”The COM clade”


[Celastrales+[Oxalidales+Malpighiales]]


MALPIGHIALES Juss. ex Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 225. Jan-Apr 1820 [’Malpighiaceae’]

Habit Bisexual, monoecious or dioecious (rarely andromonoecious, gynomonoecious, polygamomonoecious, androdioecious, or polygamodioecious), evergreen or deciduous trees, shrubs, suffrutices or lianas, perennial, biennial or annual herbs (sometimes climbing).

Vegetative anatomy Phellogen ab initio epidermal or subepidermal, pericyclic, or outer- or inner-cortical. Secondary lateral growth normal, anomalous (from cylindrical cambium or several concentric cambia) or absent. Vessel elements with simple or scalariform (sometimes reticulate) perforation plates; lateral pits alternate, scalariform or opposite, simple or bordered pits. Vestured pits sometimes present. Imperforate tracheary xylem elements tracheids, fibre tracheids or libriform fibres with simple or bordered pits, septate or non-septate (often also vasicentric tracheids). Wood rays uniseriate or multiseriate, usually heterocellular (rarely homocellular), or absent. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, vasicentric, aliform, lozenge-aliform, winged-aliform, confluent, scalariform, reticulate, unilateral, or banded, or absent. Intraxylary phloem sometimes present. Sieve tube plastids Ss, S0, Pcs or Pc type. Nodes 1:1, unilacunar with one leaf trace, 3:3, trilacunar with three traces, or ≥5:≥5, multilacunar with five or more traces. Schizogenous secretory cells, canals or cavities or glands with resin, balsam or other secretions often abundant. Laticifers sometimes present. Heartwood often with gum-like substances. Silica bodies sometimes present. Cristarque cells sometimes present. Calciumoxalate as prismatic, rhomboidal or acicular crystals, crystal sand, druses, styloids or other types.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, furcate, T-shaped, malpighiaceous hairs, stellate, candelabra-shaped, dendritic, lepidote or peltate, or absent; glands and glandular hairs sometimes present; stinging hairs occasionally present.

Leaves Usually alternate (spiral or distichous) or opposite (rarely verticillate), pinnately or palmately compound, or simple and entire or lobed, with conduplicate, supervolute, convolute, involute, revolute, curved or flat ptyxis (rarely absent). Stipules interpetiolar, intrapetiolar or petiolar, free or connate, often rudimentary or absent (sometimes modified into spines or hair-like); leaf sheath absent. Petiole often articulated, sometimes geniculate. Petiole vascular bundle transection arcuate, annular or complex; petiole sometimes with lateral flank bundles. Venation pinnate or palmate, eucamptodromous, brochidodromous, reticulodromous or parallelodromous (rarely acrodromous, actinodromous or campylodromous). Stomata anomocytic, paracytic or anisocytic (rarely cyclocytic or tetracytic). Cuticular wax crystalloids usually as rosettes of platelets (Fabales type; sometimes absent). Domatia as pits or hair tufts (rarely myrmecodomatia). Epidermis with or without mucilaginous idioblasts. Mesophyll often with sclerenchymatous idioblasts. Leaf margin or leaflet margins entire, crenate or serrate; teeth with one vein proceeding into congested caducous tooth apex; glandular teeth, salicoid or violoid, rarely present on leaf margin.

Inflorescence Terminal or axillary, panicle, fascicle, thyrsoid, corymb, raceme-, spike-, catkin- or umbel-like cymose, or racemes, spikes or catkins (sometimes pseudanthium), or flowers solitary axillary. Bracts and/or floral prophylls (bracteoles) sometimes absent.

Flowers Actinomorphic or zygomorphic. Pedicel often articulated. Hypanthium rarely present. Usually hypogyny (rarely epigyny or half epigyny). Sepals (two or) three to five (to c. 20), with imbricate, valvate, decussate or open (sometimes truncate) aestivation, usually whorled (rarely spiral and indistinctly separate from petals), free or connate at base. Petals (two to) four to 15, usually whorled (rarely spiral and indistinctly separate from sepals), with imbricate, valvate, contorted, involute, decussate or crumpled (rarely cochlear or open) aestivation, usually clawed, usually free (sometimes more or less connate, or absent). Corona sometimes present at petal bases. Nectaries at filament bases or absent. Disc slightly developed or absent (nectariferous disc sometimes extrastaminal, lobate or cupular, usually annular).

Androecium Stamens one to more than 750, usually in one or more whorls. Filaments free or more or less connate, often in one or three fascicles, usually free from tepals (sometimes epipetalous). Anthers basifixed or dorsifixed, usually non-versatile, usually tetrasporangiate (rarely disporangiate), usually introrse (sometimes extrorse, rarely latrorse), usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pores). Tapetum usually secretory (rarely amoeboid-periplasmodial). Staminodia one to more than 50, extrastaminal or intrastaminal, or absent.

Pollen grains Microsporogenesis usually simultaneous (rarely successive). Pollen grains (2–)3(–6)-colpor(oid)ate, tri- to pentacolp(oid)ate or tetra- to polyporate (rarely syncolpate or inaperturate), usually shed as monads (sometimes tetrads), usually bicellular (sometimes tricellular) at dispersal. Exine tectate or semitectate (rarely intectate), with columellate or granular infratectum, perforate, reticulate, microreticulate, or striate, rugulate, fossulate, foveolate, scabrate, verrucate, spinulate, echinate, retipilate, psilate or smooth.

Gynoecium Pistil composed of two to ten (to 20) usually connate carpels. Ovary usually superior (rarely inferior or semi-inferior), unilocular to quinquelocular (to 20-locular). Style single, simple, or stylodia two to five (to more than twelve), usually free, or absent; style sometimes unifacial. Stigma one, capitate to peltate, or stigmas two to five, capitate, punctate or truncate, papillate, usually Dry (sometimes Wet) type. Pistillodium usually absent (male flowers sometimes with pistillodium).

Ovules Placentation axile, apical, subbasal or parietal (rarely laminar). Ovules one to more than 50 per carpel, anatropous or hemianatropous (sometimes amphitropous, orthotropous, or anacampylotropous), ascending, horizontal or pendulous, apotropous or epitropous, usually bitegmic, usually weakly crassinucellar or incompletely tenuinucellar. Micropyle bistomal or endostomal (sometimes exostomal). Funicular or placental obturator sometimes present. Archespore usually unicellular (rarely bicellular or tricellular). Nucellar cap or nucellar beak sometimes present. Megagametophyte usually monosporous, Polygonum type (sometimes tetrasporous, 16-nucleate, Penaea type, or disporous, Allium type, etc.). Antipodal cells sometimes proliferating, sometimes absent. Endosperm development ab initio nuclear. Endosperm haustoria chalazal or absent. Embryogenesis usually solanad (sometimes onagrad or asterad, rarely piperad or caryophyllad).

Fruit A loculicidal and/or septicidal capsule, berry, drupe, nut, or schizocarp (divided into two to five nut-like, samaroid or drupaceous mericarps; rarely a secondary syncarp).

Seeds Aril or carunculus sometimes present. Seed coat testal, exotegmic or endotegmic (usually exotegmic). Testa sometimes vascularized, sometimes multiplicative. Sarcotesta sometimes present. Exotesta sometimes palisade. Mesotesta and/or endotesta sometimes lignified and/or sclerenchymatous. Tegmen sometimes multiplicative. Exotegmen and/or endotegmen often fibrous or lignified (sometimes palisade). Perisperm not developed. Endosperm copious or sparse, oily, or absent. Embryo large or small, straight or curved (rarely hook-shaped, spirally twisted or circinate), usually well differentiated, oily, with or without chlorophyll. Cotyledons two (to four). Germination phanerocotylar or cryptocotylar.

Cytology x = 5–15, 17, 19, 21, 23

DNA Plastid gene rps16 often entirely or partially(lost in Passifloraceae, Violaceae, Salicaceae and Turneraceae, and also in some Linaceae and Malpighiaceae. Plastid gene atpF lost several times. Plastid gene infA lost/defunct. Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), flavones, flavone-C-glycosides, afzelechin, biflavonoids, biflavanoids, biflavonoyls, trihydroxyflavonoids, flavonoid sulphates, cyanidin, cucurbitacins and other triterpenes, dammaranes, phorbole ester diterpenes, oleanolic acid derivatives, ellagic acid, methylated ellagic acids, gallic acid, non-hydrolyzable tannins (ellagitannins: geraniin, mallotussinic acid), condensed tannins, tannins with proanthocyanidins and catechin, proanthocyanidins (prodelphinidins), p-coumaric acid, caffeic acid, chlorogenic acid, cinnamic acid derivatives, tropane (hygrolinic) alkaloids (tropane-3α and tropane-3β-ols, tropacocaine, scopolamine oxides, hydroxytropines, teloidines, ecgonines, norecgonines, phyllalbine, oxytrapanes, brugine, etc.), indole alkaloids, pyrrolizidine alkaloids and other alkaloids (securinine, phyllantine, phyllochrisine, etc.), triterpene saponins, tyrosine-derived cyanogenic compounds, phenol glycosides (salicin, populin etc.), cyclopentenoid (cyclopentenylic) cyanogenic glycosides (gynocardin) and/or cyclopentenylic fatty acids, cyclopentenoid cyanhydrin glycosides derived from non-protein amino acid 2-(2-cyclopentenyl)glycine (in families near Achariaceae), xanthones (euxanthone, bixanthones, macluraxanthone, mangiferin, norathyriol, and anthraquinone xanthones), polyacetate-derived anthraquinones and arthroquinones, anthraquinones (vismiones etc.), hypericin, pseudohypericin, arbutin, emodin derivatives, biemodyles and closely allied compounds, benzophenones, acetophenones, anthrones, naphthodianthrones, coumarin derivatives substituted at position 4, syringaresinol, ferulic acid, phytosterols (sitosterol, stigmasterol), ethereal oils, hyperforin, picrotoxans, myo-inisitol, and nigracin present. Glucosinolates, benzylisoquinoline alkaloids and fluoroacetic acid rare.

Systematics Malpighiales are possibly sister-group to Oxalidales.

The phylogeny within Malpighiales is highly unresolved (Korotkova & al. 2009; Wurdack & Davis 2009). Soltis & al. (2011) present a fully resolved tree, yet with most of the basal nodes weakly supported.

The clade [Achariaceae+[[Violaceae+[Passifloraceae+[Malesherbiaceae+Turneraceae]]]+ [Lacistemataceae+Salicaceae]+Goupiaceae]] have the following potential synapomorphies (Stevens 2001 onwards): ray cells crystalliferous; sieve tubes with non-dispersive protein bodies; cuticular waxes usually absent; pedicels articulated; nectariferous tissue present; stamens as many as sepals, antesepalous; median carpel abaxial; placentation parietal, with raised placentae; aril present; endotegmen persistent; and endosperm oily, persistent. Achariaceae, Malesherbiaceae, Turneraceae, and Passifloraceae often have some kind of corona or scales on the petals; and cyclopentenoid cyanogenic glycosides and/or cyclopentenylic fatty acids.

The clade [Passifloraceae+[Turneraceae+Malesherbiaceae]] has the following advanced features (Stevens 2001 onwards): leaf teeth with vein proceeding to opaque caducous apex; presence of colleters; sepals and petals together forming tube; stamens five, antesepalous; stylodia well developed; presence of funicular aril; endotestal cells large; exotegmen palisade; endotegmen persistent; and presence of cyclopentenoid cyanogenic glycosides and/or cyclopentenyl fatty acids. Turneraceae and Malesherbiaceae share the characters: leaves spiral; micropyle bistomal; exotestal cells arranged in lines; and x = 7. Moreover, Lacistemataceae and Salicaceae share the synapomorphies: small flowers; anthers ellipsoid to subglobose; and copious endosperm.

Lophopyxidaceae and Putranjivaceae have the following characteristics in common: stomata paracytic; stylar branches short or absent; placentation apical; ovules two per carpel; and fruit single-seeded.

The clade [Ctenolophonaceae+[Erythroxylaceae+Rhizophoraceae]] is characterized by: opposite leaves; stipules interpetiolar, enclosing terminal bud; articulated pedicels; extrastaminal nectary; ten stamens, of two different lengths; basifixed anthers, connate at base; postgenitally fused carpels; capitate to lobate stigmas, papillate; placentation apical; ovules two per carpel, collateral, pendulous, epitropous; megasporangium laterally thin, disintegrating; presence of endothelium; presence of placental obturator; sepals persistent in fruit; seed coat also exotestal; and presence of endosperm.

Erythroxylaceae and Rhizophoraceae share the synapomorphies, according to Stevens (2001 onwards): sieve tube plastids with protein crystalloids; presence of abundant mucilage cells; leaves with involute ptyxis; presence of colleters; stomata paracytic; inflorescence cymose; sepals with valvate aestivation, postgenitally fused; petals clawed, with conduplicate aestivation, enclosing stamen(s); antepetalous stamens longer than antesepalous stamens; median carpel adaxial; style somewhat impressed; inner integument approx. six cell layers thick; fruit a septicidal capsule; presence of aril; exotestal cells enlarged, thick-walled, tanniniferous; endosperm starchy; embryo with chlorophyll; presence of tropane (hygroline) and pyrrolidine alkaloids; and presence of non-hydrolyzable tannins.

The clade [[Clusiaceae+Bonnetiaceae]+[Calophyllaceae+[Hypericaceae+Podostemaceae]]] is characterized by: vessel elements with simple perforation plates; nodes unilacunar with one leaf trace; presence of secretory ducts; presence of schizogenous cavities; leaves with colleters; absence of stipules; stomata paracytic; leaf margin entire; inflorescence cymose; petals with contorted aestivation; absence of nectary; stamens numerous, often fasciculate, with antepetalous fascicles; carpels antesepalous or median carpel adaxial; stigma papillate; ovules numerous per carpel; micropyle bistomal; fruit a septicidal or septifragal capsule; anticlinal exotegmic cell walls sinuous, low, lignified; endosperm scarce or absent; embryo fusiform; and presence of flavonols, flavones, biflavonoids, and abundant xanthones. The clade [Calophyllaceae+[Hypericaceae+Podoste-maceae]] has leaves with gland dots or lines.

The clade [Centroplacaceae+[Elatinaceae+Malpighiaceae]] has fruits with persistent sepals. Malpighiaceae and Elatinaceae have the following potential synapomorphies in common: vessel elements with simple perforation plates; sieve tube plastids without starch and protein inclusions; leaves opposite (or verticillate); inflorescence cymose; flowers inverted; absence of nectary; when three carpels, then median carpel adaxial; fruit a septifragal capsule, with persistent calyx; endosperm scarce; and x = 6.

Ochnaceae, Medusagynaceae and Quiinaceae share the characters: presence of vestured pits; presence of cristarque cells; presence of mucilage cells and/or mucilage canals; leaves with secondary and tertiary venation well developed; petals with contorted aestivation; absence of nectary; and ovules tenuinucellate. Medusagyne and Quiinaceae have: separate styloids; well developed ovary roof; expanded stigma; and often two ovules per carpel. Moreover, Ochnaceae and Medusagyne have medullary vascular bundles.

The clade [Peraceae+[Rafflesiaceae+Euphorbiaceae]] has the following potential synapomorphies (Stevens 2001 onwards): vessel elements with simple perforation plates; flowers small, unisexual; carpels three; placentation apical; ovule one per carpel, pendulous, epitropous; presence of nucellar cap (unknown in Peraceae); stylodia separate; fruit a septicidal capsule or schizocarp, also splitting from columella and loculicidally; exocarp/mesocarp often separating from endocarp; seeds large; presence of micropylar carunculus; cotyledons longer and wider than radicula.

Phyllanthaceae and Picrodendraceae share the following synapomorphies: plant monoecious; stomata paracytic; flowers small; presence of style; placentation apical; ovules two per carpel, apical, epitropous; micropyle bistomal; parietal tissue at least ten cell layers thick; presence of obturator and nucellar beak; fruit an explosively dehiscent capsule, with fruit walls also splitting from persistent columella; exocarp/mesocarp often separating from endocarp; and x = 13.

The clade [Balanopaceae+[[Trigoniaceae+Dichapetalaceae]+[Chrysobalanaceae+Euphro-niaceae]]] is characterized by: hairs simple; ovules two per carpel, collateral; micropyle bistomal; outer and inner integuments at least five cell layers thick each; megasporangium evanescent by maturity; presence of endothelium; and endosperm scarce or absence. The clade [[Trigoniaceae+Dichapetalaceae]+[Chrysobalanaceae+Euphroniaceae]] has the following potential synapomorphies, according to Stevens (2001 onwards): vessel elements with simple perforation plates; presence of vestured pits; presence of mucilage cells; stomata paracytic; leaf margin entire; flowers obliquely zygomorphic; pedicels articulated; presence of hypanthium; sepals congenitally connate at base, with quincuncial aestivation, of unequal size (two outer sepals shorter), with epidermal mucilage cells; fertile stamens abaxial, connate; anthers much shorter than filaments, extremely introrse, with thecae almost in one plane; connective well developed abaxially with endothecium continuous over dorsal side of connective; presence of dorsal anther pit where filament joins; staminodia adaxial, absent in posterior most antepetalous position; gynoecium completely syncarpous up to stigma; carpel flanks slightly bulged out transversely, carpels thus demarcated from each other by longitudinal furrow; gynoecium and other floral parts with dense unlignified unicellular hairs; presence of style; stigma commissural; ovules epitropous, tenuinucellar; micropyle Z-shaped (zig-zag); outer integument two to five cell layers thick; inner integument three to eight cell layers thick; and presence of obturator.

Trigoniaceae and Dichapetalaceae share the characters: petiole vascular bundle transection arcuate; secondary veins strongly looping; inflorescence cymose; presence of mucilage cells in mesophyll of sepals (in addition to epidermis); nectary semi-annular, with lobes or scales; ovary and lower parts of style synascidiate; outer integument at most five cell layers thick; and testa multiplicative. Chrysobalanaceae and Euphroniaceae have the following features in common: presence of spurred hypanthium; petals clawed, with lignified hairs; and nectary present on adaxial side of hypanthium, usually annular, without lobes or scales.

Maximum-likelihood majority-rule bootstrap consensus tree of Malpighiales based on information from 13 genes (Wurdack & Davis 2009). Clades that receive less than 50% bootstrap support are not shown and the tree has largely collapsed into a polytomy. The clade [Quiinaceae+Medusagyne] has weak support (no sister-group relationship in Bayesian analysis). A generally well-supported “parietal placentation clade” comprises Achariaceae to Violaceae (Goupia has basal-axile placentation and its position has a support of approx. 70%). The clusioid clade (Clusiaceae to Podostemaceae), the ochnoid clade (Ochnaceae, Quiinaceae and Medusagyne) and the euphorbioid clade [Peraceae+[Rafflesiaceae+Euphorbiaceae]] are likewise well-supported (Ruhfel & al. 2011). A fifth well circumscribed clade is the chrysobalanoid clade (Balanops to Euphronia). Ctenolophon being sister to the well-supported clade [Erythroxylaceae+Rhizophoraceae] has a fairly low support. On the other hand, the clades [Phyllanthaceae+Picrodendraceae], [Malpighiaceae+Elatinaceae] and [Putranjivaceae+Lophopyxis] are highly supported. Irvingiaceae may be closely allied to either the clusioid or ochnoid clades.

ACHARIACEAE Harms

( Back to Malpighiales )

Harms in Engler et Prantl, Nat. Pflanzenfam., Nachtr. 1: 256. Oct 1897, nom. cons.

Pangiaceae (Endl.) Blume in J. K. Hasskarl, Cat. Hort. Bot. Bogor.: 186. Oct 1844; Erythrospermaceae (DC.) Doweld, Tent. Syst. Plant. Vasc.: xxxii. 23 Dec 2001

Genera/species 31/170–175

Distribution Pantropical, with few species in southern Africa.

Fossils Unknown.

Habit Usually dioecious (rarely monoecious), evergreen trees or shrubs (Acharieae consist of climbing herbs).

Vegetative anatomy Phellogen (in Lindackeria) ab initio superficial. Vessel elements with simple or scalariform perforation plates; lateral pits alternate, scalariform or opposite, simple or reduced bordered pits. Imperforate tracheary xylem elements fibre tracheids with simple or bordered pits, septate or non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma absent (or very rare). Tyloses sometimes abundant. Sieve tubes with non-dispersive protein bodies?; sieve tube plastids S type. Nodes? Resinous substances etc. sometimes present in heartwood. Silica bodies present in some species. Acicular crystals and/or crystal sand present in some species. Prismatic crystals frequent; druses sometimes present.

Trichomes Hairs unicellular or multicellular, simple, stellate, peltate etc.

Leaves Alternate (spiral or distichous), simple, entire or lobate, with ? ptyxis. Stipules caducous (sometimes absent); leaf sheath absent. Petiole pulvinate, often geniculate. Petiole vascular bundle transection annular, with two lateral/adaxial bundles (in Lindackeria as inverted medullary plate). Venation pinnate. Stomata anomocytic, paracytic or anisocytic. Cuticular wax crystalloids? Domatia present in some species. Mesophyll sometimes with sclerenchymatous idioblasts. Leaf margin usually entire (sometimes serrate or crenate; salicoid teeth absent).

Inflorescence Terminal? or axillary, fasciculate, spike-like cymose, or racemose to spicate, or flowers solitary axillary.

Flowers Actinomorphic. Hypogyny. Sepals two to five, with open to valvate (Acharieae) aestivation, in one or two whorls or spiral, free or connate at base. Petals four to 15, with valvate (Acharieae) aestivation, in one or two whorls or spiral, usually free (in Acharieae three or four, connate into tube; rarely absent). Some genera with corona of scales, hairs or lobes at petal bases. Nectary usually absent. Disc absent.

Androecium Stamens three to numerous, antesepalous, antepetalous or irregular, in one or more whorls or groups, centripetally or almost synchronously developing. Filaments free; free from or more or less adnate to petals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, usually longicidal (dehiscing by longitudinal slits; in Chiangiodendron and Kiggelaria poricidal, locellate, dehiscing by apical pores); connective sometimes widened. Tapetum secretory? Staminodia three to five, intrastaminal, or absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains usually tricolpor(oid)ate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate, reticulate or microreticulate, often verrucate or psilate.

Gynoecium Pistil composed of two to ten usually connate carpels (in Erythrospermeae secondarily free). Ovary superior, unilocular. Style single, usually long (rarely short), sometimes branched. Stigma one or two to five, capitate to peltate, type? Pistillodium absent.

Ovules Placentation parietal. Ovules usually numerous (sometimes three to c. 20) per ovary (rarely one per carpel), usually anatropous (rarely orthotropous), bitegmic, crassinucellar. Micropyle endostomal or bistomal (in Acharieae, Z-shaped, zig-zag). Outer integument five or six cell layers thick, sometimes lobate. Inner integument five or six cell layers thick. Archespore usually unicellular (in Caloncoba bicellular). Nucellar cap and epistase present. Megagametophyte usually monosporous, Polygonum type (in Acharieae disporous, 8-nucleate), penetrating chalaza and forming caecum below tracheid ring. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit Usually a berry or capsule (rarely a drupe).

Seeds Aril present or absent. Seed coat thick, usually pachychalazal. Testa usually distinctly vascularized (Acharieae lack vascular bundles in testa), in Acharieae with stomata. Exotestal cells elongate, sclereidal. Sarcotesta present (in i.a. Acharieae) or absent. Inner mesotesta sometimes sclereidal. Endotesta lignified, with sclereidal cells (sometimes radially elongate). Exotegmen usually non-fibrous, lignified (in Acharieae and Erythrospermum fibrous). Endotegmen? Perisperm not developed. Endosperm copious, oily. Suspensor absent. Embryo small, straight, well differentiated, with chlorophyll. Cotyledons two. Germination?

Cytology x = 10, 12, 23

DNA

Phytochemistry Insufficiently known. Ellagic acid (in Kiggelaria) and cyclopentenoid (cyclopentenyl) cyanogenic glycosides (gynocardin) and/or cyclopentenyl fatty acids present.

Use Timber, medicinal plants (seed oils).

Systematics Pangieae Clos in Ann. Sci. Nat. Bot., sér. 4, 8: 267. 1857. Baileyoxylon (1; B. lanceolatum; northeastern Queensland), Chiangiodendron (1; C. mexicanum; Mexico, Costa Rica), Chlorocarpa (1; C. pentaschista; Sri Lanka), Eleutherandra (1; E. pes-cervi; Malesia), Gynocardia (1; G. odorata; Assam, Burma), Kiggelaria (1; K. africana; tropical and southern Africa), Pangium (1; P. edule; Malesia to New Guinea), Ryparosa (18; Malesia), Scaphocalyx (2; S. parviflora, S. spathacea; the Malay Peninsula, Sumatra), Trichadenia (2; T. zeylanica: Sri Lanka; T. philippinensis: East Malesia to New Guinea and New Britain). – Acharieae Benth. et Hook. f., Gen. Plant. 1: 809. Sep 1867. Acharia (1; A. tragodes; Northern Province, Mpumalanga, KwaZulu-Natal to Eastern Cape), Ceratiosicyos (1; C. laevis; Namibia, Northern Province, Mpumalanga, KwaZulu-Natal, Western and Eastern Cape), Guthriea (1; G. capensis; northeastern Western Cape, Eastern Cape, KwaZulu-Natal, Lesotho). – Lindackerieae Zmarzty in Chase et al., Kew Bull. 57: 172. 2002. Buchnerodendron (2; B. lasiocalyx, B. speciosum; Central and tropical East Africa), Caloncoba (c 10; tropical Africa), Camptostylus (2; C. mannii, C. ovalis; tropical West and Central Africa), Carpotroche (12; Central America, tropical South America), Grandidiera (1; G. boivinii; tropical East Africa), Kuhlmanniodendron (1; K. apterocarpum; Espírito Santo in Brazil), Lindackeria (14; tropical Africa), Mayna (6; M. grandifolia, M. hystricina, M. odorata, M. parvifolia, M. pubescens, M. suaveolens; Central America, tropical South America), Peterodendron (1; P. ovatum; tropical East Africa), Poggea (4–6; P. alata, P. gossweileri, P. kamerunensis, P. klaineana, P. longipedunculata, P. stenura; tropical West and Central Africa), Prockiopsis (3; P. calcicola, P. hildebrandtii, P. orientalis; Madagascar), Xylotheca (10–13; eastern and southern Africa). – Erythrospermeae DC., Prodr. 1: 257. Jan (med.) 1824. Ahernia (1; A. glandulosa; Hainan, the Philippines), Dasylepis (6; D. blackii, D. eggelingii, D. integra, D. racemosa, D. seretii, D. thomasii; tropical Africa), Erythrospermum (c 20; Mauritius, India, Sri Lanka, Indochina, Malesia to Fiji), Rawsonia (2; R. burtt-davyi, R. lucida; tropical Africa), Scottellia (3; S. klaineana, S. leonensis, S. orientalis; tropical Africa); Hydnocarpus (c 40; Southeast Asia, Malesia).

Achariaceae are sister-group to a clade with the plausible topology [Goupiaceae+[Salicaceae+Lacistemataceae]+[Violaceae+[Malesherbiaceae+[Passifloraceae+Turneraceae]]]].

Acharieae were nested in Pangieae in the rbcL tree in Sosa & al. (2003). Hydnocarpus was sister to a unresolved clade comprising genera from Lindackerieae and Erythrospermeae.

Phylogeny of Achariaceae based on DNA sequence data (Groppo & al. 2013). Hydnocarpus, Chiangiodendron and Trichadenia added from Sosa & al. (2003). Galearia is usually included in Pandaceae.

BALANOPACEAE Benth. et J. D. Hooker

( Back to Malpighiales )

Bentham et Hooker, Gen. Plant. 3: v, 341. 7 Feb 1880 [’Balanopseae’], nom. cons.

Balanopales Engl., Nat. Pflanzenfam. Nachtr. [1]: 345. Dec 1897

Genera/species 1/9

Distribution Queensland, Melanesia, with their largest diversity in New Caledonia.

Fossils Unknown.

Habit Dioecious, evergreen trees or shrubs.

Vegetative anatomy Phellogen ab initio superficial. Vessel elements with usually scalariform to reticulate (rarely simple) perforation plates; lateral pits alternate to almost opposite, simple pits. Vestured pits absent. Imperforate tracheary xylem elements fibre tracheids or thick-walled inconclusive libriform fibres with bordered pits. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma usually apotracheal diffuse, or paratracheal scanty. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Bark (and medulla?) with sclereids and rhomboidal crystals. Cortex with cristarque cells present in some species. Silica bodies present.

Trichomes Hairs unicellular, simple, often caducous; glandular hairs absent.

Leaves Alternate (spiral), simple, entire, coriaceous, with ? ptyxis. Stipules minute; leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata usually anomocytic or laterocytic (sometimes cyclocytic). Cuticular waxes usually absent (crystalloids sometimes present as platelets). Calciumoxalate crystals? Leaf margin serrate; leaf teeth several cell layers thick, cells filled with dark tannin-like content.

Inflorescence Male flowers in axillary catkin-like cymose inflorescence; male flower with one bract. Female flowers solitary, surrounded by cupule-like organ consisting of spiral bracts with imbricate aestivation.

Flowers Actinomorphic, small. Hypogyny. Tepals in male flowers as small rudimentary teeth; female flowers without tepals. Nectary absent. Disc absent.

Androecium Stamens (one to) three to six (to 14). Filaments very short, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, latrorse to introrse (latero-introrse), longicidal (dehiscing by longitudinal slits); connective sometimes slightly prolonged. Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tri- to pentacolp(oid)ate, shed as monads, bicellular at dispersal. Exine tectate, with columellate-granular infratectum, microperforate, beset with small spinules.

Gynoecium Pistil composed of (two or) three connate carpels. Ovary superior, (bilocular or) trilocular, often incompletely septate. Stylodia (two or) three, free or connate at base, once or twice bifid. Stigmas adaxial, long, type? Male flowers often with pistillodium.

Ovules Placentation subbasal. Ovules two per carpel, anatropous, intermediate between epitropous and apotropous, ascending, at least partially apotropous, bitegmic, weakly crassinucellar. Micropyle bistomal. Outer integument five to seven cell layers thick. Inner integument five to nine cell layers thick. Obturator absent. Parietal tissue approx. two cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit A drupe with two or three single-seeded pyrenes and surrounded in lower part by cupule consisting of bracts.

Seeds Aril absent. Testa vascularized, persistent, with slightly thickened cell walls. Perisperm not developed. Endosperm sparse, thin. Embryo large, straight, with chlorophyll. Cotyledons two, cordate. Hypocotyl elongate. Germination phanerocotylar.

Cytology n = 20 (21)

DNA

Phytochemistry Insufficiently known. Tannins and triterpenes abundant (especially in bark). Alkaloids not known. Ellagic acid?

Use Unknown.

Systematics Balanops (9; B. australiana: northeastern Queensland; B. pedicellata: Vanuatu, Fiji; B. balansae, B. microstachya, B. oliviformis, B. pachyphylla, B. pancheri, B. sparsifolia, B. vieillardii: New Caledonia).

Balanops is sister to the clade [[Chrysobalanaceae+Euphroniaceae]+[Dichapetalaceae+ Trigoniaceae]].

BONNETIACEAE (Bartl.) L. Beauvis. ex Nakai

( Back to Malpighiales )

Nakai in Bull. Natl. Sci. Mus. Tokyo 22: 25. 1948

Genera/species 3/45

Distribution Cambodia, Malesia to New Guinea, Cuba, northern South America.

Fossils Unknown.

Habit Bisexual, evergreen subpachycaul trees or shrubs.

Vegetative anatomy Phellogen ab initio superfical (in roots cortical). Vessels with simple or simple/transverse perforation plates; lateral pits alternate. Imperforate tracheary xylem elements usually thick-walled tracheids with simple pits?, non-septate? Wood rays uniseriate or multiseriate, heterocellular? Axial parenchyma paratracheal scanty (or apotracheal?). Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace (Archytaea, Ploiarium), or 3:3, trilacunar with three traces (Bonnetia). Mucilage cells frequent. Crystals?

Trichomes Hairs absent.

Leaves Alternate (spiral), simple, entire, with involute or supervolute ptyxis. Stipules and leaf sheath absent. Colleters present in leaf axils. Petiole vascular bundle transection arcuate (Ploiarium) or complex. Venation pinnate, eucamptodromous, brochidodromous or parallelodromous; secondary veins ascending. Stomata paracytic. Cuticular wax crystalloids as rosettes. Epidermis in Bonnetia with mucilaginous idioblasts. Leaves and bracts in Archytaea and Ploiarium with vascularized disciform structures, absent in Bonnetia. Endodermis present. Mesophyll in Bonnetia with sclerenchymatous idioblasts; sclereids present (Bonnetia) or absent (Archytaea, Ploiarium). Leaf margin usually finely serrate (in young leaves with setae, associated with vascular tissue in Archytaea and Ploiarium, not in Bonnetia).

Inflorescence Axillary, cymose panicle or raceme- to umbel-like, or flowers solitary axillary (receptacle in Bonnetia ahogadoi developing into stolon with adventitious roots).

Flowers Actinomorphic. Hypogyny. Sepals five, with imbricate quincuncial aestivation, unequal, caducous or persistent, free, in Bonnetia and Ploiarium with apical bristle. Petals five, with contorted aestivation, free. Buds with long-pointed apex. Nectary and disc probably absent.

Androecium Stamens c. 40 to more than 100. Filaments thin, free or connate in one group at base (Bonnetia) or in five alternisepalous, antepetalous fascicles (Archytaea, Ploiarium), free from petals (Bonnetia) or adnate at base to petals (Archytaea, Ploiarium). Anthers basifixed to somewhat dorsifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Fasciclodium present or absent. Tapetum secretory? Staminodia five in Archytaea and Ploiarium, absent in Bonnetia.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate (rarely syncolpate), shed as monads, ?-cellular at dispersal. Exine semitectate, with columellate? infratectum, finely reticulate.

Gynoecium Pistil composed of three to five connate carpels. Ovary superior, tri- or quadrilocular (Bonnetia), or quadri- or quinquelocular (Archytaea, Ploiarium). Style single, simple or trilobate to quinquelobate, or stylodia three to five, free. Stigmas papillate, type? Pistillodium absent.

Ovules Placentation axile. Ovules c. 30 to c. 50 per carpel, anatropous, pendulous or horizontal, bitegmic, tenuinucellar. Micropyle exostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Hypostase absent. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A septicidal capsule (in Archytaea, Ploiarium dehiscing from proximal end; in Bonnetia dehiscing from distal end), usually with persistent central columella.

Seeds Aril absent. Exotestal cells thin-walled. Endotestal cells lignified (in Ploiarium elongate). Exotegmen with sinuous anticlinal cell walls? Endotegmen? Perisperm not developed. Endosperm sparse or absent. Embryo straight, well differentiated, chlorophyll? Cotyledons two, small. Germination?

Cytology n = c. 150 (Bonnetia cubensis)

DNA

Phytochemistry Very insufficiently known. Xanthones (euxanthone, in Ploiarium bixanthones and anthraquinone xanthones) present.

Use Ornamental plants.

Systematics Bonnetia (33; northern South America including the Guayana Highlands, the northern Andes south to Peru, Brazilian Atlantic coast, Cuba); Archytaea (7; A. alternifolia, A. angustifolia, A. multiflora, A. pulcherrima, A. sessilis, A. triflora, A. vahlii; northern South America including the roraimas), Ploiarium (5; P. alternifolium, P. elegans, P. oblongifolium, P. pulcherrimum, P. sessile; Cambodia, West Malesia, Halmahera, New Guinea).

Bonnetiaceae are sister-group to Clusiaceae.

Bonnetia is sister to [Archytaea+Ploiarium] (Wurdack & Davis 2009).

Maximum-likelihood majority-rule bootstrap consensus tree of Bonnetiaceae based on DNA sequence data (Wurdack & Davis 2009).

CALOPHYLLACEAE J. Agardh

( Back to Malpighiales )

Agardh, Theoria Syst. Plant.: 121. Apr-Sep 1858 [’Calophylleae’]

Mesuaceae Bercht. et J. Presl, Přir. Rostlin: 218. Jan-Apr 1820 [’Mesuae’]; Cambogiaceae Horan., Prim. Lin. Syst. Nat.: 98. 2 Nov 1834 [’Cambogiaceae (Guttiferae)’]

Genera/species 15/355–360

Distribution Pantropical.

Fossils Fossil pollen grains, Kielmeyeropollenites, are known from the Eocene of India. Symphonioxylon, fossil wood from Cretaceous and Miocene layers, may be ascribed to Calophyllaceae or Clusiaceae.

Habit Usually bisexual (occasionally cryptic-dioecious, rarely andromonoecious), usually evergreen trees (sometimes shrubs or epiphytes).

Vegetative anatomy Phellogen superficial or deeply seated. Endodermis in Kielmeyera often significant. Secondary lateral growth usually normal (in Endodesmia anomalous?). Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits alternate, usually simple pits. Vestured pits often present. Imperforate tracheary xylem elements tracheids, fibre tracheids or libriform fibres with usually simple (rarely bordered) pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal or paratracheal. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Schizogenous secretory ducts or cavities or glands with resin, balsam or yellow to red secretions abundant (also in cortex and medulla). Colleters absent. Wood ray cells sometimes with silica. Crystals?

Trichomes Hairs unicellular or multicellular or absent (Caraipa and Marila with stellate hairs; Marila with branched hairs).

Leaves Alternate (spiral or distichous) or opposite, simple, entire, often coriaceous, usually with flat or conduplicate (in Kielmeyera supervolute) ptyxis. Stipules and leaf sheath absent. Paired modified colleters, “stipular glands”, sometimes present. Petiole bundle transection arcuate, annular or complex. Venation pinnate, eucamptodromous, brochidodromous or reticulodromous; tertiary venation sometimes scalariform or absent. Stomata paracytic. Cuticular wax crystalloids as rosettes. Lamina usually gland-dotted and/or with schizogenous secretory cavities (sometimes canals) with resin, balsam or yellow to red secretions (pellucid-punctate dots, resin/latex cavities). Leaf margin entire.

Inflorescence Terminal or axillary, cymose, often thyrsoid (sometimes racemose), or flowers sometimes solitary. Floral prophylls (bracteoles) sometimes (i.a. in Calophyllum and Lebrunia) absent.

Flowers Usually actinomorphic (in Marila asymmetralis obliquely zygomorphic), often large. Hypogyny. Sepals (two to) four or five (to c. 20), with imbricate quincuncial or decussate aestivation, usually free (rarely connate at base). Petals (three or) four or five (to eight), with contorted or decussate aestivation, free (absent in Calophyllum). Nectariferous disc usually absent (sometimes as separate units).

Androecium Stamens (four to) c. 20 to more than 100, not in distinct fascicles. Filaments usually in five alternisepalous, antepetalous indistinct groups, usually free (rarely connate), free from tepals. Anthers basifixed or dorsifixed, often versatile, tetrasporangiate, usually introrse (sometimes extrorse), usually longicidal (dehiscing by longitudinal slits, rarely poricidal, dehiscing by pores); connective often with small single or paired, sometimes apical, complex or simple glands (sometimes large and crateriform). Tapetum secretory. Staminodia two to more than 50, extrastaminal, or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (rarely triporate or with several apertures), usually shed as monads (in Kielmeyera often as tetrads), bicellular at dispersal. Exine tectate or semitectate, with columellate? infratectum, reticulate, rugulate, fossulate, foveolate, scabrate or psilate.

Gynoecium Pistil composed of two to five connate antesepalous carpels (rarely monocarpellate?). Ovary superior, bilocular to quinquelocular. Stylodia two to five, free, usually long (longer than ovary), or style single, simple. Stigmas one to five, expanded to punctate, usually non-papillate, Wet type. Pistillodium?

Ovules Placentation usually axile (in Endodesmia clade apical, in Calophyllum and Kayea basal, in Clusiella laminar). Ovules usually two to numerous (in, e.g., Calophyllum, Endodesmia and Lebrunia one) per carpel, usually anatropous, ascending or horizontal, bitegmic, tenuinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad. Polyembryony present at least in Calophyllum and Kayea.

Fruit Usually a septicidal or septifragal capsule (in Kayea often with persistent and strongly accrescent calyx; sometimes a drupe; in Calophyllum, Clusiella and Mammea a berry).

Seeds Aril absent. Seed coat testal or exotegmic, sometimes winged. Testa with epidermis and exotegmen sinuous and with lignified cell walls, or testa multi-layered, complex and vascularized and exotegmen often absent. Endotegmen? Perisperm not developed. Endosperm sparse. Embryo small to large, straight (fusiform) or curved, rudimentary or well differentiated, with or without chlorophyll. Cotyledons two, massive, medium-sized to very large (Calophyllum, Mesua etc.; in Mammea connate). Germination phanerocotylar or cryptocotylar. Radicula in large-seeded speces often ephemeral and replaced by adventitious roots.

Cytology n = 16–21

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), flavones, biflavonoids, flavonoid sulphates, dammaranes, cyanidin, oleanolic acid derivatives, ellagic and gallic acids, proanthocyanidins (prodelphinidins), alkaloids, cyanogenic compounds isoprenylated xanthones (euxanthone, macluraxanthone, norathyriol), polyacetate-derived anthraquinones, coumarin derivatives substituted at position 4, and syringaresinol present.

Use Ornamental plants, fruits (Mammea americana etc), perfumes (Mammea siamensis), medicinal plants, cosmetics, dyeing substances, seed oils, timber.

Systematics Calophyllaceae are sister-group to [Hypericaceae+Podostemaceae].

Awaiting the name Calophyllaceae to become conserved, I provisionally apply this name to the clade since it is now in common use, although the name Mesuaceae is older.

Endodesmia and Lebrunia form a sister-group to the remaining Calophyllaceae.

Endodesmia clade

2/2. Endodesmia (1; E. calophylloides; tropical West Africa), Lebrunia (1; L. bushaie; Congo). – Tropical West and Central Africa. Placentation apical. Ovule one per carpel.

Calophylleae Choisy in A. P. de Candolle, Prodr. 1: 561. Jan (med.) 1824.

13/355–360. Calophyllum (185–190; tropical regions on both hemispheres), Mesua (c 40; tropical Asia), Mammea (c 50; tropical regions on both hemispheres), Kayea (7; K. coriacea, K. ferruginea, K. macrophylla, K. megalocarpa, K. philippinensis, K. punctulata, K. stylosa; Southeast Asia, Malesia to New Guinea), Agasthiyamalaia (1; A. pauciflora; Western Ghats), Poeciloneuron (2; P. indicum, P. pauciflorum; southern India); Clusiella (9; Panamá to northern South America), Marila (11; Central America, the West Indies, tropical South America), Mahurea (3; M. exstipulata, M. palustris, M. speciosa; tropical South America), Neotatea (3; N. colombiana, N. longifolia, N. neblinae; northeastern South America), Kielmeyera (c 20; Peru, southern Brazil), Caraipa (21; tropical South America), Haploclathra (4; H. cordata, H. leiantha, H. paniculata, H. verticillata; Amazonia). – Pantropical. Placentation axile, basal or laminar. Ovules usually numerous per carpel. – Genera with alternate leaves, capsular fruit, often winged seeds, and cotyledons with a cordate base form a monophyletic group.

Optimal maximum likelihood tree (simplified) of Calophyllaceae based on morphological and DNA sequence data (Ruhfel & al. (2013).

CARYOCARACEAE Voigt

( Back to Malpighiales )

Voigt, Hort. Suburb. Calcutt.: 88. Aug-Dec 1845, nom. cons.

Rhizobolaceae DC., Prodr. 1: 599. med Jan 1824 [’Rhizoboleae’], nom. illeg.; Rhizobolales DC. in C. F. P. von Martius, Consp. Regn. Veg.: 60. Sep-Oct 1835 [‘Rhizoboleae’], nom. illeg.

Genera/species 2/c 25

Distribution Costa Rica to Paraguay and the West Indies, with their largest diversity in Amazonia.

Fossils Uncertain. Fossil pollen grains attributed to Caryocaraceae have been described from the mid-Eocene.

Habit Bisexual, evergreen trees or, sometimes, shrubs or suffrutices.

Vegetative anatomy Phellogen ab initio superficial. Vessel elements with usually simple (sometimes scalariform) perforation plates; lateral pits alternate, simple pits. Non-vestured pits present. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple or bordered pits, septate or non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric. Tyloses abundant. Sieve tube plastids S type. Nodes ≥5:≥5, multilacunar with five or more leaf traces. Parenchyma with idioblasts containing branched sclereids (in medullary parenchyma) and solitary or groups of calciumoxalate crystals. Prismatic crystals often present.

Trichomes Hairs simple or absent.

Leaves Opposite (Caryocar) or alternate (Anthodiscus), bipinnate or trifoliolate to quinquefoliolate with articulated petiolules, coriaceous, with ? ptyxis. Stipules intrapetiolar (Anthodiscus) to interpetiolar, early caducous, or absent; leaf sheath absent. Stipulules often present (Caryocar), persistent or caducous. Colleters present. Petiole vascular bundle transection? Venation palmate (leaflet venation pinnate). Stomata usually anomocytic (sometimes anisocytic or paracytic). Cuticular wax crystalloids as smooth to irregular rosettes of platelets. Domatia as hair tufts. Epidermis with or without mucilaginous idioblasts. Mesophyll with sclerenchymatous idioblasts containing branched sclereids. Hydathodes usually present. Leaflet margins usually serrate (rarely almost entire).

Inflorescence Terminal, racemose or corymbose. Bracts usually absent (rarely present, small and caducous).

Flowers Actinomorphic, large (Caryocar) or medium-sized (Anthodiscus). Pedicel articulated at apex. Hypanthium sometimes present. Hypogyny. Sepals five (or six), with quincuncial to truncate or open aestivation, in Anthodiscus lobate, usually more or less connate. Petals five (or six), with quincuncial aestivation, caducous, free or connate in lower parts (Caryocar), or entirely connate forming caducous calyptra (Anthodiscus). Nectaries at base of filaments and ovary, or absent. Disc absent. Extrafloral nectaries often present on calyx.

Androecium Stamens 57 to at least 750, subperigynous. Filaments very long, often glandular-tuberculate at apex, connate at base or in five antesepalous fascicles, free from or adnate to petal bases. Anthers dorsifixed (outer stamens) or basifixed (inner stamens), versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective usually not protruding. Tapetum secretory? Inner stamens often with smaller anthers, or sometimes c 40 intrastaminal staminodia without anthers present; innermost staminodia often markedly shorter than remainder and with nectariferous glands at base. Staminodia fused with adjacent stamens into tube encircling gynoecium.

Pollen grains Microsporogenesis simultaneous? Pollen grains (2–)3(–6)-colporate (sometimes parasyncolpate), shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate, finely reticulate, rugulate or verrucate.

Gynoecium Pistil composed of three or four (to six) (Caryocar) or eight to c. 15(–20) (Anthodiscus) connate carpels. Ovary superior, quadrilocular (to sexalocular) (Caryocar) or 8- to c. 15(–20)-locular (Anthodiscus), synascidiate. Stylodia three or four (Caryocar) or eight to at least twelve (Anthodiscus), free, long and filiform (Caryocar) or short (Anthodiscus); each style in Anthodiscus supported by one vascular bundle from adjacent carpels. Stigmas punctate, unicellular-papillate, type? Pistillodium absent.

Ovules Placentation axile. Ovule one per carpel, hemianatropous to weakly campylotropous, ascending, epitropous, bitegmic (Caryocar) or unitegmic (Anthodiscus), weakly crassinucellar. Micropyle usually bistomal (sometimes endostomal). Outer integument three to five cell layers thick. Inner integument five to seven cell layers thick. Integument in Anthodiscus four or five cell layers thick. Obturator absent. Endothelium absent. Megasporangium cytoplasm-rich and filled with starch grains. Apical epidermal cells of megasporangium radially elongate. Megagametophyte monosporous, Polygonum type? Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A drupe or drupaceous schizocarp (in Caryocar with radiating fibres) with single-seeded pyrenes. Pericarp carnose to more or less lignified.

Seeds Aril absent. Testa indistinct, vascularized, sometimes aerenchymatous. Exotegmen? Endotegmen? Perisperm not developed. Endosperm thin or absent. Embryo well differentiated, chlorophyll? Hypocotyl in Anthodiscus very large, oily and proteinaceous, spirally twisted. Cotyledons two, small, inflexed. Germination phanerocotylar.

Cytology n = 23

DNA

Phytochemistry Lupeol, oleanolic acid derivatives, ellagic and gallic acids, and phytosterols (sitosterol, stigmasterol) present. Cyanogenic compounds not found.

Use Seeds used for food and cooking oil, fruits for fish poison, timber.

Systematics Anthodiscus (c 10; Central America, tropical South America), Caryocar (c 15; Central America, the West Indies, tropical South America).

The sister-group relationship of Caryocaraceae is unresolved.

CENTROPLACACEAE (Radcl.-Sm.) Doweld et Reveal

( Back to Malpighiales )

Doweld et Reveal in Reveal in Bot. Rev. (Lancaster) 71: 48. 20 Mai 2005

Genera/species 2/7

Distribution Central Africa, southern India, Sri Lanka, the Andaman Islands, Southeast Asia, Malesia to New Guinea, islands in southwestern Pacific.

Fossils Unknown.

Habit Bisexual (Bhesa) or dioecious (Centroplacus), evergreen trees.

Vegetative anatomy Ectomycorrhiza present in Bhesa. Phellogen ab initio usually superficial? (sometimes cortical). Vessel elements with scalariform perforation plates; lateral pits alternate, simple or bordered pits. Imperforate tracheary xylem elements ? with simple or bordered pits, non-septate. Wood rays multiseriate, heterocellular. Axial parenchyma apotracheal diffuse-in-aggregates, or paratracheal scanty, reticulate, or banded. Sieve tube plastids S type? Nodes 5:5, pentalacunar with five leaf traces (Bhesa). Prismatic calciumoxalate crystals abundant.

Trichomes Hairs simple (present in inflorescences only).

Leaves Alternate (in Bhesa spiral; in Centroplacus distichous), simple, entire, in Bhesa with conduplicate ptyxis. Stipules cauline (lateral), small, in Centroplacus persistent, in Bhesa large and almost enclosing stem/branch, caducous; leaf sheath absent. Colleters present in Bhesa (absent in Centroplacus). Petiole in Bhesa with apical pulvinus. Petiole vascular bundle transection in Bhesa U-shaped or flat-annular; petiole with two or three medullary bundles and sometimes wing bundles. Venation pinnate, in Centroplacus brochidodromous; secondary veins in Bhesa stout, ascending (reticulate venation); tertiary veins in Bhesa closely scalariform. Stomata anisocytic (Centroplacus) or laterocytic (Bhesa). Cuticular wax crystalloids? Mesophyll in Centroplacus with sclerenchymatous idioblasts (containing different kinds of sclereids). Leaf margin in Centroplacus indistinctly serrate, in Bhesa entire.

Inflorescence Male inflorescences in Centroplacus axillary branched panicle, female inflorescences racemiform-subpaniculate; in Bhesa terminal? racemose simple or branched. Bracts very small.

Flowers Actinomorphic, small. Pedicels articulated. Hypogyny. Sepals five, in Centroplacus with imbricate aestivation, persistent, free. Centroplacus: petals in male flowers five, with imbricate aestivation, free, absent in female flowers; Bhesa: petals five, with contorted aestivation, free. Nectariferous disc in Centroplacus extrastaminal, in male flowers cupular, in female flowers acetabuliform, with five alternisepalous lobes; nectariferous disc in Bhesa often lobate.

Androecium Stamens five, haplostemonous, antesepalous, alternipetalous. Filaments free from each other and from tepals. Anthers basifixed (Centroplacus), non-versatile?, tetrasporangiate, extrorse (Bhesa) to introrse, longicidal (dehiscing by longitudinal slits, in Centroplacus two obliquely apical slits); connective in Centroplacus well developed. Tapetum secretory? Female flowers in Centroplacus with very small antesepalous staminodia (absent in Bhesa).

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, ?-cellular at dispersal. Exine tectate (Centroplacus) or semitectate (Bhesa), with brevicolumellate infratectum, psilate, in Centroplacus finely reticulate or perforate, in Bhesa finely striate.

Gynoecium Pistil composed of three (Centroplacus) or two (Bhesa) connate carpels. Ovary superior, trilocular (Centroplacus) or usually bilocular (rarely unilocular; Bhesa). Style in Centroplacus single, short with three diverging and somewhat recurved branches, stylodia in Bhesa two, almost entirely free. Stigmas small, capitate, slightly widened, type? Male flowers in Centroplacus with entire or trilobate hairy pistillodium; pistillodium absent in Bhesa.

Ovules Placentation subapical (Centroplacus) or basal (Bhesa). Ovules two per carpel, collateral, anatropous, erect apotropous (Bhesa) or epitropous (Centroplacus), bitegmic?, crassinucellar? Micropyle exostomal (Bhesa). Outer integument six to eight cell layers thick (Bhesa). Inner integument four or five cell layers thick (Bhesa). Endostome lignified, more or less protruding (Centroplacus). Obturator absent. Megagametophyte monosporous, Polygonum type? Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit A septicidal and sometimes loculicidal capsule with single-seeded locules (one seed aborting), dehiscing from base and with persistent calyx (columella absent).

Seeds Aril exostomal-funicular, fleshy, red to orange, completely or almost completely enclosing seed (Bhesa). Carunculus narrowly elongate, red (Centroplacus). Exotesta in Centroplacus with thickened outer cell walls. Endotesta? Exotegmic cells ribbon-shaped with thick walls, in Bhesa massive. Mesotegmic cells flattened and orientated at right angles (Centroplacus). Endotegmic cells in Centroplacus more or less thick-walled. Perisperm not developed. Endosperm in Centroplacus copious, carnose. Embryo minute, short, chlorophyll? Cotyledons two. Germination phanerocotylar?

Cytology n = ?

DNA

Phytochemistry Unknown.

Use Timber.

Systematics Centroplacus (1; C. glaucinus; Cameroon, Equatorial Guinea, Gabon), Bhesa (6; B. ceylanica, B. indica, B. nitidissima, B. paniculata, B. robusta, B. sinica; southern India, Sri Lanka, Assam, Burma, Indochina, the Andaman Islands, Malesia to New Guinea, islands in southwestern Pacific).

Centroplacaceae are sometimes placed with weak support as sister group to [Malpighiaceae+Elatinaceae] or as sister to Pandaceae (Wurdack & al. 2004).

CHRYSOBALANACEAE R. Br.

( Back to Malpighiales )

Brown in J. H. Tuckey, Narr. Exped. Zaire: 433. 5 Mar 1818 [’Chrysobalaneae’], nom. cons.

Licaniaceae Martinov, Tekhno-Bot. Slovar: 336. 3 Aug 1820 [’Licaneae’]; Chrysobalanales Link, Handbuch 2: 72. 4-11 Jul 1829 [’Chrysobalaneae’]; Hirtellaceae Horan., Char. Ess. Fam: 152. 30 Jun 1847

Genera/species 27/535–540

Distribution Pantropical.

Fossils Fossils of Chrysobalanaceae have been found Eocene and later layers in North, Central and South America and tropical Asia.

Habit Usually bisexual (rarely andromonoecious or gynomonoecious), evergreen trees or shrubs. Lenticels abundant.

Vegetative anatomy Phellogen ab initio usually superficially (sometimes deeply) seated. Primary medullary strands narrow (entirely or largely uniseriate). Vessel elements with simple perforation plates; lateral pits alternate, usually with simple pits. Imperforate tracheary xylem elements tracheids with bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate, usually heterocellular (rarely homocellular). Axial parenchyma apotracheal, diffuse or diffuse-in-aggregates, or paratracheal scanty, reticulate, or banded. Tyloses abundant. Sieve tube plastids S type. Nodes 5:5, pentalacunar with five leaf traces. Wood usually with silica bodies and grains. Prismatic calciumoxalate crystals sometimes abundant.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, stellate or arachnoid; stalked and unstalked glands (also peltate-lepidote) present on calyx and leaves.

Leaves Alternate (spiral or distichous), simple, entire, with conduplicate (sometimes flat-conduplicate) ptyxis. Stipules often petiolar or intrapetiolar; leaf sheath absent. Petiole often pulvinate at one or both ends. Petiole vascular bundle transection annular; petiole often with medullary plates and wing bundles; petiolar anatomy often complex. Venation pinnate. Stomata paracytic. Cuticular wax crystalloids? Lamina often with flattened abaxial glands (extrafloral nectaries), especially near base. Myrmecodomatia (pouches formed when lamina rolls over onto itself creating two spherical spaces at base) present in some species of Hirtella; myrmecodomatia associated with enlarged extrafloral nectaries on stipules and bracts, longer stomatal apertures, enlarged parenchymatous and epidermal cells, and more numerous lignified sclerenchyma fibres. Epidermis with or without silica bodies, with or without mucilaginous idioblasts. Mesophyll sometimes with sclerenchymatous idioblasts. Leaf margin usually entire (rarely serrate). Extrafloral nectaries sometimes present on stipules, petiole and/or lamina.

Inflorescence Terminal or axillary, cymose or racemose of various shape (simple or compound raceme etc.; flowers rarely solitary). Extrafloral nectaries sometimes present on bracts or pedicels.

Flowers Actinomorphic to obliquely zygomorphic, usually small. Pedicel articulated. Hypogyny. Sepals five, with imbricate quincuncial aestivation, connate in lower part into tubular hypanthium-like structure (“floral cup”); median sepal adaxial. Petals one to five, usually with imbricate quincuncial (sometimes cochlear) aestivation, shortly clawed, free, adnate at margin of “hypanthium” (petals rarely absent). Nectariferous disc annular or semicircular, intrastaminal, inserted inside or along apex of “hypanthium”.

Androecium Stamens (two to) five to c. 300, usually long exserted, in zygomorphic flowers concentrated to one side of flower (lateral antesepalous stamens often larger than remainder); abaxial stamens most developed. Filaments inflexed in bud, free or more or less connate all together or in three to 20 staminal fascicles, free from tepals, inserted at margin of hypanthium-like structure. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective often dorsally thickened? Tapetum secretory. Intrastaminal staminodia often present.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–4)-colp(or)ate, shed as monads, bicellular at dispersal. Exine with very little patterning on walls, with ? infratectum, usually scabrate to verrucate.

Gynoecium Pistil composed of one to three carpels, fused only by common lateral to gynobasic style; usually only abaxial carpel developed leading to pseudomonomery (remaining carpels usually degenerated), often inserted on one side of “hypanthium”. Ovary superior, usually unilocular; locule sometimes divided by secondary septa. Style single, simple, lateral to gynobasic. Stigma usually simple, usually punctate (rarely trilobate), papillate, Dry or Wet type. Pistillodium absent.

Ovules Placentation basal-axile. Ovules two per carpel, anatropous, ascending, epitropous (antitropous), collateral or distributed over carpellary surface, bitegmic, tenuinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument five to twelve cell layers thick. Inner integument five to twelve cell layers thick. Obturator seemingly basal (pollen tube transferring tissue perhaps functioning as obturator) or absent. Archespore multicellular. Megagametophyte consisting of an egg cell, two synergids and a central cell. Antipodal cells absent (early degenerating). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A single-seeded, usually juicy (rarely dry) drupe with persistent calyx. Endocarp often hairy inside.

Seeds Aril absent. Seeds sometimes ruminate. Testa usually well developed, vascularized (sometimes indistinct or mesotestal, sometimes multiplicative). Exotesta fibrous, collapsed (sometimes with tannins). Tegmen multiplicative. Perisperm not developed. Endosperm absent. Embryo large, well differentiated, chlorophyll? Cotyledons two, sometimes thick. Germination cryptocotylar.

Cytology n = 10, 11

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), trihydroxyflavonoids, cyanidin, delphinidin, cucurbitacins, and tannins present. Special unsaturated fatty acids present in seeds. Ellagic acid, alkaloids, saponins, and cyanogenic compounds not found.

Use Fruits (Chrysobalanus icaco, Neocarya, Parinari), seed oil, timber.

Systematics Kostermanthus (3; K. heteropetalus, K. malayanus, K. robustus; West Malesia, Sulawesi), Neocarya (1; N. macrophylla; tropical West Africa), Parinari (c 40; tropical and subtropical regions on both hemispheres), Bafodeya (1; B. benna; tropical West Africa), Geobalanus (2; G. oblongifolius, G. pallidus; southeastern United States, Mexico, Central America), Magnistipula (12; tropical Africa, Madagascar), Parastemon (3; P. grandifructus, P. urophyllus, P. versteeghii; the Nicobar Islands, Malesia to New Guinea), Grangeria (2; G. porosa: Madagascar; G. borbonica: Mauritius, Réunion), Dactyladenia (c 30; tropical Africa), Atuna (8; tropical Asia to Samoa), Maranthes (12; ten species in tropical Africa, one species, M. corymbosa, in tropical Asia and east to islands in the Pacific, one species, M. panamensis, in Nicaragua, Costa Rica and Panamá), Chrysobalanus (3; C. cuspidatus: the Lesser Antilles; C. icaco: tropical Africa, Florida, Mexico, Central America, the West Indies, tropical South America; C. venezuelanus: southeastern Venezuela, northern Brazil), Acioa (4; A. edulis, A. guianensis, A. schultesii, A. somnolens; northern South America), Exellodendron (5; E. barbatum, E. cordatum, E. coriaceum, E. gardneri, E. gracile; tropical South America), Angelesia (3; A. fusicarpa, A. palawanensis, A. splendens; Southeast Asia, Malesia), Hunga (11; New Guinea, New Caledonia, the Loyalty Islands), ‘Licania’ (c 100; southern Mexico, Central America, tropical South America; polyphyletic), Gaulettia (4; G. canomensis, G. elata, G. parillo, G. racemosa; tropical South America), ‘Hirtella’ (105–110; tropical America; polyphyletic), Microdesmia (2; M. arborea, M. rigida; southern Mexico, Central America, northern South America), Cordillera (1; C. platycalyx; mountains in southern Central America and northern South America), Afrolicania (1; A. elaeosperma; tropical West and Central Africa; in Licania?), Parinariopsis (1; P. licaniiflora; tropical South America), Hymenopus (28; Central America, Trinidad and Tobago, northern South America), Leptobalanus (31; Mexico, Central America, the West Indies, northern South America), Moquilea (54; Mexico, Central America, tropical South America), Couepia (c 70; Central America, tropical South America).

Chrysobalanaceae are sister-group to Euphronia (Euphroniaceae).

Sothers & al. (2016) dissolved the polyphyletic former Licania s.lat. and recognized instead the following clade: [Hirtella+Licania s.str.]+[[Microdesmia+Cordillera]+[[Afrolicania/Hymenopus p.p.]+[[Parinariopsis/Hymenopus p.p.+Leptobalanus]+[Moquilea+Couepia]]]].

Bayesian consensus tree of Chrysobalanaceae based on DNA sequence data (Yakandawala & al. 2010).

Phylogeny (simplified) of Chrysobalanaceae based on DNA sequence data (Bardon & al. 2013). Kostermanthus is sister to the remaining Chrysobalanaceae, according to Bardon & al. (2016), although Bafodeya was not included in their study.

CLUSIACEAE Lindl.

( Back to Malpighiales )

Lindley, Intr. Nat. Syst. Bot., ed. 2: 74. 13 Jun 1836 [’Guttiferae, vel Clusiaceae’], nom. cons.

Guttiferae Juss., Gen. Plant: 255. 4 Aug 1789, nom. cons. et nom. alt.; Garciniaceae Bartl., Ord. Nat. Plant.: 222, 292. Sep 1830 [’Garcinieae’]; Cambogiaceae Horan., Prim. Lin. Syst. Nat.: 98. 2 Nov 1834 [’Cambogiaceae (Guttiferae)’]; Garciniales DC. in C. F. P. von Martius, Consp. Regn. Veg.: 60. Sep-Oct 1835 [‘Garcinieae’]

Genera/species 13–14/565–765

Distribution Pantropical.

Fossils Paleoclusia chevalieri, pentamerous flowers from the Turonian of New Jersey, has been attributed to Clusiaceae and one of the few known Cretaceous representatives of Malpighiales. The stamens (or staminodia) are grouped into five fascicles and a resin-like amorphous substance is present in (and was perhaps secreted by) the anthers. The ovary is quinquelocular and the stigma quinquelobate. The seeds are arillate. ’Pachydermites diederexii, fossil pollen of Symphonia, has been used for stratigraphic dating by the oil industry.’ Symphonioxylon, fossil wood from the Cretaceous and the Miocene in northeastern Africa and India, may be ascribed to Clusiaceae or Calophyllaceae.

Habit Usually bisexual (rarely polygamomonoecious, in e.g. Clusia and Garcinia also dioecious), evergreen trees or shrubs (in Clusia sometimes lianas or epiphytes, also with CAM physiology).

Vegetative anatomy Phellogen ab initio in roots (sub)epidermal or deeply seated; in stem superficial. Secondary lateral growth usually normal. Vessel elements usually with simple (sometimes also scalariform) perforation plates; lateral pits alternate, usually simple pits. Vestured pits often present. Imperforate tracheary xylem elements tracheids, fibre tracheids or libriform fibres usually with simple (rarely bordered) pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal or paratracheal. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Schizogenous secretory canals or cavities (and/)or glands with resin, balsam or yellow to red secretions frequent (also in cortex and medulla). Colleters numerous. Wood ray cells sometimes with silica. Crystals?

Trichomes Hairs unicellular or multicellular, or absent.

Leaves Usually opposite (sometimes alternate; rarely whorled), simple, entire, often coriaceous, with conduplicate or flat ptyxis. Stipules and leaf sheath absent. Paired modified colleters, “stipular glands”, may occur. Petiole bundle transection annular. Venation pinnate, usually eucamptodromous or brochidodromous (rarely acrodromous). Stomata paracytic. Cuticular wax crystalloids as rosettes. Lamina usually with schizogenous secretory glands or canals with resin, balsam or yellowish to reddish secretions. Leaf margin entire.

Inflorescence Terminal or axillary, cymose, often thyrsoid (flowers sometimes solitary).

Flowers Actinomorphic, often large. Hypogyny. Sepals (two to) four or five (to 20), usually with imbricate quincuncial or decussate (rarely valvate) aestivation, usually free (rarely connate at base). Petals (three or) four or five (to eight), with contorted or decussate aestivation, free (sometimes absent). Nectariferous disc usually absent (sometimes as separate units at staminal bases; in Symphonia extrastaminal nectariferous disc possibly representing antesepalous staminal whorl). Resins often frequently secreted (in, i.a., Clusia).

Androecium Stamens (four to) c. 20 to more than 100, often in distinct fascicles. Filaments stout, free, or more or less connate into five alternisepalous, antepetalous fascicles, free from tepals. Anthers basifixed or dorsifixed, often versatile, tetrasporangiate, usually introrse (sometimes extrorse), usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by pores); connective usually without glands (sometimes with small glands). Tapetum secretory. Staminodia two to more than 50, extrastaminal (sometimes producing viscid triterpenoid resin), or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (sometimes triporate or with several apertures), usually shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate? infratectum, reticulate, rugulate, fossulate, foveolate, scabrate, spinulate or psilate.

Gynoecium Pistil composed of two to five (to more than twelve) connate, often antesepalous carpels (rarely monocarpellate?). Ovary superior, bilocular to quinquelocular (to more than duodecemlocular in Garcinieae, with single-seeded locules). Stylodia two to five (to more than twelve), free, usually short (shorter than ovary), or style single, simple, or absent. Stigmas usually several (sometimes one entire stigma), usually widened (sometimes punctate) and non-papillate (rarely papillate), Wet type (exposed stigmatic area absent in Symphonieae). Pistillodium? Pollen grains in, e.g., Symphonia collected in droplet secreted through pore at apex of stylar branches.

Ovules Placentation usually axile (sometimes apical or basal; in Allanblackia parietal). Ovules (one or) two to numerous per carpel, usually anatropous (sometimes amphitropous or hemianatropous), ascending to horizontal, bitegmic, tenuinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad. Agamospermy present in Clusia and Garcinia mangostana.

Fruit Usually a drupe or berry (in Garcinieae and Symphonieae many-seeded; in some species of Garcinia drupe; sometimes a septicidal capsule).

Seeds Aril sometimes present. Seed coat testal or exotegmic. Testa sometimes winged; testa with only epidermis and exotegmen usually with lignified sinuous cell walls, or testa multi-layered, vascularized and complex and exotegmen usually absent. Endotegmen? Perisperm not developed. Endosperm sparse or absent. Embryo large to small, straight and fusiform or curved, rudimentary or well differentiated, with or without chlorophyll. Cotyledons two, very small or rudimentary. Hypocotylar region very enlarged, forming tigellus. Germination phanerocotylar or cryptocotylar. Radicula in species with large seeds often ephemeral and replaced by adventitious roots.

Cytology n = 28–48

DNA Mitochondrial coxI intron present in Montrouziera.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), flavones, biflavonoids, flavonoid sulphates, cyanidin, dammaranes, oleanolic acid derivatives, ellagic and gallic acids, proanthocyanidins (prodelphinidins), alkaloids, cyanogenic compounds, isoprenylated and other xanthones (euxanthone, macluraxanthone, norathyriol), polyacetate-derived anthraquinones, polyisoprenylated benzophenones and fatty acids (as resins), and syringaresinol present.

Use Ornamental plants, fruits (Garcinia mangostana, Moronobea coccinea, Platonia insignis), medicinal plants, gums and resins, seed oils, timber.

Systematics Clusieae Choisy in A. P. de Candolle, Prodr. 1: 557. Jan (med.) 1824. Dystovomita (4; D. brasiliensis, D. clusiifolia, D. paniculata, D. pittieri; tropical America), Tovomitopsis (9?; T. centistaminibus, T. croatii, T. faucis, T. guatemaltecana, T. membranacea, T. myrcioides, T. paniculata, T. spruceana, T. standleyana; Central America), ‘Tovomita’ (c 65; tropical America, with their highest diversity in Venezuela; paraphyletic), Chrysochlamys (c 35; Central America, the West Indies, tropical South America), Clusia (c 305; Florida, southern Mexico, Central America, the West Indies, tropical South America). – Garcinieae Choisy in A. P. de Candolle, Prodr. 1: 560. Jan (med.) 1824. ‘Garcinia’ (100–300; tropical and subtropical regions on both hemispheres; non-monophyletic). – Symphonieae Choisy in A. P. de Candolle, Prodr. 1: 563. Jan (med.) 1824. Symphonia (15–17; Madagascar, one species, S. globulifera, in tropical Africa and tropical South America), Pentadesma (c 15; tropical Africa), Moronobea (7; M. coccinea, M. esculenta, M. intermedia, M. jenmanii, M. ptaritepuiana, M. riparia, M. rupicola; tropical South America), Platonia (1; P. insignis; Guyana, Brazil), Montrouziera (5; M. cauliflora, M. gabriellae, M. rhodoneura, M. sphaeroidea, M. verticillata; New Caledonia), ‘Lorostemon’ (5; L. bombaciflorus, L. coelhoi, L. colombianum, L. negrense, L. stipitatus; Brazil; paraphyletic; incl. Thysanostemon?), Thysanostemon (2; T. fanshawei, T. pakaraimae; Guyana; in Lorostemon?).

Clusiaceae are sister to Bonnetiaceae.

Optimal maximum likelihood tree (simplified) of Clusiaceae based on morphology and DNA sequence data (Ruhfel & al. 2013).

CTENOLOPHONACEAE (H. Winkl.) Exell et Mendonça

( Back to Malpighiales )

Exell et Mendonça, Consp. Fl. Angol. 1: 248, 392. 20 Aug 1951

Genera/species 1/2

Distribution Tropical West Africa, Malesia.

Fossils Fossil pollen assigned to Ctenolophon has been found in South America, India and Malaysia, and from Maastrichtian layers in Africa (Muller 1981, van der Ham 1989), although these records are not cited by Friis & al. (2011).

Habit Bisexual, evergreen trees. Excreting sticky resinous substance.

Vegetative anatomy Phellogen? Vessel elements with scalariform or reticulate perforation plates; lateral pits alternate, scalariform or opposite, bordered pits. Imperforate tracheary xylem elements ? with bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal aliform, winged-aliform, confluent, vasicentric, or unilateral. Sieve tube plastids ? type. Nodes 3:3, trilacunar with three leaf traces. Cristarque cells present. Prismatic calciumoxalate crystals frequent.

Trichomes Hairs multicellular?, simple, fasciculate or stellate (stellate hairs present on leaves, stipules and tepals).

Leaves Opposite, simple, entire, coriaceous, with ? ptyxis. Stipules interpetiolar, early caducous, without colleters; leaf sheath absent. Petiole vascular bundle transection arcuate. Venation pinnate (arcuate and anastomosing). Stomata anomocytic or anisocytic. Cuticular waxes absent. Leaf margin entire.

Inflorescence Terminal or axillary, thyrsoid? or raceme-like.

Flowers Actinomorphic. Pedicel articulated. Hypogyny. Sepals five, with imbricate quincuncial aestivation, persistent, connate at base. Petals five, with contorted aestivation, fleshy, spoon-shaped at base, caducous, free. Nectariferous disc extrastaminal, cupular, with stomata.

Androecium Stamens 5+5, diplostemonous. Filaments of two different lengths, inserted in lower part of adaxial side of nectariferous disc, basally fused into tube, adnate at base to petals (epipetalous). Ten lobes alternating with stamens and forming corona-like tube at base on dorsal side of stamens. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective wide and thick, protruded. Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains 3–9-stephanocolpate or 3–9-stephanocolpor(oid)ate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, perforate, spinulate. Pollen grains of unique type, almost square in polar view and with extremely wide colpi.

Gynoecium Pistil composed of two connate carpels. Ovary superior, bilocular, synascidiate. Style single, bifid. Stigmas capitate, unicellular-papillate, type? Pistillodium absent.

Ovules Placentation lateral, apical, axile. Ovules two per carpel, anatropous, pendulous, epitropous, bitegmic, (weakly) crassinucellar. Micropyle bistomal, Z-shaped (zig-zag). Integuments lobate. Outer integument approx. five cell layers thick. Inner integument ten or eleven cell layers thick. Obturator placental. Endothelium present. Megasporangium disintegrating. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A single-seeded nut (nut-like capsule?) with lignified pericarp and persistent, accrescent, swollen calyx. Seed persistent on thin central funicular columella.

Seeds Arillode hairy, enclosing lower half of seed. Exotestal cells palisade, with thickened outer wall. Endotesta? Exotegmen fibrous. Endotegmen? Perisperm not developed. Endosperm copious. Embryo straight, well differentiated, chlorophyll? Cotyledons two, very large, plicate. Germination?

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Ellagic acid? Alkaloids not found.

Use Timber.

Systematics Ctenolophon (2; C. englerianus: Nigeria, Gabon, Congo, Angola; C. parvifolius: peninsular Thailand and the Malay Peninsula to New Guinea).

Ctenolophon may be sister to [Rhizophoraceae+Erythroxylaceae].

DICHAPETALACEAE Baill.

( Back to Malpighiales )

Baillon in von Martius, Fl. Bras. 12(1): 365. 1 Apr 1886 [‘Dichapetaleae’], nom. cons.

Chailletiaceae R. Br. in J. H. Tuckey, Narr. Exped. Zaire: 442, 443. 5 Mar 1818 [’Chailleteae’]; Chailletiales Link, Handbuch 2: 123. 4-11 Jul 1829 [‘Chailletiaceae’]

Genera/species 3/165–170

Distribution Pantropical, south to southeastern and southern Africa.

Fossils Unknown.

Habit Usually at least morphologically bisexual (at least sometimes functionally monoecious or dioecious), evergreen trees, shrubs or lianas. Sometimes xerophytic. Lenticels often numerous.

Vegetative anatomy Phellogen ab initio superficial. Pericyclic envelope interrupted. Vessel elements with simple and/or scalariform perforation plates; lateral pits usually alternate (in Tapura often scalariform or intermediary), bordered pits. Imperforate tracheary xylem elements fibre tracheids with simple or bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma usually paratracheal aliform, lozenge-aliform, winged-aliform, vasicentric, or confluent (sometimes apotracheal diffuse). Sieve tube plastids S type?; sieve tubes with non-dispersive protein bodies. Nodes? Pericyclic envelope interrupted. Resinous substances produced? Prismatic calciumoxalate crystals abundant.

Trichomes Hairs unicellular, simple, verrucose-papillate; glandular hairs (glands) sometimes present.

Leaves Alternate (spiral), simple, entire, sometimes coriaceous, with ? ptyxis. Stipules intrapetiolar, often fimbriate, usually caducous; leaf sheath absent. Petiole articulated. Petiole vascular bundle transection arcuate. Venation pinnate, brochidodromous; secondary veins strongly curved. Stomata usually paracytic (sometimes anomocytic). Cuticular wax crystalloids? Domatia as pits. Epidermis with mucilaginous idioblasts. Mesophyll with or without mucilaginous idioblasts. Lamina sometimes with abaxial flattened glands and sometimes with mucilage cells. Leaf margin entire. Extrafloral nectaries often present on adaxial or abaxial side of lamina in Dichapetalum.

Inflorescence Axillary (to petiolar; in two species of Dichapetalum and one species of Tapura epiphyllous, arising from petiole), cymose (often fasciculate).

Flowers Usually actinomorphic (in Tapura obliquely zygomorphic), small. Pedicel often articulated. Hypanthium-like structure (“floral cup”) present or absent. Usually hypogyny to half epigyny (rarely epigyny). Sepals four or five, with imbricate quincuncial aestivation, usually free (sometimes connate at base). Petals four or five, with imbricate, involute or valvate to somewhat contorted (rarely open) aestivation, usually deeply bifid, sometimes clawed, blackening when dry, usually free (rarely more or less connate). Nectariferous disc annular when petals connate or as four or five antepetalous scale-like nectariferous glands between staminodia, inserted at petal bases (nectariferous disc in Tapura lobate, semicircular).

Androecium Stamens usually four or five (in Tapura three), haplostemonous, antesepalous, alternipetalous (in Tapura three fertile stamens and two staminodia). Filaments free or connate at base into tube, free from or adnate to tepals. Anthers dorsifixed to almost basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective often dorsally thickened. Tapetum secretory. Female flowers with staminodia; staminodia (intrastaminal?) in male flowers of Tapura two or five, antesepalous.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate, shed as monads, bicellular? at dispersal. Exine semitectate, with columellate infratectum, reticulate (sometimes microreticulate) to retipilate.

Gynoecium Pistil composed of (two or) three (or four) connate carpels; carpel synascidiate. Ovary usually superior to semi-inferior (rarely inferior), (bilocular or) trilocular (or quadrilocular), with central columella and sometimes secondary septa. Style usually single, simple or branched (stylodia rarely two to four, free). Stigma capitate or trilobate, often with recurved lobes, papillate, Wet type. Male flowers with pistillodium.

Ovules Placentation axile to apical. Ovules two per carpel, anatropous, pendulous, epitropous (antitropous, with micropyle above), bitegmic, tenuinucellar. Micropyle bistomal, Z-shaped (zig-zag), or endostomal. Outer integument three to five cell layers thick. Inner integument six to eight cell layers thick. Obturator apical, with long multicellular papillae or hairs, or funicular. Hypostase absent. Megagametophyte monosporous, Polygonum type. Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit An often flattened usually unilocular (rarely bilocular or trilocular and lobed) dry or sometimes juicy single-seeded drupe (sometimes a capsule) with dense, short, erect and often golden yellow hairs and persistent calyx.

Seeds Aril or carunculus present or absent. Testa multiplicative, vascularized, only consisting of enlarged tanniniferous, sometimes divided, exotestal cells and remnants of vascular bundles; testal cells often with stellate calcium oxalate crystals. Endotesta? Exotegmen absent. Endotegmen? Perisperm not developed. Endosperm absent. Embryo straight, well differentiated, oily, with chlorophyll. Cotyledons two. Germination cryptocotylar.

Cytology n = 10, 12

DNA

Phytochemistry Insufficiently known. Pyridine alkaloids sometimes present. Some genera (i.a. Dichapetalum) with strongly toxic fluoroacetic acid (fluoroacetate). Saponins not found.

Use Medicinal plants, arrow poisons, mammal pesticides.

Systematics Dichapetalum (c 135; tropical regions on both hemispheres; incl. Tapura?), Stephanopodium (13; Costa Rica, northwestern South America, coastal Brazil), Tapura (c 20; tropical Africa, Central America, tropical South America; in Dichapetalum?).

Dichapetalaceae are sister to Trigoniaceae.

A phylogeny is carried out by a research group in Wageningen. Tapura is nested in Dichapetalum, according to Yakandawala & al. (2010).

ELATINACEAE Dumort.

( Back to Malpighiales )

Dumortier, Anal. Fam. Plant.: 44, 49. 1829 [‘Elatinideae’], nom. cons

Cryptaceae Raf. in Ann. Gén. Sci. Phys. Bruxelles 5: 349. Jul-Sep 1820 [‘Cryptinia’]; Elatinales Cambess. in C. F. P. von Martius, Consp. Regn. Veg.: 54. Sep-Oct 1835 [‘Elatineae’]; Alsinastraceae Rupr., Fl. Ingr. 1: 194. Mai 1860 [’Alsinastreae’], nom. illeg.

Genera/species 2/c 50

Distribution Cosmopolitan except polar areas, with their largest diversity in tropical regions.

Fossils Curved seeds with reticulate surface, resembling those in Elatine, are known from the Pliocene of Europe.

Habit Bisexual, usually perennial or annual herbs (Bergia suffruticosa is suffrutescent). A large number of species are aquatic, whereas others are amphibious helophytes.

Vegetative anatomy Phellogen ab initio usually superficial (in Bergia inner-cortical). Endodermis prominent in species of Elatine. Secondary lateral growth normal or absent. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits? Imperforate tracheary xylem elements tracheids with bordered pits, non-septate? (also vasicentric tracheids). Wood rays uniseriate to multiseriate, heterocellular? Axial parenchyma apotracheal diffuse. Sieve tube plastids S0 type, without starch or protein inclusions. Nodes 1:1, unilacunar with one leaf trace. Mucilage cells and resin-producing cells present. Secretory cells with tanniniferous substances (resinous latex) present in Bergia. Druses and solitary crystals present.

Trichomes Hairs usually absent (when present unicellular or uniseriate, simple, basifixed and sometimes gland-tipped); glandular hairs abundant in Bergia

Leaves Usually opposite (in Elatine alsinastrum verticillate), simple, entire, with ? ptyxis. Stipules interpetiolar, minute, membranous; leaf sheath absent. Colleters present. Petiole vascular bundle simple. Venation pinnate. Stomata usually paracytic (rarely anomocytic or tetracytic), with four to eight irregularly formed subsidiary cells. Cuticular wax crystalloids? Epidermis with or without mucilaginous idioblasts. Lamina with or without secretory cavities. Leaf margin serrate, crenate or entire, often with multicellular glands along margin.

Inflorescence Axillary, few-flowered, cymose, or flowers solitary axillary.

Flowers Actinomorphic, small. Hypogyny. Sepals (two or) three to five (or six), with imbricate aestivation, free or connate at base; median sepal (when three sepals) abaxial. Petals (two or) three to five (or six), with contorted or imbricate aestivation, persistent, free. Nectary absent. Disc absent.

Androecium Stamens (two or) three to five (or six), haplostemonous, antesepalous, or (four to) six to ten (to twelve), in one or two whorls, diplostemonous, with outer stamens antesepalous and inner stamens alternisepalous (inner staminal whorl sometimes absent). Filaments free from each other and from tepals. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate, shed as monads, bicellular (Bergia) or tricellular (Elatine) at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of two to five (or six) connate antesepalous carpels; median carpel (when three carpels) abaxial. Ovary superior, bilocular to quinquelocular (or sexalocular; septa sometimes not reaching apex). Stylodia two to five (or six), free. Stigmas capitate, papillate, type? Pistillodium absent.

Ovules Placentation apical, pendulous. Ovules (two to) numerous per carpel, anatropous, epitropous, ascending or horizontal, bitegmic, weakly crassinucellar. Micropyle bistomal, sometimes Z-shaped (zig-zag). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Archespore multicellular. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad.

Fruit A septicidal valvicidal capsule.

Seeds Aril absent. Operculum present. Seed coat exotegmic. Testa collapsed? Exotegmic cells with sinuous anticlinal walls, lignified. Endotegmen? Perisperm not developed. Endosperm thin (Bergia) or absent (Elatine). Embryo straight or somewhat curved, large, fusiform, well differentiated, chlorophyll? Cotyledons two, short. Germination phanerocotylar.

Cytology x = 6, 9, 10

DNA Duplication of CYC genes.

Phytochemistry Flavonols, ellagic acid, tannins, and proanthocyanidins (prodelphinidins) present. Alkaloids and saponins not found.

Use Unknown.

Systematics Elatine (c 25; almost cosmopolitan), Bergia (24–27; tropical and subtropical regions on both hemispheres).

Elatinaceae are sister to Malpighiaceae. Potential synapomorphies shared by Elatinaceae and Malpighiaceae are, e.g., opposite leaves, multicellular glands often found along foliar margins, similar type of inflorescence, septicidal capsule, and exalbuminous seeds (Davis & Chase 2004).

Elatine alsinastrum is sister to the remaining species of Elatine, based on morphological characters (Razifard & al. 2017).

ERYTHROXYLACEAE Kunth

( Back to Malpighiales )

Kunth in von Humboldt, Bonpland et Kunth, Nov. Gen. Sp. Plant. 5, ed. 4o: 175; ed. fol.: 135. 25 Feb 1822 [‘Erythroxyleae’], nom. cons.

Erythroxylales Link, Handbuch 2: 339. 4-11 Jul 1829 [‘Erythroxyleae’]; Nectaropetalaceae (H. Winkl.) Exell et Mendonça in Bol. Soc. Brot., ser. 2, 25: 105. 1951

Genera/species 4/235–240

Distribution Pantropical.

Fossils Unknown.

Habit Usually bisexual (rarely dioecious), evergreen small trees or shrubs. Branches often covered with distichous scale-like rudimentary leaves. Buds perulate.

Vegetative anatomy Mycorrhiza absent. Phellogen ab initio superficial. Young stems and branches with cortical vascular bundles. Primary vascular tissue cylinder, without separate bundles. Vessel elements with simple perforation plates; lateral pits alternate, simple pits. Vestured pits absent (Erythroxylum). Imperforate tracheary xylem elements fibre tracheids with simple or bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, aliform, winged-aliform, vasicentric, or confluent. Secondary phloem often stratified into hard fibrous and soft parenchymatous layers. Sieve tube plastids Pc (PV) type, with numerous square or polygonal protein crystalloids. Nodes 3:3, trilacunar with three leaf traces, with lateral vascular bundles originating relatively long before central bundle and forming cortical bundles. Sclereids present. Wood usually with silica grains. Parenchyma and bundle envelopes usually with cristarque cells (sometimes absent). Prismatic calciumoxalate crystals frequent.

Trichomes Hairs absent.

Leaves Usually alternate (spiral or distichous; in Aneulophus opposite), simple, entire, with involute ptyxis. Stipules usually at least partially interpetiolar (in Exythroxylum intrapetiolar), sheathing, in all species with basal adaxial gum-secreting colleters; leaf sheath absent. Petiole vascular bundle transection arcuate or annular; petiole with medullary and adaxial bundles. Venation pinnate. Stomata paracytic. Cuticular wax crystalloids as rosettes of platelets (Fabales type). Epidermis with or without mucilaginous idioblasts. Mesophyll with or without sclerenchymatous idioblasts. Leaf margin entire.

Inflorescence Axillary, usually fasciculate, or flowers solitary axillary.

Flowers Usually actinomorphic (in Aneulophus zygomorphic?), often small. Pedicel usually articulated. Hypanthium present in Nectaropetalum. Hypogyny. Sepals five, with imbricate quincuncial or valvate aestivation, persistent, connate at base. Petals five, with imbricate or contorted aestivation, caducous, usually with adaxial fimbriate bilobate ligule at base, free or connate at base. Nectariferous glands present on abaxial side of staminal tube. Disc absent. Heterostyly frequent.

Androecium Stamens 5+5, usually obdiplostemonous (sometimes diplostemonous). Filaments connate into tube around pistil at least at base, free from tepals, often with two different lengths. Anthers dorsifixed to basifixed, versatile?, tetrasporangiate, latrorse (or introrse?), longicidal (dehiscing by longitudinal slits); connective often thickened. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (sometimes tricolpate), shed as monads, tricellular at dispersal. Exine semitectate, with columellate infratectum, finely reticulate to punctate.

Gynoecium Pistil composed of (two or) three (or four) connate carpels; usually only adaxial carpel (rarely all carpels) fertile. Ovary superior, usually with only one fertile locule, synascidiate. Stylodia (two or) three (or four), free or more or less connate, sometimes with canal. Stigmas capitate, unicellular-papillate, Dry type. Pistillodium absent.

Ovules Placentation apical to axile. Ovule one (or two) per carpel, anatropous to hemianatropous, pendulous, epitropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument two to five cell layers thick. Inner integument five to nine cell layers thick. Hypostase absent. Parietal tissue two to four cell layers thick. Endothelium usually present. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad.

Fruit Usually a single-seeded drupe (in Aneulophus a septicidal capsule) with persistent calyx and stamens.

Seeds Arilloid (carunculus?), formed from exostome, present in Aneulophus. Seed coat exotegmic. Exotestal cells thickened, elongate. Endotesta crushed. Tegmen often multiplicative (in Aneulophus thin). Exotegmen fibrous. Endotegmen as pigmented endothelium. Perisperm not developed. Endosperm very copious, starchy (rarely absent). Embryo straight, well differentiated, with chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology n = 12

DNA

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, ethereal oils (in wood), non-hydrolyzable tannins, chlorogenic acid, tropane (hygrolinic) alkaloids (tropane-3α and tropane-3β-ols, tropacocaine, scopolamine oxides, hydroxytropines, teloidines, ecgonines, norecgonines, etc.), pyrrolizidine alkaloids, and saponins present. Ellagic acid and cyanogenic compounds not found.

Use Medicinal plants, cocaine (Erythroxylum coca, E. novogranatense), timber, tar, dyeing substances.

Systematics Aneulophus (2; A. africanus, A. congoensis; tropical West and Central Africa), Erythroxylum (c 230; tropical regions on both hemispheres, east to eastern India, south to central Chile and Argentina, with their highest diversity in Madagascar, the Andes and Amazonas), Nectaropetalum (5; N. acuminatum, N. capense, N. kaessneri, N. lebrunii, N. zuluense; tropical and southern Africa, Madagascar), Pinacopodium (2; P. congolense, P. gabonense; tropical Africa).

Erythroxylaceae are sister to Rhizophoraceae.

Cladogram of Erythroxylaceae based on DNA sequence data and morphology (Schwarzbach & Ricklefs 2000).

EUPHORBIACEAE Juss.

( Back to Malpighiales )

de Jussieu, Gen. Plant.: 384. 4 Aug 1789 [’Euphorbiae’], nom. cons.

Tithymalaceae Vent., Tabl. Règne Vég. 3: 483. 5 Mai 1799 [’Tithymaloideae’]; Euphorbiales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 237. Jan-Apr 1820 [‘Euphorbiaceae’]; Mercurialaceae Bercht. et J. Presl, Přir. Rostlin: 237. Jan-Apr 1820 [’Mercurialideae’]; Ricinaceae Martinov, Tekhno-Bot. Slovar: 547. 3 Aug 1820 [’Ricini’]; Trewiaceae Lindl., Intr. Nat. Syst. Bot., ed. 2: 174. 13 Jun 1836; Tragiaceae Raf., Fl. Tellur. 4: 111. med 1838 [’Tragides’]; Acalyphaceae Juss. ex Menge., Cat. Plant. Grudent. Gedan.: 172. 1839 [’Acalyphinae’]; Crotonopsida Brong., Enum. Pl. Mus. Paris: xxiii, 79. 12 Aug 1843 [‘Crotonineae’]; Bertyaceae J. Agardh, Theoria Syst. Plant.: 190. Apr-Sep 1858; Crotonaceae J. Agardh, Theoria Syst. Plant.: 258. Apr-Sep 1858 [’Crotoneae’]; Hippomanaceae J. Agardh, Theoria Syst. Plant.: 244. Apr-Sep 1858 [’Hippomaneae’]; Ricinocarpaceae (Müll. Arg.) Hurus. in J. Fac. Sci. Univ. Tokyo, ser. III, 6: 224. 15 Aug 1954; Euphorbianae Takht. ex Reveal in Novon 2: 236. 13 Oct 1992; Cheilosaceae Doweld, Tent. Syst. Plant. Vasc.: xxxi. 23 Dec 2001

Genera/species c 207/6.525–>6.600

Distribution Cosmopolitan except polar areas, although mainly tropical, with their largest species diversity (Euphorbia) in southern Africa, the Mediterranean and the irano-turanian regions, and southern North America.

Fossils Fossil fruits and seeds of Euphorbiaceae from the Eocene of England (the London Clay and the Pipe-Clay in Dorset) have been described (e.g. as Euphorbiospermum and Euphorbiotheca). From Oligocene and younger layers in Australia there are likewise fossils assigned to Euphorbiaceae. Crepetocarpon from the Eocene of North America may belong in Euphorbiaceae-Euphorbioideae. Fossil wood, probably of euphorbiacean origin, is frequently documented from Palaeogene and Neogene layers on several continents (also New Zealand).

Habit Monoecious or dioecious, evergreen or deciduous trees or shrubs, perennial or annual herbs (rarely lianas; many species are stem succulents and xerophytes). CAM and C4 physiologies present in many species (i.a. Chamaesyce subclade of Euphorbia).

Vegetative anatomy Phellogen ab initio outer-cortical or pericyclic. Primary vascular tissue bicollateral or centrifugal. Cortical and medullary vascular bundles sometimes present. Secondary lateral growth usually normal (sometimes anomalous, from cylindrical cambium) or absent. Vessel elements often in multiples. Vessel elements with usually simple (sometimes scalariform) perforation plates; lateral pits alternate, simple pits. Vestured pits sometimes present. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, septate or non-septate (in Bernardia also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, eller paratracheal scanty, reticulate, scalariform, vasicentric, or banded, or absent. Tyloses sometimes frequent. Sieve tube plastids S type; sieve tubes with non-dispersive protein bodies. Nodes usually 3:3, trilacunar with three leaf traces (rarely 1:1, unilacunar with one trace, or ≥5:≥5, multilacunar with five or more traces). Articulated or inarticulated laticifers with gums (rubber; usually absent in Acalyphoideae). Secretory canals with tannins. Silica bodies present in many species. Prismatic crystals often abundant (also in axial parenchyma and/or wood ray cells); acicular crystals, druses, styloids, crystal sand or other types of calciumoxalate crystals present or absent.

Trichomes Hairs unicellular or multicellular, malpighiaceous hairs (unicellular T-shaped; Argythamnia, Chiropetalum, Rhodothyrsus), simple, furcate, stellate, candelabra-shaped, dendritic, peltate or lepidote; glandular hairs often present; stinging hairs sometimes present (in, e.g., Cnidoscolus and Tragia).

Leaves Usually alternate (spiral or distichous) or opposite (rarely verticillate), usually simple (sometimes palmately compound), entire or lobed, with various ptyxis (sometimes absent). Stipules usually cauline (sometimes hair-like or modified into glands; in many species of Euphorbia modified into spines; rarely absent); leaf sheath absent. Petiole often with distal pulvinus, sometimes with paired or unpaired extrafloral nectaries. Petiole vascular bundle transection arcuate, annular etc. Venation usually palmate (sometimes pinnate). Stomata usually paracytic (sometimes anisocytic, parallelocytic or anomocytic). Cuticular wax crystalloids as rosettes of platelets (Fabales type), or cuticular wax as crust (especially in succulents). Epidermis with or without mucilaginous idioblasts. Mesophyll with or without sclerenchymatous idioblasts. Styloids present in some genera. Secretory cavities absent. Leaf margin entire or serrate with simple veins proceeding into persistent transparent leaf teeth. Subbasal glands present or absent; extrafloral nectaries sometimes present on lamina.

Inflorescence Terminal or axillary, cymose of various shapes (panicle, thyrsoid, fascicle, corymb, raceme-, catkin- or spike-like, etc.) consisting of monochasia or dichasia. Bracts sometimes involucral, sometimes large and showy, occasionally resin-producing (e.g. Dalechampia). Inflorescence in Euphorbia pseudanthial cyathium (thyrsoid), each with one terminal female partial inflorescence with one female flower consisting of one tricarpellate pistil, surrounded by four or five cincinni of male flowers, each consisting of one stamen; five usually nectariferous bracts inserted on abaxial side of each cyathium. Female flowers in Ricinus in distal part of inflorescence.

