Cleome afrospina, a tropical African endemic with neotropical affinities. – Amer. J. Bot. 54: 953-962.

Iltis HH. 1998. Cleome chapalaensis, n. sp., a South American element on the Mexican plateau. – Bol. Inst. Bot. (IBUG) 5: 413-443.

Iltis HH. 1999. Setchellanthaceae (Capparales), a new family for a relictual, glucosinolate-producing endemic of the Mexican deserts. – Taxon 48: 257-275.

Iltis HH, Cochrane TS. 1939. Studies in the Capparidaceae XVI. Podandrogyne. A new species and three new combinations. – Rev. Acad. Colombiana Ci. Exact. Fisic. Nat. 17: 265-270.

Iltis HH, Cochrane TS. 2014. Studies in the Cleomaceae VI: a new genus and sixteen new combinations for the Flora Mesoamericana. – Novon 23: 51-58.

Iltis HH, Cornejo X. 2007. Studies in the Capparaceae XXX: Capparicordis, a new genus from the neotropics. – Brittonia 59: 245-254.

Iltis HH, Cornejo X. 2010. Studies in the Capparaceae XXIX: synopsis of Quadrella, a Mesoamerican and West Indies genus. – J. Bot. Res. Inst. Texas 4: 117-132.

Iltis HH, Cornejo X. 2011. Two new genera and three new combinations in Neotropical Capparaceae. – Harvard Pap. Bot. 16: 65-75.

Iltis HH, Hall JC, Cochrane TS, Sytsma KJ. 2011. Studies in the Cleomaceae I. On the separate recognition of Capparaceae, Cleomaceae, and Brassicaceae. – Ann. Missouri Bot. Gard. 98: 28-36.

Inamdar JA. 1969. The stomatal structure and ontogeny of Azima and Salvadora. – Flora 158: 519-525.

Inamdar JA, Rao NV. 1983. Light and scanning electron microscopic studies on trichomes of some Brassicaceae. – Feddes Repert. 94: 183-190.

Inda LA, Torrecilla P, Catalán P, Ruiz-Zapata T. 2008. Phylogeny of Cleome L. and its close relatives Podandrogyne Ducke and Polanisia Raf. (Cleomoideae, Cleomaceae) based on analysis of nuclear ITS sequences and morphology. – Plant Syst. Evol. 274: 111-126.

Inocencio C, Rivera D, Concepción OM, Alcaraz F, Barreña J-A. 2006. A systematic revision of Capparis section Capparis (Capparaceae). – Ann. Missouri Bot. Gard. 93: 122-149.

Iversen T-H. 1970a. Cytochemical localization of myrosinase (β-thioglucosidase) in root tips of Sinapis alba. – Protoplasma 71: 451-466.

Iversen T-H. 1970b. The morphology, occurrence, and distribution of dilated cisternae of the endoplasmatic reticulum in tissues of plants of the Cruciferae. – Protoplasma 71: 467-477.

Jacobs M. 1960. Capparidaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 6, Wolters-Noordhoff, Groningen, pp. 61-105.

Jacobs M. 1963. The genus Stixis (Capparaceae). A census. – Blumea 12: 5-12.

Jacobs M. 1964. The genus Crateva (Capparaceae). – Blumea 12: 177-208.

Jacobs M. 1965. The genus Capparis (Capparaceae) from the Indus to the Pacific. – Blumea 12: 385-541.

Jacquemoud F. 1984. Étude du genre Anchonium DC. (Cruciferae). – Candollea 39: 715-769.

Jacquemoud F. 1985. Observations sur le genre Zerdana Boiss. (Cruciferae). – Candollea 40: 347-376.

Jacquemoud F. 1988. Monographie du genre Sterigmostemum M. Bieb. (Cruciferae-Hesperideae). – Boissiera 40: 4-161.

Jadin F. 1900. Localisation de la myrosine et de la gomme chez les Moringa. – Compt. Rend. Acad. Sci. Paris 130: 733.

Jadin F, Boucher V. 1908. Sur la production de la gomme chez Moringa. – Compt. Rend. Acad. Sci. Paris 146: 647.

Jaen-Molina R, Caujape-Castells J, Reyes-Betancort JA, Akhani H, Fernandez-Palacios O, de Paz JP, Febles-Hernandez R, Marrero-Rodríguez A. 2009. The molecular phylogeny of Matthiola R. Br. (Brassicaceae) inferred from ITS sequences, with special emphasis on the Macaronesian endemics. – Mol. Phylogen. Evol. 53: 972-981.

Jafri SMH. 1957. The genus Farsetia in Pakistan, India and Afghanistan. – Notes Roy. Bot. Gard. Edinb. 22: 208-216.

Jain SK. 1976. Meadowfoams – mermaids of our vernal pools. – Fremontia 4: 19-21.

Jain SK. 1978. Local dispersal of Limnanthes nutlets: an experiment with artificial vernal pools. – Can. J. Bot. 56: 1995-1997.

Jain SK, Boussy IA, Hauptli H. 1978. Male sterility in meadowfoam. – J. Heredity 69: 61-63.

Jaitly SC, Srivastava GN. 1970. Development and structure of seed of Coronopus didymus (L.) Smith (Senebiera pinnatifida DG.). – Agra Univ. J. Res. (Sci.) 19: 1-8.

Jallad W. 1975. Taxonomic and floristic studies on the family Cruciferae in Jordan. – M.Sc. thesis, Faculty of Science, University of Jordan, Jordania.

Janchen E. 1942. Das System der Cruciferen. – Österr. Bot. Zeitschr. 91: 1-28.

Jaretzky R. 1928. Untersuchungen über Chromosomen und Phylogenie bei einigen Cruciferen. – Jahrb. Wiss. Bot. 68: 1-45.

Jaretzky R. 1932. Beziehungen zwischen Chromosomenzahl und Systematik bei den Cruciferen. – Jahrb. Wiss. Bot. 76: 485-527.

Jart A. 1978. The fatty acid composition of various cruciferous seeds. – J. Amer. Oil Chem. Soc. 55: 873-875.

Javůrková-Kratochvilová V, Tomšovic P. 1972. Chromosome study of the genus Rorippa Scop. em. Reichenb. in Czechoslovakia. – Preslia 44: 140-156.

Johns T, Towers GHN. 1980. Glucosinolates in Tropaeolum tuberosum R. & P., an edible tuber producing plant from the Andes. – Bot. Soc. Amer. Misc. Ser. Publ. 158: 56.

Johnson DS. 1935. The development of the shoot, male flower, and seedling of Batis maritima L. – Bull. Torrey Bot. Club 62: 19-31.

Johnson MAT. 1979. Chromosome numbers in Akania and Cephalotus. – Kew Bull. 34: 37-38.

Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ. 2005. Evolution of gene size in Brassicaceae. – Ann. Bot. 95: 229-235.

Johri BM. 1970. Comparative embryology of angiosperms: Limnanthaceae. – Bull. Indian Natl. Sci. Acad. 41: 110-113.

Johri BM, Maheshwari P. 1951. The embryo sac of Floerkea proserpinacoides Willd. – Curr. Sci. 20: 44-46.

Joly S, Heenan PB, Lockhart PJ. 2009. A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. – Mol. Phylogen. Evol. 51: 365-372.

Joly S, Heenan PB, Lockhart PJ. 2014. Species radiation by niche shifts in New Zealand’s rockcresses (Pachycladon, Brassicaceae). – Syst. Biol. 63: 192-202.

Jonsell B. 1968. Studies in the North-West European species of Rorippa s. str. – Symb. Bot. Ups. 19(2): 1-222.

Jonsell B. 1971. The genus Rorippa (Cruciferae) in eastern Siberia and the Soviet Far East. – Svensk Bot. Tidskr. 65: 293-307.

Jonsell B. 1973. Taxonomy and distribution of Rorippa (Cruciferae) in the southern U.S.S.R. – Svensk Bot. Tidskr. 67: 281-302.

Jonsell B. 1974. The genus Rorippa (Cruciferae) in tropical Africa and Madagascar. – Svensk Bot. Tidskr. 68: 377-396.

Jonsell B. 1975. Lepidium L. (Cruciferae) in tropical Africa. A morphological, taxonomical and phytogeographical study. – Bot. Not. 128: 20-46.

Jonsell B. 1976. Some tropical African Cruciferae. Chromosome numbers and taxonomic comments. – Bot. Not. 129: 123-130.

Jonsell B. 1978. New taxa of Diceratella and Farsetia (Cruciferae) from E tropical Africa. – Bot. Not. 131: 251-257.

Jonsell B. 1979. New taxa of Cruciferae from East tropical Africa and Madagascar. – Bot. Not. 132: 521-535.

Jonsell B. 1982. Cruciferae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-73.

Jonsell B. 1986a. A monograph of Farsetia (Cruciferae). – Symb. Bot. Upsal. 25(3): 1-107.

Jonsell B. 1986b. Cruciferae. – In: Steenis CGGJ van (†), Wilde WJJO de (eds), Flora Malesiana I, 10(3), Kluwer Academic Publ., Dordrecht, Boston, London, pp. 541-560.

Jonsell B, Moggi G. 1983. Diceratella alata (Cruciferae), a new species from the Horn of Africa. – Nord. J. Bot. 3: 347-349.

Jordheim M, Andersen ØM, Nozzolillo C, Amiguet VT. 2009. Acylated anthocyanins in inflorescence of spider flower (Cleome hassleriana). – Phytochemistry 70: 740-745.

Jordon-Thaden IE. 2010. Species and genetic diversity of Draba: phylogeny and phylogeography. – Ph.D. diss., Ruperto-Carola Universität Heidelberg, Germany.

Jordon-Thaden IE, Koch MA. 2008. Diversity patterns in the genus Draba: a first global perspective. – Plant Ecol. Divers. 1: 255-263.

Jordon-Thaden IE, Hase I, Al-Shehbaz I, Koch MA. 2010. Molecular phylogeny and systematics of the genus Draba (Brassicaceae) and identification of its most closely related genera. – Mol. Phylogen. Evol. 55: 524-540.

Jordon-Thaden IE, Al-Shehbaz IA, Koch MA. 2013. Species richness of the globally distributed, Arctic-alpine genus Draba L. (Brassicaceae). – Alpine Botany 123: 97-106.

Jørgensen LB. 1981. Myrosin cells and dilated cisternae of the endoplasmic reticulum in the order Capparales. – Nord. J. Bot. 1: 433-445.

Jørgensen LB. 1995. Stomatal myrosin cells in Caricaceae: implications for a glucosinolate family. – Nord. J. Bot. 15: 523-540.

Jumelle MH. 1930. Les Moringa de Madagascar. – Ann. Mus. Col. Marseille, sér. IV, 8: 1-20.

Kaercher W, Valdés Bermejo E. 1975. Contribución al studio cariológico del género Reseda L. en España. Nota I. Sección Leucoreseda DC. – An. Inst. Bot. Cavanilles 32: 165-174.

Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke WE, Edger PP, Links MG, Sharpe AG, Parkin IAP. 2014. Polyploid evolution of the Brassicaceae during the Cenozoic era. – Plant Cell 26: 2777-2791.

Kalin Arroyo MT. 1973a. A taximetric study of infraspecific variation in autogamous Limnanthes floccosa (Limnanthaceae). – Brittonia 25: 177-191.

Kalin Arroyo MT. 1973b. Chiasma frequency evidence on the evolution of autogamy in Limnanthes floccosa (Limnanthaceae). – Evolution 27: 679-688.

Kamelin RV. 2002. The Cruciferae (brief survey of the system). – Barnaul.

Kamelin RV, German DA. 2001. New species of the genus Sterigmostemum Bieb. (Cruciferae) from East Kazakhstan. – Turczaninowia 4: 5-9.

Kappert H. 1955. Einige für Evolutionsfragen interessante Mutationen bei Matthiola. – Ber. Deutsch. Bot. Ges. 68: 413-422.

Karl R, Koch MA. 2013. A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. – Ann. Bot. 112: 983-1001.

Karl R, Kiefer C, Ansell S, Koch MA. 2012. Systematics and evolution of arctic-alpine Arabis alpina L. (Brassicaceae) and its closest relatives in the eastern Mediterranean. – Amer. J. Bot. 99: 778-794.

Karol KG, Rodman JE, Conti E, Sytsma KJ. 1999. Nucleotide sequence of rbcL and phylogenetic relationships of Setchellanthus caeruleus (Setchellanthaceae). – Taxon 48: 303-315.

Karrer AB. 1991. Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. – Ph.D. diss., Universität Zürich, Switzerland.

Kavousi K. 2001. Notes on the plant family Cruciferae in Iran, new taxa and new records. – Iranian J. Bot. 9: 47-54.

Keighery GJ. 1975. Chromosome numbers in the Gyrostemonaceae Endl. and the Phytolaccaceae Lindl.: a comparison. – Aust. J. Bot. 23: 335-338.

Keighery GJ. 1981. The breeding system of Emblingia (Emblingiaceae). – Plant Syst. Evol. 137: 63-65.

Keighery GJ. 1985. Walteranthus, a new genus of Gyrostemonaceae from Western Australia. – Bot. Jahrb. Syst. 106: 107-113.

Keighery GJ. 2002. Taxonomic notes on the genus Stenopetalum (Brassicaceae). – Nuytsia 14: 393-403.

Keller S. 1979. A revision of the genus Wislizenia (Capparidaceae) based on population studies. – Brittonia 31: 333-351.

Kerber E, Buchloh G. 1981. Sinapinfreie und sinapinhaltige Brassicaceae (= Cruciferen). – Beitr. Biol. Pflanzen 55: 377-384.

Kers LE. 1969a. Studies in Cleome II. Cleome angustifolia Forssk. s. lat. and Cleome semitetrandra Sond. – Svensk Bot. Tidskr. 63: 1-48.

Kers LE. 1969b. Studies in Cleome III. Morphology and distribution of some African species. – Bot. Not. 122: 549-588.

Kers LE. 1972. Cleome oligandra sp. nov. – a two-staminate species from Tanzania. – Bot. Not. 125: 157-160.

Kers LE. 1993. New taxa in Maerua (Capparaceae) proposed for the Flora of Ethiopia. – Novon 3: 50-54.

Kers LE. 2002. Capparaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 36-56.

Kesseli RV, Jain SK. 1984. New variation and biosystematic patterns detected by allozyme and morphological comparisons in Limnanthes sect. Reflexae (Limnanthaceae). – Plant Syst. Evol. 147: 133-165.

Khalik KA. 2005. Morphological studies on trichomes of Brassicaceae in Egypt and taxonomic significance. – Acta Bot. Croat. 64: 57-73.

Khalik KA, Maesen LJG van der, Koopman WJM, Berg RG van den. 2002. Numerical taxonomic study of some tribes of Brassicaceae from Egypt. – Plant Syst. Evol. 233: 207-221.

Khalik KA, Berg RG van den Maesen LJG van der, El Hadidi MN. 2002. Pollen morphology of some tribes of Brassicaceae from Egypt and its systematic implications. – Feddes Repert. 113: 211-223.

Khalilov II. 1991. Systematics of the genus Crambe (Brassicaceae). – Bot. Žurn. 76: 1612-1613.

Khanna KR, Rollins RC. 1965. A taxonomic revision of Cremolobus (Cruciferae). – Contr. Gray Herb. 195: 135-157.

Khodashenas M. 2007. A taxonomic revision of the genus Sisymbrium (Brassicaceae) in Iran. – Flora 13: 49-52.

Khosravi AR, Maassoumi AAR. 1998. Contribution to the cytotaxonomy of some Cruciferae from Iran. – Iranian J. Bot. 7: 193-206.

Khosravi AR, Mohsenzadeh S, Mummenhoff K. 2008a. Analysis of the phylogenetic position of Acanthocardamum erinaceum (Boiss.) Thell. (Brassicaceae) based on ITS-sequences shows that it should be transferred to Aethionema as A. erinaceum. – Nord. J. Bot. 26: 25-30.

Khosravi AR, Mohsenzadeh S, Mummenhoff K. 2008b. Phylogenetic position of Brossardia papyracea (Brassicaceae) based on sequences of nuclear ribosomal DNA. – Feddes Repert. 119: 13-23.

Khosravi AR, Jacquemoud F, Mohsenzadeh S, Menke M, Mummenhoff K. 2009. Phylogenetic position and taxonomic classification of Aethionema trinervium (Brassicaceae): a morphologically variable subshrub from southwestern Asia. – Ann. Missouri Bot. Gard. 96: 564-574.

Khosravi AR, Mohsenzadeh S, Mummenhoff K. 2009. Phylogenetic relationships of Old World Brassicaceae from Iran based on nuclear ribosomal DNA sequences. – Biochem. Syst. Ecol. 37: 106-115.

Kiefer C, Koch MA. 2012. A continental-wide perspective: the gene pool of nuclear encoded ribosomal DNA and single-copy gene sequences in North American Boechera (Brassicaceae). – PloS ONE 7(5): e36491; doi: 10.1371/journal.pone.0036491.

Kiefer C, Dobeš C, Koch MA. 2009. Boechera or not? Phylogeny and phylogeography of eastern North American Boechera species (Brassicaceae). – Taxon 58: 1109-1121.

Kiefer C, Dobeš C, Sharbel TF, Koch MA. 2009. Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera – a genus and continental-wide perspective. – Mol. Phylogen. Evol. 52: 303-311.

Kiefer M, Schmickl R, German DA, Mandáková T, Lysak MA, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA. 2014. BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. – Plant Cell Physiol. 55: e3(1-9). doi:10.1093/pcp/pct158

Kirti PB, Narasimhulu SB, Prakash S, Chopra VL. 1992. Production and characterization of intergeneric somatic hybrids of Trachystoma ballii and Brassica juncea. – Plant Cell Rep. 11: 90-92.

Kjær A. 1960. Naturally derived isothiocyanates (mustard oils) and their parent glucosides. – Progr. Chem. Org. Nat. Prod. 18: 122-176.

Kjær A. 1968. Glucosinolates in Tovariaceae. – Phytochemistry 7: 131-133.

