ERICIDAE


[Ericales+Gentianidae]


ERICALES Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 251. Jan-Apr 1820 [‘Ericeae’]

Ericopsida Bartl., Ord. Nat. Plant.: 120, 152. Sep 1830 [’Ericineae’]; Ericanae Takht., Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 221. 4 Feb 1967; Theanae R. Dahlgren ex Reveal in Phytologia 74: 179. 25 Mar 1993; Primulanae R. Dahlgren ex Reveal in Phytologia 79: 71. 29 Apr 1996; Theidae Doweld, Tent. Syst. Plant. Vasc.: xliii. 23 Dec 2001; Ericidae C. Y. Wu in Acta Phytotaxon. Sin. 40: 308. 2002

Fossils Actinocalyx bohrii from the Late Santonian to the Early Campanian of Sweden comprises hypogynous flowers with a pentamerous biserial perianth, five haplostemonous stamens and three connate carpels. The five petals are basally connate and the filaments are adnate to the corolla. The pollen grains are tricolpate with a finely foveolate exine. The ovary is trilocular, the placentation is central, the ovules are anatropous and the fruits are capsular. Paradinandra suecica from the Late Santonian to the Early Campanian of Sweden resembles Actinocalyx, although it has basally connate stamens which are arranged in an outer whorl of five and an inner whorl of ten stamens. The paired stamens were probably antepetalous and solitary stamens were possibly likewise antepetalous. There is an intrastaminal nectariferous disc. The anthers probably dehisced by apical pores or slits, and the pollen grains were tricolpate. The placentation is intrusively parietal and the ovules are campylotropous.

Paleoenkianthus sayrevillensis, from the Turonian of New Jersey, is represented by hypogynous pentamerous flowers and fruits. The petals are basally connate and have a valvate aestivation. There is one series of eight stamens with inverted anthers bearing two or three appendages at their base, and the pollen grains are probably tricolporate with reticulate exine. The four connate carpels form a quadrilocular ovary with four free styles, and developed into a capsule with septicidal-loculicidal dehiscence.

Pentapetalum trifasciculandricum, from the Turonian of New Jersey, includes pentamerous hypogynous flowers with a large number of stamens in three fascicles, and three carpels forming free styles and a trilocular ovary containing numerous ovules. ‘Pentaphylaxprotogaea, fossil fruits from the Maastrichtian of Germany, has been assigned to the extant Pentaphylacaceae, although there are several important differences. The fossils have a thick lignified pericarp and the persistent calyx lobes have unequal length. Moreover, the seeds are anatropous.

Habit Bisexual, monoecious, polygamomonoecious, dioecious, polygamodioecious or functionally monoecious, dioecious or gynodioecious, evergreen or deciduous trees, shrubs, suffrutices or lianas, or perennial, biennial or annual herbs.

Vegetative anatomy Usually with arbuscular mycorrhiza with Glomales. Phellogen ab initio superficially or deeply seated. Secondary lateral growth normal or absent. Vessel elements with scalariform or simple (sometimes reticulate) perforation plates; lateral pits usually alternate, scalariform or opposite, simple or bordered pits (vessels occasionally absent). Pit membrane remnants may occur in some species. Imperforate tracheary xylem elements tracheids or fibre tracheids with bordered pits, non-septate (sometimes also vasicentric tracheids). Wood rays uniseriate or multiseriate, usually heterocellular (sometimes homocellular), or absent. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric, reticulate, unilateral or banded (rarely aliform, confluent or scalariform), or absent. Sieve tube plastids usually Ss type (sometimes Pcf type). Nodes usually 1:1, unilacunar with one trace (rarely 3:3, trilacunar with three traces). Idioblasts with mucilage often present. Laticifers with milky latex occasionally present; ducts with gutta-percha sometimes present. Parenchyma often with idioblasts containing calciumoxalate raphides. Prismatic or acicular crystals, crystal sand, styloids or druses sometimes present.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, bristle-like, flattened, furcate, stellate or dendritic (sometimes fasciculate, T-shaped, candelabra-, funnel- or cup-shaped, rarely arachnoid, peltate or lepidote), or absent; multicellular glandular hairs with capitate head (sometimes thick and colleter-like, rarely peltate-lepidote) sometimes present.