Flowers Actinomorphic, small. Hypogyny. Sepals (two or) three to six (to twelve), with valvate or imbricate aestivation, usually free (sometimes connate at base; absent in some genera; female flowers in Excoecaria with three tepals). Petals (two or) three to six (to eight), with valvate or imbricate aestivation, usually free, or absent. Nectariferous disc intrastaminal or extrastaminal, annular or subdivided into separate glands, or absent.

Androecium Stamens one to more than 50 (to more than 1.000). Filaments usually free (sometimes connate; in Ricinus fused into branched fascicles), free from tepals, in some genera apically split and branched. Anthers basifixed to dorsifixed, often versatile, usually tetrasporangiate (rarely disporangiate), extrorse or introrse, longicidal (dehiscing by longitudinal slits). Tapetum usually secretory (sometimes amoeboid-periplasmodial). Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (sometimes colpate, porate or inaperturate), shed as monads, bicellular or tricellular at dispersal. Exine tectate, semitectate or intectate, with columellate infratectum, perforate or reticulate, echinate, verruculate, spinulate or smooth.

Gynoecium Pistil composed of (two or) three (to numerous) connate carpels; median carpel usually abaxial. Ovary superior, (bilocular or) trilocular (to multilocular). Stylodia (two or) three (to numerous), free or connate at base, simple or branched. Stigmas relatively large, often branched or with adaxial furrow, papillate or non-papillate, Dry or Wet type. Pistillodium absent.

Ovules Placentation apical. Ovules one (or two) per carpel, usually anatropous (sometimes hemianatropous or amphitropous), pendulous, usually epitropous (sometimes apotropous), bitegmic, crassinucellar. Micropyle usually exostomal (sometimes bistomal). Outer integument three to many cell layers thick. Inner integument (three or) four to 25 cell layers thick. Nucellar cap present; megasporangium usually with nucellar beak protruding through micropyle and reaching obturator. Placental obturator present between stylar canal and micropyle forming roof above micropyle. Hypostase present. Megagametophyte monosporous, disporous or tetrasporous, Polygonum type, Acalypha type or other types (Allium type?, Drusa type?, Fritillaria type?, Penaea type?). Synergids sometimes with a filiform apparatus. Antipodal cells sometimes proliferating (in at least Jatropha sometimes up to five cells). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis usually onagrad (sometimes solanad? or piperad?).

Fruit Usually a septicidal (sometimes loculicidal) capsule (often explosively dehiscent) or usually tripartite (rarely bipartite or multipartite) schizocarp (with carpels, cocci, sometimes elastically dehiscing from central columella; mesocarps often separating from endocarp; rarely a berry or drupe).

Seeds Seeds often large, sometimes pachychalazal. Micropylar carunculus usually present. Aril present in some species. Seed coat usually exotegmic (sometimes endotestal). Exotesta usually palisade. Endotesta cells with amorphous calciumcarbonate. Exotegmen often palisade, consisting of malpighian-like lignified cells (Crotonoideae). Endotegmen absent. Perisperm not developed. Endosperm usually copious, often oily (sometimes absent). Embryo straight or curved, usually well differentiated, with or without chlorophyll. Cotyledons two, usually longer and wider than radicula. Germination phanerocotylar or cryptocotylar.

Cytology n = (5) 7 (8) 9–11 (or more); x = (7–)9(–11)

DNA Plastid gene infA lost/defunct (Hevea). Mitochondrial coxI intron present.

Phytochemistry Flavonols (kaempferol, quercetin), triterpenes (cucurbitacins), cocarcinogenic phorbol esterditerpenes, ethereal oils and resins, ellagic and gallic acids, ellagitannins (geraniin, mallotussic acid), p-coumaric acid, caffeic acid, alkaloids (e.g. ricinine, in Croton benzylisoquinoline alkaloids), cyanogenic glycosides derived from nicotinic acid or valine/isoleucine, polyacetate-derived arthroquinones (Clutia), ferulic acid, and lectins (hemagglutinins) present. Proanthocyanidins not found. Saponins? Aluminium accumulated in some species.

Use Ornamental plants, starch sources (Manihot), medicinal plants, rubber (Hevea), seed oils (Ricinus), timber, poisons.

Systematics Euphorbiaceae are sister to Rafflesiaceae.

The phylogenetic relationships among the genera of Acalyphoideae, Crotonoideae and Euphorbioideae are still very insufficiently known.

Cheilosoideae (Müll.-Arg.) K. Wurdack et Petra Hoffm. in Amer. J. Bot. 92: 1413. 27 Jul 2005

2/7. Cheilosa (1; C. montana; West Malesia), Neoscortechinia (6; N. angustifolia, N. forbesii, N. kingii, N. nicobarica, N. philippinensis, N. sumatrensis; southern Burma, the Nicobar Islands, Malesia to New Guinea, the Bismarck Archipelago and Solomon Islands). – Southern Burma, the Nicobar Islands, Malesia to New Guinea, Solomon Islands. Stamens five to twelve. Pollen grains echinate. Pistil composed of sometimes two connate carpels. Outer integument eight to ten cell layers thick. Inner integument eight to twelve cell layers thick. Carunculus absent. Testa with vascular bundles. Endosperm present.

[Suregada clade+[Adenoclineae+[Acalyphoideae+[Crotonoideae+Euphorbioideae]]]]

Suregada clade

1–2/c 30. Suregada (c 30; tropical Africa, Madagascar, tropical Asia to tropical Australia and islands in the Pacific), Cladogelonium (1; C. madagascariense; Madagascar; in Suregada?). – Tropical regions in the Old World. Pollen grains pantoporate, acolumellate.

[Adenoclineae+[Acalyphoideae+[Crotonoideae+Euphorbioideae]]]

Adenoclineae (Müll.-Arg.) G. L. Webster in Taxon 24: 598. 19 Dec 1975

6/67. Endospermum (11; Southeast Asia, Malesia to Fiji); Klaineanthus (1; K. gaboniae; Nigeria to Gabon), Tetrorchidium (23; tropical Africa, Mexico, Central America, Jamaica, tropical South America), Adenocline (8; southern Africa north to Malawi), Ditta (2; D. maestrensis, D. myricoides; Cuba, Hispaniola, Puerto Rico); Omphalea (22; tropical regions on both hemispheres). – Pantropical, southern Africa. Endospermum may be sister to the remaining Adenoclineae.

[Acalyphoideae+[Crotonoideae+Euphorbioideae]]

Outer integument six to approx. ten cell layers thick. Phorbol esters (phorbol diterpenes) sometimes present.

Acalyphoideae (Kunth) Beilschm. in Flora 16(Beibl. 7): 61, 104. 14 Jun 1833 [‘Acalypheae’]

c 100/2.000–>2.035. Acalypheae Dumort., Anal. Fam. Plant.: 45. 1829. Acalypha (450–455; tropical and subtropical regions on both hemispheres); Claoxylon (c 115; Madagascar, tropical Asia, northern and eastern Australia, Melanesia, the Hawaiian Islands), Crotonogynopsis (2; C. akeassii, C. usambarica; tropical Africa), Discoclaoxylon (4; D. hexandrum, D. occidentale, D. pedicellare, D. pubescens; one species in western tropical Africa, three species endemic to São Tomé); Erythrococca (c 40; tropical and southern Africa, southern Arabian Peninsula), Micrococca (12; tropical Africa, Madagascar, the Arabian Peninsula, tropical Asia to the Malay Peninsula); Cleidion (30–35; tropical regions on both hemispheres), Sampantaea (1; S. amentiflora; Thailand, Cambodia), Wetria (2; W. insignis: southern Burma, Thailand, West Malesia, the Philippines; W. australiensis: Papua New Guinea, northeastern Queensland); Dysopsis (3; D. glechomoides, D. hirsuta, D. paucidentata; the Andes, Juan Fernandez); Lasiococca (5; L. brevipes, L. chanii, L. comberi, L. locii, L. symphyllifolia; eastern Himalayas, Hainan, Vietnam, the Malay Peninsula), Spathiostemon (2; S. javensis, S. moniliformis; Peninsular Thailand, Malesia to New Guinea), Homonoia (3; H. intermedia, H. retusa, H. riparia; Malesia New Guinea); Lobanilia (8; Madagascar); Macaranga (305–310; tropical regions in the Old World); Mareya (4; M. acuminata, M. brevipes, M. congolensis, M. micrantha; tropical West and Central Africa); Mercurialis (12; Europe, the Mediterranean, temperate Asia to northern Thailand), Seidelia (2; S. firmula, S. triandra; Northern and Western Cape, Free State), Leidesia (1; L. procumbens; southern Africa); Ricinus (1; R. communis; eastern and northeastern Africa, the Arabian Peninsula, southwestern Asia), Adriana (2; A. quadripartita, A. urticoides; Australia); Avellanita (1; A. bustillosii; central Chile), Mallotus (120–125; tropical Asia to tropical Australia and islands in the Pacific, two species, M. oppositifolius and M. subulatus, in tropical Africa and Madagascar); Blumeodendron (5; B. bullatum, B. calophyllum, B. concolor, B. kurzii, B. tokbrai; Southeast Asia, the Andaman Islands, Malesia to New Guinea), Podadenia (1; P. sapida; Sri Lanka), Ptychopyxis (13; Peninsular Thailand, Malesia to New Guinea), Botryophora (1; B. geniculata; Southeast Asia, West Malesia); Afrotrewia (1; A. kamerunica; Cameroon, Gabon). – Adelieae G. L. Webster in Taxon 24: 597. 19 Dec 1975. Adelia (10; Mexico, Central America, the West Indies, tropical South America), Enriquebeltrania (2; E. crenatifolia, E. disjuncta; Mexico), Garciadelia (4; G. abbottii, G. castilloae, G. leprosa, G. mejiae; Hispaniola), Lasiocroton (c 25?; Cuba), Leucocroton (26–27; Cuba). – Agrostistachydeae G. L. Webster in Taxon 24: 596. 19 Dec 1975. Agrostistachys (6; A. borneensis, A. gaudichaudii, A. hookeri, A. indica, A. sessilifolia, A. staminodiata; southern India, Sri Lanka, Thailand, Malesia to New Guinea), Chondrostylis (2; C. bancana, C. kunstleri; Peninsular Thailand, West Malesia), Cyttaranthus (1; C. congolensis; Central Africa), Pseudagrostistachys (2; P. africana, P. ugandensis; tropical Africa). – Alchorneeae Hutch. in Amer. J. Bot. 56: 752. Aug 1969. Alchornea (50–55; tropical regions on both hemispheres), Aparisthmium (1; A. cordatum; southern Central America, tropical South America), Bocquillonia (14; New Caledonia), Orfilea (4; O. ankafinensis, O. coriacea, O. multispicata, O. neraudiana; Madagascar, Mauritius); Aubletiana (2; A. leptostachys, A. macrostachys; Cameroon, Gabon), Conceveiba (14; Central America, tropical South America), Mareyopsis (2; M. longifolia, M. oligogyna; Central Africa). – Ampereae Müll.-Arg. in Bot. Zeitung (Berlin) 22: 324. 14 Oct 1864. Monotaxis (11; Australia), Amperea (8; southwestern Western Australia, southeastern Australia, Tasmania). – Bernardieae G. L. Webster in Taxon 24: 596. 19 Dec 1975. Bernardia (c 75; southern United States, Mexico, Central America, tropical South America, with their highest diversity in Brazil), Discocleidion (1; D. rufescens; central China, the Ryukyu Islands), Adenophaedra (3; A. cearensis, A. grandifolia, A. megalophylla; tropical South America). – Caryodendreae G. L. Webster in Taxon 24: 596. 19 Dec 1975. Caryodendron (4; C. amazonicum, C. angustifolium, C. janeirense, C. orinocense; Costa Rica to Amazonian Brazil), Discoglypremna (1; D. caloneura; tropical Africa), Alchorneopsis (2; A. floribunda; Central America, tropical South America, one species, A. portoricensis, on Puerto Rico). – Chrozophoreae Pax et K. Hoffm. in H. G. A. Engler, Pflanzenr. 68(Addit. VI): 2. 6 Jun 1919. Chrozophora (11; the Mediterranean, tropical East Africa, southwestern and southern Asia to Thailand); Argythamnia (23; southern Mexico to Honduras, the West Indies), Caperonia (c 35; tropical Africa, Madagascar, tropical America), Chiropetalum (c 25; Texas, Mexico, tropical South America to northern Chile), Ditaxis (c 50; Florida, southwestern United States, Mexico, Central America, the West Indies, tropical South America), Philyra (1; P. brasiliensis; southern Brazil, Paraguay, northern Argentina); Doryxylon (1; D. spinosum; Luzon, the Lesser Sunda Islands), Melanolepis (2; M. multiglandulosa, M. vitifolia; Southeast Asia to islands in the Pacific, Taiwan), Sumbaviopsis (1; S. albicans; Assam, Southeast Asia, West Malesia), Thyrsanthera (1; T. suborbicularis; Southeast Asia); Speranskia (3; S. cantonensis, S. tuberculata, S. yunnanensis; southern China, northern Burma). – Epiprineae Hurus. in J. Fac. Sci. Univ. Tokyo, ser. 3, Bot. 6: 309. 1954. Epiprinus (6; E. balansae, E. lanceifolius, E. malayanus, E. mallotiformis, E. poilanei, E. siletianus; India, Burma, southern China, Southeast Asia, Sumatra), Cleidiocarpon (2; C. cavaleriei, C. laurinum; Burma, southern China, western Thailand, northern Vietnam), Koilodepas (12; southern India to Hainan and New Guinea), Cladogynos (1; C. orientalis; Southeast Asia, Malesia), Tsaiodendron (1; T. dioicum; Yunnan), Cephalocroton (4; C. cordofanus, C. incanus, C. mollis, C. polygynus; tropical Africa, Madagascar, Socotra, Sri Lanka); Cephalomappa (5; C. beccariana, C. lepidotula, C. malloticarpa, C. paludicola, C. penangensis; southern China, West Malesia), Rockinghamia (2; R. angustifolia, R. brevipes; northeastern Queensland). – Erismantheae G. L. Webster in Taxon 24: 595. 19 Dec 1975. Erismanthus (2; E. obliquus, E. sinensis; Southeast Asia, Hainan, West Malesia); Moultonianthus (1; M. leembruggianus; Sumatra, Borneo), Syndyophyllum (2; S. occidentale: northern Sumatra, Borneo; S. excelsum: northern Papua New Guinea). – Plukenetieae Hutch. in Amer. J. Bot. 56: 753. Aug 1969. Dalechampia (120–125; tropical regions on both hemispheres, with their highest diversity in tropical South America); Haematostemon (2; H. coriaceus, H. guianensis; Guyana, Amazonian Venezuela), Plukenetia (c 20; tropical Africa, Madagascar, southern Mexico, Central America, tropical South America, one species, P. corniculata, in tropical Asia), Romanoa (1; R. tamnoides; eastern and southern Brazil, Paraguay, Bolivia); Ctenomeria (2; C. capensis, C. cordata; South Africa), Megistostigma (5; M. burmanicum, M. cordatum, M. glabratum, M. peltatum, M. yunnanense; Yunnan, Southeast Asia, West Malesia), Cnesmone (11; Assam, Southeast Asia, West Malesia), ‘Tragia’ (150–155; tropical, subtropical and warm temperate regions on both hemispheres; polyphyletic), Bia (5; B. alienata, B. cordata, B. fallax, B. fendleri, B. lessertiana; Costa Rica to tropical South America), Platygyna (7; P. dentata, P. hexandra, P. leonis, P. obovata, P. parvifolia, P. triandra, P. volubilis; Cuba), Acidoton (6; A. haitiensis, A. lanceolatus, A. microphyllus, A. nicaraguensis, A. urens, A. variifolius; Hispaniola and Jamaica), Zuckertia (2; Z. cordata, Z. manuelii; Mexico, Central America), ‘Tragia’ pro parte, Pachystylidium (1; P. hirsutum; India, Southeast Asia to Central Malesia), Sphaerostylis (2; S. perrieri, S. tulasneana; Madagascar), Gitara (1; G. nicaraguensis; Central America to Venezuela), ‘Tragia’ pro parte; unplaced Plukenetieae: Angostylis (2; A. longifolia, A. tabulamontana; Amazonian Brazil), Astrococcus (1; A. cornutus; Amazonian Venezuela, Amazonian Brazil). – Pycnocomeae Reveal in Phytoneuron 2012-37: 218. 23 Apr 2012. Amyrea (11; Madagascar), Necepsia (3; N. afzelii, N. castaneifolia, N. zairensis; tropical Africa, Madagascar), Paranecepsia (1; P. alchorneifolia; tropical East Africa); Pycnocoma(18; tropical Africa), Droceloncia (1; D. rigidifolia; Madagascar, the Comoros), Argomuellera (17; tropical Africa, Madagascar). – Sphyranthereae Radcl.-Sm., Gen. Euphorbiacearum: 135. 2001. Sphyranthera (2; S. airyshawii, S. lutescens; the Andaman Islands, the Nicobar Islands). – Pantropical, few species in subtropical and warm-temperate regions. Pseudanthia present in Dalechampia. Stigma in Acalypha strongly branched. Outer integument three to six (to 16) cell layers thick. Inner integument three to 24 cell layers thick. Testa sometimes with vascular bundles.

[Crotonoideae+Euphorbioideae]

Laticifers and latex present. Large variation among phorbol esters; cocarcinogens present.

Crotonoideae (Kunth) Beilschm. in Flora 16(Beibl. 7): 61, 106. 14 Jun 1833 [’Crotoneae’]

60/2.010–>2.020. Aleuritideae Hurus. in J. Fac. Sci. Univ. Tokyo, ser. 3, Bot., 6: 309. 15 Aug 1954. Aleurites (2; A. moluccanus, A. rockinghamensis; tropical Asia to islands in western Pacific), Vernicia (3; V. cordata, V. fordii, V. montana; Burma, Southeast Asia, Malesia and southern China to Japan); Benoistia (3; B. orientalis, B. perrieri, B. sambiranensis; Madagascar); Cyrtogonone (1; C. argentea; tropical West Africa), Crotonogyne (16; tropical Africa), Manniophyton (1; M. fulvum; western and central tropical Africa to Angola); Garcia (2; G. nutans, G. parviflora; Mexico to Colombia); Grossera (8; tropical Africa, Madagascar), Cavacoa (3; C. aurea, C. baldwinii, C. quintasii; tropical Africa), Sandwithia (2; S. guyanensis, S. heterocalyx; northeastern South America), Tannodia (9; tropical Africa, Madagascar), Tapoides (1; T. villamilii; Borneo); Neoboutonia (3; N. macrocalyx, N. mannii, N. melleri; tropical Africa); Deutzianthus (2; D. tonkinensis; northern Vietnam; D. thyrsiflorus: Sumatra), Oligoceras (1; O. eberhardtii; Vietnam), Paracroton (4; P. integrifolius, P. pendulus, P. sterrhopodus, P. zeylanicus; southern India, Sri Lanka, Malesia to New Guinea); Mildbraedia (5; M. balboana, M. carpinifolia, M. fallax, M. occidentalis, M. paniculata; western and central tropical Africa to Mozambique). – Codiaeeae Hutch. in Amer. J. Bot. 56: 747. Aug 1969 [‘Codiaeae’]. Alphandia (3; A. furfuracea, A. resinosa, A. verniciflua; New Guinea, New Caledonia, Vanuatu), Anomalocalyx (1; A. uleanus; Amazonian Brazil from near Manaos to Amapá), Baliospermum (5; B. angustifolium, B. bilobatum, B. calycinum, B. solanifolium, B. yui; the Himalayas, Tibet, Yunnan, Indochina, the Malay Peninsula, Sumatra, Java, Sumbawa), Baloghia (15; eastern Queensland, eastern New South Wales, Norfolk Island, New Caledonia, with the largest diversity in New Caledonia), Blachia (11; India, the Andaman Islands, southern China, Southeast Asia, the Philippines), Codiaeum (16–17; Malesia to New Guinea, tropical Australia and New Caledonia), Dimorphocalyx (17; India, Sri Lanka to the Philippines, New Guinea and tropical Australia), Dodecastigma (3; D. amazonicum, D. integrifolium, D. uleanum; the Guianas, Amazonian Brazil), Fontainea (9; New Guinea, Queensland, New Caledonia, Vanuatu), Hylandia (1; H. dockrillii; northeastern Queensland), Ostodes (2; O. kuangii, O. paniculata; Assam, eastern Himalayas, Southeast Asia to Java and Borneo), Pantadenia (3; P. chauvetiae and P. gervaisii: Madagascar; P. adenanthera: Thailand, Indochina), Strophioblachia (1; S. fimbricalyx; Yunnan, Hainan, Thailand, Cambodia, Vietnam, the Philippines, Sulawesi); Trigonostemon (c 85; India and China to the Philippines, New Guinea, Queensland and Fiji); Pausandra (8; Central America, tropical South America). – Crotoneae Dumort., Anal. Fam. Plant.: 45. 1829 [‘Crotonieae’]. Acidocroton (13; southern Mexico, Central America to Colombia, Cuba, Hispaniola, Jamaica), Brasiliocroton (1; B. mamoninha; northeastern Brazil), Croton (>1.200; tropical and subtropical regions), Moacroton (>28; tropical and subtropical North, Central and South America, the West Indies), Sagotia (2; S. brachysepala, S. racemosa; Central America, northern South America), Sandwithia (2; S. guyanensis, S. heterocalyx; Amazonian South America). – Elateriospermeae G. L. Webster in Taxon 24: 599. 19 Dec 1975. Elateriospermum (1; E. tapos; Peninsular Thailand, West Malesia), Glycydendron (2; G. amazonicum, G. espiritosantense; northern South America). – Heveeae (Müll. Arg.) G. L. Webster in Kubitzki (ed) 2014 Fam. Gen. Vasc. Plants, p. 164. Hevea (9; the Amazon basin). – Jatropheae Baill., Hist. Plant. 5: 156, 179. Jan–Apr 1874. Jatropha (>190; tropical and subtropical regions on both hemispheres, North America), Joannesia (2; J. heveoides, J. princeps; Venezuela, Amazonian and coastal Brazil), Vaupesia (1; V. cataractarum; Colombia, western Brazil). – Manihoteae Pax in H. G. A. Engler et K. A. E. Prantl, Nat. Pflanzenfam. III, 5: 14. Mai 1890. Cnidoscolus (c 95; southern United States, Mexico, Central America, the West Indies, tropical South America), Manihot (105–110; southwestern United States, Mexico, Central America, the West Indies, tropical South America). – Micrandreae G. L. Webster in Taxon 24: 598. 19 Dec 1975. Hevea (c 10; the Amazon basin); Micrandra (11–12; tropical South America), Micrandropsis (1; M. scleroxylon; Amazonas, Amazonian Colombia). – Ricinocarpeae Müll.-Arg. in Bot. Zeitung (Berlin) 22: 324. 14 Oct 1864. Bertya (28; southern and eastern Australia), Borneodendron (1; B. aenigmaticum; ultrabasic soils on northern Borneo), Cocconerion (2; C. balansae, C. minus; ultrabasic soils in New Caledonia), Myricanthe (1; M. discolor; ultrabasic soils in northwestern New Caledonia); Beyeria (c 25; southern and eastern Australia, Tasmania), Ricinocarpos (28; western and northern Australia, New Caledonia), Shonia (4; S. bickertonensis, S. carinata, S. territorialis, S. tristigma; Northern Territory, Queensland). – Ricinodendreae Hutch. in Amer. J. Bot. 56: 749. Aug 1969. Annesijoa (1; A. novoguineensis; New Guinea), Givotia (4; G. gosai, G. madagascariensis, G. moluccana, G. stipularis; tropical East Africa, Madagascar, India, Sri Lanka), Leeuwenbergia (2; L. africana, L. letestui; Gabon to Cameroon and Congo), Ricinodendron (2; R. heudelotii, R. lobatus; tropical Africa to Angola and Mozambique); incertae sedis: Radcliffea (1; R. smithii; western Madagascar). – Pantropical, few species in East Asia and North America. Laticifers articulated or inarticulated. Hairs often stellate or lepidote. Lamina sometimes with abaxial paired glands near petiole junction. Petals present or absent. Pollen grains colpate, porate or inaperturate. Seeds often pachychalazal. Aril or carunculus often present. Exotesta sometimes palisade. Endotestal cells sometimes palisade, thin-walled, slightly lignified. Tegmen usually vascularized. Cyanogenes via valine/isoleucine pathway. Deletion of more than 100 bp in plastid trnL/F spacer in some species.

Euphorbioideae (Kunth) Beilschm. in Flora 16(Beibl. 7): 61, 105. 14 Jun 1833 [‘Euphorbieae’]

38/2.410–2.420. Euphorbieae Dumort., Anal. Fam. Plant.: 45. 1829. Anthostema (3; A. aubryanum, A. madagascariense, A. senegalense; tropical West Africa, Madagascar), Dichostemma (2; D. glaucescens: Central Africa; D. zenkeri: Cameroon); Neoguillauminia (1; N. cleopatra; New Caledonia), Calycopeplus (5; C. casuarinoides, C. collinus, C. marginatus, C. oligandrus, C. paucifolius; northern Australia, southwestern Western Australia); Euphorbia (c 2.050; almost cosmopolitan). – Hippomaneeae Bartl., Ord. Nat. Plant.: 372. Sep 1830 [‘Hippomanea’]. Homalanthus (23; tropical Asia to New Guinea, northern and eastern Australia, New Caledonia, New Zealand, Polynesia); Colliguaja (5; C. brasiliensis, C. dombeyana, C. integerrima, C. odorifera, C. salicifolia; southern Brazil, central Chile and adjacent Paraguay and Uruguay), Grimmeodendron (2; G. eglandulosum, G. jamaicense; the West Indies), Bonania (7; B. cubana, B. domingensis, B. elliptica, B. emarginata, B. erythrosperma, B. linearifolia, B. myricifolia; the West Indies), Adenopeltis (1; A. serrata; Peru, Chile), Stillingia (c 30; Madagascar, the Mascarene Islands, East Malesia, Fiji, southern United States, Mexico, Central America, the West Indies, tropical South America), Gradyana (1; G. franciscana; northeastern Brazil), Spegazziniophytum (1; S. patagonicum; southern Argentina), Sapium (23; Mexico, Central America, the West Indies, tropical South America), Hippomane (3; H. horrida, H. spinosa: Hispaniola; H. mancinella: Florida to Venezuela, the Galápagos Islands), Senefelderopsis (2; S. chiribiquetensis, S. croizatii; the Guayana Highlands and adjacent areas), Incadendron (1; I. esseri; Ecuador, Peru), Pleradenophora (1; P. longicuspis; Mexico, Guatemala, Belize), Balakata (2; B. baccata, B. luzonica; southern China, tropical Asia, New Guinea, tropical Australia), Falconeria (1; F. insignis; the Himalayas, Southeast Asia, West Malesia), Sclerocroton (6; S. carterianus, S. cornutus, S. integerrimus, S. melanostictus, S. oblongifolius, S. schmitzii; tropical Africa, Madagascar), Triadica (3; T. cochinchinensis, T. rotundifolia, T. sebifera; East and tropical Asia), Mabea (c 40; Mexico, Central America, tropical South America), Gymnanthes (c 25; tropical and southern Africa, tropical Asia to Malesia and islands in the Pacific, Florida, Mexico, Central America, the West Indies, tropical South America, one species, G. japonica, in central China, the Korean Peninsula and Japan), Actinostemon (c 20; the West Indies, tropical South America), Senefeldera (6; S. inclinata, S. macrophylla, S. multiflora, S. testiculata, S. triandra, S. verticillata; tropical South America), Dalembertia (4; D. hahniana, D. platanoides, D. populifolia, D. triangularis; Mexico, Guatemala), Maprounea (6; M. africana, M. amazonica, M. brasiliensis, M. guianensis, M. membranacea, M. obtusata; tropical Africa, tropical South America), Excoecaria (c 40; Africa to Australia and Melanesia), Sebastiania (70–75; southwestern United States, Mexico, Central America, the West Indies, tropical South America), Algernonia (12; Peru, eastern Brazil), Hura (2; H. polyandra: Mexico, Central America; H. crepitans: Nicaragua to the West Indies, Peru and Brazil), Ophthalmoblapton (4; O. crassipes, O. macrophyllum, O. parviflorum, O. pedunculare; eastern Brazil); Pachystroma (1; P. longifolium; southeastern Brazil, Bolivia, Peru). – Stomatocalyceae G. L. Webster in Taxon 24: 600. 19 Dec 1975. Plagiostyles (2; P. africana, P. pinnatus; southern Nigeria, Gabon, Congo), Pimelodendron (4; P. amboinicum, P. griffithianum, P. macrocarpum, P. zoanthogyne; Malesia to New Guinea, northeastern Queensland); Hamilcoa (1; H. zenkeri; Nigeria, Cameroon), Nealchornea (2; N. stipitata, N. yapurensis; Colombia, Brazil, eastern Peru). – Subcosmopolitan. Laticifers inarticulated. White caustic latex present. Starch grains often complex in latex (e.g. in Euphorbia). Disc usually absent. Stamens not covered by tepals. Outer integument three to six or eight to 22 cell layers thick. Inner integument three to five (to 22) cell layers thick. Carunculus often present.

Cladogram of Euphorbiaceae based on DNA sequence data (Tokuoka 2007).

EUPHRONIACEAE Marc.-Berti

( Back to Malpighiales )

Marcano-Berti in Pittieria 18: 16. Nov 1989

Genera/species 1/3

Distribution Northern and northeastern tropical South America.

Fossils Unknown.

Habit Bisexual, evergreen tree or shrub.

Vegetative anatomy Phellogen? Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Vestured pits absent. Imperforate tracheary xylem elements tracheids? or libriform fibres with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma paratracheal aliform, winged-aliform, or confluent. Sieve tube plastids S type? Nodes? Cortex and medulla with sclereids.

Trichomes Hairs simple, unicellular; glands present on leaves.

Leaves Alternate (spiral), simple, entire, coriaceous, with revolute ptyxis. Stipules small; leaf sheath absent. Petiole vascular bundle transection annular; bundles not always immediately fused with stele. Lamina densely tomentose on abaxial side. Venation pinnate. Stomata paracytic? Cuticular wax crystalloids? Hypodermis with mucilaginous idioblasts. Mesophyll with sclerenchymatous idioblasts. Leaf margin entire, with abaxial glands at base.

Inflorescence Terminal, cymose.

Flowers Obliquely zygomorphic. Half epigyny. Sepals five, non-uniform, with imbricate quincuncial aestivation, connate at base into short hypanthium-like structure (“floral cup”). Petals three (abaxial-lateral and abaxial petals absent), with contorted aestivation, free. Nectariferous disc annular, intrastaminal, inserted at adaxial side of hypanthium-like structure. Calcium oxalate druses present in floral parts.

Androecium Stamens usually four fertile (sometimes five to seven): two longer outer antesepalous and two shorter inner alternisepalous, separated by one long acute abaxial-lateral antesepalous staminodium on one side and (one to) three to five short dentate adaxial staminodia on opposite side. Filaments connate at base into two groups, adnate to petals (epipetalous). Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective often thickened dorsally? Tapetum secretory? Staminodia two to six.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, ?-cellular at dispersal. Exine?, with ? infratectum, sculpturing?

Gynoecium Pistil composed of three connate carpels; median carpel adaxial; carpel semi-synascidiate. Ovary semi-inferior, trilocular, with central columella; locules filled by unicellular hairs. Style single, simple. Stigma capitate, papillate, probably Wet type. Pistillodium absent.

Ovules Placentation axile. Ovules two per carpel, anatropous, apotropous, upper ovule with micropyle directed downwards, lower ovule with micropyle directed upwards, bitegmic, tenuinucellar. Micropyle bistomal. Outer integument three or four cell layers thick. Inner integument six or seven cell layers thick. Obturator probably absent. Megagametophyte monosporous, Polygonum type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A septicidal capsule with thin exocarp, persistent calyx and persistent central columella.

Seeds Aril absent. Testa winged. Tegmen? Perisperm not developed. Endosperm thin and sparse or absent. Embryo straight?, chlorophyll? Cotyledons two? Germination phanerocotylar?

Cytology n = ?

DNA

Phytochemistry Unknown.

Use Unknown.

Systematics Euphronia (3; E. acuminatissima, E. guianensis, E. hirtelloides; the Venezuelan and the Guayana Highlands, northeastern tropical South America).

Euphronia is sister to Chrysobalanaceae.

GOUPIACEAE Miers

( Back to Malpighiales )

Miers in Ann. Mag. Nat. Hist. ser. 3, 9: 292. Apr 1862

Genera/species 1/3

Distribution Northern tropical South America.

Fossils Unknown.

Habit Bisexual, evergreen trees or shrubs.

Vegetative anatomy Phellogen ab initio superficial. Vascular cylinder and medulla quadrangular or quinquangular. Vessel elements with simple or scalariform perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements tracheids with bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty. Wood fluorescent. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Heartwood with gum-like substances. Prismatic calciumoxalate crystals and druses present.

Trichomes Hairs unicellular or multicellular, uniseriate, simple, with thickened cell walls and pitted base.

Leaves Alternate (distichous), simple, entire, coriaceous, with ? ptyxis. Stipules narrowly elongate, inflexed, caducous; leaf sheath absent. Petiole vascular bundle transection annular; petiole with inverted medullary bundle. Venation pinnate to palmate, acrodromous (actinodromous); secondary veins ascending; tertiary veins scalariform. Stomata usually laterocytic (rarely anisocytic). Cuticular waxes absent. Abaxial domatia present in vein axils. Sclereids simple or branched. Epidermal cells mucilaginous. Leaf margin serrate or entire.

Inflorescence Axillary, umbel-like, consisting of short racemes.

Flowers Actinomorphic. Pedicel articulated? Hypogyny. Sepals five, with imbricate aestivation, connate (free?). Petals five, with induplicate-valvate aestivation, long and subulate, apically inflexed in bud (sometimes geniculate or sigmoid at anthesis), free. Nectariferous disc annular, thin, intrastaminal, sinuate at margin.

Androecium Stamens five, haplostemonous, antesepalous, alternipetalous. Filaments very short, free from each other and from tepals, inserted at margin of nectariferous disc. Anthers basifixed, adnate (locules short, somewhat separate), non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective somewhat extended, with long apical hairs. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpor(oid)ate or tricolpate, shed as monads, ?-cellular at dispersal. Exine semitectate, with columellate? infratectum, reticulate. Endexinal folds present.

Gynoecium Pistil composed of five connate antepetalous carpels. Ovary superior, quinquelocular. Stylodia five, separate, short, with adaxial furrows, inserted at outer carpellary margins. Stigmas five, subulate, type? Pistillodium absent.

Ovules Placentation basal to axile. Ovules few per carpel, anatropous, ascending, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument approx. three cell layers thick. Inner integument approx. three cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A many-seeded berry-like bilocular or trilocular drupe.

Seeds Aril absent. Testa reticulate, with mesotesta consisting of sclereids. Endotesta? Exotegmen fibrous, little developed, ridged, sclereidal; exotegmic cells with U-shaped wall thickenings. Endotegmen? Perisperm not developed. Endosperm copious, fleshy. Embryo straight, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Aluminium accumulated.

Use Timber (cupioba), canoes.

Systematics Goupia (3; G. cinerascens, G. glabra, G. guatemalensis; Central America, northern South America).

The sister-group relationship of Goupia is not unambiguously resolved. Goupiaceae may be grouped together with the “parietal placentation clade”, and it forms part of a trichotomy also including [Salicaceae+Lacistemataceae] and [Violaceae+[Malesherbiaceae+[Passifloraceae+Turneraceae]]].

HUMIRIACEAE A. Juss.

( Back to Malpighiales )

de Jussieu in A. Saint-Hilaire, Fl. Bras. Merid. 2: 87. 10 Oct 1829, nom. cons.

Genera/species 8/55–60

Distribution Southern Mexico, Central America, tropical South America; one species of Sacoglottis in tropical West Africa.

Fossils Uncertain. Fossil endocarps sometimes assigned to Sacoglottis and Vantanea have been found in Miocene and Pliocene layers from Costa Rica in the north to Bolivia in the south (Herrera & al. 2010).

Habit Bisexual, evergreen trees or shrubs. Young branches angular in cross-section. Often with aromatic juice.

Vegetative anatomy Phellogen ab initio subepidermal. Vessel elements with simple or scalariform perforation plates; lateral pits alternate, simple or bordered pits. Vestured pits present. Imperforate tracheary xylem elements tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal aliform, lozenge-aliform, winged-aliform, vasicentric, or unilateral. Tyloses sometimes abundant. Sieve tube plastids Pcs type, with protein crystals and starch. Nodes 3:3, trilacunar with three leaf traces. Mucilage cells numerous. Secretory cavities absent. Heartwood sometimes with gum-like substances. Silica bodies present in some species. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs simple or absent.

Leaves Alternate (spiral or distichous), simple, entire, coriaceous, usually with involute ptyxis. Stipules small and caducous, or absent; leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata paracytic or anomocytic. Cuticular wax crystalloids? Secretory cavities absent. Mesophyll with or without sclerenchymatous idioblasts (with sclereids reaching from one epidermis to opposite side of lamina) and with calciumoxalate as druses or single prismatic crystals. Leaf margin usually serrate (sometimes crenate or entire). Extrafloral nectaries rarely present on adaxial side of lamina (e.g. in Vantanea).

Inflorescence Usually axillary (rarely terminal), panicle or thyrse.

Flowers Actinomorphic or somewhat zygomorphic. Hypogyny. Sepals (four or) five, two outer ones often smaller, with imbricate aestivation, persistent, connate in lower part into tube. Petals (four or) five, with usually quincuncial to cochlear (sometimes imbricate or contorted) aestivation, thick, persistent or caducous, free. Nectariferous disc intrastaminal, with stomata, usually cupular to tubular or dentate to lobate (sometimes as ten to 20 free scales), often adnate to ovary base or filament bases.

Androecium Stamens usually ten to c. 30, in one to five whorls (sometimes in five antesepalous staminal fascicles each with three stamens, and five antepetalous stamens; in Vantanea c. 40 to more than 100 stamens in fascicles); filament bundles alternipetalous. Filaments connate into tube at least in lower part, free from tepals. Anthers dorsifixed or subbasifixed or inserted at connective bases, versatile, (disporangiate or) tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits), with thecae separated, superposed; connective wide, apically prolongate. Tapetum secretory. Staminodia present in some species.

Pollen grains: Microsporogenesis simultaneous. Pollen grains usually 3(–4)-colporate (rarely 3–4-porate), shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, microreticulate, perforate or punctate.

Gynoecium Pistil composed of (four or) five (to seven) connate usually antesepalous carpels. Ovary superior, (quadrilocular or) quinquelocular (to septalocular; sometimes unilocular at apex). Style single, simple. Stigma entire to slightly lobate, type? Pistillodium absent.

Ovules Placentation apical to axile. Ovules one (or two) per carpel, anatropous, pendulous, epitropous (micropyle directed upwards-outwards), bitegmic, crassinucellar. Micropyle usually bistomal or exostomal (rarely endostomal). Outer integument usually two cell layers thick, tanniniferous. Inner integument three cell layers thick, tanniniferous. Endothelium absent. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A one- or two-seeded drupe, with uneven surface and operculate multilocular pyrene, sometimes with numerous cavities filled with resinous? material (for floating on water surface).

Seeds Aril absent. Exotestal cell walls thick and lignified. Endotesta? Tegmen multiplicative (approx. five cell layers thick). Exotegmen fibrous; cross layer present beneath exotegmen. Endotegmen? Perisperm not or sparsely developed. Endosperm copious, oily. Embryo straight or slightly curved, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology x = 12

DNA

Phytochemistry Very insufficiently known. Ellagic acid present. Bergenin and gallate present in bark in Sacoglottis. Alkaloids not found.

Use Timber, fruits, medicinal plants.

Systematics Vantanea (16; Central America, tropical South America); Humiria (4; H. balsamifera, H. crassifolia, H. fruticosa, H. wurdackii; tropical South America), Duckesia (1; D. verrucosa; Amazonian Brazil), Hylocarpa (1; H. heterocarpa; Amazonian Brazil), Endopleura (1; E. uchi; Amazonian Brazil), Humiriastrum (c 16; Central America to southeastern Brazil), Sacoglottis (8–9; Central America, tropical South America, one species, S. gabonensis, in tropical West and Central Africa), Schistostemon (c 9; tropical South America).

The sister-group relationships of Humiriaceae are unresolved.

Vantanea, with three or more staminal whorls, is sister to the remaining Humiriaceae, according to Herrera & al. (2010).

One of two most-parsimonious cladograms of Humiriaceae based on morphology (Herrera & al. 2010).

HYPERICACEAE Juss.

( Back to Malpighiales )

de Jussieu in Gen. Plant.: 254, 4 Aug 1789 [’Hyperica’], nom. cons.

Ascyraceae Plenck, Elem. Termin. Bot.: 162. 1796 [’Asciroideae’]; Hypericales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 218. Jan-Apr 1820 [‘Hypericinae’]

Genera/species 6/475–485

Distribution Temperate regions on both hemispheres, tropical mountains, tropical regions in Africa, Madagascar and America.

Fossils Unknown.

Habit Bisexual, evergreen or deciduous trees, shrubs or herbs. Species in dry areas sometimes with lignotuber.

Vegetative anatomy Phellogen ab initio superficial or pericyclic. Polyderm often present. Endodermis sometimes prominent. Vessel elements usually with simple (sometimes scalariform? or opposite) perforation plates; lateral pits alternate, bordered pits present. Imperforate tracheary xylem elements fibre tracheids with simple or bordered pits (also vasicentric tracheids), septate (Hypericum) or non-septate. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma paratracheal scanty, vasicentric, reticulate, or banded, or absent. Tyloses sometimes abundant. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Schizogenous glands, canals and cavities with resin, balsam or yellow to red secretions with hypericin and closely allied compounds. Colleters often present. Silica bodies or prismatic calciumoxalate crystals present in some species.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, often dendritic or stellate.

Leaves Usually opposite (rarely verticillate or alternate), simple, entire, with ? ptyxis. Stipules and leaf sheath absent. Colleters often present. Petiole vascular bundle transection arcuate, annular or complex. Venation pinnate, usually eucamptodromous or brochidodromous. Stomata usually paracytic (sometimes anomocytic, anisocytic or cyclocytic). Cuticular wax crystalloids as parallel grouped (usually non-entire) platelets (Hypericum type). Lamina with glandular dots or glandular lines (pellucid-punctate dots, resin/latex cavities). Idioblasts or schizogenous glands and canals and cavities present. Leaf margin usually entire (rarely serrate).

Inflorescence Usually terminal (rarely axillary), cymose (often thyrsoid, scorpioid?), or flowers solitary.

Flowers Actinomorphic. Hypogyny. Sepals (two to) four or five, with decussate or quincuncial aestivation, free. Petals (three or) four or five, often with contorted aestivation, free. Nectary absent? Disc absent.

Androecium Stamens nine to more than 650, centrifugally developing. Filaments thin, free or often connate at base into three to five antepetalous fascicles, free from tepals. Anthers basifixed or dorsifixed, often versatile, tetrasporangiate, usually introrse (sometimes extrorse), longicidal (dehiscing by longitudinal slits); connective often with apical glands. Tapetum secretory. Staminodia three or five (nectaries?), alternipetalous, or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tri(col)porate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate, reticulate or microreticulate, sometimes psilate.

Gynoecium Pistil composed of three to five connate antesepalous carpels. Ovary superior, trilocular to quinquelocular. Stylodia usually three to five, free or connate at base. Stigmas expanded, punctate to widened, papillate or non-papillate, usually Dry type. Pistillodium absent.

Ovules Placentation usually axile (sometimes parietal). Ovules one to numerous per carpel, anatropous, bitegmic, tenuinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument up to seven cell layers thick. Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus? Antipodal cells often proliferating (in Hypericum; up to seven cells). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad.

Fruit Usually a loculicidal and/or septicidal capsule or a berry (rarely a drupe).

Seeds Aril absent. Seeds sometimes winged. Operculum often? present. Seed coat exotegmic. Testa sometimes glandular. Exotesta often with tanniniferous epidermal cells. Endotesta? Exotegmen palisade, with anticlinal cell walls sinuate, low and lignified (sometimes absent). Endotegmen? Perisperm not developed. Endosperm sparse or absent. Embryo usually straight (fusiform, sometimes curved), rudimentary or well differentiated, with or without chlorophyll. Cotyledons two, often large. Germination phanerocotylar.

Cytology n = 6–12, 14, 16, 18–24

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), flavones, biflavonoids, xanthones (e.g. mangiferin), benzophenones, and polyacetate-derived and other anthraquinones (vismiones) present. In Hypericum also emodin derivatives, prenylated phloroglucinol derivatives (hyperforin), and naphthodianthrones (pseudohypericin and hypericin, possibly synthesized by endophytic relative to Chaetomium). In Vismieae also anthrones, biemodyles and closely allied compounds. Ellagic acid not found.

Use Ornamental plants, medicinal plants, dyeing substances, timber.

Systematics Hypericeae Choisy, Prodr. Monogr. Hypéric.: 32, 37. 9 Mar 1821. Hypericum (c 370; temperate regions on both hemispheres, tropical mountains). – Vismieae Choisy, Prodr. Monogr. Hypéric.: 32, 33. 9 Mar 1821. Vismia (60–65?; tropical Africa, southern Mexico, Central America, tropical South America), Harungana (1; H. madagascariensis; tropical Africa, Madagascar, Mauritius), Psorospermum (40–45; tropical Africa, Madagascar). – Cratoxyleae Benth. et Hook. f., Gen. Plant. 1: 164. 7 Aug 1862. Cratoxylum (6; C. arborescens, C. cochinchinense, C. formosum, C. glaucum, C. maingayi, C. sumatranum; Burma, southern China, Southeast Asia, Malesia to the Lesser Sunda Islands), Eliea (1; E. articulata; Madagascar).

Hypericaceae are sister to Podostemaceae.

Cladogram (simplified) of Hypericaceae based on DNA sequence data (Ruhfel & al. 2011). Psorospermum and Harungana are nested inside Vismia in the analyses by Ruhfel & al. (2013).

IRVINGIACEAE (Engl.) Exell et Mendonça

( Back to Malpighiales )

Exell et Mendonça, Consp. Fl. Angol. 1: 279, 395. 20 Aug 1951, nom. cons.

Irvingiales Doweld, Tent. Syst. Plant. Vasc.: xxxi. 23 Dec 2001

Genera/species 3/12

Distribution Tropical West and Central Africa, Madagascar, Southeast Asia, Malesia.

Fossils The fossil wood Irvingiaceoxylon dechampsii was reported from the Upper Pliocene/Lower Pleistocene of Ethiopia (Gros 1983).

Habit Bisexual, evergreen trees.

Vegetatively anatomy Phellogen ab initio deeply seated. Vessel elements with simple perforation plates; lateral pits alternate, simple pits? Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, non-septate. Wood rays uniseriate, homocellular. Axial parenchyma apotracheal diffuse?, or paratracheal aliform, winged-aliform, confluent, reticulate, or banded. Tyloses abundant. Sieve tube plastids S type. Nodes trilacunar? Secretory cavities with mucilage; parenchyma without secretory cavities (secretory ducts absent from stem in Allantospermum). Prismatic calciumoxalate crystals often frequent.

Trichomes Hairs absent.

Leaves Alternate (distichous), simple, entire, coriaceous, with revolute ptyxis. Stipules large, intrapetiolar, enclosing terminal bud, early caducous; leaf sheath absent. Petiole vascular bundle transection annular. Venation pinnate; secondary veins subparallel; tertiary veins parallel. Stomata paracytic or anomocytic. Cuticular wax crystalloids? Epidermis with mucilaginous idioblasts. Mesophyll with mucilaginous idioblasts and canals, and with sclerenchymatous idioblasts containing calciumoxalate druses or solitary prismatic crystals. Cristarque cells abundant. Sclereids present in Irvingia. Leaf margin entire.

Inflorescence Terminal or axillary, panicle.

Flowers Actinomorphic, small. Pedicel articulated at base. Hypogyny. Sepals five, with imbricate aestivation, recurved, persistent, free. Petals five, with cochlear or quincuncial aestivation, free. Nectariferous disc intrastaminal, massive, lobate.

Androecium Stamens (nine or) ten, not more than twice as many as petals, diplostemonous. Filaments incurved-folded in bud, inserted below nectariferous disc, free from each other and from tepals. Anthers basifixed to slightly dorsifixed, versatile, tetrasporangiate, introrse (antesepalous stamens) or almost latrorse (antepetalous stamens), longicidal (dehiscing by longitudinal slits); connective not protruding. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, bicellular at dispersal. Tectum continuous. Exine?, with ? infratectum, verrucate or striate-rugulate

Gynoecium Pistil composed of two (Allantospermum, Desbordesia), four or five connate carpels; carpels median (when two) or antesepalous. Ovary superior, bilocular, quadrilocular or quinquelocular, synascidiate. Style single, simple, short. Stigma capitate, unicellular-papillate, type? Pistillodium absent.

Ovules Placentation apical to axile. Ovule one per carpel, anatropous to hemianatropous, pendulous, epitropous, bitegmic, crassinucellar. Micropyle bistomal. Outer integument three cell layers thick. Inner integument three or four cell layers thick, non-multiplicative. Integumentary tapetum absent. Obturator placental. Endothelium absent. Megasporangium with cytoplasm-rich peripheral cell layers filled with starch grains. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A drupe with one, four or five single-seeded (or five-seeded) pyrenes (often with radial fibres) or a bilocular samara (Desbordesia) with persistent calyx.

Seeds Aril absent. Seed coat testal. Testa thick, strongly sclerotic, multiplicative, highly vascularized. Tegmen non-multiplicative. Exotegmen fibrous. Perisperm not developed. Endosperm sparse to copious. Embryo?, chlorophyll? Cotyledons two, large, cordate. Germination phanerocotylar, epigeal.

Cytology n = ?

DNA

Phytochemistry Very insufficiently known. Ellagic and gallic acids present. Seed lipids with myristic acid and lauric acid.

Use Timber, food (edible seeds from Irvingia gabonensis).

Systematics Allantospermum (2; A. multicaule: Madagascar; A. borneense: Borneo), Klainedoxa (2; K. gabonensis, K. trillesii; tropical West and Central Africa), Irvingia (8; Central Africa, Southeast Asia, Malesia).

The sister-group relationships of Irvingiaceae are unresolved.

Allantospermum is sister to [Klainedoxa+Irvingia], according to Byng & al. (2016).

Cladogram of Irvingiaceae based on DNA sequence data (Byng & al. 2016)

IXONANTHACEAE Planch. ex Miq.

( Back to Malpighiales )

Miquel, Fl. Ned. Ind. 1(2): viii, 494. 30 Sep 1858 [‘Ixionantheae’], nom. cons.

Genera/species 3/c 22

Distribution Tropical Africa, northeastern India, eastern Himalayas, southern China, Southeast Asia, Malesia to New Guinea, northeastern South America.

Fossils Unknown.

Habit Usually bisexual (rarely unisexual), evergreen trees or shrubs.

Vegetative anatomy Phellogen? Primary medullary strands narrow and wide, alternating. Vessel elements with simple perforation plates; lateral pits alternate, scalariform or opposite, simple or bordered pits. Imperforate tracheary xylem elements fibre tracheids with simple or bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse-in-aggregates, or paratracheal scanty, reticulate, or banded. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Mucilage cells and mucilage cavities absent. Tracheoidal idioblasts often present. Most species with secretory ducts in stem? Silica bodies sometimes abundant. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs?

Leaves Alternate (usually spiral, sometimes distichous), simple, entire, with involute ptyxis. Stipules small lateral (sometimes cauline); leaf sheath absent. Petiole vascular bundle transection arcuate. Venation pinnate. Stomata paracytic. Cuticular wax crystalloids as platelets arranged in various ways. Mesophyll in Ochthocosmus with sclerenchymatous idioblasts (some sclereids with spiral thickenings). Leaf margin usually serrate (rarely entire). Extrafloral nectaries sometimes present on lamina.

Inflorescence Terminal or axillary, corymbose, paniculate or thyrsoid.

Flowers Actinomorphic, small. Half epigyny. Sepals (four or) five, with imbricate or contorted aestivation, usually connate at base. Petals (four or) five, with imbricate or contorted aestivation, often marcescent, free. Nectariferous disc intrastaminal, usually annular or cupular, free (in Ochthocosmus as interstaminal glands).

Androecium Stamens (four or) five, antesepalous, or up to 20 (antepetalous stamens paired in Ixonanthes, arising from common strand). Filaments widened at base, sigmoid-folded in bud, free from each other and from tepals, free from or adnate at base to nectariferous disc. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, spinulate.

Gynoecium Pistil composed of usually five (rarely two or four) connate carpels; carpels sometimes divided. Ovary semi-inferior, sometimes unilocular at apex; locules sometimes divided into locelli by incomplete secondary septa. Style single, simple, filiform, folded in bud. Stigma single, capitate to discoid, type? Pistillodium absent.

Ovules Placentation apical to axile. Ovules usually two per carpel, anatropous, pendulous, bitegmic, crassinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument approx. four cell layers thick. Obturator placental. Hypostase present. Endothelium present. Megagametophyte monosporous, Polygonum type? Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit Usually a septicidal (rarely also loculicidal, through secondary septa) capsule, also dehiscing adaxially, with persistent sepals and petals and, sometimes, persistent central columella.

Seeds Aril present between hilum and micropyle, or testa winged at base (Ixonanthes, Ochthocosmus). Exotegmen fibrous. Endotegmic cells with sinuous anticlinal walls. Perisperm not developed. Endosperm usually sparse or absent. Embryo straight, chlorophyll? Cotyledons two, large. Germination?

Cytology n = ?

DNA

Phytochemistry Very insufficiently known. Ellagic acid and proanthocyanidins present. Alkaloids not found.

Use Timber.

Systematics Cyrillopsis (2; C. micrantha, C. paraensis; northeastern Brazil), Ixonanthes (5; I. chinensis, I. isocandra, I. khasiana, I. petiolaris, I. reticulata; northeastern India, eastern Himalayas, southern China, Southeast Asia, Malesia to New Guinea), Ochthocosmus (c 15; tropical Africa, northeastern tropical South America, with their largest diversity in Guayana Highlands).

The sister-group relationship of Ixonanthaceae is unresolved.

There is no available phylogeny of Ixonanthaceae.

LACISTEMATACEAE Mart.

( Back to Malpighiales )

von Martius, Nov. Gen. Sp. Plant. 1: 154, 158. Jan-Mar 1826 [’Lacistemeae’], nom. cons.

Lacistematales Mart. in C. F. P. von Martius, Consp. Regn. Veg.: 49. Sep-Oct 1835 [’Lacistemeae’]

Genera/species 2/14–16

Distribution Southern Mexico, Central America, Jamaica, Colombia to southeastern Brazil, Paraguay, Uruguay and northern Argentina.

Fossils Unknown.

Habit Bisexual, evergreen trees or shrubs.

Vegetative anatomy Phellogen ab initio superficial. Vessel elements with scalariform perforation plates; lateral pits alternate or opposite, bordered pits. Imperforate tracheary xylem elements libriform fibres with simple pits, septate or non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs?

Leaves Alternate (distichous), simple, entire, with ? ptyxis. Stipules small, caducous; leaf sheath absent. Petiole vascular bundle transection D-shaped or deeply C-shaped; petiole also with wing bundles. Venation pinnate, brochidodromous. Stomata anomocytic (to anisocytic). Cuticular wax crystalloids? Mesophyll with calciumoxalate druses. Leaf margin usually serrate (rarely entire); salicoid teeth absent.

Inflorescences Axillary, racemose spike (Lozania) or catkin-like (Lacistema). Bracts large and imbricate (Lacistema), or small (Lozania).

Flowers Actinomorphic, small. Receptacle distinctly hollow, widened into fleshy concave disc. Hypogyny. Sepals (one or) two to six, unequal in size, free (sometimes absent). Petals absent. Nectariferous disc intrastaminal?, irregularly lobate, fleshy.

Androecium Stamen single. Filament inserted at or in disc, free from tepal. Anther basifixed, non-versatile, tetrasporangiate (thecae separated and sometimes individually stipitate), introrse, longicidal (dehiscing by longitudinal slits); connective widened. Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of two or three connate carpels; median carpel adaxial. Ovary superior, unilocular. Style single, shortly bifid or trifid. Stigmas two or three, punctate, type? Pistillodium absent.

Ovules Placentation parietal. Ovules one or two per carpel (two to six per ovary), anatropous, pendulous, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Funicle long, thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A usually single-seeded (sometimes two- or three-seeded) loculicidal? capsule, in Lozania on inner side with funicular? hair-like processes with thick unlignified cell walls.

Seeds Aril present? Testa sometimes carnose sarcotesta. Tegmen? Perisperm not developed. Endosperm copious, oily. Embryo usually long (rarely short), straight, well differentiated, chlorophyll? Cotyledons two, foliaceous. Germination?

Cytology n = 22, c. 31

DNA

Phytochemistry Virtually unknown. Aluminium accumulated.

Use Timber.

Systematics Lacistema (c 11; southern Mexico, Central America, Jamaica, tropical South America), Lozania (3–5; L. glabrata, L. grandiflora, L. klugii, L. mutisiana, L. pittieri; Central America, tropical South America).

Lacistemataceae are probably sister to Salicaceae.

LINACEAE DC. ex Perleb

( Back to Malpighiales )

Perleb, Vers. Arztneikr. Pfl.: 107. Mai 1818 [’Lineae’], nom. cons.

Linales Bercht. et J. Presl, Přir. Rostlin: 239. Jan-Apr 1820 [‘Linicinae’]; Hugoniaceae Arn. in Wight et Arnott, Prodr. Fl. Ind. Orient. 1: 71. 22 Sep 1834

Genera/species 7/250–270

Distribution Subcosmopolitan.

Fossils Uncertain. Fossil pollen grains assigned to Linaceae have been described from Miocene layers (Muller 1981).

Habit Bisexual, evergreen trees, shrubs, suffrutices or lianas, perennial, biennial or annual herbs. Some species are xerophytes. Hugonieae are often lianas with tendrils formed by basal branches of the inflorescences.

Vegetative anatomy Phellogen? Vessel elements with simple or scalariform perforation plates; lateral pits usually alternate, simple or bordered pits. Imperforate tracheary xylem elements long tough tenacious tracheids or fibre tracheids with bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse?, or paratracheal aliform, lozenge-aliform, winged-aliform, or vasicentric (often difficult to define). Tyloses frequent. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace (i.a. Linum), or 3:3, trilacunar with three traces. Cortex in Hugonieae often with cristarque cells (in Lineae rarely). Prismatic calciumoxalate crystals often frequent.

Trichomes Hairs unicellular or multicellular, simple or branched, sometimes stellate; glandular hairs with multicellular head sometimes present.

Leaves Alternate (spiral) or opposite, simple, entire, usually with flat, involute or conduplicate ptyxis. Stipules lateral, small, caducous, or absent, in Linum modified into glands (extrafloral nectaries); leaf sheath absent. Petiole vascular bundle transection arcuate. Venation pinnate. Stomata usually paracytic. Cuticular wax crystalloids as parallel platelets. Epidermis in Lineae often with mucilaginous idioblasts. Mesophyll at least in Hugonia with sclerenchymatous idioblasts. Leaf margin serrate or entire. Extrafloral nectaries sometimes (Linum) present on lamina.

Inflorescence Terminal or axillary, cymose of various shape (in Anisadenia spicate), often with partial inflorescences as cincinni or dichasia, or raceme, spike or panicle (in Hugonieae).

Flowers Usually actinomorphic (in Hugonieae often slightly zygomorphic). Pedicel articulated. Hypogyny. Sepals (four or) five, with imbricate quincuncial aestivation, persistent, free or connate at base. Petals (four or) five, with imbricate or contorted aestivation, caducous, free or connate at base (in Lineae usually clawed). Nectariferous glands extrastaminal, adnate to staminal tube or petal bases, or absent. Disc extrastaminal, annular or consisting of separate glands alternating with stamens. Flowers triheterostylous or diheterostylous in numerous species of Lineae, triheterostylous sometimes in Hugonieae (at least in Hugonia serrata).

Androecium Stamens in Lineae (four or) five, usually haplostemonous, antesepalous, alternipetalous (in Anisadenia obhaplostemonous, alternisepalous, antepetalous); in Hugonieae 5+5, diplostemonous. Filaments in Lineae often widened in lower part, connate at base into tube and sometimes with staminodia, free from tepals; filaments in Hugonieae connate into tube, free from tepals. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia two to five, extrastaminal, tooth-like or filiform or glandular, alternating with stamens, or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate or tricolporate (rarely tetracolpate, tetracolporate, hexacolpate, zonopolycolpate, zonopolyporate, zonopolyforate or inaperturate), starchy, shed as monads, tricellular at dispersal. Exine tectate or semitectate, with columellate or acolumellate infratectum, reticulate or microreticulate, spinulate, gemmate or verrucate.

Gynoecium Pistil composed of (two or) three to five (to ten; in Anisadenia two) connate carpels; carpels antepetalous or median carpel adaxial. Ovary superior, unilocular or (bilocular or) trilocular to quinquelocular (to decemlocular; ovary sometimes unilocular only at apex); locules in Lineae usually (not in Anisadenia) divided into locelli by an individual incomplete secondary septum from carpellary midvein, synascidiate. Style single, simple, or stylodia (two or) three to five, free or connate at base. Stigmas capitate, papillate, Dry type. Pistillodium absent.

Ovules Placentation usually axile (in Hugonieae sometimes apical). Ovules (one or) two per carpel, anatropous, pendulous, epitropous? (micropyle directed upwards and outwards), bitegmic, usually crassinucellar (in Linum partially tenuinucellar). Micropyle bistomal or endostomal. Outer integument two or three cell layers thick. Inner integument three to twelve cell layers thick (Lineae). Obturator placental at least in Hugonieae. Parietal tissue four to six cell layers thick. Archespore sometimes multicellular. Endothelium present. Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Antipodal cells in Linum three ephemeral nuclei (not cells). Endosperm development ab initio nuclear or helobial. Endosperm haustorium chalazal. Embryogenesis solanad.

Fruit In Lineae usually a septicidal capsule (rarely a drupe or nut; in Anisadenia a bipartite schizocarp); in Hugonieae usually a drupe (sometimes with septicidal dehiscence; sometimes schizocarp) with persistent calyx.

Seeds Aril absent; arillodium present in some Hugonieae. Seed coat exotegmic. Exotesta in Lineae with outer cell walls massively thickened. Mesotesta in Hugonieae with sclerotic cells. Endotesta in Hugonieae lignified. Tegmen highly multiplicative, sometimes reduced. Exotegmen fibrous. Endotegmen pigmented endothelium. Perisperm not developed. Endosperm copious to sparse or absent. Embryo usually straight (rarely somewhat curved), well differentiated, in Lineae oily and with chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology x = 6, 8–12 (Lineae); x = 6, 12, 13 (Hugonieae)

DNA Plastid genes rps16 and clpP and ORF244 absent (lost) (Linum grandiflorum). Mitochondrial coxI intron present (Linum).

Phytochemistry Insufficiently known. Ellagic and gallic acid present in at least Lineae. Saponins and cyanogenic compounds present in Hugonieae. Alkaloids? Proanthocyanidins? Flavonols not found.

Use Ornamental plants (Linum, Reinwardtia), textile and paper (fibres from Linum usitatissimum), seed oils (Linum usitatissimum, also as medicine for constipation treatment and as forage), timber, medicinal plants, fruits (Hugonia).

Systematics The sister-group relationships of Linaceae are unresolved.

Hugonieae Meisn., Plant. Vasc. Gen.: Tab. Diagn. 35, Comm. 27. 21-27 Mai 1837 [‘Hugoniaceae’]

3/50–57. 'Roucheria' (7; tropical South America; non-monophyletic), Hebepetalum (3–10; H. humiriifolium, H. neblinae, H. roraimense; northern South America), Hugonia (c 40; Africa and Madagascar to New Caledonia and Fiji). – Pantropical. Trees, shrubs or often lianas with branch tendrils. Vessel elements with scalariform perforation plates. Sclereids present. Leaves spiral or distichous. Stipules sometimes pectinate. Stomata with usually lignified subsidiary cells lobed beneath guard cells. Leaf margin serrate. Sepals often unequal. Petals sometimes slightly clawed. Disc present at filament bases. Stamens five longer and five shorter, diplostemonous. Carpels two to five. Ovary locules without pseudosepta. Micropyle in ‘Roucheria’ endostomal. Outer integument two or three cell layers thick. Inner integument three to five cell layers thick. Hypostase present. Fruit a drupe (sometimes with septicidal dehiscence) or a schizocarp. Arillode poorly developed or absent. Testa multiplicative. Mesotesta with sclerotic cells. Endotesta lignified. Exotegmen poorly lignified or tegmen reduced. Endosperm copious to sparse. Cotyledons large. x = 6, 12, 13. Ellagic acids?

Lineae Rchb., Fl. Germ. Excurs. 2(2): 830, 831. 1832

4/200–210. Anisadenia (2–3; A. khasyana, A. pubescens, A. saxatilis; the Himalayas to central China and northern Thailand), Reinwardtia (1; R. indica; northern Pakistan, northern India, southern Himalayas, China, Southeast Asia), Tirpitzia (2–3; T. bilocularis, T. ovoidea, T. sinensis; southwestern China, northern Thailand, Vietnam), Linum (c 200; temperate and subtropical regions on both hemispheres). – Temperate and subtropical regions on both hemispheres, Southeast Asia. Usually perennial or annual herbs (rarely shrubs). Vessel elements with simple perforation plates. Wood rays uniseriate. Nodes 1:1, unilacunar with one leaf trace (Linum). Leaves opposite or alternate (spiral), usually with conduplicate ptyxis. Stipules usually present. Leaf margin serrate or entire. Cuticular wax crystalloids as parallel platelets. Sepals more or less equal. Petals clawed. Nectaries extrastaminal or at petal bases. Stamens five, antesepalous, alternating with staminodia. Pollen grains tripantocolpate, tripantocolporate or inaperturate, at least sometimes starchy, tricellular at dispersal. Ovary locules usually divided. Stigma Dry or Wet type. Ovules tenuinucellar. Micropyle sometimes bistomal. Outer integument two or three cell layers thick. Inner integument three to twelve cell layers thick. Integumentary endothelium present. Obturator present. Archespore usually unisporangiate (rarely multisporangiate). Endosperm development sometimes helobial. Endosperm haustorium chalazal. Fruit usually a septicidal capsule (rarely a schizocarp with two-seeded mericarps dehiscing adaxially along pseudosepta). Seeds often with mucilage cells. Exotesta with outer cell walls massively thickened. Cross cells present beneath exotegmen. Endosperm sparse. Embryo with chlorophyll (Linum). n = 6, (8) 9 (11–18 etc.). Ellagic acid sparsely present or absent.

Maximum likelihood tree of Linaceae based on DNA sequence data (McDill & al. 2009; McDill & Simpson 2011). Most of the branches have low or relatively low support.

LOPHOPYXIDACEAE (Engl.) H. Pfeiffer

( Back to Malpighiales )

Pfeiffer in Revista Sudamer. Bot. 10: 4. 1951

Genera/species 1/1

Distribution Malesia, islands in western Pacific.

Fossils Unknown.

Habit Monoecious, usually climbing evergreen shrub (rarely tree). Tendrils consisting of modified leaves? (inflorescences?). Lateral bud present at branch bases.

Vegetative anatomy Phellogen subepidermal. Vessel elements with simple perforation plates; lateral pits? Imperforate tracheary xylem elements fibres with numerous minutely bordered pits. Wood rays uniseriate to multiseriate. Axial parenchyma scarce and paratracheal. Intraxylary phloem present. Phloem stratified. Sieve tube plastids S type? Nodes unilacunar? Crystals as solitary rhomboids and clusters.

Trichomes Hairs unicellular.

Leaves Alternate (spiral), simple, entire, with ? ptyxis. Stipules small; leaf sheath absent. Petiole vascular bundle transection arcuate. Venation pinnate. Stomata paracytic. Cuticular wax crystalloids? Leaf margin serrate or crenate.

Inflorescence Axillary, panicle consisting of dense globular partial inflorescences.

Flowers Actinomorphic, small. Hypogyny. Sepals five, with valvate aestivation, persistent, free or connate at base. Petals five, minute, with open aestivation, inflexed in bud, free. Nectariferous disc in female flowers as (staminodial?) glands, partially covering petal bases; cordate nectariferous glands in male flowers adnate to petals, in female flowers connate and forming quinquelobate nectariferous disc.

Androecium Stamens five, haplostemonous, antesepalous, alternipetalous. Filaments filiform, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent (or as nectariferous lobes?).

Pollen grains Microsporogenesis simultaneous? Pollen grains tri- or tetracolporate, shed as monads, bicellular? at dispersal. Exine?, with ? infratectum, sculpturing?

Gynoecium Pistil composed of (four or) five connate antepetalous carpels. Ovary superior, synascidiate, (quadrilocular or) quinquelocular. Style single, (quadrilobate or) quinquelobate, very short or absent. Stigmas subulate, non-papillate, type? Pistillodium, very small, present in male flowers.

Ovules Placentation (apical to) axile. Ovules two per carpel, anatropous, pendulous, epitropous, bitegmic, weakly crassinucellar or incompletely tenuinucellar. Micropyle endostomal. Outer integument three cell-layers thick, without vascular bundles. Inner integument five or six cell-layers thick, without vascular bundles. Obturator funicular, small. Endothelium present. Megasporangium disintegrating. Nucellar beak absent. Nucellar cap absent. Megagametophyte monosporous, Polygonum type. Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit A single-seeded five-winged samara.

Seeds Aril present. Testa? Exotegmen fibrous. Endotegmen? Perisperm not developed. Endosperm copious. Embryo straight, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Unknown. Calciumoxalate druses present in floral organs.

Use Unknown.

Systematics Lophopyxis (1; L. maingayi; the Malay Peninsula, Borneo, East Malesia to New Guinea, Palau, Solomon Islands, the Caroline Islands).

Lophopyxis may be sister-group to Putranjivaceae.

MALESHERBIACEAE D. Don

( Back to Malpighiales )

Don in Edinburgh New Philos. J. 2: 321. 1827, nom. cons.

Malesherbiales D. Don in C. F. P. von Martius, Consp. Regn. Veg.: 50. Sep-Oct 1835 [‘Malesherbiaceae’]

Genera/species 1/27

Distribution The Andes of southern Peru, northern Chile and western Argentina.

Fossils Unknown.

Habit Bisexual, evergreen shrubs or suffrutices, or usually perennial (rarely annual) herbs. Evil-smelling. Often densely hairy.

Vegetative anatomy Phellogen ab initio usually superficial (sometimes cortical). Primary medullary strands narrow. Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits alternate, scalariform or pseudoscalariform. Imperforate tracheary xylem elements libriform fibres with small pits (vascular tracheids sometimes present in late wood; also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma paratracheal vasicentric, scanty, more or less scarce or absent. Tyloses sometimes present. Phloem fibres often present. Sieve tube plastids S type; sieve tubes with non-dispersive protein bodies? Nodes 1:1, unilacunar with one leaf trace, or 3:3, trilacunar with three traces. Rhomboidal calciumoxalate crystals single, few or absent; druses present in pits and cortex of some species.

Trichomes Hairs unicellular or multicellular, multiseriate, simple or branched; glandular hairs excreting nasty-smelling substance often present.

Leaves Alternate (spiral), usually simple (sometimes pinnately compound), entire or often deeply lobed, with ? ptyxis. Stipules absent (or foliaceous); small stipule-like leaves often present (prophylls of axillary buds or stipules?) at bases of leaves and bracts; leaf sheath absent. Stipules and/or prophylls and leaf primordia with colleters? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Leaf margin usually serrate or crenate (sometimes entire).

Inflorescence Axillary?, simple or compound panicle (rarely fascicle) or raceme, or flowers solitary.

Flowers Actinomorphic. Hypogyny. Sepals and petals connate into tubular, infundibuliform or campanulate persistent chartaceous 0,5–5 cm long hypanthium-like perigone. Sepals five, with valvate aestivation, free. Petals five, with valvate (to cochlear) aestivation, clawed, sometimes with thin corona with denticulate margin (as long as or slightly longer than remaining part of corolla), free. Androgynophore present, lobate and hairy, with nectary at base. Disc absent. Heterostyly present in almost all species.

Androecium Stamens five, protruding, haplostemonous, antesepalous, alternipetalous. Filaments free from each other and from tepals, inserted at androgynophore. Anthers dorsifixed, versatile?, tetrasporangiate, introrse or extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains usually tricolporate (rarely syncolporate), shed as monads, ?-cellular at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of three (or four) connate carpels. Ovary superior, unilocular, inserted at androgynophore. Stylodia three (or four), filiform, free, inserted below ovary apex. Stigmas capitate or clavate, type? Pistillodium absent.

Ovules Placentation parietal. Ovules c. 30 to more than 100 per ovary, anatropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument one to three cell layers thick. Chalazal part well developed and forming large outgrowth. Megagametophyte monosporous, Polygonum type. Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A stalked capsule, enclosed by persistent hypanthium-like perigonal tube.

Seeds Aril absent. Testa with pores. Exotestal cells arranged in rows? Endotesta well developed, with inner epidermis palisade of stone cells. Exotegmen palisade? Endotegmen persistent? Perisperm not developed. Endosperm fleshy, oily and with aleurone. Embryo straight, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = 7, 14

DNA

Phytochemistry Insufficiently known. Cyclopentenoid cyanogenic glycosides and/or cyclopentenylic fatty acids present. Tannins?

Use Medicinal plants.

Systematics Malesherbia (27; arid and semiarid areas in the the Andes and lowlands in southern Peru, northern and central Chile and western Argentina, with their largest diversity in northern Chile).

Malesherbia is sister-group to [Passifloraceae+Turneraceae].

MALPIGHIACEAE Juss.

( Back to Malpighiales )

de Jussieu, Gen. Plant.: 252. 4 Aug 1789 [’Malpighiae’], nom. cons.

Malpighiopsida Bartl., Ord. Nat. Plant.: 227, 357. Sep 1830 [’Malpighinae’]; Malpighiineae Engl., Syllabus, ed. 2: 139. Mai 1898

Genera/species c 74/1.385–1.445

Distribution Tropical and subtropical regions on both hemispheres, with their highest diversity in tropical South America.

Fossils Pollen grains have been described from the mid-Eocene and leaves, Banisteriophyllum and Malpighiastrum, are known from Early Cenozoic sites. Eoglandulosa warmanensis comprises flowers from the Eocene of southeastern North America and supposedly belong in Malpighiaceae.

Habit Usually bisexual (rarely polygamomonoecious), evergreen or deciduous trees, shrubs, suffrutices or lianas.

Vegetative anatomy Phellogen ab initio usually superficial (sometimes deeply seated, almost near endodermis). Secondary lateral growth normal or anomalous. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Vestured pits present. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal confluent, vasicentric, scalariform, reticulate, or banded, or absent. Tyloses often abundant. Secondary phloem often stratified into hard fibrous and soft parenchymatous zones. Intraxylary phloem present or absent. Sieve tube plastids S0 type, without starch or protein inclusions. Nodes usually 3:3, trilacunar with three leaf traces (sometimes 1:1, unilacunar with one trace). Secretory cells abundant. Laticifers present in Galphimieae. Heartwood often with gum-like substances. Crystals absent?

Trichomes Hairs unicellular, furcate and often T-shaped – T-hairs, malpighiaceous hairs, balance hairs, medifixed hairs – or multicellular and multi-armed (sometimes simple or stellate); stinging hairs present in some genera (e.g. Malpighia); glandular hairs often abundant.

Leaves Usually opposite (rarely alternate [spiral, Acridocarpus] or verticillate), simple, usually entire (in Stigmaphyllon lobed), with ? ptyxis. Stipules cauline/interpetiolar (in e.g. Malpighia sometimes lobate), intrapetiolar (in trees and shrubs) or petiolar (i.a. Hiraea), free or connate (often rudimentary; in e.g. Acridocarpus absent); leaf sheath absent. Petiole vascular bundle transection arcuate; petiole and/or abaxial side of lamina often with usually two large flattened multicellular nectariferous glands. Venation usually pinnate (in Stigmaphyllon sometimes palmate). Stomata usually paracytic. Cuticular wax crystalloids as rosettes of platelets (Fabales type). Epidermis with or without mucilaginous idioblasts. Domatia in Acridocarpus as hair tufts. Leaf margin usually entire (in Stigmaphyllon sometimes serrate); nectariferous glandular teeth rarely present on leaf margin.

Inflorescence Terminal or axillary, panicle or raceme- or umbel-like. Bracts often with extrafloral nectaries.

Flowers Actinomorphic or zygomorphic (often obliquely zygomorphic). Usually hypogyny (in Acridocarpus epigyny). Sepals four or five, with imbricate aestivation, free or slightly connate at base; usually with large paired abaxial oil-producing glands (epithelial elaiophores) at base and sticking to legs of neotropical oil-collecting bees. Petals five, with imbricate or contorted aestivation, often crumpled in bud, usually clawed and often with hairy, toothed or fringed margin, free; median petal adaxial or abaxial; one adaxial-lateral petal often larger and differently shaped and coloured than remaining petals. Nectariferous glands present at sepal bases in Old World species, or absent. Disc poorly developed or absent.

Androecium Stamens usually 5+5, obdiplostemonous (rarely two or 15 stamens or five antesepalous stamens, in one or three whorls). Filaments usually connate at base into tube, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (usually dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pores); connective sometimes enlarged. Tapetum secretory, with multinucleate cells. Staminodia one to five, extrastaminal, or absent (antepetalous stamens sometimes staminodial or absent).

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tri- to pentacolporate or tetra- to polyporate, shed as monads, bicellular at dispersal. Exine tectate to semitectate, with columellate or granular infratectum (sometimes with anastomosing elements), perforate, reticulate or microreticulate, often verrucate.

Gynoecium Pistil composed of usually three (sometimes four or five; in Acridocarpus two) usually connate carpels; median carpel usually obliquely orientated (carpels rarely almost free). Ovary usually superior (rarely inferior), usually trilocular (sometimes quadrilocular or quinquelocular; in Acridocarpus bilocular; rarely unilocular, apocarpous). Stylodia three (to five; in Acridocarpus two), usually free (style sometimes single, simple, subulate). Stigmas asymmetrically capitate or truncate, terminal or non-terminal, papillate, Dry type. Pistillodium absent.

Ovules Placentation usually axile to apical. Ovule one per carpel, hemianatropous, pendulous, apotropous, bitegmic, crassinucellar. Micropyle bistomal or endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Nucellar beak present. Megagametophyte usually tetrasporous, 16-nucleate, Penaea type (in Galphimia glabra disporous, Allium type). Endosperm development ab initio nuclear. Endosperm haustoria chalazal. Embryogenesis solanad (or adventitious). Nucellar polyembryony frequently occurring.

Fruit In syncarpous species a schizocarp (sometimes with carpophore, sometimes divided into two or three [to five] nut-, samara- or drupe-like mericarps), a nut or drupe, often with persistent (sometimes accrescent, sometimes wing-like) calyx and stamens; septicidal capsule present in someGalphimieae; fruiting carpels in some apocarpous species fusing and forming secondary syncarp.

Seeds Aril absent. Operculum? Seed coat usually exotegmic (sometimes endotegmic). Testa? Exotegmen in at least Byrsonima and Thryallis fibrous. Endotegmen often fibrous; endotegmic cells lignified, sometimes elongate. Perisperm not developed. Endosperm very sparse or absent. Embryo large, usually straight to somewhat curved (rarely hook-shaped, spirally twisted or circinate), oily, chlorophyll? Cotyledons two. Germination phanerocotylar or cryptocotylar.

Cytology x = 6, 9, 10, 12 (24)

DNA Plastid gene rps16 lost in at least Malpighia coccigera. Duplication of CYC genes. Mitochondrial coxI intron present (Malpighia).

Phytochemistry Insufficiently known. Condensed tannins present. Flavonols (kaempferol, quercetin), cyanidin, indole (harmidine) alkaloids, and triterpene saponins sometimes present. Iridoids? Cyanogenic compounds? Ellagic acid not found. Inulin sometimes present as carbohydrate reserve.

Use Ornamental plants, fruits (Malpighia), timber, narcotics (hallucinogens from Banisteriopsis and Diplopterys).

SystematicsMalphighiaceae are sister to Elatinaceae.

The clade [Galphimieae+[Acmanthereae+Byrsonimeae]] (Byrsonimoideae) is sister-group to the remaining Malpighiaceae (Davis & Anderson 2010).

Byrsonimoideae W. R. Anderson in Leandra 67(7): 6. Dec 1977 [1978]

10/215–240. Tropical America. Style subulate. Stigma terminal.

Byrsonimeae W. R. Anderson in Leandra 67(7): 7. Dec 1977 [1978]

3/150–175. Blepharandra (6; B. angustifolia, B. cachimbensis, B. fimbriata, B. heteropetala, B. hypoleuca, B. intermedia; southern Venezuela, Guyana, Amazonian Brazil), Diacidia (11; Colombia, Venezuela, Brazil, with their largest diversity in the Venezuelan Highlands), Byrsonima (135–160; southeastern Florida, southern Mexico, Central America, the West Indies, tropical South America to southeastern Brazil). – Tropical America.

Acmanthereae W. R. Anderson in Leandra 67(7): 11. Dec 1977 [1978]

3/c 23. Pterandra (c 15; Panamá to Brazil), Coleostachys (1; C. genipifolia; southern French Guiana, northern Brazil), Acmanthera (7; A. cowanii, A. duckei, A. fernandesii, A. latifolia, A. longifolia, A. minima, A. parviflora; Brazil). – Tropical America.

Galphimieae Nied. in Engler et Prantl, Nat. Pflanzenfam. III, 4: 53, 67. Dec 1890

4/41. Lophanthera (5; L. hammelii, L. lactescens, L. longifolia, L. pendula, L. spruceana; Costa Rica, Amazonian Brazil), Spachea (7; S. correae, S. elegans, S. herbert-smithii, S. martiana, S. membranacea, S. perforata, S. tricarpa; southern Central America, Cuba, Trinidad, northern tropical South America), Galphimia (27; southern Texas, Mexico to Nicaragua, tropical South America, with their highest diversity in Mexico), Verrucularia (2; V. glaucophylla, V. piresii; Brazil). – Tropical America. Laticifers articulated.

Malpighioideae Burnett, Outl. Bot.: 894, 1093, 1126. Jun 1835

c 63/1.170–1.205. Pollen grains tetraporate to polyporate. Stigma usually not terminal. Fruit winged. – The Acridocarpus clade is sister to the remaining Malpighioideae (Davis & Anderson 2010).

Acridocarpus clade

2/c 33. Acridocarpus (c 30; tropical and subtropical Africa, Madagascar, the Mascarene Islands, the Arabian Peninsula, India, one species, A. austrocaledonicus, in New Caledonia), Brachylophon (3; B. acuminatum, B. anastomosans, B. curtisii, tropical regions in the Old World). – Tropical regions in the Old World. Leaves spiral. Stipules absent. Epigyny. Two carpels fertile.

Mcvaughia clade

3/7. Mcvaughia (1; M. bahiana; Bahia in Brazil), Burdachia (3; B. duckei, B. prismatocarpa, B. sphaerocarpa; Amazonian Colombia and Venezuela, Guyana, Amazonian Brazil, eastern Peru), Glandonia (3; G. macrocarpa, G. prancei, G. williamsii; Amazonian Colombia, southern Venezuela, Amazonian Brazil). – Tropical South America.

Barnebya clade

1/2. Barnebya (2; B. dispar, B. harleyi; eastern Brazil). – Trees or lianas.

Ptilochaeta clade

4/13. Lasiocarpus (5; L. ferrugineus, L. multiflorus, L. ovalifolius, L. salicifolius, L. triflorus; Mexico), Ptilochaeta (6; P. bahiensis, P. densiflora, P. diodon, P. elegans, P. glabra, P. nudipes; tropical and subtropical South America), Dinemandra (1; D. ericoides; arid regions in Peru and Chile), Dinemagonum (1; D. gayanum; Chile). – Tropical and subtropical America.

Tristellateia clade

6/105–110. Echinopterys (2; E. eglandulosa, E. setosa; Mexico), Tristellateia (c 20; Madagascar, one species, T. africana, in tropical Africa, one species, T. australasiae, in tropical Asia and eastwards to tropical Australia and New Caledonia), Heladena (1; H. multiflora; southern Brazil, Paraguay, northeastern Argentina), Henleophytum (1; H. echinatum; Cuba), Thryallis (3; T. brachystachys, T. laburnum, T. parviflora; southern Brazil, Paraguay, Bolivia), Bunchosia (c 80; Mexico, Central America, the West Indies, tropical South America to southeastern Brazil and northern Argentina).

Hiraeeae Griseb. in C. F. P. von Martius, Fl. Bras. 12(1): 4, 75. 1 Jun 1858 [‘Hiraeaceae’]

5/77–82. Lophopterys (6; L. euryptera, L. floribunda, L. inpana, L. peruviana, L. splendens, L. surinamensis; tropical South America), Adelphia (4; A. hiraea, A. macrophylla, A. mirabilis, A. platyrachis; Central America, the West Indies, western South America), Hiraea (55–60; western Mexico, Central America, Grenada, St. Lucia, tropical South America to southeastern Brazil, Paraguay and northern Argentina), Psychopterys (8; southern Mexico, Belize, Guatemala), Excentradenia (4; E. adenophora, E. boliviana, E. primaeva, E. propinqua; northern South America). – Tropical America.

Tetrapterys clade

15/320–335. ‘Tetrapterys’ (c 90; tropical America; non-monophyletic), Niedenzuella (16; Central America, tropical South America), Dicella (7; D. bracteosa, D. nucifera, D. aciculifera, D. conwayi, D. julianii, D. macroptera, D. oliveirae; Costa Rica, tropical South America), Tricomaria (1; T. usillo; western Argentina), Carolus (6; C. anderssonii, C. chasei, C. chlorocarpus, C. dukei, C. renidens, C. sinemariensis; Mexico, Central America, the Lesser Antilles, tropical South America), Hiptage (30–35; Mauritius, Sri Lanka, northern Pakistan, southern Himalayas to southern China and Taiwan, Southeast Asia, Malesia to Fiji), Flabellariopsis (1; F. acuminata; tropical Africa),‘Heteropterys’ (130–140; Mexico, Central America, the West Indies, tropical South America southwards to southeastern Brazil and northern Argentina, one species, H. leona, in tropical West Africa; non-monophyletic), Christianella (5; C. glandulifera, C. mesoamericana, C. multiglandulosa, C. paludicola, C. surinamensis; Central America, tropical South America), Jubelina (6; J. grisebachiana, J. magnifica, J. riparia, J. rosea, J. uleana, J. wilburii; Central America, tropical South America), Alicia (2; A. anisopetala, A. macrodisca; tropical South America), Callaeum (11; western Texas, Mexico, Central America, tropical South America), Mezia (10; Panamá, tropical South America), Flabellaria (1; F. paniculata; tropical Africa), Malpighiodes (4; M. bracteosa, M. guianensis, M. leucanthele, M. liesneri; southern Venezuela, Guyana, Suriname, French Guiana, Amazonian Brazil).

Stigmaphyllon clade

15/445–450. Stigmaphyllon (113; the Ryukyu Islands, Taiwan, the Philippines to New Guinea, eastern Queensland, Solomon Islands, New Caledonia, Vanuatu, Micronesia, Palau, southern Mexico, Central America, the West Indies, tropical South America to northern Argentina), Bronwenia (11; southern Mexico, Central America, tropical South America), Diplopterys (c 45; Costa Rica, Panamá, tropical South America), ‘Banisteriopsis’ (90–95; southern Mexico, Central America, the West Indies, tropical South America; non-monophyletic), ‘Sphedamnocarpus’ (18; tropical and southern Africa, Madagascar; non-monophyletic; incl. Philgamia?), Philgamia (4; P. brachystemon, P. denticulata, P. glabrifolia, P. hibbertioides; Madagascar; in Sphedamnocarpus?), Peixotoa (c 30; Brazil, Paraguay, Bolivia), Gallardoa (1; G. fischeri; Argentina), Mionandra (1; M. camareoides; Bolivia, Paraguay, Argentina), Cordobia (2; C. argentea, C. fischeri; South America), Cottsia (3; C. californica, C. gracilis, C. linearis; southern United States, northern Mexico), ’Janusia’ (18; California to Argentina; paraphyletic), ’Aspicarpa’ (c 40; southern United States, Mexico, Central America, the West Indies, tropical and subtropical South America; paraphyletic; incl. Gaudichaudia?), ‘Gaudichaudia’ (c 60; Mexico to Bolivia; polyphyletic; in Aspicarpa?), Camarea (9; eastern South America). – Pantropical, southern United States.

Ectopopterys clade

1/1. Ectopopterys (1; E. soejartoi; Colombia, Peru). – Liana.

Amorimia clade

1/10. Amorimia (10; tropical South America). – Lianas.

Malpighieae DC., Prodr. 1: 577. Jan (med.) 1824

c 10/155–170. ’Mascagnia’ pro parte (35–50; Mexico to Argentina; non-monophyletic), Calcicola (2; C. parvifolia, C. sericea; Mexico), ‘Malpighia’ (c 45; Florida, Mexico, Central America, the West Indies, tropical South America; non-monophyletic), Aspidopterys (c 25; tropical Asia), Caucanthus (3; C. albidus, C. auriculatus, C. edulis; eastern and northeastern Africa, the Arabian Peninsula), Triaspis (c 15; tropical and southern Africa), Digoniopterys (1; D. microphylla; Madagascar), Rhynchophora (2; R. humbertii, R. phillipsonii; Madagascar), Madagasikaria (1; M. andersonii; southern Madagascar), Microsteira (c 25; Madagascar). – Eastern Africa, Madagascar, the Arabian Peninsula, tropical Asia, tropical America. The endemic Malagasy genera Madagasikaria, Microsteira and Rhynchophora form a well supported clade, according to Davis (2002).

Unplaced Malpighiaceae

Rudolphia (1; R. planisiliqua; Bolivia).

Cladogram (simplified) of Malpighiaceae based on DNA sequence data (Davis & Anderson 2010).

MEDUSAGYNACEAE Engler et Gilg, nom. cons.

( Back to Malpighiales )

Engler et Gilg, Syllabus, ed. 9 et 10: 280. 6 Nov 1924

Medusagynales Takht. ex Reveal et Doweld in Novon 9: 551. 30 Dec 1999

Genera/species 1/1

Distribution The Seychelles.

Fossils Unknown.

Habit Andromonoecious, evergreen tree. Bark fibrous (resembling Juniperus bark). Flowers evil-smelling. Buds perulate.

Vegetative anatomy Phellogen ab initio subepidermal. Secondary lateral growth anomalous. Vessel elements with simple perforation plates; lateral pits opposite or alternate, bordered pits. Imperforate tracheary xylem elements tracheids or libriform fibres with small bordered pits, non-septate? Wood rays multiseriate?, heterocellular. Axial parenchyma apotracheal diffuse. Secondary phloem stratified into concentric rings of alternating sieve tissue and sclerenchyma. Sieve tube plastids S type. Nodes 5:5, pentalacunar with five leaf traces, and two phloic vascular bundles. Secretory cavities absent. Cristarque cells absent. Calciumoxalate druses present.

Trichomes Hairs absent.

Leaves Opposite, simple, entire, coriaceous, with ? ptyxis. Stipules and leaf sheath absent. Paired colleters present along leaf margin and in leaf axil outside axillary bud. Petiole vascular bundle transection arcuate; petiole with numerous bundles, variously orientated. Venation pinnate; tertiary venation highly reticulate. Stomata anomocytic. Cuticular waxes absent. Mesophyll with mucilaginous idioblasts, without sclerenchymatous idioblasts. Calciumoxalate druses present adjacent to vascular strands of midvein. Leaf margin crenate.

Inflorescence Terminal, panicle.

Flowers Actinomorphic, small. Hypogyny. Sepals five, with imbricate aestivation, persistent, connate at base. Petals five, with imbricate aestivation, recurved, caducous, free. Nectary absent. Disc absent.

Androecium Stamens c. 50 to more than 100, spirally arranged, arising from five vascular bundles. Filaments thin, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains (2–)3(–4)-porate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, finely striate.

Gynoecium Pistil composed of 16 to 19 (to 25) connate carpels, inserted on and adnate to central column; ventral sutures open below ovular points of insertion. Ovary superior, 16- to 25-locular. Stylodia 16 to 25, free, marginal, inserted in characteristic way on outer carpel margins (cf. the name Medusagyne). Stigmas capitate, discoid, type? Pistillodium absent.

Ovules Placentation axile. Ovules two to five per carpel, anatropous, upper ovules ascending to horizontal and epitropous, lower ovules descending to pendulous and apotropous, bitegmic, weakly crassinucellar. Micropyle ?-stomal. Outer integument three or four cell layers thick. Inner integument three or four cell layers thick. Funicle long. ‘False endothelium’ present on surface of megasporangium. Megagametophyte monosporous, Polygonum type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit An assemblage of ridged, verrucose, septicidal follicles with persistent central columella, stigmas and calyx and carpels acropetally detached – valves detaching from central columella from base upwards except at apex, eventually umbrella-like with ventricidal carpels –, adaxially dehiscing (fruit anatomy similar to Caryocaraceae), also interpreted as a schizocarp with 16 to 25 follicle-like mericarps. Exocarp without lacunae.

Seeds Aril absent. Testa winged. Exotesta somewhat thickened. Endotesta crushed. Exotegmen fibrous. Endotegmen crushed. Perisperm not developed. Endosperm thin. Embryo straight, chlorophyll? Cotyledons two. Germination phanerocotylar, epigeal or hypogeal.

Cytology n = ?

DNA

Phytochemistry Insufficiently known. Tannins and phenolic compounds present.

Use Unknown.

Systematics Medusagyne (1; M. oppositifolia; Mahé in the Seychelles).

Medusagyne, Quiinaceae and Ochnaceae usually form an unresolved trichotomy.

According to Schneider & al. (2006), it requires 16 additional steps (Bremer support) to force Medusagyne into Ochnaceae.

OCHNACEAE DC.

( Back to Malpighiales )

de Candolle in Nouv. Bull. Sci. Soc. Philom. Paris 2: 209. Jan 1811, nom. cons.

Ochnales DC. ex Bercht. et J. Presl, Přir. Rostlin: 224. Jan-Apr 1820 [‘Ochnaceae’]; Sauvagesiaceae (Ging. ex DC.) Dumort., Anal. Fam. Plant.: 44, 49. 1829; Lophiraceae Loudon, Hort. Brit.: 513. 30 Aug 1830 [‘Lophireae’]; Sauvagesiales Lindl. in C. F. P. von Martius, Consp. Regn. Veg.: 50. Sep-Oct 1835 [‘Sauvagesiaceae’]; Gomphiaceae DC. ex Schnizlein, Iconogr. Fam. Regni Veg. 4: ad t. 248. 1843-1870; Luxemburgiaceae Soler., Syst. Anat. Dicot. Ergänz.: 77, 79. Mai 1908; Ochnanae Doweld, Tent. Syst. Plant. Vasc.: xxxiii. 23 Dec 2001

Genera/species 28/500–505

Distribution Pantropical (few subtropical species).

Fossils Unknown.

Habit Bisexual, usually evergreen trees or shrubs (rarely perennial herbs).

Vegetative anatomy Phellogen ab initio superficial. Cortical and medullary vascular bundles usually present. Primary vascular tissue cylinder. Secondary lateral growth normal. Vessel elements usually with simple (sometimes also scalariform) perforation plates; lateral pits alternate, usually bordered pits. Vestured pits often present (absent in Sauvagesia). Imperforate tracheary xylem elements usually fibre tracheids (sometimes libriform fibres) with simple or bordered pits, usually septate (occasionally non-septate; vasicentric tracheids rare). Wood rays uniseriate or multiseriate, usually heterocellular (rarely homocellular). Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, vasicentric, or unilateral, or metatracheal. Phloem sometimes (i.a. in Godoya) stratified into hard fibrous and soft parenchymatous layers. Sieve tube plastids S type. Nodes ≥3:≥3, trilacunar or multilacunar with three or more? leaf traces. Mucilage cells and mucilage ducts often present. Cortex often with cristarque cells. Hyaline latex present in some species. Heartwood often with gum-like substances. Silica bodies present in some species. Prismatic calciumoxalate crystals often abundant.