Kjær A. 1973. The natural distribution of glucosinolates: a uniform group of sulphur-containing glucosides. – In: Bendz G, Santesson J (eds), Chemistry in botanical classification (eds), Academic Press, New York, pp. 229-234.

Kjær A. 1976. Glucosinolates in the Cruciferae. – In: Vaughan JG, MacLeod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 207-219.

Kjær A, Malver O. 1979. Glucosinolates in Tersonia brevipes (Gyrostemonaceae). – Phytochemistry 18: 1565.

Kjær A. Madsen JO, Maeda Y. 1978. Seed volatiles within the family Tropaeolaceae. – Phytochemistry 17: 1285-1287.

Klimes L, German D. 2009. Draba alshehbazii (Brassicaceae), a new species from extreme altitudes of eastern Ladakh (Jammu and Kashmir, India). – Bot. J. Linn. Soc. 158: 749-754.

Knaben G. 1966. Cytotaxonomical studies in some Draba species. – Bot. Not. 119: 427-444.

Knaben G, Engelskjøn T. 1967. Chromosome numbers of Scandinavian arctic-alpine plant species II. – Acta Borealia, ser. A, Scientia 21: 1-57.

Knjasev M. 2011. Notes on some species of Brassicaceae in Urals and adjacent territories. – Nov. Sist. Vyssh. Rast. 42: 136-146.

Knoblauch E. 1895. Salvadoraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(2), W. Engelmann, Leipzig, pp. 17-19.

Koch MA. 2002. Genetic differentiation and speciation in prealpine Cochlearia: allohexaploid Cochlearia bavarica Vogt (Brassicaceae) compared to its diploid ancestor Cochlearia pyrenaica DC. in Germany and Austria. – Plant Syst. Evol. 232: 35-49.

Koch MA. 2003. Molecular phylogenetics, evolution and population biology in Brassicaceae. – In: Sharma AK, Sharma A (eds), Plant genome: biodiversity and evolution 1A: phanerogams, Science Publ., Enfield, New Hampshire, pp. 1-35.

Koch MA. 2012. Mid-Miocene divergence of Ionopsidium and Cochlearia and its impact on the systematics and biogeography of the tribe Cochlearieae (Brassicaceae). – Taxon 61: 76-92.

Koch MA, Al-Shehbaz IA. 2000. Molecular systematics of the Chinese Yinshania (Brassicaceae): evidence from plastid and nuclear ITS DNA sequence data. – Ann.Missouri Bot. Gard. 87: 246-272.

Koch MA, Al-Shehbaz IA. 2002. Molecular data indicate complex intra- and intercontinental differentiation of American Draba (Brassicaceae). – Ann. Missouri Bot. Gard. 89: 88-109.

Koch MA, Al-Shehbaz IA. 2004. Taxonomic and phylogenetic evaluation of the American ‘Thlaspi’ species: identity and relationship to the Eurasian genus Noccaea (Brassicaceae). – Syst. Bot. 29: 375-384.

Koch MA, Al-Shehbaz IA. 2009. Molecular systematics and evolution of ’wild’ crucifers (Brassicaceae or Cruciferae). – In: Gupta SK (ed), Biology and breeding of crucifers, Taylor and Francis Group, Boca Raton, pp. 1-19.

Koch MA, Bernhardt KG. 2004. Comparative biogeography of the cytotypes of annual Microthlaspi perfoliatum (Brassicaceae) in Europe using isozymes and cpDNA data: refugia, diversity centers, and postglacial colonization. – Amer. J. Bot. 91: 114-124.

Koch MA, Hurka H. 1999. Isozyme analysis in the polyploid complex Microthlaspi perfoliatum (L.) F. K. Meyer: morphology, biogeography and evolutionary history. – Flora 194: 33-48.

Koch MA, Kiefer C. 2006. Molecules and migration: biogeographical studies in cruciferous plants. – Plant Syst. Evol. 259: 121-142.

Koch MA, Mummenhoff K. 2001. Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. – Plant Syst. Evol. 227: 209-225.

Koch MA, Mummenhoff K. 2006. Evolution and phylogeny of the Brassicaceae. – Plant Syst. Evol. 259: 81-83.

Koch MA, Hurka H, Mummenhoff K. 1996. Chloroplast DNA restriction site variation and RAPD-analyses in Cochlearia (Brassicaceae): biosystematics and speciation. – Nord. J. Bot. 16: 585-603.

Koch MA, Huthmann M, Hurka H. 1998. Molecular biogeography and evolution of the Microthlaspi perfoliatum s.l. polyploid complex (Brassicaceae): chloroplast DNA and nuclear ribosomal DNA restriction site variation. – Can. J. Bot. 76: 382-396.

Koch MA, Bishop J, Mitchell-Olds T. 1999. Molecular systematics and evolution of Arabidopsis and Arabis. – Plant Biol. 1: 529-537.

Koch MA, Mummenhoff K, Hurka H. 1999. Molecular phylogenetics of Cochlearia L. (Brassicaceae) and allied genera based on nuclear ribosomal ITS DNA sequence analysis contradict traditional concepts of their evolutionary relationship. – Plant Syst. Evol. 216: 207-230.

Koch MA, Haubold B, Mitchell-Olds T. 2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). – Mol. Biol. Evol. 17: 1483-1498.

Koch MA, Haubold B, Mitchell-Olds T. 2001. Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. – Amer. J. Bot. 88: 534-544.

Koch MA, Al-Shehbaz IA, Mummenhoff K. 2003. Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). – Ann. Missouri Bot. Gard. 90: 151-171.

Koch MA, Bernhardt KG, Kochjarová J. 2003. Cochlearia macrorrhiza (Brassicaceae): a bridging species between Cochlearia taxa from the Eastern Alps and the Carpathians. – Plant Syst. Evol. 242: 137-147.

Koch MA, Dobeš C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T. 2005. Evolution of the trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. – Mol. Biol. Evol. 22: 1032-1043.

Koch MA, Dobeš C, Kiefer C, Schmickl R, Klimes L, Lysak MA. 2007. SuperNetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. – Mol. Biol. Evol. 24: 63-73.

Koch MA, Wernisch M, Schmickl R. 2008. Arabidopsis thaliana wild relatives: an updated overview on systematics, taxonomy, and evolution. – Taxon 57: 933-943.

Koch MA, Karl R, Kiefer M, Al-Shehbaz IA. 2010. Colonizing the American continent: systematics of the genus Arabis in North America (Brassicaceae). – Amer. J. Bot. 97: 1040-1057.

Koch MA, Karl R, German DA, Al-Shehbaz IA. 2012. Systematics, taxonomy and biogeography of three new Asian genera of Brassicaceae tribe Arabideae: an ancient distribution circle around the Asian high mountains. – Taxon 61: 955-969.

Koch MA, Kiefer M, German DA, Al-Shehbaz IA, Franzke A, Mummenhoff K, Schmickl R. 2012. BrassiBase: tools and biological resources to study characters and traits in the Brassicaceae – version 1.1. – Taxon 61: 1001-1009.

Koch MA, Karl R, German DA. 2017. Underexplored biodiversity of Eastern Mediterranean biota: systematics and evolutionary history of the genus Aubrieta (Brassicaceae). – Ann. Bot. 119: 39-57.

Kolbe K-P. 1978. Serologische Beiträge zur Systemaik der Capparales. – Bot. Jahrb. Syst. 99: 468-489.

Korejo F, Ali SA, Tahir SS, Rajput MT, Akhter MT. 2010. Comparative morphological and biochemical studies of Salvadora species found in Sindh, Pakistan. – Pak. J. Bot. 1451-1463.

Koshy JK, Mathew PM. 1985. Cytology of the genus Cleome Linn. – Cytologia 50: 283-287.

Koteyeva NK, Voznesenskaya EV, Roalson EH, Edwards GE. 2011. Diversity in forms of C4 in the genus Cleome (Cleomaceae). – Ann. Bot. 107: 269-283.

Koudogbo B, Delaveau P. 1974. Chimotaxonomie des Capparidaceae. – Plant Méd. Phytothérapie 8: 96-103.

Koul KK, Nagpal R, Raina SN. 2000. Seed coat microsculpturing in Brassica and allied genera (subtribes Brassicinae, Raphaninae, Moricandiinae). – Ann. Bot. 86: 385-397.

Kowal E, Cutler DF. 1975. The wood anatomy of Schouwia purpurea subsp. arabica and Fabrisinapis fruticosus (Cruciferae). – Kew Bull. 30: 503-507.

Kruckeberg AR, Rodman JE, Worthington RD. 1982. Natural hybridization between Streptanthus arizonicus and S. carinatus (Cruciferae). – Syst. Bot. 7: 291-299.

Kshetrapal S. 1970. A contribution to the vascular anatomy of the flower of certain species of the Salvadoraceae. – J. Indian Bot. Soc. 49: 92-99.

Kubitzki K. 2002a. Introduction to Capparales. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 7-10.

Kubitzki K. 2002b. Conspectus of the families of Capparales. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, p. 11.

Kubitzki K. 2002c. Caricaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 57-61.

Kubitzki K. 2002d. Emblingiaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 206-208.

Kubitzki K. 2002e. Koeberliniaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 218-219.

Kubitzki K. 2002f. Moringaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 312-314.

Kubitzki K. 2002g. Resedaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 334-338.

Kubitzki K. 2002h. Salvadoraceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 342-344.

Kubitzki K. 2002i. Setchellanthaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 353-354.

Kučera J, Valko I, Marhold K. 2005. On-line database of the chromosome numbers of the genus Cardamine (Brassicacee). – Biologia 60: 473-476.

Kučera J, Lihova J, Marhold K. 2006. Taxonomy and phylogeography of Cardamine impatiens and C. pectinata (Brassicaceae). – Bot. J. Linn. Soc. 152: 169-195.

Kučera J, Marhold K, Lihová J. 2010. Cardamine maritima group (Brassicaceae) in the amphi-Adriatic area: a hotspot of species diversity revealed by DNA sequences and morphological variation. – Taxon 59: 148-164.

Kumar PR, Tsunoda S. 1980. Variation in oil content and fatty acid composition among seeds from the Cruciferae. – In: Tsunoda S, Hinata K, Gómez-Camp C (eds), Brassica crops and wild allies, Japan Scientific Societies Press, Tokyo, pp. 235-252.

Kumar PV, Bahadur B. 1978. Seed morphology of thirteen species of Cleome L. (Capparidaceae). – J. Indian Bot. Soc. 57: 39-46.

Kupicha FK. 1978. 85. Caricaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 412-414.

Kyndt T, Droogenbroeck B van, Romeijn-Peeters E, Romero-Motochi JP, Scheldeman X, Goetghebeur P, Damme P van, Gheysen G. 2005. Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. – Mol. Phylogen. Evol. 37: 442-459.

Kyndt T, Romeijn-Peeters E, Groogenbroek B van, Romero-Motochi JP, Gheejsen G, Goetghebeur P. 2005. Species relationships in the genus Vasconsellea (Caricaceae) based on molecular and morphological evidence. – Amer. J. Bot. 92: 1033-1044.

Lagercrantz U. 1998. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates the Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. – Genetics 150: 1217-1228.

Lagercrantz U, Lydiate D. 1996. Comparative genome mapping in Brassica. – Genetics 144: 1903-1910.

Lagerheim G de 1892. Zur Kenntnis der Tovariaceen. – Ber. Deutsch. Bot. Ges. 10: 163-169.

Lahham JN, Al-Eisawi D. 1987. Pollen morphology of Jordanian Cruciferae. – Mitt. Bot. Staatssamml. München 23: 355-375.

Lamba LC. 1975. Structure and development of seed in Brassica nigra Koch. – J. Indian Bot. Soc. 54: 225-233.

Lange PJ de, Heenan PB, Houliston GJ, Rolfe JR, Mitchell AD. 2013. New Lepidium (Brassicaceae) from New Zealand. – PhytoKeys 24: 1-147.

Lanning FC. 1961. Calcite in Lewquerella ovalifolia trichomes. – Science 133: 380.

La-Serna Ramos I. 1996. Pollen characters of Canary Resedaceae with special reference to endemic taxa. – Grana 35: 16-23.

Leadlay EA, Heywood VH. 1990. The biology and systematics of the genus Coincya Porta & Rigo ex Rouy (Cruciferae). – Bot. J. Linn. Soc. 102: 313-398.

Lee J-Y, Mummenhoff K, Bowman JL. 2002. Allopolyploidization and evolution of species with reduced floral structures in Lepidium L. (Brassicaceae). – Proc. Natl. Acad. Sci. U.S.A. 99: 16835-16840.

Leins P, Metzenauer G. 1979. Entwicklungsgeschichtliche Untersuchungen an Capparis-Blüten. – Bot. Jahrb. Syst. 100: 542-554.

Leins P, Sobick U. 1977. Die Blütenentwicklung von Reseda lutea. – Bot. Jahrb. Syst. 98: 133-149.

Lenman M, Falk A, Xue J, Rask L. 1993. Characterization of a Brassica napus myrosinase pseudogene: myrosinases are members of the BGA family of β-glycosidases. – Plant Mol. Biol. 21: 463-474.

Léonard J. 1977. Le genre irano-touranien Drabopsis et son unique espèce D. nuda (Cruciferae). – Publ. Cairo Univ. Herb. 7-8: 295-297.

Léonard J. 1980a. Contribution à la connaissance de la flore de l’Iran 2. Petiniotia J. Léonard, genre asiatique nouveau de Crucifères. – Bull. Jard. Bot. Belg. 50: 227-232.

Léonard J. 1980b. Contribution à la connaissance de la flore de l’Iran 3. Les espèces iraniennes du genre Tetracme Bunge (Crucifères). – Bull. Jard. Bot. Belg. 50: 233-235.

Léonard J. 1980c. Contribution à la connaissance de la flore de l’Iran 4. Cithareloma Bunge, genre irano-touranien de Crucifères nouveau pour l’Iran. – Bull. Jard. Bot. Belg. 50: 371-374.

Léonard J. 1986. Neotorularia Hedge & J. Léonard nom générique nouveau de Cruciferae. – Bull. Jard. Bot. Belg. 56: 389-395.

Les DH. 1994. Molecular systematics and taxonomy of lake cress (Neobeckia aquatica; Brassicaceae), an imperilled aquatic mustard. – Aquatic Bot. 49: 149-165.

Li Y, Kong Y, Zhang Z, Yin YQ, Liu B, Lv GH, Wang XY. 2014. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. – J. Genet. 93: 313-323.

Li Y, Feng Y, Lv G, Liu B, Qi A. 2015. The phylogeny of Alyssum (Brassicaceae) inferred from molecular data. – Nord. J. Bot. 33: 715-721.

Li Y, Lv G, He X, Zhang X, Yang X. 2017. The complete chloroplast genome of the spring ephemeral plant Alyssum desertorum and its implications for the phylogenetic position of the tribe Alysseae within the Brassicaceae. – Nord. J. Bot. 35: 644-652.

Lihová J, Marhold K. 2006. Phylogenetic and diversity patterns in Cardamine (Brassicaceae) – a genus with conspicuous polyploidy and reticulate evolution. – In: Sharma AK, Sharma A (eds), Plant genome biodiversity and evolution, Vol. 1, Part C, Phanerogams (Angiosperms-Dicotyledons), Science Publ., Enfield, New Hampshire, pp. 149-186.

Lihová J, Marhold K, Neuffer B. 2000. Taxonomy of Cardamine amara (Cruciferae) in the Iberian Peninsula. – Taxon 49: 747-763.

Lihová J, Aguilar JF, Marhold K, Feliner GN. 2003. Origin of the disjunct tetraploid Cardamine amporitana (Brassicaceae) assessed with nuclear and chloroplast DNA sequence data. – Amer. J. Bot. 91: 1231-1242.

Lihová J, Tribsch A, Stuessy TF. 2004. Cardamine apennina: a new endemic diploid species of the C. pratensis group (Brassicaceae) from Italy. – Plant Syst. Evol. 245: 69-92.

Link DA. 1992. The floral nectaries in the Limnanthaceae. – Plant Syst. Evol. 179: 235-243.

Liu C. 1986. Studies of pollen morphology in the Bretschneideraceae and related families. – Acta Bot. Yunnan. 8: 441-450. [In Chinese with English summary]

Liu L, Zhao B, Tan D, Wang J. 2011. Phylogenetic relationships of Brassicaceae in China: insights from a non-coding chloroplast, mitochondrial, and nuclear DNA set. – Biochem. Syst. Ecol. 39: 600-608.

Lloyd DG. 1965. Evolution of self-compatibility and racial differentiation in Leavenworthia (Cruciferae). – Contr. Gray Herb. Harvard Univ. 195: 3-134.

Lobreau-Callen D. 1977. Les pollens des Celastrales: illustrations, commentaires. – École Pratique des Hautes Études, Institut de Montpellier.

Loiseau JE. 1947. Sur l’organisation du gynécée chez les Tropaeolacées. – Ann. Fac. Sci. 26: 125-147.

López González G. 1990. Notas referentes al género Sesamoides Gómez Ortega (Resedaceae). – An. Jard. Bot. Madrid 48: 97-100.

Lorence DH, Colin RT. 1988. Carica cnidoscoloides (sp. nov.) and sect. Holostigma (sect. nov.) of Caricaceae from southern Mexico. – Syst. Bot. 13: 107-110.

Louda SM, Rodman JE. 1983. Concentration of glucosinolates in relation to habitat and insect herbivory for the native crucifer Cardamine cordifolia. – Biochem. Syst. Ecol. 11: 199-207.

Lövkvist B. 1956. The Cardamine pratensis complex. Outlines of its cytogenetics and taxonomy. – Symb. Bot. Ups. 14(2): 1-131.

Lu S-Y, Shih K-H, Fan F-H. 1986. Bretschneideraceae, a new family record for the flora of Taiwan. – Quart. J. Chin. Forest. 19: 115-119.

Ludlow-Wiechers B. 1981. Catálogo palinológico para la flora de Veracruz. No. 4. Familia Caricaceae. – Biotica 6: 33-42.

Ludlow-Wiechers B, Roldán-Ramos L. 1983. Catálogo palinológico para la flora de Veracruz. No. 12. Fam. Bataceae. – Biotica 8: 31-36.