Leaves Usually alternate (spiral or sometimes distichous, rarely tetrastichous; rarely opposite or verticillate), simple, entire, sometimes coriaceous or ericoid (rarely scale-like), with conduplicate, supervolute, involute, convolute or revolute (rarely circinnate or plicate) ptyxis. Stipules very small and caducous or absent; leaf sheath absent. Colleters often abundant. Petiole vascular bundle transection arcuate or annular (sometimes D-shaped or complex, sometimes with one or two medullary bundles). Venation pinnate, eucamptodromous, brochidodromous, craspedodromous or semicraspedodromous (rarely reticulodromous, acrodromous to palinactinodromous or actinodromous), or leaves single-veined; vascular bundles often collateral; some veins proceeding into teeth. Stomata usually anomocytic (sometimes paracytic, anisocytic, cyclocytic or actinocytic, rarely stephanocytic, staurocytic or parallelocytic). Cuticular wax crystalloids as platelets or rodlets (sometimes amorphous or as tubuli dominated by diketones), or absent. Epidermis with or without mucilage cells. Mesophyll often with calciumoxalate raphides. Mesophyll with or without sclerenchymatous idioblasts containing brachysclereids, osteosclereids and other kinds of sclereids. Secretory oil cavities present or absent. Ducts with gutta-percha sometimes present. Leaf margin usually serrate or entire (sometimes crenate). Leaf tooth apex often widened, translucent, persistent, sometimes gland-tipped (rarely with nectariferous glands); teeth often theoid, with single vein and opaque deciduous cap (sometimes with single multicellular hair replacing cap).

Inflorescence Usually axillary (sometimes terminal), panicle, thyrsopaniculate, thyrsoid, botryoid, fasciculate, corymbose, head-, umbel-, raceme- or spike-like, cymose or racemose (flowers sometimes solitary, axillary or terminal). Floral prophylls (bracteoles) present or absent.

Flowers Actinomorphic or zygomorphic. Usually hypogyny (sometimes epigyny or half epigyny). Sepals (two to) five (to twelve), with imbricate or valvate (sometimes open, rarely contorted) aestivation, usually persistent, free or more or less connate. Petals (three to) five (to 18), with imbricate, valvate or contorted (rarely conduplicate or subinduplicate) aestivation, usually caducous, free or more or less connate into hypocrateromorphous, discoid, campanulate, infundibuliform, tubular or urceolate corolla (sometimes nectariferous at base). Nectary and disc usually absent (nectariferous disc sometimes annular or consisting of separate parts, intrastaminal or occasionally extrastaminal, or petals sometimes nectariferous).

Androecium Stamens (two to) five to more than 1.200, in one or more whorls (sometimes in fascicles). Filaments usually free (rarely connate at base), usually free from tepals (sometimes epipetalous). Anthers dorsifixed, ventrifixed or subbasifixed, versatile or non-versatile, often inverting and finally resupinate, usually tetrasporangiate (rarely disporangiate), extrorse or introrse (rarely latrorse), longicidal (dehiscing by longitudinal or transverse slits) or poricidal (dehiscing by seemingly apical to subapical pores). Tapetum usually secretory (rarely amoeboid-periplasmodial). Staminodia sometimes present.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–6)-colpor(oid)ate, (2–)3(–5)-colpate or 3(–5)-porate (rarely pantocolporate, pantoporate or stephanocolpate), usually shed as monads (sometimes tetrads, rarely dyads, triads or polyads), usually bicellular (rarely tricellular) at dispersal. Exine tectate or semitectate (rarely intectate), usually with granular (sometimes columellate) infratectum, pertectate, reticulate, foveolate, scabrate, fossulate, areolate, rugulate, psilate, gemmate, verrucate, verruculate, echinate, scrobiculate, granulate or microgranulate.

Gynoecium Pistil composed of (one to) five to c. 20 (to c. 30) more or less connate carpels. Ovary usually superior (sometimes inferior or semi-inferior), (unilocular to) quinquelocular to c. 20(–30)-locular (sometimes incompletely septate). Style single, simple, or stylodia (three to) five to c. 20, short, free or partially connate, sometimes persistent. Stigma capitate, punctate, peltate or lobate, papillate or non-papillate, Dry or Wet type. Male flowers sometimes with pistillodium.