Trichomes Hairs usually absent (simple hairs sometimes present); glandular hairs sometimes present.

Leaves Alternate (spiral or distichous), usually simple (rarely pinnately compound), entire, often coriaceous, usually with conduplicate to flat ptyxis. Stipules extrapetiolar, scale-like, often fimbriate, in Ouratea with extrafloral nectaries; leaf sheath absent. Petiole vascular bundle transection annular (sometimes several bundles arcuately arranged); petiole sometimes with medullary bundles. Venation pinnate, brochidodromous; secondary veins stout and often densely parallel and/or tertiary veins parallel. Stomata usually paracytic (rarely anomocytic). Cuticular waxes absent? Epidermis with or without mucilaginous idioblasts. Mesophyll often with sclerenchymatous idioblasts, forming continuous subepidermal layer on adaxial side. Cristarque cells often abundant. Leaf margin serrate, crenate or entire.

Inflorescence Terminal or axillary, panicle, fascicle, raceme or umbel, or flowers solitary.

Flowers Usually actinomorphic (rarely somewhat zygomorphic due to non-uniformly developed androecium). Pedicel articulated. Hypogyny. Sepals (three to) five (to ten), with imbricate aestivation, almost membranous (in Lophira non-uniformly growing), sometimes persistent, usually whorled (rarely spiral), free or connate at base. Petals (four or) five (to ten), usually with contorted (rarely imbricate) aestivation, sometimes clawed, caducous, usually whorled (rarely spiral), free. Nectary absent. Disc absent.

Androecium Stamens five to 25 (to more than 300), in one to five whorls, often in five groups, sometimes on androphore, sometimes centrifugally developing. Filaments free or more or less connate, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, often latrorse, usually poricidal (dehiscing by apical pores; sometimes longicidal, dehiscing by longitudinal slits; sometimes locellate). Tapetum secretory. Staminodia in Sauvagesioideae (five or) ten to c. 25, in one or several whorls, sometimes petaloid (sometimes connate into tubular corona), or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate, shed as monads, usually bicellular (sometimes tricellular) at dispersal. Exine tectate, columellate infratectum, microperforate or striate-rugulate.

Gynoecium Pistil composed of (one to) five to ten (to 15) carpels free in upper part and connate in lower part (in Ouratea secondarily free), or carpels paracarp and entirely connate (antesepalous when three median carpels adaxial). Ovary superior, usually unilocular to quinquelocular (rarely up to 15-locular by placental intrusions), often deeply lobate. Style single, simple, usually long (sometimes short), sometimes hollow, sometimes gynobasic (e.g. in Ouratea). Stigmas punctate or somewhat lobate, non-papillate, Dry type. Pistillodium absent.

Ovules Placentation axile, parietal or intrusively parietal (marginal?). Ovules one, two or five to more than 50 per carpel, anatropous to campylotropous, usually ascending (rarely pendulous), apotropous or epitropous, usually bitegmic, usually more or less connate (in Lophira unitegmic), incompletely tenuinucellar or weakly crassinucellar. Micropyle bistomal or endostomal (or integuments connate), often zigzag. Outer integument two to four cell layers thick. Inner integument two to four cell layers thick. Hypostase often present. Endothelium absent? Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Antipodal cells usually persistent, often enlarged. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis? Polyembryony may occur.

Fruit A berry, drupe (sometimes an assemblage of drupes) or septicidal capsule (in Ouratea schizocarp with three to ten drupaceous mericarps situated on fleshy carpophore; in Lophira capsule with persistent calyx with two wing-like sepals).

Seeds Aril absent. Testa well developed or reduced and thin (Lophira), often winged, often vascularized. Endotesta with small crystalliferous cells. Exotegmen often fibrous. Endotegmen? Perisperm not developed. Endosperm sparse or absent, with or without oils. Embryo usually straight (sometimes curved), chlorophyll? Cotyledons two. Germination phanerocotylar or cryptocotylar.

Cytology n = 12, 14, 24

DNA

Phytochemistry Biflavonyls/biflavonoids, C-glycoflavones, flavones, biflavones, lophirone, Ouratea-catechins, cyanidin,vismiones, and anthrones (3-O-geranylemodin anthrone etc.) present. Condensed tannins present. Triterpenes and alkaloids rare. Flavonols, ellagic acid, saponins, and cyanogenic compounds not found.

Use Ornamental plants, medicinal plants, timber, roofing and basketing (Cespedesia).

Systematics Ochnaceae belong in a trichotomy also comprising Medusagyne (Medusagynaceae) and Quiinaceae, although in some analyses Medusagyne is sister to Quiinaceae.

A plausible topology of the Ochnaceae phylogeny is the following, according to Schneider & al. (2014):

[Testulea+[Luxemburgioideae+[Ochnoideae+Sauvagesioideae]]]

Testulea clade

1/1. Testulea (1; T. gabonensis; Gabon). – Testulea is sister-group to the remaining Ochnaceae, according to Schneider & al. (2014).

[Luxemburgioideae+[Ochnoideae+Sauvagesioideae]]

Luxemburgioideae Planch. ex Endl., Gen. Plant. Suppl. 5: 98. 1850 [‘Luxembergieae’] 

2/22. Luxemburgia (18; Brazil), Philacra (4; P. auriculata, P. duidae, P. longifolia, P. steyermarkii; Venezuela, northern Brazil). – Venezuela, Brazil. Androecium and gynoecium obliquely zygomorphic in bud. One adaxial stamen fertile; remaining (staminodial) stamens grouped on one side of gynoecium. Filament connate. Anthers sometimes connate. Exine with small perforations. Pistil composed of three connate carpels. n = ? – Luxemburgioideae seem to be sister-group to the remaining Ochnaceae.

[Ochnoideae+Sauvagesioideae]

Staminodia separate, forming lobate disc or corolla-like tube, or absent. Exine striate-rugulate.

Ochnoideae Burnett, Outlines Bot.: 886, 1093, 1125. Feb 1835 [‘Ochnidae’]

9/c 385. Lophira (2; L. alata, L. lanceolata; tropical West and Central Africa), Elvasia (14–15; Central America, tropical South America), Campylospermum (c 65; tropical central and East Africa, Madagascar, tropical Asia), Idertia (2; I. axillaris, I. morsonii; western and central tropical Africa, São Tomé), Brackenridgea (10; tropical regions in the Old World), Ouratea (c 200; tropical regions on both hemispheres), Rhabdophyllum (4; R. letestui, R. reflexum, R.rigidum’, R. thonneri; western and central tropical Africa), Ochna (c 85; tropical regions in the Old World). – Unplaced Ochnoideae Perissocarpa (3; P. ondox, P. steyermarkii, P. umbellifera; Venezuela, Peru, northern Brazil). – Tropical, with their largest diversity in Brazil. Leaves distichous. Vessel and parenchyma pits not unilaterally compound. Stipules in Ouratea semi-intrapetiolar. Petiole sometimes with inverted medullary vascular bundle and subepidermal fibres. Sepals almost membranous (in Lophira non-uniformly growing). Petals with contorted aestivation. Stamens diplostemonous or obdiplostemonous, centripetally developing. Anthers sometimes longicidal (dehiscing by longitudinal slits). Pistil composed of (two to) five (to 15; in Lophira two) connate carpels, sometimes present on short gynophore. Style sometimes gynobasic. Floral receptacle sometimes widened. Ovules usually one (in Lophira numerous) per locule, apotropous. Integuments connate (except occasionally at apex), together seven to 17 cell layers thick. Outer integument in Ochna three or four cell layers thick. Inner integument in Ochna two or three cell layers thick. Hypostase usually present. Fruit usually a drupe, with persistent stamens (in Lophira with two sepals modified into wings). Testa vascularized, without layer of small crystalliferous cells. Fibrous exotegmen absent. Endosperm absent. Cotyledons massive, variously arranged. x = 12–14.

Sauvagesioideae Beilschm. in Flora 16(Beibl. 7): 88, 110. 14 Jun 1833 [‘Sauvagesieae’]

16/90–95. Blastemanthus (2; B. gemmiflorus, B. grandifloras; northeastern South America), Godoya (2; G. antioquiensis, G. obovata; the Andes in Colombia, Peru and Bolivia), Rhytidanthera (2; R. magnifica, R. splendida; Colombia, Venezuela), Cespedesia (1–6; C. spathulata; Central America, tropical South America), Krukoviella (1; K. disticha; Peru, Brazil), Fleurydora (1; F. felicis; Guinea), Poecilandra (2; P. pumila, P. retusa; northern tropical South America), Wallacea (3; W. insignis, W. multiflora, W. riparia; northern South America), Neckia (1; N. serrata; West Malesia, the Philippines), Schuurmansia (18; Central Malesia to New Guinea), Schuurmansiella (1; S. angustifolia; northwestern Borneo), Euthemis (2; E. leucocarpa, E. minor; Southeast Asia to Borneo), Tyleria (14; Venezuela, the Guayana Highlands), Adenarake (2; A. macrocarpa, A. muriculata; southern Venezuela, northern BrazilVenezuela), Sauvagesia (c 40; tropical regions on both hemispheres, with their highest diversity in tropical South America). – Unplaced Sauvagesioidae Indosinia (1; I. involucrata; southern Vietnam). – Pantropical, with their highest diversity in tropical South America. Rarely perennial herbs. Vestured pits absent in Sauvagesia. Leaves spiral, often with conduplicate-flat ptyxis (in Rhytidanthera compound). Flowers rarely zygomorphic (with late developing zygomorphy comprising androecium and gynoecium). Outer sepals sometimes smaller than remainder. Sauvagesia with five petaloid antepetalous staminodia and five antesepalous stamens. Exine sometimes with small perforations. Pistil composed of two, three or five connate carpels; when three, then median carpel adaxial. Outer integument approx. two cell layers thick. Inner integument three or four cell layers thick. Testa often winged. Exotestal cells large, detached. Endotestal cells crystalliferous. Endosperm with aleurone. x = 18. – Blastemanthus may be sister to the remaining Sauvagesioideae.

Cladogram (simplified) of Ochnaceae based on Schneider & al. (2014).

PANDACEAE Pierre ex Engl. et Gilg

( Back to Malpighiales )

Engler et Gilg in Engler’s Syllabus, ed. 7: 223. Oct 1912-Mar 1913, nom. cons.

Bennettiaceae R. Br. ex Schnizlein, Iconogr. Fam. Regni Veg. 3: ad t. 172**. 1846-1866 [’Bennettieae’], nom. illeg.; Pandales Engl. et Gilg in Engler, Syllabus, ed. 7: 223. Oct 1912-Mar 1913

Genera/species 3/16–17

Distribution Tropical regions in the Old World.

Fossils Unknown.

Habit Dioecious, evergreen trees or shrubs. Buds arising in axils of leafy short shoots, although often not in true leaf axils.

Vegetative anatomy Phellogen? Primary medullary strands alternately wide and narrow. Vessel elements usually with scalariform (sometimes also simple) perforation plates; lateral pits alternate or opposite, simple pits. Non-vestured pits present (Microdesmis). Imperforate tracheary xylem elements tracheids or fibre tracheids with simple or bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, scalariform, or banded. Tyloses frequent. Sieve tube plastids S type?; sieve tubes with non-dispersive protein bodies. Nodes? Latex and laticifers absent. Cortex with cristarque cells. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs unicellular or multicellular, uniseriate; glandular hairs sometimes present on floral parts.

Leaves Alternate (spiral and reduced on orthotropic shoots; distichous on plagiotropic short shoots resembling pinnately compound leaves, especially in Galearia and Panda), simple, entire or pinnately lobed, with involute ptyxis. Stipules small (asymmetrical in Panda), usually persistent (caducous in Panda); leaf sheath absent. Petiole vascular bundle transection arcuate. Venation pinnate; one vein proceeding into persistent transparent apex of leaf tooth. Stomata anomocytic (Microdesmis), paracytic (Galearia) or cyclocytic (Panda). Cuticular waxes absent. Lamina with or without glandular dots (pellucid-punctate in Microdesmis). Mesophyll with sclerenchymatous idioblasts containing calciumoxalate as druses or solitary prismatic crystals. Leaf margin serrate or entire.

Inflorescence: Terminal or axillary, fascicle, thyrsoid or panicle, or flowers solitary axillary.

Flowers Actinomorphic, small. Hypogyny. Sepals five, with imbricate or open (Panda) aestivation, free or connate (sepals of female flowers in Microdesmis usually persistent, with basal glandular hairs). Petals five, with imbricate, contorted or valvate aestivation, free (in Galearia each enclosing one or two stamens). Nectary absent. Disc very small or absent.

Androecium Stamens five antesepalous, or ten, 15 or 5+5 in one or two whorls. Filaments usually free from each other, free from or partially adnate to tepals. Anthers basifixed, non-versatile, tetrasporangiate, usually introrse (sometimes latrorse), longicidal (dehiscing by longitudinal slits); connective sometimes prolonged. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate, shed as monads, ?-cellular at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate or punctate.

Gynoecium Pistil composed of two to five connate carpels. Ovary superior, bilocular to quinquelocular. Style single, simple, or stylodia two to five, free or connate at base (rarely absent). Stigmas not widened, capitate, stigma sometimes bilobate, type? Male flowers with pistillodium.

Ovules Placentation axile-apical. Ovule usually one per carpel, orthotropous (Panda) or anatropous, pendulous, epitropous, bitegmic, weakly crassinucellar. Micropyle endostomal. Outer integument three to five cell layers thick. Inner integument three to five cell layers thick. Obturator absent. Megagametophyte monosporous, Polygonum type. Endosperm development cellular? Endosperm haustoria? Embryogenesis?

Fruit A drupe (often with irregularly patterned surface).

Seeds Aril absent. Carunculus absent. Seed coat exotegmic. Exotesta possibly absent. Endotesta possibly absent. Exotegmen tracheoidal, fibrous. Endotegmen tanniniferous. Perisperm not developed. Endosperm copious, oily. Embryo well differentiated, chlorophyll? Cotyledons two, thin and flat, oily. Germination phanerocotylar.

Cytology n = 15 (Microdesmis)

DNA

Phytochemistry Very insufficiently known. Alkaloids and/or saponins sometimes present.

Use Timber, carpentries, seed oils for cooking.

Systematics Microdesmis (10–11; tropical Africa, southern China, Southeast Asia, West Malesia to the Philippines), Galearia (5; G. aristifera, G. celebica, G. filiformis, G. fulva, G. maingayi; Southeast Asia, Malesia to New Guinea, the Bismarck Archipelago and Solomon Islands), Panda (1; P. oleosa; tropical West and Central Africa).

The sister-group relationship of Pandaceae is unresolved.

Microdesmis is sister to [Panda+Galearia]. Galearia celebica was sister to Erythrospermum phytolaccoides in analyses by Groppo & al. (2013).

Cladogram of Pandaceae based on DNA sequence data (Wurdack & Davis 2009).

PASSIFLORACEAE Juss. ex Roussel

( Back to Malpighiales )

Roussel, Fl. Calvados, ed. 2: 334. 1806 [’Passifloreae’], nom. cons.

Passiflorales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 237. Jan-Apr 1820 [‘Passifloreae’]; Paropsiaceae Dumort., Anal. Fam. Plant.: 37, 42. 1829; Smeathmanniaceae Mart. ex Perleb, Clav. Class.: 33. Jan-Mar 1838 [‘Smeathmannieae’]; Passifloropsida Brongn., Enum. Plant. Mus. Paris: xxix, 108. 12 Aug 1843 [’Passiflorineae’]; Modeccaceae Horan., Char. Ess. Fam: 146. 30 Jun 1847 [‘Turneraceae s. Modeccaceae’]; Passiflorineae Bessey in C. K. Adams, Johnson’s Universal Cyclop. 8: 462. 15 Nov 1895

Genera/species 16/620–625

Distribution Tropical, subtropical and warm-temperate regions on both hemispheres, with their highest diversity in tropical Africa and tropical America.

Fossils Seeds assigned to Passiflora have been described from the Miocene of Europe.

Habit Usually bisexual (in, e.g., Adenia dioecious), usually perennial or annual herbs, usually climbing and twining with tendrils, or evergreen shrubs or lianas (rarely small trees). Tendrils simple or branched, axillary, usually consisting of modified pedicels or inflorescences, often oblique relative to the branch. Some species are xerophytes.

Vegetative anatomy Phellogen? Passiflora and its closely allied relatives possessing stem collenchyma. Axillary buds usually superposed, with accessory bud originating above axillary inflorescence/tendril bud. Secondary lateral growth usually normal (in Adesmia anomalous, from concentric cambia). Vessel elements usually with simple (rarely scalariform) perforation plates; lateral pits alternate. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with bordered pits, non-septate (also vasicentric tracheids). Wood rays multiseriate?, homocellular or heterocellular. Axial parenchyma usually apotracheal diffuse? Wood often fluorescent. Intraxylary phloem present in some lianas. Sieve tube plastids S type; sieve tubes with non-dispersive protein bodies? Nodes 3:3, trilacunar with three leaf traces. Calciumoxalate as druses and solitary prismatic crystals.

Trichomes Hairs unicellular or multicellular, usually simple (sometimes stellate).

Leaves Alternate (spiral), usually simple (rarely palmately compound), entire or palmately lobed, with conduplicate ptyxis (sometimes modified conduplicate, V-shaped and at end of each arm Λ-shaped). Stipules often small and caducous, sometimes foliaceous (absent in Androsiphonia and Barteria); leaf sheath absent. Stipules and/or prophylls and leaf primordia with colleters? Petiole and/or stipules often with extrafloral nectaries without nectarostomata. Petiole vascular bundle transection? Venation pinnate, pedate or palmate; vein proceeding into transparent and caducous tooth apex? Stomata usually anomocytic (sometimes paracytic). Cuticular wax crystalloids as rosettes of platelets (Fabales type). Mesophyll with or without sclerenchymatous idioblasts. Epidermis sometimes with mucilaginous idioblasts. Calciumoxalate druses and solitary prismatic crystals frequent. Leaf margin usually serrate (sometimes entire). Lamina sometimes with extrafloral nectaries.

Inflorescence Usually axillary, racemose or cymose (flowers rarely solitary). Flowers usually subtended by three bracts.

Flowers Usually actinomorphic (rarely zygomorphic, e.g. Passiflora mucronata), usually large. Hypanthium usually absent (present in some species of Adenia). Usually half epigyny (rarely hypogyny). Sepals (three to) five (to eight), with imbricate aestivation, often petaloid, persistent, often connate at base, often adnate to petal bases. Petals (three to) five (to eight; rarely absent), with imbricate aestivation, usually with staminodial corona at base consisting of one to several whorls of c. 15 to more than 50 extrastaminal scales, hairs or filiform lobes, usually free (rarely connate at base). Sepals and petals often adnate to each other at base, sometimes forming common perianth tube. Annular nectariferous disc or five nectaries, hypogynous, staminodial, extrastaminal or alternating with stamens, inserted on perianth tube, or absent. Receptacle often distinctly hollow, usually with androphore; androgynophore usually present (in, e.g., Adenia gynophore).

Androecium Stamens usually five or eight, antesepalous, alternipetalous (sometimes four or c. 20 to more than 60). Filaments usually free (in, e.g., Adenia sometimes connate at base; in Androsiphonia connate into tube surrounding gynophore), sometimes adnate to and forming tube surrounding gynoecium. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia numerous (c. 15 to more than 50), extrastaminal to intrastaminal, often petaloid, as showy corona or disc.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3–12-colporate to 3–12-colpoidorate (rarely hexaporate), shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate, sometimes echinate.

Gynoecium Pistil composed of (two or) three (to seven) connate carpels. Ovary semi-inferior (rarely superior), unilocular, stipitate. Stylodia (two or) three (to seven), free or partially connate (rarely entirely connate into single, simple style). Stigmas capitate to discoid (in Adenia split), sometimes lobate, usually with multicellular (in Adenia unicellular) papillae or non-papillate, Dry type. Pistillodium absent.

Ovules Placentation parietal. Ovules usually numerous (in Dilkea few) per ovary, usually anatropous (rarely orthotropous), bitegmic, crassinucellar. Funicle often long. Micropyle bistomal, sometimes Z-shaped (zig-zag). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megasporangium often pointed at apex. Megagametophyte monosporous, Polygonum type. Synergids sometimes of different shape, sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis usually onagrad (rarely piperad).

Fruit A berry or a loculicidal or irregularly dehiscent capsule.

Seeds Seeds with arilloid, often flattened. Testa multiplicative, hard, often hairy (rarely winged). Exotesta often sarcoexotesta. Endotestal cells large, with crystals and often lignified walls. Exotegmen palisade. Endotegmen persistent? Perisperm not developed. Endosperm copious, ruminate (Passiflora foetida) or non-ruminate, oily and proteinaceous. Embryo straight, well differentiated, without chlorophyll. Cotyledons two. Germination phanerocotylar or cryptocotylar.

Cytology x = 6 (7), 9–12 – Polyploidy occurring.

DNA Plastid ORF2280 absent (lost). Plastid gene rps16 lost in Passiflora. Plastid gene rpoC1 in Passiflora without intron. Plastid gene rpl22 in Passiflora probably transferred from plastid genome to nuclear genome.

Phytochemistry Flavonols, flavone-C-glycosides, ellagic and gallic acids, alkaloids, valine- and isoleucine-derived cyanogenic glycosides, cyclopentenoid cyanogenic glycosides and/or cyclopentenyl fatty acids (from the gynocardic group), saponins, and cinnamic acid derivatives present. Tannins and proanthocyanidins not found.

Use Ornamental plants, fruits (Passiflora).

Systematics (under construction) Passifloraceae are sister to Turneraceae.

There is no available comprehensive phylogeny of Passifloraceae.

Paropsioideae Burnett, Outlines Bot.: 750, 1092, 1130. Feb 1835 [‘Paropsidae’]

6/20–27. Paropsia (11; tropical Africa, Madagascar, East Malesia), Paropsiopsis (1–7; P. africana, P. atrichogyna, P. decandra, P. pulchra; tropical West and Central Africa), Viridivia (1; V. suberosa; southwestern Tanzania, Zambia), Androsiphonia (1; A. adenostegia; tropical Africa), Smeathmannia (2; S. laevigata, S. pubescens, tropical West and Central Africa), Barteria (4; B. dewevrei, B. fistulosa, B. nigritana, B. solida; tropical Africa). – Tropical Africa, Madagascar, East Malesia. Trees or shrubs. Vessel elements in multiples, with scalariform perforation plates. Leaves spiral, reduced (orthotropic branches) or distichous (plagiotropic branches). Stipules sometimes absent. Venation pinnate. Leaf margin and apex glandular. Inflorescence racemose. Androgynophore or gynophore often present. Nectary usually absent (sometimes annular). Stamens rarely up to 30. Pistil composed of (two to) three to six connate carpels. Style in Barteria single. Seeds scrobiculate. n = ?

Passifloroideae Burnett, Outlines Bot.: 750, 1092, 1130. Feb 1835 [‘Passifloridae’]

10/600–605. Adenia (90–95; tropical regions in the Old World, with their highest diversity in tropical Africa); Basananthe (37; tropical and southern Africa), Deidamia (5; D. alata, D. bicolor, D. bipinnata, D. commersoniana, D. setigera; Madagascar), Efulensia (2; E. clematoides, E. montana; tropical Africa), Schlechterina (1; S. mitostemmatoides; tropical East Africa), Crossostemma (1; C. laurifolium; tropical Africa); Ancistrothyrsus (2; A. hirtellus, A. tessmannii; western tropical South America), Dilkea (11; tropical South America), Mitostemma (3; M. brevifilis, M. glaziovii, M. jenmanii; tropical South America), ’Passiflora’ (c 450; tropical Asia to islands in the Pacific, tropical and subtropical America; paraphyletic). – Pantropical, with their highest diversity in tropical Africa (not Passiflora) and tropical South America. Often herbaceous vines or lianas with simple tendrils (modified branches). Secondary lateral growth often anomalous. Stem collenchyma present. Vessel elements with simple perforation plates. Superposed bud (developing into branch) often present. Leaves spiral, sometimes compound. Venation often palmate. Petiole and/or stipules with glands (extrafloral nectaries). Inflorescence cymose. Corona consisting of one to several rows of filaments or membranes. Androgynophore or gynophore frequently present. Seeds often hairy, often variously sculpted. – Adenia has less developed corona, gynophore instead of androgynophore, sometimes hypanthium, nectary often formed by separate glands, filaments sometimes connate at base, tricolporate pollen grains, hollow style and stigma without multicellular papillae.

Phylogeny of Passifloraceae based on DNA sequence data (Tokuoka 2012)

PERACEAE (Baill.) Benth. ex Klotsch

( Back to Malpighiales )

Klotsch in Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1859: 241, 246. 10-30 Mar 1859

Genera/species 4–5/105–115

Distribution Pantropical.

Fossils Unknown.

Habit Usually dioecious (sometimes monoecious, especially in Pera), evergreen trees or shrubs (sometimes perennial herbs, more or less lignified at base).

Vegetative anatomy Phellogen? Cortical and medullary vascular bundles absent. Vessel elements with simple perforation plates; lateral pits alternate, simple pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, non-septate. Wood rays uniseriate or multiseriate (in Pera uniseriate), homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal reticulate, vasicentric, or banded, abundant. Tyloses often frequent (sometimes sclerotic). Intraxylary phloem present at least in Pera. Sieve tube plastids S type? Nodes? Secretory cavities absent. Wood in some species with lysigenous radial ducts. Laticifers present in some species. Heartwood sometimes with gum-like substances. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple (in Pera usually stellate or lepidote; inflorescences in Pogonophora sometimes with malpighiaceous hairs), or absent.

Leaves Usually alternate (spiral or distichous; rarely opposite), simple, entire, with asymmetrical leaf base, often coriaceous, with ? ptyxis. Stipules usually small (in Chaetocarpus and Trigonopleura large), often caducous, or absent; leaf sheath absent. Petiole vascular bundle transection interrupted arcuate to annular or complete annular; petiole sometimes with central plate and wing bundles. Venation pinnate; veins sometimes proceeding into transparent caducous teeth or marginal spines. Stomata? Cuticular wax crystalloids? Epidermis with mucilaginous idioblasts. Lamina without secretory cavities, sometimes pellucid-punctate. Leaf margin entire to prickly dentate.

Inflorescence Axillary, panicle, fascicle, thyrsoid or capitate glomerulus (female flowers sometimes solitary); male flowers in Pera often surrounded by reduced sterile female flowers. Bracts one or two small outer, free, and two larger involucrate inner, more or less connate.

Flowers Actinomorphic, small? Hypogyny. Sepals in male flowers (two to) four or five (to seven), with imbricate aestivation, free or connate (in Pera sometimes absent; sometimes absent in female flowers). Petals usually four or five, with imbricate aestivation, sometimes unguiculate (absent in Pera and Chaetocarpus; sometimes absent in female flowers), in Pogonophora with rigid hairs on adaxial side. Nectary? Disc usually consisting of five to numerous usually intrastaminal glands (nectariferous glands?) in one to three whorls (disc in Chaetocarpus extrastaminal, entire to somewhat lobate [crenellate]; disc absent in Pera).

Androecium Stamens (two to) five to eight (to 20). Filaments connate into tube at least in lower part, usually free from tepals. Anthers usually basifixed (sometimes dorsifixed), non-versatile?, tetrasporangiate, introrse or extrorse (sometimes latrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory? Female flowers with or without staminodia.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, ?-cellular at dispersal. Exine tectate (rarely intectate), with columellate infratectum, perforate or punctate to micropunctate-rugulate, sometimes psilate.

Gynoecium Pistil composed of three (to nine) connate carpels or one carpel. Ovary superior, trilocular (to novemlocular) or unilocular; ovary septa membranous and not distinctly vascularized. Style single, simple or trilobate (lobes often bifid), or absent. Stigmas one or three, papillate, peltate to fimbriate (sometimes valve-shaped?), type? Male flowers with or without pistillodium (entire, bilobate or trilobate).

Ovules Placentation apical. Ovules one per carpel, anatropous?, pendulous, epitropous, bistomal, crassinucellar. Micropyle usually endostomal (rarely exostomal). Outer integument three to six cell layers thick. Inner integument three to six cell layers thick. Obturator placental. Archespore bicellular or tricellular. Megasporangium approx. two cell layers thick, early degenerating. Megagametophyte monosporous, Polygonum type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A single-seeded drupe or drupaceous usually septicidal capsule with fleshy or spongy mesocarp and lignified endocarp, often with persistent tepals and stigmas; septicidal capsule usually dehiscing into three mericarps, each partially dehiscing into two valves (capsule rarely loculicidal and dehiscing into six valves). Fruit septa membranous and not distinctly vascularized. Capsular valves dehiscing along midvein and at base often remaining adnate to fruit stalk, central columella (usually thin, in Trigonopleura three-winged) splitting longitudinally into usually three parts.

Seeds Carunculus (in Trigonopleura also aril) present. Seed coat exotestal-exotegmic. Testa vascularized. Exotesta palisade, lignified, usually tanniniferous. Exomesotesta sclereidal. Endotestal cells with calciumcarbonate? Exotegmen usually tracheoidal (in Pogonophora palisade), sometimes U-shaped in cross-section; exotegmic cells cuboid? Endotegmen absent. Perisperm not developed. Endosperm usually copious, fleshy (rarely absent). Embryo straight, well differentiated, chlorophyll? Cotyledons two, wide and flat. Germination?

Cytology n = ?

DNA

Phytochemistry Unknown.

Use Timber.

Systematics Pogonophora (2; P. letouzeyi: Gabon; P. schomburgkiana: Colombia, Venezuela, Guyana, Suriname, French Guiana, Brazil, Peru), Pera (30–35; southern Mexico, Central America, the West Indies, tropical South America), Clutia (c 55; tropical and subtropical Africa to South Africa, the Arabian Peninsula), Chaetocarpus (13–19; tropical West and Central Africa, Madagascar, Sri Lanka, Bangladesh, Burma, Thailand, West Malesia, tropical America; incl. Trigonopleura?), Trigonopleura (3; T. dubia, T. macrocarpa, T. malayana; West and Central Malesia; in Chaetocarpus?).

Peraceae are sister-group to the clade [Euphorbiaceae+Rafflesiaceae].

Pogonophora is sister to the remaining Peraceae (Wurdack & al. 2005).

Cladogram (simplified) of Peraceae based on DNA sequence data (Davis & al. 2007; Tokuoka 2007).

PHYLLANTHACEAE Martinov

( Back to Malpighiales )

Martinov, Tekhno-Bot. Slovar: 369. 3 Aug 1820 [’Phyllanthoideae’]

Stilaginaceae C. Agardh, Aphor. Bot.: 199. 13 Jun 1824 [‘Stilagineae’]; Antidesmataceae Loud., Hort. Brit.: 534. 30 Aug 1830 [’Antidesmeae’]; Stilaginales C. Agardh in C. F. P. von Martius, Consp. Regn. Veg.: 14. Sep-Oct 1835 [‘Stilagineae’]; Scepaceae Lindl., Intr. Nat. Syst. Bot., ed. 2: 171. 13 Jun 1836; Aporosaceae Lindl. ex Planch. in Ann. Sci. Nat., Bot. Ser. 4, 2: 265. 1854 [’Aporoseae’]; Porantheraceae (Pax) Hurus. in J. Fac. Sci. Univ. Tokyo, ser. III, 6: 224. 15 Aug 1954; Bischofiaceae (Müll. Arg.) Airy Shaw in Kew Bull. 18: 252. 8 Dec 1965; Hymenocardiaceae Airy Shaw in Kew Bull. 18: 261. 8 Dec 1965; Uapacaceae (Müll. Arg.) Airy Shaw in Kew Bull. 18: 270. 8 Dec 1965; Phyllanthales Doweld, Tent. Syst. Plant. Vasc.: xxxiii. 23 Dec 2001

Genera/species 55/>2.100

Distribution Tropical and subtropical regions on both hemispheres, with few species in warm-temperate regions.

Fossils Uncertain. Paraphyllanthoxylon, fossil wood from Cretaceous layers of South Africa and North America, may represent Phyllanthaceae or Euphorbiaceae. A fossil flower attributed to Antidesma has been found in Baltic amber (Willemstein 1987).

Habit Usually monoecious or dioecious (rarely bisexual), usually evergreen (sometimes deciduous) trees or shrubs (sometimes climbing), perennial or annual herbs. Some species are xeromorphic shrubs or herbs with ericoid leaves (some species of Phyllanthus have phyllocladia; one species of Phyllanthus is limnic and floating). Branches often dimorphic.

Vegetative anatomy Ectomycorrhiza present in Uapaca. Phellogen ab initio superficial? Primary medullary strands narrow (Hymenocardia). Vessel elements with simple or scalariform perforation plates; lateral pits alternate, simple and/or bordered pits. Vestured pits present in Bridelia and allies. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, septate or non-septate (in ‘Savia’ sometimes also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, reticulate, vasicentric, unilateral, or banded, or absent. Tyloses sometimes abundant. Sieve tube plastids S type?; sieve tubes with non-dispersive protein bodies (Bischofia). Nodes usually 3:3, trilacunar with three leaf traces (sometimes 1:1, unilacunar with one trace). Laticifers absent (resins excreted in Spondianthus and Uapaca). Silica bodies present or absent. Prismatic calciumoxalate crystals abundant; styloids and/or other types of crystals present or absent.

Trichomes Hairs unicellular or multicellular, usually simple (rarely stellate or lepidote); glands rarely present (on leaves).

Leaves Usually alternate (usually spiral, sometimes distichous; rarely opposite or whorled), usually simple (in Bischofia trifoliolate or sometimes pinnately compound), entire, sometimes coriaceous, with conduplicate or involute ptyxis; leaves on orthotropic branches spiral and often reduced (sometimes scale-like), on plagiotropic branches usually distichous, large and photosynthetic (phyllanthoid branching, branches resembling compound leaves). Stipules often scale-like, membranous, early caducous (rarely absent); leaf sheath absent. Petiole in Bischofia pulvinate. Petiole vascular bundle transection? Venation pinnate, brochidodromous or eucamptodromous. Stomata usually paracytic (sometimes anisocytic). Cuticular wax crystalloids? Abaxial side of lamina in Hymenocardia densely beset with red glandular dots. Epidermis sometimes with mucilaginous idioblasts. Domatia, as pockets or pits, present in some genera. Secretory cavities absent. Leaf margin usually entire (sometimes serrate, rarely with glands; in Bischofia with caducous teeth). Extrafloral nectaries often present on stipules, petiole and/or lamina.

Inflorescence Terminal or axillary, fasciculate, raceme-, spike- or catkin-like, cymose,or racemose inflorescence, or flowers solitary (usually female flowers). Inflorescenses (with very short branches) often arising in axils of leaves on plagiotropic shoots (phyllanthoid branching). Bracts sometimes involucrate (occasionally showy; in Uapaca pseudanthium).

Flowers Actinomorphic, small. Hypogyny. Sepals two to eight (to twelve), usually with imbricate or valvate (sometimes open) aestivation, free or connate at base (sometimes absent in female flowers). Petals (three to) five (or six), free, usually very small (sometimes absent). Nectariferous disc extrastaminal or interstaminal, annular or consisting of separate parts (sometimes central or absent), sometimes? with glands.

Androecium Stamens two or several (in Phyllanthus up to 15; in Tacarcuna 14 to 18; in Lingelsheimia c. 15 to c. 35). Filaments free or more or less connate, free from tepals. Anthers basifixed to dorsifixed, often versatile?, tetrasporangiate, usually extrorse (sometimes introrse), longicidal (dehiscing by usually longitudinal, sometimes transverse, slits; rarely apical, with pore-like slits). Tapetum secretory, with binucleate to quinquenucleate (Bischofia) cells. Female flowers often with staminodia; male flowers rarely with staminodia (fertile stamens of male flowers in Uapaca sometimes alternating with staminodia).

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tri- to tetra- (rarely penta-)colporate (sometimes porate or inaperturate; sometimes with diploporate apertures; rarely pantosyncolpoidorate with up to c. 60 apertures; in Phyllanthus polypantoporate), shed as monads, usually bicellular (sometimes tricellular) at dispersal. Exine tectate or semitectate, with columellate infratectum, usually reticulate or smooth (rarely echinate or spinulate).

Gynoecium Pistil composed of one carpel (pseudomonomery) or two to five (to 15) connate carpels. Ovary superior, unilocular or bi- to quinquelocular (often? divided by pseudophragmata). Style single (sometimes lateral-subterminal), simple or branched, or stylodia two to four. Stigmas usually bilobate, fimbriate, with adaxial furrow, papillate?, Wet type. Male flowers often with shortly stipitate, peltate and entire or split pistillodium.

Ovules Placentation apical. Ovules (one or) two per carpel, anatropous, anacampylotropous or hemianatropous, pendulous, epitropous, bitegmic, crassinucellar. Micropyle bistomal. Outer integument usually two to four (rarely five or more) cell layers thick. Inner integument usually two or three (rarely up to ten or more) cell layers thick. Megasporangium at least ten cell layers thick, protruding, persistent. Placental obturator present between stylar canal and micropyle. Hypostase present. Parietal tissue often protruding through micropyle. Nucellar beak present. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad or solanad.

Fruit Usually a septicidal capsule with persistent columella (disintegrating into six valves or three mericarps each with two valves), or a bi- to quadripartite schizocarp with samaroid mericarps (rarely a berry or a single- to six-seeded drupe).

Seeds Aril? Carunculus usually absent (sometimes present, more or less rudimentary). Seed coat usually exotegmic. Testa sometimes vascularized (in Aporosa etc. sarcotestal). Tegmen usually two to five (rarely up to 20 or more) cell layers thick. Exotegmen with (sometimes also radially elongate) ribbon-shaped cells with often sinuous cell walls, usually fibrous (sometimes palisade), often tracheoidal (in Didymocistus and Hymenocardium collapsed tracheoidal, also large endotegmic cells with tannins), sometimes (in, e.g., Aporosa) with sclerotic cells (exotegmen absent in Poranthera). Perisperm not developed. Endosperm usually copious (sometimes sparse or absent), oily. Embryo straight or curved, well differentiated, with or without chlorophyll. Cotyledons two. Germination?

Cytology n = (6–9, 11) 13 (14); x = 13

DNA Mitochondrial maturase gene matR lost in Croizatia and Lachnostylis. Mitochondrial coxI intron present in Breynia and Phyllanthus.

Phytochemistry Cyanidin, delphinidin, cucurbitacins and other triterpenes, non-hydrolyzable tannins (geraniin), tropane alkaloids (phyllalbin), pyrrolizidine alkaloids and other alkaloids (securinine, phyllantine, phyllochrisine, etc.), and tyrosine-derived cyanogenic compounds present. Ellagic acid not found. Flavonols? Saponins? Aluminium accumulated in some species.

Use Ornamental plants, timber, edible fruits, medicinal plants, fish poison.

Systematics Phyllanthaceae are sister to Picrodendraceae.

Phyllanthaceae are provisionally subdivided into Phyllanthoideae (the ’Fasciculate clade’) and Antidesmatoideae (the ’Tanniniferous clade’) by Kathriarachchi & al. (2005).

Phyllanthoideae Beilschm. in Flora 16(Beibl. 7): 61, 109. 14 Jun 1833 [‘Phyllantheae’]

33/>1.660. Andrachne (22; the Mediterranean, southwestern Asia, western North America, the West Indies), Meineckia (c 30; southwestern and northeastern tropical Africal, Madagascar, Socotra, southern Arabian Peninsula, southern India, Sri Lanka, Assam, tropical America), Notoleptopus (1; N. decaisnei; Malesia to New Guinea and northern Australia), Poranthera (14; Australia, Tasmania, New Zealand), Pseudophyllanthus (1; P. ovalis; southern Africa), Phyllanthopsis (2; P. arida, P. phyllanthoides; Texas, Mexico), Actephila (c 35; southern China, tropical Asia to eastern Queensland, eastern New South Wales and islands in the Pacific), Leptopus (10; the Caucasus, northern Iran and the Himalayas to China and Southeast Asia), Heywoodia (1; H. lucens; tropical East Africa, KwaZulu-Natal, Eastern Cape), Astrocasia (6; A. austinii, A. diegoae, A. jacobinensis, A. neurocarpa, A. peltata, A. tremula; southern Mexico, Central America, the West Indies, Colombia, Venezuela), Chascotheca (1; C. neopeltandra; Cuba, Hispaniola), Dicoelia (1; D. beccariana; West Malesia), Wielandia (13; southeastern Kenya, Madagascar, the Comoros, the Seychelles), Margaritaria (14; tropical regions on both hemispheres), Lingelsheimia (6; L. abbayesii, L. ambigua, L. fiherenensis, L. frutescens, L. manongarivensis, L. sylvestris; Central Africa to Tanzania, Madagascar), Flueggea (16; western Mediterranean, Turkey, tropical and subtropical regions on both hemispheres), Plagiocladus (1; P. diandrus; western Central Africa), Richeriella (1; R. gracilis; northeastern India, Hainan, Thailand, West and Central Malesia; in Flueggea?), Heterosavia (4; H. bahamensis, H. erythroxyloides, H. laurifolia, H. maculata; Florida Keys, Central America, Cuba, Bahamas, Grand Cayman), Phyllanthus (>1.250; tropical and subtropical regions on both hemispheres), Securinega (5; S. antsingyensis, S. capuronii, S. durissima, S. perrieri, S. seyrigii; Madagascar, the Mascarene Islands), Lachnostylis (3; L. bilocularis, L. hanekomii, L. hirta; Western and Eastern Cape), Amanoa (16; tropical Africa, Madagascar, tropical America), Keayodendron (1; K. bridelioides; Ivory Coast to Cameroon), Savia (2; S. dictyocarpa, S. sessiliflora; southern Mexico, the West Indies, Venezuela, Paraguay, southern Brazil), Gonatogyne (1; G. brasiliensis; São Paulo in Brazil), Croizatia (5; C. brevipetiolata, C. cimalonia, C. naiguatensis, C. neotropica, C. panamensis; Panamá, Venezuela), Discocarpus (4; D. essequeboensis, D. gentryi, D. pedicellatus, D. spruceanus; northeastern South America), Tacarcuna (3; T. amanoifolia, T. gentryi, T. tachirensis; Panamá, Colombia, Venezuela, Peru), ’Cleistanthus’ (c 140; tropical regions in the Old World; paraphyletic), Pseudolachnostylis (1; P. maprouneifolia; tropical and southern Africa), Pentabrachion (1; P. reticulatum; Cameroon, Gabon), Bridelia (c 50; tropical Africa and Madagascar to northern Australia and islands in the Pacific). – Tropical and subtropical regions on both hemispheres, few species in the Mediterranean, Turkey, the Caucasus, southwestern Asia and western North America. Pistil composed of two to six (to 15) connate carpels. – Croizatia has five petals, extrastaminal disc and bifid style.

Antidesmatoideae Hurus. in J. Fac. Sci. Univ. Tokyo, ser. 3, Bot., 6: 321, 340. 15 Aug 1954

20/435–440. Bischofia (2; B. polycarpa: central and southeastern China; B. javanica: from India to eastern Asia, Melanesia and Polynesia to Samoa and Niue), Spondianthus (1; S. preussii; tropical East and Central Africa), Uapaca (c 50; tropical Africa, Madagascar), Protomegabaria (3; P. macrophylla, P. meiocarpa, P. stapfiana; tropical West and Central Africa), Richeria (5; R. australis, R. dressleri, R. grandis, R. obovata, R. tomentosa; tropical South America), Aporosa (75–80; tropical Asia to Solomon Islands), Maesobotrya (c 20; tropical Africa), Baccaurea (c 45; tropical Asia, islands in western Pacific; incl. Distichirhops?, Nothobaccaurea?), Distichirhops (3; D. megale, D. minor, D. mitsemosik; Borneo, New Guinea; in Baccaurea?), Nothobaccaurea (2; N. pulvinata, N. stylaris; Solomon Islands, Fiji; in Baccaurea?), Celianella (1; C. montana; sandstone tepuís in southern Venezuela), Jablonskia (1; J. congesta; northern South America), Hieronyma (c 20; southern Mexico, Central America, the West Indies, tropical South America), Leptonema (2; L. glabrum, L. venosum; Madagascar), Apodiscus (1; A. chevalieri; tropical West Africa), Martretia (1; M. quadricornis; tropical West and Central Africa), Antidesma (c 170; tropical and subtropical regions in the Old World), Thecacoris (c 25; tropical Africa, Madagascar), Hymenocardia (6; H. acida, H. heudelotii, H. lyrata, H. punctata, H. ripicola, H. ulmoides; tropical and southern Africa, Southeast Asia, Sumatra), Didymocistus (1; D. chrysadenius; tropical South America). – Tropical and subtropical. Petals often absent. Pistil composed of two to five connate carpels, or one carpel. Tannins present.

Unplaced Phyllanthaceae

Ashtonia (2; A. excelsa, A. praeterita; the Malay Peninsula, Borneo), Chonocentrum (1; C. cyathophorum; Amazonia)?

Cladogram of Phyllanthaceae based on DNA sequence data mainly according to Wurdack & al. (2004). The topology of the Poranthereae clade follows Vorontsova & al. (2007) and Vorontsova & Hoffmann (2008).

Cladogram of Phyllanthaceae based on DNA sequence data (Kathriarachchi & al. 2005).

PICRODENDRACEAE Small

( Back to Malpighiales )

Small in J. New York Bot. Gard. 18: 184. Aug 1917, nom. cons.

Micrantheaceae J. Agardh, Theoria Syst. Plant.: 182. Apr-Sep 1858 [‘Micrantheae’]; Pseudanthaceae Endl. in H. Pfeiffer, Nomencl. Bot. 2(2): 852. 3 Oct 1873; Androstachyaceae Airy Shaw in Kew Bull. 18: 250. 8 Dec 1965 [‘Androstachydaceae’]; Paivaeusaceae (U. Köhler et G. L. Webster ex G. L. Webster) A. Meeuse, Euphorbiaceae: 30. 1990

Genera/species 23/95–100

Distribution Tropical and southern Africa, Madagascar, southern India, Sri Lanka, West Malesia, New Guinea, Australia, Tasmania, New Caledonia, southwestern United States to Argentina, with their highest diversity in Australia.

Fossils Rosenkrantzia picrodendroides from the Danian (Early Paleocene) of western Greenland, comprises fruits that resemble those in modern Picrodendraceae.

Habit Usually monoecious or dioecious (rarely bisexual), evergreen or deciduous trees or shrubs, perennial herbs; many species are stem succulents or twining.

Vegetative anatomy Phellogen ab initio superficial? Vessel elements with simple or scalariform perforation plates; lateral pits alternate or opposite, simple or bordered pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, aliform, winged-aliform, confluent, vasicentric, unilateral, or banded, or absent. Tyloses often frequent. Sieve tube plastids S type? Nodes? Laticifers absent. Heartwood with gum-like substances. Silica bodies sometimes abundant. Calciumoxalate as acicular crystals, styloids, crystal sand and other crystal types present in some species. Wood parenchyma and/or wood ray cells with prismatic crystals.

Trichomes Hairs unicellular or multicellular, uniseriate, simple; glandular hairs?

Leaves Alternate (usually spiral, sometimes distichous), opposite or verticillate, simple or palmately compound, entire or lobed, or absent, with ? ptyxis. Stipules petiolar or cauline (sometimes small, usually intrapetiolar; in Androstachys ochreate, enclosing terminal bud) or absent; leaf sheath absent. Colleters often present in leaf axils. Petiole vascular bundle transection? Venation palmate or pinnate. Stomata paracytic; subsidiary cells present on top of guard cells. Cuticular wax crystalloids? Epidermis usually with mucilaginous idioblasts. Secretory cavities absent. Leaf margin serrate (teeth with caducous apex) or entire. Foliar glands usually absent (sometimes with glands along leaf margins).

Inflorescence Terminal or axillary, catkin-like thyrse or fasciculate inflorescence (males), or flowers solitary axillary (females).

Flowers Actinomorphic, small. Hypogyny. Sepals in male flowers (two to) four to eight (to 13), with imbricate aestivation, spiral, free, or absent; sepals in female flowers (three or) four to eight (to 13), with valvate or imbricate aestivation, whorled, in some genera unequally sized, free, or absent. Petals absent. Nectariferous disc central or interstaminal, or absent (stamens rarely inserted in cavities on disc).

Androecium Stamens two to more than 100, alternate (sometimes on prolonged receptacle). Filaments usually free (rarely connate at base), free from tepals. Anthers dorsifixed, versatile?, apiculate, tetrasporangiate, extrorse to latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains 4–12-colporate, 5–6-porate to zonaperturate or hexacolporoidate or inaperturate (with up to c. 60 very narrow apertures), shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, spinulate, echinate or verruculate.

Gynoecium Pistil composed of two to four (or five) connate carpels. Ovary superior, usually bilocular to quadrilocular (or quinquelocular). Style usually single, simple, or stylodia two to four (or five), free. Stigmas stout, sometimes lobate, papillate?, usually Dry (sometimes Wet) type. Male flowers often with pistillodium.

Ovules Placentation axile to apical. Ovules usually two (in Scagea one) per carpel, anatropous, pendulous, epitropous, bitegmic, crassinucellar. Micropyle usually bistomal (in Austrobuxus endostomal). Outer integument five or six cell layers thick. Inner integument three to six cell layers thick. Funicular obturator present between stylar canal and micropyle. Hypostase present. Nucellar cap present. Nucellar beak often present. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad?

Fruit Usually a septicidal and/or loculicidal capsule with persistent column, or a tripartite schizocarp (rarely a berry or a single- or two-seeded drupe with thin fleshy orange pericarp containing bitter juice).

Seeds Aril present or absent. Carunculus usually present (absent in, i.a., Podocalyx). Testa? Exotegmen cuboid or fibrous (exotegmen in Oldfieldia palisade, subprocumbent). Mesotegmen in Oldfieldia thickened. Endotegmen usually absent (in Oldfieldia two-layered, with band-shaped cell wall thickenings). Perisperm not developed. Endosperm usually copious, oily (sometimes absent; in Picrodendron ruminate). Embryo curved, well differentiated, with chlorophyll. Cotyledons two, sometimes strongly plicate (in Picrodendron lobate). Germination?

Cytology n = 12 (Pseudanthus); x = 13

DNA

Phytochemistry Insufficiently known. Flavones, oleanolic acids, triterpenes and toxic picrotoxans (e.g. hyaenanchin) present. Saponins and cyanogenic compounds not found.

Use Ornamental plants, medicinal plants, timber.

Systematics Podocalyx (1; P. loranthoides; Amazonia); Tetracoccus (5; T. capensis, T. dioicus, T. fasciculatus, T. hallii, T. ilicifolius; southwestern United States, northwestern Mexico), Hyaenanche (1; H. globosa; Vanrhynsdorp and Clanwilliam Districts in Western Cape), Austrobuxus (c 28; West Malesia, eastern Queensland, New Caledonia, Fiji), Dissiliaria (6; D. baloghioides, D. indistincta, D. laxinervis, D. muelleri, D. surculosa, D. tuckeri; eastern Queensland), Sankowskya (1; S. stipularis; northeastern Queensland), Whyanbeelia (1; W. terrae-reginae; eastern Queensland), Choriceras (2; C. majus: Queensland; C. tricorne: southern New Guinea, northern Northern Territory, northeastern Queensland), Petalostigma (5; P. banksii, P. pachyphyllum, P. pubescens, P. quadriloculare, P. triloculare; Papua New Guinea, Queensland, New South Wales, Northern Territory, Western Australia), Kairothamnus (1; K. phyllanthoides; New Guinea), Scagea (2; S. depauperata, S. oligostemon; New Caledonia), Neoroepera (2; N. banksii, N. buxifolia; northeastern Queensland), Micrantheum (4; M. demissum, M. ericoides, M. hexandrum, M. serpentinum; southeastern South Australia to Queensland, Tasmania), Stachystemon (9; southwestern Western Australia), Pseudanthus (9; eastern Australia, Tasmania), Piranhea (4; P. longipedunculata, P. mexicana, P. securinega, P. trifoliata; western Mexico, Venezuela, Guyana, Brazil), Parodiodendron (1; P. marginivillosum; Bolivia, northern Argentina), Picrodendron (1; P. baccatum; the West Indies), Oldfieldia (4; O. africana, O. dactylophylla, O. macrocarpa, O. somalensis; tropical Africa), Aristogeitonia (7; A. gabonica, A. limoniifolia, A. lophirifolia, A. magnistipula, A. monophylla, A. perrieri, A. uapacifolia; tropical Africa, Madagascar), Mischodon (1; M. zeylanicus; southern India, Sri Lanka), Voatamalo (2; V. capuronii, V. eugenioides; Madagascar), Androstachys (1; A. johnsonii; southeastern tropical Africa, Madagascar).

Picrodendraceae are sister-group to Phyllanthaceae.

Podocalyx (carunculus absent) is a plausible sister to the remaining Picrodendraceae (carunculus present).

Cladogram (simplified) of five of the genera in Picrodendraceae based on DNA sequence data (Wurdack & al. 2004).

PODOSTEMACEAE Rich. ex Kunth

( Back to Malpighiales )

Kunth in von Humboldt, Bonpland et Kunth, Nov. Gen. Sp. 1: ed. 4°: 246. Mai 1816 [’Podostemeae’], nom. cons.

Marathraceae Dumort., Anal. Fam. Plant.: 60, 62. 1829 [‘Marathrineae’]; Marathrales Dumort., Anal. Fam. Plant.: 60. 1829 [‘Marathrarieae’]; Podostemales Lindl., Nix. Plant.: 17. 17 Sep 1833; Philocrenaceae Bongard, Mém. Acad. Imp. Sci. St. Pétersb., sér. 6, Math. Nat. 3(2): 87. 13 Jun-13 Jul 1834; Podostemineae Engl., Syllabus, ed. 2: 124. Mai 1898; Tristichaceae J. C. Willis in Bot. J. Linn. Soc. 43: 51. 15 Mai 1915; Podostemopsida G. Cusset & C. Cusset in Bull. Mus. Natl. Nat. Paris, Sect. B, Adansonia, sér. 4, 10: 210. 14 Oct 1988; Podostemanae R. Dahlgren ex Reveal in Novon 2: 236. 13 Oct 1992 [‘Podostemonanae’]

Genera/species 57/290–300

Distribution Tropical, subtropical and warm-temperate regions on both hemispheres.

Fossils Uncertain. Fossil leaves under name of Nitophyllites zaisanica have been found in Late Eocene layers in Russia and interpreted as Podostemaceae.

Habit Bisexual, usually annual (sometimes perennial) herbs. Aquatic (rheophytes) in rapidly running fresh water. Stems reduced or prolonged, simple or branched, sympodial, sometimes dimorphic or developed during anthesis only, often with specialized thalloid adventitious roots on the lower side and attached to the substrate by adhesive usually unicellular hooked hairs, hapters, excreting viscid polysaccharides (attaching to biofilm produced by cyanobacteria in the substrate). Adventitious roots dorsiventrally or laterally flattened, filiform, strap-shaped or discoid, creeping or partially floating, sometimes ephemeral or absent. Branching extra-axillary. Leaves inserted on prolonged stems or on procumbent, often discoid, stems. Podostemaceae with ribbon-like roots bear opposite branches, whereas species with foliose or crustose species develop single endogenous shoots from their upper surface (sometimes from cortex).

Vegetative anatomy Main root early withering. Adventitious roots photosynthesizing, usually endogenous (sometimes exogenous). Shoots nearly always arising as endogenous lateral buds from roots (in Cladopus both exogenous and endogenous lateral buds and lateral adventitious roots). Phellogen absent. Secondary lateral growth absent. Typical xylem and phloem elements (vessels, tracheids, libriform fibres, sieve tubes etc.) usually absent. Wood rays absent. Parenchyma? Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Laticifers and/or resinous cells present in many Podostemoideae. Air canals and aerenchyma rare. Silica bodies frequent in epidermis (and in subepidermal layers) in many species. Calciumoxalate crystals?

Trichomes Hairs unicellular or multicellular, simple, or absent.

Leaves Alternate (usually distichous or tristichous, sometimes spiral, rarely tetrastichous to hexastichous), opposite or absent, scale-like to hair-like, simple or compound, entire or lobed, with ? ptyxis. Stipules petiolar or absent; leaf sheath simple or double, with lobes sometimes prolonged into stipule-like appendages. Petiole vascular bundle transection? Venation pinnate. Stomata at least usually absent. Cuticular waxes absent. Schizogenous secretory canals present. Leaf margin entire.

Inflorescence Terminal or axillary, cymose or racemose of various shape, or flowers solitary. Floral buds often endogenous. Usually only one floral bud naked (Weddellinoideae, some Tristichoideae) or surrounded by vascularized cupule (other Tristichoideae), or entirely enclosed within tubular or saccate membranous and non-vascularized spathella formed by two connate leaves or part of leaves (Podostemoideae).

Flowers Actinomorphic or zygomorphic (sometimes inverted in bud). Hypogyny. Tepals (four or) five (or six), with imbricate aestivation, sepaloid (Tristichoideae, Weddellinoideae) or two to c. 25, thin (staminodial?), usually alternating with stamens (Podostemoideae; in flowers with two basally connate stamens sometimes with additional tepal at apex of andropodium), spiral or in complete or incomplete whorl, often restricted to one side of flower, or reduced to annular margin, or absent; when few then more or less connate. Nectary absent. Disc absent.

Androecium Stamens one, few or c. 40 in one or two complete whorls, or in one incomplete whorl, or restricted to one side of flower and constisting of one to three free stamens, or Y-shaped structure composed of andropodium with two (to seven) stamens (cf. Podostemum, referring to Y-shaped androecium). Filaments free (in Tulasneantha connate into tube) or connate at base into fascicles (rarely paired), free from tepals. Anthers basifixed to subbasifixed, non-versatile?, tetrasporangiate (usually with microsporangia in one row?), usually introrse to latrorse (when two whorls then inner extrorse), longicidal (dehiscing by longitudinal slits); connective sometimes prolonged. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis usually simultaneous (sometimes successive). Pollen grains pantoporate with up to 16 pores (Tristichoideae), tricolporate (Weddellinoideae), tricolpate to pentacolpate (Podostemoideae) or rarely inaperturate, usually shed as monads or dyads (in Diamantina tetrads), bicellular at dispersal. Exine tectate, with granular infratectum, usually echinate (in Weddellinoideae rugulo-areolate).

Gynoecium Pistil composed of two to five connate carpels; antepetalous when carpels as many as tepals. Ovary superior, usually bilocular or trilocular (in some Podostemoideae unilocular). Gynophore usually present. Style single, usually simple (stylodia in Diamantina two), or absent. Stigmas one to three, of various shape, often linear, papillate?, type? Pistillodium absent.

Ovules Placentation usually axile (sometimes free central, when ovary unilocular). Ovules usually numerous (sometimes two or several) per carpel, anatropous, bitegmic, tenuinucellar. Micropyle exostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Apical part of megasporangium – part of megasporangium below megasporocyte and surrounding developing megagametophyte – significantly elongating and extending far beyond inner integument. Megagametophyte development monosporous or disporous, quadrinucleate or quinquenucleate, tricellular, quadricellular or quinquecellular, Apinagia type, Dacraea, Podostemon or Polypleurum subtypes. Meiosis II taking place in both dyad cells (no cell division); micropylar cell reduced to cap-like structure above megagametophyte. Chalazal megaspore nucleus dividing resulting in polar nuclei or one or two antipodals, or entirely or partially degenerating. Micropylar megaspore nucleus dividing vertically and chalazal nucleus horizontally (Dacraea and Polypleurum types, polar cell micropylar), or micropylar megaspore nucleus dividing horizontally and chalazal nucleus vertically (Podostemon type, polar cell chalazal). Polar nuclei often absent. Four micropylar nuclei forming megagametophyte, chalazal part developing into multinucleate nucellar plasmodium, produced by hyponucellus (part of megasporangium below megagametophyte). Antipodal cells usually absent (sometimes one reduced antipodal cell present). Fertilization simple (double fertilization not occurring). Endosperm not developing. Megasporangium plasmodial after fertilization. Endosperm haustorium micropylar, usually as well developed suspensor haustorium. Embryogenesis solanad.

Fruit Usually a septicidal capsule (in Farmeria metzgerioides a berry or drupe?).

Seeds Aril absent. Exotesta thick-walled, usually mucilaginous. Endotesta? Tegmen unspecialized. Exotegmic cell walls sometimes lignified. Endotegmic cell walls lignified. Suspensor present. Perisperm not developed. Endosperm present. Embryo straight (fusiform?), chlorophyll? Cotyledons usually two, large (sometimes one). Hypocotyl and plumule usually absent. Germination phanerocotylar. Radicula ephemeral or absent.

Cytology n = 8, 10, 12–15, 17, 20

DNA

Phytochemistry Insufficiently known. Isoprenylated and other xanthones usually present (not found in Tristichoideae). Salts often accumulated.

Use Vegetables.

Systematics Podostemaceae are sister to Hypericaceae.

Tristichoideae Warming in Kong. Danske Vidensk. Natur. Math. Afl. 6(11): 53. 1901 [’Tristicheae’]

6/14–18. Tristicha (1; T. trifaria: tropical and southern Africa, Madagascar, Mauritius, India, tropical America); Indotristicha (3; I. malayana, I. ramosissima, I. tirunelveliana; India), Dalzellia (6; D. angustissima, D. gracilis, D. kailarsenii, D. ranongensis, D. ubonensis, D. zeylanica; Sri Lanka to southern China and Southeast Asia), Indodalzellia (1; I. gracilis; southern India), Cussetia (2; C. carinata, C. diversifolia; Thailand, Cambodia, Laos; possibly extinct); Terniopsis (1–5; T. malayana; southern China, Thailand, the Malay Peninsula). – Tropical Africa, Madagascar, tropical Asia and eastwards to northern Australia, tropical America. Root apical meristem sometimes on both adaxial and abaxial side. Roots sometimes without root cap. Spathella absent. Hypogyny. Tepals three, usually free (sometimes connate). Stamens (one to) three (stamen in Tristicha one, adaxial). Pollen grains pantoporate. Pistil composed of three sometimes connate carpels. Integument developing simultaneously. Capsule with strong ribs. Hypocotyl absent. Xanthones possibly absent. – Tristichoideae are sister-group to [Weddellinoideae+Podostemoideae]. Some species of Dalzellia have a cupule at pedicel base, developed from leafy shoots, the outer and inner integuments are developing together, and the megasporangium is coenocytic. Tristicha has an adaxial stamen and the median carpel may be abaxial. Cussetia is probably closely allied to Tristicha and Terniopsis.

[Weddellinoideae+Podostemoideae]

Pistil composed of two connate carpels. Ovary with apical septum.

Weddellinoideae (C. Cusset et G. Cusset) Engl. in Engler et Prantl, Nat. Pflanzenfam., ed. 2, 18a: 28. 3 Mai 1930

1/1. Weddellina (1; W. squamulosa; northern South America). – Plant scaly. Flowers terminal, solitary. Tepals (four or) five (or six), single-veined. Stamens five to c. 25. Pollen grains smooth. Stigmas spherical. Integuments developing simultaneously. Megagametophyte development very variable. Capsule without ribs. Tegmic cells thick-walled. Hypocotyl present.

Podostemoideae Wedd. in A. P. de Candolle et A. L. P. P. de Candolle, Prodr. 17: 39, 43. 16 Oct 1873 [‘Podostemoneae’]

50/278–285. Diamantina (1; D. lombardii; Brazil); ‘Mourera’ (7; M. alcicornis, M. aspera, M. elegans, M. fluviatilis, M. glazioviana, M. schwackeana, M. weddelliana; northern South America; paraphyletic), Monostylis (1; M. capillacea; Brazil), Castelnavia (11; Brazil), Rhyncholacis (c 25; northern tropical South America), Apinagia (≤50; tropical South America), Jenmaniella (7; J. ceratophylla, J. fimbriata, J. guianensis, J. isoetifolia, J. jenmanii, J. tridactylitifolia, J. varians; northeastern South America), Noveloa (2; N. coulteriana, N. longifolia; Mexico, Central America), Wettsteiniola (3; W. accorsii, W. apipensis, W. pinnata; southern Brazil, northern Argentina), Marathrum (≤25; southern Mexico, Central America, the West Indies, northwestern South America), Autana (1; A. andersonii; Venezuela), Ceratolacis (2; C. erythrolichen, C. pedunculatum; Brazil), Cipoia (2; C. inserta, C. ramosa; Brazil), Lonchostephus (1; L. elegans; Amazonian Brazil), Lophogyne (1; L. lacunosa; eastern central Brazil), Macarenia (1; M. clavigera; Colombia), Oserya (7; O. biceps, O. coulteriana, O. flabellifera, O. longifolia, O. minima, O. perpusilla, O. sphaerocarpa; southern Mexico, Central America, northern South America), Tulasneantha (1; T. monadelpha; western Brazil), Vanroyenella (1; V. plumosa; southwestern Mexico); Podostemum (17; eastern and southern United States, Mexico, Central America, the West Indies, tropical South America); Inversodicraea (4; I. congolana, I. garrettii, I. tenax, I. warmingiana; tropical Africa), Monandriella (1; M. linearifolia; Cameroon), Saxicolella (1; S. flabellata; tropical West and Central Africa), ’Ledermanniella’ (45–50; tropical and southern Africa; non-monophyletic), Letestuella (1; L. tisserantii; Kunene River in Namibia), Stonesia (2; S. fascicularis, S. gracilis; tropical West and Central Africa), Macropodiella (4–6; M. garrettii, M. hallaei, M. macrothyrsa, M. mildbraedii, M. pellucida, M. uoroensis; tropical West and Central Africa), Leiothylax (2; L. quangensis, L. warmingii; tropical Africa), Winklerella (1; W. dichotoma; tropical West Africa), Dicraeanthus (4; D. africanus, D. ramosus, D. taylorii, D. zehnderi; tropical West and Central Africa), Djinga (1; D. felicis; Cameroon), Endocaulos (1; E. mangorense; Madagascar), Thelethylax (2; T. isalensis, T. minutiflora; Madagascar), Angolaea (1; A. fluitans; Angola), Paleodicraeia (1; P. imbricata; Madagascar), Sphaerothylax (2; S. abyssinica, S. algiformis; tropical and southern Africa, Madagascar), Maferria (1; M. indica; southwestern India), Zehnderia (1; Z. microgyna; Cameroon); Cladopus (10; southern China, southern Japan, Southeast Asia, Malesia to New Guinea and northeastern Queensland), Paracladopus (2; P. chantaburiensis, P. chiangmaiensis; Thailand); Hydrodiscus (1; H. koyamae; Laos), Hydrobryum (5–10; H. floribundum, H. griffithii, H. japonicum, H. koribanum, H. puncticulatum; southern India, eastern Nepal, Assam, China, southern Japan), Hanseniella (2; H. heterophylla, H. smitinandii; Thailand), Thawatchaia (1; T. trilobata; Thailand); Willisia (1–2; W. arekaliana, W. selaginoides; Kerala in southern India), ‘Zeylanidium’ (5; Z. barberi, Z. maheshwarii, Z. olivaceum, Z. sessile, Z. subulatum; India, Sri Lanka; non-monophyletic), Griffithella (1; G. pierrei; Western Ghats in India), Farmeria (1; F. metzgerioides; Sri Lanka), Polypleurum (4; P. dichotomum, P. elongatum, P. stylosum, P. wallichii; India, Sri Lanka, northeastern Thailand), Diplobryum (4; D. koyamae, D. minutale, D. ramosum, D. vientianense; Laos, southern Vietnam). – Tropical and subtropical regions on both hemispheres, few species in warm-temperate regions. Shoots usually without apical meristem. Root apical meristems usually on lower side of thallus (sometimes on both upper and lower side). Roots sometimes exogenous, sometimes without root cap. Leaves ensiform, bifacial, often distichous, without normal epidermis, endogenously developed. Stipules sometimes also abaxial relative to leaf (leaves dithecal: one leaf sheath apically directed, additional leaf sheath basally directed). Stomata absent? Flowers or floral fascicles enclosed by non-vascularized spathella (possibly formed by fusion of two foliar structures). Tepals two to c. 25, with narrow lobes, sometimes replaced by stamens. Stamens one to three (to numerous). Microsporogenesis sometimes successive, with tetragonal tetrads. Pollen grains, 3–5-colpate, shed in monads or dyads, usually calymmate. Pistil composed of three (to seven) connate carpels. Ovary sometimes unilocular. Gynophore usually present. Style short, simple or branched, with long branches. Outer integument first developing. Megasporangium amoeboid-periplasmodial prior to fertilization. Megagametophyte sometimes disporous (Polypleurum and Podostemon types). Polar nucleus degenerating. Double fertilization not occurring. Capsule with ribs. Hypocotyl and radicula usually absent (hypocotyl present in Zeylanidium olivaceum). – Diamantina is sister to the remaining Podostemoideae (Kato & al. 2009; Ruhfel & al. 2011; Koi & al. 2012). In Old World Podostemoideae (“the Old World clades”) pollen grains are usually shed in dyads, whereas monads dominate in New World Podostemoideae (“the New World clade”).

Cladogram of Old World Podostemaceae based on DNA sequence data (Kato & al. 2009; Ruhfel & al. 2011).

PUTRANJIVACEAE (Endl.) Meisn.

( Back to Malpighiales )

Meisner, Plant. Vasc. Gen., Tab. Diagn. 345, Comm.: 258. 13-15 Feb 1842 [’Putranjiveae’]

Genera/species 1–2/c 225

Distribution Pantropical, southeastern Africa, Madagascar, subtropical East Asia, northern and eastern Australia, New Caledonia.

Fossils Uncertain. Fossil pollen grains attributed to Putranjivaceae have been reported from the Paleocene (Muller 1981).

Habit Usually dioecious (some species of Drypetes monoecious or polygamodioecious), evergreen trees or shrubs.

Vegetative anatomy Phellogen? Vessel elements with simple or scalariform perforation plates; lateral pits alternate, simple pits. Bordered intervessel pits abundant. Imperforate tracheary xylem elements libriform fibres with simple pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal reticulate, scalariform, or banded. Sieve tube plastids S type? Nodes? Latex and laticifers absent. Silica bodies present in parenchyma cells in some species. Wood parenchyma and/or wood ray cells with prismatic calciumoxalate crystals and silica bodies.

Trichomes Hairs unicellular, simple, or absent.

Leaves Alternate (distichous), simple, entire, often coriaceous, with ? ptyxis. Stipules present; leaf sheath absent. Petiole vascular bundle transection elliptic. Leaf base usually asymmetric. Venation pinnate; veins sometimes proceeding into transparent caducous teeth or spines. Stomata brachyparacytic with subsidiary cells overlying guard cells Cuticular wax crystalloids? Secretory cavities absent. Leaf margin serrate (sometimes spinose-serrate) or entire.

Inflorescence Axillary, fascicle (female inflorescences in Putranjiva one- to three-flowered).

Flowers Actinomorphic, small? Hypogyny. Sepals four or five (to seven), usually with imbricate (in female flowers of some species of Drypetes open) aestivation, usually free (in Putranjiva connate in lower part), in female flowers usually caducous. Petals absent. Nectary usually present (absent in Putranjiva). Disc annular (rarely absent), sometimes lobate (in Drypetes madagascariensis trilobate), with alternisepalous lobes, or cup-shaped, in male flowers central and encircling rudimentary gynoecium.

Androecium Stamens (two to) four to 20 (to more than 50 in Drypetes longifolia), diplostemonous in some species of Drypetes. Filaments usually free from each other and from tepals. Anthers usually basifixed (sometimes slightly dorsifixed), usually non-versatile, tetrasporangiate, usually extrorse or latrorse (rarely introrse), longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate? infratectum, perforate or reticulate, usually smooth.

Gynoecium Pistil composed of two or three (to seven) connate carpels (sometimes seemingly one carpel; probably pseudomonomery). Ovary superior, synascidiate, unilocular to quadrilocular. Style usually single or absent (styles in Putranjiva two or three, connate at base), usually simple, expanded, usually short. Stigmas usually wide and flat (flap-shaped), simple or bifurcate (rarely multilobate, sometimes capitate), non-papillate (Drypetes) or papillate (Putranjiva), type? Pistillodium, very small, usually present (rarely absent) in male flowers.

Ovules Placentation axile. Ovules two per carpel, anatropous, pendulous, epitropous, usually bitegmic (in Drypetes macrostigma unitegmic with inner integument lost), weakly crassinucellar (with two parietal cell layers) or incompletely tenuinucellar. Micropyle endostomal or bistomal (sometimes exostomal; variation extensive). Outer integument three to seven cell layers thick, with few discrete vascular bundles. Inner integument five to nine (or more) cell layers thick, multiplicative. Single integument in Drypetes macrostigma six to nine cell layers thick. Obturator placental, stout, formed from funicular tissue near micropyle. Hypostase weakly differentiated in older ovules. Endothelium present. Parietal tissue approx. two cell layers thick. Archespore usually bicellular or tricellular (rarely quadricellular or quinquecellular). Megasporangium approx. two cell layers thick, early disintegrating. Nucellar beak absent. Nucellar cap absent. Megagametophyte monosporous, Polygonum type. Antipodal cells early degenerating. Endosperm development ab initio nuclear. Endosperm haustoria absent? Embryogenesis?

Fruit Usually a unilocular to quadrilocular drupe, often with persistent stigmas.

Seeds Aril absent. Carunculus absent. Testa vascularized. Sarcotesta thin or absent. Exomesotesta sclereidal. Endotesta? Tegmen multiplicative (six to more than 24 cell layers thick). Exotegmen sometimes fibrous. Exotegmic cells usually isodiametric, cuboidal, sometimes longitudinally elongate. Mesotegmen and endotegmen collapsing. Perisperm not developed. Endosperm copious, oily. Embryo straight, chlorophyll? Cotyledons two. Germination phanerocotylar?

Cytology n = (19) 20 (21); x = 10

DNA

Phytochemistry Insufficiently known. Biflavonoyls, cucurbitacins and other triterpenes, and glucosinolates (mustard oil glycosides) present. Flavonols? Ellagic acid? Saponins? Calciumoxalate present at least in floral organs.

Use Timber.

Systematics Drypetes (c 220; sub-Saharan Africa, southern and eastern Asia, Australasia to northern and eastern Australia, New Caledonia, tropical America; incl. Putranjiva?), Putranjiva (4; P. formosana, P. matsumurae, P. roxburghii, P. zeylanica; Pakistan, India, Sri Lanka, the Himalayas, southern China, Southeast Asia, Malesia to New Guinea, Taiwan, Japan, Ryukyu Islands; in Drypetes?).

Putranjivaceae appear to be sister-group to Lophopyxis (Lophopyxidaceae).

Putranjivaceae share with Erythroxylaceae, Rhizophoraceae, Linaceae, and Chrysobalanaceae the combination of fibrous exotegmen, endothelium, and thick, multiplicative inner integument.

QUIINACEAE Choisy ex Engl.

( Back to Malpighiales )

Engler in von Martius, Fl. Bras. 12(1): 475, 476. 1 Apr 1888, nom. cons.

Genera/species 4/c 50

Distribution Central America, the West Indies, tropical South America, with their largest diversity in Amazonia.

Fossils Unknown.

Habit Usually bisexual or androdioecious (sometimes polygamomonoecious, dioecious, or polygamodioecious), evergreen trees, shrubs or lianas.

Vegetative anatomy Mycorrhiza absent. Phellogen? Cortical vascular bundles absent. Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits alternate, bordered pits. Vestured pits present. Imperforate tracheary xylem elements tracheids and fibres with bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty, aliform, lozenge-aliform, winged-aliform, or vasicentric, or absent. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Cortex with cristarque cells. Parenchyma with secretory cells and druses. Heartwood in some species with resinous substance. Silica bodies or prismatic calciumoxalate crystals present in some species.

Trichomes Hairs unicellular, simple.

Leaves Opposite or verticillate, usually simple (in Froesia and Touroulia pinnately compound), entire or pinnately lobed, with ? ptyxis. Stipules usually interpetiolar, large, rigid or foliaceous (in Froesia deeply split), persistent; leaf sheath absent. Petiole vascular bundle transection annular, often complex. Venation (impari-)pinnate; secondary veins coarse, densely spaced; tertiary veins paxillate, parallel to plumose-reticulate, densely spaced; leaf veins surrounded by very thick-walled fibres. Stomata anisocytic or paracytic. Cuticular wax crystalloids? Lamina with lysigenous secretory mucilage cavities. Mesophyll with calciumoxalate as druses and single prismatic crystals. Leaf margin serrate or crenate.

Inflorescence Terminal or axillary, basically thyrsoid (determinate thyrse).

Flowers Usually actinomorphic (rarely somewhat zygomorphic). Hypogyny. Sepals four or five, with imbricate aestivation, unequal, free. Petals four or five (to eight), usually with imbricate (sometimes contorted) aestivation, free. Nectary absent. Disc absent.

Androecium Stamens twelve to more than 170. Filaments free or connate at base, free from or adnate at base to petals. Anthers dorsifixed, non-versatile, tetrasporangiate, introrse (thecae separate) or latrorse (thecae arranged side by side, in Froesia), longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, microperforate.

Gynoecium Pistil composed of two, three or seven to 14 (in Lacunaria four to 14) carpels usually paracarpously connate below (in Froesia three, free, apocarpy). Ovary superior, bilocular, trilocular or septa to 14-locular (in Lacunaria quadrilocular to 14-locular). Stylodia two, three or seven to 14, free. Stigmas obliquely peltate, type? Pistillodium often present in male flowers.

Ovules Placentation basal to axile. Ovules two per carpel, anatropous, ascending, bitegmic, tenuinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. ‘False endothelium’ present on surface of megasporangium. Megagametophyte monosporous, Polygonum type? Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit A berry or berry-like single- to four-seeded valvate capsule (in Froesia follicles) with persistent calyx. Exocarp with lacunae.

Seeds Aril absent. Seeds usually densely tomentose (in Froesia glabrous or almost glabrous). Testa? Tegmen? Perisperm not developed. Endosperm absent. Embryo straight, well differentiated, chlorophyll? Cotyledons two, thick. Germination cryptocotylar.

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Cyanogenic compounds not found.

Use Timber.

Systematics Froesia (5; F. crassiflora, F. diffusa, F. gereauana, F. tricarpa, F. venezuelensis; northern tropical South America); Touroulia (1; T. guianensis; northern tropical South America), Quiina (c 35; Belize, tropical South America), Lacunaria (8; L. crenata, L. grandifolia, L. jenmanii, L. macrostachya, L. oppositifolia, L. panamensis, L. sampaioi, L. umbonata; Central America, tropical South America).

Quiinaceae are part of a trichotomy also including Ochnaceae and Medusagyne (Medusagynaceae), or Medusagyne is sister to Quiinaceae (Schneider & al. 2014).

Froesia is sister to the remaining Quiinaceae (Schneider & al. 2006; Schneider & Zizka 2017).

Cladogram of Quiinaceae based on morphology and DNA sequence data (Schneider & al. 2006).

RAFFLESIACEAE Dumort.

( Back to Malpighiales )

Dumortier, Anal. Fam. Plant.: 13, 14. 1829, nom. cons.

Rafflesiales R. Br. in C. F. P. von Martius, Consp. Regn. Veg.: 18. Sep-Oct 1835 [‘Rafflesiaceae’]; Rafflesianae Thorne ex Reveal in Phytologia 79: 71. 29 Apr 1996

Genera/species 2–3/c 35

Distribution Assam, Bhutan, southernmost China, Burma, Thailand, Indochina, West Malesia to the Philippines.

Fossils Unknown.

Habit Usually dioecious (in Rhizanthes lowii and R. zippelii also bisexual), achlorophyllous perennial herbaceous endophytic stem and root holoparasites without rhizome or ordinary roots, parasitizing species of Tetrastigma (Vitaceae). Flowers evil-smelling.

Vegetative anatomy Mycorrhiza absent. Vegetative tissue consisting of mostly uniseriate parenchymatous filaments probably capable of intrusive intercellular growth and transfer of nutrient and water (possibly derived from laticifers with similar type of growth and frequently present in Euphorbiaceae). Hypha-like cellular threads invading host plant and forming endophytic system inside roots and/or stem. Phellogen absent. Secondary lateral growth absent. Vessel elements probably absent. Imperforate tracheary xylem elements libriform fibres? (or absent?) Wood rays absent. Axial parenchyma absent? Sieve tube plastids S0 type, without starch or protein inclusions. Nodes? Crystals?

Trichomes Hairs absent?

Leaves Usually verticillate (sometimes opposite or alternate spiral), reduced and scale-like, or absent, with ? ptyxis. Stipules and leaf sheath absent. Venation? Stomata anomalous, with three or more guard cells (Rafflesia), or absent. Cuticular waxes absent. Leaf margin entire.

Inflorescence Flowers solitary. Floral shoots endogenous, bursting out through cortex of host plant.

Flowers Actinomorphic, medium-sized to very large (Rafflesia arnoldii with largest flower of all angiosperms, reaching almost 1 m across). Flower in Rafflesia and Rhizanthes surrounded by three whorls of scale-like bracts with five bracts in each. Epigyny. Tepals (sepals?) four to ten (to 16), usually with imbricate (in Rhizanthes valvate) aestivation, in one whorl (uniseriate; in Sapria biseriate?), with incurved margins, usually connate in lower part, in Rafflesia and Sapria inserted around thin annular horizontal central tissue, diaphragm (homologous to corona or corolla?), on apex of perianth tube; apex of central column in Rafflesia enlarged and disc-shaped; apices of 16 tepals in Rhizanthes inserted inside cavity in central column (diaphragm absent). Base of perianth tube in Rafflesia covered by special outgrowths, ramenta, on adaxial side; diaphragm in Sapria covered by ramenta. Nectary present at stylar base or absent. Androgynophore present?

Androecium Stamens twelve to more than 50, inserted on and adnate to ring immediately below (disc-shaped) apex of central column. Filaments absent. Anthers basifixed, non-versatile, disporangiate (monothecal) to polysporangiate, connate into annular synandrium, extrorse, poricidal (dehiscing by apical pore). Tapetum secretory? Female flowers with staminodia (rudimentary anthers).

Pollen grains Microsporogenesis successive. Pollen grains inaperturate, shed as monads, bicellular at dispersal. Exine intectate; pollen surface smooth?

Gynoecium Pistil composed of three to ten connate carpels; carpellary margins occluded through postgenital fusion and secretion. Ovary inferior, unilocular. Style single, simple, very short. Stigma in Rafflesia and Rhizanthes as annular structure on outer margin or lower side of apex of (disc-shaped) central column, papillate, type? Male flowers in Rhizanthes with pistillodium (rudimentary ovary).

Ovules Placentation laminar-parietal. Ovules numerous per ovary, anatropous, unitegmic or bitegmic, tenuinucellar. Micropyle usually endostomal (rarely exostomal). Outer integument one cell layer thick or absent. Inner integument ? cell layers thick. When unitegmic, then swelling present on chalaza (representing second integument?). Nucellar cap present. Megasporangial epidermis persistent. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis caryophyllad or solanad?

Fruit A many-seeded berry.

Seeds Aril absent. Seed consisting of two different parts; part covered by testa not enclosing embryo. Exotesta as basal chalazal appendage. Endotesta hard. Exotegmic cell walls with U-shaped thickenings. Endotegmic cell walls with thickenings. Perisperm not developed. Endosperm single-layered, sparse. Embryo rudimentary, undifferentiated (with few cells in few tiers), without chlorophyll? Cotyledons two. Germination phanerocotylar?

Cytology n = 11 (Rhizanthes), 12 (Rafflesia)

DNA

Phytochemistry Virtually unknown. Tannins present.

Use Unknown.

Systematics Rafflesia (c 28; Thailand, the Malay Peninsula, West Malesia to the Philippines; incl. Rhizanthes?), Rhizanthes (4; R. deceptor, R. infanticida, R. lowii, R. zippelii; peninsular Thailand, the Malay Peninsula, western Java, Sumatra, Borneo; in Rafflesia?), Sapria (3; S. himalayana, S. poilanei, S. ram; northeastern India, Burma, southern China, Southeast Asia).

Sapria is sister to [Rafflesia+Rhizanthes].

Rafflesiaceae are sister to Euphorbiaceae. This is supported by mitochondrial, plastid (matK) and nuclear (LSU and SSU rDNA) gene sequences. The mitochondrial genes nad1B-c in Vitaceae and Rafflesiaceae have very similar sequences, a fact interpreted as horizontal gene transfer from the host plant Tetrastigma (Vitaceae) to the parasite (Davis & Wurdack 2004).

The shoot apex is formed secondarily through schizogeny (internal cell separation) at the distal interface boundary between the tissues of the parasite and its host plant. Moreover, the carpels are not initiated from the apex of the flower. Instead, the radially directed gynoecial ovarial clefts are likewise formed schizogenously. This secondarily derived inner surface of the gynoecium may represent a synapomorphy of Rafflesiaceae (Nikolov & al. 2014).

Pollination in Rafflesia is carried out at least partially by carrion flies (e.g. Chrysomya and Lucilia; Beaman & al. 1988). The fly enters the grooves on the central male floral column. It is directed by hairs on the ridges, thereby placing the viscous pollen matrix on the back of the fly. The translucent “windows” on the perigone diaphragm probably orient the fly within the flower. The fly, loaded by pollen, then visits the female flower and supposedly enters through the infradiscoidal sulcus. This tissue consists of the annular stigma and the base of the pistillar central column. The fly, by crawling into the sulcus, deposits the pollen on to the stigmatic surface.

Cladogram of Rafflesiaceae based on DNA sequence data (Davis & al. 2007).

RHIZOPHORACEAE Pers.

( Back to Malpighiales )

Persoon, Syn. Plant. 2: 2. Nov 1806 [’Rhizophorea’, ’Rhizophoreae’], nom. cons.

Rhizophorales Pers. ex Bercht. et J. Presl, Přir. Rostlin: 257. Jan-Apr 1820 [‘Rhizophoreae’]; Mangiaceae Raf., Fl. Tellur. 3: 73. Jan-Mar 1837 [‘Mangidia’]; Legnotidaceae (Endl.) Blume, Mus. Bot. Lugd.-Bat.: 126. Oct 1849 [‘Legnotideae’], nom. illeg.; Cassipoureaceae J. Agardh, Theoria Syst. Plant.: 246. Apr-Sep 1858 [‘Cassipoureae’]; Macarisiaceae J. Agardh, Theoria Syst. Plant.: 295. Apr-Sep 1858 [‘Macharisieae’]; Rhizophoranae (Pers.) Takht. ex Reveal et Doweld in Novon 9: 550. 30 Dec 1999

Genera/species 14/112–114

Distribution Atlantic and Indian Ocean coasts of Africa, islands in the Indian Ocean and the Pacific, Atlantic and Pacific coasts of Central and South America, coasts in the West Indies, with their highest diversity in Madagascar and tropical Asia.

Fossils Pollen grains (resembling those in Bruguiera, Kandelia and Rhizophora) have been found in Eocene layers in France. Fossil Rhizophoraceae pollen is also known from Caribbean layers of Late Eocene age, and have been recorded from Oligocene and younger strata in Mexico, Venezuela, the Caribbean, Nigeria and Malesia (extant distribution in this area is possibly less than 11 My old). Eocene macrofossils (Ceriops cantiensis, Palaeobruguiera elongata, etc.) are known from Europe.

Habits Usually bisexual (rarely polygamomonoecious), evergreen trees or shrubs. Many species are mangrove trees. Pneumatophores (in Gynotrocheae and Rhizophoreae) and stilt roots often present.

Vegetative anatomy Root hairs absent in Rhizophoreae. Phellogen ab initio at least sometimes superficial. Vessel elements with simple and/or scalariform perforation plates; lateral pits scalariform, opposite or alternate, simple or bordered pits. Vestured pits present. Imperforate tracheary xylem elements tracheids with simple or bordered pits, septate or non-septate. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, aliform, lozenge-aliform, confluent, reticulate, scalariform, vasicentric, unilateral, or banded. Tyloses often frequent. Sieve tube plastids Pc (PV) type, with 20 or more square or polygonal protein crystalloids. Nodes ≥3:≥3, trilacunar or multilacunar with three or more leaf traces, often with split lateral vascular bundles. Heartwood often with ethereal substances. Prismatic calciumoxalate crystals frequent; acicular crystals, styloids, crystal sand and other types of crystals (in Paradrypetes raphides) often present.

Trichomes Hairs unicellular or sometimes multicellular, uniseriate, simple or stellate; glandular hairs often present.

Leaves Usually opposite (rarely verticillate), simple, entire, coriaceous, usually with involute (in Rhizophoreae supervolute) ptyxis. Stipules interpetiolar, large, sheathing, caducous, with basal adaxial gum-excreting colleters; leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata paracytic, cyclocytic (Rhizophoreae) or anomocytic (rarely anisocytic). Cuticular wax crystalloids? Epidermis with or without mucilaginous idioblasts. Mesophyll with or without sclerenchymatous idioblasts (with H-shaped and other sclereids). Leaf margin serrate, crenate or entire (in Paradrypetes spinose-serrate); leaf teeth theoid.

Inflorescence Usually axillary, fasciculate, raceme- or spike-like (flowers in some species of Bruguiera solitary axillary; inflorescence in Paradrypetes epipetiolar).

Flowers Actinomorphic. Pedicel articulated. Hypanthium-like structure usually present. Hypogyny (Macarisieae), epigyny or half epigyny. Sepals (three or) four or five (to 16), with valvate aestivation, usually carnose or coriaceous, persistent, free. Petals (three or) four or five (to 16), with contorted or inflexed aestivation, small, alternisepalous, usually hairy and carnose, often bilobate, usually with apiculate arista and fimbriate or with filiform appendages, often clawed, free. Subepidermal laticifers present. Nectariferous disc intrastaminal, inserted on ovary or “hypanthium”, or absent. Sepals and ovary with layer of hypodermal laticiferous cells (in Gynotroches and Pellacalyx as numerous secretory idioblasts).

Androecium Stamens eight to numerous, usually at least twice as many as petals (sometimes as many as petals), diplostemonous or obdiplostemonous. Filaments usually free (rarely connate at base), antepetalous, single or in fascicles of two to five stamens, free from tepals, usually inserted on abaxial side of nectariferous disc; each stamen or staminal fascicle usually enclosed by petal. Anthers dorsifixed, versatile, tetrasporangiate (in Rhizophora multilocellate due to transverse septa), introrse or latrorse, longicidal (dehiscing by longitudinal valve). Tapetum secretory. Staminodia absent. Rhizophoreae with secondary pollen display.

Pollen grains Microsporogenesis simultaneous or successive (Gynotrocheae). Pollen grains 3(–4)-colporate to 3(–4)-colporoidate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate or granular-columellate infratectum, punctate-rugulate, punctate, reticulate or smooth (in Paradrypetes echinate).

Gynoecium Pistil composed of (two or) three to five (to 20) connate antesepalous carpels; when two carpels, then lateral (in Rhizophora transverse). Ovary superior, inferior or semi-inferior, unilocular or multilocular, synascidiate. Style single, usually simple (in Gynotroches branched; absent in Paradrypetes). Stigma punctate, capitate or lobate, usually papillate, type? Pistillodium absent.

Ovules Placentation apical to axile. Ovules two to numerous per carpel, anatropous to hemianatropous (in Bruguiera and Carallia campylotropous), pendulous, epitropous?, bitegmic, usually crassinucellar (in Gynotroches and Pellacalyx tenuinucellar). Micropyle usually bistomal, Z-shaped (zig-zag) (sometimes endostomal). Outer integument usually three to six (in Carallia approx. ten) cell layers thick, in Rhizophoreae vascularized. Inner integument four to eight (to 20) cell layers thick. Obturator present (Macarisieae) or absent (Gynotrocheae, Rhizophoreae). Endothelium usually present. Parietal tissue one to three cell layers thick. Megasporocytes often several. Megagametophyte monosporous, Polygonum type. Antipodal cells ephemeral. Endosperm development ab initio nuclear. Endosperm haustorium micropylar and chalazal (Ceriops). Embryogenesis?

Fruit A single- or many-seeded berry (Gynotrocheae), a drupe with one seed per locule, a capsule (Macarisieae, Crossostylis), or with hard pericarp and indehiscent (Rhizophoreae; seedling in Bruguiera dispersed together with fruit).

Seeds Seeds sometimes winged. Aril/carunculus exostomal or absent. Seed coat usually exotegmic. Testa sometimes multiplicative, indistinct (Rhizophoreae), or (in Macarisieae and Gynotrocheae) exotestal cells more or less enlarged, thick-walled. Endotesta sometimes crystalliferous. Tegmen usually thickened (absent in ripe seeds ofRhizophoreae), with invaginations. Exotegmen in Macarisieae and Crossostylis fibrous. Endotegmen crushed (Macarisieae) Perisperm not developed. Endosperm sparse or copious, oily. Embryo long or short, straight, well differentiated, with chlorophyll. Cotyledons usually two (rarely three or four), with unilacunar node. Germination phanerocotylar or viviparous. In mangrove trees (Rhizophoreae) vivipary, with much enlarged hypocotyl.

Cytology n = (13) 14, 16, 18, 21, 32 (Anopyxis)

DNA

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, afzelechin, myricetin, ethereal oils (in wood), ellagic acid, methylated ellagic acids, non-hydrolyzable tannins, proanthocyanidins (procyanidin, prodelphinidins), necin and tropane (hygrolin) alkaloids (oxytropanes, brugine, tropin, etc.), and pyrrolizidine alkaloids as 1-aminopyrrolizidine derivatives present. Saponins and cyanogenic compounds not found.

Use Timber.

Systematics Rhizophoraceae are sister to Erythroxylaceae.

Macarisieae Baill., Hist. Plant. 6: 295, 302. Jan-Mai 1876

6/c 63. Paradrypetes (2; P. ilicifolia, P. subintegrifolia; western Amazonas, coastal Brazil); Sterigmapetalum (c 9; tropical South America), Cassipourea (c 40; tropical, eastern and southern Africa, Madagascar, the Mascarene Islands, southern India, Sri Lanka, tropical America), Macarisia (8; Madagascar), Anopyxis (3; A. ealaensis, A. klaineana, A. occidentalis; tropical Africa), Blepharistemma (1; B. serratum; southwestern India), Comiphyton (1; C. gabonense; Gabon to eastern Congo). – Tropical and southern Africa, Madagascar, southwestern India, Sri Lanka, tropical South America. Calcium oxalate crystals solitary. Stipules valvate. Leaf teeth often theoid. Hypanthium-like structure sometimes present. Sepals with open aestivation. Filaments often of two different lengths. Anthers latrorse; connectives often enlarged. Stigma capitate or punctate. Aril often present. Fruit in Cassipourea a capsule. Seeds sometimes winged at micropylar end. Exotegmen fibrous. – Paradrypetes may be sister to the remaining Macarisieae. Brazil. Dioecious trees. Raphides present. Lamina with long, Z-shaped intersecondary veins. Flowers small. Tepals in male flowers three or four. Nectary absent. Exine spinulate. Style absent. Placental obturator present. Fruit a drupe. Testa and tegmen vascularized. Endosperm copious, starchy. Cotyledons wide, plicate.

[Gynotrocheae+Rhizophoreae]

Stilt roots or pneumatophores present. Rootlets without root hairs. Leaves bijugate. Stipules imbricate. Hypanthium-like structure present. Epigyny. Obturator absent. Testa vascularized.

Gynotrocheae Engl., Syllabus, ed. 1: 147. Apr 1892

4/30–32. Carallia (11; Madagascar, tropical Asia to tropical Australia and Solomon Islands), Crossostylis (10–12; Melanesia, southwestern Polynesia), Gynotroches (1; G. axillaris; Burma, Southeast Asia, Malesia to New Guinea, Solomon Islands, the Caroline Islands and northern Queensland), Pellacalyx (c 8; tropical Asia). – Madagascar, tropical Asia to tropical Australia, islands in western Pacific. Stilt roots absent in Pellacalyx. Carpels often more numerous than sepals. Ovules sometimes up to eight per carpel, tenuinucellar. Outer integument two or three cell layers thick. Inner integument two to four cell layers thick. Archespore sometimes one. Fruit usually a berry (fruit in Crossostylis a capsule). Aril usually absent (present in Crossostylis). Exotesta mucilaginous, tanniniferous. Meso- and endotestal cells crystalliferous. Tegmen absent or fibrous to palisade. Exotegmen usually well developed (absent in Carallia); exotegmen in Crossostylis fibrous. Mesotegmen and endotegmen persistent. Cotyledons in Carallia and Pellacalyx involute.