Lüning B, Kers LE, Seffers P. 1992. Methyl glycosinolate confirmed in Puccionia and Dhofaria (Capparidaceae). – Biochem. Syst. Ecol. 20: 394.

Lüthy B, Matile PH. 1984. The mustard oil bomb: rectified analysis of the subcellular organisation of the myrosinase system. – Bioch. Physiol. Pflanzen 179: 5-12.

Lysak MA. 2018. Brassicales: an update on chromosomal evolution and ancient polyploidy. – Plant Syst. Evol. 304: 757-762.

Lysak MA, Koch MA. 2011. Phylogeny, genome, and karyotype evolution of crucifers (Brassicaceae). – In: Schmidt R, Bancroft I (eds), Genetics and genomics of the Brassicaceae. Plant genetics and genomics: crops and models 9, Springer, pp. 1-31.

Lysak MA, Lexer C. 2006. Towards the era of comparative evolutionary genomics in Brassicaceae. – Plant Syst. Evol. 259: 175-198.

Lysak MA, Koch MA, Pecinka A, Schubert I. 2005. Chromosome triplication found across the tribe Brassiceae. – Genome Res. 15: 516-525.

Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. – Proc. Natl. Acad. Sci. U.S.A. 103: 5224-5229.

Lysak MA, Cheung K, Kitschke M, Bureš P. 2007. Ancestral chromosome blocks are triplicated in Brassiceae species with varying chromosome number and genome size. – Plant Physiol. 145: 402-410.

Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ. 2009. The dynamic ups and downs in genome size evolution in Brassicaceae. – Mol. Biol. Evol. 21: 85-98.

Mabry TJ, Turner BL. 1964. Chemical investigations of the Batidaceae. Betaxanthins and their systematic implications. – Taxon 13: 197-200.

Macbride JF. 1938. Cruciferae. – In: Macbride JF (ed), Flora of Peru, Publ. Field Mus. Nat. Hist. Bot. Ser. 13: 937-983.

McBreen K, Heenan PB. 2006. Phylogenetic relationships of Pachycladon (Brassicaceae) species based on three nuclear and two chloroplast DNA markers. – New Zealand J. Bot. 44: 377-386.

McGrath SP, Shen ZG, Zhao FJ. 1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soil. – Plant and Soil 188: 153-159.

McLaughlin L. 1959. The woods and flora of the Florida Keys: wood anatomy and phylogeny of Batidaceae. – Trop. Woods 110: 1-15.

McLean WFH, Blunden G, Jewers K. 1996. Quaternary ammonium compounds in the Capparaceae. – Biochem. Syst. Ecol. 24: 427-434.

Macleod AJ. 1976. Volatile flavour compounds in the Cruciferae. – In: Vaughan JG, Macleod AJ, Gómez-Campo C (eds), The biology and chemistry of the Cruciferae, Academic press, London, pp. 307-330.

McNeill CL, Jain SK. 1983. Genetic differentiation studies and phylogenetic inference in the plant genus Limnanthes (section Inflexae). – Theor. Appl. Gen. 66: 257-269.

Machatschki-Laurich B. 1926. Die Arten der Gattung Biscutella L. Sect. Thlaspidium (Med.) DC. – Bot. Arch. 13: 1-115.

Magauer M, Schönswetter P, Jang T-S, Frajman B. 2014. Disentangling relationships within disjunctly distributed Alyssum ovirense/A. wulfenianum group (Brassicaceae), including description of a novel species from the north-eastern Alps. – Bot. J. Linn. Soc. 176: 486-505.

Maheshwari Devi H. 1972. Salvadoraceae: a study of its embryology and systematics. – J. Indian Bot. Soc. 51: 56-62.

Maheshwari P, Johri BM. 1956. The morphology and embryology of Floerkea proserpinacoides Willd. with a discussion on the systematic position of the family Limnanthaceae. – Bot. Mag. (Tokyo) 69: 410-423.

Maheshwari P, Khan R. 1953. Development of the embryo sac, endosperm and embryo in Isomeris arborea – a reinvestigation. – Phytomorphology 3: 446-459.

Malinowski E. 1910. Monographie du genre Biscutella L. – Bull. Int. Acad. Sci. Cracovie, Cl. Sci. Math. 1910: 111-139.

Manchester SR, O’Leary EL. 2010. Phylogenetic distribution and identification of fin-winged fruits. – Bot. Rev. 76: 1-82.

Mandáková T, Lysak MA. 2008. Chromosomal phylogeny and caryotype evolution in x=7 crucifer species (Brassicaceae). – Plant Cell 20: 2559-2570.

Mandáková T, Heenan PB, Lysak MA. 2010. Island species radiation and karyotypic stasis in Pachycladon allopolyploids. – BMC Evol. Biol. 10: 367. doi: 10.1186/1471-2148-10-367.

Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. 2010. Fast diploidization in close mesopolyploid relatives of Arabidopsis. – Plant Cell 22: 2277-2290.

Mandáková T, Mummenhoff K, Al-Shehbaz IA, Mucina L, Mühlhausen A, Lysak MA. 2012. Whole-genome triplication and species radiation in the southern African tribe Heliophileae (Brassicaceae). – Taxon 61: 989-1000.

Manton I. 1932. Introduction to the general cytology of the Cruciferae. – Ann. Bot. 46: 509-556.

Marais W. 1966. Notes on South African Cruciferae. – Bothalia 9: 97-112.

Marhold K. 1995. Taxonomy of the genus Cardamine L. (Cruciferae) in the Carpathians and Pannonia III. – Folia Geobot. Phytotaxon. 30: 397-434.

Marhold K, Lihová J. 2006. Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. – Plant Syst. Evol. 259: 143-174.

Marhold K, Huthmann M, Hurka H. 2002. Evolutionary history of the polyploid complex of Cardamine amara (Brassicaceae): isozyme evidence. – Plant Syst. Evol. 233: 15-28.

Marhold K, Lihová J, Perny M, Grupe R, Neuffer B. 2002. Natural hybridization in Cardamine (Brassicaceae) in the Pyrenees: evidence from morphological and molecular data. – Bot. J. Linn. Soc. 139: 275-294.

Marhold K, Lihová J, Perny M, Bleeker W. 2004. Comparative ITS and AFLP analysis of diploid Cardamine (Brassicaceae) taxa from closely related polyploidy complexes. – Ann. Bot. 93: 507-520.

Martín-Bravo S, Meimberg H, Luceño M, Märkl W, Valcárel V, Bräuchler C, Vargas P, Heubl G. 2007. Molecular systematics and biogeography of Resedaceae based on ITS and trnL-F sequences. – Mol. Phylogen. Evol. 44: 1105-1120.

Martín-Bravo S, Vargas P, Luceño M. 2009. Is Oligomeris (Resedacae) indigenous to North America? Molecular evidence for a natural colonization from the Old World. – Amer. J. Bot. 96: 507-518.

Martínez-Laborde JB. 1988a. Estudio sistemático del género Diplotaxis DC. (Cruciferae, Brassiceae). – Ph.D. diss., Universidad Politécnica de Madrid, Spain.

Martínez-Laborde JB. 1988b. El género Diplotaxis (Cruciferae) en España. – Lagascalia 15 (Extra): 243-248.

Martínez-Laborde JB. 1990. On previous misuses of the name Diplotaxis pitardiana Maire (Cruciferae: Brassiceae). – Taxon 39: 117-118.

Martínez-Laborde JB. 1991a. Notes on the taxonomy of Diplotaxis DC. (Brassiceae). – Bot. J. Linn. Soc. 106: 67-71.

Martínez-Laborde JB. 1991b. Diplotaxis harra (Forskål) Boiss. in Europe. – Bot. J. Linn. Soc. 106: 97-119.

Martínez-Laborde JB. 1991c. Two additional species of Diplotaxis DC. (Cruciferae, Brassiceae) with n = 8 chromosomes. – Willdenowia 21: 63-68.

Mason CT. 1951. Development of the embryo-sac in the genus Limnanthes. – Amer. J. Bot. 38: 17-22.

Mason CT. 1952. A systematic study of the genus Limnanthes R. Br. – Univ. Calif. Publ. Bot. 25: 455-511.

Mason CT. 1989. Infraspecific name changes in Limnanthes (Limnanthaceae). – Madroño 36: 50-51.

Mateo G, Crespo MB. 2000. Three new Spanish species of Biscutella L. (Brassicaceae) and remarks on B. valentina (L.) Heywood. – Bot. J. Linn. Soc. 132: 1-17.

Mathews S, McBreen K. 2008. Phylogenetic relationshps of B-related phytochromes in the Brassicaceae: redundancy and the persistence of phytochrome D. – Mol. Phylogen. Evol. 49: 411-423.

Mathur N. 1956. The embryology of Limnanthes. – Phytomorphology 6: 41-51.

Matile P. 1980. “Die Senfölbombe”: Zur Kompartimentierung des Myrosinasesystems. – Biochem. Physiol. Pflanzen 175: 722-731.

Mauritzon J. 1934. Die Embryologie einiger Capparidaceen sowie von Tovaria pendula. – Ark. f. Bot. 26A(15): 1-14.

Mayer MS, Soltis PS. 1994. The evolution of serpentine endemics: a chloroplast DNA phylogeny of the Streptanthus glandulosus complex (Cruciferae). – Syst. Bot. 19: 557-574.

Mayer MS, Soltis PS. 1999. Intraspecific phylogeny analysis using ITS sequences: insights from studies of the Streptanthus glandulosus complex (Cruciferae). – Syst. Bot. 24: 47-61.

Medve RJ. 1983. The mycorrhizal status of the Cruciferae. – Amer. Midl. Natur. 109: 406-408.

Mehta IJ, Moseley MF Jr. 1981. The floral anatomy of Koeberlinia Zucc.: systematic implications. – Amer. J. Bot. 68: 482-497.

Meng J-L, Gan L. 1998. Studies on the relationships between Moricandia and Brassica species. – Acta Bot. Sin. 40: 508-514. [In Chinese with English summary]

Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonelli C. 2003. Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by its nrDNA analysis. – New Phytol. 159: 691-699.

Merxmüller H, Leins P. 1967. Die Verwandschaftsbeziehungen der Kreuzblütler und Mohngewächse. – Bot. Jahrb. Syst. 86: 113-129.

Meyer FK. 1973. Conspectus der ”Thaspi”-Arten Europas, Afrikas und Vorderasiens. – Feddes Repert. 84: 449-470.

Meyer FK. 1979a. Kritische Revision der ”Thlaspi”-Arten Europas, Afrikas und Vorderasiens I. Geschichte, Morphologie und Chorologie. – Feddes Repert. 90: 129-154.

Meyer FK. 1979b. Kritische Revision der ”Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Spezieller Teil. I. Thlaspi L. – Haussknechtia 8: 3-42.

Meyer FK. 1991. Seed-coat anatomy as a character for a new classification Thlaspi. – Flora Veg. Mundi 9: 9-15.

Meyer FK. 2001. Kritische Revision der ”Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Spezieller Teil. I. Thlaspi L. – Haussknechtia 8: 3-42.

Meyer FK. 2003a. Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Spezieller Teil: V. Noccidium F. K. Mey. – Haussknechtia 9: 115-124.

Meyer FK. 2003b. Kritische Revision der ”Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Spezieller Teil: VI. Kotschyella F. K. Mey. – Haussknechtia 9: 125-134.

Meyer FK. 2006. Kritische Revision der “Thlaspi”-Arten Europas, Afrikas und Vorderasiens. Spezieller Teil: IX. Noccaea Moench. – Haussknechtia 12: 1-341.

Meyer FK. 2010. Anmerkungen zu einigen Noccaea-Arten Nordasiens. – Haussknechtia 12: 5-18.

Miannay N. 1971. Embryologie des Crucifères. Polyembryonie chez l’Arabis hisuta Scop. et l’Arabis halleri L. – Bull. Soc. Bot. France 118: 341-344.

Mikolajczak KL, Miwa TK, Earle FR, Wolff IA, Jones Q. 1961. Search for new industrial oils V. Oils of Cruciferae. – J. Amer. Oil Chem. Soc. 38: 678-681.

Miller AG. 1978. A reassessment of the genus Pseudocamelina. – Notes Roy. Bot. Gard. Edinburgh 36: 23-34.

Miller AG. 1984. A revision of Ochradenus. – Notes Roy. Bot. Gard. Edinb. 41: 491-504.

Miller AG. 1988. Studies in the Flora of Arabia XXII. Dhofaria, a new genus of Capparaceae from Oman. – Notes Roy. Bot. Gard. Edinb. 45: 55-60.

Miller AG, Nyberg JA. 1994. Studies in the flora of Arabia XXVII. Some new taxa from the Arabian Peninsula. – Edinburgh J. Bot. 51: 33-47.

Miller AG, Short M, Sutton DA. 1982. A revision of Schweinfurthia. – Notes Roy. Bot. Gard. Edinb. 40: 23-40.

Miller AG, Atkinson R, Al Khulaidi AW, Taleeb N. 2002. Nesocrambe, a new genus of Cruciferae (Brassiceae) from Soqotra, Yemen. – Willdenowia 32: 61-67.

Miller RW, Daxenbichler ME, Earle FR, Gentry HS. 1964. Search for new industrial oils VIII. The genus Limnanthes. – J. Amer. Oil Chem. Soc. 41: 167-169.

Ming D, Hellekant G. 1994. Brazzein, a new high-potency sweet protein from Pentadiplandra brazzeana B. – F.E.B.S. Lett. 335: 106-108.

Mirek Z. 1981. Genus Camelina in Poland. Taxonomy, distribution and habitats. – Fragm. Flor. Geobot. 27: 445-507.

Misra RC. 1962. Contribution to the embryology of Arabidopsis thalianum (Gay & Monn.). – Agra Univ. J. Res. (Sci.) 11: 191-199.

Misra RC. 1966. Morphology studies on Sisymbrium irio Linn. – J. Indian Bot. Soc. 45: 14-23.

Mitchell AD, Heenan PB. 2000. Systematic relationships of New Zealand endemic Brassicaceae inferred from nrDNA ITS sequence data. – Syst. Bot. 25: 98-105.

Mitchell-Olds T, Al-Shehbaz IA, Koch MA, Sharbel TF. 2005. Crucifer evolution in the post-genomic era. – In: Henry RJ (ed), Plant diversity and evolution: genotypic and phenotypic variation in higher plants, CAB International, Wallingford, pp. 119-137.

Mithen R, Bennett R, Marquez J. 2010. Glucosinolate biochemical diversity and innovation in the Brassicales. – Phytochemistry 71: 2074-2086.

Mitra K. 1970. Pollen morphology of some Indian Capparaceae. – J. Indian Bot. Soc. 49: 136-141.

Mitra K. 1975. Contribution to the pollen morphology of the family Capparaceae. – Bull. Bot. Surv. India 17: 7-31.

Mitra K, Mitra SN. 1979. Pollen morphology in relation to taxonomy and geography of Resedaceae. – Bot. Surv. India 18: 194-202.

Miyashita NT, Innan H, Terauchi R. 1996. Intra- and interspecific variation of the alcohol dehydrogenase locus region in wild plants Arabis gemmifera and Arabidopsis thaliana. – Mol. Biol. Evol. 13: 433-436.

Miyashita NT, Kawabe A, Innan H, Terauchi R. 1998. Intra- and interspecific DNA variation and codon bias of the alcohol dehydrogenase (Adh) locus in Arabis and Arabidopsis species. – Mol. Biol. Evol. 15: 1420-1429.

Mizushima U. 1980. Genome analysis in Brassica and allied genera. – In: Tsunoda S, Hinata K, Gómez-Campo C (eds), Brassica crops and wild allies, Japan Scientific Societies Press, Tokyo, pp. 89-105.

Mizushima U, Tsunoda S. 1967. A plant exploration in Brassica and allied genera. – Tohoku J. Agric. Res. 17: 249-277.

Moazzeni H, Zarre S, Al-Shehbaz IA, Mummenhoff K. 2007. Seed-coat microsculpturing and its systematic application in Isatis (Brassicaceae) and allied genera in Iran. – Flora 202: 447-454.

Moazzeni H, Zarre S, Al-Shehbaz IA, Mummenhoff K. 2010. Phylogeny of Isatis (Brassicaceae) and allied genera based on ITS sequences of nuclear ribosomal DNA and morphological characters. – Flora 205: 337-343.

Moazzeni H, Zarre S, Pfeil BE, Bertrand YJK, German DA, Al-Shehbaz IA, Mummenhof K, Oxelman B. 2014. Phylogenetic perspectives on diversification and character evolution in the species-rich genus Erysimum (Erysimeae; Brassicaceae) based on a densely sampled ITS approach. – Bot. J. Linn. Soc. 175: 497-522.

Moggi G. 1965. Osservazioni tassonomiche e corologiche sulle Hesperideae (Cruciferae). – Webbia 20: 241-273.

Moghe GD, Hufnagel DE, Tang HB, Xiao YL, Dworkin I, Town CD, Conner JK, Shiu SH. 2014. Consequences of whole-genome triplication as revealed by comparative genomic analyses of the wild radish Raphanus raphanistrum and three other Brassicaceae species. – Plant Cell 26: 1925-1937.

Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Dönmez AA, Mummenhoff K, Pires JC, Edger PP, Al-Shehbaz IA, Schranz ME. 2107. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. – Amer. J. Bot. 104: 1042-1054.

Molloy BPJ, Edgar E, Heenan PB, De Lange PJ. 1999. New species of Poa (Gramineae) and Ischnocarpus (Brassicaceae) from limestone, North Otago, South Island, New Zealand. – New Zealand J. Bot. 37: 41-50.

Morant AV, Bjarnholt N, Kragh ME, Kjærgaard CH, Jørgensen K, Paquette SM, Piotrowski P, Imberty A, Olsen CE, Møller BL, Back S. 2008. The β-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. – Plant Physiology 147: 1072-1091.

Mukherjee P. 1973. Chromosome study as an aid in tracing the evolution of Cruciferae. – Cytologia 40: 727-734.

Müller A. 1961. Zur Charakterisierung der Blüten und Infloreszenzen von Arabidopsis thaliana (L.) Heynh. – Kulturpflanze 9: 364-393.