Ovules Placentation usually axile (sometimes apical or parietal, rarely basal; placentae often diffuse). Ovules one to numerous per carpel, usually anatropous (sometimes hemianatropous or campylotropous, rarely orthotropous), pendulous to ascending, apotropous or epitropous, usually unitegmic (sometimes bitegmic), tenuinucellar. Micropyle endostomal or bistomal (when bitegmic usually endostomal). Megagametophyte usually monosporous, Polygonum type (sometimes disporous, Allium type, rarely tetrasporous, Adoxa type). Synergids sometimes with a filiform apparatus. Antipodal cells sometimes persistent and proliferating. Endosperm development usually cellular (sometimes nuclear). Endosperm haustoria chalazal and/or micropylar or absent. Embryogenesis solanad, onagrad or asterad (sometimes caryophyllad or chenopodiad).

Fruit A loculicidal and/or septifragal capsule (rarely a pyxidium or a denticidal capsule), a berry, a drupe or a samara (rarely a nut enclosed by perianth or a drupaceous schizocarp), often with persistent and sometimes accrescent calyx.

Seeds Aril usually absent. Exotesta with inner cell walls of outer epidermis often thickened, with theoid exotestal thickenings. Perisperm not developed. Endosperm copious to sparse (rarely ruminate), oily or proteinaceous. Embryo large to small, usually straight (sometimes curved), well differentiated, usually without chlorophyll. Cotyledons two. Germination usually phanerocotylar (rarely cryptocotylar).

Cytology x = (3–)7–13(–20)

DNA Nuclear gene PI duplicated. I copy of nuclear gene RPB2 present. Mitochondrial intron coxII.i3 often lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin, gossypetin), catechins, cyanidin, davidigenin, Route I secoiridoids, Group I carbocyclic iridoids (aucubin, daphylloside, monotropein), Group II decarboxylated iridoids (e.g. cornine), Group IV carbocyclic iridoids (rarely unedoside, a C8 iridoid glycoside), Group VI secoiridoids (morroniside), Group X secoiridoids (nepetalactones, iridoidpyridine alkaloids), sarracenin, oleanolic acid derivatives, monoterpenes, diterpenes (e.g. andromedotoxin), sesquiterpenes, triterpenes, free triterpenic acids (betulinic acid, ursolic acid), dammaranes, arjunolic acid derivatives, ellagic acid (frequent to absent), gallic acid, ellagitannins (geraniin, pedunculagin, tellimagrandin II), non-hydrolyzable tannins, proanthocyanidins (prodelphinidins), caffeic acid, chlorogenic acid, phenolic heterosides, 3-galactoside, triterpene saponins, benzoquinones (e.g. arbutin, rapanone) and naphthoquinones and their derivatives (e.g. naphthoquinone derivatives of 7-methyljugone, lawsone, plumbagin, droserone), anthraquinones, polyacetate-derived arthroquinones, benzopyrones, cucurbitacins, dihydrosterculic acid, lignans (pinoresinol), myo-inositol, and ethereal oils present. Alkaloids (e.g. pyrrolizidine alkaloids, indole alkaloids and their glycosides) and cyanogenic compounds rare. Carbohydrates sometimes stored as oligosaccharides with kestose or isokestose bonds (inulin). Aluminium accumulated in some groups.

Systematics Ericales are sister-group to Asteridae except Loasales.

The clade [Balsaminaceae+[Marcgraviaceae+Tetrameristaceae]] is sister-group to all other Ericales. Potential synapomorphies are, according to Stevens (2001 onwards): vessel elements with usually simple perforation plates; vessels in radial multiples; presence of raphid sacs in stem; presence of branched sclereids; absence of druses; leaf with supervolute ptyxis; lamina elongating in bud and with obscure abaxial lines; leaf margin serrate; inflorescence racemose; abaxial petal surface with stomata; filiform appendages present along stomium; stamens as many as sepals, antesepalous, free from petals; anthers subbasifixed; ovary with mucilaginous secretions; absence of gynoecial nectary; style short, stigma little expanded; ovules bitegmic; micropyle endostomal; presence of micropylar endosperm haustorium; presence of myricetin; and absence of ellagic acid. Balsaminaceae and Tetrameristaceae share the synapomorphies: sepals petaloid, nectariferous; filaments postgenitally connate; and stylar canal present, quinqueradiate.