Rhizophoreae Bartl., Ord. Nat. Plant.: 320. Sep 1830 [‘Rhizophorea genuina’]

4/19. Bruguiera (6; B. cylindrica, B. exaristata, B. gymnorhiza, B. hainesii, B. parviflora, B. sexangula; coasts of tropical East Africa and east to Samoa), Rhizophora (6; R. apiculata, R. mangle, R. mucronata, R. racemosa, R. samoensis, R. stylosa; tropical coasts on both hemispheres), Kandelia (2; K. candel, K. obovata; coasts of India and Bangladesh to Borneo, China and Kyushu in southern Japan), Ceriops (5; C. australis, C. decandra, C. pseudodecandra, C. tagal, C. zippeliana; coasts of East Africa and India to Queensland, Melanesia, Micronesia and northern to southeastern China). – Tropical coasts on both hemispheres. Stomata cyclocytic. Abaxial hypodermis present. Sclerenchymatous sheath of midvein absent or poorly developed. Leaf margin entire. Petals sometimes postgenitally fused above base. Anthers in Rhizophora locellate. Endothelium absent. Fruit single-seeded, indehiscent. Seed coat undifferentiated, vascularized. Tegmen not persistent. Endosperm usually overflowing and opening micropyle (not in Bruguiera). Embryo usually large. Seeds germinating on tree (viviparous). Cotyledons in Bruguiera and Rhizophora convolute; cotyledonary node trilacunar or multilacunar. Hypocotyl finally straightening.

Cladogram of Rhizophoraceae based on DNA sequence data and morphology (Schwarzbach & Ricklefs 2000). Paradrypetes is sister to Cassipourea (Wurdack & Davis 2009).

SALICACEAE Mirb.

( Back to Malpighiales )

Mirbel, Elém. Physiol. Vég. Bot. 2: 905. 24-30 Jun 1815 [’Salicineae’], nom. cons.

Prockiaceae Bertuch, Taf. Allg. Naturgesch. Gewächs-Reich: Enum. 5, Syn. Tab. 3. 1801 [’Prockiae’]; Samydaceae Vent. in Mém. Cl. Sci. Math. Inst. Natl. France 1807(2): 149. 1808 [’Samydeae’], nom. cons.; Homaliaceae R. Br. in J. H. Tuckey, Narr. Exped. Zaire: 438. 5 Mar 1818 [’Homalinae’]; Samydales Vent. ex Bercht. et J. Presl, Přir. Rostlin: 227. Jan-Apr 1820 [‘Samydeae’]; Flacourtiaceae Rich. ex DC., Prodr. 1: 255. med Jan 1824 [‘Flacourtianeae’], nom. cons.; Blakwelliaceae T. Lestib., Botanogr. Élem.: 519. Jun 1826 [‘Blakwelliées’], nom. illeg.; Salicopsida Bartl., Ord. Nat. Plant: 92, 118. Sep 1830 [’Salicinae’]; Salicales Lindl., Nix. Plant.: 17. 17 Sep 1833 [‘Salicinales’]; Flacourtiales Rich. in C. F. P. von Martius, Consp. Regn. Veg.: 58. Sep-Oct 1835 [‘Flacourtianeae’]; Homaliales R. Br. in C. F. P. von Martius, Consp. Regn. Veg.: 63. Sep-Oct 1835 [‘Homalineae’]; Flacourtiineae Engl., Syllabus, ed. 2: 154. Mai 1898; Scyphostegiaceae Hutch., Fam. Fl. Pl. 1: 229. 15 Jan 1926, nom. cons.; Scyphostegiales Croizat, Kirkia 15: 137. Sep 1994; Bembiciaceae R. C. Keating et Takht. in Bot. Žurn. 81(2): 85. Mai-Jun 1996; Poliothyrsidaceae (G. S. Fan) Doweld, Tent. Syst. Plant. Vasc.: xxxi. 23 Dec 2001; Caseariaceae Doweld, New Syllabus Pl. Fam.: 693. 2008

Genera/species 56/1.225–1.240

Distribution Mainly tropical and subtropical regions, some genera in temperate regions, few in Australia, absent from New Zealand; Salix and Populus mainly in temperate regions and some species of Salix only in arctic-alpine regions on the Northern Hemisphere.

Fossils Pseudosalix from the Eocene of Utah and Colorado is morphologically intermediate between Salix and genera formerly included in ‘Flacourtiaceae’ (e.g. Bennettiodendron, Idesia, and Polyothyris). Fossil pollen grains assigned to Casearia have been described from Oligocene layers.

Habit Usually bisexual (sometimes dioecious, e.g., Salix, Populus, Chosenia, and Scyphostegia), evergreen or deciduous trees or shrubs (some genera climbing; few species of Salix dwarf shrubs). Casearia sometimes with phyllanthoid branching: orthotropic branches with reduced spiral leaves, and plagiotropic branches sylleptic with normal leaves distichous.

Vegetative anatomy Ectomycorrhiza present in at least Salix, Populus and Chosenia. Phellogen ab initio superfical. Primary medullary rays narrow. Primary vascular tissue cylinder, without separate bundles. Vessel elements with simple or scalariform perforation plates; lateral pits alternate, usually bordered (sometimes simple) pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple or bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma absent or very rare. Tyloses often abundant. Sieve tube plastids S type; sieve tubes with non-dispersive protein bodies? Nodes usually 3:3, trilacunar with three leaf traces (in Xylosma and some Casearia 1:1, unilacunar with one trace, in some species of Azara 2:2, bilacunar with two traces). Secondary phloem sometimes stratified into hard fibrous and soft parenchymatous layers (Salix, Populus, Chosenia?), in, e.g., Flacourtia and Xylosma with groups of large sclereids. Secretory cavities absent. Heartwood often with ethereal? substances. Prismatic calciumoxalate crystals abundant; acicular crystals, druses, styloids, crystal sand and other types of crystals often present.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple, furcate, stellate, peltate, lepidote, or vesicular, or absent; glandular hairs often present (transparent in, e.g., Abatia, Casearia, Ryania, and Zuelania).

Leaves Usually alternate (spiral or distichous; in Abatia opposite), simple, usually entire (sometimes lobed), sometimes coriaceous, with supervolute-curved or involute ptyxis. Stipules small to foliaceous, intrapetiolar, usually caducous (sometimes persistent; rarely absent); leaf sheath absent. Petiole vascular bundle transection arcuate or annular; petiole with wing bundles (petiole in Salix, Populus and Chosenia with unique arrangement of vascular strands as one or several closed cylinders of xylem and floem, in Populus often superimposed). Venation usually pinnate (rarely palmate), brochidodromous, campylodromous or actinodromous. Stomata anomocytic, paracytic or anisocytic. Cuticular wax crystalloids as rosettes of platelets (Fabales type) or absent. Domatia as pits or hair tufts. Epidermis with or without mucilaginous idioblasts, with or without crystalliferous idioblasts. Cystoliths present (Homalium) or absent. Mesophyll with calciumoxalate as druses and single prismatic crystals, with or without sclerenchymatous idioblasts. Lamina sometimes gland-dotted. Leaf margin usually serrate (rarely entire, crenate or crispate), often with salicoid teeth (one vein running into tooth, tooth apex expanding into spheroid glandular structure). Extrafloral nectaries often present on petiole and/or lamina (usually pairwise on junction of petiole and lamina).

Inflorescence Terminal or axillary (in Bembicia epiphyllous and cone-shaped; in Phyllobotryon and Phylloclinium epiphyllous and solitary or few-flowered), usually cymose (sometimes racemose) of various shape (spike-, head- or catkin-like, fasciculate, panicle, spike, or catkin; flowers rarely solitary). Floral prophylls (bracteoles) present or absent. Telescoping floral bracts present in Scyphostegia.

Flowers Actinomorphic, often small. Hypanthium present in some genera. Usually hypogyny (rarely epigyny or half epigyny). Sepals three to eight (to c. 15), with imbricate or valvate aestivation, often persistent, usually free (sometimes connate at base; rarely petaloid; sometimes absent). Petals three to eight (to c. 15; in, e.g., some Scolopieae outnumbering sepals), with valvate or imbricate aestivation, usually free (rarely connate at base; sometimes absent); tepals rarely (in, i.a., Oncoba) spiral and hardly subdivided into calyx and corolla; tepals in Salix connate and modified into one or several nectaries (tepals sometimes absent). Corona in some genera present as scales, hairs or lobes on petal bases. Nectariferous disc extrastaminal or intrastaminal, as glands, scales or lobate annular disc (sometimes absent).

Androecium Stamens one to c. 40 (to more than 100), usually antesepalous (sometimes alternisepalous), in one or several whorls (sometimes in three to eight antepetalous fascicles). Filaments filiform, free or connate at least at base (in Scyphostegia entirely connate), free from tepals. Anthers dorsifixed or basifixed, non-versatile, tetrasporangiate, usually introrse (rarely extrorse), longicidal (dehiscing by longitudinal slits); connective sometimes apically prolonged. Tapetum secretory. Staminodia in Scyphostegia three, extrastaminal. Female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate or tricolpate to tricolporoidate (Salix; in Populus inaperturate), shed as monads, usually bicellular (rarely tricellular) at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate or reticulate, verrucate, spinulate, or echinate.

Gynoecium Pistil composed of two to five (to 13) usually connate carpels (in Oncoba secondarily free); gynophore present in some species. Ovary usually superior (rarely inferior or semi-inferior), usually unilocular (in Scyphostegia unilocular in lower part, multilocular in upper part; rarely entirely multilocular). Style single, simple, persistent, or stylodia several, free or connate in lower parts (sometimes absent). Stigmas one or several, lobate, capitate or attenuate, commissural or carinal, non-papillate, Dry type. Male flowers often with pistillodium.

Ovules Placentation usually parietal or free central (sometimes intrusively parietal; rarely axile or basal; in Scyphostegia basal). Ovules usually two to more than 100 (rarely one) per ovary, usually orthotropous (sometimes anatropous or hemianatropous), ascending, usually bitegmic (sometimes unitegmic, with inner integument rudimentary), crassinucellar. Micropyle usually bistomal (rarely exostomal or endostomal), sometimes Z-shaped (zig-zag). Outer integument two to five cell layers thick. Inner integument two to five cell layers thick. Hypostase usually absent (present in Casearia). Parietal tissue five to seven cell layers thick, finally resorbed. Nucellar cap usually present, finally resorbed. Megagametophyte usually monosporous, Polygonum type (rarely disporous, Allium type), often protruding through micropyle. Synergids sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad or asterad.

Fruit Usually a berry or loculical capsule (rarely a drupe or samara).

Seeds Seeds often with aril (in Salix, Populus and Chosenia with arillar hair tuft at base: aril modified into hair tuft). Testa multiplicative, carnose (otherwise indistinct), or exotesta or endotesta (Oncoba) palisade. Exotegmen usually fibrous, lignified. Exotegmic cells is Dovyalis ribbon type. Endotegmen persistent? Perisperm usually not developed (in Scyphostegia thin). Endosperm usually copious (sometimes sparse, absent in Salix), oily. Embryo large, usually straight, well differentiated, with or without chlorophyll. Cotyledons two, plano-convex or flat. Germination phanerocotylar or cryptocotylar.

Cytology n = 9–12, 19

DNA Gene duplication (“the salicoid duplication”) present in Populus and Salix. Plastid gene rps16 lost in Populus (P. deltoides) and Salix (S. amygdaloides).

Phytochemistry Flavonols (kaempferol, quercetin), biflavonoids, biflavanoids, cyanidin, ellagic acid, tannins with proanthocyanidins and catechin, proanthocyanidins (prodelphinidins), phenolic glycosides (salicin, populin, etc.), gynocardins, saponins, acetophenones, arbutin, myo-inisitol, nigracin, and co-carcinogenic substances present. Cyclopentenoid cyanogenic glycosides not found. Aluminium accumulated in some species.

Use Ornamental plants, matches (Populus), baskets (withies from Salix), bioenergy (Salix), timber, protective plantations (against wind and erosion), fruits (Dovyalis), medicinal plants.

Systematics Salicaceae are probably sister to Lacistemataceae.

Salicaceae are under construction and the subdivision below is highly provisional.

Samydeae Vent. in B. C. J. Dumortier, Anal. Fam. Plant.: 18. 1829

14/240–245. Casearia (c 180; tropical regions on both hemispheres), Euceraea (3; E. nitida, E. rheophytica, E. sleumeriana; Venezuela, Guyana, Suriname, Brazil), Hecatostemon (1; H. completus; Venezuela, Guyana, Brazil), Laetia (9; Central America, tropical South America), Lunania (15; southern Mexico, Central America, Cuba, Jamaica, northern South America), Neoptychocarpus (3; N. apodanthus, N. chocoensis, N. killipii; tropical South America), Ophiobotrys (1; O. zenkeri; tropical West and Central Africa), Osmelia (4; O. gardneri, O. grandistipulata, O. maingayi, O. philippina; Sri Lanka, Malesia), Pseudosmelia (1; P. moluccana; the Moluccas), Ryania (9; tropical America), Samyda (11; Central America, the West Indies), Tetrathylacium (2; T. johansenii, T. macrophyllum; tropical America), Zuelania (1; Z. guidonia; southern Mexico, Central America, Venezuela); Trichostephanus (2; T. acuminatus, T. gabonensis; tropical West and Central Africa). – Tropical regions on both hemispheres. Bisexual (in Trichostephanus monoecious) trees or shrubs. Stipules usually caducous. Lamina often with pellucid glandular dots and lines. Leaf margin serrate or entire; leaf teeth theoid (e.g. Casearia) or salicoid. Hypanthium present. Sepals three to seven, connate at base (absent in Trichostephanus). Petals absent. Nectariferous disc present at adaxial side of sepal bases (calyx tube), lobate. Stamens three to twelve (sometimes more). Ovary superior to semi-inferior, unilocular. Style simple or distally trifid. Stigma trilobate or stigmas capitate. Ovules several per carpel. Fruit a carnose or coriaceous capsule (often berry-like), usually with persistent sepals, disc, filaments and style. Aril vascularized, often fimbriate. Exotegmic cells laterally flattened, crystalliferous. – Casearia is sometimes identified as sister-group with low support to the remaining Salicaceae. The position of Trichostephanus is enigmatic and provisional.

[Scyphostegia+[Prockieae+Saliceae+Homalieae+Scolopieae+Oncobeae]]

Lamina with small vein proceeding into tooth and expanding. Salicoid teeth present (tooth apex spherical and variously coloured gland or stout hair).

Scyphostegieae (Hutch.) Zmarzty in M. W. Chase et al. in Kew Bull. 57: 170. 2002

2/2. Scyphostegia (1; S. borneensis; northern and central Borneo), Dianyuea (1; D. turbinata; Yunnan). – Dioecious trees. Phellogen superficial. Vessel elements in radial multiples, with usually simple (rarely scalariform) perforation plates; lateral pits alternate. Fibres with thick walls and large bordered pits. Wood rays usually uniseriate, heterocellular. Axial parenchyma almost absent. Leaves distichous. Petiole vascular bundle transection annular; adaxial xylem and phloem developing into inverted adaxial plate of vascular tissue. Stipules small, caducous. Stomata paracytic. Inflorescence terminal, panicle. Bracts tubular, overlapping. Pedicel not articulated. Hypogyny. Perianth possibly consisting of three sepals alternating with three petals. Nectariferous lobes opposite three “antepetalous” stamens. Filaments connate. Anthers extrorse. Pollen grains tricolpate? Pistil composed of eight to 13 connate carpels. Ovary unilocular, septated near apex. Style absent. Stigma discoid, with eight to 13 rays and central orifice. Placentation basal. Ovules numerous per carpel. Micropyle bistomal (or exostomal?). Outer integument two or three cell layers thick. Inner integument three or four cell layers thick. Nucellar cap present, persistent. Fruit a fleshy capsule with lignified commissural valves. Aril formed from funicle and outer integument. Exotegmen fibrous. Perisperm very thin. Endosperm sparse. x = 9.

[Prockieae+Saliceae+Homalieae+Scolopieae+Oncobeae]

Stamens centrifugally developing. Pistil composed of two to five (to 13) connate carpels. Megagametophyte protruding through micropyle. Benzoylated glycosides present. Cyanogenic glycosides usually absent.

Prockieae Endl., Gen. Plant.: 918. Nov 1839

9/67. Banara (34; tropical America), Hasseltia (3; H. allenii, H. floribunda, H. guatemalensis; southern Mexico to Brazil and Bolivia), Hasseltiopsis (1; H. dioica; Central America), Azara (9; temperate and subtropical South America), Neosprucea (9; Panamá, northern South America), Pineda (2; P. incana, P. ovata; the Andes in Ecuador and Peru), Prockia (5; P. costaricensis, P. crucis, P. flava, P. krusei, P. pentamera; southern Mexico to northern Argentina), Abatia (10; mountain regions in tropical America), Aphaerema (1; A. spicata; southern Brazil). – Tropical America, temperate and subtropical South America. Nodes in some species of Azara bilacunar with two leaf traces. Opposite leaves present in Abatia. Tepals in Abatia with valvate aestivation, connate at base. Nectary absent in Abatia. Cyanogenic glycosides present in Banara.

Saliceae Rchb., Fl. Germ. Excurs. 1(2): 165. Jan-Apr 1831 [‘Salicinae’]

12/550–555. Populus (35–40; temperate regions on the Northern Hemisphere, on species, P. ilicifolia, in East Africa), Salix (c 450; temperate and arctic-alpine regions on the Northern Hemisphere, few species on the Southern Hemisphere), Bennettiodendron (7; B. brevipes, B. cordatum, B. lanceolatum, B. leprosipes, B. longipes, B. macrophyllum, B. subracemosum; southern China, tropical Asia), Olmediella (1; O. betschleriana; Central America), Idesia (1; I. polycarpa; China, Japan), Macrohasseltia (1; M. macroterantha; Central America), Carrierea (4; C. calycina, C. dunniana, C. rehderiana, C. vieillardii; southern and southwestern China, Southeast Asia), Itoa (1; I. orientalis; southern China, tropical Asia), Lasiochlamys (11; New Caledonia), Ludia (27; tropical East Africa, Madagascar, the Mascarene Islands), Poliothyrsis (1; P. sinensis; China), Tisonia (14; Madagascar). – Temperate and arctic-alpine regions on the Northern Hemisphere, tropical East Africa, Madagascar, the Mascarene Islands, East and tropical Asia, New Caledonia, Central America, few species on the Southern Hemisphere. Cuticular wax crystalloids as rosettes of platelets (Fabales type) or cuticular waxes absent. Inflorescence often catkin. Perianth highly reduced (petals often absent). Pollen grains in Populus inaperturate. Pistil composed of two collateral connate carpels. Ovules usually unitegmic. Micropyle in Idesia exostomal. Long placental hairs present at seed base. Tegmen impermanent. Endosperm absent in Salix. Embryo with chlorophyll. – The Idesia clade and the Salix clade appear to be very closely allied. They have salicoid leaf teeth, similar or identical phenolic compounds (e.g. salicin), and similar or identical parasites (rusts and insect larvae). Populus, Salix, Banara and Idesia with foliar extrafloral nectaries. Chosenia is nested in Salix, according to Leskinen & Alström-Rapaport (1999).

Homalieae Dumort., Anal. Fam. Plant.: 18. 1829 [‘Homalineae’]

8/c 200. Bartholomaea (3; B. mollis, B. paniculata, B. sessiliflora; Central America), Bivinia (1; B. jalbertii; tropical East Africa, Madagascar), Byrsanthus (1; B. brownii; tropical West Africa), Calantica (10; Madagascar), Dissomeria (2; D. crenata, D. glanduligera; tropical Africa), Homalium (c 180; tropical and subtropical regions on both hemispheres), Neopringlea (3; N. integrifolia, N. trinervia, N. viscosa; southern Mexico, Guatemala), Bembicia (1; B. axillaris; Madagascar). – Tropical and subtropical regions on both hemispheres. Epigyny present in Homalium.

Scolopieae Warb. in Engler et Prantl, Nat. Pflanzenfam. III, 6a: 13. 28 Dec 1893

5/43. Hemiscolopia (1; H. trimera; tropical Asia), Mocquerysia (2; M. coerulipennis, M. multiflora; tropical Africa), Phyllobotryon (2; P. bracteatum, P. paradoxum; tropical Africa), Pseudoscolopia (1; P. polyantha; South Africa), Scolopia (37; tropical regions in the Old World east to northeastern Queensland). – Tropical regions in the Old World.

Oncobeae Benth. in Proc. Linn. Soc., Bot. 5(Suppl. 2): 77. 1861

6/115–120. Oncoba (c 30; tropical and southern Africa, the Arabian Peninsula), Flacourtia (22; tropical and southern Africa, Madagascar, Southeast Asia, Malesia to Fiji), Dovyalis (17; tropical and southern Africa, Madagascar, tropical Asia from Sri Lanka to New Guinea), Trimeria (2; T. grandifolia, T. trinervis; tropical East Africa to southern Africa), Pleuranthodendron (1; P. lindenii; southern Mexico to Brazil), Xylosma (c 45?; East and Southeast Asia, Malesia to New Guinea, eastern Queensland, New Caledonia, Vanuatu, Polynesia, Guam, Central America, the West Indies, northern South America). – Pantropical. Micropyle in Oncoba endostomal. Testa in Oncoba sarcotesta. Endotesta in Oncoba palisade. – Oncoba resembles some species in Achariaceae-Lindackerieae, although they differ in, i.a., leaf teeth type, stamen initiation and phytochemistry.

Cladogram of Salicaceae (one of 709 equally most parsimonious trees of Malpighiales) based on DNA sequence data (Sosa & al. 2003). Lunania is sister to Casearia, Laetia and Samyda, according to Shang & al. (2017), and Hasseltia is sister to a clade comprising, e.g., Homalium, Xylosma, Scolopia, Oncoba, and Flacourtia.

TRIGONIACEAE A. Juss.

( Back to Malpighiales )

de Jussieu in V. V. D. d’Orbigny, Dict. Univ. Hist. Nat. 12: 670. 7 Jul 1849, nom. cons.

Genera/species 5/28

Distribution Madagascar, West Malesia, Central America, tropical South America.

Fossils Unknown.

Habit Bisexual, evergreen trees, shrubs or lianas.

Vegetative anatomy Phellogen ab initio superficial. Vessel elements usually with simple (rarely also scalariform) perforation plates; lateral pits almost absent, alternate, bordered pits. Vestured pits present. Imperforate tracheary xylem elements tracheids and fibre tracheids (libriform fibres and intraxylary phloem absent) with bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, diffuse-in-aggregates, or banded, or paratracheal scanty, aliform, vasicentric, or banded (wood ray and axial parenchyma cell walls with helical thickenings). Wood in at least one species fluorescent. Intraxylary phloem absent. Sieve tube plastids Ss type. Nodes 1:1, unilacunar with one leaf trace; lateral bundles split. Branched sclereids present. Silica bodies absent. Rhomboid or irregularly shaped calciumoxalate crystals frequent.

Trichomes Hairs unicellular or multicellular, simple or T-shaped; glands stalked or unstalked.

Leaves Usually opposite (in Trigoniastrum alternate, spiral or distichous), simple, entire, with ? ptyxis. Stipules interpetiolar (when leaves opposite), caducous, often connate; leaf sheath absent. Petiole articulated. Petiole vascular bundle transection arcuate. Venation pinnate. Stomata paracytic. Inconspicuous pilose domatia present on leaves in Isidodendron. Cuticular wax crystalloids? Epidermis and hypodermis with or without mucilaginous idioblasts. Leaf margin entire. Leaf margin and abaxial side of bracts in Trigoniastrum with impressed glands.

Inflorescence Terminal or axillary, panicle or thyrse (in Isidodendron raceme). Floral prophylls (bracteoles) two or three.

Flowers Obliquely zygomorphic. Hypanthium-like structure (“floral cup”) short or absent. Half epigyny. Sepals five, with imbricate quincuncial aestivation, unequal in size, connate below; median sepal adaxial. Petals three or five, usually with imbricate quincuncial or contorted (rarely valvate) aestivation, free; adaxial inner petal forming spurred or at base saccate velum together with one or two sepals; plicae of abaxial outer and abaxial lateral two petals forming often saccate carina or abaxial petals saccate; two lateral petals forming spatulate alae. One to three nectariferous glands, each up to trilobate, present at base of adaxial side of velum (large adaxial inner petal) and usually adjacent to slit on staminal tube, adnate to stamens and staminodia (nectariferous disc absent in Isidodendron, nectariferous glands here present at staminodial bases).

Androecium Five to eight (to 13) anterior four to nine stamens fertile and one to six lateral and/or four to six rudimentary posterior stamens staminodial (often scale-like), haplostemonous or diplostemonous. Filaments more or less connate into tube, slit on one side, free from tepals. Anthers dorsifixed (almost basifixed), somewhat versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective often dorsally thickened? Tapetum secretory? Staminodia (one to) three to six (intrastaminal?; sometimes absent).

Pollen grains Microsporogenesis simultaneous? Pollen grains tri- to pentaporate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate? infratectum, verrucate to smooth.

Gynoecium Pistil composed of three (or four) connate carpels; median carpel adaxial; carpel partially synascidiate. Ovary semi-inferior, unilocular or trilocular (or quadrilocular). Style single, simple. Stigma single, trilobate with reflexed lobes, papillate, Dry type. Pistillodium absent.

Ovules Placentation usually axile (parietal when ovary unilocular, with deeply intrusive placentae). Ovules one to ten (to c. 20) per carpel, anatropous, pendulous to ascending, epitropous (antitropous) to apotropous (syntropous), bitegmic, usually finally tenuinucellar by absorption of megasporangium (rarely crassinucellar). Micropyle bistomal, Z-shaped (zig-zag), or endostomal. Outer integument two or three cell layers thick. Inner integument four to six cell layers thick, entirely endothelial. Obturator consisting of unicellular funicular hairs or papillae. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit Usually a septicidal capsule with carpels internally dehiscing and with persistent central fibre strands (in Humbertiodendron and Trigoniastrum a three-winged samaroid).

Seeds Aril absent. Testa sometimes winged, often with long lignified hairs. Exotestal cells with thickened outer walls. Endotesta? Tegmen often multiplicative. Exotegmen? Endotegmic cells with tannins and somewhat thickened walls. Perisperm not developed. Endosperm absent. Embryo straight, well differentiated, in Trigonia with chlorophyll. Cotyledons two, large, thin, flat. Hypocotyl elongate. Germination phanerocotylar.

Cytology n = c. 10

DNA

Phytochemistry Virtually unknown. Tannins present. Aluminium not accumulated.

Use Timber.

Systematics Trigonia (24; Central America, tropical South America), Humbertiodendron (1; H. saboureaui; eastern Madagascar), Trigoniastrum (1; T. hypoleucum; West Malesia), Trigoniodendron (1; T. spiritusanctense; coastal rainforest in Espírito Santo state in Brazil), Isidodendron (1; I. tripterocarpum; the Río Magdalena valley in central Colombia).

Trigoniaceae are sister-group to Dichapetalaceae.

There is no available phylogeny of Trigoniaceae.

TURNERACEAE Kunth ex DC.

( Back to Malpighiales )

de Candolle, Prodr. 3: 345. med Mar 1828, nom. cons.

Piriquetaceae Martinov, Tekhno-Bot. Slovar: 484. 3 Aug 1820 [’Piriquettae’]; Turnerales Link, Handbuch 2: 47. 4-11 Jul 1829 [’Turneraceae’]

Genera/species 12/210–220

Distribution Tropical, subtropical and warm-temperate regions in Mexico, Central and South America, the West Indies and Africa south of Sahara, Madagascar, Rodriguez.

Fossils Unknown.

Habit Bisexual, usually perennial herbs or evergreen shrubs (rarely trees). Often evil-smelling.

Vegetative anatomy Phellogen ab initio superficial. Cortical vascular bundles abundant. Medulla usually parenchymatous, sometimes with sclereids. Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits? Imperforate tracheary xylem elements libriform fibres with thick walls and small bordered pits, non-septate? (also vasicentric tracheids). Wood rays uniseriate or multiseriate?, heterocellular. Axial parenchyma apotracheal diffuse? Sieve tube plastids Ss type; sieve tubes with non-dispersive protein bodies? Nodes? Crystalliferous and tanniniferous cells frequent; parenchyma cells sometimes with calciumoxalate crystals and starch grains.

Trichomes Hairs unicellular or multicellular, usually uniseriate, simple, sometimes multi-armed or stellate; glandular hairs excreting nasty-smelling substance often present.

Leaves Alternate (spiral), usually simple (simetimes pinnately compound), entire, sometimes ericoid, usually with conduplicate (sometimes revolute) ptyxis. Stipules usually small or absent (present in Erblichia and some species of Turnera); leaf sheath absent. Stipules and/or prophylls and leaf primordia with colleters. Petiole vascular bundle transection? Distal part of petiole or leaf base often with extrafloral nectaries. Venation pinnate, with coarse veins; vein proceeding into transparent and caducous tooth apex? Stomata anomocytic, paracytic or anisocytic. Cuticular wax crystalloids? Lamina sometimes gland-dotted. Epidermis with or without mucilaginous idioblasts. Mesophyll with or without sclerenchymatous idioblasts with calciumoxalate druses. Leaf margin serrate or crenate (teeth sometimes glanduliferous).

Inflorescence Flowers usually solitary axillary, sometimes in terminal or axillary raceme (flowers in Piriqueta and several species of Turnera epiphyllous). Floral prophylls (bracteoles) often large.

Flowers Actinomorphic. Hypogyny or half epigyny. Sepals five, with imbricate quincuncial aestivation, usually connate into caducous tube (in Erblichia and Mathurina almost free). Petals five, with contorted aestivation, clawed, early withering and caducous, usually with claws adnate to calyx and together with this forming tubular, campanulate or infundibuliform structure (hypanthium; in Erblichia and Mathurina free); in orifice sometimes five nectariferous glands, fringed corona or five lobes between corona and stamens (nectaries sometimes present in perianth tube, in Mathurina and Stapfiella on sepals, in some species of Turnera on stamens or as five nectariferous pockets). Disc extrastaminal, annular, or absent. Heterostyly sometimes present.

Androecium Stamens five, haplostemonous, antesepalous, alternipetalous. Filaments usually free from each other, usually free from tepals (sometimes adnate at base to petals; filaments in Erblichia and Hyalocalyx adnate at base to calyx). Anthers usually dorsifixed (in Erblichia and some species of Turnera almost basifixed), sometimes versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpor(oid)ate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of (two or) three connate carpels. Ovary superior to semi-inferior, unilocular. Stylodia (two or) three, filiform, often bifid, free. Stigmas concave, commissural, fringed and bristle-like, non-papillate, Dry type. Pistillodium absent.

Ovules Placentation usually parietal (in Stapfiella basal). Ovules one (Stapfiella) to more than 100 per ovary (Stapfiella with one basal ovule), anatropous, ascending, bitegmic, crassinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Hypostase present. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit A loculicidal capsule, usually dehiscing from apex (rarely laterally), sometimes with persistent perianth tube.

Seeds Aril or elaiosome (in Mathurina fimbriate) often present. Operculum present. Testa hard, non-multiplicative. Exotestal cells arranged in rows. Exotegmen palisade, with sclereids. Endotegmen persistent? Perisperm not developed. Endosperm copious, fleshy, oily. Embryo straight, well differentiated, chlorophyll? Cotyledons two, plano-convex. Germination phanerocotylar.

Cytology x = 5, 7, 10 (13) – Polyploidy occurring.

DNA Plastid gene rps16 lost in at least Turnera.

Phytochemistry Insufficiently known. Luteolin, ethereal oils, tannins, alkaloids, and cyclopentenoid cyanogenic glycosides and/or cyclopentenylic fatty acids present. Flavonols, ellagic acid, and proanthocyanidins not found.

Use Ornamental plants, medicinal plants.

Systematics Erblichia (1; E. odorata; Central America), Mathurina (1; M. penduliflora; Rodriguez), Arboa (2; A. berneriana, A. integrifolia; Madagascar), Stapfiella (4; S. claoxyloides, S. lucida, S. ulugurica, S. usambarica; tropical Africa), Hyalocalyx (1; H. setifer; southeast tropical Africa, Madagascar), Tricliceras (11; tropical and subtropical Africa), Loewia (1; L. glutinosa; northeastern tropical Africa), Afroqueta (1; A. capensis; South Africa, Swaziland), Streptopetalum (3–6; S. arenarium, S. graminifolium, S. hildebrandtii, S. luteoglandulosum, S. serratum, S. wittei; tropical and southern Africa), Adenoa (1; A. cubensis; eastern Cuba), Piriqueta (c 45; tropical America), Turnera (140–145; tropical and subtropical America, one species, T. oculata, in northwesternmost Namibia and southwesternmost Angola, one species, T. thomasii, in Northeast Africa).

Turneraceae are sister to Passifloraceae.

A clade consisting of Adenoa, Piriqueta and Turnera is sister-group to the remaining Turneraceae, according to Thulin & al. (2012). Erblichia was recovered as sister to the remaining Turneraceae by Arbo & al. (2015).

Bayesian majority-rule consensus tree (simplified) of Turneraceae based on DNA sequence data (Thulin & al. 2012). A similar topology was recovered by Tokuoka (2012).

Phylogeny of Turneraceae based on DNA sequence data (Arbo & al. 2015)

VIOLACEAE Batsch

( Back to Malpighiales )

Batsch, Tab. Affin. Regni Veg.: 57. 2 Mai 1802 [‘Violariae’], nom. cons.

Violales Vent. ex Bercht. et J. Presl, Přir. Rostlin: 220. Jan-Apr 1820 [‘Violaceae’]; Ionidiaceae Mert. et W. J. Koch in J. C. Röhlings, Deutschl. Fl., ed. 3, 1(1): 244, 260. Jan-Mai 1823 [’Jonidien’, ’Jonidiae’], nom. illeg.; Ionidiales Vent. in C. F. P. von Martius, Consp. Regn. Veg.: 50. Sep-Oct 1835 [‘Jonidieae’], nom. illeg.; Violopsida Brongn., Enum. Plant. Mus. Paris: xxiv, 88. 12 Aug 1843 [’Violineae’]; Leoniaceae A. DC. in A. P. de Candolle et A. L. P. P. de Candolle, Prodr. 8: 668. med Mar 1844; Alsodeiaceae J. Agardh, Theoria Syst. Plant.: 197. Apr-Sep 1858 [‘Alsodineae’]; Violanae R. Dahlgren ex Reveal in Novon 2: 237. 13 Oct 1992

Genera/species c 31/900–1.000

Distribution Cosmopolitan except polar areas.

Fossils Unknown.

Habit Usually bisexual (in Melicytus dioecious), perennial or annual herbs, evergreen or deciduous shrubs or trees (rarely lianas).

Vegetative anatomy Phellogen superficial. Primary vascular tissue cylinder without separate vascular bundles, or cylinder of bundles. Cambium in Viola storied. Vessel elements with simple or scalariform perforation plates; lateral pits alternate, opposite or scalariform, usually simple (sometimes bordered) pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular (sometimes absent). Axial parenchyma rare (paratracheal scanty) or absent. Sieve tube plastids S type; sieve tubes with non-dispersive protein bodies? Endodermis in Viola cunninghamii consisting of large cells with suberised walls. Nodes usually 3:3, trilacunar with three leaf traces (in Fusispermum 5:5, quinquelacunar with five traces). Prismatic calciumoxalate crystals and druses frequent.

Trichomes Hairs unicellular or multicellular, uniseriate, simple; glandular hairs sometimes present.

Leaves Usually alternate (spiral or distichous; in some species of Hybanthus and Rinorea opposite), simple, entire or lobed, with often involute ptyxis. Stipules sometimes petiolar, foliaceous, often lobed; leaf sheath absent. Colleters usually present. Petiole vascular bundle transection usually arcuate. Venation pinnate or palmate. Stomata paracytic or anomocytic (anisocytic?), often on adaxial side of lamina only. Cuticular wax crystalloids? Domatia as pits or hair tufts. Epidermis often with mucilaginous idioblasts. Secretory cavities absent. Leaf margin serrate or entire.

Inflorescence Terminal or axillary, panicle, raceme-like or capitate, or flowers solitary axillary.

Flowers Zygomorphic (in, i.a., Melicytus almost actinomorphic). Pedicel articulated. Hypogyny. Sepals five, with median sepal adaxial, with imbricate quincuncial or open aestivation, often persistent, free or connate at base, sometimes with basal appendages. Petals five, usually with apotact (in Fusispermum convolute, in Leonia and some species of Gloeospermum imbricate quincuncial) aestivation, free, abaxial (anterior) petal often with nectariferous spur directed backwards. Nectaries present on lower part of stamens or absent. Disc usually absent (in Fusispermum fleshy, annular, quinquelobate).

Androecium Stamens usually five (in Leonia triandra three), antesepalous, alternipetalous (in Fusispermum with very small fringed apical scales). Filaments usually free (sometimes connate at base into tube; in Fusispermum adnate with indentations to inner surface of petals), free from tepals; all or two abaxial stamens often with abaxial nectariferous appendage in lower part, or with prolonged connective (anthers of Leonia without dorsal connective scales). Anthers basifixed to laterofixed, usually connivent forming ring, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits; thecae in Fusispermum cordate/trapezoid); connective often prolonged into membranous scale-like appendage. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–5)-colporate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate, reticulate or microreticulate.

Gynoecium Pistil composed of (two or) three (in Leonia five, antesepalous) connate carpels; median carpel abaxial. Ovary superior, unilocular. Style single, simple, straight or curved, or stylodia (two or) three (in Leonia five), free (absent in Melicytus). Stigma subcapitate or lobate, often asymmetrical (stigmas in Melicytus three to five), papillate, Dry type. Pistillodium absent.

Ovules Placentation parietal. Ovules one to numerous per ovary, anatropous, bitegmic, crassinucellar. Micropyle usually bistomal, Z-shaped (zig-zag; rarely endostomal). Outer integument two to four cell layers thick. Inner integument approx. three cell layers thick. Hypostase present. Parietal tissue two or three cell layers thick. Nucellar cap approx. two cell layers thick. Megagametophyte monosporous, Polygonum type. Synergids rarely with a filiform apparatus. Antipodal cells usually ephemeral. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad.

Fruit Usually an explosive loculicidal capsule (in Leonia a nut; in Melicytus berry), often with persistent calyx. Maturing seeds in Anchietea and Decorsella exposed on open carpels.

Seeds Seeds often with aril and/or carunculus (in Viola sometimes with elaiosome). Seed coat endotestal-exotegmic, in Gloeospermum and Leonia mucilaginous, subglobose. Testa in Agatea, Anchietea and Corynostylis winged. Exotesta subpalisade to tabular, sometimes with thickened cell walls. Mesotesta sometimes sclerenchymatous. Endotesta cells usually with calciumoxalate crystals. Fibre layer one to three cell layers thick. Exotegmen fibrous; exotegmic cells tracheidal, with thickened lignified walls. Endotegmen persistent, usually crystalliferous. Perisperm not developed. Endosperm usually copious, oily (in Gloeospermum absent). Embryo usually large, straight, with chlorophyll (at least in Viola). Cotyledons two, flat. Germination phanerocotylar.

Cytology n = 6–13, 17, 21, 23

DNA Plastid gene rps16 absent in at least two species of Viola. Mitochondrial coxI intron present.

Phytochemistry Insufficiently known. Flavonols (kaempferol, quercetin), alkaloids, saponins, and cyclotide proteins present. Ellagic acid, tannins, proanthocyanidins and cyanogenic compounds not found. Aluminium accumulated in some species.

Use Ornamental plants, medicinal plants, perfumes, flavouring and confection (Viola odorata), timber.

Systematics Violaceae are sister-group to the clade [Malesherbiaceae+[Passifloraceae+Turneraceae]].

Fusispermum is sister to the remaining Violaceae.

Fusispermoideae Hekking in Proc. Kon. Ned. Akad. Wetensch., ser. C, 7: 128. 18 Jun 1984

1/3. Fusispermum (3; F. laxiflorum, F. minutiflorum, F. rubrolignosum; Panamá, Colombia, Peru). – Medullary cells thin-walled. Nodes 5:5, quinquelacunar with five leaf traces. Petiole with elliptical medullary bundle. Phloem internal. Petals with contorted aestivation. Disc annular, quinquelobate, carnose, with lobes alternating with stamens. Filaments adnate to inner surface at indentations. Thecae cordate/trapezoid, confluent at apex?; connective as short paired fimbriate ventral apical scales. Fruit a loculicidal capsule. Seeds elongate, longitudinally winged. Exotegmen moderately developed?, with slightly elongate cells. n = ?

Violoideae Beilschm. in Flora 16(Beibl. 7): 88. 14 Jun 1833 [‘Violieae’]

c 30/900–1.000. ‘Rinoreacrenata group (3; R. apiculata, R. crenata; southern Central America, tropical South America); Rinorea (225–275; tropical regions on both hemispheres); Viola (580–620; temperate and alpine regions on both hemispheres, the Andes, tropical mountains), Allexis (3; A. cauliflora, A. obanensis, A. zygomorpha; Ghana, Nigeria, Cameroon), Noisettia (1; N. orchidiflora; Guyana, Brazil, Peru), Schweiggeria (1; S. fruticosa; eastern Brazil); Rinoreocarpus (1; R. ulei; Amazonia); Decorsella (2; D. arborea, D. paradoxa; tropical tropical West Africa), Paypayrola (8; southern Central America, tropical South America; incl. Hekkingia?), Hekkingia (1; H. bordenavei; French Guiana, northern Brazil; in Paypayrola?); Leonia (4; L. crassa, L. cymosa, L. glycycarpa, L. triandra; southern Central America, tropical South America; non-monophyletic?), Gloeospermum (c 12; Central America, northern South America), Amphirrhox (1; A. longifolia; Central America, northern South America), Pigea (c 10; southern Australia, New Caledonia, islands in southern Pacific), Hybanthus (3; H. concolor, H. havanensis, H. yucatanensis; eastern North America, Mexico, the West Indies), Mayanaea (1; M. caudata; Guatemala), Orthion (5–6; O. guatemalense, O. malpighiifolium, O. montanum, O. oblanceolatum, O. subsessile, O. veracruzense; Central America, northern South America); ‘Rinoreavirgata group (1; R. virgata; southern India, Sri Lanka, the Andaman Islands, Southeast Asia), ‘Hybanthusenneaspermus group (c 25; Africa, the Arabian Peninsula, India, northern Australia), ‘Hybanthusfruticulosus group (3; H. fruticulosus, H. serrulatus; Mexico, Central America), ‘Hybanthusthiemei group (4–6; H. galeotii, H. nanus, H. thiemei; Central America, the West Indies, northern South America), Ixchelia (2; I. mexicanus, I. uxpanapana; Mexico, Central America), Isodendrion (4; I. hosakae, I. laurifolium, I. longifolium, I. pyrifolium; the Hawaiian Islands), Pombalia (c 65; southwestern United States, Central America, the West Indies, tropical South America), Melicytus (c 10; southeastern South Australia, Victoria, eastern New South Wales, Tasmania, Solomon Islands, Norfolk Island, New Zealand, Fiji, the Hawaiian Islands), ‘Hybanthusguanacastensis group (2; H. denticulatus, H. guanacastensis; Mexico, Central America), Anchietea (9–10; tropical South America), Hybanthopsis (1; H. bahiensis; eastern Brazil), Calyptrion (4; C. arboreum, C. carthagenense, C. pubescens, C. volubile; Central America, tropical South America), Agatea (c 8; New Guinea, New Caledonia, islands in southern Pacific). – Cosmopolitan. Petals often with quincuncial aestivation. Nectary lobes opposite stamens; nectaries usually separately adnate to filament bases. Anther thecae sometimes horizontal; connective lobate, as long as and wider than anther, free, with apex not or very slightly bilobate and margin entire or erose, usually covering thecae from abaxial side. Stigmatic head subcapitate; receptive small. – Rinorea apiculata and R. crenata form a sister-group to the remaining Violoideae (Wahlert 2014). Rinorea has nectary shaped as thick semicircular lobes at filament bases, thecae visible from abaxial side, subapical anther connective, style widening subapically, and one ovule per carpel.

Cladogram (simplified) of Violaceae based on DNA sequence data (Tokuoka 2008). Ixchelia is sister to [Isodendrion+Pombalia], according to Wahlert & al. (2015).


Literature

Abdul-Salim K. 2002. Systematics and biology of Symphonia L. f. (Clusiaceae). – Ph.D. diss., Harvard University, Cambridge, Massachusetts.

Abou-Shoer M, Suwqanborirux K, Habib AAM, Chang CJ, Cassady JM. 1993. Xanthones and vismiones from Psorospermum febrifugum. – Phytochemistry Nov 1993. v.34 (5).

Abreu V, Bove C, Philbrick C, Mendonça C, Gonçalves-Esteves V. 2012. Pollen morphology of the aquatic Brazilian endemic genus Castelnavia Tul. & Wedd. (Podostemaceae). – Plant Syst. Evol. 298: 1455-1461.

Achoundong G. 2003. Novitates Gabonenses 45. Une nouvelle espèce de Rinorea (Violaceae) du Gabon. – Adansonia, sér. III, 25: 211-214.

Achoundong G, Bakker FT. 2006. Deux nouvelles espèces de Rinorea, série Ilicifoliae (Violaceae) du Cameroun. – Adansonia, sér. III, 28: 129-136.

Achoundong G, Bos JJ. 2001. Deux espèces nouvelles de Rinorea (Violaceae) du Congo et du Gabon. – Adansonia, sér. III, 23: 155-159.

Achoundong G, Cheek M. 2003. Two new species of Rinorea (Violaceae) from Western Cameroon. – Kew Bull. 58: 957-964.

Achoundong G, Cheek M. 2006. Two further new species of Rinorea (Violaceae) from Cameroon. – Kew Bull. 60: 581-586.

Achoundong G, Onana J-M. 1998. Allexis zygomorpha (Violaceae): a new species from the littoral forest of Cameroon. – Kew Bull. 53: 1009-1010.

Adams LG, George AS. 1982. Violaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 91-110.

Agar JTH, Evans WC. 1975. A new tropane heterodiester from Erythroxylum monogynum. – J. Pharm. Pharmacol. 27 (Suppl.): 85P.

Agar JTH, Evans WC. 1976. Alkaloids of the genus Erythroxylum 1. E. monogynum Roxb. roots. – J. Chem. Soc., Perkin Transact. I: 1550-1553.

Agar JTH, Evans WC, Treagust PG. 1974. Alkaloids of the roots of Erythroxylum monogynum Roxb. – J. Pharm. Pharmacol. 26 (Suppl.): 111P-112P.

Agostini G. 1973. El genero Lozania Mutis (Lacistemaceae). – Acta Bot. Venezuel. 8: 167-175.

Airy Shaw HK. 1960. Notes on Malaysian Euphorbiaceae. – Kew Bull. 14: 353-397.

Airy Shaw HK. 1963. Notes on Malaysian and other Asiatic Euphorbiaceae. – Kew Bull. 16: 341-372.

Airy Shaw HK. 1965. Notes on Malaysian and other Asiatic Euphorbiaceae. – Kew Bull. 19: 299-328.

Airy Shaw HK. 1967a. Notes on Malaysian and other Asiatic Euphorbiaceae. – Kew Bull. 20: 379-415.

Airy Shaw HK. 1967b. Notes on the genus Bischofia Bl. (Bischofiaceae). – Kew Bull. 21: 327-329.

Airy Shaw HK. 1968. Notes on Malaysian and other Asiatic Euphorbiaceae. – Kew Bull. 21: 353-418.

Airy Shaw HK. 1969. Notes on Malesian and other Asiatic Euphorbiaceae. – Kew Bull. 23: 1-131.

Airy Shaw HK. 1970. The genus Androstachys Prain in Madagascar. – Adansonia, sér. II, 10: 519-524.

Airy Shaw HK. 1971a. Notes on Malesian and other Asiatic Euphorbiaceae. – Kew Bull. 25: 473-553.

Airy Shaw HK. 1971b. Tapoides villamilii (Merr.) Airy Shaw. – Hooker’s Icon. Plant. 37: t. 3632.

Airy Shaw HK. 1972a. The Euphorbiaceae of Siam. – Kew Bull. 26: 191-363.

Airy Shaw HK. 1972b. A second species of the genus Aristogeitonia Prain (Euphorbiaceae) from East Africa. – Kew Bull. 26: 495-498.

Airy Shaw HK. 1972c. Notes on Malesian and other Asiatic Euphorbiaceae CLXI. Note on Blumeodendron bullatum. – Kew Bull. 27: 3-93.

Airy Shaw HK. 1974a. Noteworthy Euphorbiaceae from Tropical Asia (Burma to New Guinea). – Hooker’s Icon. Plant. 38(1): tt. 3701-3732.

Airy Shaw HK. 1974b. Notes on Malesian and other Asiatic Euphorbiaceae. – Kew Bull. 29: 281-331.

Airy Shaw HK. 1975. The Euphorbiaceae of Borneo. – Kew Bull. Add. Ser. IV: 1-245.

Airy Shaw HK. 1976. New or noteworthy Australian Euphorbiaceae. – Kew Bull. 31: 341-398.

Airy Shaw HK. 1977. Additions and corrections to the Euphorbiaceae of Siam. – Kew Bull. 32: 69-83.

Airy Shaw HK. 1978a. Notes on Malesian and other Asiatic Euphorbiaceae. – Kew Bull. 32: 361-418.

Airy Shaw HK. 1978b. Notes on Malesian and other Asiatic Euphorbiaceae CCXIV. Croton L. – Kew Bull. 33: 25-77.

Airy Shaw HK. 1979. Three interesting plants from the Northern Territory of Australia (Thymelaeaceae, Flacourtiaceae and Hanguanaceae). – Kew Bull. 33: 1-5.

Airy Shaw HK. 1980a. The Euphorbiaceae of New Guinea. – Kew Bull. Add. Ser. VIII: 1-253.

Airy Shaw HK. 1980b. New Euphorbiaceae from New Guinea. – Kew Bull. 34: 591-598.

Airy Shaw HK. 1980c. A partial synopsis of the Euphorbiaceae-Platylobeae of Australia (excluding Phyllanthus, Euphorbia, and Calycopeplus). – Kew Bull. 35: 577-700.

Airy Shaw HK. 1981a. The Euphorbiaceae of Sumatra. – Kew Bull. 36: 239-374.

Airy Shaw HK. 1981b. Notes on Asiatic, Malesian and Melanesian Euphorbiaceae. – Kew Bull. 36: 599-612.

Airy Shaw HK. 1981c. New species of Antidesma (Stilaginaceae) from Malesia and Australia. – Kew Bull. 36: 635-637.

Airy Shaw HK. 1982a. The Euphorbiaceae of Central Malesia (Celebes, Moluccas, Lesser Sunda Is.). – Kew Bull. 37: 1-40.

Airy Shaw HK. 1982b. New Euphorbiaceae from Sumatra, New Guinea, Australia and New Caledonia. – Kew Bull. 37: 377-381.

Airy Shaw HK. 1983a. New combinations in Philippine Euphorbiaceae. – Kew Bull. 38: 68.

Airy Shaw HK. 1983b. Euphorbiaceae. – In: Morley BD, Tolken HR (eds), Flowering plants in Australia, Rigby Publ., Adelaide, pp. 129-135.

Airy Shaw HK. 1983c. An alphabetical enumeration of the Euphorbiaceae of the Philippine Islands. – Royal Botanic Gardens, Kew, United Kingdom.

Akhani H. 2004. A new spiny, cushion-like Euphorbia (Euphorbiaceae) from South-West Iran with special reference to the phytogeographic importance of local endemic species. – Bot. J. Linn. Soc. 146: 107-121.

Alfarhan AH. 2000. An account of the genus Croton L. in Saudi Arabia with a new record of C. bonplandianus Baill. – Saudi J. Biol. Sci. 7: 39-45.

Alford MH. 2003. Claves para los géneros de Flacourtiaceae de Perú y del Nuevo Mundo. – Arnaldoa 10: 19-38.

Alford MH. 2005. Systematic studies in Flacourtiaceae. – Ph.D. diss., Cornell University, Ithaca, New York.

Alford MH. 2006. A new species of Hasseltia (Salicaceae) from Costa Rica and Panama. – Brittonia 58: 277-284.

Alford MH. 2008. Revision of Neosprucea (Salicaceae). – Syst. Bot. Monogr. 85: 1-62.

Allaby RG, Peterson GW, Merriwether DA, Fu YB. 2005. Evidence of the domestication history of flax (Linum usitatissimum) from genetic diversity of the sad2 locus. – Theor. Appl. Gen. 112: 58-65.

Al-Nowaihi AS, Khalifa SF. 1973. Studies on some taxa of the Geraniales II. Floral morphology of certain Linaceae, Rutaceae and Geraniaceae with a reference to the consistency of some characters. – J. Indian Bot. Soc. 52: 198-206.

Alston AHG. 1925. Revision of Cassipourea. – Kew Bull 1925: 241-276.

Alvin KL. 1987. Leaf anatomy of Androstachys johnsonii Prain and its functional significance. – Ann. Bot., N. S., 59: 579-591.

Alvin KL, Rao TA. 1987. On the unusual distribution pattern of leaf sclereids in Androstachys johnsonii Prain (Euphorbiaceae). – Bot. J. Linn. Soc. 95: 55-60.

Amaral MCE. 1991. Phylogenetische Systematik der Ochnaceae. – Bot. Jahrb. Syst. 113: 105-195.

Amaral MCE, Bittrich V. 1998. Ontogenia inicial do androceu de espécias de Ochnaceae subfam. Sauvagesioideae através sa análise em microscopia electrônica de varredura – Rev. Brasil. Bot. 21: 269-273.

Amaral MCE, Bittrich V, Endress PK, Stevens PF. 2017. The unique morphology of resin-producing multilocellate anthers and their evolution in Clusia (Clusiaceae). – Bot. J. Linn. Soc. 184: 79-93.

Ameka KG, Pfeifer E, Rutishauser R. 2002. Developmental morphology of Saxicolella amicorum and S. submersa (Podostemaceae: Podostemoideae). – Bot. J. Linn. Soc. 139: 255-273.

Ameka KG, Clerk CG, Pfeifer E, Rutishauser R. 2003. Developmental morphology of Ledermanniella bowlingii (Podostemaceae) from Ghana. – Plant Syst. Evol. 237: 165-183.

Amonkar A, Chang C-J, Cassady JM. 1981. 6-gernyloxy-3-methyl-1,8-dihydroxyanthrone, a novel anti-leukemic agent from Psorospermum febrifugum Sprach var. ferugineum (Hook. fil.). – Experienta 37: 1138-1139.

Amorim AM. 2001. Two new species of Heteropterys (Malpighiaceae) from southeastern Brazil. – Contr. Univ. Michigan Herb. 23: 29-34.

Amorim AM. 2003a. Five new species of Heteropterys (Malpighiaceae) from Central and South America. – Brittonia 54: 217-232.

Amorim AM. 2003b. The anomalous-stemmed species of Heteropterys subsect. Aptychia (Malpighiaceae). – Brittonia 55: 127-145.

Amorim AM. 2004. A new species of Heteropterys (Malpighiaceae) from the semideciduous forests of Bahia, Brazil. – Brittonia 56: 143-146.

Ancibor E. 1990. Anatomía de las especies Argentinas de Podostemum Michaux (Podostemaceae). – Parodiana 6: 31-47.

Anderson C. 1986. Novelties in Stigmaphyllon (Malpighiaceae). – Syst. Bot. 11: 120-130.

Anderson C. 1995. Revision of Thryallis (Malpighiaceae). – Contr. Univ. Michigan Herb. 20: 3-14.

Anderson C. 1997a. Revision of Pterandra (Malpighiaceae). – Contr. Univ. Michigan Herb. 21: 1-27.

Anderson C. 1997b. Monograph of Stigmaphyllon (Malpighiaceae). – Syst. Bot. Monogr. 51: 1-313.

Anderson C. 2001a. The identity of two water-dispersed species of Heteropterys (Malpighiaceae): H. leona and H. platyptera. – Contr. Univ. Michigan Herb. 23: 35-47.

Anderson C. 2001b. Novelties in Mascagnia (Malpighiaceae). – Brittonia 53: 405-415.

Anderson C. 2003. Resolution of the Galphimia langlassei complex (Malpighiaceae) from the Pacific slope of Mexico. – Syst. Bot. 28: 714-722.

Anderson C. 2007. Revision of Galphimia (Malpighiaceae). – Contr. Univ. Michigan Herb. 25: 1-82.

Anderson C. 2011. Revision of Ryssopterys and transfer to Stigmaphyllon (Malpighiaceae). – Blumea 56: 73-104.

Anderson WR. 1975. The taxonomy of Acmanthera (Malpighiaceae). – Contr. Univ. Michigan Herb. 11: 41-50.

Anderson WR. 1977 [1978]. Byrsonimoideae, a new subfamily of the Malpighiaceae. – Leandra 7: 5-18.

Anderson WR. 1979a. Mcvaughia, a new genus of Malpighiaceae from Brazil. – Taxon 28: 157-161.

Anderson WR. 1979b. Floral conservatism in Neotropical Malpighiaceae. – Biotropica 11: 219-223.

Anderson WR. 1980a. Ectopopterys, a new genus of Malpighiaceae from Colombia and Peru. – Contr. Univ. Michigan Herb. 14: 11-15.

Anderson WR. 1980b. Cryptic self-fertilization in the Malpighiaceae. – Science 207: 892-893.

Anderson WR. 1980c. A new species of Acmanthera (Malpighiaceae). – Syst. Bot. 5: 438-441.

Anderson WR. 1981. Malpighiaceae. – In: The botany of the Guayana Highlands XI, Mem. New York Bot. Gard. 32: 21-305.

Anderson WR. 1982. Notes on Neotropical Malpighiaceae – I. – Contr. Univ. Michigan Herb. 15: 93-136.

Anderson WR. 1983. Lophanthera, a genus of Malpighiaceae new to Central America. – Brittonia 35: 37-41.

Anderson WR. 1985. Peregrina, a new genus of Malpighiaceae from Brazil and Paraguay. – Syst. Bot. 10: 303-307.

Anderson WR. 1987. Notes on Neotropical Malpighiaceae – II. – Contr. Univ. Michigan Herb. 16: 55-108.

Anderson WR. 1990a. The origin of the Malpighiaceae – the evidence from morphology. – Mem. New York Bot. Gard. 64: 210-224.

Anderson WR. 1990b. The taxonomy of Jubelina (Malpighiaceae). – Contr. Univ. Michigan Herb. 17: 21-37.

Anderson WR. 1990c. Notes on Neotropical Malpighiaceae – III. – Contr. Univ. Michigan Herb. 17: 39-54.

Anderson WR. 1993a. Chromosome numbers of Neotropical Malpighiaceae. – Contr. Univ. Michigan Herb. 19: 341-354.

Anderson WR. 1993b. Notes on Neotropical Malpighiaceae – IV. – Contr. Univ. Michigan Herb. 19: 355-392.

Anderson WR. 1995. Notes on Neotropical Malpighiaceae – V. – Contr. Univ. Michigan Herb. 22: 15-36.

Anderson WR. 1997a. Excentradenia, a new genus of Malpighiaceae from South America. – Contr. Univ. Michigan Herb. 21: 29-36.

Anderson WR. 1997b. Notes on Neotropical Malpighiaceae – VI. – Contr. Univ. Michigan Herb. 21: 37-84.

Anderson WR. 1999. Notes on Neotropical Malpighiaceae – VII. – Contr. Univ. Michigan Herb. 22: 1-19.

Anderson WR. 2001a. Observations on the Malagasy genus Rhynchophora (Malpighiaceae). – Contr. Univ. Michigan Herb. 23: 53-58.

Anderson WR. 2001b. Notes on Neotropical Malpighiaceae – VIII. – Contr. Univ. Michigan Herb. 23: 63-81.

Anderson WR. 2006. Eight segregates from the Neotropical genus Mascagnia (Malpighiaceae). – Novon 16: 168-204.

Anderson WR. 2007. Notes on Neotropical Malpighiaceae – IX. – Contr. Univ. Michigan Herb. 25: 95-111.

Anderson WR, Corso S. 2007. Psychopterys, a new genus of Malpighiaceae from Mexico and Central America. – Contr. Univ. Michigan Herb. 25: 113-135.

Anderson WR, Davis CC. 2001. Monograph of Lophopterys (Malpighiaceae). – Contr. Univ. Michigan Herb. 23: 83-105.

Anderson WR, Davis CC. 2005a. The Mascagnia cordifolia group (Malpighiaceae). – Contr. Univ. Michigan Herb. 24: 33-44.

Anderson WR, Davis CC. 2005b. Transfer of Mascagnia leticiana to Malpighia (Malpighiaceae). – Contr. Univ. Michigan Herb. 24: 45-49.

Anderson WR, Davis CC. 2006. Expansion of Diplopterys at the expense of Banisteriopsis (Malpighiaceae). – Harvard Pap. Bot. 11: 1-16.

Anderson WR, Davis CC. 2007. Generic adjustments in neotropical Malpighiaceae. – Contr. Univ. Michigan Herb. 25: 137-166.

Anderson WR, Gates B. 1981. Barnebya, a new genus of Malpighiaceae from Brazil. – Brittonia 33: 275-284.

Anton R. 1974. Étude chimiotaxonomique sur le genre Euphorbia (Euphorbiacées). – Thèse, l’Université Louis Pasteur, Strasbourg, France.

Applequist WL. 2016a. A revision of the Malagasy species of Homalium Sect. Eumyriantheia Warb. (Salicaceae). – Candollea 71: 33-60.

Applequist WL. 2016b. A reconsideration of the infrageneric classification of Homalium Jacq. (Salicaceae). – Candollea 71: 231-256.

Applequist WL. 2018. A revision of Homalium sect. Odontolobus (Salicaceae) endemic to Madagascar. – Candollea 73: 27-48.

Applequist WL, Schatz GE. 2016. A synoptic revision of the Malagasy species of Scolopia Schreb. (Salicaceae, Scolopieae). – Adansonia 38: 99-115.

Applequist WL, Phillipson PB, Schatz GE. 2014. A synoptic revision of the Malagasy endemic genus Calantica Jaub. ex Tul. (Salicaceae). – Adansonia, sér. 3, 36: 83-102.

Araujo PAM, Mattos Filho A. 1984. Estrutura das madeiras brasileiras de dicotiledôneas XXVI. Euphorbiaceae. – Rodriguésia 36: 25-40.

Arber A. 1920. Water plants. – Cambridge.

Arbo MM. 1977. Adenoa, nuevo género Americano de Turneraceae. – Hickenia 1: 87-91.

Arbo MM. 1979. Revisión del género Erblichia (Turneraceae). – Adansonia, sér. II, 18: 459-482.

Arbo MM. 1985. Notas taxonómicas sobre Turneráceas Sudamericanas. – Candollea 40: 175-191.

Arbo MM. 1986. Paraguay, centro importante de especiación en las Turneráceas. – Candollea 41: 211-218.

Arbo MM. 1993. Two new species of Piriqueta (Turneraceae) from Pico das Almas, Brazil. – Kew Bull. 48: 9-11.

Arbo MM. 1995. Flora Neotropica. Monograph 67. Turneraceae I. Piriqueta. – New York Botanical Garden, Bronx, New York.

Arbo MM. 1997. Estudios sistemáticos en Turnera (Turneraceae) I. Series Salicifoliae y Stenodictyae. – Bonplandia 9: 151-208.

Arbo MM. 1999. Two new species of Piriqueta (Turneraceae) from Bahia, Brazil. – Kew Bull. 54: 459-464.

Arbo MM. 2000. Estudios sistemáticos en Turnera (Turneraceae) II. Series Annulares, Capitatae, Microphyllae y Papilliferae. – Bonplandia 10: 1-82.

Arbo MM. 2004. Revisión taxonómica de las especies de Turnera de las series Anomalae y Turnera. – Ph.D diss., Universidad Nacional del Nordeste, Corrientes, Argentina.

Arbo MM. 2005. Estudios sistemáticos en Turnera (Turneraceae) III. Series Anomalae y Turnera. – Bonplandia 14: 115-318.

Arbo MM. 2006. Turneraceae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p. p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 458-466.

Arbo MM. 2008. Estudios sistemáticos en Turnera (Turneraceae) IV. Series Leiocarpae, Conciliatae, y Sessiliflorae. – Bonplandia 17: 107-334.

Arbo MM, Espert SM. 2009. Morphology, phylogeny and biogeography of Turnera L. (Turneraceae). – Taxon 58: 457-467.

Arbo MM, Mazza SM. 2011. The major diversity centre for Neotropical Turneraceae. – Syst. Biodiv. 9: 203-210.

Arbo MM, Gonzalez AM, Sede SM. 2015. Phylogenetic relationships within Turneraceae based on morphological characters with emphasis on seed micromorphology. – Plant Syst. Evol. 301: 1907-1926.

Arekal GD, Nagendran CR. 1974. Additional notes on Farmeria indica Willis (Podostemaceae). – Proc. Indian Acad. Sci., Sect. B, 80: 226-228.

Arekal GD, Nagendran CR. 1975. Is there a Podostemum type of embryo sac in the genus Farmeria? – Caryologia 28: 229-235.

Arekal GD, Nagendran CR. 1975 [1976]. Embryo sac of Hydrobryopsis sessilis (Podostemaceae) – origin, organization, and significance. – Bot. Not. 128: 332-338.

Arekal GD, Nagendran CR. 1977a. Female gametophyte of Zeylanidium (Podostemaceae): a clarification. – Phytomorphology 27: 123-129.

Arekal GD, Nagendran CR. 1977b. The female gametophyte in two Indian genera of Tristichoideae (Podostemaceae) – a reinvestigation. – Proc. Indian Acad. Sci., Sect. B, 86: 287-294.

Arènes J. 1947. Monographie du genre Tristellateia. – Mém. Mus. Natl. Hist. Nat. Paris 21: 275-330.

Arènes J. 1950. Famille 108. Malpighiacées. – In: Humbert H (ed), Flore de Madagascar et des Comores, Muséum National d’Histoire Naturelle, Paris.

Arènes J. 1957. Répartition géographique des Malpighiacées vivantes et fossile 1. – Compte Rendue Séances Somm. Soc. Biog. 290: 81-108.

Argus GW. 1973. The genus Salix in Alaska and Yukon. – Natl. Mus. Nat. Sci. Canada Publ. Bot. 1.

Argus GW. 1974. An experimental study of hybridization and pollination in Salix (willow). – Can. J. Bot. 52: 1613-1619.

Argus GW. 1997. Infrageneric classification of Salix (Salicaceae) in the New World. – Syst. Bot. Monogr. 52: 1-121.

Arista M, Oliveira PE, Gibbs PE, Talavera S. 1997. Pollination and breeding system of two co-occurring Hirtella species (Chrysobalanaceae) in Central Brazil. – Bot. Acta 110: 496-502.

Armbruster WS. 1982. Seed production and dispersal in Dalechampia (Euphorbiaceae): divergent patterns and ecological consequences. – Amer. J. Bot. 69: 1429-1440.

Armbruster WS. 1984. Two new species of Dalechampia (Euphorbiaceae) from Mesoamerica. – Syst. Bot. 9: 272-278.

Armbruster WS. 1988a. Multilevel comparative analysis of the morphology, function, and evolution of Dalechampia (Euphorbiaceae) blossoms. – Ecology 69: 1746-1761.

Armbruster WS. 1988b. A new species, section, and synopsis of Dalechampia (Euphorbiaceae) from Costa Rica. – Syst. Bot. 13: 303-312.

Armbruster WS. 1993. Evolution of plant pollination systems: hypotheses and tests with the neotropical vine Dalechampia. – Evolution 47: 1480-1505.

Armbruster WS. 1994. Early evolution of Dalechampia (Euphorbiaceae): insights from phylogeny, biogeography, and comparative ecology. – Ann. Missouri Bot. Gard. 81: 302-316.

Armbruster WS. 1996a. Evolution of floral morphology and function: an integrative approach to adaptation, constraint, and compromise in Dalechampia (Euphorbiaceae). – In: Lloyd DG, Barrett SCH (eds), Floral biology: studies in floral evolution in animal-pollinated plants, Chapman & Hall, New York, pp. 241-272.

Armbruster WS. 1996b. Cladistic analysis and revision of Dalechampia Sections Rhopalostylis and Brevicolumnae (Euphorbiaceae). – Syst. Bot. 21: 209-235.

Armbruster WS, Herzig AL. 1984. Partitioning and sharing of pollinators by four sympatric species of Dalechampia (Euphorbiaceae) in Panama. – Ann. Missouri Bot. Gard. 71: 1-16.

Armbruster WS, Webster GL. 1979. Pollination of two species of Dalechampia (Euphorbiaceae) in Mexico by euglossine bees. – Biotropica 11: 278-283.

Armbruster WS, Pérez-Barrales R, Arroyo J, Edwards ME, Vargas P. 2006. Three-dimensional reciprocity of floral morphs in wild flax (Linum suffruticosum): a new twist on heterostyly. – New Phytol. 171: 581-590.

Armbruster WS, Lee J, Baldwin BG. 2009. Macroevolutionary patterns of defense and pollination in Dalechampia vines: adaptation, exaption, and evolutionary novelty. – Proc. Natl. Acad. Sci. U.S.A. 106: 18085-18090.

Arnal C. 1945. Récherches morphologiques et physiologiques sur la fleur des Violacées. – Ph.D. diss. University of Dijon, Dijon, France.

Arreguín-Sánchez M 1985. Una nueva especie de Linum (Linaceae) del valle de México. – Phytologia 57: 262-263.

Arumugasamy K, Inamdar JA, Subramanian RB. 1988. Structure, ontogeny and secretion of oil secreting glands in Hiptage acuminata Wall. – Curr. Sci. 58: 260-261.

Ascari J, Takahashi JA, Boaventura MAD. 2010. Phytochemical and biological investigations of Caryocar brasiliense Camb. – Bol. Latinoamer. Caribe Plantas Medic. Arom. 9: 20-28.

Assailly A. 1954. Contribution à la determination des Euphorbiacées par la méthode anatomique. – Bull. Soc. Hist. Nat. Toulouse 89: 157-194.

Aston HI. 1990. Podostemaceae. – In: George AS (ed), Flora of Australia 18, Australian Government Publ. Service, Canberra, pp. 1-5.

Athiê-Souza SM, Melo AL de, Silva MJ da, Oliveira L dos SD de, Sales MF de. 2015. Gradyana (Euphorbiaceae): a new genus from northestern Brazil. – Syst. Bot. 40: 527-533.

Ayensu ES, Stern WL. 1964. Systematic anatomy and ontogeny of the stem in Passifloraceae. – Contr. U.S. Natl. Herb. 34: 43-72.

Azevedo MAM de. 2008. Three new species of Passiflora subgenus Decaloba (Passifloraceae) from Brazil. – Brittonia 60: 310-317.

Azuma T, Kajita T, Yokoyama J, Ohashi H. 2000. Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. – Amer. J. Bot. 87: 67-75.

Baas P. 1970. Floral and vegetative anatomy of Eliaea from Madagascar and Cratoxylum from Indomalesia (Guttiferae). – Blumea 18: 369-391.

Backer CA. 1951. Elatinaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(3), Noordhoff-Kolff N. V., Groningen, pp. 203-206.

Badré F. 1973a. Nectaropetalaceae. – In: Aubréville A, Leroy J-F (eds), Flore du Gabon 21, Muséum National d’Histoire Naturelle, Paris, pp. 19-22.

Badré F. 1973b. Erythroxylaceae. – In: Aubréville A, Leroy J-F (eds), Flore du Gabon 21, Muséum National d’Histoire Naturelle, Paris, pp. 49-54.

Badré F. 1973b. Linaceae. – In: Aubréville A, Leroy J-F (eds), Flore du Gabon 21, Muséum National d’Histoire Naturelle, Paris, pp. 23-39.

Badré F. 1973c. Erythroxylaceae. – In: Aubréville A, Leroy J-F (eds), Flore du Gabon 21, Muséum National d’Histoire Naturelle, Paris, pp. 49-54.

Bagavathi R, Sorg B, Hecker E. 1988. Tigliane-type diterpene esters from Synadenium grantii. – Planta Medica 54: 506-510.

Bahadur B, Reddy NP, Rao MM, Farooqui SM. 1984. Corolla handedness in Oxalidaceae, Linaceae and Plumbaginaceae. – J. Indian Bot. Soc. 63: 408-411.

Bahadur B, Reddy NP, Ramaswamy N. 1996. Heterostyly and pollen dimorphism in Reinwardtia indica Dum. (Linaceae). – J. Palyn. 32: 67-77.

Baillon H. 1868. Sur le genre Thelyra de Dupetit Thouars. – Adansonia 8: 159-161.

Baillon H. 1873a. Sur la symétrie florale des Trigoniées. – Adansonia 11: 23-24.

Baillon H. 1873b. Nouvelles observations sur les Euphorbiacées. – Adansonia 11: 72-138.

Bajaj R, Chang CJ, McLaughlin JL, Powell RG, Smith CR Jr. 1986. Tiliroside from the seeds of Eremocarpus setigerus. – J. Nat. Prod. (Lloydia) 49: 1174-1175.

Bakker FT, Gemerden BS van, Achoundong G. 2006. Molecular systematics of African Rinorea Aubl. (Violaceae). – In: Ghazanfar SA, Beentje H (eds), Taxonomy and ecology of African plants, their conservation and sustainable use, Royal Botanic Gardens, Kew, pp. 33-44.

Bakker HJ, Ghisalberti EL, Jefferies PR. 1972. Biosynthesis of diterpenes in Beyeria leschenaultii. – Phytochemistry 11: 2221-2231.

Balaji K, Subramanian RB, Inamdar JA. 1996. Occurrence of laticifers in Kirganelia reticulata (Poir.) Baill. (Euphorbiaceae). – Phytomorphology 46: 81-84.

Balakrishnan NP, Chakrabarty T. 1993. The genus Paracroton (Euphorbiaceae) in the Indian subcontinent. – Kew Bull. 48: 715-726.

Balakrishnan NP, Chakrabarty T. 2007. The family Euphorbiaceae in India, a synopsis of its profile, taxonomy and bibliography. – Bishen Singh and Mahendra Pal Singh, Dehradun, India.

Baldwin J, Schultes R. 1947. A conspectus of the genus Cunuria. – Bot. Mus. Leafl. Harvard Univ. 12: 325-351.

Ballard Jr HE. 1996. Phylogenetic relationships and infrageneric groups in Viola (Violaceae) based on morphology, chromosome numbers, natural hybridization and internal transcribed spacer (ITS) sequences. – Ph.D. diss., University of Wisconsin, Madison, Wisconsin.

Ballard Jr HE, Sytsma KJ. 2000. Evolution and biogeography of the woody Hawaiian violets (Viola, Violaceae): arctic origins, herbaceous ancestry and bird dispersal. – Evolution 54: 1521-1532.

Ballard Jr HE, Sytsma KJ, Kowal RR. 1999. Shrinking the violets: phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. – Syst. Bot. 23: 439-458.

Ballment ER, Smith TJ III, Stoddart JA. 1988. Sibling species in the mangrove genus Ceriops (Rhizophoraceae), detected using biochemical genetics. – Aust. Syst. Bot. 1: 391-397.

Bally PRO. 1959. Some new species, varieties and forms of Monadenium (Euphorbiaceae). – Candollea 17: 25-36.

Bally PRO. 1961. The genus Monadenium. – Benteli Publ., Berne.

Bally PRO, Carter S. 1976. Succulent euphorbias of Somalia I. – Cact. Succ. J. (U.S.) 48: 120-129.

Bamber RK. 1974. Fibre types in the wood of Euphorbiaceae. – Aust. J. Bot. 22: 629-634.

Bamps P. 1966. Notes sur les Guttiferae d’Afrique tropicale. – Bull. Jard. Bot. État Bruxelles 36: 425-459.

Bamps P, Robson N, Verdcourt B. 1978. Guttiferae. – In: Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-34.

Bancilhon L. 1971. Contribution à l’étude taxonomique du genre Phyllanthus (Euhorbiacées). – Boissiera 18: 1-81.

Banerji I. 1949. A contribution to the life history of Acalypha fallax Muell. Arg. – Bull. Bot. Soc. Bengal 3: 29-32.

Banerji I, Dutt MK. 1944. The development of the female gametophyte in some members of the Euphorbiaceae. – Proc. Indian Acad. Sci., Sect. B, 20: 51-60.

Bänfer G, Fiala B, Weisin K. 2004. AFLP analysis of phylogenetic relationships among myrmecophytic species of Macaranga (Euphorbiaceae) and their allies. – Plant Syst. Evol. 249: 213-231.

Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR. 2006. A chloroplast genealogy of myrmecophytic Macaranga species (Euphorbiaceae) in Southeast Asia reveals hybridization, vicariance and long-distance dispersals. – Mol. Ecol. 15: 4409-4424.

Bänziger H. 1995. Ecological, morphological and taxonomic studies on Thailand's fifth species of Rafflesiaceae: Rhizanthes zippelli (Blume) Spach. – Nat. Hist. Bull. Siam Soc. 43: 337-365.

Bänziger H, Hansen B. 1997. Unmasking the identity of Sapria poilanei Gagnepain emend., and description of Sapria ram sp. n. (Rafflesiaceae). – Nat. Hist. Bull. Siam Soc. 45: 149-170.

Bänziger H, Hansen B. 2000. A new taxonomic revision of a deceptive flower, Rhizanthes Dumortier (Rafflesiaceae). – Nat. Hist. Bull. Siam Soc. 48: 117-143.

Bänziger H, Lamb A, Kocyan A. 2007. Bisexual Rhizanthes lowii (Beccari) Harms (Rafflesiaceae) from Borneo: first description of flowers, fruits and seeds. – Nat. Hist. Bull. Siam Soc. 55: 341-352.

Baranova MA, Jeffrey C. 2006. Leaf anatomy and the systematics of the Rhizophoraceae sensu lato. – Bot. Žurn. 91: 1787-1815.

Barberá P, Velayos M, Aedo C. 2013. Annotated checklist and identification keys of the Acalyphoideae (Euphorbiaceae) of Equatorial Guinea (Annobón, Bioko and Río Muni). – Phytotaxa 140: 1-25.

Barberá P, Velayos M, Aedo C. 2014. Taxonomic revision of Grossera (Crotonoideae, Euphorbiaceae): a Central African genus. – Syst. Bot. 39: 490-509.

Barcelona JF, Fernando ES. 2002. A new species of Rafflesia (Rafflesiaceae) from Panay Island, Philippines. – Kew Bull. 57: 647-651.

Barcelona JF, Cajano MAO, Hadsall AS. 2006. Rafflesia baletei, another new Rafflesia (Rafflesiaceae) from the Philippines. – Kew Bull. 61: 231-237.

Barcelona JF, Pelser PB, Cajano MAO. 2008. Rafflesia banahaw (Rafflesiaceae), a new species from Luzon, Philippines. – Blumea 52: 345-350.

Barcelona JF, Pelser PB, Cabutaje E, Bartolome NA. 2008. Another new species of Rafflesia (Rafflesiaceae) from Luzon, Philippines: R. leonardi. – Blumea 53: 223-228.

Barcelona JF, Pelser PB, Balete DS, Co LL. 2009. Taxonomy, ecology, and conservation status of Philippine Rafflesia (Rafflesiaceae). – Blumea 54: 77-93.

Bardon L, Chamagne J, Dexter KG, Sothers CA, Prance GT, Chave J. 2013. Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. – Bot. J. Linn. Soc. 171: 19-37.

Bardon L, Sothers C, Prance GT, Malé P-JG, Xi Z, Davis CC, Muriene J, García-Villacorta R, Coissac E, Lavergne S, Chave J. 2016. Unraveling the biogeographical history of Chrysobalanaceae from plastid genomes. – Amer. J. Bot. 103: 1089-1102.

Baretta-Kuipers T. 1976. Comparative wood anatomy of Bonnetiaceae, Theaceae, and Guttiferae. – In: Baas P, Bolton AJ, Catling DM (eds), Wood structure in biological and technological research, Leiden, Bot., Ser. 3, Leiden University Press, Leiden, pp. 76-101.

Barkman TJ, Lim S-H, Salleh KM, Nais K. 2004. Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. – Proc. Natl. Acad. Sci. U.S.A. 101: 787-792.

Barkman TJ, Bendiksby M, Lim S-H, Salleh KM, Nais J, Madulid D, Schumacher T. 2008. Accelerated rates of floral evolution at the upper size limit for flowers. – Curr. Biol. 18: 1508-1513.

Barradas MM. 1973. Morfologia do fruto e da semente de Caryocar brasiliense (piqui), em váraias fases de desenvolvimento. – Rev. Biol. 9: 69-84.

Barres L, Vilatersana R, Molero J, Susanna A, Galbany-Casals M. 2011. Molecular phylogeny of Euphorbia subg. Esula sect. Aphyllis (Euphorbiaceae) inferred from nrDNA and cpDNA markers with biogeographic insights. – Taxon 60: 705-720.

Barres L, Galbany-Casals M, Hipp AL, Molero J, Vilatersana R. 2017. Phylogeography and character evolution of Euphorbia sect. Aphyllis subsect. Macaronesicae (Euphorbiaceae). – Taxon 66: 324-342.

Barrett SCH. 1978. Heterostyly in a tropical weed: the reproductive biology of the Turnera ulmifolia complex (Turneraceae). – Can. J. Bot. 56: 1713-1725.

Barth F. 1896. Anatomie comparée de la tige et de la feuille des Trigoniacées et des Chailletiacées (Dichapétalées). – Bull. Herb. Boissier 4: 481-520.

Barth OM. 1963. Catálogo sistemático dos pólens das plantas arbóreas do Brasil Meridional III: Theaceae, Marcgraviaceae, Ochnaceae, Guttiferae e Quiinaceae. – Instituto Oswaldo Cruz, Rio de Janeiro, pp. 97-104.

Barth OM. 1980. Morfologia do pólen e palinotaxinomia do género Kielmeyera (Guttiferae). – Rodriguesia 32(55): 105-133.

Barth OP. 1965. Elektronenmikroskopische Beobachtungen am Sporoderm der Caryocaraceen. – Grana Palynol., n. s., 6: 7-25.

Battaglia E. 1971. The embryo sac of Podostemaceae: an interpretation. – Caryologia 24: 403-420.

Battaglia E. 1986. Embryological questions 8. Euphorbia dulcis type versus Fritillaria type. – Ann. Bot. (Roma) 44: 97-136.

Battaglia E. 1987. Embryological questions 11. Has the debated case of Podostemaceae been resolved? – Ann. Bot. (Roma) 45: 37-64.

Baum H. 1951. Die Frucht von Ochna multiflora, ein Fall ökologischer Apokarpie. – Österr. Bot. Zeitschr. 98: 383-394.

Beaman JH, Adam J. 1983 [1984]. Observations on Rafflesia in Sabah. – Sabah Soc. J. 7: 208-212.

Beaman RS, Decker PJ, Beaman JH. 1988. Pollination of Rafflesia (Rafflesiaceae). – Amer. J. Bot. 75: 1148-1162.

Beattie AJ. 1974. Floral evolution in Viola. – Ann. Missouri Bot. Gard. 61: 781-793.

Beattie AJ, Lyon N. 1975. Seed dispersal in Viola (Violaceae): adaptations and strategies. – Amer. J. Bot. 62: 714-722.

Becker W. 1902. Ergebnisse einier Revision der Violae des Herbarium Barbey-Boissier. – Bull. Herb. Boissier 1902: 852-856.

Becker W. 1909. Violenstudien 1. – Beih. Bot. Zentralbl. 26: 1-44.

Becker W. 1910. Violae Europaeae. – C. Heinrich, Dresden-N.

Becker W. 1916. Violae asiaticae et australienses I. – Beih. Bot. Centralbl. 34: 208-266.

Becker W. 1918. Violae asiaticae et australienses III. – Beih. Bot. Centralbl. 36: 15-59.

Becker W. 1923. Violae asiaticae et australienses V. – Beih. Bot. Centrlbl. 40: 67-118.

Becker W. 1925. Viola. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Wilhelm Engelmann, Leipzig, 21, pp. 363-376.

Becker W. 1928. New Chinese species of Viola. – Kew Bull. 6: 247-252.

Behnke H-D. 1982. Sieve-element plastids of Cyrillaceae, Erythroxylaceae, and Rhizophoraceae: description and significance of subtype PV plastids. – Plant Syst. Evol. 141: 31-39.

Behnke H-D. 1988. Sieve-element plastids and systematic relationships of Rhizophoraceae, Anisophylleaceae, and allied groups. – Ann. Missouri Bot. Gard. 75: 1387-1409.

Behnke H-D, Richter K. 1990. Primary phloem development in the shoot apex of Rhizophora mangle L. (Rhizophoraceae). – Bot. Acta 103: 296-304.

Beille L. 1908. Euphorbiaceae. – In: Chevalier A (ed), Novitates florae africanae, Bull. Soc. Bot. France 55 (Mém. 2), 8: 54-85.

Belgrano MJ, Pozner R. 2005. Stillingia yungasensis (Euphorbiaceae): a new species from northwestern Argentina and southern Bolivia. – Syst. Bot. 30: 134-138.

Belin-Depoux M. 1977. Introduction à l’étude des glandes foliaires de l’Alchornea cordata (Juss.) Muell. Arg. (Euphorbiaceae). – Rev. Gén. Bot. 84: 127-136.

Belin-Depoux M, Clair-Maczulaitys D. 1974. Introduction à l’étude des glande foliaires de l’Aleurites moluccana Willd. (Euphorbiacée) I. La glande et son ontogenèse. – Rev. Gén. Bot. 81: 335-351.

Belin-Depoux M, Clair-Maczulaitys D. 1975. Introduction à l’étude des glandes foliaires de l’Aleurites moluccana Willd. (Euphorbiacée) II. Aspects histologiques et cytologiques de la glande pétiolaire fonctionelle. – Rev. Gén. Bot. 82: 119-155.

Belliard J, Besse J. 1980. Étude du rôle des feuilles dans un phénomène d’incompatibilité entre deux taxons de Phyllanthus odontadenius Muell. Arg. – Bull. Soc. Bot. France, 127, Lettres Bot. (1): 5-21.

Bendiksby M, Schumacher T, Gussarova G, Nais J, Mat-Salleh K, Sofiyanti N, Madulid D, Smith SA, Barkman T. 2010. Elucidating the evolutionary history of the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: Pliocene vicariance, morphological convergence and character displacement. – Mol. Phylogen. Evol. 57: 620-633.

Benitez-Vieyra S, Hempel de Ibarra N, Wertien AM, Cocucci AA. 2007. How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae. – Proc. Roy. Soc. London, B, 274: 2239-2248.

Bennett EM. 1972. A revision of the Australian species of Hybanthus Jacquin (Violaceae). – Nuytsia 1: 218-241.

Bennett GJ, Lee H-H. 1989. Xanthones from Guttiferae. – Phytochemistry 28: 967-998.

Bennett GJ, Lee H-H, Lowrey TK. 1990. Novel metabolites from Ploiarium alternifolium: a bixanthone and two anthraquinolyxanthones. – Tetrahedron Lett. 31: 751-754.

Benson WW, Brown KS Jr, Gilbert LE. 1976. Coevolution of plants and herbivores: passion flower butterflies. – Evolution 29: 659-680.

Bentham G. 1878. Notes on Euphorbiaceae. – Bot. J. Linn. Soc. 17: 185-267.

Berazaín Iturralde R. 2003. A new species of Ouratea (Ochnaceae) from Cuba. Novitiae florae cubenses 13. – Willdenowia 33: 183-186.

Berazaín Iturralde R. 2006. Notes on the taxonomy and distribution of the Ochnaceae in the Greater Antilles. – Willdenowia 36: 455-461.

Berg RY. 1975. Fruit, seed, and myrmecochorous dispersal in Micrantheum (Euphorbiaceae). – Norw. J. Bot. 22: 173-194.

Berger A. 1907. Sukkulente Euphorbien. – Eugen Ulmer, Stuttgart.

Berger MG. 1919. Étude organographique, anatomique et pharmacologique de la famille des Turneracées. – Thèse, Faculté de Médécine et de Pharmacie, Université de Lille, France.

Bernhard A. 1999a. Floral structure and development of Ceratiosicyos laevis (Achariaceae) and its systematic position. – Bot. J. Linn. Soc. 131: 103-113.

Bernhard A. 1999b. Floral structure, development, and systematics in Passifloraceae and in Abatia (Flacourtiaceae). – Intern. J. Plant Sci. 160: 135-150.

Bernhard A, Endress P. 1999. Androecial development and systematics in Flacourtiaceae s.l. – Plant Syst. Evol. 215: 141-155.

Bernhard F. 1966. Contribution à l’étude des glandes foliaire chez les Crotonoïdées (Euphorbiaceae). – Mém. Inst. Fond. Afrique Noire 75: 71-156.

Berry EW. 1922. Saccoglottis, recent and fossil. – Amer. J. Sci. 20: 127-130.

Berry EW. 1924. New Tertiary species of Anacardium and Vantanea from Colombia. – Pan Amer. Geol. 42: 259-263.

Berry PE, Gaskin JF. 1998. A new Croton (Euphorbiaceae) from the western Guayana Shield and its anomalous sectional placement. – Syst. Bot. 23: 171-175.

Berry PE, Wiedenhoeft AC. 2004. Micrandra inundata (Euphorbiaceae), a new species with unusual wood anatomy from Black-water river banks in southern Venezuela. – Syst. Bot. 29: 125-133.

Berry PE, Tobe H, Gómez JA. 1991. Agamospermy and the loss of distyly in Erythroxylum undulatum (Erythroxylaceae) from northern Venezela. – Amer. J. Bot. 78: 595-600.

Berry PE, Hipp A, Wurdack KJ, Ee B van, Riina R. 2005. Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and trnL-trnF sequence data. – Amer. J. Bot. 92: 1520-1534.

Berry PE, Cordeiro I, Wiedenhoeft AC, Vittorino-Cruz MA, Lima LR. 2005. Brasiliocroton, a new crotonoid genus of Euphorbiaceae s.s. from eastern Brazil. – Syst. Bot. 30: 357-365.

Beutler JA, Alvarado-Lindner AB, McCloud TG, Cragg GM. 1989. Distribution of phorbol ester bioactivity in the Euphorbiaceae. – Phytotherapy Res. 3: 188-192.

Beutler JA, Alvarado-Lindner AB, McCloud TG, Cragg GM. 1996. Further studies on phorbol ester bioactivity in the Euphorbiaceae. – Ann. Missouri Bot. Gard. 83: 530-533.

Bezuidenhout A. 1964. The pollen of the African Podostemaceae. – Pollen Spores 6: 463-478.

Bhatnagar AK, Kapil RN. 1973. Bischofia javanica – its relationship with Euphorbiaceae. – Phytomorphology 23: 264-267.

Bhatnagar AK, Kapil RN. 1979. Ontogeny and taxonomic significance of anther in Bischofia javanica. – Phytomorphology 29: 298-306.

Bharucha KE, Gunstone FD. 1956. Vegetable oils V. Component acids of Cephalocroton cordofanus seed oil. – J. Sci. Food Agric. 7: 606-609.

Bicchi C, Rubiolo P, Camargo EES, Vilegas W, Gracioso J de S, Brito ARMS. 2003. Components of Turnera diffusa Willd. var. afrodisiaca (Ward) Urb. essential oil. – Flavours Fragrances J. 18: 59-61.

Biesboer DD. Mahlberg PG. 1981. Laticifer starch grain morphology and laticifer evolution in Euphorbia (Euphorbiaceae). – Nord. J. Bot. 1: 447-457.

Bigio NC, Secco RS. 2012. As espécies de Pera (Euphorbiaceae s.s.) in Brazilian Amazon. – Rodriguésia 63: 163-207.

Bilia AR, Yusuf AW, Braca A, Keita A, Morelli I. 2000. New prenylated anthraquinones and xanthones from Vismia guineensis. – J. Nat. Prod. 63: 16-21.

Binns WW, Blumden G, Woods DL. 1968. Distribution of leucoanthocyanidins, phenolic glycosides, and imino-acids in leaves of Salix species. – Phytochemistry 7: 1577-1581.

Binojkumar MS, Balakrishnan NP. 1993. Two new species of Euphorbia L. (Euphorbiaceae) from Burma. – Kew Bull. 48: 795-798.

Bissiengou P, Chatrou LW, Wieringa JJ, Sosef MSM. 2013. Taxonomic novelties in the genus Campylospermum (Ochnaceae). – Blumea 58: 1-7.

Bittrich V, Amaral M do CE. 1996. Flower morphology and pollination biology of some Clusia species from the Gran Sabana (Venezuela). – Kew Bull. 51: 681-694.

Bittrich V, Amaral M do CE. 1997. Flower biology of some Clusia species from Central Amazonia. – Kew Bull. 52: 617-635.

Bittrich V, Amaral MCE, Machado SMF, Marsaioli AJ. 2003. Floral resin of Tovomitopsis saldanhae (Guttiferae) and 7-Epi-nemorosone: structural revision. – Zeitschr. Naturforsch. 58c: 643-648.

Blank F. 1939. Beitrag zur Morphologie von Caryocar nuciferum L. – Ber. Schweiz. Bot. Ges. 49: 437-494.

Blattner FR, Weising K, Banfer G, Maschwitz U, Fiala B. 2001. Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species (Euphorbiaceae). – Mol. Phylogen. Evol. 19: 331-344.

Blaxland K. 2004. A new species of Viola (Violaceae) from South-West Turkey. – Bot. J. Linn. Soc. 2004: 505-509.

Boblioff W. 1923. Anatomy of Hevea brasiliensis. – Zürich.

Boeckler CA, Gershenzon J, Unsicker SP. 2011. Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. – Phytochemistry 72: 1497-1509.

Boes TK, Strauss SH. 1994. Floral phenology and morphology of black cottonwood, Populus trichocarpa (Salicaceae). – Amer. J. Bot. 81: 562-567.

Boesewinkel FD. 1980a. Development of ovule and testa of Linum usitatissimum L. – Acta Bot. Neerl. 29: 17-32.

Boesewinkel FD. 1980b. A comparative study of ovules and seed-coats in the genus Dichapetalum. – Acta Bot. Neerl. 29: 212.

Boesewinkel FD. 1985. The ovule and seed of Humiria balsamifera (Aubl.) St. Hil. – Acta Bot. Neerl. 34: 183-191.

Boesewinkel FD. 1987. Ovules and seeds of Trigoniaceae. – Acta Bot. Neerl. 36: 81-91.

Boesewinkel FD. 1994. Ovules and seed characters of Balanites aegyptiaca and the classification of the Linales-Geraniales-Polygalales assembly. – Acta Bot. Neerl. 43: 15-25.

Boesewinkel FD, Bouman F. 1980. Development of ovule and seed coat of Dichapetalum mombuttense Engl. with notes on other species. – Acta Bot. Neerl. 29: 103-115.

Boesewinkel FD, Geenen J. 1980. Development of ovule and seed coat of Erythroxylum coca Lamk. – Acta Bot. Neerl. 29: 231-241.

Bonne G. 1926a. Sur la constitution du gynécée chez les Chrysobalanées. – Compt. Rend. Acad. Sci. Paris 182: 1404-1406.

Bonne G. 1926b. La nature de la coupe florale chez les Chrysobalanées. – Compt. Rend. Acad. Sci. Paris 183. 73-75.

Bor J, Bouman F. 1975. Development of ovule and integuments in Euphorbia milii and Codiaeum variegatum. – Phytomorpology 4: 280-296.

Bor J, Kapil RN. 1975. Euphorbia geniculata – ovule to seed. – Acta Bot. Neerl. 24: 257-268.

Bor J, Kapil RN. 1976. Anatropy and ontogeny of the bitegmic ovule in Chrozophora A. H. L. Jussieu (Euphorbiaceae). – Acta Bot. Neerl. 25: 385-400.

Borges RM, Somnathan H, Mall S. 1997. Alternations of sexes in a deciduous tree: temporal dioecy in Bridelia retusa. – Curr. Sci. 72: 940-944.

Borhidi A. 1972. La taxonomía del género Platygyne Merc. – Ann. Hist.-Nat. Mus. Natl. Hung. 64: 89-94.

Bosser J. 1976. Voatamalo, nouveau genre d’Euphorbiacées de Madagascar. – Adansonia, sér. II, 15: 333-340.