Mulligan GA. 1961. Chromosome numbers of the family Cruciferae III. – Can. J. Bot. 39: 1057-1066.

Mulligan GA. 1964. Chromosome numbers of the family Cruciferae I. – Can. J. Bot. 42: 1509-1519.

Mulligan GA. 1970a. Cytotaxonomic studies of Draba glabella and its close allies in Canada and Alaska. – Can. J. Bot. 48: 1431-1437.

Mulligan GA. 1970b. A new species of Draba in the Kananaskis range of southwestern Alberta. – Can. J. Bot. 48: 1897-1898.

Mulligan GA. 1971a. Cytotaxonomic studies of the closely allied Draba cana, D. cinerea and D. groenlandica in Canada and Alaska. – Can. J. Bot. 49: 89-93.

Mulligan GA. 1971b. Cytotaxonomic studies in Draba species of Canada and Alaska: D. ventosa, D. ruaxes and D. paysonii. – Can. J. Bot. 49: 1455-1460.

Mulligan GA. 1972. Cytotaxonomic studies of Draba species in Canada and Alaska: D. oligosperma and D. incerta. – Can. J. Bot. 50: 1763-1766.

Mulligan GA. 1974. Cytotaxonomic studies of Draba nivalis and its close allies in Canada and Alaska. – Can. J. Bot. 52: 1793-1801.

Mulligan GA. 1976. The genus Draba in Canada and Alaska: key and summary. – Can. J. Bot. 54: 1386-1393.

Mulligan GA. 1996. Synopsis of the genus Arabis (Brassicaceae) in Canada, Alaska and Greenland. – Rhodora 97: 109-163.

Mulligan GA,. Calder JA. 1964. The genus Subularia (Cruciferae). – Rhodora 66: 127-135.

Mulligan GA, Findlay JN. 1970. Sexual reproduction and agamospermy in the genus Draba. – Can. J. Bot. 48: 269-270.

Mummenhoff K. 1989. Sippenstrukturen in der Gattung Lepidium L. (Brassicaceae): isoelektrische Fokussierungsmuster der Untereinheiten von Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RUBISCO) als systematischer und phylogenetischer Marker. – PhD. diss., Universität Osnabrück, Germany.

Mummenhoff K. 1995. Should Cardaria (L.) Desv. be classified within the genus Lepidium L. (Brassicaceae)? Evidence from subunit polypeptide composition of RUBISCO. – Feddes Repert. 106: 25-28.

Mummenhoff K, Hurka H. 1991. Isoelectric focusing analysis of Rubisco in Lepidium (Brassicaceae), sections Lepia, Lepiocardamon and Cardamon. – Biochem. Syst. Ecol. 19: 47-52.

Mummenhoff K, Hurka H. 1994. Subunit polypeptide composition of rubisco and the origin of allopolyploid Arabidopsis suecica (Brassicaceae). – Biochem. Syst. Ecol. 22: 807-812.

Mummnhoff K, Hurka H. 1995. Allopolyploid origin of Arabidopsis suecica (Fries) Norrlin – evidence from chloroplast and nuclear genome markers. – Bot. Acta 108: 449-456.

Mummenhoff K, Koch M. 1994. Chloroplast DNA restriction site variation and phylogenetic relationships in the genus Thlaspi sensu lato (Brassicaceae). – Syst. Bot. 12: 73-88.

Mummenhoff K, Zunk K. 1991. Should Thlaspi (Brassicaceae) be split? Preliminary evidence from isoelectric focusing analysis of Rubisco. – Taxon 40: 427-434.

Mummenhoff K, Kunth E, Koch M, Zunk K. 1995. Systematic implications of chloroplast DNA variation in Lepidium sections Cardamon, Lepiocardamon and Lepia (Brassicaceae). – Plant Syst. Evol. 196: 75-88.

Mummenhoff K, Franzke A, Koch M. 1997a. Molecular data reveal convergence in fruit characters used in the classification of Thlaspi s.l. (Brassicaceae). – Bot. J. Linn. Soc. 125: 183-199.

Mummenhoff K, Franzke A, Koch M. 1997b. Molecular phylogenetics of Thlaspi s.l. (Brassicaceae) based on chloroplast DNA restriction site variation and sequences of the internal transcribed spacers of nuclear ribosomal DNA. – Can. J. Bot. 75: 469-482.

Mummenhoff K, Brüggemann H, Bowman JL. 2001. Chloroplast DNA phylogeny and biogeography of Lepidium (Brassicaceae). – Amer. J. Bot. 88: 2051-2063.

Mummenhoff K. Coja U, Brüggemann H. 2001. Pachyphragma and Gagria (Brassicaceae) revisited: molecular data indicate close relationship to Thlaspi s. str. – Folia Geobot. Phytotaxon. 36: 293-302.

Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee JY, Franzke A. 2004. Molecular evidence for bicontinental hybridogenous genome constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. – New Zealand J. Bot. 91: 254-261.

Mummenhoff K, Al-Shehbaz IA, Bakker FT, Linder HP, Mühlhausen A. 2005. Phylogeny, morphological evolution, and speciation of endemic Brassicaceae genera in the Cape flora of southern Africa. – Ann. Missouri Bot. Gard. 92: 400-424.

Mummenhoff K, Polster A, Muhlhausen A, Theissen G. 2009. Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. – J. Exper. Bot. 60: 1503-1513.

Murley MR. 1951. Seeds of the Cruciferae of northeastern North America. – Amer. Midl. Natur. 46: 1-81.

Murty YS. 1953. A contribution to the anatomy and morphology of normal and some abnormal flowers of Gynandropsis gynandra (L.) Briq. – J. Indian Bot. Soc. 32: 108-122.

Muschler R. 1908. Die Gattung Coronopus (L.) Gaertn. – Engl. Bot. Jahrb. 41: 111-147.

Musil AF. 1948. Distinguishing the species of Brassica by their seed. – Misc. Publ. U.S. Dept. Agric. 643.

Mutlu B. 2004. A new species of Arabis (Brassicaceae) from inner Anatolia. – Bot. J. Linn. Soc. 145: 251-256.

Nabiev MM. 1972. Botschantzevia Nabiev – genus novum cruciferarum. – Nov. Sist. Vysš. Rast. 9: 186-187.

Nagaharu U. 1935. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. – Jap. J. Bot. 7: 389-452.

Nagpal R, Dar TH, Raina SN. 2008. Molecular systematics of Brassica and allied genera in subtribes Brassicinae, Raphaninae, Moricandiinae, and Cakilinae (Brassicaceae, tribe Brassiceae); the organization and evolution of ribosomal gene families. – Bot. J. Linn. Soc. 157: 545-557.

Naqshi AR, Javied GN. 1984. Drabopsis brevisiliqua (Cruciferae) – a new species from Kashmir. – J. Econ. Taxon. Bot. 5: 963-966.

Narayana HS. 1962. Studies in the Capparidaceae I. The embryology of Capparis decidua (Forssk.) Pax. – Phytomorphology 12: 167-177.

Narayana HS. 1965. Studies in the Capparidaceae II. Floral morphology and embryology of Cadaba indica Lamk. and Crataeva nurvala Buch.-Ham. – Phytomorphology 15: 138-175.

Narayana HS. 1970. Comparative embryology of angiosperms: Capparaceae, Moringaceae. – Bull. Natl. Sci. Acad. India 41: 78-80, 81-83.

Narayana LL. 1962. Postfertilization study on Moringa oleifera Lamk. – a reinvestigation. – Phytomorphology 12: 65-69.

Narayana LL. 1970a. Moringaceae. – Bull. Indian Natl. Sci. Acad. 41: 81-83.

Narayana LL. 1970b. Tropaeolaceae. – Bull. Indian Natl. Sci. Acad. 41: 121-122.

Narayana LL, Parvathi A. 1980. Chemotaxonomy of Capparidaceae. – Phyta 2-3: 87-91.

Nasrallah JB. 2011. Self-incompatibility in the Brassicaceae. – In: Schmidt R, Bancroft I (eds), Genetics and genomics of the Brassicaceae, Springer, Berlin, pp. 389-411.

Neuffer B, Janche P. 1997. RAPD analysis of hybridization events in Cardamine (Brassicaceae). – Folia Geobot. Phytotaxon. 32: 57-67.

Neutofal F. 1927. Zytologische Studien über die Kulturrassen von Brassica oleracea. – Österr. Bot. Zeitschr. 76: 105-115.

Nicola GR de, Nyegue M, Montaut S, Iori R, Menut C, Tatibouët A, Rollin P, Ndoyé C, Zollo P-HA. 2012. Profile and quantification of glucosinolates in Pentadiplandra brazzeana Baillon. – Phytochemistry 73: 51-56.

Nordal I, Stabbetorp OE. 1990. Morphology and taxonomy of the genus Cochlearia (Brassicaceae) in Northern Scandinavia. – Nord. J. Bot. 10: 249-263.

Nordal I, Eriksen AB, Laane MM, Solberg Y. 1986. Biosystematic and biogeographic studies in the genus Cochlearia in Northern Scandinavia. – Symb. Bot. Ups. XXVII(2): 149-159.

Nyárády EJ. 1928a. Vorstudium über einige Arten der Section Odontarrhena generis Alyssum. – Bul. Grǎd. Bot. Univ. Cluj 7: 1-51, 65-160.

Nyárády EJ. 1928b. Vorstudium über einige Arten der Section Odontarrhena generis Alyssum. – Bul. Grǎd. Bot. Univ. Cluj 8: 152-156.

Nyárády EJ. 1929. Vorstudium über einige Arten der Section Odontarrhena generis Alyssum. – Bul. Grǎd. Bot. Univ. Cluj 9: 1-68.

O’Kane SL Jr, Al-Shehbaz IA. 1997. A synopsis of Arabidopsis (Brassicaceae). – Novon 7: 323-327.

O’Kane SL Jr, Al-Shehbaz IA. 2002. Paysonia, a new genus segregated from Lesquerella (Brassicaceae). – Novon 12: 379-381.

O’Kane SL Jr, Al-Shehbaz IA. 2003. Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. – Ann. Missouri Bot. Gard. 90: 603-612.

O’Kane SL Jr, Al-Shehbaz IA. 2004. The genus Physaria (Brassicaceae) in South America. – Novon 14: 198-207.

O’Kane SL Jr, Reveal JL. 2006. Physaria pulvinata (Brassicaceae), a new species from southwestern Colorado. – Brittonia 58: 74-77.

O’Kane SL Jr, Schaal BA, Al-Shehbaz IA. 1996. The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. – Syst. Bot. 21: 559-566.

Oliveira JTA, Silveira SB, Vasconcelos IM, Cavada BS, Moreira RA. 1999. Compositional and nutritional attributes of seeds from the multiple purpose tree Moringa oleifera Lamarck. – J. Sci. Food Agric. 79: 815-820.

Olowokudejo JD. 1980. Systematic studies in the genus Biscutella L. – Ph.D. diss., University of Reading, England.

Olowokudejo JD. 1985. Scanning electron microscopy of fruits in the genus Biscutella L. (Cruciferae). – Phytomorphology 34: 273-286.

Olowokudejo JD. 1986. The taxonomic importance of nectary variation in the genus Biscutella L. – Feddes Repert. 97: 837-845.

Olowokudejo JD, Heywood VH. 1984. Cytotaxonomy and breeding system of the genus Biscutella (Cruciferae). – Plant Syst. Evol. 145: 291-309.

Olowokudejo JD, Heywood VH. 1995. Taxonomic study of the Biscutella variegata complex (Cruciferae). – Willdenowia 25: 25-38.

Olson ME. 2001a. Morphological and ontogenetic diversity and phylogenetic relationships of Moringa (Moringaceae, Brassicales). – Ph.D. diss., Graduate School of Arts and Sciences, Washington University, St. Louis, Missouri.

Olson ME. 2001b. Stem and root anatomy in Moringa (Moringaceae). – Haseltonia 8: 56-96.

Olson ME 2002a. Intergeneric relationships within the Caricaceae-Moringaceae clade (Brassicales), and potential morphological synapomorphies of the clade and its families. – Intern. J. Plant Sci. 163: 51-65.

Olson ME. 2002b. Combining data from DNA sequences and morphology for a phylogeny of Moringaceae (Brassicales). – Syst. Bot. 27: 55-73.

Olson ME. 2002c. Wood and bark anatomy in Moringa (Moringaceae). – Haseltonia 8: 85-121.

Olson ME. 2003. Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales). – Amer. J. Bot. 90: 49-71.

Olson ME. 2007. Wood ontogeny as a model for studying heterochrony, with an example of paedomorphosis in Moringa (Moringaceae). – Syst. Biodivers. 5: 145-158.

Olson ME, Carlquist SJ. 2001. Stem and root anatomical correlations with life form diversity, ecology, and systematics in Moringa (Moringaceae). – Bot. J. Linn. Soc. 135: 315-348.

Olson ME, Razafimandimbison SG. 2000. Moringa hildebrandtii: a tree extinct in the wild but preserved by indigenous horticultural practices in Madagascar. – Adansonia, sér. III, 22: 217-221.

Olson ME, Rosell JA. 2006. Using heterochrony to detect modularity in the evolution of stem diversity in the plant family Moringaceae. – Evolution 2006: 724-734.

Oltmann O. 1971. Pollenmorphologisch-systematische Untersuchungen innerhalb der Geraniales. – Diss. Bot. 11: 127-129.

Ornduff R. 1971. Systematic studies of Limnanthaceae. – Madroño 21: 103-111.

Ornduff R, Crovello TJ. 1968. Numerical taxonomy of Limnanthaceae. – Amer. J. Bot. 55: 173-182.

Orr MY. 1919. The occurrence of tracheal tissue enveloping the embryo in certain Capparidaceae. – Notes Roy. Bot. Gard. Edinb. 11: 249-257.

Outer RW den, Veenendal WLH van. 1981. Wood and bark anatomy of Azima tetracantha Lam. (Salvadoraceae) with description of its included phloem. – Acta Bot. Neerl. 30: 199-207.

Özüdoğru B, Akaydın G, Erik S, Al-Shehbaz IA, Mummenhoff K. 2015. Phylogeny, diversification and biogeographic implications of the eastern Mediterranean endemic genus Ricotia (Brassicaceae). – Taxon 64: 727-740.

Özüdoğru B, Al-Shehbaz IA, Mummenhoff K. 2017. Tribal assignment of Heldreichia Boiss. (Brassicaceae): evbidence from nuclear ITS and plastidic ndhF markers. – Plant Syst. Evol. 303: 329-335.

Paliwal GS. 1967. Ontogeny of stomata in some Cruciferae. – Can. J. Bot. 45: 495-500.

Palmer JD, Shields CR, Cohen DB, Orton TJ. 1983. Chloroplast DNA evolution and the origin of amphiploid Brassica. – Theor. Appl. Gen. 65: 181-189.

Pant DD, Kidwai PF. 1967. Development of stomata in some Cruciferae. – Ann. Bot., N. S., 31: 513-521.

Parker WH. 1976. Comparison of numerical taxonomic methods used to estimate flavonoid similarities in the Limnanthaceae. – Brittonia 28: 390-399.

Parker WH, Bohm BA. 1979. Flavonoids and taxonomy of the Limnanthaceae. – Amer. J. Bot. 66: 191-197.

Parolly G, Hein P. 2000. Arabis lycia (Cruciferae), a new chasmophyte from the Taurus Mts, Turkey, and notes on related species. – Willdenowia 30: 293-304.

Parolly G, Nordt B, Bleeker W, Mummenhoff K. 2010. Heldreichia Boiss. (Brassicaceae) revisited: a morphological and molecular study. – Taxon 59: 187-202.

Patchell MJ, Bolton MC, Mankowski P, Hall JC. 2011. Comparative floral development in Cleomaceae reveals two distinct pathways leading to monosymmetry. – Intern. J. Plant Sci. 172: 352-365.

Patchell MJ, Roalson EH, Hall JC. 2014. Resolved phylogeny of Cleomaceae based on all three genomes. – Taxon 63: 315-328.

Pavlova D. 2007. A new species of Aethionema (Brassicaceae) from the Bulgarian flora. – Bot. J. Linn. Soc. 155: 533-540.

Pax F. 1887. Beiträge zur Kenntnis der Capparidaceen. – Engl. Bot. Jahrb. Syst. 9: 39-77.

Pax F. 1891a. Tovariaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 207-208.

Pax F. 1891b. Capparidaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 209-236.

Pax F. 1891c. Moringaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 242-244.

Pax F. 1891d. Cleomodendron, eine neue Gattung der Capparidaceen aus Somaliland. – Ber. Deutsch. Bot. Ges. 9: 32-34.

Pax F. 1936a. Moringaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 693-698.

Pax F. 1936b. Bretschneideraceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 699-700.

Pax F, Hoffmann K. 1936a. Capparidaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 146-223.

Pax F, Hoffmann K. 1936b. Tovariaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 224-226.

Payne AM, Maun MA. 1981. Dispersal and floating ability of dimorphic fruit segments of Cakile edentula var. lacustris. – Can. J. Bot. 59: 2595-2602.

Payson EB. 1923. A monographic study of the genus Thelypodium and its immediate allies. – Ann. Missouri Bot. Gard. 9: 233-324.

Pepper AE, Norwood LE. 2001. Evolution of Caulanthus amplexicaulis var. barbarae (Brassicaceae), a rare serpentine endemic plant: a molecular phylogenetic perspective. – Amer. J. Bot. 88: 1479-1489.

Periasamy K, Indira C. 1986. The carpel of Moringa. – Ann. Bot., N. S., 58: 897-901.

Perkins J. 1909. Resedaceae Africae tropicae. – In: Engler A (ed), Beiträge zur Flora von Afrika XXXV, Bot. Jahrb. Syst. 43: 415-418.

Perný M, Tribsch A, Stuessy TF, Marhold K. 2005a. Allopolyploid origin of Cardamine silana (Brassicaceae) from Calabria (southern Italy): karyological, morphological and molecular evidence. – Bot. J. Linn. Soc. 148: 101-116.