Botta B, Delle Monache F, Delle Monache G, MariniBettolo GB, Oguakwa JU. 1983. 3-Geranyloxy-6-methyl-1,8-dihydroxyanthraquinone and vismiones C, D and E from Psorospermum febrifugum. – Phytochemistry 22: 539-542.

Bouchat A, Léonard J. 1986. Révision du genre Necepsia Prain (Euphorbiacée africano-malgache). – Bull. Jard. Bot. Belg. 56: 179-194.

Boucher LD, Manchester SR, Judd WS. 2003. An extinct genus of Salicaceae based on twigs with attached flowers, fruits, and foliage from the Eocene Green River formation of Utah and Colorado, USA. – Amer. J. Bot. 90: 1389-1399.

Bouharmont J. 1962. Fécondation de l’ovule et développement de la graine après croisement et autopollination chez Hevea brasiliensis. – Cellule 62: 119-130.

Bouman F, Meijer W. 1986. Comparative seed morphology in Rafflesiaceae. – Acta Bot. Neerl. 35: 521.

Bouman F, Meijer W. 1994. Comparative structure of ovules and seeds in Rafflesiaceae. – Plant Syst. Evol. 193: 187-212.

Bove CP. 1997. Phylogenetic analysis of Humiriaceae with notes on the monophyly of Ixonanthaceae. – J. Comp. Biol. 2: 19-24.

Bove CP, Melhem TS. 2000. Humiriaceae Juss. – World Pollen and Spore Flora 22: 1-35.

Bove CP, Philbrick CT, Novelo RA. 2006. A new species of Cipoia (Podostemaceae) from Minas Gerais, Brazil. – Syst. Bot. 31: 822-825.

Bove CP, Philbrick CT, Costa WJEM. 2011. Taxonomy, distribution and emended description of the Neotropical genus Lophogyne (Podostemaceae). – Brittonia 63: 156-160.

Brandza G. 1908. Recherches anatomiques sur la germination des Hypéricacées et des Guttifères. – Ann. Sci. Nat. IX, Bot. 8: 221-300.

Breckon G. 1975. Cnidoscolus, Section Calytosolen (Euphorbiaceae) in Mexico and Central America. – Ph.D. diss., University of California, Davis, California.

Breedlove DE, McClintock E. 1976. Thornea (Hypericaceae), a new genus from Mexico and Guatemala. – Madroño 23: 368-373.

Breteler FJ. 1973. The African Dichapetalaceae. A taxonomical revision. – Meded. Landbouwh. Wageningen 73(13): 1-123.

Breteler FJ. 1978. The African Dichapetalaceae IV. A taxonomical revision. Species c-f. – Meded. Landbouwh. Wageningen 78(10).

Breteler FJ. 1979. The African Dichapetalaceae V. A taxonomical revision. Species g-l. – Meded. Landbouwh. Wageningen 79(16).

Breteler FJ. 1981. The African Dichapetalaceae VII. A taxonomical revision. Species m-q. – Meded. Landbouwh. Wageningen 81(10).

Breteler FJ. 1982. The African Dichapetalaceae VIII. A taxonomical revision. Species r-z. – Meded. Landbouwh. Wageningen 82(8).

Breteler FJ. 1986. The African Dichapetalaceae IX. A taxonomical revision. – Agric. Univ. Wageningen Pap. 86(3).

Breteler FJ. 1988. Dichapetalaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-19.

Breteler FJ. 1991. Dichapetalaceae. – In: Aubréville A, Leroy J-F (eds), Flore du Gabon, vol. 32, Muséum National d’Histoire Naturelle, Paris, pp. 1-221.

Breteler FJ. 1999. Novitates Gabonenses 34. Dactyladenia ndjoleensis (Chrysobalanaceae), a new species from Gabon. – Syst. Geogr. Plants 69: 111-114.

Breteler FJ. 2002. A new species of Tapura (Dichapetalaceae) from Cameroun. – Adansonia, sér. III, 24: 267-269.

Breteler FJ. 2003a. Novitates Gabonenses 47. Another new Dichapetalum (Dichapetalaceae) from Gabon. – Adansonia, sér. III, 25: 223-227.

Breteler FJ. 2003b. Novitates Gabonenses 48. A new species of Paropsia (Passifloraceae) from Gabon. – Adansonia, sér. III, 25: 247-249.

Breteler FJ. 2004. Novitates Gabonenses 49. Aristogeitonia (formerly Euphorbiaceae, now Picrodendraceae) present in Gabon by a new species A. gabonica. – Adansonia, sér. III, 26: 167-170.

Breteler FJ. 2005. Novitates Gabonenses 53. A curious new species of Dichapetalum (Dichapetalaceae) from Gabon. – Adansonia, sér. III, 27: 231-234.

Breteler FJ. 2006. Novitates Gabonenses 62. Dichapetalum neglectum (Dichapetalaceae), a second new species from Gabon with 4-5-locular ovaries, with an adapted key to the Central African species. – Adansonia, sér. III, 28: 299-309.

Breteler FJ. 2008a. A synopsis of Casearia Jacq. (Samydeae-Salicaceae) in West and Central Africa with a description of a new species from Eastern Congo (Kinshasa). – Kew Bull. 63: 101-112.

Breteler FJ. 2008b. Novitates Gabonenses 68. The genus Cassipourea (Rhizophoraceae) in continental tropical Africa with emphasis on Gabon: subgeneric division, identification keys, and description of two new species. – Edinburgh J. Bot. 765: 407-424.

Breteler FJ. 2014. Protomegabaria Hutch. (Phyllanthaceae): some observations concerning its morphology, taxonomy and geography. – Adansonia, sér. 3, 36: 103-112.

Breteler FJ, Mennega AMW. 1994. Novitates Gabonenses 17. Conceveiba leptostachys, a new Euphorbiacea from Gabon and Cameroun. – Bull. Jard. Bot. Belg. 63: 209-217.

Brown WH. 1912. The relation of Rafflesia manillana to its host. – Philipp. J. Sci. 7: 209-224.

Brunel JF. 1987. Sur le genre Phyllanthus L. et quelques genres voisins de la tribu des Phyllantheae Dumort. (Euphorbiaceae, Phyllantheae) en Afrique intertropicale et à Madagascar. – Ph.D. diss., Université Louis Pasteur Strasbourg I, Strasbourg, France.

Brunel JF, Roux J. 1981a. Phyllanthus subsect. Odontadenii (Euphorbiaceae) au nord du fleuve Congo (Afrique de l’Ouest). – Willdenowia 11: 69-89.

Brunel JF, Roux J. 1981b. Phyllantheae de Madagascar I. À propos de deux Phyllanthus de la sous-section Swartziani Webster. – Adansonia, sér. II, 20: 393-403.

Brunel JF, Roux J. 1984. South-East Asian Phyllantheae II. Some Phyllanthus of subsect. Swartziani. – Nord. J. Bot. 4: 469-473.

Brunsfeld SJ, Soltis DE, Soltis PS. 1992. Evolutionary patterns and processes in Salix Sect. Longifoliae: evidence from chloroplast DNA. – Syst. Bot. 17: 239-256.

Brunsfeld SJ, Miller TR, Carstens BC. 2007. Insights into the biogeography of the Pacific Northwest of North America: evidence from the phylogeography of Salix melanopsis. – Syst. Bot. 32: 129-139.

Bruyns PV, Mapaya RJ, Hedderson T. 2006. A new subgeneric classification for Euphorbia (Euphorbiaceae) in southern Africa based on ITS and psbA-trnH sequence data. – Taxon 52: 397-420.

Bruyns PV, Klak C, Hanàček P. 2011. Age and diversity in Old World succulent species of Euphorbia (Euphorbiaceae). – Taxon 60: 1717-1733.

Buchler W. 1986. Neue Chromosomenzählungen in der Gattung Salix. 2. Teil. – Bot. Helv. 96: 135-143.

Buck W, Huft M. 1977. Two new species of Euphorbia subgenus Agaloma from Mexico. – J. Arnold Arbor. 58: 343-348.

Bullock SH. 1982. Componentes fenológicos del sistema de cruzamiento monóico de Cnidoscolus spinosus (Euphorbiaceae) en Jalisco. – Bol. Soc. Bot. Mexic. 42: 1-9.

Burke BA, Chan WR, Prince EC, Manchand PS, Eickman N, Clardy J. 1976. The structure of corylifuran, a clerodane-type diterpene from Croton corylifolius Lam. – Tetrahedron 32: 1881-1884.

Burkhardt G, Schild W, Becker H, Grubert M. 1992. Biphenyls and xanthones from the Podostemaceae. – Phytochemistry 31: 543-548.

Burkhardt G, Becker H, Grubert M, Thomas J, Eicher T. 1994. Bioactive chromenes from Rhyncholacis penicillata. – Phytochemistry 37: 1593-1597.

Burman R, Gruber CW, Rizzardi K, Herrmann A, Craik DJ, Gupta MP, Göransson U. 2010. Cyclotide proteins and precursors from the genus Gloeospermum: filling in a blank spot in the cyclotide map of Violaceae. – Phytochemistry 71: 13-20.

Buske A, Schmidt J, Hoffmann P. 2002. Chemotaxonomy of the tribe Antidesmeae (Euphorbiaceae): antidesmone and related compounds. – Phytochemistry 60: 489-496.

Byng JW. 2015. Ixonanthaceae. – In: Sosef M (ed), Flore d’Afrique Centrale, Meise Botanic Garden, Belgium, pp. 1-9.

Byng JW, Bernardini B, Christenhusz MJM, Chase MW. 2016. Systematics of Irvingiaceae and Ixonanthaceae (Malpighiales): phylogenetic analysis based on three plastid DNA loci. – Phytotaxa 260. DOI: http://dx.doi.org/10.11646/phytotaxa.260.2.5

Cabral FN, Bittrich V, Amaral M do CE do. 2018. Five new species of Caraipa (Calophyllaceae) from the Venezuelan Guayana. – Syst. Bot. 43: 240-249.

Cacho NI, Berry PE, Olson ME, Steinmann VW, Baum DA. 2010. Are spurred cyathia a key innovation? Molecular systematics and trait evolution in the slipper spurges (Pedilanthus clade: Euphorbia, Euphorbiaceae). – Amer. J. Bot. 97: 493-510.

Calixto JB, Santos ARS, Filho VC, Yunes RA. 1998. A review of the plants of the genus Phyllanthus: their chemistry, pharmacology and therapeutic potential. – Med. Res. Rev. 18: 225-258.

Callmander MW, Phillipson PB. 2012. Notes on the genus Ochna L. (Ochnaceae) in Madagascar. – Candollea 67: 142-144.

Camacho MR, Mata R, Castaneda P, Kirby GC, Warhurst DC, Croft SL, Phillipson JD. 2000. Bioactive compounds from Celaenodendron mexicanum. – Planta Med. 66: 463-468.

Cameron KM, Chase MW, Anderson WR, Hills HG. 2001. Molecular systematics of Malpighiaceae: evidence from plastid rbcL and matK sequences. – Amer. J. Bot. 88: 1847-1862.

Cammerloher H. 1920. Der Spaltöffnungsapparat von Brugmansia und Rafflesia. – Österr. Bot. Zeitschr. 69: 153-164.

Capers RS, Les DH. 2001. An unusual population of Podostemum ceratophyllum (Podostemaceae) in a tidal Connecticut river. – Rhodora 103: 219-223.

Carano E. 1914. Embriologia delle Podostemaceae. – Ann. Bot. (Roma) 12: 163-164.

Carano E. 1926. Ulteriori osservazioni su Euphorbia dulcis L. in rapporto col suo comportamento apomittico. – Ann. Bot. (Roma) 17: 50-79.

Cardiel JM, Rodríguez PM. 2015. Synopsis of Acalypha (Euphorbiaceae) of Argentina, Paraguay, and Uruguay. – Ann. Missouri Bot. Gard. 101: 384-405.

Cardinal-McTeague WM, Gillespie LJ. 2016. Molecular phylogeny and pollen evolution of Euphorbiaceae tribe Plukenetieae. – Syst. Bot. 41: 329-347.

Cario R. 1881. Anatomische Untersuchung von Tristicha hypnoides Spreng. – Bot. Zeitung 39: 25-33, 41-48, 57-64, 73-82.

Carlquist SJ. 1970. Wood anatomy of Hawaiian, Macaronesian, and other species of Euphorbia. – In: Robson NKB, Cutler DF, Gregory M (eds), New research in plant anatomy, Bot. J. Linn. Soc. 63, Suppl. 1, Academic Press, New York, London, pp. 181-193.

Carlquist SJ. 1980. Anatomy and systematics of Balanopaceae. – Allertonia 2: 191-246.

Carlquist SJ. 1984a. Wood and stem anatomy of Bergia suffruticosa: relationships of Elatinaceae and broader significance of vascular tracheids, vasicentric tracheids, and fibriform vessel elements. – Ann. Missouri Bot. Gard. 71: 232-242.

Carlquist SJ. 1984b. Wood anatomy of Malesherbiaceae. – Phytomorphology 34: 180-190.

Carlquist SJ. 1989. Balanopaceae. – In: George AS (ed), Flora of Australia 3, Australian Government Publ. Service, Canberra, pp. 93-95.

Carmo RM, Franceschinelli EV. 2002. Pollinação e biologia floral de Clusia arrudea Planchon & Triana (Clusiaceae) na Serra da Calçada, município de Brumadinho, MG. – Rev. Brasil. Bot. 25: 351-360.

Cartellieri E. 1926. Das Absorptionssystem der Rafflesiacee Brugmansia. – Bot. Arch. 14: 284-311.

Carter S. 1984. New taxa and notes on herbaceous species of Euphorbia from East and Northeast Africa. – Kew Bull. 39: 643-652.

Carter S. 1985. New species and taxonomic changes in Euphorbia from East and Northeast tropical Africa and a new species from Oman. – Kew Bull. 40: 809-825.

Carter S. 1987a. New taxa in Euphorbia subgen. Euphorbia from eastern tropical Africa. – Kew Bull. 42: 371-383.

Carter S. 1987b. Taxonomic changes in Synadenium (Euphorbiaceae) from East Africa. – Kew Bull. 42: 667-671.

Carter S. 1987c. New species and taxonomic changes amongst the succulent trees and shrubs of Euphorbia subgen. Euphorbia from East Africa. – Kew Bull. 42: 673-682.

Carter S. 1987d. New taxa and observations in Monadenium (Euphorbiaceae) in East Africa. – Kew Bull. 42: 903-918.

Carter S. 1988a. Euphorbieae. – In: Polhill RM (ed), Flora of tropical East Africa, Euphorbiaceae, A. A. Balkema, Rotterdam, pp. 409-564.

Carter S. 1988b. Euphorbia section Somalica in Somalia. – Euphorbia J. 5: 26-38.

Carter S. 1990a. New taxa and taxonomic changes amongst herbaceous Euphorbia species from southern tropical Africa. – Kew Bull. 45: 327-337.

Carter S. 1990b. New Euphorbia species related to E. longituberculosa Boiss. – Kew Bull. 45: 653-659.

Carter S. 1992a. New pair-spined species of Euphorbia (Euphorbiaceae) from Somalia. – Nord. J. Bot. 12: 403-422.

Carter S. 1992b. New species of Euphorbia subgenus Tirucalli (Euphorbiaceae) from Somalia and Oman. – Nord. J. Bot. 12: 675-679.

Carter S. 1992c. New herbaceous and woody species of Euphorbia (Euphorbiaceae) from Somalia. – Nord. J. Bot. 12: 681-688.

Carter S. 1993. Two new species of Monadenium (Euphorbiaceae) from Somalia. – Nord. J. Bot. 13: 541-543.

Carter S. 1994. A preliminary classification of Euphorbia subgenus Euphorbia. – Ann. Missouri Bot. Gard. 81: 368-379.

Carter S. 1999. New Euphorbia taxa in the Flora Zambesiaca area. – Kew Bull. 54: 959-965.

Carter S. 2000. Taxonomic changes in Monadenium and Synadenium (Euphorbiaceae) for Flora Zambesiaca. – Kew Bull. 55: 435-442.

Carter S, Gilbert MG. 1987. Euphorbia heterochroma, E. stapfii and related taxa. – Kew Bull. 42: 385-394.

Carter S, Radcliffe-Smith A. 1988. Euphorbiaceae (Part 2). – In: Polhill RM (ed), Flora of Tropical East Africa, A. A. Balkema, Rotterdam, pp. 409-597.

Carter S, Wood JRI. 1982. Two new succulent Euphorbia species from Southwest Arabia. – Kew Bull. 37: 73-76.

Caruzo MBR, Cordeiro I. 2013. Taxonomic revision of Croton section Cleodora (Euphorbiaceae). – Phytotaxa 121: 1-41.

Caruzo MBR, Ee BW van, Cordeiro I, Berry PE, Riina R. 2011. Molecular phylogenetics and character evolution of the “sacaca” clade: novel relationships of Croton section Cleodora (Euphorbiaceae). – Mol. Phylogen. Evol. 60: 193-206.

Cassinelli G, Geroni C, Botta B, Monache G delle, Monache F delle. 1986. Cytotoxic and antitumor activity of vismiones isolated from Vismieae. – J. Nat. Prod. 49: 929-931.

Castillo G, Marquez-Guzman J, Collazo-Ortega M. 2013. Seed germination and early development in seedlings of Noveloa coulteriana (Podostemaceae). – Aquatic Bot. 109: 25-30.

Cervantes A, Flores Olvera H. 2005. Six new Mexican species of Bernardia (Euphorbiaceae). – Bot. J. Linn. Soc. 149: 241-256.

Cervantes A, Steinmann VW, Olvera HF. 2003. Adelia cinerea (Euphorbiaceae), formerly in Bernardia. – Brittonia 55: 4-9.

Cervantes A, Terrazas T, Hernández HM. 2009. Foliar architecture and anatomy of Bernardia and other genera of Acalyphoideae (Euphorbiaceae). – Brittonia 61: 375-391.

Cervantes-Alcayde M-A, Olson ME, Olsen KM, Eguiarte LE. 2015. Apparent similarity, underlying homoplasy: morphology and molecular phylogeny of the North American clade of Manihot. – Amer. J. Bot. 102: 520-532.

Cervi AC. 1997. Passifloraceae do Brasil. Estudo do gênero Passiflora L., subgênero Passiflora. – Fontqueria 45: 1-92.

Cervi AC. 2002. A new species of Passiflora (Passifloraceae) from Amazonian Brazil. – Brittonia 54: 54-56.

Cervi AC. 2006. A new species of Passiflora (Passifloraceae) from Minas Gerais, Brazil. – Brittonia 58: 385-387.

Cesca G. 1961. Ricerche cariologiche ed embriologiche sulle Euphorbiaceae. I – su alcuni biotipi di Euphorbia dulcis L. della Toscana. – Caryologia 14: 79-96.

Cesca G. 1969. Cytological and embryological studies in the genus Euphorbia: Euphorbia epithymoides L. – Proc. Indian Natl. Inst. Sci., Sect. B, 35: 139-152.

Chacon J, Madrinan S, Debouck D, Rodriguez F, Tohme J. 2008. Phylogenetic patterns in the genus Manihot (Euphorbiaceae) inferred from analyses of nuclear and chloroplast DNA regions. – Mol. Phylogen. Evol. 49: 260-267.

Chafe PDJ. 2011. Molecular phylogenetics and breeding system evolution of the Turneraceae. – Ph.D. diss., York University, Canada.

Chai X-Y, Ren H-Y, Xu Z-R, Bai C-C, Zhou F-R, Ling S-K, Pu X-P, Li F-F, Tu P-F. 2009. Investigation of two flacourtiaceae plants: Bennettiodendron leprosipes and Flacourtia ramontchi. – Planta Med. 75:1246-1252.

Chakrabarty T, Balakrishnan NP. 1985 [1987]. A note on the genus Ostodes (Euphorbiaceae). – Bull. Bot. Surv. India 27: 259-260.

Chakrabarty T, Balakrishnan NP. 1997. A revision of Croton L. (Euphorbiaceae) for the Indian subcontinent. – Bull. Bot. Surv. India 34: 1-88.

Chakrabarty T, Gangopadhyay M, Balakrishnan NP. 1997. The genus Drypetes (Euphorbiaceae) in the Indian subcontinent. – J. Econ. Taxon. Bot. 21: 251-280.

Chalet J. 1998. Rafflesia, une Stapelia geante? – Succulentes 21: 24-25.

Champault A. 1970. Étude caryosystématique et écologique de quelques Euphorbiacées herbacées et arbustives africaines. – Bull. Soc. Bot. France 117: 137-168.

Chao H-C. 1948. Discovery of Podostemonaceae in China. – Contr. Inst. Bot., Natl. Acad. Peiping 6: 1-16.

Chao H-C. 1980. A new genus (Terniopsis gen. nov.) of Podostemonaceae from Fujian, China. – Acta Bot. Yunnan. 2: 298-299.

Chappill JA. 1992. Cladistics and the Chrysobalanaceae. – Taxon 41: 211-223.

Chase MW. 1981. A revision of Dicella (Malpighiaceae). – Syst. Bot. 6: 159-171.

Chase MW, Zmartzty S, Lledó MD, Wurdack KJ, Swensen SM, Fay MF. 2002. When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences. – Kew Bull. 57: 141-181.

Chattopadhyay D, Sharma AK. 1988. Sex difference and chromosomes in Putranjiva roxburghii Wall. – Curr. Sci. 57: 1017-1019.

Chaudhary A, Khanduri P, Tandon R, Uniyal PL, Mohan Ram HY. 2014. Central cell degeneration leads to three-celled female gametophyte in Zeylanidium lichenoides Engl. (Podostemaceae). – South Afr. J. Bot. 91: 99-106.

Chauveaud LG. 1891. Recherches embryogénique sur l’appareil laticifère des Euphorbiacées, Urticacées, Apocynées et Asclepiadées. – Ann. Sci. Nat. Bot. VII, 14: 1-161.

Cheek M. 2003. A new species of Ledermanniella (Podostemaceae) from western Cameroon. – Kew Bull. 58: 733-739.

Cheek M, Ameka G. 2008. Ledermanniella pollardiana sp. nov. (Podostemaceae) from western Cameroon. – Nord. J. Bot. 26: 214-217.

Cheek M, Haba P. 2016. Inversodicraea Engl. resurrected and I. pepehabai sp. nov. (Podostemaceae), a submontane forest species from the Republic of Guinea. – Kew Bull. 71: 55 DOI 10.1007/S12225-016-9673-2

Cheek M, Luke Q. 2016. Calophyllum (Clusiaceae – Guttiferae) in Africa. – Kew Bull. 71: 20 DOI 10.1007/S12225-016-9637-6

Chen J-H, Sun H, Yang Y-P. 2008. Comparative morphology of leaf epidermis of Salix (Salicaceae) with special emphasis on sections Lindleyanae and Retusae. – Bot. J. Linn. Soc. 157: 311-322.

Chen J-H, Sun H, Wen J, Yang Y-P. 2010. Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. – Taxon 59: 29-37.

Chen P, Chen L, Wen J. 2011. The first phylogenetic analysis of Tetrastigma (Miq.) Planch., the host of Rafflesiaceae. – Taxon 60: 499-512.

Chen Y-J, Chen S-H, Huang T-C, Wu M-J. 2009. Pollen morphology of the Philippine species of Phyllanthus (Phyllanthaceae, Euphorbiaceae s.l.). – Blumea 54: 47-58.

Chen Y-S, Yang Q-E. 2006a. A distinctive new species of Viola (Violaceae) from Yunnan, China. – Bot. J. Linn. Soc. 149: 115-119.

Chen Y-S, Yang Q-E. 2006b. A new species of Viola L. (Violaceae) from Sichuan, China. – Bot. J. Linn. Soc. 149: 365-368.

Chen Y-S, Yang Q-E. 2009a. A new species of Viola (Violaceae) from southern China. – Bot. J. Linn. Soc. 158: 755-761.

Chen Y-S, Yang Q-E. 2009b. Two new stoloniferous species of Viola (Violaceae) from China. – Bot. J. Linn. Soc. 159: 349-356.

Chennaveeraiah MS, Radzan MK. 1980. Karyomorphological and phytochemical studies in evaluating species relationships in Garcinia L. and systematic position of the G. xanthochymus complex. – J. Indian Bot. Soc. 59: 251-262.

Chiarugi A. 1933. Lo sviluppo del gametofito femineo della Weddellina squamulosa. – Compt. Rend. Acad. Naz. Lincei, Roma, 17: 1095-1099.

Chiarugi A, Francini E. 1930. Apomissia in ”Ochna serratula” Walp. – Nuovo Giorn. Bot. Ital., n. s., 37: 1-250.

Chikkannaiah PS, Mahalingappa MS. 1974. Embryological studies in Ochna squarrosa Linn. – J. Karnatak Univ. Sci. 19: 247-249.

Chirtoiü M. 1918. Lacistemacées et Symplocacées. – Bull. Soc. Bot. Genève XI(10): 350-361.

Chodat R. 1895. Sur la place à attribuer au genre Trigoniastrum. – Bull. Herb. Boissier 3: 136-140.

Chong DKX, Zsuffa L, Aravanopoulos FA. 1995. Genetic relationship between Salix exigua and other North American willows (Salix L.): evidence from allozyme variation. – Biochem. Syst. Ecol. 23: 767-771.

Chopra RN, Mukkada AJ. 1966. Gametogenesis and pseudo-embryosac in Indotristicha ramosissima (Wight) van Royen. – Phytomorphology 16: 182-188.

Chopra S. 1970. Development of female gametophytes in Sapium sebiferum Roxb. – Curr. Sci. 39: 17-18.

Chopra S, Singh RP. 1969. Structure and development of seed in Phyllanthus urinaria L. – J. Indian Bot. Soc. 48: 212-216.

Cicarelli D, Andreucci AC, Pagni AM. 2001a. Translucent glands and secretory canals in Hypericum perforatum L. (Hypericaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. – Ann. Bot. 88: 637-644.

Cicarelli D, Andreucci AC, Pagni AM. 2001b. The black nodules of Hypericum perforatum L. ssp. perforatum: anatomical and histochemical studies during the course of ontogenesis. – Israel J. Plant Sci. 49: 33-40.

Clausen J. 1926. Genetical and cytological investigations on Viola tricolor L. and Viola arvensis Murr. – Hereditas 8: 1-156.

Clausen J. 1927. Chromosome number and relationship of species in the genus Viola. – Ann. Bot. 41: 677-714.

Clausen J. 1964. Cytotaxonomy and distributional ecology of western North American violets. – Madroño 17: 173-204.

Clausen V, Frydenvang K, Koopmann R, Jørgensen LB, Abbiw DK, Ekpe P, Jaroszewski JW. 2002. Plant analysis by butterflies: occurrence of cyclopentenylglycines in Passifloraceae, Flacourtiaceae and Turneraceae and discovery of the novel nonproteinogenic amino acid 2-(3’-cyclopentenyl)glycine in Rinorea. – J. Nat. Prod. 65: 542-547.

Coates D, Cullis CA. 1987. Chloroplast DNA variability among Linum species. – Amer. J. Bot. 74: 260-268.

Collinson ME. 1992. The early fossil history of Salicaceae: a brief review. – Proc. Roy. Soc. Edinb. 98B: 155-167.

Commock T, Campbell KC St E, Meikle J, Francisco-Ortega J, Jestrow B. 2015. Conservation and taxonomic updates for the Jamaican endemic genus Dendrocousinsia (Euphorbiaceae). – Brittonia 67: 87-95.

Connelly WJ, Orth DJ, Smith RK. 1999. Habitat of the riverweed darter, Etheostoma podostemonae Jordan, and the decline of riverweed, Podostemum ceratophyllum, in the tributaries of the Roanoke River, Virginia. – J. Freshwater Ecol. 14: 93-102.

Contreras VR, Scogin R, Philbrick CT. 1993. A phytochemical study of selected Podostemaceae: systematic implications. – Aliso 13: 513-520.

Coode MJE. 1976. Typification of Macaranga Du Petit-Thouars. – Taxon 25: 184.

Cook CDK, Rutishauser R. 2001. Name changes in the Podostemaceae. – Taxon 50: 1163-1167.

Cook CDK, Rutishauser R. 2006. Podostemaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p. p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 304-344.

Cook MT. 1907. The embryology of Rhizophora mangle. – Bull. Torrey Bot. Club 34: 271-277.

Coradin L, Giannasi DE, Prance GT. 1985. Chemosystematic studies of the Chrysobalanaceae I. Flavonoids in Parinari. – Brittonia 37: 169-178.

Cordeiro I. 1992. Flora da Serra do Cipó, Minas Gerais: Euphorbiaceae. – Bol. Bot. Univ. São Paulo 13: 169-217.

Cordeiro I, Carneiro-Torres DS. 2004. A new species of Phyllanthus (Phyllanthaceae) from Chapada Diamantina, Bahia, Brazil. – Bot. J. Linn. Soc. 146: 247-250.

Cordeiro I, Berry PE, Caruzo MBR, Ee BW van. 2008. Croton laceratoglandulosus (Euphorbiaceae s.s.), a new glandular-stipulate species from Brazil and Bolivia, and its systematic position based on molecular analysis. – Bot. J. Linn. Soc. 158: 493-498.

Correia MCR, Ormond WT, Pinheiro MCB, Lima HA de. 1993. Estudo de biologia floral de Clusia criuva Camb. Um caso de mimetismo. – Bradea 6: 209-219.

Craven LA. 1979. Eight new species of Homalium (Flacourtiaceae) from Papuasia. – Brunonia 2: 107-124.

Cremers G. 1977. Architecture végétative de quelques espèces malgaches du genre Euphorbia L. – Bull. Jard. Bot. Natl. Belg. 47: 55-81.

Crepet WL, Daglian CP. 1982. Euphorbioid inflorescences from the Middle Eocene Claiborne formation. – Amer. J. Bot. 69: 258-266.

Crepet WL, Nixon KC. 1998. Fossil Clusiaceae from the Late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollination. – Amer. J. Bot. 85: 1122-1133.

Crété P. 1937. Développement et structure du tegument seminal chez le Radiola linoides Roth. – Bull. Soc. Bot. France 84: 655-659.

Croizat LC. 1936. On the classification of Euphorbia I. How important is the cyathium? – Bull. Torrey Bot. Club 63: 525-532.

Croizat LC. 1937. On the classification of Euphorbia II. How should the cyathium be interpreted? – Bull. Torrey Bot. Club 64: 523-537.

Croizat LC. 1938. Notes of Euphorbiaceae, with a new genus and a new subtribe of the Euphorbieae. – Philipp. J. Sci. (Bot.) 64: 397-412.

Croizat L. 1940a. On the phylogeny of the Euphorbiaceae and some of their presumed allies. – Rev. Univ. (Universidad Católica de Chile, Santiago) 25: 205-220.

Croizat L. 1940b. A significant new species from New Guinea: Euphorbia euonymoclada Croiz., sp. nov. – Bull. Jard. Bot. Buitenzorg, sér. III, 16: 351-357.

Croizat L. 1941a. The tribe Plukenetiinae of the Euphorbiaceae in eastern tropical Asia. – J. Arnold Arbor. 22: 417-431.

Croizat L. 1941b. Notes on the Euphorbiaceae II. 1. The systematic position of the Omphalea. – Bull. Jard. Bot. Buitenzorg, ser. III, 17: 204-208.

Croizat L. 1942a. On certain Euphorbiaceae from the tropical Far East. – J. Arnold Arbor. 23: 29-54.

Croizat L. 1942b. New and critical Euphorbiaceae chiefly from the southeastern United States. – Bull. Torrey Bot. Club 69: 445-460.

Croizat L. 1942c. Peculiarities of the inflorescence in the Euphorbiaceae. – Bot. Gaz. 103: 771-779.

Croizat L. 1943a. New or critical Euphorbiaceae of Brazil. – Trop. Woods 76: 11-14.

Croizat L. 1943b. Novelties in American Euphorbiaceae. – J. Arnold Arbor. 24: 165-189.

Croizat L. 1945. New or critical Euphorbiaceae from the Americas. – J. Arnold Arbor. 26: 181-196.

Croizat L. 1965. An introduction to the subgeneric classification of Euphorbia L., with stress on the South African and Malagasy species I. – Webbia 20: 573-706.

Croizat L. 1972. An introduction to the subgeneric classification of Euphorbia L. with stress on the South African and Malagasy species III. – Webbia 27: 1-221.

Croizat L. 1973. Les Euphorbiacées vue en elles-mêmes, et dans leurs rapports envers l’angiospermie en général. – Mem. Soc. Brot. 23:. 5-206.

Cruz ND de, Sellito Boaventura VM, Sellito YM. 1990. Cytological studies on some species of the genus Clusia L. (Guttiferae). – Rev. Brasil. Genet. 13: 335-345.

Cu J, Perineau QF, Gaset A. 1992. Volatile components of violet leaves. – Phytochemistry 31: 571-573.

Cuatrecasas J. 1950. Studies in South American plants II. – Fieldiana, Bot. 27: 55-113.

Cuatrecasas J. 1958. Prima Flora Colombiana 2. Malpighiaceae. – Webbia 13: 343-664.

Cuatrecasas J. 1961. A taxonomic revision of the Humiriaceae. – Contr. U. S. Natl. Herb. 35: 25-214.

Cuautle M, Rico-Gray V. 2003. The effects of wasps and ants on the reproductive success of the floral nectaried plant Turnera ulmifolia (Turneraceae). – Funct. Ecol. 17: 417-423.

Culwell DE. 1970. A taxonomic study of the section Hypericum in the eastern United States. – Ph.D. diss., University of North Carolina, Chapel Hill, North Carolina.

Cusset C. 1972 [1973]. Les Podostemaceae de Madagascar. – Adansonia, sér. II, 12: 557-568.

Cusset C. 1978. Contribution à l’étude des Podostemaceae 5. Le genre Macropodiella Engl. – Bull. Mus. Natl. Hist. Nat. Paris, sér. V, sect. B, Adansonia, sér. II, 17: 293-303.

Cusset C. 1980. Contribution à l’étude des Podostemaceae 6. Les genres Leiothylax, et Letestuella. – Bull. Mus. Natl. Hist. Nat. Paris, sér. V, sect. B, Adansonia, sér. II, 20: 199-207.

Cusset C. 1983 [1984]. Contribution à l’étude des Podostemaceae 7. Ledermanniella Engl. sous-genre Phyllosoma C. Cusset. – Bull. Mus. Natl. Hist. Nat. Paris, sér. V, sect. B, Adansonia 4: 361-390.

Cusset C. 1984. Contribution à l’étude des Podostemaceae 8. Ledermanniella Engl. sous-grenre Ledermanniella. – Bull. Mus. Natl. Hist. Nat. Paris, sér. VI, sect. B, Adansonia 3: 249-278.

Cusset C. 1992. Contribution à l’étude des Podostemaceae 12. Les genres asiatique. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 14: 13-54.

Cusset C, Cusset G. 1988a. Étude sur les Podostemales 9. Délimitations taxinomiques dans les Tristichaceae. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 10: 149-177.

Cusset C, Cusset G. 1988b. Étude sur les Podostemales 10. Structures florales et végétatives des Tristichaceae. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 10: 179-218.

Cusset C, Cusset G. 1988c. Étude sur les Podostemales 11. Répartition et évolution des Tristichaceae. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 10: 223-262.

Cusset G. 1968. Les vrilles des Passifloracées. – Bull. Soc. Bot. France 115: 45-61.

Cusset G. 1974. Quelques traits remarquables de l’organisation du Thelethylax minutiflora C. Cusset (Podostémacée). – In: Actes 99ème Congrès National des Sociétés Savantes, Besançon, 1974, Sciences, fasc. 2, pp. 177-188.

Cusset G, Cusset C. 1989. Biogéographie évolutive de Tristicha trifaria (Bory ex Willd.) Sprengel. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 11: 39-70.

Dahl AO. 1955. The pollen morphology of several genera excluded from the family Icacinaceae. – J. Arnold Arbor. 35: 159-163.

Dahlgren RMT. 1988. Rhizophoraceae and Anisophylleaceae: summary statement, relationships. – Ann. Missouri Bot. Gard. 75: 1259-1277.

Dahlgren R, Wyk AE van. 1988. Structures and relationships of families endemic to or centered in southern Africa. – Monogr. Syst. Bot. Missouri Bot. Gard. 25: 1-94.

D’Alascio Deschamps R. 1973. Organisation du sac embryonnaire du Linum catharticum L., espèce récoltée en station naturelle; étude ultrastructurale. – Bull. Soc. Bot. France 120: 189-200.

D’Alascio Deschamps R. 1981. Embryologie du Linum catharticum L. Le zygote: étude ultrastructurale. – Bull. Soc. Bot. France 128: 269-278.

Dalziel JM. 1931. The hairs lining the loculi of fruits of species of Parinarium. – Proc. Linn. Soc. London 143: 99.

Dang-Van-Liem. 1962. Recherches sur l’embryogénie des Tricoques. – Ph.D. diss., l’Université de Paris, France.

D’Arcy WG. 1978. Dystovomita, a new genus of neotropical Guttiferae. – Ann. Missouri Bot. Gard. 65: 694-697.

Da Silva MJ, De Sales MF. 2008. Reinstatement of Phyllanthus retroflexus Brade (Phyllanthaceae). – Bot. J. Linn. Soc. 158: 78-81.

Dathan ASR, Singh D. 1971. Embryology and seed-development in Bergia L. – J. Indian Bot. Soc. 50: 362-370.

Dathan ASR, Singh D. 1973a. Structure and development of ovule and seed in Flacourtia indica (Burn. F.) Merr. – Proc. Indian Acad. Sci., Sect. B, 39: 172-179.

Dathan ASR, Singh D. 1973b. Structure and development of seed coat in Viola spp. – J. Indian Bot. Soc. 52: 119-126.

Dathan ASR, Singh D. 1973c. Development and structure of seed in Tacsonia Juss. and Passiflora L. – Proc. Indian Acad. Sci., Sect. B, 77: 5-18.

Dathan ASR, Singh D. 1979. Structure and development of female gametophyte and seed in Hydnocarpus laurifolia (Dennst.) Sleumer. – J. Indian Bot. Soc. 59: 256-263.

Daumann E. 1972. Zur Blütenmorphologie und Bestäubungsökologie von Mercurialis L. – Preslia 44: 308-315.

Davis CC. 2002. Madagasikaria (Malpighiaceae): a new genus from Madagascar with implications for floral evolution in Malpighiaceae. – Amer. J. Bot. 89: 699-706.

Davis CC. 2008. Floral evolution: dramatic size change was recent and rapid in the world’s largest flowers. – Curr. Biol. 18: R1102-R1104.

Davis CC, Anderson WR. 2010. A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology. – Amer. J. Bot. 97: 2031-2048.

Davis CC, Chase MW. 2004. Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to Saxifragales. – Amer. J. Bot. 91: 262-273.

Davis CC, Wurdack KJ. 2004. Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. – Science 305: 676-678.

Davis CC, Anderson WR, Donoghue MJ. 2001. Phylogeny of Malpighiaceae: evidence from chloroplast ndhF and trnL-F nucleotide sequences. – Amer. J. Bot. 88: 1830-1846.

Davis CC, Bell CD, Fritsch PW, Mathews S. 2002. Phylogeny of Acridocarpus-Brachylophon (Malpighiaceae): implications for Tertiary tropical floras and Afroasian biogeography. – Evolution 56: 2395-2405.

Davis CC, Bell CD, Mathews S, Donoghue MJ. 2002. Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. – Proc. Natl. Acad. Sci. U.S.A. 99: 6833-6837.

Davis CC, Fritsch PW, Bell CD, Mathews S. 2004. High-latitude Tertiary migrations of an exclusively tropical clade: evidence from Malpighiaceae. – Intern. J. Plant Sci. 165(Suppl.): S107-S121.

Davis CC, Anderson WR, Wurdack KJ. 2005. Gene transfer from a parasitic flowering plant to a fern. – Proc. Roy. Soc. London, Sect. B, Biol. Sci. 272: 2237-2242.

Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. 2005. Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. – Amer. Natur. 165: E36-E65.

Davis CC, Latvis M, Nickrent DL, Wurdack KJ, Baum DA. 2007. Floral gigantism in Rafflesiaceae. – Science 315: 1812.

Davis CC, Endress PK, Baum DA. 2008. The evolution of floral gigantism. – Curr. Opin. Plant Biol. 11: 49-57.

Dechamps R, Mosango M, Robbecht E. 1985. Études systématiques sur les Hymenocardiaceae d’Afrique: la morphologie du pollen et l’anatomie du bois. – Bull. Jard. Bot. État Bruxelles 55: 473-485.

Deginani NB. 2001. Las especies argentinas del género Passiflora (Passifloraceae). – Darwiniana 39: 43-129.

Deginani NB, Escobar A. 2002. Números cromosómicos de especies de Passiflora (Passifloraceae). – Hickenia 3: 143-144.

Dehay C. 1935. L’Appareil libéro-ligneux foliaire des Euphorbiacées. – Ann. Sci. Nat. Bot., sér. X, 17: 147-296.

Dehgan B. 1980. Application of epidermal morphology to taxonomic delimitations in the genus Jatropha L. (Euphorbiaceae). – Bot. J. Linn. Soc. 80: 257-278.

Dehgan B. 1982. Comparative anatomy of the petiole and infrageneric relationships in Jatropha (Euphorbiaceae). – Amer. J. Bot. 69: 1283-1295.

Dehgan B. 1984. Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). – Syst. Bot. 9: 467-478.

Dehgan B, Craig ME. 1978. Types of laticifers and crystals in Jatropha and their taxonomic implications. – Amer. J. Bot. 65: 345-352.

Dehgan B, Schutzman B. 1994. Contributions toward a monograph of neotropical Jatropha: phenetic and phylogenetic analyses. – Ann. Missouri Bot. Gard. 81: 349-367.

Dehgan B, Webster GL. 1978. Three new species of Jatropha from western Mexico. – Madroño 25. 30-39.

Dehgan B, Webster GL. 1979. Morphology and infrageneric relationships of the genus Jatropha (Euphorbiaceae). – Univ. Calif. Publ. Bot. 74: 1-73.

Dejax J. 1987. Sur la presence de grains de pollen à sculpture crotonoide dans le Crétacé inférieur de Congo. – Mém. Trav. Inst. Montpellier, École Prat. Haut. Études 17: 253-271.

Delay C, Mangenot G. 1960. Le développement de la graine chez Allanblackia floribunda Oliv. – Ann. Sci. Nat. XII, Bot. 1: 387-440.

Delevoryas T. 1964. Two petrified angiosperms from the Upper Cretaceous of South Dakota. – J. Paleontology 38: 584-586.

Delle Monache F, Delle Monache G, Gáes-Baitz E. 1991. Chemistry of the Clusia genus 6. Prenylated benzophenones from Clusia sandiensis. – Phytochemistry 30: 2003-2005.

Demchenko NI. 1973. On the morphology of pollen of the family Chrysobalanaceae. – In: Trudy 3rd International Palynological Conference, USSR, Novosibirsk, 1971, Leningrad, pp. 69-73. [In Russian]

De Melo NE, Guerra M. 2003. Variability of the 5S and 45S rDNA sites in Passiflora L. (Passifloraceae). – Ann. Bot. 92: 309-316.

De Melo NE, Cervi AC, Guerra M. 2001. Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). – Plant Syst. Evol. 226: 69-84.

Denis M. 1921. Les Euphorbiées des Îles Australes d’Afrique. – In: Imprimerie Nemourienne, Nemours, pp. 66-69.

De-Nova JA, Sosa V. 2007. Phylogeny and generic delimitation of Adelia (Euphorbiaceae) inferred from molecular and morphological data. – Taxon 56: 1027-1036.

De-Nova JA, Sosa V, Wurdack KJ. 2006. Phylogenetic relationships and the description of a new species of Enriquebeltrania (Euphorbiaceae s.s.): an enigmatic genus endemic to Mexico. – Syst. Bot. 31: 533-546.

De-Nova JA, Sosa V, Steinmann VW. 2007. A synopsis of Adelia (Euphorbiaceae s.s.). – Syst. Bot. 32: 583-595.

De-Paula OC, Sajo M das G. 2011. Morphology and development of the anthers and ovules in Croton and Astraea (Euphorbiaceae). – Nord. J. Bot. 29: 505-511.

De-Paula OC, Sajo MG, Prenner G, Cordeiro I, Rudall PJ. 2011. Morphology, development and homologies of the perianth and floral nectaries in Croton and Astraea (Euphorbiaceae-Malpighiales). – Plant Syst. Evol. 292: 1-14.

Descoings B. 1960. Révision de Dichapetalum de Madagascar. – Mém. Inst. Sci. Madag. B9: 63-120.

Dess B, McComb AJ. 1974. Resin production and glandular hairs in Beyeria viscosa (Labill.) Miq. Euphorbiaceae). – Aust. J. Bot. 25: 195-210.

Dettmann ME, Clifford HT. 2002. Spondylostrobus F. Mueller: operculate fruits of an extinct dicotyledon from the mid-Tertiary of Australia. – Rev. Palaeobot. Palynol. 122: 219-237.

De Wilde WJJO. 1971a. The systematic position of the tribe Paropsieae, in particular the genus Ancistrothyrsis, and a key to the genera of Passifloraceae. – Blumea 19: 99-104.

De Wilde WJJO. 1971b. A monograph of the genus Adenia Forsk. (Passifloraceae). – Meded. Landbouwh. Wageningen 71(18): 1-281.

De Wilde WJJO. 1974. The genera of tribe Passifloreae (Passifloraceae) with special reference to flower morphology. – Blumea 22: 31-35.

De Wilde WJJO. 1975. Passifloraceae. – In: Polhill RM (ed), Flora of tropical East Africa, Crown Agents for Oversea Governments and Aministrations, London, pp. 1-70.

De Wildeman E. 1919. Notes sur les espèces Africaines du genre Dichapetalum Thonn. – Rév. Zool. Afr. 4(2), Suppl. Bot. 1-75.

Diaz DMV. 2013. Multivariate analysis of morphological and anatomical characters of Calophyllum (Calophyllaceae) in South America. – Bot. J. Linn. Soc. 171: 587-626.

Dick CW, Abdul-Salim K, Bermingham E. 2003. Molecular systematics reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. – Amer. Natur. 160: 691-703.

Dickison WC. 1990a. A study of floral morphology of the Caryocaraceae. – Bull. Torrey Bot. Club 117: 123-137.

Dickison WC. 1990b. The morphology and relationships of Medusagyne (Medusagynaceae). – Plant Syst. Evol. 171: 27-55.

Dickison WC. 1990c. An additional note on the floral morphology and affinities of Medusagyne oppositifolia (Medusagynaceae). – Brittonia 42: 191-196.

Dickison WC, Weitzman AL. 1996. Comparative anatomy of the young stem, node, and leaf of Bonnetiaceae, including observations on a foliar endodermis. – Amer. J. Bot. 83: 405-418.

Dickison WC, Weitzman AL. 1998. Floral morphology and anatomy of Bonnetiaceae. – J. Torrey Bot. Soc. 125: 268-286.

Diederichsen A, Richards K. 2003. Cultivated flax and the genus Linum. – In: Muir AD, Westcott ND (eds), Flax: The genus Linum, Routledge, London, New York, pp. 22-54.

Dilcher DL, Manchester SR. 1988. Investigations of angiosperms from the Eocene of North America: a fruit belonging to the Euphorbiaceae. – Tertiary Res. 9: 45-58.

Dįnç M, Yildirimli Ş. 2002. A new species of Viola (Violaceae) from Turkey. – Bot. J. Linn. Soc. 138: 483-487.

Dįnç M, Bağci Y, Yildirimli Ş. 2003. A new species of Viola L. (Violaceae) from South Anatolia. – Bot. J. Linn. Soc. 141: 477-482.

Ding Hou 1957. A conspectus of the genus Bruguiera (Rhizophoraceae). – Nova Guinea, n.s. 8: 163-171.

Ding Hou. 1958a. Rhizophoraceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(4), Noordhoff-Kolff N. V., Djakarta, pp. 429-493.

Ding Hou. 1958b. A conspectus of the genus Bhesa (Celastraceae). – Blumea 4: 149-153.

Ding Hou 1960. A review of the genus Rhizophora with special reference to the Pacific species. – Blumea 10: 625-634.

Dingler H. 1885. Die Flachsprosse der Phanerogamen. Erstes Heft: Phyllanthus sect. Xylophylla. – T. Ackermann, München.

Dissanayake D. 1999. Phylogenetic research on the family Chrysobalanaceae. – Ph.D. thesis, Department of Botany, University of Reading, United Kingdom.

Djarwaningsih T. 2004. Revision of Pimelodendron (Euphorbiaceae) in Malesia. – Blumea 49: 407-423.

Dobson III FH. 1983. Novelties in Bunchosia (Malpighiaceae). – Syst. Bot. 8: 269-276.

Dominguez CA, Bullock SH. 1989. La reproducción de Croton suberosus (Euphorbiaceae) en luz y sombre. – Rev. Biol. Trop. 37: 1-10.

Dominguez CA, Dirzo R, Bullock SH. 1989. On the function of floral nectar in Croton suberosus (Euphorbiaceae). – Oikos 56: 109-114.

Dorn RD. 1976. A synopsis of American Salix. – Can. J. Bot. 54: 2769-2789.

Dorn RD. 1998. A taxonomic study of Salix section Longifoliae (Salicaceae). – Brittonia 50: 193-210.

Dorn RD. 2000. A taxonomic study of Salix sections Mexicanae and Viminella subsection Sitchenses (Salicaceae) in North America. – Brittonia 52: 1-19.

Dorr LJ. 1999. A new combination in Croizatia (Euphorbiaceae). – Sida 18: 831-836.

Dorsey BL, Haevermans T, Aubriot X, Morawetz JJ, Riina R, Steinmann VW, Berry PE. 2013. Phylogenetics, morphological evolution, and classification of Euphorbia subgenus Euphorbia. – Taxon 62: 291-315.

D’Ovidio R. 1992. Nucleotide sequence of a 5.8S rDNA gene and the internal transcribed spacers from Populus deltoides. – Plant Mol. Biol. 19: 1069-1072.

Doweld AB. 1998. On the phylogenetic relationships of Medusagyne (Medusagynaceae) as evidenced by the structure of its fruits and seeds. – Bot. Žurn. 83: 54-68. [In Russian]

Dransfield J, Whitmore TC. 1970. A Podostemacea new to Malaya: Indotristicha malayana. – Blumea 18: 152-155.

Dressler RL. 1954. The genus Tetracoccus (Euphorbiaceae). – Rhodora 56: 45-61.

Dressler RL. 1957. The genus Pedilanthus (Euphorbiaceae). – Contr. Gray Herb. 182: 1-188.

Dressler RL. 1962. A synopsis of Poinsettia. – Ann. Missouri Bot. Gard. 48: 329-341.

Dressler S. 1996a. Proposal to conserve the name Bridelia (Euphorbiaceae) with a conserved spelling. – Taxon 45: 337-338.

Dressler S. 1996b. The genus Bridelia in Malesia and Indochina. – Blumea 41: 263-331.

Dressler S. 1996c. Bridelia (Euphorbiaceae) in New Guinea with a description of a new species. – Kew Bull. 51: 601-607.

Ducke A. 1934. Anomalocalyx. – Notizbl. Bot. Mus. Gart. Berlin-Dahlem 11: 344-345.

Duke NC. 2010. Overlap of eastern and western mangroves in the south-western Pacific: hybridization of all three Rhizophora (Rhizophoraceae) combinations in New Caledonia. – Blumea 55: 171-188.

Dulberger R. 1973. Distyly in Linum pubescens and L. mucronatum. – Bot. J. Linn. Soc. 66: 117-126.

Dulberger R. 1974. Structural dimorphism of stigmatic papillae in distylous Linum species. – Amer. J. Bot. 61: 238-243.

Dulberger R. 1981. Dimorphic exine sculpturing in three distylous species of Linum (Linaceae). – Plant Syst. Evol. 139: 113-119.

Dunthorn MS. 2002. Anatomy and palynology of Mammea L. (Clusiaceae). – M.Sc. thesis, University of Missouri, St. Louis, Missouri.

Dunthorn MS. 2004. Cryptic dioecy in Mammea (Clusiaceae). – Plant Syst. Evol. 249: 191-196.

Dunthorn MS. 2009. Foliar anatomy and fiber motifs in Mammea (Clusiaceae, Kielmeyeroideae). – Plant Syst. Evol. 280: 153-166.

Dupuy P, Guédès M. 1975. Placentation and possible partial stachyospory in Hypericum sect. Eremanthe. – Flora 164: 37-49.

Durand B. 1957. L’organisation de l’androecée des Mercurialis. – Compt. Rend. Acad. Sci. Paris 244: 650-653.

Durkee LT, Gaal DJ, Reisner H. 1981. The floral and extrafloral nectaries of Passiflora I. The floral nectary. – Amer. J. Bot. 68: 453-462.

Durkee LT, Baird CW, Cohen PF. 1984. Light and electron microscopy of the resin glands of Passiflora foetida (Passifloraceae). – Amer. J. Bot. 71: 596-602.

Dutt MK. 1942. Development of the microspores and the nuclear behaviour in the tapetal cells of Putranjiva roxburghii, Wall. – Sci. & Cult. 8: 309-310.

Dwyer JD. 1943. The taxonomy of the monogeneric tribe Elvasieae (Ochnaceae). – Bull. Torrey Bot. Club 70: 42-49.

Dwyer JD. 1944a. The taxonomy of the Mexican, Central American and West Indian species of Ouratea (Ochnaceae). – Lloydia 7: 121-145.

Dwyer JD. 1944b. Philacra, a new genus of the Ochnaceae. – Brittonia 5: 124-127.

Dwyer JD. 1944c. A discussion of the ochnaceous genus Fleurydora A. Chev. and the allied genera of the Luxemburgieae. – Bull. Torrey Bot. Club 71: 175-178.

Dwyer JD. 1945. The taxonomy of the genus Sauvagesia (Ochnaceae). – Bull. Torrey Bot. Club 72: 521-540.

Dwyer JD. 1946. The taxonomy of Godoya R. & P., Rhytidanthera van Tieghem, and Cespedezia Goudot (Ochnaceae). – Lloydia 9: 45-61.

Dwyer JD. 1951. The genus Luxemburgia (Ochnaceae). – Lloydia 14: 82-97.

Dwyer JD. 1964. The taxonomy of Lavradia Vell. (Ochnaceae). – Bull. Jard. Bot. Ètat Bruxelles 34: 507-518.

Dwyer JD. 1965. The Amazonian genus Wallacea Spruce ex Hook. f. (Ochnaceae). – Bull. Jard. Bot. État Bruxelles 35: 85-90.

Eckardt NA, Baum D. 2010. The podostemad puzzle: the evolution of unusual morphology in the Podostemaceae. – The Plant Cell 22: 2104.

Eckenwalder JE. 1977. North American cottonwoods (Populus, Salicaceae) of sections Abaso and Aigeiros. – J. Arnold Arbor. 58: 193-207.

Eckenwalder JE. 1980. Foliar heteromorphism in Populus (Salicaceae), a source of confusion in the taxonomy of Tertiary leaf remains. – Syst. Bot. 5: 366-383.

Eckenwalder JE. 1996. Salix. – In: Stettler RF (ed), Biology of Populus and its implications for management and conservation, Natl. Res. Council Canada Res. Press, Ottawa, pp. 7-32.

Ee BW van, Berry PE. 2009. A phylogenetic and taxonomic review of Croton (Euphorbiaceae s.s.) on Jamaica including the description of Croton jamaicensis, a new species of Section Eluteria. – Syst. Bot. 34: 129-140.

Ee BW van, Berry PE. 2010. Taxonomy and phylogeny of Croton section Heptallon (Euphorbiaceae). – Syst. Bot. 35: 151-167.

Ee BW van, Berry PE. 2011. Croton section Pedicellati (Euphorbiaceae), a novel New World group, and a new subsectional classification of Croton section Lamprocroton. – Syst. Bot. 36: 88-98.

Ee BW van, Berry PE, Riina R, Amaro JEG. 2008. Molecular phylogenetics and biogeography of the Caribbean-centered Croton subgenus Moacroton (Euphorbiaceae s.s.). – Bot. Rev. 74: 132-165.

Ee BW van, Riina R, Berry PE. 2011. A revised infrageneric classification and molecular phylogeny of New World Croton (Euphorbiaceae). – Taxon 60: 791-823.

Ee BW van, Forster PI, Berry PE. 2015. Phylogenetic relationships and a new sectional classification of Croton (Euphorbiaceae) in Australia. – Aust. Syst. Bot. 28: 219-233.

Ehrendorfer F, Morawetz W, Dawe J. 1984. The Neotropical angiosperm families Brunelliaceae and Caryocaraceae: first karyosystematical data and affinities. – Plant Syst. Evol. 145: 183-191.

Ehrenfeld J. 1976. Reproductive biology of three species of Euphorbia subgenus Chamaesyce (Euphorbiaceae). – Amer. J. Bot. 63: 406-413.

Elffers J, Taylor P. 1956. Cavacoa aurea (Cavaco) Léonard. – Hooker’s Icon. Plant 36: t. 3561.

El-Ghazaly G. 1989. Pollen and orbicule morphology of some Euphorbia species. – Grana 28: 243-259.

El-Ghazaly GA, Chaudhary R. 1993. Pollen morphology of some species of the genus Euphorbia L. – Rev. Palaeobot. Palynol. 78: 293-319.

El-Ghazaly G, Raj B. 1986. A contribution to the pollen morphology of Andrachne (Euphorbiaceae). – Pollen Spores 28: 297-310.

Elias MG. 2006. El género Alchornea (Euphorbiaceae) en Mesoamérica. – Tesis de Licenciatura, Facultad de Ciencias, UNAM, México.

Elias MG, Martínez M, Espinosa-Matias S. 2008. Caracteres foliares del género Alchornea Sw. (Euphorbiaceae) en Mesoamérica. – Candollea 63: 39-55.

Elias TS, Rozich W, Newcombe L. 1975. The foliar and floral nectaries of Turnera ulmifolia L. – Amer. J. Bot. 62: 570-576.

Elmer ADE. 1910. Euphorbiaceae collected on Sibuyan Island. – Leafl. Philipp. Bot. 3: 903-931.

Elo Manga SS, Tih AE, Ghogomu RT, Blond A, Bodo B. 2009. Biflavonoid constituents of Campylospermum mannii. – Biochem. Syst. Ecol. 37: 402-404.

Emmons LH, Nias J, Brium A. 1991. The fruit and consumers of Rafflesia keithii (Rafflesiaceae). – Biotropica 23: 197-199.

Endress PK, Voser P. 1975. Zur Androeciumanlage und Antherenentwicklung bei Caloncoba echinata (Flacourtiaceae). – Plant Syst. Evol. 123: 241-253.

Endress PK, Davis CC, Matthews ML. 2013. Advances in the floral structural characterization of the major subclades of Malpighiales, one of the largest orders of flowering plants. – Ann. Bot. 111: 969-985.

Engler A. 1889. Lacistemaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1), W. Engelmann, Leipzig, pp. 14-15.

Engler A. 1895a. Quiinaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 165-167.

Engler A. 1895b. Guttiferae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 195-242; Engler A. 1897. Nachträge zu III(6), pp. 247-250.

Engler A. 1896a. Dichapetalaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 345-351.

Engler A. 1896b. Icacinaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 233-257.

Engler A. 1897. Balanopsidaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(1), pp. 114-116.

Engler A. 1903. Linaceae africanae. – Engl. Bot. Jahrb. Syst. 23: 104-110.

Engler A. 1912. Panda oleosa, ein Ölsamenbaum Westafrikas. – Notizbl. Königl. bot. Gart. Mus. Berlin 5: 274-276.

Engler A. 1925. Quiinaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 106-108.

Engler A. 1926. Beiträge zur Flora von Afrika LII. Podostemonaceae Africanae IV. – Engl. Bot. Jahrb. Syst. 60: 451-467.

Engler A. 1930. Podostemonaceae. – In: Engler A, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 18a, W. Engelmann, Leipzig, pp. 3-68, 483-484.

Engler A (†). 1931. Simarubaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 359-405.

Engler A, Keller R. 1925. Guttiferae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 154-237.

Engler A (†), Krause K. 1931. Dichapetalaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19c, W. Engelmann, Leipzig, pp. 1-11.

Engler A, Melchior H. 1925. Medusagynaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 50-52.

English S, Greenaway W, Whatley FR. 1991. Analysis of phenolics of Populus trichocarpa bud extract by GC-MS. – Phytochemistry 30: 531-533.

Erben M. 1985. Cytotaxonomische Untersuchungen an südosteuropäischen Viola-Arten der Sektion Melanium. – Mitt. Bot. Staatssamml. München 21: 339-740.

Erben M. 1996. The significance of hybridization on the forming of species in the genus Viola. – Bocconea 5: 113-118.

Erdelská O. 1967. Type of endosperm of the species Linum austriacum L. – Biologia (Bratislava) 22: 172-176.

Erdtman G. 1955. Pollen grains of Ctenolophon from tertiary deposits in India. – Bot. Not. 108: 138-145.

Erlanson EW, Hermann FJ. 1928. The morphology and cytology of perfect flowers of Populus tremuloides. – Mich. Acad. Sci. 8: 97-110.

Ernst A, Schmid E. 1913. Über Blüthe und Frucht von Rafflesia. – Ann. Jard. Bot. Buitenzorg, sér. II, 12: 1-58.

Ernst E (ed). 2003. Hypericum. The genus Hypericum. Medicinal and aromatic plants – Industrial Profiles, 31. – Taylor & Francis, London, New York.

Escobar LK. 1986. New species and varieties of Passiflora (Passifloraceae) from the Andes of South America. – Syst. Bot. 11: 88-97.

Escobar LK. 1994. Two new species and a key to Passiflora subg. Astrophea. – Syst. Bot. 19: 203-210.

Espinoza de Pernía N, Welle BJH ter. 1998. Flora of the Guianas. Ser. A: Phanerogams. Fasc. 21. Wood and timber. Euphroniaceae. – Royal Botanic gardens, Kew, pp. 81-83.

Esser H-J. 1994. Systematische Studien an den Hippomaneae Adr. Jussieu ex Bartling (Euphorbiaceae), insbesondere den Mabeinae Pax & K. Hoffm. – Ph.D. diss., Universität Hamburg, Germany.

Esser H-J. 1996a. Proposal to conserve the name Homalanthus (Euphorbiaceae) with a conserved spelling. – Taxon 45: 555-556.

Esser H-J. 1996b. Glyphostylus (Euphorbiaceae, Hippomaneae) re-examined. – Nord. J. Bot. 16: 579-581.

Esser H-J. 1999. A partial revision of the Hippomaneae (Euphorbiaceae) in Malesia. – Blumea 44: 149-215.

Esser H-J. 2001a. Tribes Hippomaneae, Pachystromateae & Hureae. – In: Radcliffe-Smith A, Genera Euphorbiacearum, Royal Botanic Gardens, Kew.

Esser H-J. 2001b. New combinations in African Shirakiopsis (Euphorbiaceae). – Kew Bull. 56: 1017-1018.

Esser H-J. 2003a. Variation in fruit characters of Euphorbiaceae – is there another subfamily? – Palm. Hortus Francofurtensis 7: 149.

Esser H-J. 2003b. Fruit characters in Malesian Euphorbiaceae. – Telopea 10: 169-177.

Esser H-J. 2012. The tribe Hippomaneae (Euphorbiaceae) in Brazil. – Rodriguésia 63: 209-225.

Esser H-J. 2017. New species of Gymnanthes (Euphorbiaceae) from Bolivia and Colombia, and taxonomic notes on the genus in Venezuela. – Willdenowia 47: 217-224.

Esser H-J, Taylor SE. 1983. Pro-inflammatory, tumour-promoting and anti-tumour diterpenes of the families Euphorbiaceae and Thymelaeaceae. – Prog. Chem. Org. Nat. Prod. 44: 1-99.

Esser H-J, Welzen PC van. 2001. Colobocarpos, a new genus of South-East Asian Euphorbiaceae. – Kew Bull. 56: 657-659.

Esser H-J, Welzen PC van, Djarwaningsih T. 1997. A phylogenetic classification of the Malesian Hippomaneae (Euphorbiaceae). – Syst. Bot. 22: 617-628.

Esser H-J, Berry PE, Riina R. 2009. EuphORBia: a global inventory of the spurges. – Blumea 54: 11-12.

Estabrook GF, Gates B. 1984. Character analysis in the Banisteriopsis campestris complex (Malpighiaceae), using spatial autocorrelation. – Taxon 33: 13-25.

Estrada-Chavarria A. 2000. Chiangiodendrum mexicanum Wendt (Flacourtiaceae), un nuevo registro para la flora arborescente de Costa Rica. – Brenesia 54: 77-80.

Evans FJ. 1986. Macrocyclic diterpenes of the family Euphorbiaceae. – In: Evans FJ (ed), Naturally occurring phorbol esters, CRC Press, Boca Raton, Florida, pp. 139-170.

Evans FJ, Kinghorn AD. 1977. A comparative phytochemical study of the diterpenes of some species of the genera Euphorbia and Elaeophorbia (Euphorbiaceae). – Bot. J. Linn. Soc. 74: 23-35.

Evans FJ, Taylor SE. 1983. Pro-inflammatory, tumour-promoting and anti-tumour diterpenes of the families Euphorbiaceae and Thymelaeaceae. – Progr. Chem. Org. Nat. Prod. 44: 1-99.

Evans M, Aubriot X, Hearn D, Lanciaux M, Lavergne S, Cruaud C, Lowry PP, Haevermans T. 2014. Insights on the evolution of plant succulence from a remarkable radiation in Madagascar (Euphorbia). – Syst. Biol. 63: 697-711.

Exell AW. 1963. 42. Irvingiaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, p. 220.

Exell AW, Robson NKB. 1960. New species of Polygala and Garcinia from tropical Africa. – Bol. Soc. Brot., ser. II, 34: 93-97.

Fabijan DM, Packer JG, Denford KE. 1987. The taxonomy of the Viola nuttallii complex. – Can. J. Bot. 65: 2562-2580.

Faivre-Rampant P. 1992. Réconnaissance d’espèces, de clones et d’hybrides de peupliers grace au polymorphisme des genes nucléaires codant pur les ARN ribosomiques: hypotheses sur l’évolution du genre Populus. – Ph.D. diss., l’Université Blaise Pascal, Clermont-Ferrand II, France.

Fan GS. 1990. A preliminary study on Flacourtiaceae from China. – J. Wuhan Bot. Res. 8: 131-141.

Farnsworth NR, Blomster RN, Meser WM, King JC, Persinos GJ, Wilkes JD. 1969. A phytochemical and biological review of the genus Croton. – Lloydia 32: 1-28.

Farron C. 1957. Contribution à la cytologie des Ouratea d’Afrique occidentale française. – Ber. Schweiz. Bot. Ges. 676: 26-32.

Farron C. 1963. Contribution à la taxinomie des Ourateeae Engl. – Bull. Soc. Bot. Suisse 73: 196-217.

Farron C. 1985. Les Ouratinae (Ochnaceae) d’Afrique continentale. Cartes de distribution et clés de determination de tous les genres et espèces. – Bot. Helv. 95: 59-72.

Fatemi M, Gross CL, Bruhl JJ. 2007. The first phenetic analysis of species limits in Bertya (Euphorbiaceae). – Aust. Syst. Bot. 20: 448-463.

Fay MF, Swensen SM, Chase MW. 1997. Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). – Kew Bull. 52: 111-120.

Feio AC, Riina R, Meira RMSA. 2016. Secretory structures in leaves and flowers of two dragon’s blood Croton (Euphorbiaceae): new evidence and interpretations. – Intern. J. Plant Sci. 177: 511-522.

Feio AC, Ore-Rengifo MI, Berry PE, Riina R. 2018. Four new species of dragon’s blood Croton (Euphorbiaceae) from South America. – Syst. Bot. 43: 212-220.

Feng M. 2005. Floral morphogenesis and molecular systematics of the family Violaceae. – PhD diss., Ohio University.

Feres F. 2001. O gênero Luxemburgia A. St.-Hil. (Ochnaceae) – revisão taxonômica e estudo cladístico. – Dissertação de Mestrado, Universidade de Campinas, Brazil.

Fernandes A, Fernandes R. 1978. 84. Passifloraceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 368-411.

Fernandes R. 1975. Turneraceae africanae: notulae systematicae et taxa nova. – Bol. Soc. Brot. 49: 13-27.

Fernandes R. 1978. 83. Turneraceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 348-368.

Fernandes VF, Thadeo M, Dalvi VC, Marquete R, Meira RMSA. 2016. Colleters in Casearia (Salicaceae): a new interpretation for the theoid teeth. – Bot. J. Linn. Soc. 181: 682-691.

Fernández A. 1987. Estudios cromosómicos en Turnera y Piriqueta (Turneraceae). – Bonplandia 6: 1-21.

Fernández C. 1984. Estudios sobre el género Viola L. en la Península Ibérica I. – Cariologia Fontqueria 5: 23-32.

Fernández-Alonso JL, Pérez-Zabala JA, Idarraga-Piedrahita A. 2000. Isidodendron, un nuevo género neotropical de árboles de la familia Trigoniaceae. – Rev. Acad. Colomb. Ci. 24: 347-357.

Fernando ES, Ong PS. 2005. The genus Rafflesia R. Br. (Rafflesiaceae) in the Philippines. – Asia Life Sci. 14: 263-270.

Fernando ES, Gadek PA, Quinn CJ. 1995. Simaroubaceae, an artificial construct: evidence from rbcL sequence variation. – Amer. J. Bot. 82: 92-103.

Feuillet C. 2002. A new series and three new species of Passiflora subgenus Astrophea from the Guianas. – Brittonia 54: 18-29.

Feuillet C, MacDougal JM. 2004. A new infrageneric classification of Passiflora L. (Passifloraceae). – Passiflora 13: 34-35, 37-38.

Feuillet C, MacDougal JM. 2006. Passifloraceae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p. p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 270-281.

Fiala B, Meyer U, Hashim R, Maschwitz U. 2011. Pollination systems in pioneer trees of the genus Macaranga (Euphorbiaceae) in Malaysian rainforests. – Biol. J. Linn. Soc. 103: 935-953.

Fiaschi P, Cordeiro I. 2005. Discocarpus pedicellatus, a new species of Phyllanthaceae (Euphorbiaceae s.l.) from southern Bahia, Brazil. – Brittonia 57: 248-251.

Fiaschi P, Groppo M. 2008. Kuhlmanniodendron Fiaschi & Groppo, a new eastern Brazilian genus of Achariaceae sensu lato segregated from Carpotroche Endl. (formerly included in Flacourtiaceae). – Bot. J. Linn. Soc. 157: 103-109.

Figier J. 1968. Étude infrastructurale et cytochimique des glandes pétiolaires de Mercurialis annua L. Essai d’interpretation en rapport avec la secretion. – Compt Rend. Acad. Sci. Paris D267: 491-494.

Filho WW, Da Rocha AI, Yoshida M, Gottlieb OR. 1985. Ellagic acid derivatives from Rhabdophyllum macrophyllum. – Phytochemistry 24: 1991-1997.

Fišer Pečnikar Ž, Kulju KKJ, Sierra SEC, Baas P, Welzen PC van. 2012. Leaf anatomy of Mallotus and the related genera Blumeodendron and Hancea (Euphorbiaceae sensu stricto). – Bot. J. Linn. Soc. 169: 645-676.

Fisher MJ. 1928. The morphology and anatomy of the flowers of the Salicaceae. – Amer. J. Bot. 15: 307-326, 372-394.

Fitzgerald JS. 1965. (+)-hygroline, the major alkaloid of Carallia brachiata (Rhizophoraceae). – Aust. J. Chem. 18: 589-591.

Floret J-J. 1974. Comiphyton genre nouveau Gabonais, Rhizophoraceae-Macarisieae. – Adansonia, sér. II, 14: 499-506.

Floret J-J. 1976. À propos de Comiphyton gabonense (Rhizophoraceae-Macarisieae). – Adansonia, sér. II, 16: 39-49.

Floret J-J. 1988. Cassipourea Aublet (Rhizophoraceae-Macarisieae): organisation florale et divisions subgénériques. – Adansonia, sér. IV, 10: 25-45.

Focke WO. 1894. Rosaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(3), W. Engelmann, Leipzig, pp. 1-61.

Focke WO. 1895. Eucryphiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 129-131.

Forman LL. 1965. A new genus of Ixonanthaceae with notes on the family. – Kew Bull. 19: 517-526.

Forman LL. 1966. The reinstatement of Galearia Zoll. & Mor. and Microdesmis Hook. f. in the Pandaceae. With appendices by C. R. Metcalfe and N. Parameswaran. – Kew Bull. 20: 309-321.

Forman LL. 1968. The systematic position of Panda Pierre. – Proc. Linn. Soc. London 179: 269-270.

Forman LL. 1971. A synopsis of Galearia Zoll. & Mor. (Pandaceae). – Kew Bull. 26: 153-165.

Forster PI. 1994. A taxonomic revision of Tragia (Euphorbiaceae) in Australia. – Aust. Syst. Bot. 7: 377-383.

Forster PI. 1995. Sankowskya, a new genus of Euphorbiaceae (Dissiliariinae) from the Australian Wet Tropics. – Austrobaileya 4: 329-335.

Forster PI. 1996. A taxonomic revision of Aleurites J. R. Forst. & G. Forst. (Euphorbiaceae) in Australia and New Guinea. – Muelleria 9: 5-13.

Forster PI. 1997a. A taxonomic revision of Austrobuxus Miq. (Euphorbiaceae: Dissiliariinae) in Australia. – Austrobaileya 4: 619-626.

Forster PI. 1997b. A taxonomic revision of Drypetes Vahl (Euphorbiaceae) in Australia. – Austrobaileya 4: 477-494.

Forster PI. 2003. A taxonomic revision of Croton L. (Euphorbiaceae) in Australia. – Austrobaileya 6: 349-436.

Forster PI. 2005. A taxonomic revision of Actephila Blume (Euphorbiaceae/Phyllanthaceae) in Australia. – Austrobaileya 7: 57-98.

Fosberg FR. 1977. A fossil Garcinia fruit from the New Hebrides, Melanesia. – Pacific Sci. 31: 293-297.

Foster AS. 1950a. Morphology and venation of the leaf in Quiina acutangula. – Amer. J. Bot. 37: 159-171.

Foster AS. 1950b. Venation and histology of the leaflets in Touroulia guianensis Aubl. and Froesia tricarpa Pires. – Amer. J. Bot. 37: 848-862.

Foster AS. 1951. Heterophylly and foliar venation in Lacunaria. – Bull. Torrey Bot. Club 78: 382-400.

Foster PI. 1994. Revision of Euphorbia plumerioides Teijsm. ex Hassk. (Euphorbiaceae) and allies. – Austrobaileya 4: 227-246.

Fox J. 1992. Pollen limitation of reproductive effort in willows. – Oecologia 90: 283-287.

Fraga CN, Saavedra MM. 2006. Three new species of Elvasia (Ochnaceae) from the Brazilian Atlantic Forest, with an emended key for Subgenus Hostmannia. – Novon 16: 483-489.

Frajman B, Schönswetter P. 2011. Giants and dwarfs: molecular phylogenies reveal multiple origins of annual spurges within Euphorbia subg. Esula. – Mol. Phylogen. Evol. 61: 413-424.

Franco RP. 1990. The genus Hyeronima in South America. – Bot. Jahrb. Syst. 111: 297-346.

Fregene MA, Vargas J, Ikea J, Angel F, Tohme J, Asiedu RA, Akorda MO, Roca WM. 1994. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives. – Theor. Appl. Gen. 89: 719-727.

Freitas L, Bernardello G, Galetto L, Paoli AAS. 2001. Nectaries and reproductive biology of Croton sarcopetalus (Euphorbiaceae). – Bot. J. Linn. Soc. 136: 267-277.

Friedrich WL, Koch BE. 1970. Comparison of fruits and seeds of fossil Spirematospermum with those of living Ctenolophon. – Bull. Geol. Soc. Denmark 20: 192-195.

Friis I, Vollesen K. 1980. The identity of the Ethiopian monotypic genus Tzellemtinia Chiov. – Bot. Not. 133: 347-349.

Frisendahl A. 1927. Über die Entwicklung chasmogamer und kleistgamer Blüten bei der Gattung Elatine. – Acta Horti Gothoburg. 3: 99-142.

Fritsch C. 1888. Über die Gattungen der Chrysobalanaceen. –Verh. Zool.-Bot. Ges. Wien 38: 93-95.

Froembling W. 1896. Anatomisch-systematische Untersuchung von Blatt und Axe der Crotoneen und Euphyllantheen. – Bot. Centralbl. 65: 129-139, 177-192, 241-249, 289-297, 321-329, 369-378, 403-411, 433-442.

Fryns-Claessens E, Cotthem W van. 1966. L’appareil stomatique des Pandacées et Davidsoniacées. – Rev. Gén. Bot. 63: 783-789.

Fu Y-B, Peterson G, Diederichsen A, Richards KW. 2002. RAPD analysis of genetic relationships of seven flax species in the genus Linum L. – Genet. Res. Crop Evol. 49: 253-259.

Fujinami R, Imaichi R. 2009. Developmental anatomy of Terniopsis malayana (Podostemaceae, subfamily Tristichoideae), with implications for body plan evolution. – J. Plant Res. 122: 551-558.

Fujinami R, Ghogue JP, Imaichi R. 2013. Developmental morphology of the controversial ramulus organ of Tristicha trifaria (Subfamily Tristichoideae, Podostemaceae): implications for evolution of a unique body plan in Podostemaceae. – Intern. J. Plant Sci. 147: 609-618.

Furness CA. 2011. Comparative structure and development of pollen and tapetum in Malpighiales, with a focus on the parietal clade. – Intern. J. Plant Sci. 172: 980-1011.

Furness CA. 2013. Evolution of pollen and tapetal characters in Ochnaceae (Malpighiales). – Intern. J. Plant Sci. 174: 1134-1152.

Gage AT. 1922. Euphorbiaceae novae e Peninsula Malayana. – Records Bot. Surv. India 9: 219-249.

Gagliardi K, Souza L, Albiero A. 2014. Comparative fruit development in some Euphorbiaceae and Phyllanthaceae. – Plant Syst. Evol. 300: 775-782.

Gagnepain F. 1924 [1925]. Quelques genres nouveaux d’Euphorbiacées. – Bull. Soc. Bot. France 71: 864-879.

Galang R, Madulid DA. 2006. A second new species of Rafflesia (Rafflesiaceae) from Panay Island, Philippines. – Folia Malaysiana 7: 1-8.

Galimberti Z. 1963. Embriologia di Codiaeum variegatum Blume var. pictum (Lodd.) Mull. – Nuovo Giorn. Bot. Ital. 70: 21-32.

Gama TSS, Cordeiro I, Demarco D. 2016. Floral structure and development reveal presence of petals in Phyllanthus L. (Phyllanthaceae). – Intern. J. Plant Sci. 177: 749-759.

Ganders FR. 1979. Heterostyly in Erythroxylum coca (Erythroxylaceae). – Bot. J. Linn. Soc. 78: 11-20.

García MTA, Gottsberger G. 2009. Composition of the floral nectar of different subgenera of Argentinian Passiflora species. – Plant Syst. Evol. 283: 133-147.

García MTA, Galati BG, Anton AM. 2002. Microsporogenesis, microgametogenesis and pollen morphology of Passiflora species (Passifloraceae). – Bot. J. Linn. Soc. 139: 383-394.

García MTA, Galati BG, Anton AM. 2003. Development and ultrastructure of the megagametophyte in Passiflora caerulea L. (Passifloraceae). – Bot. J. Linn. Soc. 142: 73-81.

Garcia-Villacorta R, Hammel BE. 2004. A noteworthy new species of Tovomita (Clusiaceae) from Amazonian white sand forests of Peru and Colombia. – Brittonia 56: 132-135.

Gates B. 1977. A monograph of the Central Brazilian species of Banisteriopsis (Malpighiaceae). – Ph.D. diss., University of Michigan, Ann Arbor, Michigan.

Gates B. 1982. Flora Neotropica. Monograph 30. Banisteriopsis and Diplopterys (Malpighiaceae). – New York Botanical Garden, Bronx, New York.

Gaucher L. 1902. Recherches anatomiques sur les Euphorbiacées. – Ann. Sci. Nat. Bot., sér. VIII, 15: 161-309.

Gavrilova OA. 1993. Types of pollen grain sculpture and their significance for systematics of the family Flacourtiaceae. – Bot. Žurn. 12: 45-52. [In Russian]

Gavrilova OA. 1998. Palynomorphology of the family Kiggelariaceae. – Bot. Žurn. 83: 20-27. [In Russian]

Gehrmann K. 1908. Vorarbeiten zu einer Monographie der Gattung Bridelia mit besonderer Berücksichtigung der afrikanischen Arten. – Engl. Bot. Jahrb. Syst. 41, Beibl. 95: 1-42.

Gehrmann K. 1911. Zur Blütenbiologie der Rhizophoraceae. – Ber. Deutsch. Bot. Ges. 29: 303-318.

Geltman DV. 2013. Revision of Euphorbia sect. Chylogala (Euphorbiaceae). – Willdenowia 43: 5-12.

Gengler-Novak KM. 2002a. Reconstruction of the biogeographical history of Malesherbiaceae. – Bot. Rev. 68: 171-188.

Gengler-Novak KM. 2002b. Phenetic analysis of morphological traits in the Malesherbia humilis complex (Malesherbiaceae). – Taxon 51: 281-293.

Gengler-Novak KM. 2003. Molecular phylogeny and taxonomy of Malesherbiaceae. – Syst. Bot. 28: 333-344.

Gengler-Novak KM, Crawford DJ. 2000. Genetic diversities of four little-known species of Malesherbia (Malesherbiaceae) endemic to the arid inter-Andean valleys of Peru. – Brittonia 52: 303-310.

Gentry AH. 1975. Humiriaceae: flora of Panama. – Ann. Missouri Bot. Gard. 62: 35-44.

Gershoy A. 1932. Descriptive notes for Viola exhibits. The Nominum and Chamaemelanium sections. – In: IV Intern. Congr. Genetics, Publ. Vermont Agric. Exper. Sta. 1932: 1-27.

Gershoy A. 1934. Studies in North American violets III. Chromosome numbers and species characters. – Vermont Agric. Exper. Sta. Bull. 367: 1-92.

Gessner F, Hammer L. 1962. Ökologisch-physiologische Untersuchungen an den Podostemonaceen des Caroni. – Intl. Rev. Gesellsch. Hydrobiol. 47: 497-541.

Ghahremaninejad F, Khalili Z, Maassoumi AA, Mirzaie-Nodoushan H, Riahi M. 2012. Leaf epidermal features of Salix species (Salicaceae) and their systematic significance. – Amer. J. Bot. 99: 769-777.

Ghisalberti EL, Jeffries PR, Sefton MA. 1978. Secobeyerane. Diterpenes from Beyeria calycina. – Phytochemistry 17: 1961-1965.

Ghislain B, Nicolini E-A, Romain R, Ruelle J, Yoshinaga A, Alford MH, Clair B. 2016. Multilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance. – Bot. J. Linn. Soc. 182: 744-756.

Ghogue J-P, Ameka GK, Grob V, Huber KA, Pfeifer E, Rutishauser R. 2009. Enigmatic morphology of Djinga felicis (Podostemaceae-Podostemoideae), a badly known endemic from northwestern Cameroon. – Bot. J. Linn. Soc. 160: 64-81.

Gibson AC. 1980. Wood anatomy of Thornea, including some comparisons with other Hypericaceae. – IAWA Bull., N. S., 1: 87-92.

Giese AC. 1980. Hypericism. – Photochem. Photobiol. Rev. 5: 229-255.

Gil-Ad NL. 1995. Systematics and evolution of Viola L. subsection Boreali-Americanae (W. Becker) Brizicky. – Ph.D. diss., University of Michigan, Ann Arbor, Michigan.

Gil-Ad NL. 1998. The micromorphologies of seed coat and petal trichomes of the taxa of Viola subsect. Boreali-Americanae (Violaceae) and their utility in discerning orthospecies from hybrids. – Brittonia 50: 91-121.

Gilbert LE. 1971. Butterfly-plant coevolution: has Passiflora adenopoda won the selectional race with heliconiine butterflies? – Science 172: 585-586.

Gilbert LE. 1975. Ecological consequences of a coevolved mutualism between butterflies and plants. – In: Gilbert LE, Raven PH (eds), Coevolution of animals and plants, University of Texas Press, Austin, Texas, pp. 210-240.

Gilbert MG. 1987a. Two new geophytic species of Euphorbia with comments on the subgeneric groupings of its African members. – Kew Bull. 42: 231-244.

Gilbert MG. 1987b. New and interesting species of Euphorbiaceae from Ethiopia. – Kew Bull. 42: 351-368.

Gilbert MG. 1990. Six new species of Euphorbia (subgenus Esula) from Ethiopia. – Kew Bull. 45: 265-276.

Gilbert MG. 1992a. Notes on Tragia, Dalechampia and Clutia (Euphorbiaceae) in Ethiopia and Simalia. – Nord. J. Bot. 12: 389-401.

Gilbert MG. 1992b. Notes on Violaceae from Ethiopia. – Nord. J. Bot. 12: 689-693.

Gilbert MG. 1993. Notes on Euphorbia subgen. Chamaesyce in Ethiopia. – Kew Bull. 48: 125-126.

Gilbert MG. 1994. The relationships of the Euphorbieae (Euphorbiaceae). – Ann. Missouri Bot. Gard. 81: 283-288.

Gilbert MG, Thulin M. 1991. Synopsis of Jatropha sect. Robecchiana s. lat. (Euphorbiaceae). – Nord. J. Bot. 11: 413-419.

Gilg E. 1894. Turneraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 57-64.

Gilg E. 1895. Ochnaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 131-153.

Gilg E. 1908. Flacourtiaceae africanae. – Engl. Bot. Jahrb. Syst. 40: 444-518.

Gilg E. 1918. Die bis jetzt aus Neu-Guinea bekannt gewordenen Flacourtiaceen. – Engl. Bot. Jahrb. 55: 273-294.

Gilg E. 1925a. Ochnaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 53-87.

Gilg E. 1925b. Flacourtiaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 377-457.

Gilg E. 1925c. Turneraceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 459-466.

Gill AM, Tomlinson PB. 1969. Studies on the growth of red mangrove (Rhizophora mangle L.) I. Habit and general morphology. – Biotropica 1: 1-9.

Gill BS, Bir SS, Bedi YS. 1981. Cytological studies on woody Euphorbiaceae from north and central India. – New Botanist 8: 35-44.

Gillespie LJ. 1988. A revision and phylogenetic analysis of Omphalea (Euphorbiaceae). – Ph.D. diss., University of California, Davis, California.

Gillespie LJ. 1993. A synopsis of Neotropical Plukenetia (Euphorbiaceae) including two new species. – Syst. Bot. 18: 575-592.

Gillespie LJ. 1994a. Pollen morphology and phylogeny of the tribe Plukenetieae (Euphorbiaceae). – Ann. Missouri Bot. Gard. 81: 317-348.

Gillespie LJ. 1994b. A new section and two new species of Tragia (Euphorbiaceae) from the Venezuelan Guayana and French Guiana. – Novon 4: 330-338.

Gillespie LJ. 1997. Omphalea (Euphorbiaceae) in Madagascar: a new species and a new combination. – Novon 7: 127-136.

Gillespie LJ. 2007. A revision of paleotropical Plukenetia (Euphorbiaceae) including two new species from Madagascar. – Syst. Bot. 32: 780-802.

Giraud B. 1983. Les cellules perforées des rayons ligneux chez les Euphorbiacées. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 5: 213-221.

Gnecco S, Bartulin J, Becerra J, Marticorena C. 1989. n-Alkanes from Chilean Euphorbiaceae and Compositae species. – Phytochemistry 28: 1254-1256.

Gogelein AJF. 1967. A revision of the genus Cratoxylum Bl. (Guttiferae). – Blumea 15: 453-475.

Golysheva MD. 1975. Leaf anatomy of Idesia polycarpa Maxim. and other Flacourtiaceae in relation to the question of relationships between the families Salicaceae and Flacourtiaceae. – Bot. Žurn. 60: 787-799.

Gonçalves-Esteves V, Mendonça CBF. 2001. Estudo polínico em plantas de restinga do Estado do Rio de Janeiro – Clusiaceae Lindl. – Rev. Brasil. Bot. 24: 527-536.

González AM. 1993. Anatomía y vascularización floral de Piriqueta racemosa, Turnera hassleriana y Turnera joelii (Turneraceae). – Bonplandia 7: 143-184.

González AM. 1996. Nectarios extraflorales en Turnera, series Canaligerae y Leiocarpae. – Bonplandia 9: 129-143.

González AM. 1998. Colleters in Turnera and Piriqueta. – Bot. J. Linn. Soc. 128: 215-228.

González AM. 2000. Estudios anatómicos en los géneros Piriqueta y Turnera (Turneraceae). – Ph.D. diss., Universidad Nacional de Córdoba, Argentina.

González AM. 2001. Nectarios y vascularización floral de Piriqueta y Turnera (Turneraceae). – Bol. Soc. Argent. Bot. 36: 47-68.

González AM, Arbo MM. 2004. Trichome complement of Turnera and Piriqueta (Turneraceae). – Bot. J. Linn. Soc. 144: 85-97.

González AM, Arbo MM. 2005. Anatomía de algunas especies de Turneráceas. – Acta Bot. Venezuelica 28: 369-394.

González AM, Arbo MM. 2013. Anatomía y ontogenia de las semillas en Turnera y Piriqueta. – Bot. Sci. 91: 399-416.

González AM, Salgado CR, Fernández A, Arbo MM. 2012. Anatomy, pollen, and chromosomes of Adenoa (Turneraceae), a monotypic genus endemic to Cuba. – Brittonia 64: 208-225.

Gottlieb OR, Kaplan MAC, Kubitzki K, Toledo Barros JR. 1989. Chemical dichotomies in the Magnolialean comlex. – Nord. J. Bot. 8: 437-444.

Gottwald H, Parameswaran N. 1967. Beiträge zur Anatomie und Systematik der Quiinaceae. – Bot. Jahrb. Syst. 87: 361-381.

Govaerts R, Frodin DG, Radcliffe-Smith A. 2000. World checklist and bibliography of Euphorbiaceae (with Pandaceae) 1-4. – Redwood, Trowbridge Wiltshire and The Royal Botanic Gardens, Kew.

Gracioso J de S, Vilegas W, Hiruma-Lima CA, Souza Brito ARM. 2002. Effects of tea from Turnera ulmifolia L. on mouse gastric mucosa support the Turneraceae as a new source of antiulcerogenic drugs. – Biol. Pharmaceut. Bull. 25: 487-491.

Graham A. 2006. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. – Ann. Missouri Bot. Gard. 93: 325-334.

Green PS. 1986. New combinations in Baloghia and Codiaeum (Euphorbiaceae). – Kew Bull. 41: 1026.

Grey-Wilson C. 1981. Notes on African Violaceae. – Kew Bull. 36: 103-126.

Grey-Wilson C. 1984. Further notes on East African Violaceae. – Kew Bull. 39: 771-773.

Grey-Wilson C. 1986. Violaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-38.

Grigorieva VV. 1990. The pollen grain morphology in members of the Linaceae family. – Bot. Žurn. 75: 1345-1352. [In Russian with English summary]

Grob V, Pfeifer E, Rutishauser R. 2007. Morphology, development and regeneration of Thelethylax minutiflora, a Madagascan river-weed (Podostemaceae). – Phyton – Ann. Rei Bot. 47: 205-229.

Groppo M, Fiaschi P, Salatino MLF, Cecchantini GCT, Assis Ribeiro dos Santos F de, Verola CF, Antonelli A. 2010. Placement of Kuhlmanniodendron Fiaschi & Groppo in Lindackerieae (Acharaceae, Malpighiales) confirmed by analyses of rbcL sequences, with notes on pollen morphology and wood anatomy. – Plant Syst. Evol. 286: 27-37.

Groppo M, Favaretto BSG, Silva CI da, Jardim JG, Fiaschi P. 2013. A new species of Kuhlmanniodendron (Lindackerieae, Achariaceae) from eastern Brazil and the systematic position of the genus in Achariaceae. – Syst. Bot. 38: 162-171.

Gros J-P. 1983. Irvingiaceoxylon dechampsii n.g. et n.sp. du Cénozoïque d’Éthiopie, et Simaroubaceoxylon (Irvingioxylon) taibaense n.g. et n.comb. de l’Yprésien du Sénégal. – Rev. Gén. Bot. 90: 153-171.

Gross CL, Whalen MA. 1996. A revision of Adriana (Euphorbiaceae). – Aust. Syst. Bot. 9: 749-771.

Gruas-Cavagnetto C, Köhler E. 1992. Pollens fossils d’Euphorbiacées de l’Éocène français. – Grana 31: 291-304.

Grubert M. 1970. Untersuchungen über die Verankerung der Samen von Podostemonaceen. – Intl. Rev. Gesellsch. Hydrobiol. 55: 83-114.

Grubert M. 1974. Podostemaceen-Studien I. Zur Ökologie einiger venezolanischer Podostemaceen. – Beitr. Biol. Pflanzen 50: 321-391.

Grubert M. 1976. Podostemaceen-Studien II. Untersuchungen über die Keimung. – Bot. Jahrb. Syst. 95: 455-477.

Guèdès M, Sastre C. 1981. Morphology of the gynoecium and systematic position of the Ochnaceae. – Bot. J. Linn. Soc. 82: 121-138.

Guillaumin A. 1925. Recherches sur l’anatomie et la classification des Balanopsidacées. – Rev. Gén. Bot. 37: 433-449.

Guillaumin A. 1942. Matériaux pour la Flore de la Nouvelle Calédonie LXX. Remarques sur les Violacées. – Bull. Soc. Bot. France 89: 19-22.

Guimarães EF, Pereira JMC. 1966. Ochnaceae no Estado da Guanabara. – Rodriguésia 25: 59-65.

Gustafsson MHG. 2000. Floral morphology and relationships of Clusia gundlachii with a discussion of floral organ identity and diversity on the genus Clusia. – Intern. J. Plant Sci. 161: 43-53.

Gustafsson MHG, Bittrich V. 2002. Evolution of morphological diversity and resin secretion in flowers of Clusia (Clusiaceae): insights from ITS sequence variation. – Nord. J. Bot. 22: 183-202.

Gustafsson MHG, Bittrich V, Stevens PF. 2002. Phylogeny of Clusiaceae based on rbcL sequences. – Intern. J. Plant Sci. 163: 1045-1054.

Gustafsson MHG, Winter K, Bittrich V. 2007. Diversity, phylogeny and classification of Clusia. – In: Lüttge U (ed), Clusia: a woody neotropical genus of remarkable plasticity and diversity, Ecol. Stud. 194, Springer, Berlin.

Haber JM. 1925. The anatomy and the morphology of the flower of Euphorbia. – Ann. Bot. 39: 657-707.

Habib AM, Reddy KS, McCloud TG, Chang C-J, Cassady JM. 1987. New xanthones from Psorospermum febrifugum. – J. Nat. Prod. 50: 141-145.

Haegens R. 2000. Taxonomy, phylogeny and biogeography of Baccaurea, Distichirhops, and Nothobaccaurea (Euphorbiaceae). – Blumea (Suppl.) 12: 1-218.

Haevermans T, Labat J-N. 2004. A synoptic revision of the Malagasy endemic Euphorbia pervilleana group. – Syst. Bot. 29: 118-124.

Haevermans T, Rouhan G, Hetterscheid W, Teissier M, Belarbi K, Aubriot X, Labat J-N. 2009. Chaos revisited: nomenclature and typification of the Malagasy endemic Euphorbia subgenus Lacanthis (Raf.) M. G. Gilbert. – Adansonia, sér. III, 31: 279-299.

Hagemann I. 1989. Wuchsformen einiger Hypericum-Arten, ein Beitrag zum morphologischen und zum ökologischen Anliegen der Wuchsformen-Forschung. – Flora 183: 225-309.

Hagemann I, Meusel H. 1984. Hypericum triquetrifolium Turra, ein Wurzelspross-geophyt: Wuchsform und Verbreitung. – Flora 175: 385-405.

Hagerup O. 1930. Vergleichende morphologische und systematische Studien über die Ranken und andere vegetative Organe der Cucurbitaceen und Passifloraceen. – Dansk Bot. Ark. 6: 1-103.

Haïcour R. 1983. La variabilité de compatibilité entre divers taxons de Phyllanthus urinaria L. (Euphorbacées): mise en évidence et perspectives ouvetes pour son analyse. – Bull. Soc. Bot. France 130, Lettres Bot. (3): 207-226.

Haïcour R. 1984a. Eléments d’analyse de la structure des populations et de l’évolution d’une espèce rudérale pantropicale, Phyllanthus urinaria L. (Euphorbiaceae) 1. Étude du polymorphisme de l’entité P. urinaria et premier essai de classification. – Bull. Mus. Natl. Hist. Nat. Paris, IV. 6, sect. B, Adansonia 1: 63-74.

Haïcour R. 1984b. Eléments d’analyse de la structure des populations et de l’évolution d’une espèce rudérale pantropical, Phyllanthus urinaria L. (Euphorbiaceae) 2. Étude de la variation génétique et de la traduction phénotypique. – Bull. Mus. Natl. Hist. Nat. Paris, IV. 6, sect. B, Adansonia 2: 157-191.

Haïcour R, Rossignol L, Rossignol M, Gaisne C. 1994. Patterns of diversification and evolution in Phyllanthus odontadenius (Euphorbiaceae). – Ann. Missouri Bot. Gard. 81: 289-301.

Håkansson A. 1955. Chromosome numbers and meiosis in certain Salices. – Hereditas 41: 454-498.

Hakki MI. 1985. Studies on West Indian plants 3. On floral morphology, anatomy, and relationship of Picrodendron baccatum (L.) Krug & Urban (Euphorbiaceae). – Bot. Jahrb. Syst. 107: 379-394.

Halford DA, Henderson RJF. 2003. Studies in Euphorbiaceae sens. lat. 5. A revision of Pseudanthus Sieber ex Spreng. and Stachystemon Planch. (Oldfieldioideae Köhler & Webster, Caletieae Müll. Arg.). – Austrobaileya 6: 497-532.

Halford DA, Henderson RJF. 2005. Studies in Euphorbiaceae s. lat. 6. A revision of the genus Poranthera Rudge (Antidesmeae, Porantherinae) in Australia. – Austrobaileya 7: 1-27.

Hall JB. 1971. New Podostemaceae from Ghana with notes on related species. – Kew Bull. 26: 125-136.

Halle F. 1971. Architecture and growth of tropical trees exemplified by the Euphorbiaceae. – Biotropica 3: 56-62.

Hallé N, Heine H. 1967. Deux nouvelles espèces africaines du genre Tapura Aubl. (Dichapetalaceae). – Adansonia, sér. II, 7: 43-51.

Hallé N, Wilde JJFE de. 1978. Trichostephanus acuminatus Gilg (Flacourtiacées), une approche biosystématique. – Adansonia 18: 167-182.

Hallier H. 1912. Sur le Philbornea, genre nouveau de la famille des Linacées, avec quelques remarques sur les affinités de cette famille. – Arch. Néerland. Sci. Exact. Nat., sér. IIIb (Sci. Nat.) 1: 104-111.

Hallier H. 1921. Beiträge zur Kenntnis der Linaceen (DC. 1819) Dumort. – Beih. Bot. Centralbl., Abt. 2, 39: 1-178.

Ham RWJM van der. 1989. New observations on the pollen of Ctenolophon Oliver (Ctenolophonaceae), with remarks on the evolutionary history of the genus. – Rev. Palaeobot. Palynol. 59: 153-160.

Hammel BE. 1999a. Two new species of Clusiella (Clusiaceae) with a synopsis of the genus. – Novon 9: 349-359.

Hammel BE. 1999b. Synopsis of Chrysochlamys (Clusiaceae: Clusioideae: Clusieae) in Mesoamerica. – Novon 9: 360-374.

Hammond BL. 1936. Regeneration of Podostemon ceratophyllum Michx. – Bot. Gaz. 97: 834-845.

Hammond BL. 1937. Development of Podostemon ceratophyllum. – Bull.Torrey Bot. Club 64: 17-36.

Hamzeh M, Dayanandan S. 2004. Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast trnT-trnF region and nuclear rDNA. – Amer. J. Bot. 91: 1398-1408.

Handa T. 1940. Anomalous secondary growth in the axis of Lophopyxis pentaptera (K. Schum.) Engler. – Bot. Mag. Tokyo 54: 41-47.

Hans AS. 1973. Chromosomal conspectus of the Euphorbiaceae. – Taxon 22: 591-636.

Hansen AK. Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK. 2006. Phylogenetic relationships and chromosome number evolution in Passiflora. – Syst. Bot. 31: 138-150.

Hansen AK, Escobar LK, Gilbert LE, Jansen RK. 2007. Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies. – Amer. J. Bot. 94: 42-46.

Hansmann P, Kleinig H. 1982. Violaxanthin esters from Viola tricolor flowers. – Phytochemistry 21: 238-239.

Hao K-S. 1936. Synopsis of Chinese Salix. – Dahlem, Berlin.

Harley RM, Giulietti AM, Leite KRB. 2006. Two new species and a new record of Sauvagesia (Ochnaceae) in the Chapada Diamantina of Bahia, Brazil. – Kew Bull. 60: 571-580.

Harms H. 1893. Über die Verwertung des anatomischen Baues für die Umgrenzung und Einteilung der Passifloraceae. – Engl. Bot. Jahrb. Syst. 15: 548-632.

Harms H. 1894a. Malesherbiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 65-68.

Harms H. 1894b. Passifloraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 69-94; Harms H. 1897. Nachträge zu III(6a), pp. 253-256.

Harms H. 1897. Achariaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(6a), W. Engelmann, Leipzig, pp. 256-257.

Harms H. 1922. Neue Arten der Gattung Passiflora L. – Feddes Repert. 18: 294-299.

Harms H. 1923a. Beiträge zur Kenntnis der amerikanischen Passifloraceae I. – Feddes Repert. 19: 25-32.

Harms H. 1923b. Beiträge zur Kenntnis der amerikanischen Passifloraceae II. – Feddes Repert. 19: 56-60.

Harms H. 1925a. Malesherbiaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 467-470.

Harms H. 1925b. Passifloraceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 470-507.

Harms H. 1925c. Achariaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 507-510.

Harms H. 1929. Passifloraceae americanae novae. – Notizbl. Bot. Gart. Berlin-Dahlem 10: 808-816.

Harms H. 1935. Rafflesiaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16b, W. Engelmann, Leipzig, pp. 243-281.

Harris BD. 1968. Chromosome numbers and evolution in North American species of Linum. – Amer. J. Bot. 55: 1197-1204.

Harris BJ. 1996. A revision of the Irvingiaceae of Africa. – Bull. Jard. Bot. Nat. Belg. 65: 143-196.

Hasma H, Subramaniam A 1978. The occurrence of a furanoid fatty acid in Hevea brasiliensis latex. – Lipids 13: 905-907.

Hassall DC. 1976. Numerical and cytotaxonomic evidence for generic delimitation in Australian Euphorbieae. – Aust. J. Bot. 24: 633-640.

Hassall DC. 1977. The genus Euphorbia in Australia. – Aust. J. Bot. 25: 429-453.

Hatada A, Isiguro S, Itioka T, Kawano S. 2007. Myrmecosymbiosis in the Bornean Macaranga species with special reference to food bodies (Beccarian bodies) and extrafloral nectaries. – Plant Species Biol. 16: 241-246.

Hauman L. 1951. Contribution à l’étude des Chrysobalanoïdes africaines. – Bull. Jard. Bot. État Bruxelles 21: 167-198.

Hayden SM, Hayden WJ. 1996. A revision of Discocarpus (Euphorbiaceae). – Ann. Missouri Bot. Gard. 83: 153-167.

Hayden WJ. 1977. Comparative anatomy and systematics of Picrodendron, genus incertae sedis. – J. Arnold Arbor. 58: 257-279.

Hayden WJ. 1980. Systematic anatomy of Oldfieldioideae (Euphorbiaceae). – Ph.D. diss., University of Maryland, College Park, Maryland.

Hayden WJ. 1987. The identity of the genus Neowawraea (Euphorbiaceae). – Brittonia 39: 268-277.

Hayden WJ. 1988. Ontogeny of the cotyledonary region of Chamaesyce maculata (Euphorbiaceae). – Amer. J. Bot. 75: 1701-1713.

Hayden WJ. 1990. Notes on neotropical Amanoa (Euphorbiaceae). – Brittonia 42: 260-270.

Hayden WJ. 1994. Systematic anatomy of Euphorbiaceae subfamily Oldfieldioideae. I. Overview. – Ann. Missouri Bot. Gard. 81: 180-202.

Hayden WJ, Brandt DS. 1984. Wood anatomy and relationships of Neowawraea (Euphorbiaceae). – Syst. Bot. 9: 458-466.

Hayden WJ, Hayden SM. 2000. Wood anatomy of Acalyphoideae (Euphorbiaceae). – IAWA J. 21: 213-235.

Hayden WJ, Gillis WT, Stone DE, Broome CR, Webster GL. 1984. Systematics and phylogeny of Picrodendron. Further evidence for relationship with the Oldfieldioideae (Euphorbiaceae). – J. Arnold Arbor. 65: 105-127.

Hayden WJ, Simmons MP, Swanson LJ. 1993. Wood anatomy of Amanoa (Euphorbiaceae). – IAWA J. 14: 205-213.

Hearn DJ. 2006. Adenia (Passifloraceae) and its adaptive radiation: phylogeny and growth form diversification. – Syst. Bot. 31: 805-821.

Hearn DJ. 2007. Novelties in Adenia (Passifloraceae): four new species, a new combination, a vegetative key, and diagnostic characters for known Madagascan species. – Brittonia 59: 308-327.

Hearn DJ. 2009a. Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae). – Amer. J. Bot. 96: 1941-1956.

Hearn DJ. 2009b. Descriptive anatomy and evolutionary patterns of anatomical diversification in Adenia (Passifloraceae). – Aliso 27: 13-38.

Hecker E. 1977. New toxic, irritant and cocarcinogenic diterpene esters from Euphorbiaceae and Thymelaeaceae. – Pure Appl. Chem. 49: 1423-1431.

Hecker E, Schmidt R. 1974. Phorbolesters – the irritants and cocarcinogens of Croton tiglium. – Fortschr. Chem. Organischer Naturst. 31: 378-467.

Heel WA van. 1967. Anatomical and ontogenetic investigations on the morphology of the flowers and the fruit of Scyphostegia borneensis Stapf (Schyphostegiaceae). – Blumea 15: 107-125.

Heel WA van. 1973. Flowers and fruits in Flacourtiaceae I. – Blumea 21: 259-279.

Heel WA van. 1974. Flowers and fruits in Flacourtiaceae II. – Blumea 22: 15-19.

Heel WA van. 1977. Flowers and fruits in Flacourtiaceae III. Some Oncobieae. – Blumea 23: 349-369.

Heel WA van. 1979. Flowers and fruits in Flacourtiaceae IV. Hydnocarpus, Kiggelaria africana L., Casearia, Berberidopsis corallina Hook. f. – Blumea 25: 513-529.

Hegnauer R. 1981. Chemotaxonomy of Erythroxylaceae (including some ethnobotanical notes on Old World species). – J. Ethnopharm. 3: 279-292.

Heijkoop M, Vanwelzen PC. 2017. A revision of the genus Actephila (Phyllanthaceae) in the Malesian region. – Blumea 62: 7-25.

Heilborn O. 1926. Bidrag till violaceernas cytologi. – Svensk Bot. Tidskr. 20: 414-419.

Heimermann WH, Holman RT. 1972. Highly optically active triglycerides of Sebastiana ligustrina. – Phytochemistry 11: 799-802.

Heimsch C, Tschabold EE. 1972. Xylem studies in the Linaceae. – Bot. Gaz. (Crawfordsville) 133: 242-253.

Heinricher E. 1905 Beiträge zur Kenntnis der Rafflesiaceae 1. – Denkschr. K. Akad. Wiss. Wien, Math.-Naturw. Kl 78: 1-25.

Heitz B, Jean R, Prensier G. 1971. Observation de la surface du stigmate et des grains de pollen de Linum austriacum L. hétérostyle. – Compt. Rend. Hébd. Séances Acad. Sci., D 273(25): 2493-2495.

Hekking WHA. 1984. Studies on neotropical Violaceae: the genus Fusispermum. – Proc. K. Nederl. Akad. Wetensch. Bot, Ser. C, 87: 121-130.

Hekking WHA. 1988a. Flora Neotropica. Monograph 46. Violaceae I. Rinorea and Rinoreocarpus. – New York Botanical Garden, Bronx, New York.

Hekking WHA. 1988b. Studies on Neotropical Violaceae 2: arrangement of leaves, inflorescences and branchlets in Neotropical Rinorea. – Flora 180: 345-376.

Hemingway CA, Christensen AR, malcomber ST. 2011. B- and C-class gene expression during corona development of the blue passionflower (Passiflora caerulea, Passifloraceae). – Amer. J. Bot. 98: 923-934.

Hemming CF, Radcliffe-Smith A. 1987. A revision of the Somali species of Jatropha (Euphorbiaceae). – Kew Bull. 42: 103-122.

Henderson RJF. 1992. Studies in Euphorbiaceae A. L. Juss., sens. lat. I. A revision of Amperea Adr. Juss. (Acalyphoideae Ascherson, Ampereae Muell. Arg.). – Aust. Syst. Bot. 5: 1-27.

Herbert H. 1897. Anatomische Untersuchung von Blatt und Axe der Hippomaneen. – Ph.D. diss., Universität München, Germany.

Herrera F, Manchester SR, Jaramillo C, MacFadden B, da Silva-Caminha SA. 2010. Phytogeographic history and phylogeny of the Humiriaceae. – Intern. J. Plant Sci. 171: 392-408.

Herrera F, Manchester SR, Vélez-Juarbe J, Jaramillo C. 2014. Phytogeographic history of the Humiriaceae. – Intern. J. Plant Sci. 175: 828-840.

Hewson HJ. 1984. Dichapetalaceae. – In: George AS (ed), Flora of Australia 22, Australian Government Publ. Service, Canberra, pp. 218-219.

Hidayati SN. 1993. The biology of Rafflesiaceae: review and synthesis. – University of Kentucky, Lexington, Kentucky.

Hisahi Y et al. 1984. Karyomorphological studies in five species of mangrove genera in the Rhizophoraceae. – La Kromosomo II, 35/36: 1115-1116.

Hiyama Y, Tsukamoto I, Imaichi R, Kato M. 2002. Developmental anatomy and branching of roots of four Zeylanidium species (Podostemaceae), with implications for evolution of foliose roots. – Ann. Bot. 90: 735-744.

Hochreutiner BPG. 1918. La formation lodiculaire des corpuscles hypogynes chez les Guttifères. – Compt. Rend. Soc. Phys. Hist. Nat. Genève 35: 82-85.

Hochwallner H, Weber A. 2006. Flower development and anatomy of Clusia valerioi, a Central American species of Clusiaceae offering floral resin. – Flora 201: 407-418.

Hoffmann MH, Paula-Souza J, Flaschendräger A, Röser M. 2010. The gynoecium of male Anchietea pyrifolia (Violaceae): preserved structure with a new function. – Flora (Jena) 205: 429-433.

Hoffmann P. 1994. A contribution to the systematics of Andrachne sect. Phyllanthopsis and sect. Pseudophyllanthus compared with Savia s.l. (Euphorbiaceae) with special reference to floral morphology. – Bot. Jahrb. Syst. 116: 321-331.

Hoffmann P. 1999a. New taxa and new combinations in Asian Antidesma (Euphorbiaceae). – Kew Bull. 54: 347-362.

Hoffmann P. 1999b. The genus Antidesma (Euphorbiaceae) in Madagascar and the Comoro Islands. – Kew Bull. 54: 877-885.

Hoffmann P. 2000. Revision of Andrachne sect. Pseudophyllanthus (Euphorbiaceae), with the description of two new species from Madagascar. – Adansonia, sér. III, 22: 123-133.

Hoffmann P. 2005. Taxonomic revision of Antidesma (Phyllanthaceae) in Malesia and Thailand. – Royal Botanic Gardens, Kew.

Hoffmann P. 2008. Revision of Heterosavia, stat. nov., with notes on Gonatogyne and Savia (Phyllanthaceae). – Brittonia 60: 136-166.

Hoffmann P, Cheek M. 2003. Two new species of Phyllanthus (Euphorbiaceae) from Southwest Cameroon. – Kew Bull. 58: 437-446.

Hoffmann P, McPherson G. 2007. Revision of Wielandia including Blotia and Petalodiscus (Phyllanthaceae, Euphorbiaceae s.l.). – Ann. Missouri Bot. Gard. 94: 519-553.

Hoffmann P, Kathriarachchi H, Wurdack KJ. 2006. A phylogenetic classification of Phyllanthaceae (Malpighiales; Euphorbiaceae sensu lato). – Kew Bull. 61: 37-53.

Holden R. 1912. Reduction and reversion in North American Salicales. – Ann. Bot. 26: 165-173.

Holm L. 1969. An uredinological approach to some problems in angiosperm taxonomy. – Nytt Mag. Bot. 16: 147-150.

Holm-Nielsen LB. 1974. Notes on Central Andean Passifloraceae. – Bot. Not. 127: 338-351.

Holm-Nielsen LB, Jørgensen PM. 1986. Passiflora tryphostemmatoides and its allies. – Phytologia 60: 119-124.

Holm-Nielsen LB, Jørgensen PM, Lawesson JE. 1988. 126. Passifloraceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 31, Nord. J. Bot., Copenhagen, pp. 1-129.

Hong T, Zou-Li M. 1987. Floral morphology of Populus lasiocarpa Oliv. and its phylogenetic position in Populus. – Acta Bot. Sin. 29: 236-241.

Hooren AMN van, Nooteboom HP. 1984. A taxonomic revision of the Malesian Linaceae and Ctenolophonaceae, especially of Malesia, with notes on their demarcation and the relationships with Ixonanthaceae. – Blumea 29: 547-563.

Hooren AMN van, Nooteboom HP. 1986a. Linaceae. – In: Steenis CGGJ van (†), Wilde WJJO de (eds), Flora Malesiana I, 10(3), Kluwer Academic Publ., Dordrecht, Boston, London, pp. 607-619.

Hooren AMN van, Nooteboom HP. 1986b. Ctenolophonaceae. – In: Steenis CGGJ van (†), Wilde WJJO de (eds), Flora Malesiana I, 10(3), Kluwer Academic Publ., Dordrecht, Boston, London, pp. 629-634.

Hoppe JR. 1985. Die Morphogenese der Cyathiendrüsen und ihrer Anhänge, ihre blattypologische Deutung und Bedeutung. – Bot. Jahrb. Syst. 105: 497-581.

Hoppe JR, Uhlarz H. 1981. Morphogenese und typologische Interpretation des Cyathiums von Euphorbia-Arten. – Beitr. Biol. Pfl. 56: 63-98.

Horn JW, Ee BW van, Morawetz JJ, Riina R, Steinmann VW, Berry PE, Wurdack K. 2012. Phylogenetics and the evolution of major structural charactes in the giant genus Euphorbia L. (Euphorbiaceae). – Mol. Phylogen. Evol. 63: 305-326.

Hosseus CC. 1907. Eine neue Rafflesiaceengattung aus Siam. – Engl. Bot. Jahrb. 41: 55-61.

Hou D. 1972. Germination, seedling, and chromosome number of Schyphostegia borneensis Stapf (Scyphostegiaceae). – Blumea 20: 88-92.

Hoyle AC, Brummitt RK. 1999. Three new species of Brachystegia Benth. (Leguminosae-Caesalpinioideae). – Kew Bull. 54: 155-161.

Hoyos-Gómez SE. 2011. Towards an understanding of the basal evolution of Violaceae from an anatomical and morphological perspective. – M.Sc. thesis, University of Missouri-St.Louis, St Louis, Missouri.

Hoyos-Gómez SE. 2015. The evolution of Violaceae from an anatomical and morphological perspective. – Ann. Missouri Bot. Gard. 100: 393-406.

Hu C-C, Crovello TJ, Sokal RR. 1985. The numerical taxonomy of some species of Populus based only on vegetative characters. – Taxon 34: 197-206.

Huft MJ. 1979. A monograph of Euphorbia section Tithymalopsis. – Ph.D. diss., University of Michigan, Ann Arbor, Michigan.

Huft MJ. 1984. A review of Euphorbia (Euphorbiaceae) in Baja California. – Ann. Missouri Bot. Gard. 71: 1021-1027.

Huft MJ. 1989. New and critical taxa of Euphorbiaceae from South America. – Ann. Missouri Bot. Gard. 76: 1077-1086.

Hul S. 1991. Révision des Flacourtiaceae: Phyllobotryoneae d’Afrique. – Bull. Mus. Natl. Hist. Nat. Paris, B, Adansonia 13: 155-165.

Hul S, Breteler FJ. 1997. Réductions génériques dans les Oncobeae (Flacourtiaceae). – Adansonia 19: 253-262.

Hunter JT, Bruhl JJ. 1997. Two new species of Phyllanthus and notes on Phyllanthus and Sauropus (Euphorbiaceae: Phyllantheae) in New South Wales. – Telopea 7: 149-165.

Huntley B, Huntley JP. 1992. Willows in prehistory. – Proc. Roy. Soc. Edinb. 98B: 149-154.

Hunziker AT. 1969. Parodiodendron gen. nov.: un nuevo genero de Euphorbiaceae (Oldfieldioideae) del noroeste Argentino. – Kurtziana 5: 329-341.

Hunziker AT, Espinar LA. 1967. Nota aclaratoria sobre las Malesherbiaceae argentinas y una clave para su identificación. – Kurtziana 4: 83-86.

Hunziker J. 1926. Beiträge zur Anatomie von Rafflesia patma Bl. – Ph.D. diss, Universität Zürich.

Hurusawa I. 1954. Eine nochmalige Durchsicht des herkömmlichen Systems der Euphorbiaceen im weiteren Sinne. – J. Fac. Sci. Univ. Tokyo, Sect. III, Bot. 6: 209-342.

Hutchens JJ, Wallace JB, Romaniszyn ED. 2004. Role of Podostemum ceratophyllum Michx. in structuring benthic macroinvertebrate assemblages in a southern Appalachian river. – J. N. Amer. Benthol. Soc. 23: 713-727.

Hutchinson J. 1922. XVII. The genus Heywoodia. – Kew Bull. 1922: 114-116.

Hutchinson J. 1969. Tribalism in the family Euphorbiaceae. – Amer. J. Bot. 56: 738-758.

Huynh K. 1972. Étude de l’arrangement du pollen dans la tétrade chez les angiospermes sur la base de données cytologiques IV. Le genre Passiflora. – Pollen Spores 14: 51-60.

Ianishevskii DE. 1941. The extrafloral nectar-glands of Salix. – Trudy Bot. Inst. Akad. Nauk SSR, Ser. IV, Eksp. Bot. 5: 258-294. [In Russian]

Ilker R, Currier HB. 1975. Histochemical studies of an inclusion body and P-protein in phloem of Xylosma congestum. – Protoplasma 85: 127-132.

Imaichi R, Ichiba T, Kato M. 1999. Developmental morphology and anatomy of the vegetative organs in Malaccotristicha malayana (Podostemaceae). – Intern. J. Plant Sci. 160: 253-259.

Imaichi R, Maeda R, Suzuki K, Kato M. 2004. Developmental morphology of foliose shoots and seedlings of Dalzellia zeylanica (Podostemaceae) with special reference to their meristems. – Bot. J. Linn. Soc. 144: 289-302.

Imaichi R, Hiyama Y, Kato M. 2005. Leaf development in absence of a shoot apical meristem in Zeylanidium subulatum (Podostemaceae): evolutionary implications. – Ann. Bot. 96: 51-58.

Inamdar JA, Gangadhara M. 1977. Studies on the trichomes of some Euphorbiaceae. – Feddes Repert. 88: 103-111.

Ingram J. 1967. A revisional study of Argythamnia subgenus Argythamnia (Euphorbiaceae). – Gentes Herb. 10: 1-38.

Ingram J. 1980a. The generic limits of Argythamnia (Euphorbiaceae) defined. – Gentes Herb. 11: 427-436.

Ingram J. 1980b. A revision of Argythamnia subgenus Chiropetalum (A. Juss.) Ingram. – Gentes Herb. 11: 437-468.

Jablonski E. 1967. Euphorbiaceae. – In: Maguire B (ed), Botany of Guayana Highland VII, Mem. New York Bot. Gard. 17: 80-190.

Jacobs M. 1956. Malpighiaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(2), Noordhoff-Kolff N. V., Djakarta, pp. 125-145.

Jacobs M, Moore DM. 1971. Violaceae. – In: Steenis CGGJ van (ed), Flora Malesiana, Ser. I, 7(1), Noordhoff International Publ., pp. 179-212.

Jäger-Zürn I. 1967. Embryologische Untersuchungen an vier Podostemaceen. – Österr. Bot. Zeitschr. 114: 20-45.

Jäger-Zürn I. 1970. Morphologie der Podostemaceae I. Tristicha trifaria (Bory ex Willd.) Spreng. – Beitr. Biol. Pflanzen 47: 11-52.

Jäger-Zürn I. 1992. Morphologie der Podostemaceae II. Indotristicha ramosissima (Wight) van Royen (Tristichoideae). – Trop. Subtrop. Pflanzenwelt 80: 1-48.

Jäger-Zürn I. 1994. Morphologie der Podostemaceae IV. Zur Kenntnis der dithekischen Blätter bei Podostemum subulatum Gard. (Podostemoideae). – Beitr. Biol. Pflanzen 68: 391-419.

Jäger-Zürn I. 1995. Morphologie der Podostemaceae III. Dalzellia ceylanica (Gard.) Wight (Tristichoideae). – Trop. Subtrop. Pflanzenwelt 92: 1-77.

Jäger-Zürn I. 1997a. Comparative morphology of the vegetative structures of Tristicha trifaria, Indotristicha ramosissima and Dalzellia ceylanica. – Aquatic Bot. 57: 71-96.

Jäger-Zürn I. 1997b. Embryological and floral studies in Weddellina squamulosa Tul. (Podostemaceae, Tristichoideae). – Aquatic Bot. 57: 151-182.

Jäger-Zürn I. 1999. Developmental morphology of the shoot system of Podostemum subulatum (Podostemaceae-Podostemoideae). – Beitr. Biol. Pflanzen 71: 281-334.

Jäger-Zürn I. 2000a. Crustose root and root-borne shoots of Zeylanidium olivaceum (Podostemaceae-Podostemoideae). – Flora 195: 61-82.

Jäger-Zürn I. 2000b. Developmental morphology of roots and root-born shoots of Podostemum subulatum as compared with Zeylanidium olivaceum (Podostemaceae-Podostemoideae). – Plant Syst. Evol. 220: 55-67.

Jäger-Zürn I. 2000c. The unusual ramification mode of Sphaerothylax abyssinica (Wedd.) Warm. (Podostemaceae-Podostemoideae). – Flora 195: 200-227.

Jäger-Zürn I. 2002a. Morphology and morphogenesis of ensiform leaves in Apinagia multibranchiata and Mourera fluviatilis (Podostemaceae-Podostemoideae). – Flora 197: 394-407.

Jäger-Zürn I. 2002b. Comparative studies in the morphology of Crenias weddelliana and Maferria indica with reference to Sphaerothylax abyssinica (Podostemaceae: Podostemoideae). – Bot. J. Linn. Soc. 138: 63-84.

Jäger-Zürn I. 2003a. The occurrence of apical septum in the ovary of Rhyncholacis, Apinagia, Marathrum, and Mourera (Podostemoideae-Podostemaceae): taxonomic implications. – Bot. Jahrb. Syst. 124: 303-324.

Jäger-Zürn I. 2003b. The architecture of Zeylanidium olivaceum (Podostemaceae) inferred from the structure of the primary shoots. – Plant Syst. Evol. 241: 103-114.

Jäger-Zürn I. 2005a. Morphology and morphogenesis of ensiform leaves, syndesmy of shoots and an understanding of the thalloid plant body in species of Apinagia, Mourera and Marathrum (Podostemaceae). – Bot. J. Linn. Soc. 147: 47-71.

Jäger-Zürn I. 2005b. Shoot apex and spathella: two problematical structures in Podostemaceae-Podostemoideae. – Plant Syst. Evol. 253: 209-218.

Jäger-Zürn I. 2005c. Structural analysis of the dissected ensiform leaves and shoot morphology of Marathrum foeniculaceum (Podostemaceae). – Flora 200: 229-244.

Jäger-Zürn I. 2005d. Morphology of Thelethylax isalensis (Perr.) C. Cusset (Podostemaceae-Podostemoideae). – Bot. Jahrb. Syst. 127: 273-282.

Jäger-Zürn I. 2007. The shoot apex of Podostemaceae: de novo structure or reduction of the conventional type? – Flora 202: 383-394.

Jäger-Zürn I. 2008. Morphological analysis of shoots and roots in Thelethylax minutiflora and T. insolata (Podostemaceae-Podostemoideae): taxonomic and evolutionary implications. – Bot. Jahrb. Syst. 127: 245-272.

Jäger-Zürn I. 2009a. What is the dithecous leaf? An investigation of the neotropical Podostemon rutifolium subsp. riciiforme (Podostemaceae-Podostemoideae). – Edinburgh J. Bot. 66: 469-481.

Jäger-Zürn I. 2009b. The ramification of Apinagia riedelii: a key to the understanding of the plant architecture of Podostemaceae, subfamily Podostemoideae. – Flora 204: 358-370.

Jäger-Zürn I. 2011. Neglected features of probable taxonomic value in Podostemaceae: the case of Polypleurum. – Flora 206: 38-46.

Jäger-Zürn I, Grubert M. 2000. Podostemaceae depend on sticky biofilms with respect to attachment to rocks in waterfalls. – Intern. J. Plant Sci. 161: 599-607.

Jäger-Zürn I, Mathew CJ. 2002. Cupula structure of Dalzellia ceylanica and Indotristicha ramosissima (Podostemaceae). – Aquatic Bot. 72: 79-91.

Jäger-Zürn I, Novelo RA, Philbrick CT. 2005 [2006]. Microspore development in Podostemaceae-Podostemoideae, with implications on the characterization of the subfamilies. – Plant Syst. Evol. 256: 209-216.

Jäger-Zürn I, Novelo RA, Philbrick CT, Piepenbring M. 2007. Pinnately ramified ensiform leaves in the genus Marathrum (Podostemaceae-Podostemoideae). – Plant Syst. Evol. 268: 97-117.

Jangid PP, Gupta S. 2015. Comparative wood anatomy of Indian Drypetes and Putranjiva (Putranjivaceae): systematic implications, identification and comments on the synonymy of D. sumatrana. – Nord. J. Bot. 33: 684-695.

Janssonius HH. 1929. A contribution to the natural classification of the Euphorbiaceae. – Trop. Woods 19: 8-11.

Janzen DH. 1968. Reproductive behavior in the Passifloraceae and some of its pollinators in Central America. – Behaviour 32: 33-48.

Jardim A. 1999. A revision of Roucheria Planch. and Hebepetalum Benth. (Hugoniaceae). – M.Sc. Thesis, University of Missouri, St. Louis, Missouri.

Jarszewski JW, Olafsdottir ES. 1987. Monohydroxylated cyclopentenoid cyanohydrin glucosides of Flacourtiaceae. – Phytochemistry 26: 3348-3349.

Jedrzejczyk M, Rostanski A, Malkowski E. 2002. Accumulation of zinc and lead in selected taxa of the genus Viola L. – Acta Biol. Cracov. Bot. 44: 49-55.

Jensen U, Vogel-Bauer I, Nitschke M. 1994. Leguminlike proteins and the systematics of the Euphorbiaceae. – Ann. Missouri Bot. Gard. 81: 160-179.

Jessup LW. 1982. Flacourtiaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 66-84.

Jessup SL. 2002. Six new species and taxonomic revisions in Mexican Gaudichaudia (Malpighiaceae). – Madroño 49: 237-255.

Jestrow B, Rodríguez FJ, Francisco-Ortega J. 2010. Generic delimitation in the Antillean Adelieae (Euphorbiaceae) with description of the Hispaniolan endemic genus Garciadelia. – Taxon 59: 1801-1814.

Johns SR, Lamberton JA. 1967a. New imidazole alkaloids from a Glochidion species (Family Euphorbiaceae). – Aust. J. Chem. 20: 555-560.

Johns SR, Lamberton JA. 1967b. Meteloidine from Erythroxylum australe F. Muell. – Aust. J. Chem. 20: 1301-1302.

Johns SR, Lamberton JA, Sioumis AA. 1967. The occurrence of (+)-hygroline in Gynotroches axillaris Bl. (Rhizophoraceae). – Aust. J. Chem. 20: 1303-1304.

Johns SR, Lamberton JA, Sioumis AA. 1970a. Nβ-methyltetrahydroharman from Spathiostemon javensis. – Aust. J. Chem. 23: 213.

Johns SR, Lamberton JA, Sioumis AA. 1970b. Tropine-3,4,5-trimethoxycinnamate, a new alkaloid from Erythroxylum ellipticum (Erythroxylaceae). – Aust. J. Chem. 23: 421-422.

Johnson DM. 1986. Revision of the Neotropical genus Callaeum (Malpighiaceae). – Syst. Bot. 11: 335-353.

Johnson SD, Griffiths ME, Peter CI, Lawes MJ. 2009. Pollinators, “mustard oil” volatiles, and fruit production in flowers of the dioecious tree Drypetes natalensis (Putranjivaceae). – Amer. J. Bot. 96: 2080-2086.

Johnston MC. 1975. Studies of the Euphorbia species of the Chihuahuan desert region and adjacent areas. – Wrightia 5: 120-143.

Johri BM, Kapil RN. 1953. Contribution to the morphology and life history of Acalypha indica L. – Phytomorphology 3: 137-151.

Jolad SD, Hoffmann JJ, Schram KH, Cole JR, Tempesta MS, Bates RB. 1982. Constituents of Eremocarpus setigerus. – J. Organic Chem. 47: 1356-1358.

Jones K, Smith JB. 1969. The chromosome identity of Monadenium Pax and Synadenium Pax (Euphorbiaceae). – Kew Bull. 23: 491-493.

Jones SJ. 1980. Morphology and major taxonomy of Garcinia (Guttiferae). – Ph.D. diss., University of Leicester, England.

Jongkind CCH. 2017. Decorsella arborea, a second species in Decorsella (Violaceae), and Decorsella versus Rinorea. – Willdenowia 47: 43-47.

Jordan MS, Hayden WJ. 1992. A survey of mucilaginous testa in Chamaesyce. – Collect. Bot. (Barcelona) 21: 79-89.

Jørgensen PM, Holm-Nielsen LB, Lawesson JE. 1987. New species of Passiflora subg. Plectostemma and subg. Tacsonia (Passifloraceae). – Nord. J. Bot. 7: 127-133.

Jose T, Inamdar JA. 1989. Structure, ontogeny and biology of nectaries in Croton bonplandianus Baill. – Beitr. Biol. Pflanzen 64: 157-165.

Jud NA, Nelson CW, Herrera F. 2016. Fruits and wood of Parinari from the arly Micene of Panama and the fossil record of Chrysobalanaceae. – Amer. J. bot. 103: 277-289.

Juel HO. 1915. Über den Bau des Gynöceums bei Parinarium. – Ark. f. Bot. 14: 1-12.

Juncosa AM. 1982. Developmental morphology of the embryo and seedling of Rhizophora mangle L. (Rhizophoraceae). – Amer. J. Bot. 69: 1599-1611.

Juncosa AM. 1984a. Embryogenesis and seedling development in Cassipourea elliptica (Sw.) Poit. (Rhizophoraceae). – Amer. J. Bot. 71: 170-179.

Juncosa AM. 1984b. Embryogenesis and developmental morphology of the seedling in Bruguiera exaristata Ding Hou (Rhizophoraceae). – Amer. J. Bot. 71: 180-191.

Juncosa AM. 1986. Systematic summary and developmental floral anatomy and morphology of Rhizophoraceae and Anisophylleaceae. – Amer. J. Bot. 73: 746-747.

Juncosa AM. 1988. Floral development and character evolution in Rhizophoraceae. – In: Leins P, Tucker SC, Endress PK (eds), Aspects of floral development, Berlin, pp. 83-101.

Juncosa AM, Tobe H. 1988. Embryology of tribe Gynotrocheae (Rhizophoraceae) and its developmental and systematic implications. – Ann. Missouri Bot. Gard. 75: 1410-1424.

Juncosa AM, Tomlinson PB. 1987. Floral development in mangrove Rhizophoraceae. – Amer. J. Bot. 74: 1263-1279.

Juncosa AM, Tomlinson PB. 1988a. A historical and taxonomic synopsis of Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1278-1295.

Juncosa AM, Tomlinson PB. 1988b. Systematic comparison and some biological characteristics of Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1296-1318.

Jury SL, Reynolds T, Cutler DF, Evans FJ (eds). 1987. The Euphorbiales: chemistry, taxonomy & economic botany. – Bot. J. Linn. Soc. 94: 1-326.

Justesen PT. 1922. Morphological and biological notes on Rafflesia flowers, observed in the highlands of mid-Sumatra (Padangsche Bovenlanden). –Ann. Jard. Bot. Buitenzorg 32: 64-87.

Kabouw P, Welzen PC van, Baas P, Heuven BJ van. 2008. Styloid crystals in Claoxylon (Euphorbiaceae) and allies (Claoxylinae) with notes on leaf anatomy. – Bot. J. Linn. Soc. 156: 445-457.

Kajale LB. 1939. A contribution to the life history of Bergia ammanioides. – J. Indian Bot. Soc. 18: 157-167.

Kakkar L, Paliwal GS. 1974. Studies on the leaf anatomy of Euphorbia L. Epidermis. – Proc. Indian Nat. Acad. Sci., Sect. B., 40: 55-67.

Kanis A. 1968. A revision of the Ochnaceae of the Indo-Pacific area. – Blumea 16: 1-82.

Kanis A. 1971. Ochnaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I 7, Wolters-Noordhoff, Wageningen, pp. 97-119.

Kapil RN. 1956a. Development of embryo sac and endosperm in Chrozophora rottleri A. Juss.: a reinvestigation. – Bot. Gaz. 117: 242-257.

Kapil RN. 1956b. A further contribution to the morphology and life hstory of Chrozophora Neck. – Phytomorphology 6: 278-288.

Kapil RN. 1960. Embryology of Acalypha Linn. – Phytomorphology 10: 174-184.

Kapil RN. 1961. Some embryological aspects of Euphorbia dulcis L. – Phytomorphology 11: 24-36.

Kapil RN. 1970. Podostemaceae. – In: Proc. Symp. Comparative embryology of angiosperms, Bull. Indian Natl. Sci. Acad., Sect. B, 41: 104-109.

Kapil RN, Bhatnagar AK. 1972. Endosperm in Euphorbaceae – a critical appraisal. – In: Murty YS, Johri BM, Mohan Ram HY, Verghese TM (eds), Advances in plant morphology, Rustogi Publ., Meerut, pp 376-393.

Kapil RN, Bhatnagar AK. 1994. The contribution of embryology to the systematics of the Euphorbiaceae. – Ann. Missouri Bot. Gard. 81: 145-159.

Karrenberg S, Kollmann J, Edwards PJ. 2002. Pollen vectors and inflorescence morphology in four species of Salix. – Plant Syst. Evol. 235: 181-188.

Katayama N, Koi S, Kato M. 2008. Developmental anatomy of the reproductive shoot of Hydrobryum japonicum (Podostemaceae). – J. Plant Res. 121: 417-424.

Katayama N, Koi S, Kato M. 2010. Expression of SHOOT MERISTEMLESS, WUSCHEL, and ASYMMETRIC LEAVES1 homologs in the shoots of Podostemaceae: implications for the evolution of novel shoot organogenesis. – The Plant Cell 22: 2131-2140.

Kathriarachchi H, Hoffmann P, Samuel R, Wurdack KJ, Chase MW. 2005. Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid atpB, matK, 3’ndhF, rbcL, and nuclear PHYC). – Mol. Phylogen. Evol. 36: 112-134.

Kathriarachchi H, Samuel R, Hoffmann P, Mlinarec J, Wardack KJ, Ralimanana H, Stuessy TF, Chase MW. 2006. Phylogenetics of tribe Phyllantheae (Phyllanthaceae; Euphorbiaceae sensu lato) based on nrITS and plastid matK sequence data. – Amer. J. Bot. 93: 637-655.

Kato L, Oliveira CMA de, Bittrich V, Amaral M do CE. 2005. Xanthones from Weddellina squamulosa Tul. (Podostemaceae). – Biochem. Syst. Ecol. 33: 331-334.

Kato M. 2004. Taxonomic study of Podostemaceae of Thailand 1. Hydrobryum and related genera with crustaceous roots (subfamily Podostemoideae). – Acta Phytotaxon. Geobot. 55: 133-165.

Kato M. 2006a. Taxonomic studies of Podostemaceae of Thailand 2. Subfamily Tristichoideae and subfamily Podostemoideae with ribbon-like roots. – Acta Phytotaxon. Geobot. 57: 1-54.

Kato M. 2006b. Distribution and biogeography of Podostemaceae in Asia. – Bull. Natl. Sci. Mus. Tokyo, B, 32: 19-27.

Kato M. 2008. A taxonomic study of Podostemaceae of Japan. – Bull. Natl. Mus. Nat. Sci., Ser. B, 34: 63-73.

Kato M. 2009. Podostemaceae of Malesia: taxonomy, phylogeny and biogeography. – Blumea 54: 198-202.

Kato M, Kita Y. 2003. Taxonomic study of Podostemaceae of China. – Acta Phytotaxon. Geobot. 54: 87-97.

Kato M, Kita Y, Koi S. 2003. Molecular phylogeny, taxonomy and biogeography of Malaccotristicha australis comb. nov. (syn. Tristicha australis) (Podostemaceae). – Aust. Syst. Bot. 16: 177-183.

Kato M, Koi S. 2009. Taxonomic studies of Podostemaceae of Thailand 3. Six new and a rediscovered species. – Gard. Bull. Singapore 61: 55-72.

Kato M, Kita Y, Koi S. 2003. Molecular phylogeny, taxonomy and biogeography of Malaccotristicha australis comb. nov. (syn. Tristicha australis) (Podostemaceae). – Aust. Syst. Bot. 16: 177-183.

Kato M, Koi S, Kita Y. 2004. A new foliose-rooted genus of Podostemaceae from Thailand with a note on root evolution. – Acta Phytotaxon. Geobot. 55: 65-73.

Kato M, Takimura A, Kawakita A. 2003. An obligate pollination mutualism and reciprocal diversification in the tree genus Glochidion (Euphorbiaceae). – Proc. Natl. Acad. Sci. U.S.A. 100: 5264-5267.

Kato T. 1985. Taxonomical studies on the Hypericum pseudopetiolatum complex I. Geographical differentiation in the Japan Archipelago. – Bot. Mag. (Tokyo) 98: 359-370.

Kato T. 1986. Taxonomical studies on the Hypericum pseudopetiolatum complex II. Natural hybridizations in Kyushu. – Bull. Natl. Sci. Mus. Tokyo, Ser. B, 12: 139-149.

Kato T. 1987. Taxonomical studies on the Hypericum pseudopetiolatum complex III. Taxonomy. – Bull. Natl. Sci. Mus. Tokyo, Ser. B, 13: 69-80.

Kato T. 1990. Taxonomical studies on the Hypericum pseudopetiolatum complex IV. Allozyme divergence and phylogenetic inference. – J. Fac. Sci. Univ. Tokyo, Ser. III, Botany 14: 341-368.

Kaul RB. 1995. Reproductive structure and organogenesis in a cottonwood, Populus deltoides (Salicaceae). – Intern. J. Plant Sci. 156: 172-180.

Kaur D. 1970. Turneraceae. – In: Proceedings of the symposium on comparative embryology of angiosperms, Indian National Science Academy, New Delhi, pp. 194-198.

Kawakita A. 2010. Evolution of obligate pollination mutualism in the tribe Phyllantheae (Phyllanthaceae). – Plant Species Biol. 25: 3-19.

Kawakita A, Kato M. 2004a. Evolution of obligate pollination mutualism in New Caledonia Phyllanthus (Euphorbiaceae). – Amer. J. Bot. 91: 410-415.

Kawakita A, Kato M. 2004b. Obligate pollination mutualism in Breynia (Phyllanthaceae): further documentation of pollination mutualism involving Epicephala (Gracillariidae). – Amer. J. Bot. 91: 1319-1325.

Kawakita A, Kato M. 2006. Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees. – Mol. Ecol. 15: 3567-3581.

Kawakita A, Kato M. 2009. Repeated independent evolution of obligate pollination mutualism in the Phyllantheae-Epicephala association. – Proc. Roy. Soc., Sect. B, 276: 417-426.

Kawakita A, Takimura A, Terachi T, Sota T, Kato M. 2004. Cospeciation analysis of an obligate pollination mutualism: have Glochidion trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillariidae) diversified in parallel? – Evolution 58: 2201-2214.

Kawano S. 1965. Anatomical studies on the androecia of some members of the Guttiferae-Moronoboideae. – Bot. Mag. (Tokyo) 78: 97-108.

Kawashima T, Nakatsu T, Fukazawa Y, Ito S. 1976. Diterpenic lactones of Mallotus repandus. – Heerocycles 5: 227-232.

Keating RC. 1973. Pollen morphology and relationships of the Flacourtiaceae. – Ann. Missouri Bot. Gard. 60: 273-305.

Keating RC. 1975 [1976]. Trends of specialization in pollen of Flacourtiaceae with comparative observations of Cochlospermaceae and Bixaceae. – Grana 15: 29-49.

Keating RC, Randrianasolo V. 1988. The contribution of leaf architecture and wood anatomy to classification of the Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1343-1368.

Kellogg EA, Weitzman AL. 1985. A note on the Oceanic species of Melicytus (Violaceae). – J. Arnold Arbor. 66: 491-502.

Kelly LJ, Ameka GK, Chase MW. 2010. DNA barcoding of African Podostemaceae (river-weeds): a test of proposed barcode regions. – Taxon 59: 251-260.

Kenfack D, Gereau RE, Thomas DW, Sainge MN. 2015. The tropical African genus Crotonogynopsis (Euphorbiaceae), with two new species. – Novon 24: 246-255.

Kenoyer LA. 1919. Dimorphic carpellate flower of Acalypha indica L. – J. Indian Bot. 1: 3-7.

Khan MI, Ikram M, Hussain SF. 1983. Bisbenzylisoquinoline alkaloids from Andrachne cordifolia. – Planta Medica 47: 191.

Khanduri P, Tandon R, Uniyal PL, Bhat V, Pandey AK. 2015. Comparative morphology and molecular systematics of Indian Podostemaceae. – Plant Syst. Evol. 301: 861-882.

Khosla C, Mohan Ram HY. 1993. Morphology of flower, fruit and seed in Polypleurum stylosum. – Aquatic Bot. 46: 255-262.

Khosla C, Shivanna KR, Mohan Ram HY. 2000. Reproductive biology of Polypleurum stylosum (Podostemaceae). – Aquatic Bot. 67: 143-154.

Khosla C, Shivanna KR, Mohan Ram HY. 2001. Cleistogamy in Griffithella hookeriana (Podostemaceae). – South Afr. J. Bot. 67: 320-324.

Kiger RW. 1972. The genus Samyda (Flacourtiaceae). – Ph.D. diss., University of Maryland, College Park, Maryland.

Kiger RW. 1984. Exclusions from Samyda Jacq. (Flacourtiaceae). – Taxon 33: 445-468.

Killip EP. 1938. The American species of Passifloraceae. – Publ. Field Mus. Nat. Hist., Bot., 19: 1-613.

Killip EP. 1960. Supplemental notes on the American species of Passifloraceae with descriptions of new species. – Contr. U.S. Natl. Herb. 35: 1-23.

Kim KS, Sun BY, Whang SS, Chung GH. 1991. Biosystematic study on the genus Viola in Korea. Comparative study of the Viola albida complex. – Korean J.Bot. 34: 229-238.

Kimura A. 1928. Über Toisusu, eine neue Salicaceen-Gattung und die systematische Stellung derselben. – Bot. Mag. (Tokyo) 42: 287-290.

Kimura A. 1938. Symbolae Iteologicae VI. – Sci. Rep. Tôhoku Univ., Ser. IV (Biology) 13: 381-394.

Kimura A. 1988. De salicis subgenere Pleuradenia commentatio. – Sci. Rep. Tôhoku Univ., Ser. IV (Biology) 39: 143-147.

Kimura C. 1963. On the embryo sac in some members of the Salicaceae. – Sci. Rep. Tôhoku Univ., Ser. IV (Biology) 29: 393-398.

Kimura Y. 1937. Conspectus omnium specierum generis Hyperici (excl. sect. Ascyron) in Yezo, Sachalin et Kuriles I-II. – Bot. Mag. (Tokyo) 51: 700-708, 730-738.

Kimura Y. 1938. Hypericorum Japonicarum descriptio I-II. – Bot. Mag. (Tokyo) 52: 188-195, 403-408.

Kimura Y. 1939. Sur la groupe d’Hypericum pseudopetiolatum. – J. Jap. Bot. 15: 292-301.

Kinghorn ad. 1979. Cocarcinogeic irritant Euphorbiaceae. – In: Kinghorn AD (ed), Toxic plants, Columbia University Press, New York, pp. 137-159.

Kirchheimer F. 1951. Über das Vorkommen einer Gattung der Humiriaceen im Europäischen Tertiär. – Planta 39: 75-90.

Kita Y. 2002. Molecular phylogeny, morphological evolution, and biogeography of Podostemaceae. – Bunrui 2: 19-26. [In Japanese]

Kita Y, Kato M. 2001. Infrafamilial phylogeny of the aquatic angiosperm Podostemaceae inferred from the nucleotide sequences of the matK gene. – Plant Biol. 3: 156-163.

Kita Y, Kato M. 2004a. Phylogenetic relationships between disjunctly occurring groups of Tristicha trifaria (Podostemaceae). – J. Biogeogr. 31: 1605-1612.

Kita Y, Kato M. 2004b. Molecular phylogeny of Cladopus and Hydrobryum (Podostemaceae, Podostemoideae) with implications for their biogeography in East Asia. – Syst. Bot. 29: 921-932.

Kita Y, Kato M. 2005. Seedling developmental anatomy of an undescribed Malaccotristicha species (Podostemaceae, subfamily Tristichoideae) with implications for body plan evolution. – Plant Syst. Evol. 254: 221-232.

Kitanov GM, Nedialkov PT. 1998. Mangiferin and isomangiferin in some Hypericum species. – Biochem. Syst. Ecol. 26: 647-653.

Kite GC, Fellows LE, Fleet GWJ, Liu PS, Scofield AM, Smith NG. 1988. α-Homonojirimycin [2,6-dideoxy-2,6-imino-D-glycero-L-gulohepitol] from Omphalea diandra L.: isolation and glucosidase inhibition. – Tet. Let. 29: 6483-6486.

Kleiman R, Plattner RD, Specer GF. 977. Alchornea cordifolia seed oil: a rich source of a new C20 epoxide, (+)-cis-14,15-epoxy-cis-11-eicosenoic acid. – Lipids 12: 610-612.

Kleiman R, Smith CR Jr, Yates SG, Jones Q. 1965. Search for new industrial oils XII. Fifty-eight Euphorbiaeae oils, including one rich in vernolic acid. – J. Amer. Oil Chem. Soc. 42: 169-172.

Kloos A, Bouman F. 1980. Case studies in aril development of Passiflora suberosa L. and Turnera ulmifolia L. – Beitr. Biol. Pflanzen 55: 49-66.

Klucking EP. 1992. Leaf venation patterns 6. Flacourtiaceae. – J. Cramer, Berlin.

Klucking EP. 1998. Vol. 8, Euphorbiaceae, part 1. Phyllanthoideae and Oldfieldioideae. – J. Cramer, Berlin, pp. 1-93.

Knapp S, Mallet J. 1984. Two new species of Passiflora (Passifloraceae), with comments on their natural history. – Ann. Missouri Bot. Gard. 71: 1068-1074.

Knoll F. 1905. Die Brennhaare der Euphorbiaceen-Gattungen Dalechampia und Tragia. – Sitzungsber. K. Akad. Wiss. Math.-Nat. Kl. 114: 29-48.

Kobuski CE. 1948. Studies in the Theaceae XVII. A review of the genus Bonnetia. – J. Arnold Arbor. 29: 393-413.

Kobuski CE. 1950. Studies in the Theaceae XIX. The genera Archytaea and Ploiarium. – J. Arnold Arbor. 31: 196-207.

Koch BE. 1972. Fossil Picrodendron fruit from the Upper Danian of Núgssuaq, West Greenland. – Medd. Grønland 193: 1-32.

Kogi M. 1984. A karyomorphological study of the genus Hypericum (Hypericaceae) in Japan. – Bot. Mag. (Tokyo) 97: 333-343.

Köhler E. 1965. Die Pollenmorphologie der biovulaten Euphorbiaceae und ihre Bedeutung für die Taxonomie. – Grana Palynol. 6: 26-120.

Koi S, Kato M. 2003. Comparative developmental anatomy of the root in three species of Cladopus (Podostemaceae). – Ann. Bot. 91: 927-933.

Koi S, Kato M. 2007. Developmental morphology of the shoot in Weddellina squamulosa and implications for shoot evolution in the Podostemaceae. – Ann. Bot. 99: 1121-1130.

Koi S, Kato M. 2010a. Developmental morphology of seedling and shoot and phylogenetic relationship of Diplobryum koyamae (Podostemaceae). – Amer. J. Bot. 97: 373-387.

Koi S, Kato M. 2010b. Developmental anatomy of seedcling of Indodalzellia gracilis (Podostemaceae). – Plant Biol. 12: 794-799.

Koi S, Kato M. 2012. A taxonomic study of Podostemaceae subfamily Podostemoideae of Laos with phylogenetic analyses of Cladopus, Paracladopus and Polypleurum. – Kew Bull. 67: 331-365.

Koi S, Imaichi R, Kato M. 2005. Endogenous leaf initiation in the apical-meristemless shoot of Cladopus queenslandicus (Podostemaceae) and implications for evolution of shoot morphology. – Intern. J. Plant Sci. 166: 199-206.

Koi S, Fujinami R, Kubo N, Tsukamoto I, Inagawa R, Imaichi R, Kato M. 2006. Comparative anatomy of root meristem and root cap in some species of Podostemaceae and the evolution of root dorsiventrality. – Amer. J. Bot. 93: 682-692.

Koi S, Kita Y, Kato M. 2008. Paracladopus chanthaburiensis, a new species of Podostemaceae from Thailand, with notes on its morphology, phylogeny and distribution. – Taxon 57: 201-210.

Koi S, Rutishauser R, Kato M. 2009. Phylogenetic relationship and morphology of Dalzellia gracilis (Podostemaceae, subfamily Tristichoideae) with proposal of a new genus. – Intern. J. Plant Sci. 170: 237-246.

Koi S, Kita Y, Hirayama Y, Rutishauser R, Huber KA, Kato M. 2012. Molecular phylogenetic analysis of Podostemaceae: implications for taxonomy of major groups. – Bot. J. Linn. Soc. 169: 461-492.

Kolbe K-B, John J. 1979. Serologische Untersuchungen zur Systematik der Violales. – Bot. Jahrb. Syst. 101: 3-15.

Kollmann R. 1960a. Untersuchungen über das Protoplasma der Siebröhren von Passiflora coerulea I. Mitteilung: lichtoptische Untersuchungen. – Planta 54: 611-640.

Kollmann R. 1960b. Untersuchungen über das Protoplasma der Siebröhren von Passiflora coerulea II. Mitteilung: elektronenoptische Untersuchungen. – Planta 55: 67-107.

Kolterman DA, Breckon GJ. 1982. Chemotaxonomic studies in Cnidoscolus (Euphorbiaceae) I. Flavonol glycosides of the C. tubulosus complex. – Syst. Bot. 7: 178-185.

Kolterman DA, Breckon GJ, Kowal RR. 1984. Chemotaxonomic studies in Cnidoscolus (Euphorbiaceae) II. Flavonoids of C. aconitifolius, C. souzae, and C. spinosus. – Syst. Bot. 9: 22-32.

Kool R. 1980. A taxonomic revision of the genus Ixonanthes. – Blumea 26: 191-204.

Kool R. 1986. Ixonanthaceae. – In: Steenis CGGJ van (†), Wilde WJJO de (eds), Flora Malesiana I, 10(3), Kluwer Academic Publ., Dordrecht, Boston, London, pp. 621-627.

Koorders SH. 1918. Botanisch overzicht der Rafflesiaceae van Nederlandsch-Indië. – G. Kolff, Batavia.

Korotkova N, Schneider JV, Quandt D, Worberg A, Zizka G, Borsch T. 2009. Phylogeny of the eudicot order Malpighiales: analysis of a recalcitrant clade with sequences of the petD group II intron. – Plant Syst. Evol. 282: 201-228.

Kostermans AJGH. 1965. The genus Acioa Aublet (Rosaceae-Chrysobalanoideae) in Malesia. – Reinwardtia 7: 9-18.

Koutnik DL. 1984. Chamaesyce (Euphorbiaceae) – a newly recognized genus in southern Africa. – South Afr. J. Bot. 3: 262-264.

Koutnik DL. 1987. A taxonomic revision of the Hawaiian species of the genus Chamaesyce (Euphorbiaceae). – Allertonia 4: 331-388.

Krahenbühl M, Yuan Y-M, Küpfer P. 2002. Chromosome and breeding system evolution of the genus Mercurialis (Euphorbiaceae): implications of ITS molecular phylogeny. – Plant Syst. Evol. 234: 155-169.

Krause K. 1908. Linaceae andinae. – Engl. Bot. Jahrb. Syst. 40: 277-279.

Krause K. 1925. Lacistemaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 321-323.

Krishnan N. 1977. Cytotaxonomical studies on Bixaceae and Samydadeae from South India with collected evidences from palynology, anatomy and biochemistry. – Ph.D. diss., Annamalai University, India.

Krishnan N. 1981. Pollen morphology of some Flacourtiaceae. – Proc. Indian Acad. Sci., Sect. B, 90: 163-168.

Krosnick SE, Freudenstein JV. 2005. Monophyly and floral character homology of Old World Passiflora (subgenus Decaloba: supersection Disemma). – Syst. Bot. 30: 139-152.

Krosnick SE, Harris EM, Freudenstein JV. 2006. Patterns of anomalous floral development in the Asian Passiflora (subgenus Decaloba: supersection Disemma). – Amer. J. Bot. 93: 620-636.

Krosnick SE, Ford AJ, Freudenstein JV. 2009. Taxonomic revision of Passiflora subgenus Tetrapathea including the monotypic genera Hollrungia and Tetrapathea (Passifloraceae), and a new species of Passiflora. – Syst. Bot. 34: 375-385.

Krosnick SE, Porter-Utley KE, MacDougal JM, Jørgensen PM, McDade LA. 2013. New insights into the evolution of Passiflora subgenus Decaloba (Passifloraceae): phylogenetic relationships and morphological synapomorphies. – Syst. Bot. 38: 692-713.

Kruijt RC. 1996. A taxonomic monograph of Sapium Jacq., Anomostachys (Baill.) Hurus, Duvigneaudia J. Léonard and Sclerocroton Hochst. (Euphorbiaceae tribe Hippomaneae). – Bibl. Bot. 146: 1-109.

Kruijt RC, Zijlstra G. 1989. Proposal to conserve 4483 Sapium Jacq., 1760 against P. Browne, 1756 (Euphorbiaceae). – Taxon 38: 320-325.

Kubitzki K. 1978. The botany of Guyana Highlands X. Caraipa and Mahurea (Bonnetiaceae). – Mem. New York Bot. Gard. 29: 82-128.

Kubitzki K. 2006. Malesherbiaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p. p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. – Springer, Berlin, Heidelberg, New York, pp. 247-249.

Kubitzki K (ed). 2014. The families and genera of vascular plants XI. Flowering plants – eudicots – Malpighiales. – Springer, Berlin, Heidelberg, New York, 331 pp.

Kubitzki K, Mesquita AAL, Gottlieb OR. 1978. Chemosystematic implications of xanthones in Bonnetia and Archytaea. – Biochem. Syst. Ecol. 6: 185-187.

Kuhlmann JG. 1935. Novas especies da Hylea. – Arq. Inst. Biol. Veg. 2: 83-89.

Kuhlmann JG. 1940. Especies novas equatoriais. – Anais Reunião Sul.-Amer. Bot. 3: 78-86.

Kulju KKM, Sierra SEC, Draisma SGA, Samuel R, Welzen PC van. 2007. Molecular phylogeny of Macaranga, Mallotus, and related genera (Euphorbiaceae s.s.): insights from plastid and nuclear DNA sequence data. – Amer. J. Bot. 94: 1726-1743.

Kulju KKM, Sierra SEC, Welzen PC van. 2007. Reshaping Mallotus II: inclusion of Neotrewia, Octospermum and Trewia in Mallotus s. str. (Euphorbiaceae s. str.). – Blumea 52: 115-136.

Kulju KKM, Ham RWJM van der, Breteler FJ. 2008. Rediscovery and phylogenetic position of the incertae sedis genus Afrotrewia (Euphorbiaceae): morphological, pollen and molecular evidence. – Taxon 57: 137-143.

Kulshreshtha K, Ahmad KJ. 1992. Cuticular ornamentations in some genera of Euphorbiaceae. – Feddes Repert. 103: 317-326.

Kumar PV, Bahadur B. 1978. Structure of the epidermis and ontogeny of stomata in Reinwardtia indica Dum. (Linaceae). – Indian J. Bot. 1: 127-131.

Kusari S, Lamshöft M, Zühlke S, Spiteller M. 2008. An endophytic fungus from Hypericum perforatum that produces hypericin. – J. Nat. Prod. 71: 159-162.

Küster E. 1897. Die anatomischen Charaktere der Chrysobalaneen, insbesondere ihre Kieseleinlagerungen. – Bot. Centralbl. 69: 46-54, 97-106, 129-139, 161-169, 193-202, 225-234.

Kwon DJ, Bae YS. 2009. Phenolic glucosides from bark of Populus alba x glandulosa (Salicaceae). – Biochem. Syst. Ecol. 37: 130-132.

Lack A. 1978. The ecology of the flowers of the savanna tree Maranthes polyandra and their visitors, with particular reference to bats. – J. Ecol. 66: 287-295.

Lacoste JF, Alexandre DY. 1991. Le goupi (Goupia glabra Aubl), essence forestière d’avenir en Guyane: analyse bibliographique. – Ann. Sci. For. 48: 429-441.

La Fon R (ed). 1980-1996. Euphorbia Journal 1-10. – Strawberry Press, Mill Valley, California.

Lægaard S. 2008. Elatine rotundifolia sp. nov. (Elatinaceae) from Ecuador. – Nord. J. Bot. 26: 235-236.

Lakshmanan KK, Poornima S. 1988. Microsporogenesis in Rhizophora lamarckii Montr. – Curr. Sci. 57: 1084. 1085.

Landes M. 1946. Seed development in Acalypha rhomboidea and some other Euphorbiaceae. – Amer. J. Bot. 33: 562-568.

Larsson G, Bremer B. 1991. Korgviden – nyttoväxter förr och nu. – Svensk Bot. Tidskr. 85: 185-200.

Launert E. 1963. 35. Malpighiaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 109-125.

Launert E. 1968. Malpighiaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-27.

Lauter WM, Foote PA. 1955. Toxic principles of Hippomane mancinella II. Isolation of a toxic principle. – J. Amer. Pharm. Assoc. 44: 3361-363.

Lauterbach C. 1922. Beiträge zur Flora von Papuasien IX. Die Guttiferen Papuasiens. – Engl. Bot. Jahrb. Syst. 58: 1-49.

Leach GJ. 1989. Taxonomic revision of Bergia (Elatinaceae) in Australia. – J. Adelaide Bot. Gard. 11: 75-100.

Leach LC. 1973. New and interesting taxa of the tribe Euphorbieae (Euphorbiaceae) from Portuguese Africa. – Garcia de Orta, Ser. Bot. 1: 31-42.

Leach LC. 1976. Distributional and morphological studies of the tribe Euphorbieae (Euphorbiaceae) and their relevance to its classification and possible evolution. – Excelsa 6: 3-19.

Leal DO, Malafaia C, Cesar R, Pimentel RR, Santiago-Fernandes LDR, Lima HA, Sá-Haiad B. 2012. Floral structure of Garcinia brasiliensis in relation to flower biology and evolution. – Intern. J. Plant Sci. 173: 172-183.

Léandri J. 1938. Euphorbiacées malgaches nouvelles récoltées par M. H.Perrier de la Bâthie. – Bull. Soc. Bot. France 85: 523-533.

Léandri J. 1938 [1939]. Le genre Tragia (Euphorbiacées) à Madagascar. – Bull. Trim. Acad. Malgache, n.s. 21: 65-68.

Léandri J. 1940. Sur un genre malgache nouveau d’Euphorbiacées. – Bull. Soc. Bot. France 87: 279-285.

Léandri J. 1949. Sur la présence d’une Trigoniacée dans la flore malgache. – Compt. Rend. Acad. Sci. Paris 229: 846-848.

Léandri J. 1957. Euphorbia mandravioky, nom. nov., et un nom nouveau pour une sous-section du genre Euphorbe. – Bull. Soc. Bot. France 104: 499-501.

Léandri J. 1958. Euphorbiacées. – In: Humbert H (ed), Flore de Madagascar 111, Firmin-Didot et Cie, Paris.

Léandri J. 1971. Un sous-genre malgache nouveau de Tragia (Euphorbiaceae). – Adansonia, sér. II, 13: 437-439.

Lebreton P, Bouchez M-P. 1967. Recherches chimiotaxinomiques sur les plantes vasculaires V. Distribution des composés polyphénoliques chez les Pariétales. – Phytochemistry 6: 1601-1608.

Lee DE, Bannister JM, Raine JI, Conran JG. 2010. Euphorbiaceae: Acalyphoideae fossils from early Miocene New Zealand: Mallotus-Macaranga leaves, fruits, and inflorescence with in situ Nyssapollenites endobalteus pollen. – Rev. Palaeobot. Palynol. 163: 127-138.

Leenhouts PW. 1956. Some notes on the genus Dichapetalum (Dichapetalaceae) in Asia, Australia, and Melanesia. – Reinwardtia 4: 75-87.

Leenhouts PW. 1957. Dichapetalaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I(5), Noordhoff-Kolff N. V., Groningen, pp. 305-316.

Leinfellner W. 1954. Beiträge zur Kronblattmorphologie I. Erythroxylum novogranatense. – Österr. Bot. Zeitschr. 101: 428-434.

Leins P. 1964. Die frühe Blütenentwicklung von Hypericum hookerianum Wight et Arn. und H. aegyptiacum L. – Ber. Deutsch. Bot. Ges. 77: 112-123.

Leins P, Erbar C. 1991. Fascicled androecia in Dilleniidae and some remarks on the Garcinia androecium. – Bot. Acta 104: 336-344.

Lemke DE. 1983. Taxonomy of Neopringlea (Flacourtiaceae). – Syst. Bot. 8: 430-435.

Lemke DE. 1987a. Tribal relationships of Bartholomaea (Flacourtiaceae). – Brittonia 39: 436-439.

Lemke DE. 1987b. Morphology, wood anatomy, and relationships of Neopringlea (Flacourtiaceae). – Syst. Bot. 12: 609-616.

Lemke DE. 1988. A synopsis of Flacourtiaceae. – Aliso 12: 29-43.

Léonard J. 1956. Notulae systematicae XXI. Observations sur les genres Oldfieldia, Paivaeusa et Cecchia (Euphorbiaceae Africanae). – Bull. Jard. Bot. État Bruxelles 26: 335-343.

Léonard J. 1959a. Observations sur les genres Pycnocoma et Argomuellera (Euhorbiacées africaines). – Bull. Soc. Roy. Bot. Belg. 91: 267-281.

Léonard J. 1959b. Notulae systematicae XXVI. Notes sur les espèces africaines continentales des genres Sapium P. Br. et Excoecaria L. – Bull. Jard. Bot. État Bruxelles 29: 133-146.

Léonard J. 1962a. Notulae systematicae 33. Sur les limites entre les genres Drypetes Vahl et Lingelsheimia Pax (Euphorbiaceae). – Bull. J. Bot. État Bruxelles 32: 513-516.

Léonard J. 1962b. Euphorbiaceae II. Crotoneae. – In: Flore du Congo Belge et du Rwanda-Burundi 8, 1, Institut national pour l’étude agronomique du Congo, Bruxelles, pp. 50-84.

Léonard J. 1989. Révision du genre africain Martretia Beille (Euphorbiaceae) et la nouvelle tribu des Marthretieae. – Bull. Jard. Bot. État. Bruxelles 59: 319-332.

Léonard J. 1995. Révision des espèces zaïroises des genres Thecacoris A. Juss. et Cyathogyne Müll. Arg. (Euphorbiaceae). – Bull. Jard. Bot. Belg. 64: 13-52.

Léonard J. 1996. Euphorbiaceae. – In: Flore d’Afrique Centrale 8(3): 1-74.

Léonard J, Dessart P. 1994. Avis de recherché: Torridincolidés (Coleoptera) vivant en symbiose avec Podostémacées (Podostémales). – Bull. Ann. Soc. Roy. Belg. Entomol. 130: 71-76.

Léonard J, Mosango M. 1985. Hymenocardiaceae. – In: Flore d’Afrique Centrale: Spermatophytes, Bull. Jard. Bot. Natl. Belg., Bruxelles, pp. 1-16.

Léonard J, Nkounkou J. 1989. Révision du genre Spondianthus Engl. (Euphorbiacée africaine). – Bull. Jard. Bot. Natl. Belg. 59: 133-149.

Léon Enriquez BL, Vester HFM Vester, Hallé F. 2008. The architecture of Phyllanthus acuminatus Vahl: a prelude to understanding the architectural evolution in the Phyllanthaceae. – Adansonia, sér. III, 30: 137-149.

Leroy C, Jauneau A, Quilichini A, Dejean A, Orivel J. 2008. Comparison between the anatomical and morphological structure of leaf blades and foliar domatia in the ant-plant Hirtella physophora (Chrysobalanaceae). – Ann. Bot. 101: 501-507.

Leroy J-F. 1976. Recherches sur la nature et l’origine de la fleur angiospermienne: interpretation des structures dans un groupe singulier d’Euphorbiaceae. – Compt. Rend. Acad. Sci. Paris, sér. D, 283: 147.

Lersten NP, Curtis JD. 1974. Colleter anatomy in red mangrove, Rhizophora mangle (Rhizophoraceae). – Can. J. Bot. 52: 2277-2278.

Les DH, Philbrick CT, Novelo RA. 1997. The phylogenetic position of river-weeds (Podostemaceae): insights from rbcL sequence data. – Aquatic Bot. 57: 5-27.

Leskinen E, Alström-Rapaport C. 1999. Molecular phylogeny of Salicaceae and closely related Flacourtiaceae: evidence from 5.8S, ITS1 and ITS2 of the rDNA. – Plant Syst. Evol. 215: 209-227.

Letouzey R. 1961. Notes sur les Scytopétalacées (Révision des Scytopétalacées de l’herbier de Paris). – Adansonia, sér. II, 1: 106-142.

Levin GA. 1986a. Systematic foliar morphology of Phyllanthoideae (Euphorbiaceae) I. Conspectus. – Ann. Missouri Bot. Gard. 73: 29-85.

Levin GA. 1986b. Systematic foliar morphology of Phyllanthoideae (Euphorbiaceae) II. Phenetic analysis. – Ann. Missouri Bot. Gard. 73: 86-98.

Levin GA. 1986c. Systematic foliar morphology of Phyllanthoideae (Euphorbiaceae) III. Cladistic analysis. – Syst. Bot. 11: 515-530.

Levin GA. 1992. Systematics of Paradrypetes (Euphorbiaceae). – Syst. Bot. 17: 74-83.

Levin GA. 1998. Evolution in the Acalypha gracilens/monococca complex (Euphorbiaceae): morphological analysis. – Syst. Bot. 23: 269-287.

Levin GA, Simpson MG. 1994a. Phylogenetic implications of pollen ultrastructure in the Oldfieldioideae (Euphorbiaceae). – Ann. Missouri Bot. Gard. 81: 203-238.

Levin GA, Simpson MG. 1994b. Phylogenetic relationships of Didymocistus and Hymenocardia (Euphorbiaceae). – Ann. Missouri Bot. Gard. 81: 239-244.

Levin GA, Morton JK, Robbrecht E. 2007. Two new species of Acalypha (Euphorbiaceae) from tropical Africa, and a review of some Robyns names for cupricolous plants from the Democratic Republic of the Congo. – Syst. Bot. 32: 576-582.

Lewis J. 1954. Turneraceae. – In: Turrill WB, Milne-Redhead E (eds), Flora of tropical East Africa, The Crown Agents for the Colonies, London, pp. 1-20.

Lewis J. 1956. Rhizophoraceae. – In: Turrill WB, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea governments and Administrations, London, pp. 1-20.

Lewis WH. 1964. A hexaploid Linum (Linaceae) from eastern Ethiopia. – Sida 1: 383-384.

Li A, Wang KQ, G S. 2000. Genetic diversity within and among populations of Viola tenuicornis with reference to sampling strategies. – Acta Bot. Sin. 42: 1069-1074.

Li H. 1975. The Rafflesiaceae in China. – Acta Phytotax. Sin. 13: 79-82. [in Chinese]

Li PT. 1991. A new genus of Euphorbiaceae and some new nomenclatural combination of the asclepiadaceous plants. – J. S. China Agric. Univ. 12: 38-42.

Li Y, Dressler S, Zhang D, Renner SS. 2009. More Miocene dispersal between Africa and Asia – the case of Bridelia (Phyllanthaceae). – Syst. Bot. 34: 521-529.

Lieberei R. Selmar D, Biehl B. 1985. Metabolization of cyanogenic glycosides in Hevea brasiliensis. – Plant Syst. Evol. 150: 49-63.

Lim AL. 1984. The embryology of Garcinia mangostana L. (Clusiaceae). – Gard. Bull. (Singapore) 37: 93-103.

Lima LR, Pirani JR. 2003. O gênero Croton L. (Euphorbiaceae) na Cadeia do Espinhaço, Minas Gerais, Brasil. – Bol. Bot. Univ. São Paulo 21: 299-344.

Lin Q, Duan L-D. 2009. Two new species and a new series of Elatostema (Urticaceae) from China. – Bot. J. Linn. Soc. 158: 674-680.

Lindman CAM. 1906. Zur Kenntnis der Corona einiger Passifloren. – In: Sernander R, Svedelius N, Norén CO (eds), Botaniska studier tillägnade F. R. Kjellman, Almqvist & Wiksell, Uppsala, pp. 55-79.

Link DA. 1992a. The floral nectaries of the Geraniales and their systematic implications IV. Ctenolophonaceae Badre. – Flora 187: 103-107.

Link DA. 1992b. The floral nectaries in the Irvingiaceae. – Plant Syst. Evol. 180: 235-242.

Link DA. 1992c. The floral nectaries of the Geraniales and their systematic implications VI. Ixonanthaceae Exell and Mendonça. – Bot. Jahrb. Syst. 114: 81-90.

Link DA. 1992d. The nectaries of the Geraniales and their systematic implications VII. Humiriaceae Cuatr. – Bot. Jahrb. Syst. 114: 211-241.

Liogier AH. 1952. Estudios en Euforbiáceas Cubanas. – Contr. Ocas. Mus. Hist. Nat. Colegio La Salle 11: 1-12.

Liogier AH. 1971. Novitates Antillanae IV. Euphorbiaceae. – Mem. New York Bot. Gard. 21: 123-133.

Litt A, Chase MW. 1999. The systematic position of Euphronia, with comments on the position of Balanops: an analysis based on rbcL sequence data. – Syst. Bot. 23: 401-409.

Livaniou-Tiniakou A. 1991. Biosistimatiki meleti tou genous Viola section Viola (Violaceae) stin Ellada. – Ph.D. diss., University of Patras, Greece.

Lleras E. 1972. Review of the genus Haplochlathra (Bonnetiaceae). – Mem. New York Bot. Gard. 22: 129-136.

Lleras E. 1976. Revision and taxonomic position of the genus Euphronia Martius ex Martius & Zuccarini (Vochysiaceae). – Acta Amazonica 6: 43-47.

Lleras E. 1978. Flora Neotropica. Monograph 19. Trigoniaceae. – New York Botanical Garden, Bronx, New York.

Lloyd DG, Webb CJ, Dulberger R. 1990. Heterostyly in species of Narcissus (Amaryllidaceae), Hugonia (Linaceae) and other disputed cases. – Plant Syst. Evol. 172: 215-227.

Lo EYY, Duke NC, Sun M. 2014. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution. – BMC Evol. Biol. 2014, 14:83.

Lobreau D. 1967. Contribution à l’étude du pollen des Malpighiaceae d’Afrique. – Pollen Spores 9: 241-277.

Lobreau D. 1968. Le pollen des Malpighiacées d’Afrique et de Madagascar. – Bull. Inst. Fond. Afr. Noire, sér. A, Sci. Nat. 30: 59-83.

Lobreau D. 1969. Les limites de l’”ordre” des Célastrales d’après le pollen. – Pollen Spores 11: 499-555.

Lobreau-Callen D. 1983. Analyse de la répartition géographique des Malpighiaceae d’après les caractères du pollen et de la pollinisation. – Bothalia 14: 871-881.

Lobreau-Callen D. 1984. Pollen et paléobotanique des Malpighiaceae. – Rev. Paleobiol., Spec. Vol., pp. 131-138.

Lobreau-Callen D, Suarez-Cervera M. 1989. Le pollen de Martretia Beille (Euphorbiacée africaine). – Bull. Jard. Bot. Natl. Belg. 59: 333-349.

Lobreau-Callen D, Suarez-Cervera M. 1994. Pollen ultrastructure of Hymenocardia Wallich ex Lindley and comparison with other Euphorbiaceae. – Rev. Paleobot. Palyn. 81: 257-278.

Lobreau-Callen D, LeThomas A, Suarez-Cuervera M. 1998. Caractères ultrastructuraux du pollen de quelques Podostémales. Affinités avec les Rosidae évoluées. – Comt. Rend. Acad. Sci. Paris, sér. III, 321: 335-345.

Lobreau-Callen D, Malécot V, Suarez-Cervera M. 2000. Comparative study of pollen from apetalous Crotonoideae and some other uniovulate Euphorbiaceae: exine ultrastructure at the aperture. – In: Harley MM, Morton CM, Blackmore S (eds), Pollen and spores: morphology and biology, Royal Botanic Gardens, Kew, pp. 301-324.

Loder JW, Russell GB. 1966. (+)-tropine-1,2-dithiolane-3-carboxylate, a new alkaloid from Bruguiera sexangula. – Tetr. Letters 6327-6329.

Loder JW, Russell GB. 1969. Tumour inhibitory plants. The alkaloids of Bruguiera sexangula and Bruguiera exaristata (Rhizophoraceae). – Aust. J. Chem. 22: 1271-1275.

Loesener T. 1942. Celastraceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 20b, W. Engelmann, Leipzig, pp. 87-197.

Lombello RA, Forni-Martins ER. 2002. Cytogenetics of twelve species of Malpighiaceae A. Juss. from southeastern Brazil. – Caryologia 55: 241-250.

Lombello RA, Forni-Martins ER. 2003. Malpighiaceae: correlations between habit, fruit type and basic chromosome number. – Acta Bot. Brasil. 17: 171-178.

Lopes AV, Machado IC. 1998. Floral biology and reproductive ecology of Clusia nemorosa (Clusiaceae) in northeastern Brazil. – Plant Syst. Evol. 213: 71-90.

Lorente MA. 1986. Palynology and palynofacies of the upper Tertiary in Venezuela. – Diss. Bot. 99: 1-222.

Lotocka B, Osinska E. 2010. Shoot anatomy and secretory structures in Hypericum species (Hypericaceae). – Bot. J. Linn. Soc. 163: 70-86.

Lourteig A, O’Donnell CA. 1941. Tragiae Argentinae (Euphorbiaceae). – Lilloa 6: 347-380.

Lowrie SR. 1982. The palynology of the Malpighiaceae and its contribution to family systematics. – Ph.D. diss., University of Michigan, Ann Arbor, Michigan.

Lü H-F, Hu Z-H. 2001. Comparative anatomy of secretory structures of leaves in Hypericum. – Acta Phytotaxon. Sin. 39: 393-404. [In Chinese]

Lü H-F, Chu Q-G, Hu Z-H. 2001. Comparative study on the epidermal micromorphology of Hypericum and Triadenum. – Acta Bot. Bor.-Occ. Sin. 21: 693-699. [In Chinese]

Lundell CL. 1945. The genus Garcia Vahl, a potential source of superior hard quick-drying oil. – Wrightia 1: 1-12.

Lundell CL. 1985. Goupia guatemalensis (Celastraceae), a genus and species new to Mesoamerica. – Phytologia 57: 238-239.

Luo S, Zhang D, Renner SS. 2007. Duodichogamy and androdioecy in the Chinese Phyllanthaceae Bridelia tomentosa. – Amer. J. Bot. 94: 260-265.

Lüttge U. 1999. One morphotype, three physiotypes: sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM, and C3-CAM intermediate behavior. – Plant Biol. 1: 138-148.

Lüttge U. 2002. The genus Clusia L.: molecular evidence for independent evolution of photosynthetic flexibility. – Plant Biol. 4: 86-93.

Lüttge U (ed). 2007. Clusia: a woody neotropical genus of remarkable plasticity and diversity. – Ecol. Stud. 194, Springer, Berlin.

Machado SR, Paleari LM, Paiva ÉAS, Rodrigues TM. 2015. Colleters on the inflorescence axis of Croton glandulosus (Euphorbiaceae): structural and functional characterization. – Intern. J. Plant Sci. 176: 86-93.

McCann LP. 1945. Embryology of the tung tree. – J. Agric. Res. 71: 215-229.

McCusker A. 1984. Rhizophoraceae. – In: George AS (ed), Flora of Australia 22, Australian Government Publ. Service, Canberra, pp. 1-10.

McDill JR, Simpson BB. 2011. Molecular phylogenetics of Linaceae with complete generic sampling and data from two plastid genes. – Bot. J. Linn. Soc. 165: 64-83.

McDill JR, Repplinger M, Simpson BB, Kadereit JW. 2009. The phylogeny of Linum and Linaceae subfamily Linoideae, with implications for their systematics, biogeography, and evolution of heterostyly. – Syst. Bot. 34: 386-405.

MacDougal JM. 1994. Revision of Passiflora subgenus Decaloba section Pseudodysosmia (Passifloraceae). – Syst. Bot. Monogr. 41: 1-146.

McKee AC, Covington CD, Fuller RW, Bokesch HR, Young S, Cardellina JH II, Kadushin MR, Soejarto DD, Stevens PF, Cragg GM, Boyd MR. 1996. Pyranocoumarins from tropical species of the genus Calophyllum: a chemotaxonomic study of extracts in the National Cancer Institute collection. – J. Nat. Prod. 61: 1252-1256.

McLaughlin Decker J. 1966. Wood anatomy and phylogeny of Luxemburgieae (Ochnaceae). – Phytomorphology 16: 39-55.

McLaughlin Decker J. 1967. Petiole vascularization of Luxemburgieae (Ochnaceae). – Amer. J. Bot. 54: 1175-1181.

McPherson G. 1985. Scagea, a new genus of Euphorbiaceae from New Caledonia. – Bull. Mus. Natl. Hist. Nat., sér. IV, sect. B, Adansonia 7: 247-250.

McPherson G. 2000. Drypetes (Euphorbiaceae) in Madagascar and the Comoro Islands. – Adansonia, sér. III, 22: 205-209.

McPherson G. 2017. Six new species of Argomuellera (Euphorbiaceae) from Madagascar. – Novon 25: 286-297.

McPherson G, Tirel C. 1987. Euphorbiacées I. Euphorbioideae, Crotonoideae, Acalyphoideae, Oldfieldioideae. – In: Morat P, Mackee HS (eds), Flore de la Nouvelle-Calédonie et Dépendances 14, Muséum National d’Histoire Naturelle, Paris.

McVaugh R. 1944. The genus Cnidoscolus: generic limits and intrageneric groups. – Bull. Torrey Bot. Club 71: 457-474.

McVaugh R. 1945. The genus Jatropha in America: principal intergeneric groups. – Bull. Torrey Bot. Club 72: 271-294.

McVaugh R. 1961. Euphorbiaceae novae Novo-Galicianae. – Brittonia 13: 145-205.

Madulid DA, Buot IE, Agoo EMG. 2007. Rafflesia panchoana (Rafflesiaceae), a new species from Luzon Island, Philippines. – Acta Manilana 55: 43-47.

Madulid DA, Tandang DN, Agoo EMG. 2005. Rafflesia magnifica (Rafflesiaceae), a new species from Mindanao, Philippines. – Acta Manilana 53: 1-6.

Magnus W. 1913. Die atypische Embryosackentwicklung der Podostemaceen. – Flora 105: 275-336.

Maguire B. 1972. The botany of Guyana Highland IX. Bonnetiaceae. – Mem. New York Bot. Gard. 23: 131-165.

Maguire B. 1976. Apomixis in the genus Clusia (Clusiaceae) – a preliminary report. – Taxon 25: 241-244.

Maguire B. 1977a. A revision of Clusia L. section Cochlanthera (Choisy) Engler. – Caldasia 11: 129-146.

Maguire B. 1977b. Notes on the Clusiaceae – chiefly of Panama I. – Phytologia 36: 391-407.

Maguire B. 1977c. Notes on the Clusiaceae – chiefly of Panama II. – Phytologia 38: 203-214.

Maguire B, Steyermark J. 1989. Botany of Guayana Highland XIII. Ouratea (Ochnaceae) in Guayana and adjacent Amazonian hylea. – Mem. New York Bot. Gard. 51: 56-102.

Maheshwari JK. 1964. Taxonomic studies on Indian Guttiferae III. The genus Garcinia L. – Bull. Bot. Surv. India 6: 107-135.

Maheshwari P. 1942. The embryo-sac of Euphorbia heterophylla L. – a reinvestigation. – Proc. Indian Acad. Sci., Sect. B, 15: 158-166.

Maheshwari P. 1945. The place of angiosperm embryology in research and teaching. – J. Indian Bot. Soc. 24: 25-41.

Mahlberg PG. 1975. Evolution of the laticifer in Euphorbia as interpreted from starch grain morphology. – Amer. J. Bot. 62: 577-583.

Mahlberg PG, Sabharwal PS. 1968. Origin and early development of non-articulated laticifers in embryos of Euphorbia marginata. – Amer. J. Bot. 55: 375-381.

Mahlberg PG, Davis DG, Galitz DS, Manners GD. 1987. Laticifers and the classification of Euphorbia: the chemotaxonomy of Euphorbia esula L. – Bot. J. Linn. Soc. 94: 165-180.

Maiquetía M, Cáceres A, Herrera A. 2009. Mycorrhization and phosphorus nutrition affect water relations and CAM induction by drought in seedlings of Clusia minor. – Ann. Bot. 103: 525-532.

Mahlberg PG, Pleszczynska J, Furr M. 1988. Latex triterpenoid profiles of normal and cristata taxa of Euphorbia and their application as chemotaxonomic characters. – Monogr. Syst. Bot. Missouri Bot. Gard. 25: 623-629.

Malé PJG, Bardon L, Besnard G, Coissac E, Delsuc F, Engel J, Lhuillier E, Scotti-Saintagne C, Tinaut A, Chave J. 2014. Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. – Mol. Ecol. Res. 14: 966-976.

Mamede MCH, Mayo SJ. 1992. A cladistic analysis of the genus Camarea (Malpighiaceae). – Kew Bull. 47: 491-501.

Manchester SR, Hottenrott M. 2009. Large-fruited Salicaceae s.l. from the Miocene tuff of the Eichelskopf, northern Hessen, Germany. – Feddes Repert. 120: 373-378.

Manchester SR, Dilcher DL, Tidwell WD. 1986. Interconnected reproductive and vegetative remains of Populus (Salicaceae) from the Middle Eocene Green River Formation, northeastern Utah. – Amer. J. Bot. 73: 156-160.

Marcano-Berti L. 1989. Euphroniaceae: una nueva familia. – Pittieria 18: 15-19.

Marco HF. 1935. Systematic anatomy of the woods of the Rhizophoraceae. – Trop. Woods 44: 1-20.

Marcussen T. 2003a. A new violet species (Violaceae) from the South-West Alps. – Bot. J. Linn. Soc. 142: 119-123.

Marcussen T. 2003b. Evolution, phylogeography, and taxonomy within the Viola alba complex (Violaceae). – Plant Syst. Evol. 237: 51-74. – Erratum: 239: 169.

Marcussen T, Borgen L. 2000. Allozymic variation and relationships within Viola subsection Viola (Violaceae). – Plant Syst. Evol. 223: 29-57.

Marcussen T, Borgen L, Nordal I. 2001. Viola hirta (Violaceae) and its relatives in Norway. – Nord. J. Bot. 21: 5-17.

Marcussen T, Borgen L, Nordal I. 2005. New distributional and molecular information call into question the systematic position of the West Asian Viola sintenisii (Violaceae). – Bot. J. Linn. Soc. 147: 91-98.

Marcussen T, Jakobsen KS, Danihelka J, Ballard HE, Blaxland K, Brysting AK, Oxelman B. 2012. Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). – Syst. Biol. 61: 107-126.

Marinho LC, Fiaschi P, Amorim AM, Santos F de AR dos. 2015. The taxonomic significance of pollen morphology in Tovomita Aubl. (Clusiaceae: Clusieae) and related genera. – Plant Syst. Evol. 301: 1759-1766.

Mark PJL, Wortley AH, Furness CA. 2012. Not a shrinking violet: pollen morphology of Violaceae (Malpighiales). – Grana 51: 181-193.

Martin HA. 1974. The identification of some Tertiary pollen belonging to the family Euphorbiaceae. – Aust. J. Bot. 22: 271-291.

Martinez C. 2017. Passifloraceae seeds from the late Eocene of Colombia. – Amer. J. Bot. 104: 1857-1866.

Martínez MG, Espinosa SM. 2005. Tricomas foliares de Croton sección Barhamia (Euphorbiaceae). – Acta Bot. Mex. 72: 39-51.

Martzenitzina KK. 1927. The chromosomes of some species of the genus Linum L. – Bull. Appl. Bot. Genet. Plant Breeding 17: 253-264.

Masters MT. 1871. Contributions to the natural history of the Passifloraceae. – Trans. Linn. Soc. London 27: 593-645.

Matamoro-Vidal A, Furness CA, Gouyun P-H, Wurdack KJ, Albert B. 2012. Evolutionary stasis in Euphorbiaceae pollen: selection and constraints. – J. Evol. Biol. 25: 1077-1096.

Mathew CJ, Satheesh VK. 1997. Taxonomy and distribution of the Podostemaceae in Kerala, India. – Aquatic Bot. 57: 243-274.

Mathew CJ, Jäger-Zürn I, Nileena CB. 2001. Dalzellia gracilis: a new species of Podostemaceae (Tristichoideae) from Kerala, India. – Intern. J. Plant Sci. 162: 899-909.

Mathew CJ, Nileena CB, Jäger-Zürn I. 2003. Morphology and ecology of two new species of Polypleurum (Podostemaceae) from Kerala, India. – Plant Syst. Evol. 237: 209-217.

Mathis C, Ourisson G. 1963. Étude chimiotaxonomique du genre Hypericum 1. Répartition de l’Hypéricine. – Phytochemistry 2: 157-171.

Matos Araujo PA de, Mattos Filho A de. 1984. Estrutura das madeiras brasileiras de Dicotiledôneas XXVI. Euphorbiaceae. – Rodriguésia 36: 25-40.

Matt Salleh K, Latiff A. 1988. A new species of Rafflesia and notes on other species from Trus Madi Range, Sabah (Borneo). – Blumea 34: 111-116.

Matt Salleh K, Latiff A. 1995. On the morphology of the female flower of Rafflesia tengku-adlinii and notes on the status of R. borneensis (Rafflesiaceae). – Flora Males. Bull. 11: 425-428.

Matthews ML, Endress PK. 2008. Comparative floral structure and systematics in Chrysobalanaceae s.l. (Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, Trigoniaceae; Malpighiales). – Bot. J. Linn. Soc. 157: 249-309.

Matthews ML, Endress PK. 2011. Comparative floral structure and systematics in Rhizophoraceae, Erythroxylaceae, and the potentially related Ctenolophonaceae, Linaceae, Irvingiaceae, and Caryocaraceae (Malpighiales). – Bot. J. Linn. Soc. 166: 331-416.

Matthews ML, Endress PK. 2013. Comparative floral structure and systematics of the clade of Lophopyxidaceae and Putranjivaceae (Malpighialaes). – Bot. J. Linn. Soc. 172: 404-448.

Matthews ML, Amaral M do, Carmo E, Endress PK. 2012. Comparative floral structure and systematics in Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae; Malpighiales). – Bot. J. Linn. Soc. 170: 299-392.

Matthiesen F. 1908. Beiträge zur Kenntnis der Podostemaceen. – Bibl. Bot. 1908: 1-55.

Mauritzon J. 1933a. Über die systematische Stellung der Familien Hydrostachyaceae und Podostemonaceae. – Bot. Not. 1933: 172-180.

Mauritzon J. 1933b. Über die Embryologie der Turneraceae und Frankeniaceae. – Bot. Not. 86: 543-554.

Mauritzon J. 1934. Etwas über die Embryologie der Zygophyllaceen sowie einige Fragmente über die der Humiriaceen. – Bot. Not. 87: 407-422.

Mauritzon J. 1936. Zur Embryologie einiger Parietales-Familien. – Svensk Bot. Tidskr. 30: 79-113.

Mayfield M. 1991. Euphorbia johnstonii (Euphorbiaceae), a new species from Tamaulipas, Mexico with notes on Euphorbia subsection Acutae. – Sida 14: 573-579.

Mayfield M. 1997. A systematic treatment of Euphorbia subgenus Poinsettia (Euphorbiaceae). – Ph.D. diss., University of Texas, Austin, Texas.

Mazer SJ, Tiffney BH. 1982. Fruits of Wetherellia and Palaeowetherellia (?Euphorbiaceae) from Eocene sediments in Virginia and Maryland. – Brittonia 34: 300-333.

Mbing JN, Bassomo MY, Pegnyemb DE, Tih RG, Sondemgam BL, Blond A, Bodo B. 2003. Constituents of Ouratea flava. – Biochem. Syst. Ecol. 31: 215-217.

Medeiros D, Senna Valle L de, Valka Alves RJ. 2013. Revalidation of the genera Bia and Zuckertia (Euphorbiaceae) with B. capivarensis sp. nov. from Serra da Capivara, Brazil. – Nord. J. Bot. 31: 595-602.

Meeuse ADJ. 1975. Taxonomic relationships of Salicaceae and Flacourtiaceae: their bearing on interpretative floral morphology and dilleniid phylogeny. – Acta Bot. Neerl. 24: 437-457.

Meeuse ADJ. 1990. The Euphorbiaceae auct. plur.: an unnatural taxon. – Eburon, Delft, The Netherlands.

Meijer W. 1958. A contribution to the taxonomy and biology of Rafflesia arnoldii in West Sumatra. – Ann. Bogor. 3: 33-44.

Meijer W. 1983. Rafflesia hasseltii. – Malay. Nat. J., 36: suppl. 22-27.

Meijer W. 1984. New species of Rafflesia (Rafflesiaceae). – Blumea 30: 209-215.

Meijer W. 1990. Species diversity and conservation status of Rafflesia in Malesia. – Malay. Nat. J. 45: 213-218.

Meijer W. 1993. Rafflesiaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 557-563.

Meijer W. 1996. Rafflesia gadutensis, eine in Sumatra endemische Art der tropisch-subtropischen Parasitenfamilie Rafflesiaceae. – Palmengarten 60: 38-41.

Meijer W. 1997. Rafflesiaceae. – In: Kalkman C, Kirkup DW, Nooteboom HP, Stevens PF, de Wilde WJJO (eds), Flora Malesiana, I, 13, Flora Malesiana Foundation, Rijksherbarium/Hortus Botanicus, Leiden, pp. 1-42.

Meijer W, Elliot S. 1990. Taxonomy, ecology and conservation of Rafflesia kerrii Meijer in southern Thailand. – Nat. Hist. Bull. Siam Soc. 38: 117-133.