Perný M, Tribsch A, Stuessy TF, Marhold K. 2005b. Taxonomy and cytogeography of Cardamine raphanifolia and C. gallaecica (Brassicaceae) in the Iberian Peninsula. – Plant Syst. Evol. 254: 69-91.

Persson J. 1971. Studies in the Aegean flora XIX. Notes on Alyssum and some other genera of Cruciferae. – Bot. Not. 124: 399-418.

Perveen A, Qaiser M. 1996. Pollen flora of Pakistan VI. Salvadoraceae. – Pak. J. Bot. 28: 151-154.

Perveen A, Qaiser M. 2001a. Pollen flora of Pakistan XXVIII. Resedaceae. – Turk. J. Bot. 25: 39-42.

Perveen A, Qaiser M. 2001b. Pollen flora of Pakistan XXXI. Capparidaceae. – Turk. J. Bot. 25: 389-395.

Perveen A, Qaiser M. 2009. Pollen flora of Pakistan LXIII. Moringaceae. – Pak. J. Bot. 41: 987-989.

Pestalozzi A. 1898. Die Gattung Boscia Lam. – Bull. Herb. Boissier 6: 1-152.

Phillips BE, Smith CR Jr, Tallent WH. 1971. Glycerides of Limnanthes douglasii seed oil. – Lipids 6: 93-99.

Phitos D. 1970. Die Gattung Aubrieta in Griechenland. – Candollea 25: 69-87.

Pillai A, Pillai SK. 1977. Some aspects of the anatomy of Salvadora oleoides Dcne. – Flora 166: 211-218.

Platonova TF, Kusovkov AD. 1963. Ob alkaloidach ložečnicy arktičeskoj Cochlearia arctica Schlechtd. – Med. Ind. UdSSR 17: 19-20.

Ploch S, Thines M. 2011. Obligate biotrophic pathogens of the genus Albugo are widespread as asymptotic endophytes in natural populations of Brassicaceae. – Mol. Ecol. 20: 3692-3699.

Ploch S, Choi Y-J, Rost C, Shin H-D, Schilling E, Thines M. 2010. Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. – Mol. Phylogen. Evol. 57: 812-820.

Pobedimova E. 1968. Species novae generis Cochlearia. – Nov. Syst. Plant. Vasc. (Leningrad) 5: 130-135.

Pobedimova E. 1970. Revisio generis Cochlearia L. 1. – Nov. Syst. Plant. Vasc. (Leningrad) 6: 67-106.

Pobedimova E. 1971. Revisio generis Cochlearia L. 2. – Nov. Syst. Plant. Vasc. (Leningrad) 7: 167-195.

Pohle R. 1925. Drabae asiaticae. Systematik und Geographie nord- und mittelasiatischer Draben. – Feddes Repert. 32: 1-225.

Polatschek A. 1967. Cytotaxonomische Beiträge zu den Gattungen Thlaspi und Hutchinsia. – Ann. Naturhist. Mus. Wien 70: 29-35.

Polatschek A. 1976. Die Gattung Erysimum auf den Kapverden, Kanaren und Madeira. – Ann. Naturhist. Mus. Wien 80: 93-103.

Polatschek A. 1983. Chromosomenzahlen und Hinweise auf Systematik und Verbreitung von Brassicaceae-Arten aus Europa, Nordafrika, Asien und Australien. – Phyton 28: 127-139.

Polatschek A. 1994. Nomenklatorischer Beitrag zur Gattung Erysimum (Brassicaceae). – Phyton 34: 189-202.

Pollock EG, Jensen W. 1967. Ontogeny and cytochemistry of chalazal proliferating cells of Capsella bursa-pastoris (L.) Medic. – New Phytol. 66: 413-417.

Polowick PL, Sawhney VK. 1986. A scanning electron microscopic study on the initiation and development of floral organs Brassica napus (cv. Westar). – Amer. J. Bot. 73: 254-263.

Polster A. 2005. The role of lignification patterns in dehiscent and indehiscent fruits in Brassicaceae: a comparative anatomical approach. – M.Sc. thesis, Universität Osnabrück, Germany.

Ponzi R, Pizzolongo P, Caputo G. 1978. Ultrastructural particularities in ovular tissues of some Rhoeadales taxa and their probable taxonomic value. – J. Submicr. Cytol. 10: 81-88.

Poulsen VA. 1878. Det ekstraflorale nektarium hos Capparis cyanophallophora. – Vidensk. Medd. Nat. København 31: 35-44.

Pradhan AK, Prakash S, Mukhopadhyay A, Pental D. 1992. Phylogeny of Brassica and allied genera based on variation and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous. – Theor. Appl. Gen. 85: 331-340.

Prakash S, Hinata K. 1980. Taxonomy, cytogenetics, and origin of crop Brassica, a review. – Opera Bot. 55: 1-57.

Prantl K. 1891. Cruciferae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 145-206.

Prasad K. 1974. Studies in the Cruciferae: gametophytes, structure and development of seed in Eruca sativa Mill. – J. Indian Bot. Soc. 53: 24-33.

Prasad K. 1975. Development and organization of gametophytes in certain species of Cruciferae. – Acta Bot. Indica 3: 147-154.

Prasad K. 1976. Seed coat structure and development in certain species of Cruciferae. – Intern. Quart. J. Plant Sci. Res. 3: 95-103.

Prasad K. 1977a. Seed coat structure and development in Lepidium sativum L. and Thlaspi perfoliatum L. (Cruciferae). – Bot. Jahrb. Syst. 97: 508-514.

Prasad K. 1977b. The development and structure of basal body in the ovule and seed of certain species of Cruciferae. – Bot. Jahrb. Syst. 98: 266-272.

Prasad K. 1979. Morphology and histochemistry of the nucellus and endosperm of Cruciferae. – Bot. Jahrb. Syst. 100: 536-541.

Preston RE. 1986. Pollen-ovule ratios in the Cruciferae. – Amer. J. Bot. 73: 1732-1740.

Preston RE. 1991. The intrafloral phenology of Streptanthus tortuosus (Brassicaceae). – Amer. J. Bot. 78: 1044-1053.

Price RA, Rollins RC. 1991. New taxa of Draba (Cruciferae) from California, Nevada, and Colorado. – Harvard Pap. Bot. 3: 71-77.

Price RA, Palmer JD, Al-Shehbaz IA. 1994. Systematic relationships of Arabidopsis: a molecular and morphological perspective. – In: Meyerowitz E, Somerville C (eds), Arabidopsis, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 7-19.

Price RA, Al-Shehbaz IA, O’Kane SL Jr. 2001. Beringia (Brassicaceae), a new genus of Arabidopsoid affinities from Russia and North America. – Novon 11: 332-336.

Price RA, Bailey CD, Al-Shehbaz IA. 2001. Transfer of the cupulate-flowered Arabis microsperma and A. tricornuta (Brassicaceae) to Pennellia. – Novon 11: 337-340.

Prijanto B. 1970. Batidaceae, Gyrostemonaceae. – In: Erdtman G (ed), World Pollen and Spore Flora 3: 1-15.

Prina AO. 2000. A taxonomic revision of Crambe, sect. Leptocrambe (Brassicaceae). – Bot. J. Linn. Soc. 133: 509-524.

Prina AO. 2001. Nuevas combinaciones en Menonvillea (Brassicaceae). – Hickenia 3: 93-94.

Prina AO, Martinez-Laborde JB. 2008. A taxonomic revision of Crambe section Dendrocrambe (Brassicaceae). – Bot. J. Linn. Soc. 156: 291-304.

Pritchard GG. 1957. Experimental taxonomic studies on species of Cardamine Linn. in New Zealand. – Trans. Roy. Soc. New Zealand 85: 75-89.

Propach H. 1934. Cytologische Untersuchungen an Limnanthes douglasii R. Br. – Zeitschr. Zellforsch. 21: 357-375.

Puri V. 1934. A note on the embryo sac and embryo of Moringa oleifera Lamk. – Proc. Indiana Acad. Sci., Ser. B, 1: 279-282.

Puri V. 1941a. Studies in floral anatomy I. Gynoecium constitution in the Cruciferae. – Proc. Indian Acad. Sci., Sect. B, 14: 166-187.

Puri V. 1941b. The life-history of Moringa oleifera Lam. – J. Indian Bot. Soc. 20: 263-284.

Puri V. 1942. Studies in floral anatomy II. Floral anatomy of the Moringaceae with special reference to gynoecium constitution. – Proc. Indian Natl. Inst. Sci., Sect. B, 8: 71-88.

Puri V. 1950. Studies in floral anatomy VI. Vascular anatomy of the flower of Crataeva religiosa Forst., with special reference to the nature of the carpels in the Capparidaceae. – Amer. J. Bot. 37: 363-370.

Quiros CF, Ochoa O, Douches DS. 1988. Exploring the role of x = 7 species in Brassica evolution: hybridization with B. nigra and B. oleracea. – J. Hered. 79: 351-358.

Rachmilevitz T, Fahn A. 1975. The floral nectary of Tropaeolum majus L. The nature of the secretory cells and the manner of nectar secretion. – Ann. Bot., N. S., 39: 721-728.

Raffaelli M. 1992. Biscutella sect. Iondraba (Cruciferae) in the Mediterranean area. – Willdenowia 22: 19-36.

Raghavan TS. 1937. Studies on the Capparidaceae I. The life-history of Cleome cholidonii Linn. fil. – Bot. J. Linn. Soc. 51: 43-72.

Raghavan TS. 1938. Morphological and cytological studies in the Capparidaceae II. Floral morphology and cytology of Gynandropsis pentaphylla DC. – Ann. Bot., N. S., 2: 75-95.

Raghavan TS. 1939. Studies on the Capparidaceae II. Floral anatomy and some structural features of the capparidaceous flower. – Bot. J. Linn. Soc. 52: 239-257.

Raghavan TS, Venkatasubban KR. 1941a. Studies in the Capparidaceae V. The floral morphology of Crataeva religiosa Forst. – Beih. Bot. Centralbl. 60: 388-396.

Raghavan TS, Venkatasubban KR. 1941b. Studies in the Capparidaceae VI. Floral ontogeny and anatomy of Crataeva religiosa with special reference to the morphology of the carpel. – Beih. Bot. Centralbl. 60: 397-416.

Raghavan TS, Venkatasubban KR. 1941c. Studies in the Capparidaceae VII. The cytology of Capparis zeylanica Linn. and related genera. – Cytologia 11: 319-331.

Rama Devi D. 1990a. Chemotaxonomy of Tropaeolaceae. – Indian J. Bot. 13: 136-141.

Rama Devi D. 1990b. Floral anatomy of Limnanthaceae. – J. Indian Bot. Soc. 69: 271-274.

Rama Devi D, Narayana LL. 1994. Floral anatomy of Tropaeolaceae. – Feddes Repert. 105: 437-443.

Ranjbar M, Karami S, Rostami M. 2014. A revision of Fibigia sect. Purpureae (Brassicaceae, Alysseae) in Iran, and the description of three new species. – Biol. Div. Cons. 7: 32-43.

Rao AVN. 1967. Embryological studies in Cleome monophylla Linn. – Proc. Indian Acad. Sci., Sect. B, 65: 249-256.

Rao NV, Avita S, Inambar JA. 1983. Studies on the Moringaceae. – Feddes Repert. 94: 213-223.

Rao PSP, Rao BH. 1976. Embryo development in Cleome aspera L. (Capparidaceae). – J. Jap. Bot. 51: 110-117.

Rao TA, Kelkar SS. 1951. Studies on foliar sclereids in dicotyledons III. On sclereids in species of Loranthus (Loranthaceae) and Niebuhria apetala (Capparidaceae). – J. Univ. Bombay, N. S., B 20: 16-20.

Rao VS. 1938. Studies on Capparidaceae III. Genus Capparis. – J. Indian Bot. Soc. 17: 69-80.

Rask L, Andréasson E, Ekbom E, Eriksson S, Pontoppidan B, Meijer J. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. – Plant Mol. Biol. 42: 93-113.

Rathore RKS. 1972. Structure and development of seeds in Farsetia hamiltonii Royle. – Agra Univ. J. Res. (Sci.) 21: 13-17.

Rathore RKS, Singh RP. 1968. Embryological studies in Brassica campestris L. var. Yellow Sarson Prain. – J. Indian Bot. Soc. 47: 341-349.

Ravenna P. 1981. Taxonomical notes on the Chilean Cruciferae. – Nord. J. Bot. 1: 140-142.

Rechinger KH. 1951. Cruciferae iranicae novae vel minus cognitae. – Phyton 3: 44-68.

Record S. 1926. The wood of Koeberlinia spinosa Zuccarini. – Trop. Woods 8: 15-17.

Reeves RD. 1988. Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L. and other genera of the Brassicaceae. – Taxon 37: 309-318.

Reeves RD, Brooks RR, Macfarlane RM. 1981. Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). – Amer. J. Bot. 68: 708-712.

Reeves RD, Brooks RR, Dudley TR. 1983. Uptake of nickel by species of Alyssum, Bornmüllera and other genera of Old World tribus Alysseae. – Taxon 32: 184-192.

Regvar M, Vogel K, Irgel N, Wraber T, Hildbrandt U, Wilde P, Bothe H. 2003. Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. – J. Plant Physiol. 160: 615-626.

Reiche K. 1896a. Tropaeolaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 23-27.

Reiche K. 1896b. Limnanthaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 136-137.

Rešetnik I, Satovic Z, Schneeweiss GM, Liber Z. 2013. Phylogenetic relationships in Brassicaceae tribe Alysseae inferred from nuclear ribosomal and chloroplast DNA sequence data. – Mol. Phylogen. Evol. 69: 772-786.

Rešetnik I, Schneeweiss GM, Liber Z. 2014. Two new combinations in the genus Bornmuellera (Brassicaceae). – Phytotaxa 159: 298-300.

Reza Khosravi A, Mohsenzadeh S, Mummenhoff K. 2008a. Analysis of the phylogenetic position of Acanthocardamum erinaceum (Brassicaceae) based on ITS-sequences shows that it should be transferred to Aethionema as A. erinaceum. – Nord. J. Bot. 26: 25-30.

Reza Khosravi A, Mohsenzadeh S, Mummenhoff K. 2008b. Phylogenetic position of Brassardia papyracea (Brassicaceae) based on sequences of nuclear ribosomal DNA. – Feddes Repert. 119: 13-23.

Ricardi M, Marticorena C, Torres F. 1957. Nota preliminar de los pólenes de Tropaeolaceae chilenas. – Bol. Soc. Biol. Concepción 32: 17-19.

Riley R. 1956. The influence of the breeding system on the genecology of Thlaspi alpestre L. – New Phytol. 55: 319-330.

Riser II JP, Cardinal-McTegue WM, Hall JC, Hahn WJ, Sytsma KJ, Roalson EH. 2013. Phylogenetic relationships among the North American cleomoids (Cleomaceae): a test of Iltis’s reduction series. – Amer. J. Bot. 100: 2102-2111.

Risseeuw M. 1964. Primitiae Africanae V. A revision of the genus Buchholzia Engler (Capp.). – Acta Bot. Neerl. 13: 161-174.

Ritland K, Jain S. 1984. The comparative life histories of two annual Limnanthes species in a temporally variable environment. – Amer. Natur. 124: 656-678.

Roalson EH, Hall JC. 2017. New generic concepts for African Cleomaceae. – Syst. Bot. 42: 925-942.

Roalson EH, Hall JC, Riser II JP, Cardinal-McTeague WM, Cochrane TS, Sytsma KJ. 2015. A revision of generic boundaries and nomenclature in the North American cleomoid clade (Cleomaceae). – Phytotaxa 205: 129-144.

Robinson BL. 1896. The fruit of Tropidocarpum. – Erythea 4: 108-119.

Rodman JE. 1974. Systematics and evolution of the genus Cakile (Cruciferae). – Contr. Gray Herb. 205: 3-146.

Rodman JE. 1976. Differentiation and migration of Cakile (Cruciferae): seed glucosinolate evidence. – Syst. Bot. 1: 137-148.

Rodman JE. 1978. Glucosinolates: methods of analysis and some chemosystematic problems. – Phytochem. Bull. 11: 6-31.

Rodman JE. 1980. Population variation and hybridization in sea-rockets (Cakile, Cruciferae): seed glucosinolate characters. – Amer. J. Bot. 67: 1145-1159.

Rodman JE. 1981. Divergence, convergence, and parallelism in phytochemical characters: the glucosinolate-myrosinase system. – In: Young DA, Seigler DS (eds), Phytochemistry and angiosperm phylogeny, Praeger, New York, pp. 43-79.

Rodman JE. 1986. Introduction establishment and replacement of sea-rockets (Cakile, Cruciferae) in Australia. – J. Biogeogr. 13: 159-171.

Rodman JE. 1991a. A taxonomic analysis of glucosinolate-producing plants 1. Phenetics. – Syst. Bot. 16: 598-618.

Rodman JE. 1991b. A taxonomic analysis of glucosinolate-producing plants 2. Cladistics. – Syst. Bot. 16: 619-629.

Rodman JE, Chew FS. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae. – Biochem. Syst. Ecol. 8: 43-50.

Rodman JE, Kruckeberg A, Al-Shehbaz IA. 1981. Chemotaxonomic diversity and complexity in seed glucosinolates of Caulanthus and Streptanthus (Cruciferae). – Syst. Bot. 6: 197-222.

Rodman JE, Brower L, Frey J. 1982. Cardenolides in North American Erysimum (Cruciferae), a preliminary chemotaxonomic report. – Taxon 31: 507-516.

Rodman J, Price RA, Karol K, Conti E, Sytsma KJ, Palmer JD. 1993. Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. – Ann. Missouri Bot. Gard. 80: 686-699.

Rodman JE, Karol KG, Price RA, Conti E, Sytsma KJ. 1994. Nucleotide sequences of rbcL confirm the capparalean affinity of the Australian endemic Gyrostemonaceae. – Aust. Syst. Bot. 7: 57-69.

Rodman JE, Karol KG, Price RA, Sytsma KJ. 1996. Molecules, morphology, and Dahlgren’s expanded order Capparales. – Syst. Bot. 21: 289-307.

Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG. 1998. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. – Amer. J. Bot. 85: 997-1006.