Meijer W, Veldkamp JF. 1988. A revision of Rhizanthes (Rafflesiaceae). – Blumea 33: 327-342.

Meijer W, Wong, M. 1993. Rafflesia cantleyi and R. hasseltii compared. – Malay. Nat. J. 47: 10-12.

Meikle RD. 1984. Willows and poplars of Great Britain and Ireland. – Botanical Society of the British Isles, London.

Melchior H. 1925a. Die phylogenetische Entwicklung der Violaceen und die natürlichen Verwandtschaftsverhältnisse ihrer Gattungen. – Feddes Repert. Beih. 36: 83-125.

Melchior H. 1925b. Theaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 109-154.

Melchior H. 1925c. Violaceae. – In: Engler A, Gilg E (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 329-377.

Melchior H. 1930. Decaphalangium, eine neue Gattung der Guttiferen aus Peru. – Notizbl. Bot. Gart. Mus. Berlin-Dahlem 10: 946-950.

Melhem TS, Moura CAF, Lieu J. 1971. Pollen grains of plants of the “Cerrado” – Styracaceae and Turneraceae. – Hoehnea 1: 153-178.

Melikian AP, Dildarian BI. 1977. Comparative anatomical and palynological study of representatives of Elatinaceae family. – Biologicheskii Žurnal Armenii 30: 44-49.

Melo AL. 2006. Revisão de Sebastiania Spreng. sensu stricto (Euphorbiaceae – Hippomaneae). – Ph.D. diss., Universidade Federal Rural de Pernambuco, Recife, Brazil.

Melo NF de, Guerra M. 2003. Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. – Ann. Bot. (Oxford) 92: 309-316.

Melo NF de, Cervi AC, Guerra M. 2001. Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). – Plant Syst. Evol. 226: 69-84.

Mennega AMW. 1984. Wood structure of Jablonskia congesta (Euphorbiaceae). – Syst. Bot. 9: 236-239.

Mennega AMW. 1987. Wood anatomy of the Euphorbiaceae, in particular of the subfamily Phyllanthoideae. – Bot. J. Linn. Soc. 94: 111-126.

Mennega AMW. 2005. Wood anatomy of the subfamily Euphorbioideae. A comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae. – IAWA J. 26: 1-68.

Merino Sutter D, Endress PK. 1995. Aspects of gynoecial structure and macrosystematics in Euphorbiaceae. – Bot. Jahrb. Syst. 116: 517-536.

Merino Sutter D, Endress PK. 2003. Structure of the female flowers and cupules in Balanopaceae, an enigmatic rosid family. – Ann. Bot. 92: 459-469.

Merino Sutter D, Forster PI, Endress PK. 2006. Female flowers and systematic position of Picrodendraceae (Euphorbiaceae s.l., Malpighiales). – Plant Syst. Evol. 261: 187-215.

Merrill ED. 1912. Notes on Philippine Euphorbiaceae. – Philipp. J. Sci. 7: 379-410.

Merrill ED. 1920. Notes on Philippine Euphorbiaceae III. – Philipp. J. Sci. 16: 539-579.

Merxmüller H, Lippert W. 1977. Veilchenstudien V-VII. – Mitt. Bot. Staatssamml. München 13: 503-534.

Meseguer AS, Aldasoro JJ, Sanmartín I. 2013. Bayesian inference of phylogeny, morphology and range evolution revels a complex evolutionary history in St. John’s wort (Hypericum). – Mol. Phylogen. Evol. 67: 379-403.

Mesquita R de CG, Franciscon CH. 1995. Flower visitors of Clusia nemorosa G. F. W. Meyer (Clusiaceae) in an Amazonian white-sand campina. – Biotropica 27: 254-257.

Metcalfe CR. 1956. Scyphostegia borneensis Stapf, anatomy of stem och leaf in relation to the taxonomic position. – Reinwardtia 4: 99-104.

Mezzonato-Pires AC, Milward-de-Azevedo MA, Mendonça CBF, Gonçalves-Esteves V. 2015. Pollen morphology and detailed sexine of Passiflora subgenus Astrophea (Passifloraceae). – Plant Syst. Evol. 301: 2189-2202.

Michaelis P. 1924. Blütenmorphologische Untersuchungen an den Euphorbiaceen, unter besonderer Berücksichtigung der Phylogenie der Angiospermenblüte. – Goebel Bot. Abhandl. (Jena) 3: 1-150.

Milanez FR. 1935. Anatomie de Paradrypetes ilicifolia. – Arq. Inst. Biol. Veg. 2: 133-156.

Mildbraed J. 1931. Pandaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 1-3.

Mildner RA, Rogers CM. 1978. Revision of the native South American species of Linum (Linaceae). – Phytologia 39: 343-390.

Miller KI, Webster GL. 1962. Systematic position of Cnidoscolus and Jatropha. – Brittonia 14: 174-180.

Miller KI, Webster GL. 1966. Chromosome numbers in the Euphorbiaceae. – Brittonia 18: 372-377.

Miller KI, Webster GL. 1967. A preliminary revision of Tragia (Euphorbiaceae) in the United States. – Rhodora 69: 241-305.

Miller RB. 1975. Systematic anatomy of the xylem and comments on the relationships of Flacourtiaceae. – J. Arnold Arbor. 56: 20-102.

Millspaugh CF. 1889. Contributions to North American Euphorbiaceae. – Proc. Calif. Acad. Sci., Ser. II, 2: 217-230.

Millspaugh CF. 1913. The genera Pedilanthus and Cubanthus, and other American Euphorbiaceae. – Publ. Field Mus. Nat. Hist., Bot. Ser. 2: 353-377.

Millspaugh CF. 1914. Contributions to North American Euphorbiaceae V. – Publ. Field Columbian Mus. Nat. Hist., Bot. Ser. 2: 383-397.

Millspaugh CF. 1916. Contributions to North American Euphorbiaceae VI. – Publ. Field Columbian Mus. Nat. Hist., Bot. Ser. 2: 401-420.

Millspaugh CF. 1917. Trichosterigma benedictum. – Addisonia 2: 3-4.

Milne R. 1994. New species of, and notes on, Bornean Trigonostemon, Cleistanthus & Macaranga (Euphorbiaceae). – Kew Bull. 49: 445-454.

Milne R. 1995. Notes on Bornean and other West Malesian Trigonostemon (Euphorbiaceae). – Kew Bull. 50: 25-49.

Milne-Redhead E. 1953. Hypericaceae. – In: Turrill WB, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for the Colonies, London, pp. 1-23.

Milne-Redhead E. 1957. Heywoodia lucens Sim. – a tree new to tropical Africa. – Bull. Jard. Bot. État. Bruxelles 27: 327-333.

Milward-de-Azevedo MA, Baumgratz JFA, Gonçalves-Esteves V. 2012. A taxonomic revision of Passiflora subgenus Decaloba (Passifloraceae) in Brazil. – Phytotaxa 53: 1-68.

Mitchell AD, Heenan PB, Murray BG, Molloy BPJ, Lange PJ de. 2009. Evolution of the south-western Pacific genus Melicytus (Violaceae): evidence from DNA sequence data, cytology and sex expression. – Aust. Syst. Bot. 22: 143-157.

Miyama M, Simizu H, Sugiyama M, Hanagata N. 2006. Sequencing and analysis of 14,842 expressed sequence tags of burma mangrove, Bruguiera gymnorrhiza. – Plant Sci. 171: 234-241.

Miyoshi N, Kato H. 1982. Pollen morphology by means of scanning electron microscope 5. Angiospermae (Piperales, Podostemonales). – Jap. J. Palynol. 28: 7-11.

Mkpong OE, Yan H, Chism G, Sayre RT. 1990. Purification, characterization and localization of linamarase in Cassava. – Plant Physiol. (Lancaster) 93: 176-181.

Modilewski J. 1910. Weitere Beiträge zur Embryobildung einiger Euphorbiaceen. – Ber. Deutsch. Bot. Ges. 28: 413-418.

Modilewski J. 1911. Über die abnormale Embryosackentwicklung bei Euphorbia palustris L. und anderen Euphorbiacen. – Ber. Deutsch. Bot. Ges. 29: 430-436.

Mohan Ram HY, Sehgal A. 1992. Podostemaceae – the strange family of aquatic angiosperms. – Palaeobotanist 41: 192-197.

Mohan Ram HY, Sehgal A. 1997. In vitro studies on developmental morphology of Indian Podostemaceae. – Aquatic Bot. 57: 97-132.

Mohan Ram HY, Sehgal A. 2001. Biology of Indian Podostemaceae. – In: Rangaswamy NS (ed), Phytomorphology (Recent trends in plant sciences) Golden Jubilee Issue 2001, International Society of Plant Morphologists, Delhi, pp. 365-391.

Molau U. 1983. 130. Elatinaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 20, Swedish Natural Science Research Council, Stockholm, pp. 19-23.

Molero J, Rovira AM. 1998. A note on the taxonomy of the Macaronesian Euphorbia obtusifolia complex (Euphorbiaceae). – Taxon 47: 321-332.

Molero J, Garnatje T, Rovira A, Garcia-Jacas N, Susanna A. 2002. Karyological evolution and molecular phylogeny in Macaronesian dendroid spurges (Euphorbia subsect. Pachycladae). – Plant Syst. Evol. 231: 109-132.

Moline P, Les D, Philbrick CD, Novelo AR, Pfeifer E,Rutishauser R. 2006. Comparative morphology and molecular systematics of Podostemum (including Crenias) – American river-weeds (Podostemonaceae). – Bot. Jahrb. Syst. 126: 427-476.

Moline P, Thiv M, Ameka GK, Chogue J-P, Pfeifer E, Rutishauser R. 2007. Comparative morphology and molecular systematics of African Podostemaceae-Podostemoideae, with emphasis on Dicraeanthus and Ledermanniella from Cameroon. – Intern. J. Plant Sci. 168: 159-180.

Moore DM, Harvey MJ. 1961. Cytogenetic relationship of Viola lactea Sm. and other West European arosulate violets. – New Phytol. 60: 85-95.

Morawetz W. 1981. Zur systematischen Stellung der Gattung Prockia: Karyologie und Epidermisstruktur im Vergleich zu Flacourtia (Flacourtiaceae), Grewia (Tiliaceae) und verwandten Gattungen. – Plant Syst. Evol. 139: 57-76.

Morton CV. 1944. Taxonomic studies of tropical American plants: the genus Hybanthus in continental North America. – Contr. U.S. Natl. Herb. 29: 74-82.

Morton CV. 1968. A typification of some subfamily, sectional, and subsectional names in the family Malpighiaceae. – Taxon 17: 314-324.

Mosquin T. 1971. Biosystematic studies on North American species of Linum, section Adenolinum (Linaceae). – Can. J. Bot. 49: 1379-1388.

Mosseler A. 1990. Hybrid performance and species crossability relationships in willows (Salix). – Can. J. Bot. 68: 2329-2338.

Motta LB, Salatino A, Salatino MLF. 2009. Foliar cuticular alkanes of Camarea (Malpighiaceae) and their taxonomic significance. – Biochem. Syst. Ecol. 37: 35-39.

Motta LB, Furlan CM, Salatino A, Salatino MLF. 2009. Flavonoids and the taxonomy of Camarea (Malpighiaceae). – Biochem. Syst. Ecol. 37: 201-205.

Mourão KSM, Beltrati CM. 1996a. Morfologia dos frutos, sementes e plântulas de Platonia insignis Mart. (Clusiaceae) I. Aspectos anatômicos dos frutos e sementes em desenvolvimento. – Acta Amazonia 25: 11-31.

Mourão KSM, Beltrati CM. 1996b. Morfologia dos frutos, sementes e plântulas de Platonia insignis Mart. (Clusiaceae) II. Morfo-anatomia dos frutos e sementes maduros. – Acta Amazonia 25: 33-46.

Mourão KSM, Beltrati CM. 2000. Morphology and anatomy of developing fruits and seeds of Mammea americana L. (Clusiaceae). – Revista Brasil. Biol. 60: 701-711.

Mourão KSM, Beltrati CM. 2001. Morphology and anatomy of developing fruits and seeds of Vismia guianensis (Aubl.) Choisy (Clusiaceae). – Rev. Brasil. Biol. 61: 147-158.

Muir AD, Westcott ND (eds). 2003. Flax: the genus Linum. – Taylor and Francis, London.

Mukherjee PK. 1957. Studies in the embryology of Euphorbia hypericifolia Linn. – Bull. Bot. Soc. Univ. Saugar 9: 7-18.

Mukherjee PK. 1958. The female gametophyte of Acalypha malabarica Muell. with a brief discussion on the Penaea type of embryo sac. – J. Indian Bot. Soc. 37: 504-508.

Mukherjee PK. 1962. Gametophytes of three Euphorbiaceae. – Bull. Bot. Soc., Coll. Sci., Nagpur 3: 10-14.

Mukherjee PK. 1964. Further contribution to the embryology of the genus Acalypha Linn. –Proc. Indian Natl. Acad. Sci., Sect. B, 34: 129-141.

Mukherjee PK. 1965. Contribution to the embryology of Euphorbia peltata Roxb. – Proc. Indian Natl. Acad. Sci., Sect. B, 35: 327-337.

Mukherjee PK. 1968. Trends of specialization in the family Euphorbiaceae 1. Microsporangium and microsporogenesis. – Maharashtra Vidnyan Mandir Patrika 3: 10-16.

Mukherjee PK, Padhye MD. 1964. Contribution to the embryology of the genus Phyllanthus Linn. – Proc. Indian Natl. Acad. Sci., Sect. B, 3: 117-128.

Mukkada AJ. 1962. Some observations on the embryology of Dicraea stylosa Wight. – In: Maheshwari P (ed), Plant embryology. A symposium, New Delhi: C.S.I.R., pp. 139-145.

Mukkada AJ. 1964. An addition to the bisporic embryo sacs – the Dicraea type. – New Phytol. 63: 289-292.

Mukkada AJ. 1969. Some aspects of the morphology, embryology, and biology of Terniola zeylanica (Gardner) Tulasne. – New Phytol. 68: 1145-1158.

Mukkada AJ, Chopra RN. 1973. Post-fertilization development in Indotristicha ramosissima (Wight) van Royen. – New Phytol. 72: 639-646.

Mulgura de Romero ME, Gutierrez de Sanguinetti MM. 1989. Actualización taxonómica de Tragia (Euphorbiaceae) para Argentina y regiones limítrofes. – Darwiniana 29: 77-138.

Muller J. 1969. Pollen morphological notes on Ochnaceae. – Rev. Palaeobot. Palynol. 9: 149-173.

Muller J, Caratini C. 1977. Pollen of Rhizophora (Rhizophoraceae) as a guide fossil. – Pollen Spores 19: 361-389.

Müller-Doblies U, Albert G, Müller-Doblies D. 1975. Der Blütenstand von Euphorbia fulgens Karw. ex Klotzsch und seine variablen Grössen. – Bot. Jahrb. Syst. 96: 290-323.

Müller-Stoll WR, Mädel-Angeliewa E. 1986. Ein neues Guttiferenholz aus dem Tertiär von Java, Calophylloxylon intermedium sp. nov. – Feddes Repert. 97: 225-233.

Munzinger JK. 2001. Two new species of Agatea (Violaceae) endemic to New Caledonia, with some taxonomic notes and a key to New Caledonian species. – Bot. J. Linn. Soc. 137: 91-97.

Munzinger JK, Ballard HE Jr. 2003. Hekkingia (Violaceae), a new arborescent violet genus from French Guiana, with a key to genera in the family. – Syst. Bot. 28: 345-351.

Murguía-Sánchez G, Novelo RA, Philbrick CT, Márquez Guzmán GJ. 2001. Desarrollo de los verticilos sexuales de Vanroyenella plumosa Novelo & Philbrick. – Acta Bot. Mexic. 57: 37-50.

Murguía-Sánchez G, Novelo RA, Philbrick CT, Márquez-Guzmán GJ. 2002. Embryo sac development in Vanroyenella plumosa, Podostemaceae. – Aquatic Bot. 73: 201-210.

Muschner VC, Lorenz AP, Cervi AC, Bonatto SL, Souza-Chies TT, Salzano FM, Freitas LB. 2003. A first molecular phylogenetic analysis of Passiflora (Passifloraceae). – Amer. J. Bot. 90: 1229-1238.

Muzik TJ. 1954. Development of fruit, seed, embryo, and seedling of Hevea brasiliensis. – Amer. J. Bot. 41: 39-43.

Nadot S, Ballard HE Jr, Creach JB, Dajoz I. 2000. The evolution of pollen heteromorphism in Viola: a phylogenetic approach. – Plant Syst. Evol. 223: 155-171.

Nagao S. 1941. Cytogenetics in the genus Linum. – Jap. J. Genet. 17: 109-116.

Nagendran CR. 1974. Is the embryo sac of Podostemaceae bisporic? – Curr. Sci. 43: 259-260.

Nagendran CR. 1975. Studies on Podostemaceae. – Ph.D. diss., University of Mysore, India.

Nagendran CR, Arekal GD. 1976. Embryo sac of Griffithella hookeriana: a reinvestigation. – Phytomorphology 26: 359-363.

Nagendran CR, Subramanyam K, Arekal GD. 1976. Development of the female gametophyte in Hydrobryum griffithii (Podostemaceae). – Ann. Bot., N. S., 40: 511-513.

Nagendran CR, Arekal GD, Subramanyam K. 1977. Embryo sac studies in three Indian species of Polypleurum (Podostemaceae). – Plant Syst. Evol. 128: 215-226.

Nair N, Abraham V. 1962. Floral morphology of a few species of Euphorbiaceae. – Proc. Indian Acad. Sci., Sect. B, 56: 1-12.

Nair N, Abraham V. 1963. A contribution to the morphology and embryology of Micrococca mercurialis Benth. – J. Indian Bot. Soc. 42: 583-593.

Nair N, Abraham V. 1980. Floral morphology and embryology of Tragia involucrata L. var. angustifolia Hook. f. – In: Periasamy K (ed), Symposium on histochemistry, development and structural anatomy of angiosperms, Autonomous P. G. Centre, University of Madras, Tiruchirapalli, pp. 95-101.

Nair N, Maitreyi M. 1962. Morphology and embryology of Sebastiania chamaelea. – Bot. Gaz. 124: 58-68.

Nais J. 2001. Rafflesia of the world. – Sabah Parks and Natural History Publ., Kota Kinabalu, Sabah, Malaysia.

Nakai T. 1920. Chosenia, a new genus of Salicaceae. – Bot. Mag. (Tokyo) 34: 66-69.

Narayana LL. 1960. Studies in Erythroxylaceae I. – Proc. Indian Acad. Sci, Ser. B, 51: 270-275.

Narayana LL. 1964a. A contribution to the floral anatomy and embryology of Linaceae. – J. Indian Bot. Soc. 43: 343-357.

Narayana LL. 1964b. Embryology of a few species of Erythroxylum. – Curr. Sci. 33: 441-442.

Narayana LL. 1970a. Linaceae. – Bull. Indian Natl. Sci. Acad. 41: 127-132.

Narayana LL. 1970b. Erythroxylaceae. – Bull. Indian Natl. Sci. Acad. 41: 133-135.

Narayana LL. 1975. Contribution to the floral anatomy and embryology of Ochnaceae. – J. Jap. Bot. 50: 329-336.

Narayana LL, Rao D. 1966. Floral morphology of Linaceae. – J. Jap. Bot. 41: 1-10.

Narayana LL, Rao D. 1969-1977. Contributions to the floral anatomy of Humiriaceae 1-6. – J. Jap. Bot. 44: 328-335 (1969), 48: 143-146, 242-276 (1973), 51: 12-15, 42-44 (1976), 52: 145-153 (1977).

Narayana LL, Rao D. 1969-1978. Contributions to the floral anatomy of the Linaceae 1-14. – J. Jap. Bot. 44: 289-294 (1969), 48: 205-208 (1973), 51: 92-96, 349-352 (1976), 52: 56-59, 231-234, 315-317 (1977), 53: 12-14, 161-163, 213-218, 300-312 (1978); Phytomorphology 21: 64-67 (1971 [1972]); Curr Sci. 43: 226-227, 391-393 (1974).

Narayana LL, Rao D. 1978. Systematic position of Humiriaceae, Linaceae, and Erythroxylaceae in the light of their comparative floral morphology and embryology: a discussion. – J. Indian Bot. Soc. 57: 258-266.

Narayanaswami S, Sawhney S. 1959. Microsporogenesis and embryo sac development in Casearia tomentosa Roxb. – Phyton (Buenos Aires) 13: 133-144.

Nauenburg JD. 1988. Zur Karyologie und Taxonomie der heimischen Schwermetallsippen der Gattung Viola, Sekt. Melanium. – Decheniana 14: 96-102.

Nauenburg JD. 1990. Eine neue Viola arvensis-Sippe aus Mitteleuropa (mit einem Bestimmungs-Schlüssel für die Artengruppen Viola tricolor/V. lutea). – Bauhinia 9: 233-244.

Nazma BS, Vijendrarao R. 1981. Occurrence of perforated ray cells in the wood of Drypetes roxburghii (Wall.) Hurusawa. – IAWA Bull., N. S., 2: 384-421.

Ngulube MR, Hall JB, Maghembe JA. 1998. Reproductive ecology of Uapaca kirkiana (Euphorbiaceae) in Malawi, southern Africa. – J. Trop. Ecol. 14: 743-760.

Nicholls MS. 1985. The evolutionary breakdown of distyly in Linum tenuifolium (Linaceae). – Plant Syst. Evol. 150: 291-302.

Nickrent DL, Duff RJ. 1996. Molecular studies of parasitic plants using ribosomal RNA. – In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds), Advances in parasitic plant re-search, Cordoba, Spain: Junta de Andalucia, Direccion General de Investigacion Agraria, pp. 28-52.

Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Yung ND, Steinem KE, dePamphilis CW. 1997. Molecular phylogenetic and evolutionary studies of parasitic plants. – In: Soltis D, Soltis P, Doyle J (eds), Molecular systematics of plants 2: DNA sequencing, Chapter 8, pp. 211-241, Kluwer Academic, Boston.

Nickrent DL, Blarer A, Qiu Y-L, Vidal-Russel V, Anderson FE. 2004. Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. – BMC Evol. Biol. 4: 40-56.

Niedenzu F. 1890. Über eine neue Eintheilung der Malpighiaceae. – Ber. Deutsch. Bot. Ges. 8: 190-194.

Niedenzu F. 1895. Elatinaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 277-283.

Niedenzu F. 1896. Malpighiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 41-74.

Niedenzu F. 1912a. Malpighiaceae americanae 1. – Arbeiten aus dem botanischen Institut des Kgl. Lyceum hosianum in Braunsberg, pp. 1-34.

Niedenzu F. 1912b. Malpighiaceae americanae 2. – Verzeichnis der Vorlesungen am Königlichen Lyceum hosianum zu Braunsberg, pp. 1-62.

Niedenzu F. 1914. Malpighiaceae americanae 3. – Arbeiten aus dem botanischen Institut des Kg. Lyceum hosianum in Braunsberg, pp. 1-61.

Niedenzu F. 1915. Malpighiaceae paleotropicae 1. – Arbeiten aus dem botanischen Institut der Kgl. Akademie (vorm. Kgl. Lyceum hosianum) in Braunsberg, pp. 1-63.

Niedenzu F. 1918. Anatomie der Laubblätter der amerikanischen Malpighiaceen. – Verzeichnis der Vorlesungen an der Kgl. Akademie zu Braunsberg im Winter-Halbjahr, pp. 1-23.

Niedenzu F. 1921. Anatomie der Laubblätter der paläotropischen Malpighiaceen. – Verzeichnis der Vorlesungen an der Kgl. Akademie zu Brunsberg, pp. 1-10.

Niedenzu F. 1924. Malpighiaceae paleotropicae 2. – Verzeichnis der Vorlesungen an der Akademie zu Braunsberg im Sommer 1924, pp. 1-19.

Niedenzu F. 1926. Malpighiaceae novae. – Arbeiten aus dem botanischen Institut der Staatlichen Akademie (vorm. Kgl. Lyceum hosianum) in Braunsberg, pp. 59-64.

Niedenzu F. 1925. Elatinaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 270-276.

Nikitin VV. 1998. The system of the genus Viola (Violaceae) of eastern European and Caucasian flora. – Bot. Žurn. 83: 123-137. [In Russian]

Nikolov LA, Davis CC. 2017. The big, the bad, and the beautiful: biology of the world’s largest flowers. – J. Syst. Evol. 55: 516-524.

Nikolov LA, Staedler YM, Manickam S, Schönenberger J, Endress PK. Kramer EM, Davis CC. 2014. Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia. – Amer. J. Bot. 101: 225-243.

Noa IC. 2008. Ouratea neuridesii (Ochnaceae), a new species from central Cuba. – Willdenowia 38: 173-176.

Noack KL. 1939. Fortpflanzungsverhältnisse und Bastarde von Hypericum perforatum L. – Zeitschr. Indukt. Abstamm. Vererb. 76: 569-601.

Nogueira PC de L, Marsaioli AJ, Amaral M do CE, Bittrich V. 1998. The fragrant oils of Tovomita species. – Phytochemistry 49: 1009-1112.

Nooteboom HP. 1967. The taxonomic position of Irvingioideae, Allantospermum Forman, and Cyrillopsis Kuhlm. – Adansonia, sér. II, 7: 161-168.

Noro T, Suzuki H, Kanayama T. 1994a. Phenology and distribution of Hydrobryum japonicum Imamura (Podostemaceae) in the Kaminkawa River, Kagoshima, Japan. – J. Jap. Bot. 69: 162-166. [In Japanese]

Noro T, Suzuki H, Kanayama T. 1994b. Water quality at the habitat of Hydrobryum japonicum Imamura (Podostemaceae) in Japan. – J. Jap. Bot. 69: 167-175. [In Japanese]

Notis C. 2004. Phylogeny and character evolution of Kielmeyeroideae (Clusiaceae) based on molecular and morphological data. – M.Sc. thesis, University of Florida, Gainesville, Florida.

Novelo RA, Philbrick CT. 1993. Vanroyenella: a new genus of Podostemaceae from Jalisco, Mexico. – Syst. Bot. 18: 64-67.

Novelo RA, Philbrick CT. 1995. A new species of Oserya (Podostemaceae) from Jalisco, Mexico. – Novon 5: 54-56.

Novelo RA, Philbrick CT. 1997a. Taxonomy of Mexican Podostemaceae. – Aquatic Bot. 57: 275-303.

Novelo RA, Philbrick CT. 1997b. Podostemum ricciformi (Podostemaceae) rediscovered and redescribed. – Taxon 46: 451-455.

Nowicke JW. 1984. A palynological study of the Pandaceae. – Pollen Spores 26: 31-42.

Nowicke JW. 1994. A palynological study of Crotonoideae (Euphorbiaceae). – Ann. Missouri Bot. Gard. 81: 245-269.

Nowicke JW. 1994. A palynological study of Crotonoideae (Euphorbiaceae). – Ann. Missouri Bot. Gard. 81: 245-269.

Nowicke JW, Takahashi M. 2002. Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae), part 4: tribes Acalypheae pro parte (Erythrococca, Claoxylon, Claoxylopsis, Mareya, Mareyopsis, Discoclaoxylon, Micrococca, Amyrea, Lobanilia, Mallotus, Deuteromallotus, Cordemoya, Cococceras, Trewia, Neotrewia, Rockinghamia, Octospermum, Acalypha, Lasiococca, Spathiostemon, Homonoia), Plukenetieae (Haematostemon, Astrococcus, Angostyles, Romanoa, Eleutherostigma, Plukenetia, Vigia, Cnesmone, Megistostigma, Sphaerostylis, Tragiella, Platygyna, Tragia, Acidoton, Pachystylidium, Dalechampia), Omphaleae (Omphalea), and discussion and summary of the complete subfamily. – Rev. Paleobot. Palynol. 121: 231–336.

Nowicke JW, Takahashi M, Webster GL. 1998. Pollen morphology and the exine structure of Acalyphoideae (Euphorbiaceae), part 1. tribes Clutieae (Clutia), Pogonophoreae (Pogonophora), Chaetocarpeae (Chaetocarpus, Trigonopleura), Pereae (Pera), Cheiloseae (Cheilosa), Diocoelieae (Diocoelia), Galearieae (Galearia, Microdesmis, Panda) and Ampereeae (Amperea, Monotaxis). – Rev. Palaeobot. Palyn. 102: 115-152.

Nowicke JW, Takahashi M, Webster GL. 1999. Pollen morphology, exine structure and systematics of Acalyphoideae (Euphorbiaceae), part 2: tribes Agrostistachydeae, Chrozophoreae, Caryodendreae, Bernardieae and Pycnocomeae. – Rev. Palaeobot. Palyn. 105: 1-62.

Nozeran R. 1953. Sur quelques fleurs males d’Euphorbiacées. – Rec. Trav. Lab. Bot. Univ. Montpellier Bot. 6: 99-114.

Nürk NM, Blattner FR. 2010. Cladistic analysis of morphological characters in Hypericum (Hypericaceae). – Taxon 59: 1495-1507.

Nürk NM, Madriñán S, Carine MA, Chase MW, Blattner FR. 2013. Molecular phylogenetics and morphological evolution of St. John’s wort (Hypericum; Hypericaceae). – Mol. Phylogen. Evol. 66: 1-16.

Nürk NM, Scheriau C, Madriñán S. 2013. Explosive radiation in high Andean Hypericum – rates of diversification among New World lineages. – Frontiers in Genetics 4: 17.

Obama C, Breteler FJ. 2004. A synopsis of Dasylepis Oliv. (Achariaceae) with a description of a new species from Lower Guinea. – Kew Bull. 59: 585-591.

Oberhäuser R, Kollmann R. 1977. Cytochemische Charakterisierung des sogenannten Freien Nucleolus als Proteinkörper in den Siebelementen von Passiflora coerulea. – Zeitschr. Pflanzenphysiol. 84: 61-74.

Ockendon DJ. 1968. Biosystematic studies in the Linum perenne group. – New Phytol. 67: 787-813.

Odinetz-Collart O, Tavares AS, Enriconi A. 2001. Response of Podostemaceae aquatic biocenosis to environmental perturbations in central Amazonian waterfalls. – Verh. Intl. Verein. Limnol. 27: 4063-4068.

O’Donell CA, Lourteig A. 1943. Malpighiaceae argentinae. – Lilloa 9: 221-316.

Oh TJ, Gorman M, Cullis CA. 2000. RFLP and RAPD mapping in flax (Linum usitatissimum). – Theor. Appl. Gen. 101: 590-593.

Okada H, Kato M. 2002. Pollination systems inferred from pollen-ovule ratio of some species of Podostemaceae. – Acta Phytotaxon. Geobot. 53: 51-61.

Okamoto M. 1984. A new species of Viola collected in East Kalimantan, with notes of the seed dispersal of the allied species concerned. – Bull. Osaka Mus. Nat. Hist. 37: 9-15.

Okamoto M. 1987. On the violet group subsect. Serpentes in Southeast Asia. – Acta Phytotaxon. Geobot. 38: 113-122. [In Japanese with English summary]

Okamoto M, Ueda K. 1986. A new species of violet from Seram (Moluccas). – Acta Phytotaxon. Geobot. 37: 1-8.

Okamoto M, Okada H, Ueda K. 1993. Morphology and chromosome number of Viola pilosa, and its systematic position. – Taxon 42: 781-787.

Okuda T, Yoshida T, Shiola N, Nobuhara J. 1975. A new amino acid from seeds of Aleurites fordii. – Phytochemistry 14: 2304-2305.

Olafsdottir ES, Jaroszewski JW, Arbo MM. 1990. Cyanohydrin glucosides of Turneraceae. – Biochem. Syst. Ecol. 18: 435-438.

Olah LV. 1960. Cytological and morphological investigations in Rafflesia arnoldi R. Br. – Bull. Torrey Bot. Club 87: 406-416.

Oliveira CMA, Porto ALM, Bittrich V, Vencato I, Marsaioli AJ. 1996. Floral resins of Clusia spp.: chemical composition and biological function. – Tetrahedron Lett. 37: 6427-6430.

Oliveira PEAM de, Sazima K. 1990. Pollination biology of two species of Kielmeyera (Guttiferae) from Brazilian cerrado vegetation. – Plant Syst.Evol. 172: 35-49.

Oliveira LDSD de, Silva MJ da, Sales MF de. 2013. Synopsis of the tribe Hureae (Euphorbioideae, Euphorbiaceae). – Brittonia 65: 310-329.

Olowokudejo JD. 1993. Comparative epidermal morphology of West African species of Jatropha L. (Euphorbiaceae). – Bot. J. Linn. Soc. 111: 139-154.

Oltmann O. 1968 [1969]. Die Pollenmorphologie der Erythroxylaceae und ihre systematische Bedeutung. – Ber. Deutsch. Bot. Ges. 81: 505-511.

Oltmann O. 1971. Pollenmorphologisch-systematische Untersuchungen innerhalb der Geraniales. – Diss. Bot. 11: 1-163.

Omer S, Quaiser M. 1985a. A new species of Viola from Pakistan. – Pakistan J. Bot. 17: 137-139.

Omer S, Quaiser M. 1985b. Violaceae. – In: Nasir E, Ali SI (eds), Flora of Pakistan 166, Karachi University, Pakistan.

O’Neill SP, Osborn JM, Philbrick CT. 1997. Comparative pollen morphology of five New World genera of Podostemaceae. – Aquatic Bot. 57: 133-150.

Onelli E, Rivetta A, Giorgi A, Bignami M, Cocucci M, Patrignani G. 2002. Ultrastructural studies on the developing secretory nodules of Hypericum perforatum. – Flora 197: 92-102.

Oostermeijer JGB. 1989. Myrmecochory in Polygala vulgaris L., Luzula campestris (L.) DC., and Viola curtisii Forster in a Dutch dune area. – Oecologia 78: 302-311.

Oropeza N, Mercado-Ruaro P, Novelo RA, Philbrick CT. 1998. Karyomorphological studies of Mexican species of Marathrum (Podostemaceae). – Aquatic Bot. 62: 207-211.

Oropeza N, Palomino G, Novelo RA, Philbrick CT. 2002. Karyomorphological studies in Oserya, Vanroyenella and Tristicha (Podostemaceae sensu lato). – Aquatic Bot. 73: 163-171.

Osborn JM, O’Neill SP, El-Ghazaly G. 2000. Pollen morphology and ultrastructure of Marathrum schiedeanum (Podostemaceae). – Grana 39: 221-225.

Ota M, Imaichi R, Kato M. 2001. Developmental morphology of the thalloid Hydrobryum japonicum (Podostemaceae). – Amer. J. Bot. 88: 382-390.

Ottens-Treurniet MAD, Welzen PC van. 2016. A revision of the Malesian genus Blumeodendron (Euphorbiaceae). – Blumea 61: 64-82.

Oudejans RCHM. 1990. World catalogue of species names published in the tribe Euphorbieae (Euphorbiaceae) with their geographical distribution. – Utrecht.

Owen PT, Scheinmann F. 1974. Extractives from Guttiferae XXVI. Isolation and extraction of six xanthones, a biflavanoid, and triterpenoids from the heartwood of Pentaphalangium solomon[en]se. – J. Chem. Soc. Perkins Trans. 1, 1974: 1018-1021.

Pais M, Marchand J, Monseur X, Jarreau F, Goutarel R. 1967.Chemie organique. – Alcaloïdes peptidiques. Structure de l’hymenocardine, alcaloïde de l’Hymenocardia acida Tul. (Euphorbiacées). – Compt. Rend. Acad. Sci. Paris 264: 1409-1411.

Paiva EAS, Machado SR. 2006. Ontogênese, ultra-estrutura e secreção dos coléteres de Caryocar brasiliense Camb. (Caryocaraceae). – Braz. J. Biol. 66: 301-308.

Paiva J. 1972. Rafflesiaceae. – An. Soc. Brot. 38: 141-143.

Pang X, Song J, Zhu Y, Xie C, Chen S. 2010. Using DNA barcoding to identify species within Euphorbiaceae. – Planta Medica 76: 1784-1786.

Pannier F. 1960. Physiological responses of Podostemaceae in their natural habitat. – Intl. Rev. Gesellsch. Hydrobiol. 45: 347-354.

Park K-R. 1996. Phylogeny of New World subtribe Euphorbiinae (Euphorbiaceae). – Korean J. Plant Taxon. 26: 235-256.

Park K-R. 1998. Monograph of Euphorbia sect. Tithymalopsis (Euphorbiaceae). – Edinburgh J. Bot. 55: 161-208.

Park K-R, Backlund A. 2002. Origin of the cyathium-bearing Euphorbieae (Euphorbiaceae): phylogenetic study based on morphological characters. – Bot. Bull. Acad. Sin. 43: 57-72.

Park K-R, Elisens WS. 2000. A phylogenetic study of tribe Euphorbieae (Euphorbiaceae). – Intern. J. Plant Sci. 161: 425-434.

Park K-R, Jansen RK. 2007. A phylogeny of Euphorbieae subtribe Euphorbiinae (Euphorbiaceae) based on molecular data. – J. Plant Biol. 50: 644-649.

Pascarella JB. 1992. Notes on flowering phenology, nectar robbing, and pollination of Symphonia globulifera L. f. (Clusiaceae) in a lowland rain forest in Costa Rica. – Brenesia 38: 83-96.

Pasqua G, Monacelli B, Cuteri A, Spuntarelli F, Rascio N, Botta B, Delle Monache G, Scurria R. 1995. Accumulation of vismione A in regenerated plants of Vismia guianensis DC. – Protoplasma 189: 9-16.

Passarelli LM, Girarde SB, Tur NM. 2002. Palynology of South American Podostemaceae 1. Apinagia Tul. – Grana 41: 10-15.

Passos L, Oliveira PS. 2002. Ants affect the distribution and performance of seedlings of Clusia criuva, a primarily bird-dispersed rain forest tree. – J. Ecol. 90: 517-528.

Patel VC, Skvarla JJ, Raven PH. 1983. Pollen ultrastructure of Chrysobalanaceae. – Vidya 26: 1-10.

Patino S, Aalto T, Edwards AA, Grace J. 2002. Is Rafflesia an endothermic flower? – New Phytologist 154: 429-437.

Patino S, Grace J, Banziger H. 2000. Endothermy by flowers of Rhizanthes lowii (Rafflesiaceae). – Oecologia 124: 149-155.

Paula JE de. 1976. Anatomia de Lorostemon coelhoi Paula, Caraipa valioli Paula e Clusia aff. macropoda Klotzsch (Guttiferae da Amazônica). – Acta Amazonica 6: 273-291.

Paula-Souza J de, Ballard HE Jr. 2014. Re-establishment of the name Pombalia, and new combinations from the polyphyletic Hybanthus (Violaceae). – Phytotaxa 183: 1-15.

Paula-Souza J de, Pirani JR. 2014. Reestablishment of Calyptrion (Violaceae). – Taxon 63: 1335-1339.

Paula-Souza J de, Souza VC. 2002. A new combination in Hybanthus (Violaceae) from South America. – Brittonia 54: 92-93.

Paula-Souza J de, Souza VC. 2003a. Hybanthopsis, a new genus of Violaceae from eastern Brazil. – Brittonia 55: 206-210.

Paula-Souza J de, Souza VC. 2003b. A new species of Hybanthus (Violaceae) from north-eastern Brazil. – Bot. J. Linn. Soc. 141: 503-506.

Paula-Souza J de, Pirani JR, Feliciano CD. 2011. Taxonomic and geographic notes on the Hybanthus lanatus (A. St.Hil.) Baill. complex (Violaceae). – Candollea 66: 367-375.

Pauzé F, Sattler R. 1978. L’androecée centripète d’Ochna atropurpurea. – Can. J. Bot. 56: 2500-2511.

Pauzé F, Sattler R. 1979. La placentation axillaire chez Ochna atropurpurea. – Can. J. Bot. 57: 100-107.

Pax F. 1884. Die Anatomie der Euphorbiaceen in ihrer Beziehung zum System derselben. – Engl. Bot. Jahrb. Syst. 5: 384-421.

Pax F. 1889. Salicaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1), W. Engelmann, Leipzig, pp. 29-37.

Pax F. 1893. Euphorbiaceae africanae I. – Engl. Bot. Jahrb. Syst. 15: 522-535.

Pax F. 1894a. Euphorbiaceae africanae II. – Engl. Bot. Jahrb. Syst. 19: 76-127.

Pax F. 1894b. Euphorbiaceae, Plantae Gürichianae. – Engl. Bot. Jahrb. Syst. 19: 142-143.

Pax F. 1896. Euphorbiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 1-119; Pax F. 1897. Nachträge zu III(5), pp. 210-213.

Pax F. 1904. Monographische übersicht über die afrikanische Arten aus der Sektion Diacanthium der Gattung Euphorbia. – Engl. Bot. Jahrb. Syst. 34: 61-85.

Pax F. 1910. Euphorbiaceae africanae XI. – Engl. Bot. Jahrb. Syst. 45: 234-241.

Pax F. 1924. Die Phylogenie der Euphorbiaceae. – Engl. Bot. Jahrb. Syst. 59: 129-182.

Pax F, Hoffmann K. 1931. Euphorbiaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19c, W. Engelmann, Leipzig, pp. 11-233.

Pax F, Hoffmann K. 1933. Über die Stellung der Gattung Gonatogyne innerhalb der Euphorbiaceae. – Feddes Repert. 31: 190-191.

Payens JPDW. 1958. Erythroxylaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(4), Noordhoff-Kolff N. V., Groningen, pp. 543-552.

Pearcy RW, Troughton J. 1975. C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. – Plant Physiol. 55: 1054-1056.

Peccoud J, Piatscheck F, Yockteng R, Garcia M, Sauve M, Djiéto-Lordon C, Harris DJ, Wieringa JJ, Breteler FJ, Born C, McKey D, Blatrix R. 2013. Multi-locus phylogenies of the genus Barteria (Passifloraceae) portray complex patterns in the evolution of myrmecophytism. – Mol. Phylogen. Evol. 66: 824-832.

Pegel KH, Piacenza LPL, Phillips L, Waight ES. 1971. ent-3β-Hydroxybeyer-15(16)-ene-2,12-dione from Androstachys johnsonii Prain. (Euphorbiaceae). – Chem. Communications 1346-1347.

Peirson JA, Riina R, Mayfield MH, Ferguson CJ, Urbatsch LE. Berry PE. 2014. Phylogenetics and taxonomy of the New World leafy spurges, Euphorbia section Tithymalus (Euphorbiaceae). – Bot. J. Linn. Soc. 175: 191-228.

Pellegrin F. 1952. Les Flacourtiacées du Gabon. – Mém. Soc. Bot. France 1952: 105-121.

Pelser PB, Nickrent DL, Barcelona JF. 2016. Untangling a vine and its parasite: host specificity of Philippine Rafflesia (Rafflesiaceae). – Taxon 65: 739-758.

Pérez JO, d’Eeckenbrugge GC. 2017. Morphological characterization in the genus Passiflora L.: an approach to understanding its complex variability. – Plant Syst. Evol. 303: 531-558.

Perkins G, Estes JR, Thorp RW. 1975. Pollination of Cnidoscolus texanus (Euphorbiaceae) in south-central Oklahoma. – Southw. Natur. 20: 391-396.

Perrier de la Bâthie H. 1945. Fam. 143. Passifloracées. – In: Humbert H (ed), Flore de Madagascar et des Comores, Firmin-Didot et Cie, Paris, pp. 1-50.

Perrier de la Bâthie H. 1946. Fam. 140. Flacourtiaceae. – In: Humbert H (ed), Flore de Madagascar et des Comores, Firmin-Didot et Cie, Paris.

Perrier de la Bâthie H. 1951. Fam. 136. Guttifères (Guttiferae). – In: Humbert H (ed), Flore de Madagascar et des Comores, Firmin-Didot et Cie, Paris.

Perry B. 1943. Chromosome number and phylogenetic relationships in the Euphorbiaceae. – Amer. J. Bot. 30: 527-543.

Petersen OG. 1896. Trigoniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 309-311.

Pfeifer E, Grob V, Thiv, M, Rutishauser R. 2009. Stonesia ghoguei, peculiar morphology of a new Cameroonian species (Podostemaceae, Podostemoideae). – Novon 19: 102-116.

Pfeiffer HH. 1951. Lophopyxis als Typus einer eigenen Familie. – Rev. Sudamer. Bot. 10: 3-6.

Philbrick CT. 1984. Aspects of floral biology, breeding system, and seed and seedling biology in Podostemum ceratophyllum (Podostemaceae). – Syst. Bot. 9: 166-174.

Philbrick CT, Bogle AL. 1988. A survey of floral variation in five populations of Podostemum ceratophyllum Michx. (Podostemaceae). – Rhodora 90: 113-121.

Philbrick CT, Crow GE. 1992. Isozyme variation and population structure in Podostemum ceratophyllum Michx. (Podostemaceae): implications for colonization of glaciated North America. – Aquatic Bot. 43: 311-325.

Philbrick CT, Novelo RA. 1993. A fascinating family of aquatic flowering plants. – Aquaphyte 13: 1-7.

Philbrick CT, Novelo RA. 1995. New World Podostemaceae: ecological and evolutionary enigmas. – Brittonia 47: 210-222.

Philbrick CT, Novelo RA. 1997. Ovule number, seed number and seed size in Mexican and North American species of Podostemaceae. – Aquatic Bot. 57: 183-200.

Philbrick CT, Novelo RA. 1998. Flowering phenology, pollen flow, and seed production in Marathrum rubrum (Podostemaceae). – Aquatic Bot. 62: 199-206.

Philbrick CT, Novelo RA. 2004. Monograph of Podostemum (Podostemaceae). – Syst. Bot. Monogr. 70: 1-106.

Philbrick CT, Novelo RA, Irgang BE. 2004a. Two new genera of Podostemaceae from the state of Minas Gerais, Brazil. – Syst. Bot. 29: 109-117.

Philbrick CT, Novelo RA, Irgang BE. 2004b. A new species of Ceratolacis (Podostemaceae) from the state of Minas gerais, Brazil. – Novon 14: 108-113.

Philbrick CT, Vomela M, Novelo AR. 2006. Preanthesis cleistogamy in the genus Podostemum (Podostemaceae). – Rhodora 108: 195-202.

Philbrick CT, Bove CP, Edson Jr TC. 2009. Monograph of Castelnavia (Podostemaceae). – Syst. Bot. 34: 715-729.

Philbrick CT, Bove CP, Stevens HI. 2010. Endemism in Neotropical Podostemaceae. – Ann. Missouri Bot. Gard. 97: 425-456.

Philbrick CT, Malecki J, Tippery NP, Stevens HI. 2011. A new genus of Podostemaceae from Venezuela. – Novon 21: 475-480.

Philcox D. 1995. Two new Euphorbiaceae from Sri Lanka. – Kew Bull. 50: 119-123.

Phillips EP. 1935. The genera Erythroxylon L. and Nectaropetalum Engl. – South African J. Sci. 32: 305-312.

Pierre L. 1896. Plantes du Gabon: Dichostemma. – Bull. Mens. Soc. Linn. Paris 1(159): 1259-1260.

Pierre L. 1897. Sur quelques Phytocrénacées du Gabon et de l’Indo-Chine. – Bull. Mens. Soc. Linn. Paris 167: 1315-1320.

Pijl L van der. 1952. The stamens of Ricinus. – Phytomorphology 2: 130-132.

Pilger R. 1925. Caryocaraceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 90-93.

Plowman T. 1982. Three new species of Erythroxylum (Erythroxylaceae) from Venezuela. – Brittonia 34: 442-447.

Plowman T. 1989. 93. Erythroxylaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 36, Nord. J. Bot., Copenhagen, pp. 1-31.

Plowman T, Hensold N. 2004. Names, types, and distribution of neotropical species of Erythroxylum (Erythroxylaceae). – Brittonia 56: 1-53.

Pojarkova AI. 1960. Incrementa ad monographiam generum Andrachne L. et Leptopus Decne. – Bot. Mater. Gerb. Bot. Inst. Komarova Akad. Nauk S.S.S.R. 20: 251-274.

Poncy O, Offroy B. 2006. Une nouvelle espèce de Tovomita Aubl. (Clusiaceae) de Guyane française. – Adansonia, sér. III, 28: 113-117.

Ponsinet G, Ourisson G. 1965. Études chimio-taxonomiques dans la famille des euphorbiacées I. Introduction générale et séparation et identification des triterpènes tetracyliques monohydroxylés naturels. – Phytochemistry 4: 799-811.

Poole MM. 1981. Pollen diversity in Zimmermannia (Euphorbiaceae). – Kew Bull. 36: 129-138.

Porto AM, Machado SMF, Oliveira CMA, Bittrich V, Amaral M do CE, Marsaioli AJ. 2000. Polyisoprenylated benzophenones from Clusia floral resins. – Phytochemistry 55: 755-768.

Powell RG, Weisleder D, Smith CR Jr. 1981. Novel maytansinoid tumor inhibitors from Trewia nudiflora: trewiasine, dehydrotrewiasine, and dimethyltrewiasine. – J. Organic Chem. 46: 4398-4403.

Powell RG, Smith CR Jr, Plattner RD, Jones BE. 1983. Additional new maytansinoids from Trewia nudiflora: 10-epitrewiasine and nortrewiasine. – J. Nat. Prod. (Lloydia) 46: 660-666.

Prain D. 1911. A review of the genera Erythrococca and Micrococca. – Ann. Bot. 25: 575-638.

Prain D. 1913. The Mercurialineae and Adenoclineae of South Africa. – Ann. Bot. 27: 371-410.

Prain D. 1918. The genus Chrozophora. – Kew Bull. 1918: 49-120.

Prain D, Hutchinson J. 1913. Notes on some species of Acalypha. – Kew Bull. 1913: 1-28.

Prakash N, Lau YY. 1976. Morphology of Ploiarium alternifolium and the taxonomic position of Ploiarium. – Bot. Not. 129: 279-285.

Prakash U, Bande MB, Lalitha V. 1986. The genus Phyllanthus from the Tertiary of India with critical remarks on the nomenclature of fossil woods of Euphorbiaceae. – Palaeobotanist 35: 106-115.

Prance GT. 1963. A taximetric study of the Chrysobalanaceae. – Ph.D. diss., The University of Oxford, England.

Prance GT. 1972a. Flora Neotropica. Monograph 9. Chrysobalanaceae. – New York Botanical Garden, Bronx, New York.

Prance GT. 1972b. Flora Neotropica. Monograph 10. Dichapetalaceae. – New York Botanical Garden, Bronx, New York.

Prance GT. 1974a. A new Peruvian species of chiropterophilous Couepia (Chrysobalanaceae). – Brittonia 26: 302-304.

Prance GT. 1974b. Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. – Acta Amazonica 3: 5-28.

Prance GT. 1977. A new Colombian species of Dichapetalaceae. – Mutisia 42: 1-3.

Prance GT. 1979a. New genera and species of Chrysobalanaceae from Malesia and Oceania. – Brittonia 31: 79-95.

Prance GT. 1979b. 80. Chrysobalanaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 10, Swedish Natural Science Research Council, Stockholm, pp. 1-23.

Prance GT. 1980. 121. Dichapetalaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 12, Swedish Natural Science Research Council, Stockholm, pp. 1-13.

Prance GT. 1987. An update on the taxonomy and distribution of the Caryocaraceae. – Opera Bot. 92: 179-183.

Prance GT. 1989a. Flora Neotropica. Monograph 9, Suppl. Chrysobalanaceae. – New York Botanical Garden, Bronx, New York.

Prance GT. 1989b. Chrysobalanaceae. – In: Steenis CGGJ van (†), Wilde WJJO de (eds), Flora Malesiana I, 10(4), Kluwer Academic Publ., Dordrecht, Boston, London, pp. 635-678.

Prance GT. 1991. Two new species of Neotropical Chrysobalanaceae. – Kew Bull. 46: 105-109.

Prance GT. 1992a. Five new species of Neotropical Chrysobalanaceae. – Kew Bull. 47: 247-256.

Prance GT. 1992b. New species and new records of Neotropical Chrysobalanaceae. – Kew Bull. 47: 633-646.

Prance GT. 1993. Four new species of Neotropical Dichapetalaceae. – Kew Bull. 49: 129-136.

Prance GT. 1994. Two new species of Neotropical Chrysobalanaceae. – Kew Bull. 49: 359-363.

Prance GT. 1995a. Two new species of Licania (Chrysobalanaceae). – Kew Bull. 50: 141-145.

Prance GT. 1995b. A synopsis of Stephanopodium (Dichapetalaceae). – Kew Bull. 50: 295-305.

Prance GT. 1995c. New taxa and notes on Neotropical Chrysobalanaceae. – Kew Bull. 50: 707-721.

Prance GT. 1997. Additions to Neotropical Dichapetalum. – Kew Bull. 52: 213-219.

Prance GT. 1999a. New species and notes on Neotropical Chrysobalanaceae. – Kew Bull. 54: 103-115.

Prance GT. 1999b. A new species of Hirtella L. (Chrysobalanaceae) from Ecuador. – Kew Bull. 54: 995-997.

Prance GT. 2002. New combinations in African Chrysobalanaceae. – Kew Bull. 57: 993-995.

Prance GT, Silva MF da. 1973. Flora Neotropica. Monograph 12. Caryocaraceae. – New York Botanical Garden, Bronx, New York.

Prance GT, Mori SA. 1983. Dispersal and distribution of Lecythidaceae and Chrysobalanaceae. – Sonderb. Naturw. Ver. Hamburg 7: 163-186.

Prance GT, Sothers CA. 2003a. Species plantarum. Flora of the world 9. Chrysobalanaceae 1: Chrysobalanus to Parinari. – Australian Biological Resources, Canberra.

Prance GT, Sothers CA. 2003b. Species plantarum. Flora of the world 10. Chrysobalanaceae 2: Acioa to Magnistipula. – Australian Biological Resources, Canberra.

Prance GT, White F. 1979. Resurrection of the genus Dactyladenia (Chrysobalanaceae). – Brittonia 31: 483-487.

Prance GT, White F. 1988. The genera of Chrysobalanaceae: a study in practical and theoretical taxonomy and its relevance to evolutionary biology. – Phil. Trans. Roy. Soc., London, Ser. B, 320: 1-184.

Prance GT, Rogers DJ, White F. 1969. A taxonomic study of an angiosperm family: generic delimitation in the Chrysobalanaceae. – New Phytol. 68: 1203-1234.

Prance GT, da Silva MF, Albuquerque BW, Araújo de J da SI, Carreira LMM, Braga MMN, Macedo M, da Conceição PN, Lisbõa PLB, Braga PI, Lisbõa RCL, Vilhena RCQ. 1975. Revisão taxonômica das espécies amazônicas de Rhizophoraceae. – Acta Amazonica 5: 5-22.

Prenner G, Rudall PJ. 2007. Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies: exploring the organ-flower-inflorescence boundary. – Amer. J. Bot. 94: 1612-1629.

Prenner G, Hopper SD, Rudall PJ. 2008. Pseudanthium development in Calycopeplus paucifolius, with particular reference to the evolution of the cyathium in Euphorbieae (Euphorbiaceae-Malpighiales). – Aust. Syst. Bot. 21: 153-161.

Prenner G, Box MS, Cunniff J, Rudall PJ. 2008. The branching stamens of Ricinus and the homologies of the angiosperm stamen fascicle. – Intern. J. Plant Sci. 169: 735-744.

Prenner G, Cacho NI, Baum D, Rudall PJ. 2011. Is LEAFY a useful marker for the flower-inflorescence boundary in the Euphorbia cyathium? – J. Experim. Bot. 62: 345-350.

Presting D. 1964 [1965]. Die Systematik der Passifloraceen aus pollenmorphologischer Sicht. – Ber. Deutsch. Bot. Ges. 77: 40-44.

Presting D. 1965. Zur Morphologie der Pollenkörner der Passifloraceen. – Pollen Spores 7: 193-247.

Prieto RO. 2003. Novelties in Erythroxylum (Erythroxylaceae) of the Greater Antilles. – Willdenowia 33: 187-195.

Pritzel E. 1897. Der systematische Wert der Samenanatomie, insbesondere des Endosperms, bei den Parietales. – Engl. Bot. Jahrb. Syst. 24: 348-394.

Prokhanov JI. 1933. Conspectus systematicus Tithymalorum Asiae Mediae. – Trans. Rubber and Guttapercha Inst., Moscow. [In Russian]

Pruesapan K, Telford IRH, Bruhl JJ, Draisma SGA, Welzen PC van. 2008. Delimitation of Sauropus (Phyllanthaceae) based on plastid matK and nuclear ribosomal ITS DNA sequence data. – Ann. Bot. 102: 1007-1018.

Pruesapan K, Telford IRH, Bruhl JJ, Welzen PC van. 2012. Phylogeny and proposed circumscription of Breynia, Sauropus and Synostemon (Phyllanthaceae), based on chloroplast and nuclear DNA sequences. – Aust. Syst. Bot. 25: 313-330.

Pulle AA. 1909. Rafflesiaceae. – Rec. Trav. Bot. Néerl. 6: 259-261.

Punt W. 1962. Pollen morphology of the Euphorbiaceae with special reference to taxonomy. – Wentia 7: 1-116.

Punt W. 1975. Pollen morphology of the Dichapetalaceae with special reference to evolutionary trends and mutual relationships of pollen types. – Rev. Palaeobot. Palyn. 19: 1-97.

Punt W. 1976. Evolutionary trends in the pollen grains of Dichapetalaceae. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine, Linn. Soc. Symposium, No.1, London and New York, pp.139-146.

Punt W. 1980. Pollen morphology of the Phyllanthus species (Euphorbiaceae) occurring in New Guinea. – Rev. Palaeobot. Palynol. 31: 155-177.

Punt W. 1986. Convergence in some interesting pollen types of Phyllanthus (Euphorbiaceae). – Can. J. Bot. 64: 3127-3129.

Punt W. 1987. A survey of pollen morphology in Euphorbiaceae with special reference to Phyllanthus. – Bot. J. Linn. Soc. 94: 127-142.

Puri V. 1947. Studies in floral anatomy IV. Vascular anatomy of the flower of certain species of the Passifloraceae. – Amer. J. Bot. 34: 562-573.

Puri V. 1948. Studies in floral anatomy V. On the structure and nature of the corona in certain species of the Passifloraceae. – J. Indian Bot. Soc. 17: 130-149.

Quiroz F, Novelo RA, Philbrick CT. 1997. Water chemistry and the distribution of Mexican Podostemaceae: a preliminary evaluation. – Aquatic Bot. 57: 201-212.

Qin X-S, Chen H-F, Xing F-W. 2007. A new species of Drypetes (Putranjivaceae) from China. – Nord. J. Bot. 25: 38-40.

Radcliffe-Smith AR. 1968. An account of the genus Givotia Griff. (Euphorbiaceae). – Kew Bull. 22: 493-505.

Radcliffe-Smith AR. 1973a. An account of the genus Cephalocroton Hochst. (Euphorbiaceae). – Kew Bull. 28: 123-132.

Radcliffe-Smith AR. 1973b. Allomorphic female flowers in the genus Acalypha (Euphorbiaceae). – Kew Bull. 28: 5t25-529.

Radcliffe-Smith AR. 1974. The taxonomic position of Euphorbia petiolata and the reduction of E. postii (Euphorbiaceae). – Kew Bull. 29: 503-505.

Radcliffe-Smith AR. 1975. Notes on African Euphorbiaceae VI. – Kew Bull. 30: 675-687.

Radcliffe-Smith AR. 1978. Notes on African Euphorbiaceae VII. – Kew Bull. 32: 475-481.

Radcliffe-Smith AR. 1980. A note on Romanoa (Euphorbiaceae). – Kew Bull. 34: 591-592.

Radcliffe-Smith AR. 1981a. Notes on African Euphorbiaceae X. Zimmermannia. – Kew Bull. 36: 127-128.

Radcliffe-Smith AR. 1981b. New combinations in the genus Euphorbia III. – Kew Bull. 36: 216.

Radcliffe-Smith AR. 1981c. On the identity of the Arabian Bridelia (Euphorbiaceae). – Kew Bull. 36: 222.

Radcliffe-Smith AR. 1981d. Notes on African Euphorbiaceae IX. – Kew Bull. 35: 777.

Radcliffe-Smith AR. 1982. Notes on African Euphorbiaceae XII. – Kew Bull. 37: 421-428.

Radcliffe-Smith AR. 1983. Notes on African Euphorbiaceae XIII. Tragia, Tragiella &c. – Kew Bull. 37: 683-691.

Radcliffe-Smith AR. 1984. Notes on African Euphorbiaceae XIV. – Kew Bull. 39: 785-796.

Radcliffe-Smith AR. 1985a. Notes on African Euphorbiaceae XV. Tragia. – Kew Bull. 40: 231-234.

Radcliffe-Smith AR. 1985. Notes on African Euphorbiaceae XVI. – Kew Bull. 40: 657-658.

Radcliffe-Smith AR. 1986a. A review of the family Euphorbiaceae. – In: Evans FJ (ed), Naturally occurring phorbol esters, CRC Press, Boca Raton, Florida, pp. 63-85.

Radcliffe-Smith AR. 1986b. Notes on African Euphorbiaceae XVIII. – Kew Bull. 41: 963-964.

Radcliffe-Smith AR. 1987a. Segregate families from the Euphorbiaceae. – Bot. J. Linn. Soc. 94: 47-66.

Radcliffe-Smith AR. 1987b. Euphorbiaceae (Part 1). – In: Polhill RM (ed), Flora of Tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-407.

Radcliffe-Smith AR. 1987c. Notes on African Euphorbiaceae XIX. Tragia (III) and notes on Croton & Erythrococca. – Kew Bull. 42: 395-399.

Radcliffe-Smith AR. 1988. Notes on Madagascan Euphorbiaceae I. On the identity of Paragelonium and on the affinities of Benoistia and Claoxylopsis (Euphorbiaceae). – Kew Bull. 43: 625-647.

Radcliffe-Smith AR. 1989. Notes on African Euphorbiaceae XX. Acalypha (II), etc. – Kew Bull. 44: 439-454.

Radcliffe-Smith AR. 1990a. Notes on African Euphorbiaceae XXII. The genus Schinziophyton. – Kew Bull. 45: 157-160.

Radcliffe-Smith AR. 1990b. Notes on African Euphorbiaceae XXIII. Croton (II). – Kew Bull. 45: 555-560.

Radcliffe-Smith AR. 1990c. Notes on Madagascan Euphorbiaceae III. Stachyandra. – Kew Bull. 45: 561-568.

Radcliffe-Smith AR. 1990d. Notes on African Euphorbiaceae XXIV. Drypetes (II). – Kew Bull. 45: 671-675.

Radcliffe-Smith AR. 1991a. Notes on African Euphorbiaceae XXV. Jatropha (VI). – Kew Bull. 46: 141-157.

Radcliffe-Smith AR. 1991b. Notes on African Euphorbiaceae XXVI. Erythrococca (V). – Kew Bull. 46: 331-333.

Radcliffe-Smith AR. 1991c. Notes on Madagascan Euphorbiaceae IV. The genus Suregada in Madagascar and the Comoro Is. – Kew Bull. 46: 711-726.

Radcliffe-Smith AR. 1992a. Notes on African Euphorbiaceae XXVII. Clutia. – Kew Bull. 47: 111-119.

Radcliffe-Smith AR. 1992b. Notes on African Euphorbiaceae XXVIII. – Kew Bull. 47: 677-683.

Radcliffe-Smith AR. 1993a. Notes on Australian Euphorbiaceae II. Pseudanthus and Stachystemon. – Kew Bull. 48: 165-168.

Radcliffe-Smith AR. 1993b. Notes on African Euphorbiaceae XXIX: Uapaca. – Kew Bull. 48: 611-617.

Radcliffe-Smith AR. 1995. Additions and corrections to ‘Euphorbiaceae’ for ‘Flora of tropical East Africa’. – Kew Bull. 50: 809-816.

Radcliffe-Smith AR. 1996a. Notes on African Euphorbiaceae XXX: Phyllanthus (V) & c. – Kew Bull. 51: 301-331.

Radcliffe-Smith AR. 1996b. A new Piranhea from Brazil, and the subsumption of the genus Celaenodendron (Euphorbiaceae: Oldfieldioideae). – Kew Bull. 51: 543-548.

Radcliffe-Smith AR. 1996c. Proposal to conserve the name Angostylis (Euphorbiaceae) with a conserved spelling. – Taxon 45: 705.

Radcliffe-Smith AR. 1997a. Notes on African and Madagascan Euphorbiaceae. – Kew Bull. 52: 171-176.

Radcliffe-Smith AR. 1997b. Notes on Madagascan Euphorbiaceae V. Jatropha. – Kew Bull. 52: 177-181.

Radcliffe-Smith AR. 1997c. Euphorbiaceae 1. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam.

Radcliffe-Smith AR. 1998a. Notes on Madagascan Euphorbiaceae VI. A synopsis of Tannodia Baill. (Crotonoideae-Aleuritideae-Grosserinae) with especial reference to Madagascar, and the subsumption of Domohinea Leandri. – Kew Bull. 53: 173-186.

Radcliffe-Smith AR. 1998b. Notes on Madagascan Euphorbiaceae VII. A synopsis of the genus Amyrea Leandri (Euphorbiacae-Acalyphoideae). – Kew Bull. 53: 437-451.

Radcliffe-Smith AR. 1998c. Notes on Madagascan Euphorbiaceae VIII. A third species of Aristogeitonia (Euphorbiaceae) for Madagascar. – Kew Bull. 53: 977-980.

Radcliffe-Smith AR (ed). 2001. Genera Euphorbiacearum. – Royal Botanic Gardens, Kew.

Radcliffe-Smith AR, Govaerts R. 1997a. New names and combinations in the Crotonoideae. – Kew Bull. 52: 183-189.

Radcliffe-Smith AR, Govaerts R. 1997b. New names and new combinations in the Euphorbiaceae-Acalyphoideae. – Kew Bull. 52: 477-481.

Radcliffe-Smith AR, Harley MM. 1990. Notes on African Euphorbiaceae XXI: Aerisilvaea and Zimmermanniopsis, two new phyllanthoid genera for the flora of Tanzania. – Kew Bull. 45: 147-156.

Radcliffe-Smith AR, Ratter JA. 1996. A new Piranhea from Brazil, and the subsumption of the genus Celaenodendron (Euphorbacee-Oldfieldioideae). – Kew Bull. 51: 54-548.

Radlkofer L. 1870. Über Pausandra, ein neues Euphorbiaceen-Genus. – Flora 53: 81-95.

Raghavan TS, Srinivasan VK. 1940. A contribution to the life history of Bergia capensis Linn. – J. Indian Bot. Soc. 19: 283-291.

Rajkumar S, Janarthanam MK. 2007. Agasthiyamalaia (Clusiaceae), a new genus for Poeciloneuron pauciflorum, an endemic and endangered tree of Western Ghats, India. – J. Bot. Res. Inst. Texas 1: 129-133.

Raju MVS. 1954. Pollination mechanism in Passiflora foetida Linn. – Proc. Indian Natl. Acad. Sci., Sect. B, 20: 431-436.

Raju MVS. 1956a. Embryology of the Passifloraceae I. Gametogenesis and seed development of Passiflora calcarata Mast. – J. Indian Bot. Soc. 35: 126-138.

Raju MVS. 1956b. Development of embryo and seed coat in Turnera ulmifolia L. var. angustifolia Willd. – Bot. Not. 109: 308-312.

Raju MVS, Rao AN. 1953. The development of the male and female gametophytes in Mallotus albus Muell. – J. Mysore Univ. 13: 5-8.

Raju VS. 1984. Notes on Mischodon zeylanicus Thwaites: a little-known euphorbiaceous plant from Sri Lanka and southern India. – J. Econ. Taxon. Bot. 5: 165-167.

Raju VS, Rao PN. 1977. Variation in the structure and development of foliar stomata in the Euphorbiaceae. – Bot. J. Linn. Soc. 75: 69-97.

Raju VS, Rao PN. 1987. The taxonomic use of the basal stomatal type in the generic delimitation of Chamaesyce (Euphorbiaceae). – Feddes Repert. 98: 137-141.

Ralimanana H. Hoffmann P, Rajeriarison C. 2013. Taxonomic revision of Phyllanthus (Phyllanthaceae) in Madagascar and the Comoro Islands III: subgenera Swartziani, Afroswartziani and Emblica. – Kew Bull. 68: 1-24.

Ralimanana H, Hoffmann P. 2014. Taxonomic revision of Phyllanthus L. (Phyllanthaceae) in Madagascar and the Comoro Islands II: subgenera Anisonemoides (Jean F. Brunel) Ralim. & Petra Hoffm., stat. nov. and Menarda (Müll. Arg.) Ralim. & Petra Hoffm., stat. nov. – Adansonia, sér. 3, 36: 265-301.

Ramaiah PA, Row LR, Reddy DS, Anjaneyulu ASR, Ward RS, Pelter A. 1979. Isolation and characterization of bergenin derivatives from Macaranga peltata. – J. Chem. Soc., Perkin Trans. I: 2313-2316.

Ramírez BW, Gómez PLD. 1978. Production of nectar and gums by flowers of Monstera deliciosa (Araceae) and of some species of Clusia (Guttiferae) collected by New World Trigona bees. – Brenesia 14-15: 407-412.

Ramji MV. 1967. Morphology and ontogeny of the foliar venation of Calophyllum inophyllum L. – Aust. J. Bot. 15: 437-443.

Rao AMS. 1940. Studies in the Malpighiaceae 1. Embryo-sac development and embryogeny in the genera Hiptage, Banisteria and Stigmaphyllum. – J. Indian Bot. Soc. 18: 145-156.

Rao AMS. 1941. Studies in the Malpighiaceae 2. Structure and development of the ovules and embryo-sacs of Malpighia coccifera Linn. and Tristellateia australis Linn. – Proc. Natl. Inst. Sci. India, Sect. B, 7: 393-404.

Rao AN. 1957. The embryology of Hypericum patulum Thunb. and H. mysorense Heyne. – Phytomorphology 7: 36-45.

Rao AN. 1964. Notes on embryology of Hevea brasiliensis. – Curr. Sci. 33: 739-740.

Rao AR. 1970. Comparative embryology of angiosperms: Euphorbiaceae. – In: Proceedings of the symposium on comparative embryology of the angiosperms, Bull. Indian Natl. Acad. Sci., Sect. B, 41: 136-141.

Rao AR, Malaviya M. 1964. On the latex-cells and latex of Jatropha. – Proc. Indian Acad. Sci., Sect. B, 60: 95-106.

Rao AR, Tewari JP. 1960. On the morphology and ontogeny of the foliar sclereids of Codiaeum variegatum Blume. – Proc. Indian Natl. Acad. Sci., Sect. B, 26: 1-6.

Rao D. 1965. Floral anatomy of Erythroxylaceae. – Proc. Natl. Inst. Sci. India, Ser. B, 35: 156-162.

Rao D. 1968. A contribution to the embryology of Erythroxylaceae. – Proc. Natl. Acad. Sci. India, Ser. B, 38: 53-65.

Rao D, Narayana LL. 1965. Embryology of Linaceae. – Curr. Sci. 34: 92-93.

Rao PN. 1962. A note on the embryology of Micrococca mercurialis Benth. – Curr. Sci. 31: 426-427.

Rao PN. 1970. Euphorbiaceae. – Bull. Indian Natl. Acad. Sci. 41: 136-141.

Rao PN. 1975. Embryological studies in Meineckia parvifolia (Wight) Webster. – Curr. Sci. 44: 283-284.

Rao PN, Rao DS. 1976. Embryology of cassava (Manihot). – Proc. Indian Natl. Acad. Sci., Sect. B, 42: 111-121.

Rao PR, Raju VS. 1985. Foliar trichomes in the family Euphorbiaceae. – In: Singh B, Singh MP (eds), Trends in plant research, Govil & Kumar, Dehra Dun, pp. 128-136.

Rao PSP, Devi KRR. 1977. A note on the occurrence of intracarpellary pollen sacs in Securinega virosa. – J. jap. Bot. 52: 60-62.

Rao SRS, Sarma V. 1992. Morphology of 2-armed trichomes in relation to taxonomy: Malpighiales. – Feddes Repert. 103: 559-565.

Rao TA, Bhattacharya J. 1975. On foliar terminal sclereids in Goupia glabra Aubl. – Curr. Sci. 44: 132-133.

Rao VS. 1949. The morphology of the calyx-tube and the origin of perigyny in Turneraceae. – J. Indian Bot. Soc. 28: 198-201.

Ray C. 1944. Cytological studies in the flax genus, Linum. – Amer. J. Bot. 31: 241-248.

Razi BA. 1949. Embryological studies of the members of Podostemonaceae. – Bot. Gaz. 111: 211-218.

Razi BA. 1955. Some aspects of the embryology of Zeylanidium olivaceum (Tul.) Engl. and Lawia zeylanica Tul. – Bull. Bot. Soc. Bengal 9: 36-41.

Razifard H, Rosman AJ, Tucker GC, Les DH. 2017. Systematics of the cosmopolitan aquatic genus Elatine. – Syst. Bot. 42: 73-86.

Razifard H, Les DH, Tucker GC. 2017. Reticulate evolution in Elatine L. (Elatinaceae), a predominantly autogamous genus of aquatic plants. – Syst. Bot. 42: 87-95.

Rechinger KH. 1992. Salix taxonomy in Europe – problems, interpretations, observations. – Proc. Roy. Soc. Edinb. 98B: 1-12.

Record SJ. 1938. The American woods of the family Euphorbiaceae. – Trop. Woods 54: 7-40.

Record SJ. 1941. American woods of the family Flacourtiaceae. – Trop. Woods 68: 40-57.

Reddi EUB, Reddi CS. 1983. Pollination ecology of Jatropha gossypiifolia (Euphorbiaceae). – Proc. Indian Acad. Sci., Sect. B, 92: 215-231.

Reddy KC, Kumar KA, Srimannarayana G. 1983. 5-Methoxyfurano(2’’,3’’,7,8)flavone from the stems of Ochna squarrosa. – Phytochemistry 22: 800-801.

Reiche K. 1896a. Linaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 27-35.

Reiche K. 1896b. Humiriaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 35-37.

Reiche K. 1896c. Erythroxylaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 37-40.

Reiche K, Taubert P. 1895. Violaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 322-336.

Reis MG, Faria AD de, Alves dos Santos I, Amaral M do CE, Marsaioli AJ. 2007. Byrsonic acid – the clue to floral mimicry involving oil-producing flowers and oil-collecting bees. – J. Chem. Ecol. 33: 1421-1429.

Retana AN, Philbrick CT. 1997. Podostemum ricciiforme (Podostemaceae) rediscovered and redescribed. – Taxon 46: 451-455.

Reuschel C, Walther H. 2006. Studien über oligozäne Populus-Arten aus der Weisselstersenke südlich von Leipzig, Sachsen (Deutschland). – Feddes Repert. 117: 1-33.

Reveal JL, Hoffmann P, Doweld A, Wurdack KJ. 2007. Proposal to conserve the name Phyllanthaceae. – Taxon 56: 266.

Reyes-Ortega I, Sanchez-Coronado ME, Orozco-Segovia A. 2009. Seed germination in Marathrum shiedeanum and M. rubrum (Podostemaceae). – Aquatic Bot. 90: 13-17.

Rial A. 2002. Une nouvelle espèce de Macropodiella (Podostemaceae) de Guinée Équatoriale. – Adansonia, sér. III, 24: 295-297.

Ribes de Lima L, Rubens Pirani J. 2008. Three new species of Croton (Euphorbiaceae) from Brazil. – Kew Bull. 63: 121-129.

Ribes de Lima L, Cruz-Barros MAV da, Rubens Pirani J, Silva CAM da. 2007. Pollen morphology of Croton sect. Lamprocroton (Müll. Arg.) Pax (Euphorbiaceae) and its taxonomic implications. – Nord. J. Bot. 25: 206-216.

Ricardi SM. 1967. Revisión taxonómica de las Malesherbiáceas. – Gayana Bot. 16: 1-139.

Richards AJ. 1990a. Studies in Garcinia, dioecious tropical forest trees: agamospermy. – Bot. J. Linn. Soc. 103: 233-250.

Richards AJ. 1990b. Studies in Garcinia, dioecious tropical forest trees: the phenology, pollination biology and fertilization of G. hombroniana Pierre. – Bot. J. Linn. Soc. 103: 251-261.

Richards AJ. 1990c. Studies in Garcinia, dioecious tropical forest trees: the origin of the mangosteen (G. mangostana L.). – Bot. J. Linn. Soc. 103: 301-308.

Ridola F. 1903. Interpretazione morphologica del ciazio di Pedilanthus. – Boll. Orto Bot. Napoli 1: 415-418ö

Riina R, Berry PE, Cornejo X. 2007. A new species of “sangre de drago” (Croton section Cyclostigma, Euphorbiaceae) from coastal Ecuador. – Brittonia 59: 97-101.

Riina R, Berry PE, Ee BW van. 2009. Molecular phylogenetics of the dragon’s blood Croton Section Cyclostigma (Euphorbiaceae): a polyphyletic assemblage unravelled. – Syst. Bot. 34: 360-374.

Riina R, Ee B van, Wiedenhoeft AC, Cardozo A, Berry PE. 2010. Sectional rearrangement of arborescent clades of Croton (Euphorbiaceae) in South America: evolution of arillate seeds and a new species, Croton domatifer. – Taxon 59: 1147-1160.

Riina R, Peirson JA, Geltman DV, Molero J, Frajman B, Pahlevani A, Barres L, Morawetz JJ, Salmaki Y, Zarre S, Kryukov A, Bruyns PV, Berry PE. 2013. A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae). – Taxon 62: 316-342.

Risch C. 1960. Die Pollenkörner der Salicaceen. – Willdenowia 2: 413-430.

Rittershausen P. 1892. Anatomisch-systematische Untersuchung von Blatt und Axe der Acalypheen. – Ph.D. diss., Universität München, Germany.

Rizk AM. 1987. The chemical constituents and economic plants of the Euphorbiaceae. – In: Jury SL, Reynolds T, Cutler DF, Evans FJ (eds), The Euphorbiales. Chemistry, taxonomy and economic botany, Bot. J. Linn. Soc. 94: 293-326.

Rizk AM, El-Missiry MM. 1986. Non-diterpenoid constituents of Euphorbiaceae and Thymelaeaceae. – In: Evans FJ (ed), Naturally occurring phorbol esters, CRC Press, Boca Raton, Florida, pp. 107-138.

Robert EMR, Koedam N, Beeckman H, Schmitz N. 2009. A safe hydraulic architecture as wood anatomical explanation for the difference in distribution of the mangroves Avicennia and Rhizophora. – Funct. Ecol. 23: 649-657.

Roberts KD, Weiss E, Reichstein T. 1966. Die Cardenolide der Samen von Mallotus paniculatus Muell. Arg. (Euphorbiaceae). – Helv. Chim. Acta 49: 316-329.

Robertson A, Wise R, White F. 1989. 138. Medusagyne oppositifolia. Medusagynaceae. – Kew Mag. 6: 166-171.

Robson NKB. 1960. 16. Violaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 246-260.

Robson NKB. 1961. 25. Guttiferae (incl. Hypericaceae). – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 378-404.

Robson NKB. 1963a. 32. Linaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 91-99.

Robson NKB. 1963b. 33. Ixonanthaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 100-102.

Robson NKB. 1963c. 34. Erythroxylaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 102-109.

Robson NKB. 1963d. 44. Ochnaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 224-262.

Robson NKB. 1972. Evolutionary recall in Hypericum. – Trans. Bot. Soc. Edinb. 41: 365-383.

Robson NKB. 1974. Hypericaceae. – In: Steenis CGGJ van (ed), Flora Malesiana, I, 8(1), Sijthoff & Noordhoff International Publ., Alphen aan den Rijn, The Netherlands, pp. 1-29.

Robson NKB. 1977. Studies in the genus Hypericum L. (Guttiferae) 1. Infrageneric classification. – Bull. Brit. Mus. (Nat. Hist.) Bot. 5: 293-355.

Robson NKB. 1981. Studies in the genus Hypericum L. (Guttiferae) 2. Characters of the genus. – Bull. Brit. Mus. (Nat. Hist.) Bot. 8: 55-226.

Robson NKB. 1985. Studies in the genus Hypericum L. (Guttiferae) 3. Sections 1. Campylosporus to 6a. Umbraculoides. – Bull. Brit. Mus. (Nat. Hist.) Bot. 12: 163-325.

Robseon NKB. 1986. Studies in the genus Hypericum L. (Guttiferae) 6. Sections 20. Myriandra to 28. Elodes. – Bull. Brit. Mus. (Nat. Hist.) Bot. 26: 75-217.

Robson NKB. 1987. Studies in the genus Hypericum L. Guttiferae 7. Section 29. Brathys (part 1). – Bull. Brit. Mus. (Nat. Hist.) Bot. 16: 1-106.

Robson NKB. 1990. Studies in the genus Hypericum L. (Guttiferae) 8. Sections 29. Brathys (part 2) and 30. Trigynobrathys. – Bull. Brit. Mus. (Nat. Hist.) Bot. 20: 1-151.

Robson NKB. 1996. Studies in the genus Hypericum L. (Guttiferae) 6. Sections 20. Myriandra to 28. Elodes. – Bull. Brit. Mus. (Nat. Hist.) Bot. 26: 75-217.

Robson NKB. 2001. Studies in the genus Hypericum L. (Guttiferae) 4(1). Sections 7. Roscyna to 9. Hypericum sensu lato (part 1). – Bull. Brit. Mus. (Nat. Hist.) Bot. 31: 37-88.

Robson NKB. 2002. Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. – Bull. Brit. Mus. (Nat. Hist.) Bot. 32: 61-123.

Robson NKB. 2006. Studies in the genus Hypericum L. (Clusiaceae) 4(3). Section 9. Hypericum sensu lato (part 3): subsection 1. Hypericum series 2. Senanensia, subsection 2. Erecta and section 9b. Graveolentia. – Syst. Biodiv. 4: 19-98.

Robson NKB. 2010a. Studies in the genus Hypericum L. (Hypericaceae) 5(1). Sections 10. Olympia to 15/16. Crossophyllum. – Phytotaxa 4: 5-126.

Robson NKB. 2010b. Studies in the genus Hypericum L. (Hypericaceae) 5(2). Sections 17. Hirtella to 19. Coridium. – Phytotaxa 4: 127-258.

Robson NKB. 2012. Studies in the genus Hypericum L. (Hypericaceae) 9. Addenda, corrigenda, keys, lists and general discussion. – Phytotaxa 72: 1-111.

Robson NKB, Adams WP. 1968. Chromosome numbers in Hypericum and related genera. – Brittonia 20: 95-106.

Robson NKB, Airy HK. 1962. A note on the taxonomic position of the genus Cyrillopsis Kuhlmann. – Kew Bull. 15: 387-388.

Rocha AES, Secco RS. 2004. Uma sinopse de Lacunaria Ducke. – Acta Amazonica 34: 425-433.

Rodrigues CMC, Teixeira Osmond W, Pinheiro MCB, Lima HA de. 1999. Biologia de reprodução de Clusia lanceolata Camb. – Hoehnea 26: 61-73.

Rogers CM. 1963. Yellow flowered species of Linum in eastern North America. – Brittonia 15: 97-122.

Rogers CM. 1966. Sclerolinon, a new genus in the Linaceae. – Madroño 23: 153-159.

Rogers CM. 1968. Yellow-flowered species of Linum in Central America and western North America. – Brittonia 20: 107-135.

Rogers CM. 1969. Relationships of the North American species of Linum (flax). – Bull. Torrey Bot. Club 96: 176-190.

Rogers CM. 1972. The taxonomic significance of the fatty acid content of seeds of Linum. – Brittonia 24: 415-419.

Rogers CM. 1975. Relationships of Hesperolinon and Linum (Linaceae). – Madroño 23: 153-159.

Rogers CM. 1979. A new species of Linum from southern Texas and adjacent Mexico. – Sida 8: 181-187.

Rogers CM. 1980. Pollen dimorphism in distylous species of Linum sect. Linastrum (Linaceae). – Grana 19: 19-20.

Rogers CM. 1981. A revision of the genus Linum in southern Africa. – Nord. J. Bot. 1: 711-722.

Rogers CM. 1982. The systematics of Linum sect. Linopsis (Linaceae). – Plant Systematics and Evolution 140: 225-234.

Rogers CM. 1984. A further note on the relationships of the Euopean Linum hologynum and the Australian species of Linum (Linaceae). – Plant Syst. Evol. 147: 327-328.

Rogers CM. 1985. Pollen morphology of the monotypic genus Cliococca (Linaceae). – Grana 24: 121-123.

Rogers CM, Mildner R. 1971. The reevaluation of the genus Cliococca (Linaceae) of South America. – Rhodora 73: 560-565.

Rogers CM, Xavier KS. 1971. Pollen morphology as an aid in determining relationships among some widely separated Old World species of Linum. – Grana 11: 55-57.

Rogers DJ. 1951. A revision of Stillingia in the New World. – Ann. Missouri Bot. Gard. 38: 207-259.

Rogers DJ, Appan SG. 1973. Flora Neotropica. Monograph 13. Manihot, Manihotoides (Euphorbaceae). – New York Botanical Garden, Bronx, New York.

Rogers ZS, Sweeney PW. 2007. Two distinctive new species of Malagasy Garcinia (Clusiaceae). – Syst. Bot. 32: 772-779.

Rojo JP. 1968. The wood anatomy of Allantospermum borneense Forman and Allantospermum multicaule (Capuron) Nooteboom. – Adansonia, sér. II, 8: 73-83.

Romano GR, Dwyer JD. 1971. A demonstration of phloem in the Podostemaceae. – Bull. Torrey Bot. Club 98: 46-53.

Romo Contreras V, Scogin R, Philbrick CT, Novelo RA. 1993. A phytochemical study of selected Podostemaceae: systematic implications. – Aliso 13: 513-520.

Ronse De Craene LP. 2017. Floral development of the endangered genus Medusagyne (Medusagynaceae-Malpighiales): spatial constraints of stamen and carpel increase. – Intern. J. Plant Sci. 178: 639-649.

Ronse De Craene LP, Smets E. 1991. Androecium and floral nectaries of Harungana madagascariensis (Clusiaceae). – Plant Syst. Evol. 178: 179-194.

Ross ES. 2003. Rafflesia: the super flower. – California Wild 56: 8-11.

Rossignol L, Rossignol M. 1985. Architecture et tendances évolutives dans le genre Phyllanthus (Euphorbiaceae). – Bull. Brit. Mus. (Nat. Hist.) Bot. 7: 67-80.

Rossignol L, Rossignol M, Haïcour R. 1987. A systematic revision of Phyllanthus subsection Urinaria (Euphorbiaceae). – Amer. J. Bot. 74: 1853-1862.

Rössler L. 1943. Vergleichende Morphologie der Samen europäischer Euphorbia-Arten. – Beih. Bot. Centralbl. 62: 97-174.

Rothdauscher H. 1896. Ueber die anatomischen Verhältnisse von Blatt und Axe der Phyllantheen (mit Ausschluß der Euphyllantheen). – Bot. Centralbl. 68: 65-79, 97-108, 129-136, 161-169, 193-203, 248-253, 280-285, 305-315, 338-346, 385-393.

Rouffiac R, Parello J. 1969. Étude chimique des alcaloïdes du Phyllanthus niruri L. (Euphorbiacées). Présence de l’antipode optique de la norsécurinine. – Plant. Med. Phytothér. 3: 220-223.

Rowley JR, Erdtman G. 1967. Sporoderm in Populus and Salix. – Grana Palynol. 7: 517-567.

Roy SK, Ghosh PK. 1982. Fossil wood of Euphorbiaceae from the Tertiary of West Bengal, India. – Feddes Repert. 93: 363-367.

Royen P van. 1951. The Podostemaceae of the New World I. – Meded. Bot. Mus. Herb. Rijksuniv. Utrecht 107: 1-151.

Royen P van. 1953. The Podostemaceae of the New World II. – Meded. Bot. Mus. Herb. Rijksuniv. Utrecht 115: 2-21.

Royen P van. 1955. The Podostemaceae of the New World III. – Meded. Bot. Mus. Herb. Rijksuniv. Utrecht 119: 215-263.

Rudall PJ. 1987. Laticifers in Euphorbiaceae. A conspectus. – Bot. J. Linn. Soc. 94: 143-163.

Rudall PJ. 1989. Laticifers in vascular cambium and wood of Croton spp. (Euphorbiaceae). – IAWA Bull., N. S., 10: 379-383.

Rudall PJ. 1994. Laticifers in Crotonoideae (Euphorbiaceae): homology and evolution. – Ann. Missouri Bot. Gard. 81: 270-282.

Ruhfel BRT. 2011. Systematics and biogeography of the clusioid clade (Malpighiales). – Ph.D. diss., Harvard University, Cambridge, Massachusetts.

Ruhfel BRT, Bittrich V, Bove CP. Gustafsson MHG, Philbrick CT, Rutishauser R, Xi Z, Davis CC. 2011. Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes. – Amer. J. Bot. 98: 306-325.

Ruhfel BR, Stevens PF, Davis CC. 2013. Combined morphological and molecular phylogeny of the clusioid clade (Malpighiales) and the placement of the ancient rosid macrofossil Paleoclusia. – Intern. J. Plant Sci. 174: 910-936.

Ruhfel BR, Bove CP, Philbrick CT, Davis CC. 2016. Dispersal largely explains the Gondwanan distribution of the ancient tropical clusioid plant clade. – Amer. J. Bot. 103: 1117-1128.

Rury PM. 1981. Systematic anatomy of Erythroxylum P. Browne: practical and evolutionary implications for the cultivated cocas. – J. Ethnopharm. 3: 229-263.

Rury PM. 1982. Systematic anatomy of the Erythroxylaceae. – Ph.D. diss., University of North Carolina, Chapel Hill, North Carolina.

Rury PM. 1985. Systematic and ecological wood anatomy of Erythroxylaceae. – IAWA Bull. 6: 365-397.

Rutishauser R. 1995. Developmental patterns of leaves in Podostemaceae compared with more typical flowering plants: saltational evolution and fuzzy morphology. – Can. J. Bot. 73: 1305-1317.

Rutishauser R. 1997. Structural and developmental diversity in Podostemaceae (river-weeds). – Aquatic Bot. 57: 29-70.

Rutishauser R, Grubert M. 1994. The architecture of Mourera fluviatilis (Podostemaceae). – Bot. Helvetica 104: 179-194.

Rutishauser R, Grubert M. 1999. The architecture of Mourera fluviatilis (Podostemaceae). Developmental morphology of inflorescences, flowers, and seedlings. – Amer. J. Bot. 86: 907-922.

Rutishauser R, Grubert M. 2000. Developmental morphology of Apinagia multibranchiata (Podostemaceae) from the Venezuelan Guyanas. – Bot. J. Linn. Soc. 132: 299-323.

Rutishauser R, Huber KA. 1991. The developmental morphology of Indotristicha ramosissima (Podostemaceae, Tristichoideae). – Plant Syst. Evol. 178: 195-223.

Rutishauser R, Pfeifer E. 2002. Comparative morphology of Cladopus (including Torrenticola, Podostemaceae) from East Asia to northeastern Australia. – Aust. J. Bot. 50: 725-739.

Rutishauser R, Novelo RA, Philbrick CT. 1999. Developmental morphology of New World Podostemaceae: Marathrum and Vanroyenella. – Intern. J. Plant Sci. 160: 29-45.

Rutishauser R, Pfeifer E, Moline P, Philbrick CT. 2003. Developmental morphology of roots and shoots of Podostemum ceratophyllum (Podostemaceae-Podostemoideae). – Rhodora 105: 337-353.

Rutishauser R, Pfeifer E, Bernhard A. 2004. Podostemaceae of Africa and Madagascar: keys to genera and species, including genera descriptions, illustrations to all species known, synonyms, and literature list, version 15-09-04. http://www.systbot.unizh.ch/Podostemaceae

Rutishauser R, Pfeifer E, Novelo RA, Philbrick CT. 2005. Diamantina lombardii – an odd Brazilian member of the Podostemaceae. – Flora 200: 245-255.

Saad SI. 1961. Pollen morphology and sporoderm stratification in Linum. – Grana Palynol. 3: 109-129.

Saad SI. 1962a. Pollen morphology of Ctenolophon. – Bot. Not. 115: 49-57.

Saad SI. 1962b. Palynological studies in the Linaceae. – Pollen Spores 4: 65-82.

Sabatier B. 1974. Contribution de la palynologie à l’étude des Irvingiacées d’Afrique tropicale. – Adansonia 14: 277-289.

Sabatier D. 2003. Vantanea ovicarpa (Humiriaceae), a new species from French Guiana. – Brittonia 54: 233-235.

Saddi N. 1984. Some new taxa in Kielmeyera (Guttiferae). – Kew Bull. 39: 729-740.

Saddi N. 1987. New species of Kielmeyera (Guttiferae) from Brazil. – Kew Bull. 42: 221-230.

Saddi N. 1989. Comparative external morphological study in the genus Kielmeyera Martius (Guttiferae). – Publ. Avuls. Herb. Central 2, Cuiabá.

Sagun VG, Ham RWJM van der. 2003. Pollen morphology of the Flueggeinae (Euphorbiaceae, Phyllanthoideae). – Grana 42: 193-219.

Sagun VG, Levin GA, Ham RWJM van der. 2006. Pollen morphology and ultrastructure of Acalypha (Euphorbiaceae). – Rev. Palaeobot. Palynol. 140: 123-143.

Sá-Haiad B de, Serpa-Ribeiro ACC, Barbosa CN, Pizzini D, Leal D O, Senna-Valle L, Santiago-Fernandes LDR. 2009. Leaf structure of species from three closely related genera from tribe Crotoneae Dumort. (Euphorbiaceae s.l., Malpighiales). – Plant Syst. Evol. 283: 179-202.

Sá-Haiad B de Torres CA, Abreu VHR de, Gonçalves MR, Mendonça CBF, Santiago-Fernandes LDR de, Bove CP, Gonçalves-Esteves V. 2010. Floral structure and palynology of Podostemum weddellianum (Podostemaceae: Malpighiales). – Plant Syst. Evol. 290: 141-149.

Sainty D, Bailleul F, Delaveau P, Jacquemin H. 1981. Malpighiacées: nouvelle famille à iridoïdes étude du Stigmaphyllon sagittatum. – J. Nat. Prod. 44: 576-578.

Salvosa FM. 1936. Rhizophora. – Nat. Appl. Sci.Bull. Univ. Philipp. 5: 179-237.

Samuel R, Kathriarachchi H, Hoffman P, Barfuss MHJ, Wurdack KJ, Davis CC, Chase MW. 2005. Molecular phylogenetics of Phyllanthaceae. Evidence from plastid matK and nuclear PHYC sequences. – Amer. J. Bot. 92: 132-141.

Santiago LJM, Louro RP, Emmerich M, Barth OM. 2004. The pollen morphology of Phyllanthus (Euphorbiaceae) section Choretropsis. – Bot. J. Linn. Soc. 144: 243-250.

Santiago LJM, Louro RP, Emmerich M. 2006. Phyllanthus section Choretropsis (Euphorbiaceae) in Brazil. – Bot. J. Linn. Soc. 150: 131-164.

Santiago LJM, Louro RP, Emmerich M. 2008. Phylloclade anatomy in Phyllanthus section Choretropsis (Phyllanthaceae). – Bot. J. Linn. Soc. 157: 91-102.

Sanz JMC, Rodríguez PM. 2012. Synopsis of Acalypha (Euphorbiaceae) of continental Ecuador. – PhytoKeys 17: 1-17.

Sarkar AK, Datta N. 1980. Cytological assessment of the family Euphorbiaceae II. Tribe Phyllantheae. – Proc. Indian Sci. Congr. Assoc. (III, C) 67: 48-49.

Sastre C. 1970. Recherches sur les Ochnacées II. Les espèces de Sauvagesia L. à placenta basale. – Caldasia 10: 497-516.

Sastre C. 1971. Recherches sur les Ochnacées V. Essai de taxonomie numérique et schéma évolutif du genre Sauvagesia L. – Sellowia 23: 9-44.

Sastre C. 1975a. Étude du genre Cespedesia Goudot (Ochnacées). – Cespedesia 4: 191-214.

Sastre C. 1975b. L’importance des caractères anatomiques dans la systématique des Ochnacées. – C. R. 100ème Congrès National Soc. Sav. 2: 185-196.

Sastre C. 1981. Ochnacées nouvelles du Brésil. – Bull. Jard. Bot. Natl. Belg. 51: 347-413.