Rodríguez RR. 2003. Cleome sect. Physostemon (Cleomaceae) in Cuba. – Willdenowia 33: 439-444.

Rodríguez RR, Greuter W. 2004. A study of differentiation patterns in Capparis sect. Breyniastrum in Cuba, with a nomenclatural and taxonomic survey of Cuban Capparis (Capparaceae). – Willdenowia 34: 259-276.

Rohrbach P. 1869. Über den Blüthenbau von Tropaeolum. – Bot. Zeitung 27: 833-839, 849-859.

Rollins RC. 1939a. The cruciferous genus Physaria. – Rhodora 41: 391-414.

Rollins RC. 1939b. The cruciferous genus Stanleya. – Lloydia 2: 109-127.

Rollins RC. 1941. A monographic study of Arabis in western North America. – Rhodora 43: 289-325, 348-411, 425-485.

Rollins RC. 1947. Generic revisions in the Cruciferae: Sibara. – Contr. Gray Herb. 165: 133-143.

Rollins RC. 1955. A revisionary study of the genus Menonvillea (Cruciferae). – Contr. Gray Herb. 177: 3-57.

Rollins RC. 1956. Some new primitive Mexican Cruciferae. – Rhodora 58: 148-157.

Rollins RC. 1957. Miscellaneous Cruciferae of Mexico and western Texas. – Rhodora 59: 61-71.

Rollins RC. 1959. The genus Synthlipsis (Cruciferae). – Rhodora 61: 253-264.

Rollins RC. 1963a. Protandry in two species of Streptanthus (Cruciferae). – Rhodora 65: 45-49.

Rollins RC. 1963b. The evolution and systematics of Leavenworthia (Cruciferae). – Contr. Gray Herb. 192: 3-98.

Rollins RC. 1966a. Chromosome numbers of Cruciferae. – Contr. Gray Herb. Harv. Univ. 197: 43-65.

Rollins RC. 1966b. The genus Mathewsia (Cruciferae). – Acta Bot. Neerl. 15: 102-116.

Rollins RC. 1971. Protogyny in the Cruciferae and notes on Arabis and Caulanthus. – Contr. Gray Herb. 201: 1-10.

Rollins RC. 1979. Dithyrea and a related genus (Cruciferae). – Publ. Bussey Inst. Harvard Univ. 1979: 3-20.

Rollins RC. 1981a. Studies in the genus Physaria (Cruciferae). – Brittonia 33: 332-341.

Rollins RC. 1981b. Weeds of the Cruciferae (Brassicaceae) in North America. – J. Arnold Arbor. 62: 517-540.

Rollins RC. 1981c. Studies on Arabis (Cruciferae) of western North America. – Syst. Bot. 6: 55-64.

Rollins RC. 1982. A new species of the Asiatic genus Stroganowia (Cruciferae) from North America and its biogeographic implications. – Syst. Bot. 7: 214-220.

Rollins RC. 1983. Interspecific hybridization and taxon uniformity in Arabis (Cruciferae). – Amer. J. Bot. 7: 625-634.

Rollins RC. 1984a. Draba (Cruciferae) in Mexico and Guatemala. – Contr. Gray Herb. 213: 1-10.

Rollins RC. 1984b. Sphaerocardamum (Cruciferae). – Contr. Gray Herb. 213: 11-17.

Rollins RC. 1993. The Cruciferae of continental North America: systematics of the mustard family from the Arctic to Panama. – Stanford University Press, Stanford, California.

Rollins RC, Banerjee UC. 1975. Atlas of the trichomes of Lesquerella (Cruciferae). – Publ. Bussey Inst. Harvard Univ. 1975: 1-48.

Rollins RC, Banerjee UC. 1976. Trichomes in studies of the Cruciferae. – In: Vaughan JG, Macleod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, pp. 145-166.

Rollins RC, Banerjee UC. 1979a. Pollen of the Cruciferae. – Publ. Bussey Inst. Harvard Univ. 1979: 33-64.

Rollins RC, Banerjee UC. 1979b. Trichome patterns in Physaria. – Harvard University Press, Cambridge, Massachusetts.

Rollins RC, Price RA. 1988. High-elevation Draba (Cruciferae) of the White Mountains of California and Nevada. – Aliso 12: 17-27.

Rollins RC, Rüdenberg L. 1971. Chromosome numbers of Cruciferae II. – Contr. Gray Herb. 201: 117-133.

Rollins RC, Rüdenberg L. 1977. Chromosome numbers of Cruciferae III. – Contr. Gray Herb. 207: 101-116.

Rollins RC, Shaw EA. 1973. The genus Lesquerella (Cruciferae) in North America. – Harvard University Press, Cambridge, Massachusetts.

Romero EJ, Hickey LJ. 1976. A fossil leaf of Akaniaceae from Paleocene beds in Argentina. – Bull. Torrey Bot. Club 103: 126-131.

Ronse De Craene L-P. 2002. Floral development and anatomy of Pentadiplandra (Pentadiplandraceae): a key genus in the identification of floral morphological trends in the core Brassicales. – Can. J. Bot. 80: 443-459.

Ronse De Craene L-P. 2005. Floral developmental evidence for the systematic position of Batis (Bataceae). – Amer. J. Bot. 92: 752-760.

Ronse De Craene L-P, Haston E. 2006. The systematic relationships of glucosinolate-producing plants and related families: a cladistic investigation based on morphological and molecular characters. – Bot. J. Linn. Soc. 151: 453-494.

Ronse De Craene L-P, Smets EF. 1997a. A floral ontogenetic study of some species of Capparis and Boscia, with special emphasis on the androecium. – Bot. Jahrb. Syst. 119: 231-255.

Ronse De Craene L-P, Smets EF. 1997b. Evidence for carpel multiplications in the Capparaceae. – Belg. J. Bot. 130: 59-67.

Ronse De Craene L-P, Smets EF. 1999. The floral development and anatomy of Carica papaya (Caricaceae). – Can. J. Bot. 77: 582-598.

Ronse De Craene L-P, Smets EF. 2001. Floral developmental evidence for the systematic relationships of Tropaeolum (Tropaeolaceae). – Ann. Bot. 88: 879-892.

Ronse De Craene L-P, Wanntorp L. 2009. Floral development and anatomy of Salvadoraceae. – Ann. Bot. 104: 913-923.

Ronse De Craene L-P, Laet J de, Smets EF. 1998. Floral development and anatomy of Moringa oleifera (Moringaceae): what is the evidence for a capparalean or sapindalean affinity? – Ann. Bot. 82: 273-284.

Ronse De Craene L-P, Yang TYA, Schols P, Smets EF. 2002. Floral anatomy and systematics of Bretschneidera (Bretschneideraceae). – Bot. J. Linn. Soc. 139: 29-45.

Ross JH. 1982. Bataceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 379-381.

Rossello JA, Torres N, Saez L. 1999. A new Biscutella (Brassicaceae) species from the western Balearic Islands. – Bot. J. Linn. Soc. 129: 155-164.

Rössler W. 1974. Myrosinzellen bei Tovaria. – Phyton (Horn) 16: 231-238.

Roth I. 1972. Desarollo y anatomia del fruto y de la semilla de Carica papaya L. (Lechosa). – Acta Bot. Venezuel. 7: 1-4.

Roy BA. 1995. The breeding systems of six species of Arabis (Brassicaceae). – Amer. J. Bot 82: 869-877.

Roy BA. 2001. Patterns of association between crucifers and their flower-mimic pathogens: host jumps are more common than coevolution or cospeciation. – Evolution 55: 41-53.

Royen P van. 1956. A new Batidacea, Batis argillicola. – Nova Guinea, N. S., 7: 187-195.

Royen P van. 1958. Batidaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(4), Noordhoff-Kolff N. V., Djakarta, pp. 414-415.

Rüger G. 1887. Beiträge zur Kenntniss der Gattung Carica. – Ph.D. diss., Erlangen, Germany.

Ruíz Leal A, Perez-Moreau RL. 1964. Las especies del género Magallana (Tropaeolaceae). – Darwiniana 13: 459-467.

Ruíz-Zapata T, Iltis HH. 1998. Capparaceae. – In: Steyermark JA, Berry PE, Holst BK (eds), Flora of the Venezuelan Guayana 4, Missouri botanical Garden Press, St. Louis, Missouri, pp. 132-156.

Russell AM. 1919. A comparative study of Floerkea proserpinacoides and allies. – Contr. Bot. Lab. Univ. Pennsylvania 4: 401-418.

Rustan ØH. 1980. Biosystematic studies in Sinapidendron s. lat. (Brassicaceae) 1. The generic delimitation. – Cand. scient. thesis, University of Oslo, Norway.

Rustan ØH. 1996. Revision of the genus Diplotaxis (Brassicaceae) in the Cape Verde Islands, W Africa. – Nord. J. Bot. 16: 19-50.

Rytz W. 1936. Systematische, ökologische und geographische Probleme bei den Brassiceen. – Ber. Schweiz. Bot. Ges. 46: 517-544.

Sachar RC. 1956. The embryology of Isomeris – a reinvestigation. – Phytomorphology 6: 346-363.

Salariato DL, Al-Shehbaz IA. 2014. Zuloagocardamum (Brassicaceae: Thelypodieae) a new genus from the Andes highlands of northern Argentina. – Syst. Bot. 39: 563-577.

Salariato DL, Zuloaga FO. 2015. Taxonomic placement of Onuris hauthalii (Brassicaceae: Eudemeae), based on morphology and multilocus species tree analyses, and the recognition of the new genus Alshehbazia. – Kew Bull. 70: 49 DOI 10.1007/S12225-015-9602-9

Salariato DL, Zuloaga FO, Al-Shehbaz IA. 2013a. Revision and tribal placement of the Argentinean genus Parodiodoxa (Brassicaceae). – Plant Syst. Evol. 299: 305-316.

Salariato DL, Zuloaga FO, Al-Shehbaz IA. 2013b. Molecular phylogeny of Menonvillea and recognition of the new genus Aimara (Brassicaceae: Cremolobeae). – Taxon 62: 1220-1234.

Salariato DL, Zuloaga FO, Al-Shehbaz IA. 2014. A revision of the genus Menonvillea (Cremolobeae, Brassicaceae). – Phytotaxa 162: 241-298.

Salariato DL, Zuloaga FO, Al-Shehbaz IA. 2015. A taxonomic revision of the genus Xerodraba (Eudemeae, Brassicaceae). – Phytotaxa 20: 39-67.

Salariato DL, Zuloaga FO, Cano A, Al-Shehbaz IA. 2015. Molecular phylogeny of the tribe Eudemeae (Brassicaceae) and implications for its distribution and morphology. – Mol. Phylogen. Ecol. 82: 43-59.

Salariato DL, Zuloaga FO, Franzke A, Mummenhoff K, Al-Shehbaz IA. 2016. Diversification patterns in the CES clade (Brassicaceae tribes Cremolobeae, Eudemeae, Schizopetaleae) in Andean South America. – Bot. J. Linn. Soc. 181: 543-566.

Salariato DL, Al-Shehbaz IA, Zuloaga FO. 2018. Reinstatement of the southern Andean genus Stenodraba (Brassicaceae) based on molecular data and insights from its environmental and geographic distribution. – Syst. Bot. 43: 35-52.

Sánchez-Yélamo MD, Ortiz JM, Gogorcena Y. 1992. Comparative electrophoretic studies of seed proteins in some species of the genera Diplotaxis, Erucastrum and Brassica (Cruciferae: Brassiceae). – Taxon 41: 477-483.

Santisuk T. 1989. The monotypic family Bretschneideraceae newly recorded for Thailand. – Nat. Hist. Bull. Siam Soc. 37: 173-176.

Santos Guerra M dos. 1989. The chromosome number of Azima tetracantha (Salvadoraceae). – Plant Syst. Evol. 168: 83-86.

Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. – DNA Res. 6: 283-290.

Sauer H. 1933. Blüte und Frucht der Oxalidaceen, Linaceen, Geraniaceen, Tropaeolaceen und Balsaminaceen. Vergleichend-entwicklungsgeschichtliche Untersuchungen. – Planta 19: 417-481.

Saunders ER. 1923. The bractless inflorescence of the Cruciferae. – New Phytol. 22: 150-156.

Saunders ER. 1929. On a new view of the nature of the median carpels in the Cruciferae. – Amer. J. Bot. 16: 122-137.

Saunté LH. 1955. Cytogenetical studies in the Cochlearia complex. – Hereditas 41: 499-515.

Saxena V, Gupta S. 2011. Wood anatomy of the family Salvadoraceae from the Indian subcontinent with special reference to the ultrastructure of the vessel wall. – Aliso 29: 59-63.

Scheen A-C, Elven R, Brochmann C. 2002. A molecular-morphological approach solves taxonomic controversy in arctic Draba (Brassicaceae). – Can. J. Bot. 80: 59-71.

Schmickl R, Kiefer C, Dobeš C, Koch MA. 2009. Evolution of trnF(GAA) pseudogenes in cruciferous plants. – Plant Syst. Evol. 282: 229-240.

Schmidt R, Bancroft I (eds). 2011. Genetics and genomics of the Brassicaceae. Plant genetics and genomics: crops and models 9, Springer.

Schneider S. 1935. Untersuchungen über die Samenschleuder-mechanismen verschiedener Rhoeadales. – Jahrb. Wiss. Bot. 81: 663-704.

Schönfelder P. 1968. Chromosomenzahlen einiger Arten der Gattung Biscutella L. – Österr. Bot. Zeitschr. 115: 363-371.

Schranz ME, Mitchell-Olds T. 2006. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. – Plant Cell 18: 1152-1165.

Schranz ME, Lysak MA, Mitchell-Olds T. 2006. The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. – Trends Plant Sci. 11: 535-542.

Schranz ME, Song B-H, Windsor AJ, Mitchell-Olds T. 2007. Comparative genomics in the Brassicaceae: a family-wide perspective. – Curr. Opin. Plant Biol. 10: 168-175.

Schranz ME, Edger PP, Pires JC, van Dam NM, Wheat CW. 2012. Comparative genomics in the Brassicales: ancient genome duplications, glucosinolate diversification and Pierinae herbivore radiation. – In: Edwards D, Batley J, Parkin I, Kole C (eds), Genetic, genomics and breeding in crop plants: Brassica oilseeds, CRC Press, pp. 206-218.

Schraudolf H. 1969. Serotonin und Indolglucosinolate in Tovaria pendula. – Naturwissenschaften 56: 462-463.

Schraudolf H, Schmidt B, Weberling F. 1971. Das Vorkommen von “Myrosinase” als Hinweis auf die systematische Stellung der Batidaceae. – Experientia 27: 1090-1091.

Schultz SR, Jensen WA. 1968a. Capsella embryogenesis: the synergids before and after fertilization. – Amer. J. Bot. 55: 541-552.

Schultz SR, Jensen WA. 1968b. Capsella embryogenesis: the egg, zygote, and young embryo. – Amer. J. Bot. 55: 807-819.

Schulz OE. 1903. Monographie der Gattung Cardamine. – Engl. Bot. Jahrb. Syst. 32: 280-623.

Schulz OE. 1916. Neue Gattungen, Arten und Kombinationen der Brassiceen. – Engl. Bot. Jahrb. Syst. 54, Beibl. 119: 52-56.

Schulz OE. 1928. Cruciferae. – In: Werdermann E (ed), Beiträge zur Kenntnis der Flora von Chile, Notizblatt des Königl. Botanischen Gartens und Museums zu Berlin 10: 460-475.

Schulz OE. 1929a. Cheesemania, eine neue australische Cruciferengattung. – Notizbl. Bot. Gart. Mus. Berlin-Dahlem 10: 551-553.

Schulz OE. 1929b. Über Thlaspi chionophilum Spegazzini. – Notizbl. Bot. Gar. Berlin-Dahlem 10: 781-783.

Schulz OE. 1931. Einige neue Cruciferen. – Notizbl. Bot. Gart. Mus. Berlin-Dahlem 11: 224-236.

Schulz OE. 1932. Cruciferae variae. – Notizbl. Bot. Gart. Berlin-Dahlem 11: 389-392.

Schulz OE. 1933. Kurze Notizen über neue Gattungen, Sektionen und Arten der Cruciferen. – Bot. Jahrb. Syst. 66: 91-102.

Schulz OE. 1936. Cruciferae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 227-658.

Schulz P, Jensen WA. 1971. Capsella embryogenesis: the chalazal proliferating tissue. – Cell Sci. 8: 201-227.

Schweidler JH. 1905. Die systematische Bedeutung der Eiweiß- und Myrosinzellen nebst Beiträgen zu ihrer anatomisch-physiologischen Kenntnis. – Ber. Deutsch. Bot. Ges. 23: 274-285.

Schweidler JH. 1910. Die Eiweiss- oder Myrosinzellen der Gattung Arabis L. – Beih. Bot. Centralbl. 26: 422-475.

Schweidler JH. 1911. Über den Grundtypus und die systematische Bedeutung der Cruciferen-Nectarien I. – Beih. Bot. Centralbl. 27: 337-390.

Schweingruber FH. 2006. Anatomical characteristics and ecological trends in the xylem and phloem of Brassicaceae and Resedaceae. – IAWA J. 27: 419-442.

Selmeier A. 2005. Capparidoxylon holleisii nov. spec., a silicified Capparis (Capparaceae) wood with insect coprolites from the Neogene of southern Germany. – Zitteliana 45: 199-209.

Sen DN, Chawan DD, Sharma KD. 1972. Ecology of Indian desert V. On the water relationships of Salvadora species. – Flora 161: 463-471.

Sessions RA. 1997. Arabidopsis (Brassicaceae) flower development and gynoecium patterning in wild type and ETTIN mutants. – Amer. J. Bot. 84: 1179-1191.

Shakirov EV, Salzberg SL, Alam M, Shippen DE. 2008. Analysis of Carica papaya telomeres and telomere-associated proteins: insights into the evolution of telomere maintenance in Brassicales. – Trop. Plant Biol. 1: 202-215.

Shamrov II. 2002. Ovule and seed study in Capsella bursa-pastoris (Brassicaceae) with a peculiar endothelium formation pattern. – Acta Biol. Cracov. 44: 79-90.

Sharbel TF, Mitchell-Olds T. 2001. Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae). – Heredity 87: 59-68.

Sharma M. 1970. A study of brachysclereids in two members of Capparidaceae. – Proc. Indian Acad. Sci., Sect. B, 72: 47-55.

Shaw EA. 1965. Taxonomic revision of some Australian endemic genera of Cruciferae. – Trans. Roy. Soc. South Australia 89: 145-253.

Shaw EA. 1972. Revision of Stenopetalum (Cruciferae). – J. Arnold Arbor. 53: 52-75.

Sikka SM. 1940. Cytogenetics of Brassica hybrids and species. – J. Genet. 40: 441-509.

Silveira P, Paiva J, Samaniego NM. 2001. A new endemic species of Arabis L. (Cruciferae) from central Portugal. – Bot. J. Linn. Soc. 135: 299-303.

Singh B. 1944. A contribution to the anatomy of Salvadora persica L. with special reference to the origin of the included phloem. – J. Indian Bot. Soc. 23: 71-78.

Singh D. 1970. Caricaceae. – In: Proceedings of the symposium on comparative embryology of angiosperms, Indian National Science Academy, New Delhi, pp. 208-211.

Singh D, Gupta S. 1968. The seeds of the Violaceae and Resedaceae – a comparison. – J. Indian Bot. Soc. 46: 248-256.

Singh S, Das S, Geeta R. 2018. A segmental duplication in the common ancestor of Brassicaceae is responsible for the origin of the paralogs KCS6-KCS5, which are not shared with other angiosperms. – Mol. Phylogen. Evol. 126: 331-345.

Singh Raghuvanshi S, Pathak CS. 1974. Ploidy barrier in Tropaeolum majus L. – Caryologia 27: 225-235.

Sjöstedt B. 1975. Revision of the genus Cardamine L. (Cruciferae) in South and Central America. – Bot. Not. 128: 8-19.

Sleumer H. 1942. Salvadoraceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 20b, W. Engelmann, Leipzig, pp. 232-239.

Smith CG. 1974. The ultrastructural development of spherosomes and oil bodies in the developing embryo of Crambe abyssinica. – Plant 119: 125-142.

Snogerup S. 1967a. Studies in the Aegean flora VIII. Erysimum sect. Cheiranthus A. Taxonomy. – Opera Bot. 13: 1-70.

Snogerup S. 1967b. Studies in the Aegean flora VIII. Erysimum sect. Cheiranthus B. Variation and evolution in the small-population system. – Opera Bot. 14: 1-86.

Snogerup S, Gustafsson M, Bothmer R von. 1990. Brassica sect. Brassica (Brassicaceae) I. Taxonomy and variation. – Willdenowia 19: 271-365.

Sobick U. 1983. Blütenentwicklungsgeschichtliche Untersuchungen an Resedaceen unter besonderer Berücksichtigung von Androeceum und Gynoeceum. – Bot. Jahrb. Syst. 104: 203-248.

Sobrino Vesperinas E. 1988. Obtainment of some new intergeneric and interspecific hybrids between wild Brassiceae. – Candollea 43: 499-504.

Solms-Laubach H zu. 1894. Caricaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 94-99.

Sonboli A, Zehzad B, Assadi M, Azizian D. 2001. A taxonomic revision of the genera Sterigmostemum and Petiniotia in Iran. – Rostaniha 2: 53-55.

Sønderby IE, Geu-Flores F, Halkier BA. 2010. Biosynthesis of glucosinolates – gene discovery and beyond. – Trends Plant Sci. 15: 283-290.

Song KM, Osborn TC. 1992. Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. – Genome 35: 992-1001.

Song KM, Osborn TC, Williams PH. 1988a. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 1. Genome evolution of diploid and amphidiploid species. – Theor. Appl. Gen. 75: 784-794.

Song KM, Osborn TC, Williams PH. 1988b. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. – Theor. Appl. Gen. 76: 593-600.

Song KM, Osborn TC, Williams PH. 1990. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs) 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). – Theor. Appl. Gen. 79: 497-506.

Song KM, Lu P, Tang K, Osborn TC. 1995. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. – Proc. Natl. Acad. Sci. U.S.A. 92: 7719-7723.

Sooda A, Song J, Mamieson PE, Clemens J. 2011. Phase change and flowering in Pachycladon exile and isolation of LEAFY and TERMINAL FLOWER1 homologues. – New Zealand J. Bot. 49: 281-293.

Sørensen T. 1954. New species of Hierochloë, Calamagrostis and Braya. – Meddel. Grønland 136(8): 1-24.

Španiel S, Kempa M, Salmerón-Sánchez E, Fuertes-Aguilar J, Mota JF, Al-Shehbaz IA, German DA, Olšavská K, Šingliarová B, Zozomová-Lihová J, Marhold K. 2015. AlyBase: database of names, chromosome numbers, and ploidy levels of Alysseae (Brassicaceae), with a new generic concept of the tribe. – Plant Syst. Evol. 301: 2463-2491.

Sparre B. 1973. 89. Tropaeolaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 2, Swedish Natural Science Research Council, Stockholm, pp. 1-31.

Sparre B, Andersson L. 1991. A taxonomic revision of the Tropaeolaceae. – Opera Bot. 108: 1-139.

Spencer KC, Seigler DS. 1984. Cyanogenic glycosides of Carica papaya and its phylogenetic position with respect to the Violales and Capparales. – Amer. J. Bot. 71: 1444-1447.

Spooner DM. 1984. Reproductive features of Dentaria laciniata and D. diphylla (Cruciferae), and the implications in the taxonomy of the eastern North American Dentaria complex. – Amer. J. Bot. 71: 999-1005.

Spratt ER. 1932. The gynoecium of the family Cruciferae. – J. Bot. 70: 308-314.

Sprecher A. 1943. Beitrag zur Morphologie von Carica papaya L. – Ber. Schweiz. Bot. Ges. 53A: 517-549.

Stapf O. 1912. Akaniaceae: a new family of Sapindales. – Kew Bull. 9: 378-380.

Stenar H. 1925. Embryologische und zytologische Studien über Limnanthes douglasii R. Br. – Svensk Bot. Tidskr. 19: 133-152.

Stephens EL. 1910. The development of the seed coat of Carica papaya. – Ann. Bot. 24: 607-610.

Stern WL, Brizicky GK, Tamolang FN. 1963. The woods and flora of the Florida keys: Capparaceae. – Contr. U.S. Natl. Herb. 34, 2: 25-43.

Storey WB. 1976. Papaya. – In: Simmons NW (ed), Evolution of crop plants, Longman, London, pp. 21-24.

Stork AL. 1971. Seed characters in European taxa of Malcolmia R. Br. (Cruciferae). – Svensk Bot. Tidskr. 65: 283-292.

Stork AL. 1972a. Samen und Keimlinge von Malcolmia sens. lat. (Cruciferae). – Svensk Bot. Tidskr. 66: 417-436.

Stork AL. 1972b. Studies in the Aegean flora XX. Biosystematics of the Malcolmia maritima complex. – Opera Bot. 33: 1-118.

Stork AL, Wüest J. 1978. SEM studies of seed-coats in Malcolmia (Cruciferae). – Arch. Sci. Genève 31: 229-237.

Stoudt HN. 1941. The floral morphology of some of the Capparidaceae. – Amer. J. Bot. 28: 664-675.

Stout AB. 1923. Alternation of sexes and intermittent production of fruit in the spider flower (Cleome spinosa). – Amer. J. Bot. 10: 57-66.

Strid A. 1980. New species of Aethionema and Peucedanum from the Greek mountains. – Bot. Not. 133: 521-526.

Stuckey RL. 1972. Taxonomy and distribution of the genus Rorippa (Cruciferae) in North America. – Sida 4: 279-430.

Su J-X, Wang W, Zhang L-B, Chen Z-D. 2012. Phylogenetic placement of two enigmatic genera, Borthwickia and Stixis, based on molecular and pollen data, and the description of a new family of Brassicales, Borthwickiaceae. – Taxon 61: 601-611.

Subramanian D, Susheela G. 1988. Cytotaxonomical studies of South Indian Capparidaceae. – Cytologia 53: 679-684.

Sulbha K. 1957. Embryology of Brassica juncea Czern & Coss. – J. Indian Bot. Soc. 36: 292-301.

Swanepoel, W., Chase, M. W., Chistenhusz, M. J. M., Maurin, O., Forest F., van Wyk, A. E. 2020. From the frying pan: an unusual dwarf shrub from Namibia turns out to be a new brassicalean family. – Phytotaxa 439(3): 171-185.

Sweeney PW, Price RA. 2000. Polyphyly of the genus Dentaria (Brassicaceae): evidence from trnL intron and ndhF sequence data. – Syst. Bot. 25: 468-478.

Sweeney PW, Price RA. 2001. A multivariate morphological analysis of the Cardamine concatenata alliance (Brassicaceae). – Brittonia 53: 82-95.

Takahata Y, Hinata K. 1978. A description of the genetic stocks in subtribe Brassicinae by chromosome numbers and numerical characters. – Cruciferae Newsl. (EUCARPIA) 3: 47-51.

Takahata Y, Hinata K. 1983. Studies on cytodemes in subtribe Brassicinae (Cruciferae). – Tôhoku J. Agric. Res. 33: 111-124.

Takahata Y, Hinata K. 1986. A consideration of the species relationships in subtribe Brassicinae (Cruciferae) in view of cluster analysis of morphological characters. – Plant Spec. Biol. 1: 79-88.

Takahata Y, Hinata K. 1992. Comparison of species relationships in the subtribe Brassicinae based on morphology, cytogenetics and isozymes. – J. Genet. & Breed. 46: 193-198.

Tamboli AS, Yadav PB, Gothe AA, Yadav SR, Govindwar SP. 2018. Molecular phylogeny and genetic diversity of genus Capparis (Capparaceae) based on plastid DNA sequences and ISSR markers. – Plant Syst. Evol. 304: 205-217.

Tang C-S. 1971. Benzyl isothiocyanate of papaya fruit. – Phytochemistry 10: 117-131.

Tang C-S. 1973. Localization of benzyl glucosinolate and thioglucosidase in Carica papya fruit. – Phytochemistry 12: 769-773.

Tang C-S, Hamilton RA. 1976. Benzyl isothiocyanate in Cylicomorpha solmsii (Caricaceae). – Phytochemistry 15: 1767-1768.

Tang C-S, Syed MM, Hamilton RA. 1972. Benzyl isothiocyanate in the Caricaceae. – Phytochemistry 11: 2531-2533.

Tang Y. 1935. Notes on the systematic position of Bretschneideraceae as shown by its timber anatomy. – Bull. Fan Mem. Inst. Biol. 6: 153-157.

Tarutani Y, Shiba H, Iwano M, Kakizaki T, Suzuki G, Watanabe M, Isogai A, Takayama S. 2010. Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. – Nature 466: 983-986.

Tatout C, Warwick S, Lenoir A, Deragon J-M. 1999. SINE insertions as clade markers for wild crucifer species. – Mol. Biol. Evol. 16: 1614-1621.

Taylor P. 1960. 15. Resedaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 245.

Thangstad OP, Winge P, Husebye H, Bones A. 1993. The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. – Plant Mol. Biol. 23: 511-524.

Thellung A. 1906a. Die afrikanischen Lepidium-Arten. – Vierteljahrschr. Naturforsch. Ges. Zürich 51: 144-192.

Thellung A. 1906b. Die Gattung Lepidium (L.) R. Br. – Mitt. Bot. Mus. Univ. Zürich 28: 1-340.

Thulin M. 1990. A new species of Reseda from Somalia. – Kew Bull. 45: 667-669.

Thulin M. 1992. New species of Maerua and Cleome (Capparaceae) from Somalia. – Nord. J. Bot. 12: 423-426.

Thulin M. 1994. A new species of Ochradenus (Resedaceae) from southern Arabia. – Nord. J. Bot. 14: 383-384.

Thulin M, Roalson EH. 2017. Resurrection of the genus Rorida (Cleomaceae), a distinctive old world segregate of Cleome. – Syst. Bot. 42: 569-577.

Tieghem P van. 1900. Sur les Stachyuracées et les Koeberliniacées. – J. Bot. (Morot) 14: 1-12.

Tieghem P van. 1903. Sur les Batidacées. – J. Bot. (Morot) 17: 363-376.

Tiwari SC, Bouman F, Kapil RN. 1977. Ovule ontogeny in Tropaeolum majus. – Phytomorphology 27: 350-358.

Tobe H, Peng CI. 1990. The embryology and taxonomic relationships of Bretschneidera (Bretschneideraceae). – Bot. J. Linn. Soc. 103: 139-152.

Tobe H, Raven PH. 1991. The embryology and relationships of Gyrostemonaceae. – Aust. Syst. Bot. 4: 407-420.

Tobe H, Raven PH. 1992. The embryology and relationships of Bataceae. – Syst. Bot. 19: 485-496.

Tobe H, Raven PH. 1995. Embryology and relationships of Akania (Akaniaceae). – Bot. J. Linn. Soc. 118: 261-274.

Tobe H, Raven PH. 2008. Embryology of Koeberlinia (Koeberliniaceae): evidence for core-Brassicalean affinities. – Amer. J. Bot. 95: 1475-1486.

Tobe H, Takahashi M. 1995. Pollen morphology of Gyrostemonaceae, Batidaceae, and Koeberlinia. – J. Plant Res. 108: 283-288.

Tobe H, Carlquist S, Iltis HH. 1999. Reproductive anatomy and relationships of Setchellantus caeruleus (Setchellanthaceae). – Taxon 48: 277-283.

Tolmachev AI. 1957. A contribution to the history and geographical distribution of the genus Draba L. – Bot. Žurn. 42: 1446-1456. [In Russian]

Tomb AS. 1999. Pollen morphology and relationships of Setchellanthus caeruleus (Setchellanthaceae). – Taxon 48: 285-288.

Toro-Nuñez O, Mort ME, Ruiz-Ponce E, Al-Shehbaz IA. 2013. Phylogenetic relationships of Mathewsia and Schizopetalon (Brassicaceae) inferred from nrDNA and cpDNA regions: taxonomic and evolutionary insights from an Atacama Desert endemic lineage. – Taxon 62: 343-356.

Toro-Núñez O, Al-Shehbaz IA, Mort ME. 2015. Phylogenetic study with nuclear and chloroplast data and ecological niche reveals Atacama (Brassicaceae), a new monotypic genus endemic from the Andes of the Atacama Desert, Chile. – Plant Syst. Evol. 301: 1377-1396.

Troll W. 1966. Caricaceae. – In: Bericht der Kommission für biologische Forschung, Jahrb. Akad. Wiss. Lit. Mainz 1965, pp. 110-133.

Uphof JC. 1930. Biologische Beobachtungen an Batis maritima L. – Österr. Bot. Zeitschr. 79: 355-367.

Urban L, Bailey CD. 2013. Phylogeny of Levenworthia and Selenia (Brassicaceae). – Syst. Bot. 38: 723-736.

Urbanska KM, Hurka H, Landolt E, Neuffer B, Mummenhoff K. 1997. Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, central Switzerland – biosystematic and molecular evidence. – Plant Syst. Evol. 204: 233-256.

Valdés Bermejo E, Kaercher W.1984. Dos nuevos táxones ibéricos de género Reseda L., sect. Leucoreseda DC. – An. Jard. Bot. Madrid 41: 198-201.

Vanderpool SS, Elisens WJ, Estes JR. 1991. Pattern, tempo, and mode of evolutionary and biogeographic divergence in Oxystylis and Wislizenia (Capparaceae). – Amer. J. Bot. 78: 925-937.

Vassilyeva AN. 1969. Critical notes on the genus Parrya R. Br. – Notul. Syst. Herb. Inst. Bot. Acad. Sci. KazSSR 6: 27-31.

Vaughan JG. 1956. The seed coat structure of Brassica integrifolia (West) O. E. Schulz var. carinata (A. Br.). – Phytomorphology 6: 363-367.

Vaughan JG. 1977. A multidisciplinary study of the taxonomy and origin of Brassica crops. – BioScience 27: 35-40.

Vaughan JG, Denford KE. 1968. An acrylamide gel electrophoretic study of the seed proteins of Brassica and Sinapis species with special reference to their taxonomic value. – J. Exp. Bot. 19: 724-732.

Vaughan JG, Waite A. 1967a. Comparative electrophoretic studies of the seed proteins of certain species of Brassica and Sinapis. – J. Exp. Bot. 18: 100-109.

Vaughan JG, Waite A. 1967b. Comparative electrophoretic studies of the seed proteins of certain amphidiploid species of Brassica. – J. Exp. Bot. 18: 269-276.

Vaughan JG, Whitehouse JM. 1971. Seed structure and taxonomy of the Cruciferae. – Bot. J. Linn. Soc. 64: 383-409.

Vaughan JG, Gordon EI, Robinson D. 1968. The identification of myrosinase after the electrophoresis of Brassica and Sinapis seed proteins. – Phytochemistry 7: 1345-1348.

Vaughan JG, McLeod AJ, Jones BMG (eds). 1976. The biology and chemistry of the Cruciferae. – Academic Press, London, New York, San Francisco.

Vaughan JG, Phelan JR, Denford KE. 1976. Seed studies in the Cruciferae. – In: Vaughan JG, McLeod AJ, Jones BMG (eds), The biology and chemistry of the Cruciferae, Academic Press, London, New York, San Francisco.

Verdcourt B. 1958. Moringaceae: a correction. – Kew Bull. 13: 385.

Verdcourt B. 1968. Salvadoraceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-9.

Verdcourt B. 1985. A synopsis of the Moringaceae. – Kew Bull. 48: 1-23.

Verdcourt B. 1986. Moringaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-12.

Veselova PV. 2002. To the problem of the taxonomic closeness of Erysimum L. and Syrenia Andrz. – In: Problems of botany of South Siberia and Mongolia. Proceedings of the 1st International Scientific-Practical Conference (Barnaul, November 26-28, 2002), Barnaul, p. 34. [In Russian]

Vesperina ES. 1997. Interfertility in the genus Moricandia DC. – Lagascalia 19: 839-844.