Sastre C. 1988. Studies on the Flora of the Guianas 34. Synopsis generis Ouratea Aublet (Ochnaceae). – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, 10, sect. B, Adansonia 1: 47-67.

Sastre C. 1992. Vicariance et distribution géographique de quelques Ochnacées des Guyanes. – C. R. Soc. Biogéogr. 68: 35-45.

Sastre C. 1995. Novelties in the neotropical genus Ouratea Aublet (Ochnaceae). – Novon 5: 193-200.

Sastre C. 2001. New Ouratea species (Ochnaceae) from Venezuela and adjacent countries. – Novon 11: 105-118.

Sastre C. 2004. Une nouvelle espèce d’Ouratea (Ochnaceae) du Venezuela. – Adansonia, sér. III, 26: 129-131.

Sastre C. 2005. Une nouvelle espèce d’Ouratea (Ochnaceae) de l’Amazonie brésilienne. – Adansonia, sér. III, 27: 85-88.

Sastre C. 2006. Deux nouvelles espèces d’Ouratea (Ochnaceae) des Guyanes. – Adansonia, sér. III, 28: 119-127.

Sastre C. 2007. Six nouvelles espèces d’Ouratea (Ochnaceae) des Guyanes. – Adansonia, sér. III, 29: 77-91.

Sastre C, Offroy B. 2009. Description de trois nouveaux Ouratea L. (Ochnaceae) du Paraguay, de Bolivie et d’Équateur. Considérations taxonomiques, nomenclaturales et biogéographiques sur les espèces affines d’O. superba Engl. – Adansonia, sér. III, 31: 89-101.

Sastre C, Offroy B. 2016. Révision nomenclaturale des binômes du genre néotropical Ouratea Aublet (Ochnaceae) décrits par Van Tieghem. – Adansonia 38: 55-98.

Sastre C, Whitefoord C, Knapp S. 1999. A new species of Elvasia (Ochnaceae) from Mesoamerica with discussion of subgeneric classification and phytogeography. – Novon 9: 252-256.

Sastry SD, Waller GR. 1972. Biosynthesis of N-methyl-5-carboxamid-2-pyridone from Trewia nudiflora. – Phytochemistry 11: 2241-2245.

Satabié B. 1974. Contribution de la palynologie à l’étude des Irvingiacées d’Afrique tropicale. – Adansonia, sér. II, 14: 277-289.

Sato A, Ogiso A, Kuwano H. 1980. Acyclic diterpenes from Croton kerrii. – Phytochemistry 19: 2207-2209.

Satterthwait DR. 1982. Passifloraceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 147-158.

Sauer H. 1933. Blüte und Frucht der Oxalidaceen, Linaceen, Geraniaceen, Tropaeolaceen und Balsaminaceen. Vergleichend-entwicklungsgeschichtliche Untersuchungen. – Planta 19: 417-481.

Saxena M, Srivastava SK, Rusia K. 1986. A new flavone from Sapium insigna. – Planta Medica 52: 502.

Sazima M, Sazima I. 1978. Bat pollination of the passion flower, Passiflora mucronata, in southeastern Brazil. – Biotropica 10: 100-109.

Schaar F. 1898. Über den Bau des Thallus von Rafflesia rochussenii Teysm. & Binnend. – Sitzungsber. K. Akad. Wiss. Math.-Naturwiss. Cl., Abt. I, 107: 1039-1056.

Schaeffer J. 1971. A revision of Endospermum Benth. (Euphorbiaceae). – Blumea 19: 171-192.

Schappert PJ, Shore JS. 1995. Cyanogenesis in Turnera ulmifolia L. (Turneraceae) I. Phenotypic distribution and genetic variation for cyanogenesis on Jamaica. – Heredity 74: 392-404.

Schappert PJ, Shore JS. 1999. Effects of cyanogenesis polymorphism in Turnera ulmifolia on Euptoieta hegesia and potential Anolis predators. – J. Chem. Ecol. 25: 1455-1479.

Schappert PJ, Shore JS. 2000. Cyanogenesis in Turnera ulmifolia L. (Turneraceae) II. Developmental expression, heritability and cost of cyanogenesis. – Evol. Ecol. Res. 2: 337-352.

Schatz GE, Lowry II PP. 2003. Two new species of Prockiopsis Baill. (Achariaceae) from Madagascar. – Adansonia, sér. III, 25: 45-51.

Schenk JJ, Thomas DW. 2004. A new species of Ledermanniella (Podostemaceae) from Cameroon. – Novon 14: 227-232.

Schewe LC, Sawhney VK, Davis AR. 2011. Ontogeny of floral organs in flax (Linum usitatissimum; Linaceae). – Amer. J. Bot. 98: 1077-1085.

Schimper AFW. 1893. Rhizophoraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(7), W. Engelmann, Leipzig, pp. 42-56.

Schmidt A. 1961. Zytotaxonomische Untersuchungen an europäischen Viola-Arten der Sektion Nomimium. – Österr. Bot. Zeitschr. 108: 20-88.

Schmidt A. 1962. Eine neue Grundzahl in der Gattung Viola. – Ber. Deutsch. Bot. Ges. 75: 78-83.

Schmidt H. 1907. Über die Entwicklung der Blüten und Blütenstände von Euphorbia L. und Diplocyathium n. g. – Beih. Bot. Centralbl. 12: 21-69.

Schmidt RJ. 1986. Biosynthetic and chemosystematic aspects of the Euphorbiaceae and Thymelaeaceae. – Evans FJ (ed), Naturally occurring phorbol esters, CRC Press, Boca Raton, Florida, pp. 87-106.

Schmidt TJ, Hemmati S, Klaes M, Konuklugil B, Mohagheghzadeh A, Ionkova I, Fuss E, Alfermann AW. 2010. Lignans in flowering aerial parts of Linum species – chemodiversity in the light of systematics and phylogeny. – Phytochemistry 71: 1714-1728.

Schneider JV. 1998. El género Quiina (Quiinaceae), con especial referencia a las especies de Venezuela. – Acta Bot. Venez. 21: 1-74.

Schneider JV, Zizka G. 1997. Two new species of Quiinaceae (Quiina, Froesia) from the Venezuelan Guayana and some remarks on the genus Froesia Pires. – Novon 7: 406-412.

Schneider JV, Zizka G. 2003. Taxonomic novelties in the neotropical genus Quiina Aubl. (Quiinaceae). – Candollea 58: 461-471.

Schneider JV, Zizka G. 2012. Taxonomic revision of the Neotropical genus Lacunaria (Quiinaceae/Ochnaceae s. l.). – Syst. Bot. 37: 165-188.

Schneider JV, Zizka G. 2017. Phylogeny, taxonomy and biogeography of Neotropical Quiinoideae (Ochnaceae s.l.). – Taxon 66: 855-867.

Schneider JV, Swenson U, Zizka G. 2002. Phylogenetic reconstruction of the neotropical family Quiinaceae (Malpighiales) based on morphology with remarks on the evolution of an androdioecious sex distribution. – Ann. Missouri Bot. Gard. 89: 64-76.

Schneider JV, Swenson U, Samuel R, Stuessy T, Zizka G. 2006. Phylogenetics of Quiinaceae (Malpighiales): evidence from trnL-trnF sequence data and morphology. – Plant Syst. Evol. 257: 189-203.

Schneider JV, Bissiengou P, Carmo E Amaral M do, Tahir A, Fay MF, Thines M, Sosef MSM, Zizka G, Chatrou LW. 2014. Phylogenetics, ancestral state reconstruction, and a new infrafamilial classification of the pantropical Ochnaceae (Medusagynaceae, Ochnaceae s.str., Quiinaceae) based on five DNA regions. – Molec. Phylogen. Evol. 78: 199-214.

Schnell RAA. 1967. Études sur l’anatomie et la morphologie des Podostémacées. – Candollea 22: 157-225.

Schnell RAA. 1969. Contribution à l’étude des Podostémacées de Guyane. – Adansonia, sér. II, 9: 249-271.

Schnell RAA. 1998. III. Anatomie des Podostémacées. – In: Landolt E, Jäger-Zürn I, Schnell RAA (eds), Extreme adaptations in angiospermous hydrophytes, Bornträger, Berlin, pp. 197-283. [Handbuch der Pflanzenanatomie, Vol. 13(4)]

Schnell RAA, Cusset G. 1963. Remarques sur la structure des plantules des Podostémonacées. – Adansonia, sér. II, 3: 358-369.

Schöfer G. 1954. Untersuchung über die Polymorphie einheimischer Veilchen. – Planta 43: 537-565.

Schofield EK. 1968. Petiole anatomy of the Guttiferae and related families. – Mem. New York Bot. Gard. 18: 1-55.

Schot AM. 1995. A synopsis of taxonomic changes in Aporosa Bl. (Euphorbiaceae). – Blume 40: 449-460.

Schot AM. 2005. Systematics of Aporosa Blume (Euphorbiaceae). – Blumea (Suppl.) 17: 1-1382.

Schoute JC. 1937. On the aestivation in the cyathium of Euphorbia fulgens, with some remarks on the morphological interpretation of the cyathium in general. – Rec. Trav. Bot. Néerl. 34: 168-181.

Schultes RE. 1952. Studies in the genus Micrandra I: the relationship of the genus Cunuria to Micrandra. – Bot. Mus. Leafl. Harvard Univ. 15: 201-222.

Schultes RE. 1970. The history of taxonomic studies in Hevea. – Bot. Rev. (Lancaster) 36: 197-276.

Schultes RE. 1987. A ne generic concept in the Euphorbiaceae. – Bot. Mus. Leafl. 17: 27-36.

Schultes RE. 1990. A brief taxonomic view of the genus Hevea. – Malaysian Rubber Research and Development Board, Monograph 14: 1-57.

Schulz OE. 1931. Erythroxylaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 130-143.

Schulze GK. 1934. Neue Arten der Gattung Hybanthus. – Notizbl. Bot. Gart. Berlin-Dahlem 12: 108-114.

Schulze-Menz GK. 1936. Morphologisch-systematische Studien über die Gattung Hybanthus. – Bot. Jahrb. Syst. 67: 437-492.

Schürhoff PN. 1924. Zytologische Untersuchungen in der Reihe der Geraniales. – Jahrb. Wissensch. Bot. 63: 707-759.

Schwarzbach AE, Ricklefs RE. 2000. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. – Amer. J. Bot. 87: 547-564.

Schweiger J. 1905. Beiträge zur Kenntnis der Samenentwicklung der Euphorbiaceen. – Flora 94: 339-379.

Scott DH. 1884. On the laticiferous tissue of Manihot glaziovii (the Ceara rubber). – Quart. J. Microsp. Sci. 24: 193-203.

Seberg O. 1984. Taxonomy and phylogeny of the genus Acalypha (Euphorbiaceae) in the Galápagos Archipelago. – Nord. J. Bot. 4: 159-190.

Secco RSS. 1985. Notas sobre o novo conceito de Sagotia racemosa em relação ás suas variedades. – Acta Amazonica 15 [Suppl.]: 81-85.

Secco RSS. 1988. Dialissepalia do gênero Sandwithia Lanj. (Euphorbiaceae): uma novidade botânica do alto Rio Negro e da Venezuela. – Bol. Mus. Paraense Emilio Goeldi, N. S., Bot. 4: 177-185.

Secco RSS. 1990. Revisão dos gêneros Anomalocalyx Ducke, Dodecastigma Ducke, Pausandra Radlk., Pogonophora Miers ex Benth. e Sagotia Baill. (Euphorbiaceae-Crononoideae) para a América do Sul. – Bol. Mus. Paraense Emilio Goeldi, Belem.

Secco RSS. 1997. Revisão taxonômica das espécies neotropicais da tribo Alchorneae (Hurusawa) Hutchinson (Euphorbiaceae). – Ph.D. diss., Universidad de São Paulo, Brazil.

Secco RSS. 2004. Croton dissectistipulatus, a new species of Euphorbiaceae from Amazonian Brazil. – Brittonia 56: 353-356.

Secco RSS, Rosa NA. 1992. Croton ascendens (Euphorbiaceae), a new liana from eastern Amazonia. – Novon 2: 252-254.

Secco RSS, Webster GL. 1990. Materiais para a flora amazonica IX. Ensaio sobre a sistemática de gênero Richeria Vahl (Euphorbiaceae). – Bol. Mus. Paraense Emilio Goeldi, N. S., Bot. 6: 141-158.

Seemen OV. 1903. Salices Japonicae. – Berlin.

Seetharam YN. 1985. Clusiaceae: palynology and systematics. – Inst. Franç. Pondichéry Trav. Sect. Sci. Techn., Tom. XXI.

Seetharam YN. 1989. Diversity of androecium and pollen grains in the genus Garcinia L. and its bearing on geographical distribution and evolution. – Proc. Indian Acad. Sci. Plant Sci. 99: 107-115.

Seetharam YN, Maheshwari JK. 1986. Scanning electron microscopic studies on the pollen of some Clusiaceae. – Proc. Indian Acad. Sci., Sect. B, 96:217-226.

Seetharam YN, Pocock SAJ. 1978. Taxonomy and pollen morphology of Poeciloneuron (Guttiferae). – Bull. Jard. Bot. Nat. Belg. 48: 359-365.

Sehgal A, Mohan Ram HY, Bhatt JR. 1993. In vitro germination, growth, morphogenesis and flowering of an aquatic angiosperm, Polypleurum stylosum (Podostemaceae). – Aquatic Bot. 45: 269-283.

Sehgal A, Sethi M, Mohan Ram HY. 2002. Origin, structure, and interpretation of the thallus in Hydrobryopsis sessilis (Podostemaceae). – Intern. J. Plant Sci. 163: 891-905.

Sehgal A, Khurana JP, Sethi M, Ara H, Jain M. 2007. Organ identity of the thalloid plant body of Griffithella hookeriana and Polypleurum stylosum – Podostemoideae (Podostemaceae). – Plant Syst. Evol. 267: 93-104.

Sehgal A, Sethi M, Mohan Ram HY. 2009. Development of the floral shoot and pre-anthesis cleistogamy in Hydrobryopsis sessilis (Podostemaceae). – Bot. J. Linn. Soc. 159: 222-236.

Sehgal A, Khurana JP, Sethi M, Ara H. 2011. Occurrence of unique three-celled megagametophyte and single fertilization in an aquatic angiosperm – Dalzellia zeylanica (Podostemaceae-Tristichoideae). – Sex. Plant Repr. 24: 199-210.

Sehgal L, Paliwal GS. 1974. Studies on the leaf anatomy of Euphorbia. – VIII. General conclusions and systematic considerations. – Phytomorphology 24: 141-151.

Seigler DS. 1994. Phytochemistry and systematics of the Euphorbiaceae. – Ann. Missouri Bot. Gard. 81: 380-401.

Selling O. 1945. Fossil remains of the genus Humiria. – Svensk Bot. Tidskr. 39: 257-269.

Selmar D. 1993. Transport of cyanogenic glucosides: linustatin uptake by Hevea cotyledons. – Planta 191: 191-199.

Seo MN. 2008. Estudios sistemáticos y evolutivos en especies argentinas del género Hybanthus Jacq. – Ph.D. diss., Universidad de Buenos Aires, Argentina.

Setoguchi H, Ohba H. 1995. Phylogenetic relationships in Crossostylis (Rhizophoraceae) inferred from restriction site variation of chloroplast DNA. – J. Plant Res. 108: 87-92.

Setoguchi H, Tobe H, Ohba H. 1992. Seed coat anatomy of Crossostylis (Rhizophoraceae): its evolutionary and systematic implications. – Bot. Mag. (Tokyo) 105: 625-638.

Setoguchi H, Ohba H, Tobe H. 1996. Floral morphology and phylogenetic analysis in Crossostylis (Rhizophoraceae). – J. Plant Res. 109: 7-19.

Setoguchi H, Ohba H, Tobe H. 1998. Evolution in Crossostylis (Rhizophoraceae) on the South Pacific Islands. – In: Stuessy TF, Ono M (eds), Evolution and speciation of island plants, Cambridge University Press, Cambridge, pp. 203-229.

Setoguchi H, Kosuge K, Tobe H. 1999. Molecular phylogeny of Rhizophoraceae based on rbcL gene sequences. – J. Plant Res. 112: 443-455.

Seymour FC. 1979. Acalypha, Croton and Sapium in Nicaragua. – Phytologia 43: 133-195.

Shang C, Liao S, Guo Y-J, Zhag Z-X. 2017. Dianyuea gen. nov. (Salicaceae: Scyphostegioideae) from southwestern China. – Nord. J. Bot. 35: 499-505

Sharma BD, Karthikeyan S, Shetty BV. 1974. Indotristicha tirunelveliana Sharma, Karthikeyan & Shetty – a new species of Podostemaceae from South India. – Bull. Bot. Survey India 6: 157-161.

Sharma KD. 1955. Cyto-embryological studies in some Indian Euphorbiaceae. – Sci. & Cult. 21: 270-271.

Sharsmith HK. 1961. The genus Hesperolinon. – Univ. Calif. Publ. Bot. 32: 235-314.

Sheng-ye L. 1992. Bhesa sinica. – Li-kuo F, Jian-ming J (eds), China plant red data book – rare and endangered plants 1, Science Press, Beijing, pp. 206-207.

Sheue C-R, Liu H-Y, Yong JWH. 2003. Kandelia obovata (Rhizophoraceae), a new mangrove species from eastern Asia. – Taxon 52: 287-294.

Sheue C-R, Chesson P, Chen Y-J, Wu S-Y, Wu Y-H, Yong JWH, Guu T-Y, Lim C-L, Randrianasolo RMA, Razanajatovo MH, Yang Y-P. 2013. Comparative systematic study of colleters and stipules of Rhizophoraceae with implications for adaptation to challenging environments. – Bot. J. Linn. Soc. 172: 449-464.

Shi S, Zhong Y, Huang Y, Du Y, Qiu X, Chang H. 2002. Phylogenetic relationships of the Rhizophoraceae in China based on sequences of the chloroplast gene matK and the internal transcribed spacer regions of nuclear ribosomal DNA and combined data set. – Biochem. Syst. Ecol. 30: 309-319.

Shi S, Huang Y, Zeng K, Tan F, He H, Huang J, Fu Y. 2005. Molecular phylogenetic analysis of mangroves: independent evolutionary origins of vivipary and salt secretion. – Mol. Phylogen. Evol. 34: 159-166.

Shivamurthy GR, Sadanand KB. 1997. A new species of Willisia Warm. (Podostemaceae) from the Silent Valley, Kerala, India. – Kew Bull. 52: 243-245.

Shivanna KR, Ciampolini F, Cresti M. 1989. The structure and cytochemistry of the pistil of Hypericum calycinum: the stigma. – Ann. Bot., N. S., 63: 613-620.

Shore JS, Barrett SCH. 1985. Morphological differentiation and crossability among populations of the Turnera ulmifolia complex (Turneraceae). – Syst. Bot. 10: 308-321.

Shore JS, Obrist CM. 1992. Variation in cyanogenesis within and among populations and species of Turnera series Canaligerae (Turneraceae). – Biochem. Syst. Ecol. 20: 9-18.

Shore JS, McQueen KL, Little SL. 1994. Inheritance of plastid DNA in the Turnera ulmifolia complex. – Amer. J. Bot. 81: 1636-1639.

Shore JS, Arbo MM, Fernández A. 2006. Breeding system variation, genetics and evolution in the Turneraceae. – New Phytol. 171: 539-551.

Si C-L, Wu L, Zhu Z-Y. 2009. Phenolic glycosides from Populus davidiana bark. – Biochem. Syst. Ecol. 37: 221-224.

Sibanda S, Nyanyira C, Nicoletti M, Galeffi C. 1993. Vismiones L and M from Ochna pulchra. – Phytochemistry 34: 1650-1652.

Sierra SEC, Aparicio M, Kulju KKM, Fišer Ž, Welzen P van, Ham RWJM van der. 2006. Reshaping Mallotus I: expanded circumscription and revision of the genus Cordemoya. – Blumea 51: 519-540.

Sierra SEC, Kulju KKM, Veldkamp JF, Welzen P van. 2007. Resurrection of Hancea and lectotypification of Adisca (Euphorbiaceae). – Blumea 52: 361-366.

Sierra SEC, Kulju KKM, Fišer Ž, Aparicio M, Welzen PC van. 2010. The phylogeny of Mallotus s.str. (Euphorbiaceae) inferred from DNA sequence and morphological data. – Taxon 59: 101-116.

Sigrist MR, Sazima M. 2004. Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: stigma morphology and its implications for the breeding system. – Ann. Bot. 94: 33-41.

Silva Souto L, Trombert Oliveira DM. 2005. Morfo-anatomia e ontogênese do fruto e semente de Byrsonima intermedia A. Juss. (Malpighiaceae). – Rev. Brasil. Bot. 28: 697-712.

Simmonds MSJ, Blaney WM, Monache F delle, Marquina Mac-Quhae M, Marini Bettolo GB. 1985. Insect antifeedant properties of anthranoids from the genus Vismia. – J. Chem. Ecol. 11: 1593-1599.

Simon J, Vicens J. 1999. Estudis biosistemátics en Euphorbia L. a la Mediterránia occidental. – Inst. Estud. Catalans, Arx Secc. Ci. 122.

Simpson BB. 1989. Pollination biology and taxonomy of Dinemandra and Dinemagonum (Malpighiaceae). – Syst. Bot. 14: 408-426.

Simpson MG, Levin GA. 1994. Pollen ultrastructure of the biovulate Euphorbiaceae. – Intern. J. Plant Sci. 155: 313-341.

Singh B. 1959. Studies in the family Malpighiaceae I. Morphology of Thryallis glauca Kuntze. – Horticult. Advance 3: 1-19.

Singh B. 1961a. Studies in the family Malpighiaceae II. Morphology of Malpighia glabra Linn. – Horticult. Advance 5: 83-96.

Singh B. 1961b. Studies in the family Malpighiaceae III. Development and structure of seed and fruit of Malpighia glabra Linn. – Horticult. Advance 5: 145-155.

Singh D. 1963. Structure and development of ovule and seed of Viola tricolor L. and Ionidium suffruticosum Ging. – J. Indian Bot. Soc. 42: 448-462.

Singh D. 1970a. Violaceae. – In: Proceedings of the symposium on comparative embryology of angiosperms, Indian National Science Academy, New Delhi, pp. 188-193.

Singh D. 1970b. Passifloraceae. – In: Proceedings of the symposium on comparative embryology of angiosperms, Indian National Science Academy, New Delhi, pp. 199-204.

Singh RP. 1954. Structure and development of seeds in Euphorbiaceae. Ricinus communis L. – Phytomorphology 4: 118-123.

Singh RP. 1956. Development of endosperm and embryo in Phyllanthus niruri L. – Agra Univ. J. Res. (Sci.) 5: 163-167.

Singh RP. 1962. Forms of ovules in Euphorbiaceae. – In: Plant Embryology, A symposium, New Delhi, pp. 124-128.

Singh RP. 1965a. Structure and development of seeds in Codiaeum variegatum Blume. – J. Indian Bot. Soc. 44: 205-210.

Singh RP. 1965b. Structure and development of seeds in Euphorbiaceae: Antidesma menasu Miquel. – Balwant Vidyapeeth J. Agric. Sci. Res. 7: 96-99.

Singh RP. 1968. Structure and development of seeds in Euphorbiaceae: Melanthesa rhamnoides Wt. – Beitr. Biol. Pflanzen 45: 127-133.

Singh RP. 1969. Structure and development of seeds in Euphorbia helioscopia. – Bot. Mag. (Tokyo) 82: 287-293.

Singh RP. 1970a. Structure and development of seeds in Euphorbiaceae: Jatropha species. – Beitr. Biol. Pflanzen 47: 79-90.

Singh RP. 1970b. Structure and development of seeds in Putranjiva roxburghii Wall. – J. Indian Bot. Soc. 49A: 99-105.

Singh RP. 1972. Structure and development of seeds in Phyllanthus niruri L. – J. Indian Bot. Soc. 1: 73-77.

Singh RP, Chopra S. 1970. Structure and development of seeds in Croton bonplandianum Baill. – Phytomorphology 20: 83-87.

Singh RP, Jain JL. 1965. Development of female gametophyte in Euphorbia pilosa L. – Curr. Sci. 34: 611-612.

Singh RP, Pal A. 1968. Structure and development of seeds in Euphorbiaceae: Dalechampia roezeliana Muell.-Arg. – I: Techn. Commun. Natl. Bot. Gard., pp. 65-74.

Singh V, Singh A. 1975. Placentation in Euphorbiaceae. – Ann. Bot., N. S., 39: 1137-1140.

Sirirugsa P. 1987. Three new species of Hiptage (Malpighiaceae) from Thailand. – Nord. J. Bot. 7: 277-280.

Skottsberg C. 1940. Observations on Hawaiian violets. – Acta Horti Gothoburg. 13: 451-528.

Skvortsov AK. 1968. Willows of the USSR. A taxonomic and geographic survey. – Nauka, Moscow. [In Russian with English summary]

Sleumer H. 1934. Beiträge zur Kenntnis der Flacourtiaceen südamericanas 1. – Notizbl. Bot. Gart. Berlin-Dahlem 11: 951-960.

Sleumer H. 1942. Icacinaceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 20b, W. Engelmann, Leipzig, pp. 322-396.

Sleumer H. 1955. Flacourtiaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(1), Noordhoff-Kolff N. V., Djakarta, pp. 1-106.

Sleumer H. 1956. Note on the genus Guidonia Plumier. – Taxon 5: 192-194.

Sleumer H. 1968. The genus Lophopyxis Hook. f. (Lophopyxidaceae). – Blumea 16: 321-323.

Sleumer H. 1970. Le genre Paropsia Noronha ex Thouars (Passifloraceae). – Bull. Jard. Bot. Natl. Belg. 40: 49-75.

Sleumer H. 1971a. Lophopyxidaceae. – In: Steenis CGGJ van (ed), Flora Malesiana, I, 7, Wolters-Noordhoff, Groningen, pp. 89-91.

Sleumer H. 1971b. Le genre Casearia Jacq. (Flacourtiaceae) en Afrique, à Madagascar et aux Mascareignes. – Bull. Jard. Bot. Natl. Belg. 41: 397-426.

Sleumer H. 1974. Die afrikanischen Arten der Gattung Lindackeria Presl (Flacourtiaceae). – Bot. Jahrb. Syst. 94: 311-326.

Sleumer H. 1975. Flacourtiaceae. – In: Polhill RM (ed), Flora of tropical East Africa, Crown Agents for Oversea Government and Administrations, London, pp. 1-68.

Sleumer H. 1980. Flora Neotropica. Monograph 22. Flacourtiaceae. – New York Botanical Garden, Bronx, New York.

Slik JWF, Welzen PC van. 2001. A phylogeny of Mallotus (Euphorbiaceae) based on morphology: indications for a pioneer origin of Macaranga. – Syst. Bot. 26: 786-796.

Small JK. 1917. The Jamaica walnut. – J. New York Bot. Gard. 18: 180-186.

Smith CR Jr, Weisleder D, Miller RW. 1980. Linustatin and neolinustatin: cyanogenic glucosides of lineseed meal that protect animals against selenium toxicity. – J. Organic Chem. 45: 507-510.

Smith DL. 1966. Linaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-12.

Smith LB, Downs RJ. 1964. Kleinodendron, novo genero de Euforbiáceas. – Sellowia 16: 175-178.

Smith RL, Sytsma KJ. 1990. Evolution of Populus nigra (sect. Aegiros): introgressive hybridization and chloroplast contribution of Populus alba (sect. Populus). – Amer. J. Bot. 77: 1176-1187.

Snow DW. 1981. Tropical frugivorous birds and their food plants: a world survey. – Biotropica 13: 1-14.

Snow N, MacDougal JM. 1993. New chromosome reports in Passiflora (Passifloraceae). – Syst. Bot. 18: 261-273.

Sofiyanti N, Mat-Salleh K, Purwanto D, Syahputra E. 2007. The note on morphology of Rafflesia hasseltii Surigar from Bukit Tiga Puluh National Park, Riau. – Biodiversitas 9: 257-261.

Sohma K. 1993. Pollen diversity in Salix (Salicaceae). – Sci. Rep. Tôhoku Univ., Ser. IV (Biology) 40: 77-178.

Solís Neffa VG, Fernández A. 2000. Chromosome studies in Turnera (Turneraceae). – Gen. Mol. Biol. 23: 925-930.

Solís Neffa VG, Fernandez A. 2001. Cytogeography of the South American Turnera sidoides L. complex (Turneraceae, Leiocarpae). – Bot. J. Linn. Soc. 137: 189-196.

Solís Neffa VG, Faloci MM, Seijo JG. 2003. Cyanogenesis variation in the Turnera sidoides L. polyploid complex (Turneraceae). – Bot. J. Linn. Soc. 141: 85-94.

Solms-Laubach H zu. 1874. Über den Bau des Samens in den Familien der Rafflesiaceae und Hydnoraceae. – Bot. Zeit. 32: 337-342, 353-358, 369-374, 385-389.

Solms-Laubach H zu. 1875. Das Haustorium der Loranthaceen und der Thallus der Rafflesiaceen und Balanophoraceen. – Abh. Naturf. Ges. Halle 13: 1-40, 238-276.

Solms-Laubach H zu. 1898. Die Entwicklung des Ovulums und des Samens bei Rafflesia und Brugmansia. – Ann. Jard. Bot. Buitenzorg Suppl. 2: 11-21.

Soltis DE, Mort ME, Soltis PS, Hibsch-Jetter C, Zimmer EA, Morgan D. 1999. Phylogenetic relationships of the enigmatic angiosperm family Podostemaceae inferred from 18S rDNA and rbcL sequence data. – Mol. Phylogen. Evol. 11: 261-272.

Soontornchainaksaeng P, Chaiyasut K. 1999. Cytogenetic investigation of some Euphorbiaceae in Thailand. – Cytologia 64: 229-234.

Soontornchainaksaeng P, Chantaranothai P, Senakun C. 2003. Genetic diversity of Croton L. (Euphorbiaceae) in Thailand. – Cytologia 68: 379-382.

Sosa V, Chase MW, Barcenas C. 2003. Chiangiodendron (Achariaceae): an example of the Laurasian flora of tropical forests of Central America. – Taxon 52: 519-524.

Sosef MSM. 2008. Révision du genre africain Rhabdophyllum Tiegh. (Ochnaceae), avec sa distribution au Cameroun et au Gabon. – Adansonia, sér. III, 30: 119-135.

Sosef MSM, Dauby G. 2012. Contribution to the taxonomy of Garcinia (Clusiaceae) in Africa, including two new species from Gabon and a key to the Lower Guinean species. – PhytoKeys 17: 41-62.

Sothers CA, Prance GT. 2014. Resurrection of Angelesia, a Southeast Asian genus of Chrysobalanaceae. – Blumea 59: 103-105.

Sothers CA, Prance GT, Buerki S, De Kok R, Chase MW. 2014. Taxonomic novelties in Neotropical Chrysobalanaceae: towards a monophyletic Couepia. – Phytotaxa 172(3). DOI: http://dx.doi.org/10.11646/phytotaxa.172.3.2

Sothers CA, Prance GT, Chase MW. 2016. Towards a monophyletic Licania: a new generic classification of the polyphyletic Neotropical genus Licania (Chrysobalanaceae). – Kew Bull. 71: 58 DOI 10.1007/S12225-016-9664-3

Souèges R. 1936. Les relations embryogéniques des Crassulacées, Saxifragacées et Hypéricacées. – Bull. Soc. Bot. France 83: 317-329.

Souèges R. 1937. Développement de l’embryon chez le Radiola linoides Roth. – Bull. Soc. Bot. France 84: 297-306.

Soukup J. 1965. Opiliaceae, Balanophoraceae, Aristolochiaceae, Rafflesiaceae, Polygonaceae of Peru. – Biota 5: 315-339.

Soukup J. 1970. Las Passifloraceas del Perú, sus generos y lista de especies. – Biota 8: 106-110.

Souto LS, Oliveira DMT. 2008. Morfoanatomia e ontogênese das sementes de espécies de Banisteriopsis C. B. Robinson e Diplopterys A. Juss. (Malpighiaceae). – Acta Bot. Brasil. 22: 733-740.

Souto LS, Oliveira DMT. 2013. Evaluation of the floral vasculature of the Janusia, Mascagnia and Tetrapterys species as a tool to explain the decrease of floral organs in Malpighiaceae. – Flora 208: 351-359.

Souza JP. 2002. Levantamento da espécies de Hybanthus Jacq. (Violaceae) do Brasil. – M.Sc. thesis, Universidade do São Paulo, Brasil.

Souza S de. 1979. Chrysobalanus icaco Linn. (Chrysobalanacées): ses sous-espèces et variétés en République Populaire de Benin. – Ann. Univ. Abidjan, sér. C, 15: 97-105.

Sparre B. 1950. Estudio sobre las Violáceas argentinas I. Los géneros de Hybanthus y Anchietea. – Lilloa 23: 515-574.

Spencer KC. 1988. Chemical mediation of coevolution in the Passiflora-Heliconius interaction. – In: Spencer KC (ed), Chemical mediation of coevolution, Academic Press, San Diego, pp. 167-240.

Spencer KC, Seigler DS. 1978. Cyanogenic glycosides of Malesherbia. – Biochem. Syst. Ecol. 13: 23-24.

Spencer KC, Seigler DS. 1985b. Cyanogenic glycosides and the systematics of the Flacourtiaceae. – Biochem. Syst. Ecol. 13: 421-431.

Spencer KC, Seigler DS, Fraly SW. 1985. Cyanogenic glycosides of the Turneraceae. – Biochem. Syst. Ecol. 13: 433-435.

Speranza PR, Seijo JG, Grela IA, Solís Neffa VG. 2007. Chloroplast DNA variation in the Turnera sidoides L. complex (Turneraceae). – J. Biogeogr. 34: 427-436.

Spirlet M-L. 1959. Étude taxonomique des epidermis foliaires des Hypéricacées et des Guttiféracées du basin du fleuve Congo. – Bull. Inst. Franç. Afr. Noire 29: 5-91.

Spirlet M-L. 1965. Utilisation taxonomique des grains de pollen des Passifloracées I. – Pollen Spores 7: 249-301.

Sprague TA, Boodle LA. 1909. Kokoti (Anopyxis ealaensis Sprague). – Bull. Misc. Inform. (Kew Bull.) 1909: 309-312.

Stajsic V, Walsh NG, Douglas R, Messina A, Molloy BPJ. 2015. A revision of Melicytus (Violaceae) in mainland Australia and Tasmania. – Aust. Syst. Bot. 27: 305-323.

Standley PC. 1927. Celaenodendron. – In: Ferris RS (ed), Preliminary report on the flora of the Tres Marías Islands, Contr. Dudley Herb. 1: 3-88, pp. 76-77.

Steenis CGGJ van. 1949. Trigoniaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(2), Noordhoff-Kolff N. V., Batavia, pp. 58-60.

Steenis CGGJ van. 1957a. Scyphostegiaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(3), Noordhoff-Kolff N. V., Djakarta, pp. 297-299.

Steenis CGGJ van. 1957b. Dichapetalaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(3), Noordhoff-Kolff N. V., Djakarta, pp. 305-316.

Steenis CGGJ van. 1964. The identity of the genus Austrobuxus Miq. (Euphorbiaceae). – Blumea 12: 362.

Steenis CGGJ van. 1972a. Addenda, corrigenda et emenanda: Scyphostegiaceae. – Flora Malesiana Bull. 6: 967-968.

Steenis CGGJ van. 1972b. Podostemaceae. – In: Steenis CGGJ van (ed), Flora Malesiana, I, 6, Wolters-Noordhoff, Groningen, pp. 963-964.

Steiner KE. 1982. Mistake pollination of Hura crepitans (Euphorbiaceae) by frugivorous bats. – Ph.D. diss., University of California, Davis, California.

Steiner KE. 1983. Pollination of Mabea occidentalis (Euphorbiaceae) in Panama. – Syst. Bot. 8: 105-117.

Steiner KE, Whitehead VB. 1991. Resin collection and the pollination of Dalechampia capensis (Euphorbiaceae) by Pachyanthidium (Megachilidae) in South Africa. – J. Entomol. Soc. South Afr. 54: 67-72.

Steinmann VW. 2001. The evolution of succulence in the New World species of Euphorbia (Euphorbiaceae). – Ph.D. diss., Claremont Graduate University, Claremont, California.

Steinmann VW. 2003. The submersion of Pedilanthus into Euphorbia (Euphorbiaceae). – Acta Bot. Mexicana 65: 45-50.

Steinmann VW. 2005. New Euphorbiaceae from Mexico II. – Contr. Univ. Michigan Herb. 24: 173-187.

Steinmann VW, Gordillo MM. 2007. Croton balsensis (Euphorbiaceae), a new species from the Basas Depression, Mexico. – Brittonia 59: 380-384.

Steinmann VW, Porter JM. 2002. Phylogenetic relationships in Euphorbieae (Euphorbiaceae) based on ITS and ndhF sequence data. – Ann. Missouri Bot. Gard. 89: 453-490.

Steinmann VW, Ramírez-Amezcua Y. 2013. Bia manuelii (Euphorbiaceae: Acalyphoideae), a new species from Sierra de Coalcomán, Michoacán, Mexico. – Rev. Mexicana Biodiv. 84: 746-750.

Steinmann VW, Van Ee B, Berry PE, Gutiérrez J. 2007. The systematic position of Cubanthus and other shrubby endemic species of Euphorbia (Euphorbiaceae) in Cuba. – An. Jard. Bot. Madrid 64: 123-133.

Stenar H. 1937. Zur Embryosackentwicklung einiger Malpighiaceen. – Bot. Not. 1937: 110-118.

Stern WL. 1967. Kleinodendron and xylem anatomy of Clutieae (Euphorbiaceae). – Amer. J. Bot. 54: 663-676.

Steude H. 1935. Beiträge zur Morphologie und Anatomie von Mourera aspera. – Beih. Bot. Centralbl. 53A: 627-650.

Stevens PF. 1974. A review of Calophyllum L. (Guttiferae) in Papuasia. – Aust. J. Bot. 22: 349-411.

Stevens PF. 1976. The Old World species of Calophyllum (Guttiferae) I. The Mascarene species. – J. Arnold Arbor. 57: 167-184.

Stevens PF. 1980. A revision of the Old World species of Calophyllum (Guttiferae). – J. Arnold Arbor. 61: 117-699.

Stevens PF. 2006a. Clusiaceae-Guttiferae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 48-66.

Stevens PF. 2006b. Hypericaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 194-201.

Steyermark JA. 1984. Theaceae (Bonnetiaceae). – In: Flora of the Venezuelan Guayana I, Ann. Missouri Bot. Gard. 71: 323-330.

Steyermark JA, Bunting GS. 1975. Revision of the genus Froesia (Quiinaceae). – Brittonia 27: 172-178.

Steyermark JA, Liesner R. 1983. Revision of the genus Sterigmapetalum (Rhizophoraceae). – Ann. Missouri Bot. Gard. 70: 179-193.

Steyermark JA, Luteyn JL. 1980. Revision of the genus Ochthocosmus (Linaceae). – Brittonia 32: 128-143.

Steyn EMA, Wyk AE van, Smith GF. 2002. Ovule, seed and seedling characters in Acharia (Achariaceae) with evidence of myrmecochory in the family. – South Afr. J. Bot. 68: 143-156.

Steyn EMA, Wyk AE van, Smith GF. 2002. A study of ovule-to-seed development in Ceratosicyos (Achariaceae) and the systematic position of the genus. – Bothalia 32: 201-210.

Steyn EMA, Wyk AE van, Smith GF. 2003. Embryology and systematic relationships of Kiggelaria (Flacour-tiaceae). – Bothalia 33: 199-206.

Steyn EMA, Wyk AE van, Smith GF. 2004. Functional and taxonomic significance of seed structure in Salix mucronata (Salicaceae). – Bothalia 34: 53-59.

Steyn EMA, Wyk AE van, Smith GF. 2005a. Ovule-to-seed development in Dovyalis caffra (Salicaceae: Flacourtieae) with notes on the taxonomic significance of the extranucellar embryo sac. – Bothalia 35: 101-108.

Steyn EMA, Wyk AE van, Smith GF. 2005b. Ovule and seed structure in Scolopia zeyheri (Scolopieae), with notes on the embryology of Salicaceae. – Bothalia 35: 175-183.

St. John H. 2004. Omalanthus (Euphorbiaceae) in southeastern Polynesia – Pacific plant studies 40. – Nord. J. Bot. 4: 53-56.

Stoops E, Welzen PC van. 2013. A revision of Ptychopyxis (Euphorbiaceae) in southeast Asia. – Nord. J. Bot. 31: 94-112.

Stuppy W. 1996. Systematische Morphologie und Anatomie der Samen der biovulaten Euphorbiaceen. – Ph.D. diss., Fachbereich Biologie, Universität Kaiserslautern, Germany.

Stuppy W, Welzen PC van, Klinratana P, Posa MCT. 1999. Revision of the genera Aleurites, Reutealis and Vernicia (Euphorbiaceae). – Blumea 44: 73-98.

Suárez-Cervera M, Gillespie L, Arcalís E, Le Thomas A, Lobreau-Callen D, Seoane-Camba J. 2001. Taxonomic significance of sporoderm structure in pollen of Euphorbiaceae: tribes Plukenetieae and Euphorbieae. – Grana 40: 78-104.

Subramanyam K. 1962. Embryology in relation to systematic botany, with particular reference to the Crassulaceae. – In: Plant embryology: a symposium, C.S.I.R., New Delhi, pp. 94-112.

Subramanyam K, Sreemadhavan CP. 1969. A conspectus of the families Podostemaceae and Tristichaceae. – Bull. Bot. Surv. India 11: 161-168.

Subramanian RB, Arumugasamy K, Inamdar JA. 1990. Studies in the secretory glands of Hiptage sericea (Malpighiaceae). – Nord. J. Bot. 10: 57-62.

Subra Rao AM. 1940. Studies in the Malpighiaceae 1. Embryo sac development and embryogeny in the genera Hiptage, Banistera, and Stigmatophyllum. – J. Indian Bot. Soc. 18: 145-156.

Subra Rao AM. 1941. Studies in the Malpighiaceae 2. Structure and development of the ovules and embryo sacs of Malpighia coccifera Linn. and Tristellateia australis Linn. – Proc. Indian Acad. Sci., Sect. B, 7: 393-404.

Suda Y. 1963. The chromosome numbers of salicaceous plants in relation to their taxonomy. – Sci. Rep. Tôhoku Imp. Univ., Ser. IV (Biology), 29: 413-430.

Suda Y, Argus GW. 1969. Chromosome numbers of some North American arctic and boreal Salix. – Can. J. Bot. 47: 859-862.

Sugawara T, Tanaka N, Murata J, Zaw KM. 2002. Dimorphism of pollen grains and stigmas in the heterostylous subshrub Reinwardtia indica (Linaceae) in Myanmar. – Acta Phytotaxon. Geobot. 53: 173-180.

Suksathan P, Larsen K. 2006. A new species of Tirpitzia (Linaceae) from Thailand. – Thai Forest Bull. 34: 201-205.

Suryakanta. 1974. Pollen morphological studies in the Humiriaceae. – J. Jap. Bot. 49: 112-122.

Susila Rani SRM, Balakrishnan NP. 1995. A revision of the genus Claoxylon Adr. Jussieu (Euphorbiaceae) in India. – Rheedea 5: 113-141.

Sussex IM. 1975. Growth and metabolism of the embryo and attached seedling of the viviparous mangrove, Rhizophora mangle. – Amer. J. Bot. 62: 948-953.

Sutter DM, Endress PK. 1995. Aspects of gynoecial structure and macrosystematics in Euphorbiaceae. – Bot. Jahrb. Syst. 116: 517-536.

Sutter DM, Endress PK. 2003. Female flower and cupule structure in Balanopaceae, an enigmatic rosid family. – Ann. Bot. 92: 459-469.

Sutter DM, Forster PI, Endress PK. 2006. Female flowers and systematic position of Picrodendraceae (Euphorbiaceae s.l., Malpighiales). – Plant Syst. Evol. 261: 187-215.

Suzuki K, Kita Y, Kato M. 2002. Comparative developmental anatomy of seedlings in nine species of Podostemaceae (subfamily Podostemoideae). – Ann. Bot. 89: 755-765.

Swaine MD, Beer T. 1976. Explosive seed dispersal in Hura crepitans L. (Euphorbiaceae). – New Phytol. 78: 695-708.

Swamy BGL. 1953. On the floral structure of Scyphostegia. – Proc. Indian Acad. Sci., Sect. B, 19: 127-142.

Swamy BGL, Ganapathy PM. 1957. A new type of endosperm haustorium in Nothapodytes foetida. – Phytomorphology 7: 331-336.

Swanepoel W. 2009. Euphorbia ohiva (Euphorbiaceae), a new species from Namibia and Angola. – South Afr. J. Bot. 75: 249-255.

Sweeney PW. 2008. Phylogeny and floral diversity in the genus Garcinia (Clusiaceae) and relatives. – Intern. J. Plant Sci. 169: 1288-1303.

Sweeney PW. 2010. Floral anatomy in Garcinia nervosa and G. xanthochymus (Clusiaceae): a first step toward understanding the nature of nectaries in Garcinia. – Bull. Peabody Mus. Nat. Hist. 51: 157-168.

Szyszyłowicz I von. 1895a. Caryocaraceae (Rhizoboleae). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 153-157.

Szyszyłoicz I von. 1895b. Theaceae (Ternstroemiaceae). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 175-192.

Tabor RJ. 1911. The leaf buds of Archytaea alternifolia. – Ann. Bot. 25: 1015-1021.

Takahashi M, Nowicke JW, Webster GL, Orli SS, Yankowski S. 2000. Pollen morphology, exine structure, and systematics of Acalyphoideae (Euphorbiaceae), part 3: tribes Epiprineae, Adelieae, Alchorneae, Acalypheae pro parte. – Rev. Palaeobot. Palynol. 110: 1-66.

Takayama K, Tamura M, Tateishi Y, Webb EL, Kajita T. 2013. Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus Rhizophora (Rhizophoraceae) revealed by broad-scale nuclear and chloroplast DNA analysis. – Amer. J. Bot. 100: 1191-1201.

Takhtajan A, Meyer NR, Kosenko R, Kosenko VN. 1985. Pollen morphology and classification in Rafflesiaceae s. l. – Bot. Žurn. 70: 153-162. [In Russian]

Tammaro F, Pogliani M. 1977. Andrachne telephioides L. nella Valle dell’Aterno, nuovo reperto per la Flora Abruzzese. – Webbia 32: 135-145.

Tateishi S. 1927. On the development of the embryo sac and fertilization of Acalypha australis L. – Bot. Mag. (Tokyo) 41: 477-485.

Taylor DW, Crepet WL. 1990. Fossil floral evidence of Malpighiaceae and an early plant-pollinator relationship. – Amer. J. Bot. 74: 274-286.

Taylor FH. 1972. The secondary xylem of the Violaceae: a comparative study. – Bot. Gaz. 133: 230-242.

Taylor G. 1953. Notes on Podostemaceae for the revision of the Flora of West Tropical Africa. – Bull. Brit. Mus. (Nat. Hist.) Bot. 1: 53-79.

Taylor HL, Brooker RM. 1969. Isolation of uliginosin A and uliginosin B from Hypericum uliginosum. – Lloydia 32: 217-219.

Telford IRH, Pruesapan K, Welzen PC van, Bruhl JJ. 2015. Molecular data consistently recover a ‘Queensland clade’ of Synostemon (Phyllanthaceae, Phyllantheae) with distinctive floral morphology. – Aust. Syst. Bot. 27: 450-461.

Tennant JR. 1963. Notes on tropical African Violaceae. – Kew Bull. 16: 409-435.

Thadeo M, Cassino MF, Vitarelli NC, Azevedo AA, Araújo JM, Valente VMM, Meira RMSA. 2008. Anatomical and histochemical characterization of extrafloral nectaries of Prockia crucis (Salicaceae). – Amer. J. Bot. 95: 1515-1522.

Thadeo M, Azevedo A, Meira R. 2014. Foliar anatomy of neotropical Salicaceae: potentially useful characters for taxonomy. – Plant Syst. Evol. 300: 2073-2089.

Thakur HA, Patil DA. 2002. Nodal organisation in some Euphorbiaceae. – J. Swamy Bot. Club 19: 59-62.

Thanikaimoni G, Caratini C, Nilsson S, Grafström E. 1984. Omniaperturate Euphorbiaceae pollen with striate spines. – Bull. Jard. Bot. Belg. 54: 105-125.

Thathachar T. 1952. Morphological studies in the Euphorbiaceae: I. Acalypha lanceolata Willd. – Phytomorphology 2: 197-201.

Thathachar T. 1953a. Morphological studies in the Euphorbiaceae II. Mallotus philippensis M. Arg. – Proc. Indian Acad. Sci., Sect. B, 19: 469-474.

Thathachar T. 1953b. Morphological studies in the Euphorbiaceae. – J. Mysore Univ., N. S., 13: 363-388.

Thiebaut LF, Hoffmann P. 2005. Occurrence of colleters in Erythroxylaceae. – Kew Bull. 60: 455-459.

Thiele KR, Prober SM. 2003. Two new species and a new hybrid in the Viola hederacea species complex. – Muelleria 18: 7-25.

Thieme H, Benecke R. 1966. Isolierung eines neuen Phenolglykosides aus Populus nigra L. – Pharmazie 21: 59-60.

Thin NN. 1984. Tribus Alchornieae (Euphorbiaceae) of Vietnamese flora. – Tap Chi Sinh Hoc 6: 26-29.

Thin NN. 1988. Tribe Epiprineae (Müll. Arg.) Hurusawa (Euphorbiaceae) in Vietnam. – Tap Chi Sinh Hoc 10: 30-33.

Thin NN. 1989. Tribus Codiaeae (Pax) Hutch. in Vietnam. – Tap Chi Sinh Hoc 11: 14-17.

Thiv M, Ghogue J-P, Grob V, Huber K, Pfeifer E, Rutishauser R. 2009. How to get off the mismatch at the generic rank in African Podostemaceae? – Plant Syst. Evol. 283: 57-77.

Thomas DW. 1990. Conceveiba Aublet (Euphorbiaceae) new to Africa. – Ann. Missouri Bot. Gard. 77: 856-858.

Thompson JD, Shivanna KR, Kenrick J, Knox RB. 1989. Sex expression, breeding system, and pollen biology of Ricinocarpos pinifolius: a case of androdioecy. – Amer. J. Bot. 76: 1048-1059.

Thompson JD, Pailler T, Strasberg D, Manicacci D. 1996. Tristyly in the endangered Mascarene island endemic Hugonia serrata (Linaceae). – Amer. J. Bot. 83: 1160-1167.

Thulin M. 1991. Four new species of Jatropha (Euphorbiaceae) from Somalia. – Nord. J. Bot. 11: 527-533.

Thulin M. 1996. Erythroxylon (Erythroxylaceae) on Socotra. – Nord. J. Bot. 16: 301-302.

Thulin M. 2009. New species of Euphorbia (Euphorbiaceae) from eastern Ethiopia. – Kew Bull. 64: 469-476.

Thulin M, Al-Gifri AN. 1995. Euphorbia applanata sp. nov. (Euphorbiaceae) from Yemen, with a note on E. quaitensis. – Nord. J. Bot. 15: 193-195.

Thulin M, Razafimandimbison SG, Chafe P, Heidari N, Kool A, Shore JS. 2012. Phylogeny of the Turneraceae clade (Passifloraceae s.l.): trans-atlantic disjunctions and two new genera in Africa. – Taxon 61: 308-323.

Thurston EL. 1976. Morphology, fine structure and ontogeny of the stinging emergences of Tragia ramosa and T. saxicola (Euphorbiaceae). – Amer. J. Bot. 63: 710-718.

Thury M. 1897. Observations sur la morphologie et l’organogénie florales des Passiflores. – Bull. Herb. Boissier 5: 494-503.

Tieghem P van. 1901. Sur le genre Lophira considéré comme type d’une famille distincte, les Lophiracées. – J. Bot. (Paris) 15: 169-194.

Tieghem P van. 1902a. L’embryon des Ochnacées et son emploi dans la définition des genres. – Bull. Mus. Natl. Hist. Nat. Paris 8: 208-218.

Tieghem P van. 1902b. Le cristarque dans la tige et la famille des Ochnacées. – Bull. Mus. Natl. Hist. Nat. Paris 8: 266-273.

Tieghem P van. 1902c. Sur les Ochnacées. – Ann. Sci. Nat. Bot., sér. 8e, 16: 161-416.

Tieghem P van. 1903. Structure de l’ovule des Dichopetalacées et place de cette famille dans la classification. – J. Bot. (Paris) 17: 229-233.

Tieghem P van. 1904. Sur les Luxembourgiacées. – Ann. Sci. Nat. Bot. 8, 19:1-96.

Tieghem P van. 1905. Sur les Irvingiacées. – Ann. Sci Nat. Bot., sér. 9, 1: 247-320.

Tillett SS. 1988. Passionis passifloris II. Terminología. – Ernstia 48: 1-40.

Tiniakou A. 1991. Cytogeographical studies on some species of Viola sect. Viola (Violaceae) from Greece. – Willdenowia 20: 153-158.

Tippery NP, Philbrick CT, Bove CP, Les DH. 2011. Systematics and phylogeny of neotropical riverweeds (Podostemaceae: Podostemoideae). – Syst. Bot. 36: 105-118.

Tobe H. 1987. The Rhizophoraceae: circumscription and relationships. – Acta Phytotaxon. Geobot. 38: 275-282.

Tobe H, Raven PH. 1984. An embryological contribution to systematics of the Chrysobalanaceae I. Tribe Chrysobalaneae. – Bot. Mag. (Tokyo) 97: 397-411.

Tobe H, Raven PH. 1987. The embryology and relationships of Cassipourea and Sterigmapetalum (Rhizophoraceae-Macarisieae). – Opera Bot. 92: 253-264.

Tobe H, Raven PH. 1988a. Seed morphology and anatomy of Rhizophoraceae: inter- and intrafamilial relationships. – Ann. Missouri Bot. Gard. 75: 1319-1342.

Tobe H, Raven PH. 2011. Embryology of the Irvingiaceae, a family with uncertain relationships among the Malpighiales. – J. Plant Res. 124: 577-591.

Tokuoka T. 2007. Molecular phylogenetic analysis of Euphorbiaceae sensu stricto based on plastid and nuclear DNA sequences and ovule and seed character evolution. – J. Plant Res. 120: 511-522.

Tokuoka T. 2008. Molecular phylogenetic analysis of Violaceae (Malpighiales) based on plastid and nuclear DNA sequences. – J. Plant Res. 121: 253-260.

Tokuoka T. 2012. Molecular phylogenetic analysis of Passifloraceae sensu lato (Malpighiales) based on plastid and nuclear DNA sequences. – J. Plant Res. 125: 489-497.

Tokuoka T, Peng C-I. 1997. Floral morphology and its systematic implications in Drypetes integerrima (Koidz.) Hook. (Euphorbiaceae, tribe Drypeteae) from Bonin Islands, Japan. – Acta Phytotaxon. Geobot. 48: 159-166.

Tokuoka T, Tobe H. 1995. Embryology and systematics of Euphorbiaceae sens. lat.: a review and perspective. – J. Plant Res. 108: 97-106.

Tokuoka T, Tobe H. 1998. Ovules and seeds in Crotonoideae (Euphorbiaceae): structure and systematic implications. – Bot. Jahrb. Syst. 120: 165-186.

Tokuoka T, Tobe H. 1999. Embryology of tribe Drypeteae, an enigmatic taxon of Euphorbiaceae. – Plant Syst. Evol. 215: 189-208.

Tokuoka T, Tobe H. 2001. Ovules and seeds in subfamily Phyllanthoideae (Euphorbiaceae): structure and systematic implications. – J. Plant Res. 114: 75-92.

Tokuoka T, Tobe H. 2002. Ovules and seeds in Euphorbioideae (Euphorbiaceae): structure and systematic implications. – J. Plant Res. 115: 361-374.

Tokuoka T, Tobe H. 2003. Ovules and seeds in Acalyphoideae (Euphorbiaceae): structure and systematic implications. – J. Plant Res. 116: 355-380.

Tokuoka T, Tobe H. 2006. Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sens. str. – J. Plant Res. 119: 599-616.

Tomar DPS, Desmukh PS, Sinha SK. 1979. Importance of sepals in fruit and seed development in linseed (Linum usitiatissimum L.). – Euphytica 28: 739-745.

Tomlinson PB. 1986. The botany of mangrove. – Cambridge.

Tomlinson PB. 1988. Systematic comparison and some biological characters of Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1297-1318.

Tomlinson PB, Cox PA. 2000. Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: vivipary explained? – Bot. J. Linn. Soc. 134: 215-231.

Tomlinson PB, Wheat DW. 1979. Bijugate phyllotaxis in Rhizophoreae (Rhizophoraceae). – Bot. J. Linn. Soc. 78: 317-321.

Tomlinson PB, Primack RB, Bunt JS. 1979. Preliminary observations on floral biology in mangrove Rhizophoraceae. – Biotropica 11: 256-277.

Torre AR. 1963. 47. Dichapetalaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 319-328.

Torre AR, Gonçalves AE. 1978. 72. Rhizophoraceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 81-99.

Tran Ha NM, Bancilhon-Rossignol L. 1976. Premières données sur le mode de reproduction des Phyllanthus (Euphorbiacées) découlant d’une étude cytogénétique comparée de six taxons de P. odontadenius Muell. Arg. à garnitures chromosomiques différentes (2n = 12, 24, 28, 56). – Rev. Cyt. Biol. Végét. 39: 201-234.

Tran Ha NM, Belliard J. 1976. Analyse morphologique et biométrique comparée de six taxons de Phyllanthus odontadenius Muell. Arg. à garnitures chromosomiques différentes (2n = 12, 24, 28, 56) et de leur descendance. – Rev. Gen. Bot. 83: 269-310.

Truyens S, Arbo MM, Shore JS. 2005. Phylogenetic relationships, chromosome and breeding system evolution in Turnera (Turneraceae): inferences from ITS sequence data. – Amer. J. Bot. 92: 1749-1758.

Tschapka M, Dressler S, Helversen O von. 2006. Bat visits to Marcgravia pittieri and notes on the inflorescence diversity within the genus Marcgravia (Marcgraviaceae). – Flora 201: 383-388.

Tunmann O, Jenzer R. 1910. Zur Anatomie der Blüten von Pilocarpus pennatifolius Lem. und Erythroxylon coca Lam. – Arch. d. Pharmaz. 248: 514-519.

Tur NM. 1975. Nueva especie de Podostemaceae para Argentina: Wettsteiniola apipensis. – Bull. Bot. Soc. Argentina 16: 320-324.

Tur NM. 1997. Taxonomy of Podostemaceae in Argentina. – Aquatic Bot. 57: 213-241.

Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam M, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covet S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjärvi, J., Karlsson, J., Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini M, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Peer Y van de, Rokhsar D. 2006. The genome of black cottonwood Populus tricocarpa (Torr. & Gray). – Science 313: 1596-1604.

Ueda K, Hanyuda T, Nakano A, Shiuchi T, Seo A, Okubo H, Hotta M. 1997. Molecular phylogenetic position of Podostemaceae, a marvellous aquatic flowering plant family. – J. Plant Res. 110: 87-92.

Uhlarz H. 1978. Über die Stipularorgane der Euphorbiaceae, unter besonderer Berücksichtigung ihrer Rudimentation. – Trop. Subtrop. Pflanzenwelt 23: 1-65.

Ulmer T, MacDougal JM. 2004. Passiflora: passionflowers of the world. – Timber Press, Portland, Oregon.

Ulubelen A, Kerr RR, Mabry TJ. 1982. Two new neoflavonoids and C-glycosylflavones from Passiflora serratodigitata. – Phytochemistry 21: 1145-1147.

Uniyal PL. 1999. Studies on Indotristicha tirunelveliana Sharma, Karthik. & Shetty (Podostemaceae): an endemic, rare and enigmatic taxon. – Flora 194: 169-178.

Uniyal PL, Mohan Ram HY. 1994. Karyological studies in some members of Podostemaceae. – Aquatic Bot. 47: 85-90.

Uniyal PL, Mohan Ram HY. 1996. In vitro germination and seedling morphology of Dalzellia zeylanica (Gardner) Wight (Podostemaceae). – Aquatic Bot. 54: 59-71.

Uno GE. 1984. The role of persistent sepals in the reproductive biology in Linum pratense (Linaceae). – Southw. Natur. 29: 429-434.

Urban I. 1883. Monographie der Familie der Turneraceen. – Jahrb. Königl. Bot. Gart. Berlin 2: 1-152.

Urban I. 1898. Plantae novae americanae imprimis Glaziovianae II. Turneraceae adjectis specierum nonnullarum africanarum descriptionibus. – Engl. Bot. Jahrb. Syst. 25, Beibl. 60: 2-12.

Urbatsch LE, Bacon JD, Hartman RL, Johnston MC, Watson TJ Jr, Webster GL. 1975. Chromosome numbers for North American Euphorbiaceae. – Amer. J. Bot. 62: 494-500.

Valen F van. 1978. Contribution to the knowledge of cyanogenesis in angiosperms 10. Communication. Cyanogenesis in Euphorbiaceae. – Planta Medica 34: 408-413.

Valentine DH. 1962. Variation and evolution in the genus Viola. – Preslia 34: 190-206.

Vanderplank RJR. 2006 [2007]. Plant/insect mimicry in Passiflora. – Passiflora 16: 26-27.

Vartak VD, Kumbhojkar MS. 1984. Palynological study of the family Podostemaceae from Western India. – Biovigyanam 10: 89-92.

Vasconcellos NC, Carvalho MJC, Andrade TAP, Berg MEVD. 1972. O pólen em plantas da Amazônia: Família Guttiferae. – Bol. Mus. Paraense Emilio Goeldi 44: 1-12.

Vasudeva Rao MK, Chakrabarty T. 1985. Drypetes longifolia (Euphorbiaceae) in Andamans. – J. Econ. Taxon. Bot. 6: 445.

Vaughan JG, Rest JA. 1969. Note on the testa structure of Panda Pierre, Galearia Zoll. et Mor. and Microdesmis Hook. f. (Pandaceae). – Kew Bull. 23: 215-218.

Vazart B, Vazart J. 1965. Infrastructure de l’ovule de lin, Linum usitiatissimum L. L’assise jaquette ou endothélium. – Compt. Rend. Hébd. Séances Acad. Sci. Paris 261: 2927-2930.

Vazart B, Vazart J. 1966. Infrastructure du sac embryonnaire du lin (Linum usitatissimum L.). – Rév. Cytol. Biol. Vég. 29: 251-266.

Vazart J. 1969. Organisation et ultrastructure du sac embryonnaire du lin (Linum usitatissimum L.). – Rév. Cytol. Biol. Vég. 32: 227-240.

Vazart J. 1971. Dégénérescence d’une synergide et penetration du tube pollinique dans le sac embryonnaire de Linum usitatissimum L. –Ann. Univ. A.R.E.R.S. 9: 89-97.

Vega AS, Castro MA, Anderson WR. 2002. Occurrence and phylogenetic significance of latex in the Malpighiaceae. – Amer. J. Bot. 89: 1725-1729.

Vela D. 2010. Multivariate analysis of morphological and anatomical characters of Calophyllum L. (Calophyllaceae) in South America. – M.Sc. thesis, University of Missouri, St. Louis, Missouri.

Velzen R van, Wahlert GA, Sosef MSM, Onstein RE, Bakker FT. 2015. Phylogenetics of African Rinorea (Violaceae): elucidating infrageneric relationships using plastid and nuclear DNA sequences. – Syst. Bot. 40: 174-184.

Venkata Rao C. 1971. Anatomy of the inflorescence of some Euphorbiaceae. With a discussion on the phylogeny and evolution of the inflorescence including the cyathium. – Bot. Not. 124: 39-64.

Venkata Rao C. 1972. Floral anatomy of Ricinocarpus pinifolius with some observations on the phylogeny and centre of origin of Euphorbiaceae. – Adv. Plant Morph. 1972: 85-91.

Venkata Rao C, Ramalakshmi T. 1968. Floral anatomy of the Euphorbiaceae I. Some non-cyathium taxa. – J. Indian Bot. Soc. 47: 278-300.

Venkateswarlu J, Rao PN. 1963. Endosperm in Euphorbiaceae and occurrence of endosperm haustoria in two species of Croton Linn. – Curr. Sci. 32: 514-516.

Venkateswarlu J, Rao PN, Rao DS. 1973. Occurrence of stylar obturator in two Euphorbiaceae. – Curr. Sci. 43: 128-129.

Ventura M. 1934. Sulla poliembrionia di Mallotus japonicus Muell. Arg. – Ann. Bot. (Roma) 20: 568-578.

Verdcourt B. 1954. Notes from the East African Herbarium II. – Kew Bull. 9: 35-402.

Verdcourt B. 1968. Elatinaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-5.

Verdcourt B. 1980. A new species of Nectaropetalum (Erythroxylaceae) from Tanzania. – Kew Bull. 36: 43-45.

Verdcourt B. 1984a. Ixonanthaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-11.

Verdcourt B. 1984b. Erythroxylaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-11.

Verdus MC. 1976. L’évolution pseudocyclique des plantules des Euphorbiaceae. – Taxon 25: 99-107.

Vesque J. 1889. Epharmosis, sive materiae ad instruendam anatomiam systematis naturalis 2. Genitalia foliaque Garcinearum et Calophyllearum. – Delapierre, Vincennes.

Vesque J. 1893. Guttiferae. – In: Candolle ACP de (ed), Monographiae Phanerogamarum 8, Masson, Paris.

Vestal PA. 1937. The significance of comparative anatomy in establishing the relationship of the Hypericaceae to the Guttiferae and their allies. – Philipp. J. Sci. 64: 199-256.

Vester H. 1999. Architectural diversification within the genus Vismia (Clusiaceae) in the Amazonian rainforest (Ararucuara, Colombia). – In: Kurmann MH, Hemsley AR (eds), The evolution of plant architecture, Royal Botanic Gardens, Kew, pp. 147-158.

Vezey EL, Shah VP, Skvarla JJ, Raven PH. 1988. Morphology and phenetics of Rhizophoraceae pollen. – Ann. Missouri Bot. Gard. 75: 1369-1386.

Vidyashankar B. 1988a. Seed germination and seedling morphology in Indotristicha ramosissima (Podostemaceae) grown in vitro. – Curr. Sci. 57: 369-373.

Vidyashankari B. 1988b. Developmental biology of Griffithella hookeriana. – Ph.D. diss., University of Delhi, India.

Vidyashankari B, Mohan Ram HY. 1987. In vitro germination and origin of thallus in Griffithella hookeriana (Podostemaceae). – Aquatic Bot. 28: 161-169.

Vijayaraghavan MR, Dlar U. 1976. Scytopetalum tieghemii: embryologically unexplored taxon and affinities of the family. – Phytomorphology 26: 16-22.

Vijayaraghavan MR, Kaur D. 1967. Morphology and embryology of Turnera ulmifolia L. and affinities of the family Turneraceae. – Phytomorphology 16: 539-553.

Vindt J. 1960. Monographie des Euphorbiacées du Maroc. – Trav. Inst. Sci. Chérifien, Sér. Bot. 19: 219-533.

Vitarelli NC, Riina R, Caruzo MBR, Cordeiro I, Fuertes-Aguilar J, Meira RMSA. 2015. Foliar secretory structures in Crotoneae (Euphorbiaceae): diversity, anatomy, and evolutionary significance. – Amer. J. Bot. 102: 833-847.

Vitta FA, Bernacci LC. 2004. A new species of Passiflora in section Tetrastylis (Passifloraceae) and two overlooked species of Passiflora from Brazil. – Brittonia 56: 89-95.

Vliet GTCM van 1976. Wood anatomy of the Rhizophoraceae. – Leiden Bot. Ser. III: 20-75.

Vogel C. 1986. Phytoserologische Untersuchungen zur Systematik der Euphorbiaceae. Beiträge zur infrafamiliaren Gliederung und zu Beziehungen im extrafamiliaren Bereich. – Diss. Bot. 98: 1-124.

Vogel S. 1990. History of the Malpighiaceae in the light of pollination ecology. – Mem. New York Bot. Gard. 55: 130-142.

Vorontsova MS, Hoffmann P. 2008. A phylogenetic classification of tribe Poranthereae (Phyllanthaceae, Euphorbiaceae sensu lato). – Kew Bull. 63: 41-59.

Vorontsova MS, Hoffmann P. 2009. Revision of the genus Leptopus (Phyllanthaceae, Euphorbiaceae sensu lato). – Kew Bull. 64: 627-644.

Vorontsova MS, Hoffmann P, Maurin O, Chase MW. 2007. Molecular phylogeny of tribe Poranthereae (Phyllanthaceae; Euphorbiaceae sensu lato). – Amer. J. Bot. 94: 2026-2040.

Vorontsova MS, Hoffmann P, Kathriarachchi H, Kolterman DA, Chase MW. 2007. Andrachne cuneifolia (Phyllanthaceae; Euphorbiaceae s.l.) is a Phyllanthus. – Bot. J. Linn. Soc. 155: 519-525.

Vos JM de, Breteler FJ. 2009. A revision of the African genera Paropsiopsis and Smeathmannia (Passifloraceae – Paropsieae), including a new species of Paropsiopsis from Cameroon. – Edinburgh J. Bot. 66: 27-49.

Wagner WL, Lorence DH. 2011. A nomenclator of Pacific oceanic island Phyllanthus (Phyllanthaceae), including Glochidion. – PhytoKeys 4: 67-94.

Wahlert GA, Ballard HE Jr. 2012. A phylogeny of Rinorea (Violaceae) inferred from plastid DNA sequences with an emphasis on the African and Malagasy species. – Syst. Bot. 37: 964-973.

Wahlert GA, Marcussen T, Paula-Souza J de, Feng M, Ballard HE Jr. 2014. A phylogeny of the Violaceae (Malpighiales) inferred from plastid DNA sequences: implications for generic diversity and intrafamilial classification. – Syst. Bot. 39: 239-252.

Wahlert GA, Ballard Jr HE, Paula-Souza J de. 2015. Ixchelia, a new genus of Violaceae from Mexico and Mesoamerica. – Brittonia 67: 273-283.

Wahlert GA, Hoyos-Goméz SE, Ballard Jr HE. 2018. Systematic studies in Neotropical Rinorea (Violaceae): two new sections and a new generic segregate. – Brittonia 70: 140-147.

Wallnöfer B. 1991. Beschreibung der zweiten Art in der neotropischen Gattung Nealchornea Huber (Euphorbiaceae). – Linzer Biol. Beitr. 23: 775-785.

Wallnöfer B. 1998. A revision of Perissocarpa Steyerm. & Maguire (Ochnaceae). – Ann. Naturhist. Mus. Wien 100 B: 683-707.

Warburg O. 1894. Flacourtiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 1-56.

Ward PFN, Hall RJ, Peters RA. 1964. Fluoro fatty acids in the seeds of Dichapetalum toxicarium. – Nature 201: 611-612.

Warming E. 1881. Familien Podostemaceae I. – Kong. Danske Vidensk. Selsk. Nat. Math. Afd. 2: 1-34.

Warming E. 1882. Familien Podostemaceae II. – Kong. Danske Vidensk. Selsk. Nat. Math. Afd. 2: 77-130.

Warming E. 1888. Familien Podostemaceae III. – Kong. Danske Vidensk Selsk. Nat. Math. Afd. 4: 443-514.

Warming E. 1891a. Familien Podostemaceae IV. – Kong. Danske Vidensk. Selsk. Nat. Math. Afd. 7: 135-179.

Warming E. 1891b. Podostemaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2a), W. Engelmann, Leipzig, pp. 1-22.

Warming E. 1899. Familien Podostemaceae V. – Kong. Danske Vidensk. Selsk. Nat. Math. Afd. 9: 105-154.

Warming E. 1901. Familien Podostemaceae VI. – Kong. Danske Vidensk. Selsk. Nat. Math. Afd. 11: 1-67.

Warmke HE. 1952. Studies on natural pollination of Hevea brasiliensis in Brazil. – Science 116: 474-475.

Warnock BH, Johnston MC. 1960. The genus Savia (Euphorbiaceae) in extreme western Texas. – Southw. Natur. 5: 1-6.

Webber BL, Miller RE. 2008. Gynocardin from Baileyoxylon lanceolatum and a revision of cyanogenic glycosides in Achariaceae. – Biochem. Syst. Ecol. 36: 545-553.

Webber BL, Woodrow IE. 2006. Morphological analysis and a resolution of the Ryparosa javanica species complex (Achariaceae) from Malesian and Australian tropical rainforests. – Aust. Syst. Bot. 19: 541-569.

Webber BL, Moog J, Curtis ASO, Woodrow IE. 2007. The diversity of ant-plant interactions in the rainforest understorey tree, Ryparosa (Achariaceae): food bodies, domatia, prostomata, and hemipteran trophobionts. – Bot. J. Linn. Soc. 154: 353-371.

Weber-El Ghobary MO. 1985. Pollen morphology of four succulent species of Euphorbia (Euphorbiaceae). – An. Asoc. Palin. Lengua Esp. 2: 75-86.

Weberling F, Lörcher H, Böhnke E. 1980. Die Stipeln der Irvingioideae und Recchioideae und ihre systematische Wertung nebst Bemerkungen zur Holzanatomie und Palynologie. – Plant Syst. Evol. 133: 261-283.

Webster GL. 1956. A monographic study of the West Indian species of Phyllanthus. – J. Arnold Arbor. 37: 91-122, 217-268, 340-359.

Webster GL. 1957. A monographic study of the West Indian species of Phyllanthus. – J. Arnold Arbor. 38: 51-80, 170-198, 295-373.

Webster GL. 1958. Amonographic study of the West Indian species of Phyllanthus. – J. Arnold Arbor. 39: 49-100, 111-212.

Webster GL. 1965. A revision of the genus Meineckia (Euphorbiaceae). – Acta Bot. Neerl. 14: 323-365.

Webster GL. 1967. Acidoton (Euphorbiaceae) in Central America. – Ann. Missouri Bot. Gard. 54: 191.

Webster GL. 1970a. A revision of Phyllanthus (Euphorbiaceae) in the continental United States. – Brittonia 22: 44-76.

Webster GL. 1970b. Notes on Galápagos Euphorbiaceae. – Madroño 20: 257-263.

Webster GL. 1975. Conspectus of a new classification of the Euphorbiaceae. – Taxon 24: 593-601.

Webster GL. 1979. A revision of Margaritaria (Euphorbiaceae). – J. Arnold Arbor. 60: 403-444.

Webster GL. 1982. Systematic status of the genus Kleinodendron (Euphorbiaceae). – Taxon 31: 535-539.

Webster GL. 1983. A botanical Gordian knot: the case of Ateramnus and Gymnanthes (Euphorbiaceae). – Taxon 32: 304-305.

Webster GL. 1984a. Jablonskia, a new genus of Euphorbiaceae from South America. – Syst. Bot. 9: 229-235.

Webster GL. 1984b. A revision of Flueggea (Euphorbiaceae). – Allertonia 3: 259-312.

Webster GL. 1986. A revision of Phyllanthus (Euphorbiaceae) in Eastern Melanesia. – Pacific Sci. 40: 88-105.

Webster GL. 1987a. The saga of the spurges: a review of classification and relationships in the Euphorbiales. – Bot. J. Linn. Soc. 94: 3-46.

Webster GL. 1987b. A new species of Jatropha (Euphorbiaceae) from Nicaragua. – Ann. Missouri Bot. Gard. 74: 117-120.

Webster GL. 1989. Revised conspectus of the Euphorbiaceae. – Euphorbiaceae Newsletter 2.

Webster GL. 1992a. Realignments in American Croton (Euphorbiaceae). – Novon 2: 269-273.

Webster GL. 1992b. Revision of Astrocasia (Euphorbiaceae). – Syst. Bot. 17: 311-323.

Webster GL. 1993. A provisional synopsis of the sections of the genus Croton (Euphorbiaceae). – Taxon 42: 793-823.

Webster GL. 1994a. Classification of the Euphorbiaceae. – Ann. Missouri Bot. Gard. 81: 3-32.

Webster GL. 1994b. Synopsis of the genera and suprageneric taxa of Euphorbiaceae. – Ann. Missouri Bot. Gard. 81: 33-144.

Webster GL. 2001. Synopsis of Croton and Phyllanthus (Euphorbiaceae) in western tropical Mexico. – Contr. Univ. Michigan Herb. 23: 353-388.

Webster GL. 2002. A synopsis of the Brazilian taxa of Phyllanthus section Phyllanthus (Euphorbiaceae). – Lundellia 5: 1-26.

Webster GL. 2003. A synopsis of Phyllanthus section Nothoclema (Euphorbiaceae). – Lundellia 6: 19-36.

Webster GL. 2007. Taxonomic and nomenclatural changes in American Euphorbiaceae sensu lato. – Contr. Univ. Michigan Herb. 25: 235-239.

Webster GL, Airy Shaw HK. 1971. A provisional synopsis of the New Guinea taxa of Phyllanthus (Euphorbiaceae). – Kew Bull. 26: 85-109.

Webster GL, Armbruster WS. 1982. An unusual new species of Dalechampia (Euphorbiaceae) from Surinam. – Syst. Bot. 7: 484-488.

Webster GL, Armbruster WS. 1991. A synopsis of the neotropical species of Dalechampia (Euphorbiaceae). – Bot. J. Linn. Soc. 105: 137-177.

Webster GL, Carpenter KJ. 2002. Pollen morphology and phylogenetic relationships in neotropical Phyllanthus (Euphorbiaceae). – Bot. J. Linn. Soc. 138: 325-338.

Webster GL, Carpenter KJ. 2008. Pollen morphology and systematics of palaeotropical Phyllanthus and related genera of subtribe Phyllanthinae (Euphorbiaceae). – Bot. J. Linn. Soc. 157: 591-608.

Webster GL, Huft MJ. 1988. Revised synopsis of Panamanian Euphorbiaceae. – Ann. Missouri Bot. Gard. 75: 1087-1144.

Webster GL, Miller K. 1963. The genus Reverchonia (Euphorbiaceae). – Rhodora 65: 193-207.

Webster GL, Poveda LJ. 1978. A phytogeographically significant new species of Jatropha (Euphorbiaceae) from Costa Rica. – Brittonia 30: 265-270.

Webster GL, Rupert EA. 1973. Phylogenetic significance of pollen nuclear number in the Euphorbiaceae. – Evolution 27: 524-531.

Webster GL, Webster BD. 1972. The morphology and relationships of Dalechampia scandens (Euphorbiaceae). – Amer. J. Bot. 59: 573-586.

Webster GL, Brown WV, Smith BN. 1975. Systematics of photosynthetic carbon fixation pathways in Euphorbia. – Taxon 24: 27-33.

Webster GL, Rupert E, Koutnik D. 1982. Systematic significance of pollen nuclear number in Euphorbiaceae, tribe Euphorbieae. – Amer. J. Bot. 69: 407-415.

Webster GL, Gillespie L, Steyermark J. 1987. Systematics of Croizatia (Euphorbiaceae). – Syst. Bot. 12: 1-8.

Webster GL, Del-Arco-Aquilar MJ, Smith BA. 1996. Systematic distribution of foliar trichome types in Croton (Euphorbiaceae). – Bot. J. Linn. Soc. 121: 41-57.

Weidenhoeft AC. 2008. Tracking the phylogeny of Crotoneae with comparative wood anatomy of Croton. – University of Wisconsin, Madison, Wisconsin.

Weitzman AL. 2005. Bonnetiaceae. – In: Steyermark JA, Berry PE, Holst BK (eds.), Flora of the Venezuelan Guayana, Missouri Botanical Garden Press, St. Louis, Missouri, pp. 313-324.

Weitzman AL, Stevens PF. 1997. Notes on the circumscription of Bonnetiaceae and Clusiaceae, with taxa and new combinations. – BioLlania Ed. Espec. 6: 551-564.

Weitzman AL, Kubitzki K, Stevens PF. 2006. Bonnetiaceae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p. p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 36-39.

Wellendorph P, Clausen V, Jørgensen LB, Jaroszewski JW. 2001. Cyclopentanoids of Maturina penduliflora. – Biochem. Syst. Ecol. 29: 649-651.

Welzen PC van. 1994a. Taxonomy, phylogeny and geography of Neoscortechinia Hook. f. ex Pax (Euphorbiaceae). – Blumea 39: 301-320.

Welzen PC van. 1994b. A taxonomic revision of S.E. Asian Chaetocarpus Thwaites (Euphorbiaceae). – Rheedea 4: 93-101.

Welzen PC van. 1995. Taxonomy and phylogeny of the Euphorbiaceae tribe Erismantheae G. L. Webster. – Blumea 40: 375-396.

Welzen PC van. 2011. Revision of Dicoelia (Phyllanthaceae; Euphorbiaceae s.l.). – Blumea 56: 209-213.

Welzen PC van. 2015. A revision of the Malesian species of Blachia (Euphorbiaceae). – Blumea 59: 163-166.

Welzen PC van. 2016. Bischofia and Hymenocardia (Phyllanthaceae) in Malesia. – Blumea 61: 272-279.

Welzen PC van. 2017. Reduction of Breynia subgenus Hemisauropus to B. section Cryptogynium and discussion of the B. quadrangularis complex (Phyllanthaceae). – Blumea 62: 90-91.

Welzen PC van, Baas P. 1984. A leaf-anatomical contribution to the classification of the Linaceae complex. – Blumea 29: 453-479.

Welzen PC van, Bulalacao LJ. 2007. The genus Alchornea (Euphorbiaceae) in the Malay Archipelago and Thailand. – Syst. Bot. 32: 803-818.

Welzen PC van, Chayamarit K. 2001. Two new Mallotus and two new Sauropus species (Euphorbiaceae) endemic to Thailand. – Kew Bull. 56: 649-656.

Welzen PC van, Forster PI. 2010. A revision of Malesian Austrobuxus (Picrodendraceae/Euphorbiaceae s.l. subfam. Oldfieldioideae). – Nord. J. Bot. 28: 189-195.

Welzen PC van, Oostrum AF van. 2015. Revision of the Malesian species of Dimorphocalyx (Euphorbiaceae). – Blumea 59: 191-201.

Welzen PC van, Stuppy W. 1999. Phylogenetic considerations of Euphorbiaceae tribe Aleuritideae. – Ann. Missouri Bot. Gard. 86: 894-903.

Welzen PC van, Winkel E. 2015. A revision of Ostodes (Euphorbiaceae) in Malesia. – Blumea 59: 185-190.

Welzen PC van, Bulalacao LJ, Ôn T van. 1995. A taxonomic revision of the Malesian genus Trigonopleura Hook. f. (Euphorbiaceae). – Blumea 40: 363-374.

Welzen PC van, Pruesapan K, Telford IRH, Esser H-J, Bruhl JJ. 2014. Phylogenetic reconstruction prompts taxonomic changes in Sauropus, Synostemon and Breynia (Phyllanthaceae tribe Phyllantheae). – Blumea 59: 77-94.

Welzen PC van, Pruesapan K, Telford IRH, Bruhl JJ. 2015. Historical biogeography of Breynia (Phyllanthaceae): what caused speciation? – J. Biogeogr. 42: 1493-1502.

Welzen PC van, Sweet FST, Fernández-Casas FJ. 2017. A revision of Jatropha (Euphorbiaceae) in Malesia. – Blumea 62: 58-74.

Wendt T. 1988. Chiangiodendron (Flacourtiaceae: Pangieae): a new genus from southeastern Mexico representing a new tribe for the New World flora. – Syst. Bot. 13: 435-441.

Went FAFC. 1909. The development of the ovule, embryo sac, and egg of Podostemaceae. – Rec. Bot. Néerl. 5: 1-16.

Went FAFC. 1910. Untersuchungen über Podostemaceen I. – Verh. Kon. Akad. Wetesch. Amsterdam 2(16): 1-88.

Went FAFC. 1912. Untersuchungen über Podostemaceen II. – Verh. Kon. Akad. Wetesch. Amsterdam 17: 5-18.

Went FAFC. 1926. Untersuchungen über Podostemaceen III. – Verh. Kon. Akad. Wetesch. Amsterdam 25: 3-58.

Went FAFC. 1929. Morphological and histological peculiarities of the Podostemaceae. – Proc. Intern. Congr. Plant Sci. Ithaca 1: 351-358.

Westra LYT, Koek-Noorman JK. 2004. Wood atlas of the Euphorbiaceae s.l. – Nationaal Herbarium Nederland. [IAWA J., Suppl. 4]

Wetterwald X. 1889. Blatt- und Sprossbildung bei Euphorbien und Cacteen. – Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 53: 379-440.

Weyland H. 1938. Die fossielen Sacoglottis: Früchte und eine neue Art der Gattung, Sacoglottis germanica n. sp. – Decheniana 98: 153-162.

Wheat DW. 1981. Sylleptic branching in the Rhizophoreae (Rhizophoraceae). – Bot. Gaz. 142: 115-123.

Wheeler LC. 1939. A miscellany of New World Euphorbiaceae II. – Contr. Gray Herb. 127: 48-78.

Wheeler LC. 1941. Euphorbia Subgenus Chamaesyce in Canada and the United States exclusive of Southern Florida. – Rhodora 43: 97-154, 168-205, 223-286.

Wheeler LC. 1943 The genera of living Euphorbieae. – Amer. Midl. Natur. 30: 456-503.

Wheeler LC. 1975. Euphorbiaceous genera lectotypified. – Taxon 24: 534-538.

White A, Dyer RA, Sloane BL. 1941. The succulent Euphorbieae (Southern Africa) 1-2. – Abbey Garden Press, Pasadena, California.

White F. 1976. Chrysobalanaceae. Distributiones plantarum africanarum 10, maps 281-334.

White F. 1978. 63. Chrysobalanaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 33-48.

Whitmore TC. 1973. Tree flora of Malaya 2. Euphorbiaceae. – Longman, London, pp. 34-136.

Whitmore TC. 1984. Studies in Macaranga XII. New species and corrections in Macaranga (Euphorbiaceae) of Malesia. – Kew Bull. 39: 607-610.

Whitmore TC. 2008. The genus Macaranga, a prodromus. – Kew Publ., Royal Botanic Gardens, Kew, England.

Wiedenhoft AC, Riina R, Berry PE. 2009. “Ray intrusive” laticifers in species of Croton section Cyclostigma (Euphorbiaceae). – IAWA J. 30: 135-148.

Wiehr E. 1930. Beiträge zur Kenntnis der Anatomie der wichtigsten Euphorbiaceen-Samen under besonderer Berücksichtigung ihrer Erkennungsmerkmale in Futtermitteln. – Landw. Versuchsstationen 110: 313-398.

Wieringa JJ, Schoonhoven JGA. 2002. Proposal to conserve the name Acridocarpus against Anomalopteris (Malpighiaceae). – Taxon 51: 387-388.

Wilbu RL. 1954. A synopsis of Jatropha, subsection Eucurcas, with the description of two new species from Mexico. – J. Elisha Mitchell Sc.Soc. 70: 92-101.

Wild H. 1960. Flacourtiaceae (incl. Samydaceae). – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 261-298.

Wild H. 1961. 24. Elatinaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 373-378.

Wilde WJJO de. 1971a. A monograph of the genus Adenia Forssk. (Passifloraceae). – Meded. Landbouwh. Wageningen 71(18): 1-281.

Wilde WJJO de. 1971b. The systematic position of tribe Paropsieae, in particular the genus Ancistrothyrsus, and a key of the genera of Passifloraceae. – Blumea 19: 99-104.

Wilde WJJO de. 1972. The indigenous Old World passifloras. – Blumea 20: 227-250.

Wilde WJJO de. 1973. Revision of Basananthe, formerly Tryphostemma (Passifloraceae). – Blumea 21: 327-356.

Wilde WJJO de. 1974. The genera of tribe Passifloreae (Passifloraceae), with special reference to flower morphology. – Blumea 22: 37-50.

Wilkinson HP. 1981. The anatomy of the hypocotyls of Ceriops. – Bot. J. Linn. Soc. 82: 139-164.

Wilkinson HP. 2007. Leaf teeth in certain Salicaceae and ‘Flacourtiaceae’. – Bot. J. Linn. Soc. 155: 241-256.

Willemstein SC. 1987. An evolutionary basis for pollination ecology. – Leiden Bot. Ser. 10: 1-425.

Willis JC. 1902a. A revision of the Podostemaceae of India and Ceylon. – Ann. Roy. Bot. Gard. (Peradeniya) 1: 181-250.

Willis JC. 1902b. Studies in the morphology and ecology of the Podostemaceae of Ceylon and India. – Ann. Roy. Bot. Gard. (Peradeniya) 1: 267-465.

Willis JC. 1915. A new natural family of flowering plants – Tristichaceae. – Bot. J. Linn. Soc. 43: 49-54.

Willis JC. 1926. The evolution of the Tristichaceae and Podostemaceae. – Ann. Bot. 40: 349-367.

Wilmot-Dear CM. 1985. Salicaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-8.

Winkler H. 1927. Über eine Rafflesia aus Zentralborneo. – Planta 4: 1-97.

Winkler H. 1931. Linaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 82-130.

Wolfes O, Hromatka O. 1933. Über ein neues Tropanderivat aus Cocablättern. – E. Merck’s Jahresber. 47: 45-53.

Wollenweber E, Weber W. 1973. Coloring chalcones of Populus bud oils. – Zeitschr. Pflanzenphys. 69: 125-128.

Wong M. 1990. Rafflesia hasseltii. – Nat. Malays. 15: 56-59.

Wong M. 2002. Rafflesias of Malaysia. – Malay. Nat. 55: 20–27.

Wong M, Latiff, A. 1994. Rafflesias of Peninsular Malaysia. – Nat. Malays. 19: 84-88.

Wong M, Latiff A. 2001. A fragrant Rafflesia cantleyi discovered! – Fol. Malays. 2: 211-218.

Woodson RE, Schery RW. 1958. Passifloraceae. – In: Flora of Panama 7: 1-22.

Woodworth RH. 1935. Fibriform vessel members in the Passifloraceae. – Trop. Woods 41: 8-16.

Wurdack KJ. 2002. Molecular systematics and evolution of Euphorbiaceae sensu lato. – Ph.D. diss., University of North Carolina, Chapel Hill, North Carolina.

Wurdack KJ, Davis CC. 2009. Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. – Amer. J. Bot. 96: 1551-1570.

Wurdack KJ, Farfan-Rios W. 2017. Incadendron: a new genus of Euphorbiaceae tribe Hippomaneae from the sub-Andean cordilleras of Ecuador and Peru. – PhytoKeys 85: 69-86.

Wurdack KJ, Hoffmann P, Samuel R, Bruijn A de, Bank M van der, Chase MW. 2004. Molecular phylogenetic analysis of Phyllanthaceae (Phyllanthoideae pro parte, Euphorbiaceae sensu lato) using plastid rbcL sequences. – Amer. J. Bot. 91: 1882-1900.

Wurdack KJ, Hoffmann P, Chase MW. 2005. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-F DNA sequences. – Amer. J. Bot. 92: 1397-1420.

Xavier KS, Mildner RA, Rogers CM. 1980. Pollen morphology of Linum sect. Linastrum (Linaceae). – Grana 19: 183-188.

Xi Y, Zhou S. 1992. A contribution to the pollen morphology of Tetraena and Malphgiaceae, with discussion of the affinity and taxonomic position of Tetraena. – Chinese J. Bot. 4: 6-12.

Xi Z-X, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S, Davis CC. 2012. Phylogenomics and a posteriori partitioning resolve the Cretaceous angiosperm radiation of Malpighiales. – Proc. Natl. Acad. Sci. U. S. A. 109: 17519-17524.

Xinying Z, Baas P, Mennega AMW. 1990. Wood anatomy of Bhesa sinica (Celastraceae). – IAWA Bull. 11: 57-60.

Yakandawala D, Morton CM, Prance GT. 2010. Phylogenetic relationships of the Chrysobalanaceae inferred from chloroplast, nuclear, and morphological data. – Ann. Missouri Bot. Gard. 97: 259-281.

Yang X-D, Chen W, Zhao J-F, Yang L-J, Zhang H-B, Li L. 2009. Ent-kaurane diterpenes and phenolic compounds from Croton kongensis. – Biochem. Syst. Ecol. 37: 237-240.

Yang Y, Berry PE. 2011. Phylogenetics of the Chamaesyce clade (Euphorbia, Euphorbiaceae): reticulate evolution and long-distance dispersal in a prominent C4 lineage. – Amer. J. Bot. 98: 1486-1503.

Yang Y, Riina R, Morawetz JJ, Haevermans T, Aubriot X, Berry PE. 2012. Molecular phylogenetics and classification of Euphorbia subgenus Chamaesyce (Euphorbiaceae). – Taxon 61: 764-789.

Yao G, Zhang D-X. 2016. Pollen morphology of Chinese Glochidion (Phyllanthaceae) and its taxonomic implications. – Nord. J. Bot. 34: 102-110.

Yi X-Z. 1979. Pollen morphology of Guttiferae in China. – Acta Bot. Sin. 21: 36-41. [In Chinese]

Yilmaz O, Kaynak G. 2008. A new species of Linum (Linaceae) from West Anatolia, Turkey. – Bot. J. Linn. Soc. 156: 459-462.

Yin GS, Keng H. 1974. Morphological studies on some inland Rhizophoraceae. – Gard. Bull. Straits Settlem. 27: 183-220.

Yockteng R, Nadot S. 2004a. Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). – Mol. Phylogen. Evol. 31: 379-396.

Yockteng R, Nadot S. 2004b. Infrageneric phylogenies: a comparison of chloroplast-expressed glutamine synthetase, cytosol-expressed glutamine synthetase and cpDNA maturase K in Passiflora. – Mol. Phylogen. Evol. 31: 397-402.

Yokhioka H, Kondo K, Legrand M, Nehira K, Maxeda S. 1984. Karyomorphological studies in five species of mangrove genera in Rhizophoraceae. – La Kromosomo, ser. II, 35-36: 1111-1116.

Young FE. 2008 onwards. Lacistemataceae Holistic Database at https://urlproxy.sunet.se/canit/urlproxy.php?_q=aHR0cDovL3d3dy5sYWNpc3RlbWF0YWNlYWUub3Jn&_s=ZGVmYXVsdA%3D%3D&_c=1eb8c273&_r=c3Utc2U%3D.

Yousefi N, Hehrvarz SS, Marcussen T. 2012. Anatomical studies on selected species of Viola (Violaceae). – Nord. J. Bot. 30: 461-469.

Yu R-Y, Welzen PC van. 2018. A taxonomic revision of Trigonostemon (Euphorbiaceae) in Malesia. – Blumea 62: 179-229.

Yunus D. 1990. Studies in the pollen morphology of Malpighiaceae. – Phytomorphology 40: 21-25.

Zhang W, Steinmann VW, Nikolov L, Kramer EM, Davis CC. 2013. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. – Front Plant Sci. 2013; 4: 302. publ. online

Zhang X, Baas P, Mennega AMW. 1990. Wood anatomy of Bhesa sinica (Celastraceae). – IAWA Bull., N.S., 11: 57-60.

Zhang Z-G, Meng A-P, Li J-Q, Ye Q-G, Wang H-C, Endress PK. 2012. Floral development of Phyllanthus chekiangensis (Phyllanthaceae), with special reference to androecium and gynoecium. – Plant Syst. Evol. 298: 1229-1238.

Zhou J-S, Xing F-W. 2007. Viola changii sp. nov. (Violaceae) from Guangdong, southern China. – Nord. J. Bot. 25: 303-305.

Zhou J-S, Gong Q, Xing F-W. 2007. Two new synonyms of Viola Linn. (Violaceae). – J. Trop. Subtrop. Bot. 15: 366-368. [In Chinese]

Zhou Z, Gu B-J, Sun H, Zhu H, Tan Y-H. 2017. Molecular phylogenetic analyses of Euphorbiaceae tribe Epiprineae, with the description of a new genus, Tsaiodendron gen. nov., from south-western China. – Bot. J. Linn. Soc. 184: 167-184.

Zimmermann NFA, Ritz CM, Hellwig FH. 2010. Further support for the phylogenetic relationships within Euphorbia L. (Euphorbiaceae) from nrITS and trnL-trnF IGS sequence data. – Plant Syst. Evol. 286: 39-58.

Zizka G, Schneider JV. 1999. The genus Touroulia Aubl. (Quiinaceae). – Willdenowia 29: 227-234.