Vezey EL, Skvarla JJ, Vanderpool SS. 1991. Characterizing pollen sculpture of three closely related Capparaceae species using quantitative image analysis of scanning electron micrographs. – In: Blackmore S, Barnes SH (eds), Pollen and spores, Syst. Assoc. Spec. Vol. 44, pp. 291-300.

Vickery AR. 1983. 110. Salvadoraceae. – In: Launert E (ed), Flora Zambesiaca 7 (Part 1), Flora Zambesiaca Managing Committee, London, pp. 374-380.

Viegi L, Pagni AM, Corsi G, Renzoni GC. 1976. Il sospensore embrionale nelle Cruciferae I. Morfologia e struttura. – Giorn. Bot. Ital. 110: 347-357.

Villiers J-F. 1973. Pentadiplandraceae. – In: Aubréville A, Leroy J-F (eds), Flore du Cameroun 15, Muséum National d’Histoire Naturelle, Paris, pp. 163-167.

Vioque J, Pastor JE, Alaiz M, Vioque E. 1994. Chemotaxonomic study of seed glucosinolate composition in Coincya Rouy (Brassicaceae). – Bot. J. Linn. Soc. 116: 343-350.

Vision TJ, Brown DG, Tanksley SD. 2000. The origins of genomic duplications in Arabidopsis. – Science 290: 2114-2117.

Voelckel C, Mirzaei M, Reichelt M, Luo L, Pascovici D, Heenan PB, Schmidt S, Janssen B, Haynes PA, Lockhart PJ. 2010. Transcript and protein profiling identify candidate gene sets of adaptive divergence in New Zealand Pachycladon. – BMC Evol. Biol. 10: 151; doi: 10.1186/1471-2148-10-151.

Voytenko VF. 1968. The forms of heterocarpy in the Brassicaceae Burn. family and the evaluation of their evolutionary significance. – Bot. Žurn. 53: 1428-1439. [In Russian]

Voznesenskaya EV, Koteyeva NK, Chuong DX, Ivanova AV, Barroca J, Craven LA, Edwards GE. 2007. Physiological, anatomical and biochemical characterisation of photosynthetic types in the genus Cleome (Cleomaceae). – Funct. Plant Biol. 34: 247-267.

Vuillemin P. 1915. Différences essentielles entre la Capucine et les Géraniacées. – Compt. Rend. Acad. Sci. Paris 161: 297-301.

Walker RI. 1947. Megasporogenesis and embryo sac development in Tropaeolum majus L. – Bull. Torrey Bot. Club 74: 240-249.

Warwick SI. 1993. Guide to the wild germplasm of Brassica and allied crops IV. Wild species in the tribe Brassiceae (Cruciferae) as sources of agronomic traits. – Agric. Can. Res. Branch Techn. Bull. 1993-17E: 1-19.

Warwick SI, Al-Shehbaz IA. 1998. Generic evaluation of Boleum, Euzomodendron, and Vella (Brassicaceae). – Novon 8: 321-325.

Warwick SI, Al-Shehbaz IA. 2003. Nomenclatural notes on Sisymbrium (Brassicaceae). – Novon 13: 265-267.

Warwick SI, Al-Shehbaz IA. 2006. Brassicaceae: chromosome number index and database on CD-Rom. – Plant Syst. Evol. 259: 237-248.

Warwick SI, Anderson KJ. 1993. Guide to the wild germplasm of Brassica and allied crops II. Chromosome numbers in the tribe Brassiceae (Cruciferae). – Agric. Can. Res. Branch Techn. Bull. 1993-15E: 1-22.

Warwick SI, Black LD. 1991. Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae) – chloroplast genome and cytodeme congruence. – Theor. Appl. Gen. 82: 81-92.

Warwick SI, Black LD. 1993a. Molecular relationships in subtribe Brassicinae (Cruciferae, tribe Brassiceae). – Can. J. Bot. 71: 906-918.

Warwick SI, Black LD. 1993b. Guide to the wild germplasm of Brassica and allied crops III. Interspecific and intergeneric hybridizations in the tribe Brassiceae (Cruciferae). – Agric. Can. Res. Branch Techn. Bull. 1993-16E: 1-31.

Warwick Si, Black LD. 1994. Evaluation of the subtribes Moricandiinae, Savignyinae, Vellinae, and Zillinae (Brassicaceae, tribe Brassiceae) using chloroplast DNA restriction site variation. – Can. J. Bot. 72: 1692-1701.

Warwick SI, Black LD. 1997a. Phylogenetic implications of chloroplast DNA restriction site variation in subtribes Raphaninae and Cakilinae (Brassicaceae, tribe Brassiceae). – Can. J. Bot. 75: 960-973.

Warwick SI, Black LD. 1997b. Molecular phylogenies from theory to application in Brassica and allies (tribe Brassiceae, Brassicaceae). – Opera Bot. 132: 159-168.

Warwick SI, Francis A. 1994. Guide to the wild germplasm of Brassica and allied crops V. Life history and geographical data for wild species in the tribe Brassiceae (Cruciferae). – Agric. Can. Res. Branch Techn. Bull. 1994-2E: 1-61.

Warwick SI, Hall JC. 2009. Phylogeny of Brassica and wild relatives. – In: Gupta S (ed), Biology and breeding of crucifers, CRC, Boca Raton, Florida, pp. 19-36.

Warwick SI, Sauder CA. 2005. Phylogeny of the tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. – Can. J. Bot. 83: 467-483.

Warwick SI, Black LD, Aguinagalde I. 1992. Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae) – chloroplast DNA variation in the genus Diplotaxis. – Theor. Appl. Gen. 83: 839-850.

Warwick SI, Al-Shehbaz IA, Price RA, Sauder CA. 2002. Phylogeny of Sisymbrium (Brassicaceae) based on ITS sequences of nuclear ribosomal DNA. – Can. J. Bot. 80: 1002-1017.

Warwick SI, Al-Shehbaz IA, Sauder C, Harris JG, Koch M. 2004. Phylogeny of Braya and Neotorularia (Brassicaceae) based on nucler ribosomal internal transcribed spacer and chloroplast trnL intron sequences. – Can. J. Bot. 82: 376-392.

Warwick SI, Al-Shehbaz IA, Sauder C, Murray DF, Mummenhoff K. 2004. Phylogeny of Smelowskia and related genera (Brassicaceae) based on nuclear ITS DNA and chloroplast trnL intron sequences. – Ann. Missouri Bot. Gard. 91: 99-123.

Warwick SI, Al-Shehbaz IA, Sauder C. 2005. Phylogeny and cytological diversity of Sisymbrium (Brassicaceae). – In: Sharma AK, Sharma A (eds), Plant genome: biodiversity and evolution 1C: phanerogams (angiosperms – dicotyledons), Science Publ., Enfield, New Hampshire.

Warwick SI, Al-Shehbaz IA, Sauder CA. 2006. Phylogenetic position of Arabis arenicola and generic limits of Eutrema and Aphragmus (Brassicaceae) based on sequences of nuclear ribosomal DNA. – Can. J. Bot. 84: 269-281.

Warwick SI, Francis A, Al-Shehbaz IA. 2006. Brassicaceae: species checklist and database on CD-Rom. – Plant Syst. Evol. 259: 249-258.

Warwick SI, Sauder CA, Al-Shehbaz IA. 2006. Molecular phylogeny, morphology and cytological diversity of Sisymbrium (Brassicaceae). – In: Sharma AK, Sharma A (eds), Plant genome biodiversity and evolution I, C: Phanerogams (Angiosperms-Dicotyledons), Science Publ. Enfield, New Hampshire, pp. 218-250.

Warwick SI, Sauder CA, Al-Shehbaz IA, Jacquemoud F. 2007. Phylogenetic relationships in the tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. – Ann. Missouri Bot. Gard. 94: 56-78.

Warwick SI, Sauder CA, Al-Shehbaz IA. 2008. Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. – Can. J. Bot. 86: 315-336.

Warwick SI, Sauder CA, Mayer MS, Al-Shehbaz IA. 2009. Phylogenetic relationships in the tribes Schizopetaleae and Thelypodieae (Brassicaceae) based on nuclear ribosomal ITS region and chloroplast ndhF DNA sequences. – Botany 87: 961-985.

Warwick SI, Francis A, Gugel RK. 2009. Guide to the wild germplasm. Brassica and allied crops (tribe Brassiceae, Brassicaceae). – http://www.brassica.info/.

Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA. 2010. Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. – Plant Syst. Evol. 285: 209-232.

Warwick SI, Sauder CA, Al-Shehbaz IA. 2011. Systematic position of Ivania, Scoliaxon, and Phravenia (Brassicaceae). – Taxon 60: 1156-1164.

Watson JM, Flores AR. 2010a. Tropaeolum section Chilensia: an overview. – Curtis’s Bot. Mag. 27: 197-234.

Watson JM, Flores AR. 2010b. A synopsis of perennial tuberous Tropaeolum L. section Chilensia Sparre (Tropaeolaceae), including validation of three subsections and a new, reclassified natural hybrid. – Herbertia 64: 150-281.

Weber A. 1973. Stipularbildungen bei Dentaria und ihr Wert für die morphologische Deutung der Specherschuppen als Phyllodien. – Österr. Bot. Zeitschr. 121: 107-119.

Weberling F. 1968: Über die Rudimentärstipeln der Resedaceae. – Acta Bot. Neerl. 17: 360-376.

Weberling F. 1974. Weitere Untersuchungen zur Morphologie des Unterblattes bei den Dikotylen VII. Polygalales; VIII. Koeberlinia Zucc. – Beitr. Biol. Pflanzen 50: 277-289.

Weberling F, Müller L. 1980. Persistierende Blütensporne bei Tropaeolum. – Flora 169: 295-298.

Weberling F, Uhlarz H. 1983. Zur Morphologie und Morphogenese der Blüte von Cadaba juncea (Sparm.) Harv. (Capparidaceae). – Beitr. Biol. Pflanzen 58: 267-281.

Wege JA, Lepschi BJ. 2007. A new species of Arabidella (Brassicaceae) from Western Australia. – Nuytsia 17: 453-458.

Weigend M, Förther H. 1999. Two new species of Sisymbrium (Brassicaceae) from coastal Peru. – Brittonia 51: 119-123.

Wel H van der; Larson G, Hladik A, Hellekant G, Glaser D. 1989. Isolation and characterization of pentadin, the sweet principles of Pentadiplandra brazzeana Baillon. – Chem. Senses 14: 75-79.

Werker E, Vaughan JG. 1974. Anatomical and ultrastructural changes in aleurone and myrosin cells of Sinapis alba during germination. – Planta 116: 243-255.

Widmer A, Baltisberger M. 1999a. Extensive intrspecific chloroplast DNA (cpDNA) variation in the alpine Draba aizoides L. (Brassicaceae): haplotype relationships and population structure. – Mol. Ecol. 8: 1405-1415.

Widmer A, Baltisberger M. 1999b. Molecular evidence for allopolyploid speciation and a single origin of the narrow endemic Draba ladina (Brassicaceae). – Amer. J. Bot. 86: 1282-1289.

Wild H. 1960. 14. Capparidaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 194-245.

Williams K, Chayamarit K. 2005. A revised generic key to the Capparaceae of Thailand with a description of Neothorelia laotica Gagnep. – Thai For. Bull. (Bot.) 33: 228-230.

Willis CG, Hall JC, Rubio de Casas R, Wang TY, Donohue K. 2014. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae). – Ann. Bot. 114: 1675-1686.

Wills AB. 1966. Meiotic behaviour in the Brassiceae. – Caryologia 19: 103-116.

Windham MD. 2000. Chromosome counts and taxonomic notes on Draba (Brassicaceae) of the Intermountain West 1: Utah and vicinity. – Madroño 47: 21-28.

Windham MD. 2004. Chromosome counts and taxonomic notes on Draba (Brassicaceae) of the Intermountain West 2: Idaho, Nevada and vicinity. – Madroño 50: 221-231.

Windham MD, Al-Shehbaz IA. 2006. New and noteworthy species of Boechera (Brassicaceae) I: sexual diploids. – Harvard Pap. Bot. 11: 61-88.

Windham MD, Al-Shehbaz IA. 2007a. New and noteworthy species of Boechera (Brassicaceae) II: apomictic hybrids. – Harvard Pap. Bot. 11: 257-274.

Windham MD, Al-Shehbaz IA. 2007b. New and noteworthy species of Boechera (Brassicaceae) III: additional sexual diploids and apomictic hybrids. – Harvard Pap. Bot. 12: 235-257.

Winge Ö. 1940. Taxonomic and evolutionary studies in Erophila based on cytogenetic investigations. – Comp. Rend. trav. Lab. Carlsberg, sér. Physiol. 23: 41-74.

Woodson RE. 1948. Gynandropsis, Cleome, and Podandrogyne. – Ann. Missouri Bot. Gard. 35: 139-147.

Woycicki MZ. 1907. Über den Bau des Embryosackes bei Tropaeolum majus. – Bull. Internat. Acad. Sci. Cracovie 1907: 550-557.

Wroblewski T, Coulibaly S, Sadowski J, Quiros CF. 2000. Variation and phylogenetic utility of the Arabidopsis thaliana rps2 homolog in various species of the tribe Brassiceae. – Mol. Phylogen. Evol. 16: 440-448.

Wunderlich R. 1991. Zur Frage nach der systematischen Stellung der Limnanthaceae. – Stapfia 25: 3-59.

Xue J, Lenman M, Falk A, Rask L. 1992. The glucosinolate-degrading enzyme myrosinase in Brassicaceae in encoded by a gene family. – Plant Mol. Biol. 18: 387-398.

Xue J, Jørgensen M, Pihlgren U, Rask L. 1995. The myrosinase gene family in Arabidopsis thaliana: gene organization expression and evolution. – Plant Mol. Biol. 27: 911-922.

Yanagino T, Takahata Y, Hinata K. 1987. Chloroplast DNA variations among diploid species in Brassica and allied genera. – Jap. J. Genet. 62: 119-125.

Yang D-Q, Hu C-M. 1985. The chromosomes of Bretschneidera Hemsl. – Notes Roy. Bot. Gard. Edinb. 42: 347-349.

Yang Y-W, Lai K-N, Tai P-Y, Ma D-P, Li W-H. 1999. Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis, and allied genera based on the internal transcribed spacer region of 18S-25S rDNA. – Mol. Phylogen. Evol. 13: 455-462.

Yang Y-W, Tai P-Y, Chen Y, Li W-H. 2002. A study of the phylogeny of Brassica rapa, B. nigra, Raphanus sativus, and their related genera using noncoding regions of chloroplast DNA. – Mol. Phylogen. Evol. 23: 268-275.

Yarnell SH. 1956. Cytogenetics of the vegetable crops II. Crucifers. – Bot. Rev. 22: 81-166.

Yen C. 1959. On a new view of carpel morphology in Brassica. – Acta Bot. Sin. 8: 271-288.

Yıldırımlı Ş. 2002. Two new species of Draba L. (Brassicaceae) from Turkey, D. terekemensis and D. narmanensis. – Ot 7: 1-6.

Yoffe MD. 1952. On the occurrence of chlorophyll in the endosperm of Cruciferae. – Dokl. Akad. Nauk SSSR 84: 473-476. [In Russian]

Yue J-P, Gu Z-J, Al-Shehbaz IA, Sun H. 2004. Cytological studies on the Sino-Himalayan endemic Solms-laubachia (Brassicaceae) and two related genera. – Bot. J. Linn. Soc. 145: 77-86.

Yue J-P, Sun H, Al-Shehbaz IA, Li J-H. 2006. Support for an expanded Solms-laubachia (Brassicaceae): evidence from sequences of chloroplast and nuclear genes. – Ann. Missouri Bot. Gard. 93: 402-411.

Yue J-P, Sun H, Li J-H, Al-Shehbaz IA. 2008. A synopsis of an expanded Solms-laubachia (Brassicaceae), and the description of four new species from western China. – Ann. Missouri Bot. Gard. 95: 520-538.

Yue J-P, Sun H, Baum DA, Li J-H, Al-Shehbaz IA, Ree R. 2009. Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. – J. Syst. Evol. 47: 402-415.

Zhao B, Liu L, Tan D, Wang J. 2010. Analysis of phylogenetic relationships of Brassicaceae species based on Chs sequences. – Biochem. Syst. Ecol. 38: 731-739.

Zhao Z, Zhang W, Stanley BA, Assmann SM. 2008. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. – Plant Cell 20: 3210-3226.

Zohary M. 1948a. Carpological studies in Cruciferae. – Palestine J. Bot. (Jerusalem) 4: 158-165.

Zohary M. 1948b. Follicular dehiscence in Cruciferae. – Lloydia 11: 226-228.

Zohary M. 1960. The species of Capparis in the Mediterranean and the Near Eastern countries. – Bull. Res. Council Israel 8D. 49-64.

Zozomová-Lihová J, Marhold K, Španiel S. 2014. Taxonomy and evolutionary history of Alyssum montanum (Brassicaceae) and related taxa in southwestern Eruope and Morocco: diversification driven by polyploidy, geographic and ecological isolation. – Taxon 63: 562-591.

Zuberi MI, Lewis D. 1988. Gametophytic-sporophytic incompatibility in the Crucerae Brassica campestris. – Heredity 61: 367-377.

Žukova PG, Petrovsky VV. 1984. A cytotaxonomical study of some species of the family Brassicaceae in northern Asia. – Bot. Žurn. 69: 236-240. [In Russian]

Zunk K, Mummenhoff K, Hurka H. 1993. Chloroplast DNA restriction site variation in the Brassicaceae. – Plant Mol. Evol. Newsl. 3: 40-44.

Zunk K, Mummenhoff K, Koch M, Hurka H. 1996. Phylogenetic relationships of Thlaspi s.l. (subtribe Thlaspidinae, Lepidieae) and allied genera based on chloroplast DNA restriction-site variation. – Theor. Appl. Gen. 92: 375-381.

Zunk K, Mummenhoff K, Hurka H. 1999. Phylogenetic relationships in tribe Lepidieae (Brassicaceae) based on chloroplast DNA restriction site variation. – Can. J. Bot. 77: 1504-1512.