The leaves in this basal clade are often glabrous, simple and usually lack stipules (some Balsaminaceae have stipules). Extrafloral nectaries or glands are often present on the adaxial side of leaf (including petiole), calyx or corolla. The pollen grains are tricolporate and bicellular at dispersal, and the ovules are bitegmic and tenuinucellar. The endosperm development is cellular, endosperm haustorium is present, and the endosperm is sparse. The nodes are unilacunar in Balsaminaceae and Marcgraviaceae, and there is a caducous calyptra, developed from androecium (Balsaminaceae) or petals (Marcgraviaceae). Marcgraviaceae and Tetrameristaceae have indehiscent fruit, and Pelliciera and Marcgraviaceae have large cortical air cavities.

The Ericales main clade may be characterized by connate corolla with well developed tube, and long style. The clade [Polemoniaceae+Fouquieriaceae] is part of a trichotomy forming the base of the remaining Ericales. Fouquieria and Polemoniaceae share the potential synapomorphies (Stevens 2001 onwards): phellogen outer-cortical; vessel elements with simple perforation plates; inflorescence terminal, cymose; hypogyny; sepals free, with membranous margins and abaxial stomata; petals largely connate; presence of nectaries; filaments adnate to corolla; anther thecae largely separate, without septum; pistil composed of three connate carpels; presence of gynoecial nectary; style hollow, strongly lobate; ovules arranged in two ranks, apotropous; fruit a loculicidal capsule, with persistent calyx and seeds inserted on central columella; seed coat winged; endosperm sparse; and loss of mitochondrial intron coxII.i3. Lecythidaceae are the second lineage of the trichotomy, whereas the third monophyletic group comprises the main clade of Ericales.

The first of three clades in a basal trichotomy forming the remainder of Ericales has the topology [Sladeniaceae+[Pentaphylacaceae+Ternstroemiaceae]]. This clade has the following potential synapomorphies (Stevens 2001 onwards): vessel elements with scalariform perforation plates; bordered vessel-fibre pits; nodes 1:1; presence of mucilage cells; unicellular hairs; petiole vascular bundle transection arcuate; campanulate corolla; petals less than one centimetre long and connate only at base; absence of nectary; basifixed anthers; pollen grains 14–30 μm long; exine usually only little ornamented; placentae becoming swollen; bitegmic ovules; endostomal micropyle; inner integument three or four cell layers thick; fruit a capsule with columella and calyx persistent; presence of endosperm; and long embryo. Pentaphylax and Ternstroemiaceae share the following synapomorphies: parenchyma apotracheal; intervessel pitting opposite-scalariform; leaves with supervolute ptyxis; flowers solitary axillary or inflorescence fasciculate; corolla usually greenish to yellowish; style hollow; ovules campylotropous to hemitropous; mesotesta well developed; embryo U-shaped; and accumulation of aluminium.

The second clade in this trichotomy has the following topology: [Sapotaceae+ [Ebenaceae+[Maesaceae+[[Theophrastaceae+Samolaceae]+[Myrsinaceae+Primulaceae]]]]]. Morphological and phytochemical characters supporting this clade are few: connate petals; apotropous ovules; and absence of ellagic acid. Furthermore, bitegmic ovules and inner integument thicker than outer are two potential synapomorphies uniting Ebenaceae with the following clade. [Maesaceae+[[Theophrastaceae+Samolaceae]+[Myrsinaceae+Primulaceae]]] is a very strongly supported clade. Synapomorphies are, e.g., the following (Stevens 2001 onwards): schizogenous secretory canals with yellow, red or brown substances (e.g. tannins) sometimes present; nodes 3:3?; stomata sometimes anisocytic; presence of small immersed and often peltate glandular hairs; inflorescence racemose; petals and stamens arising from common primordia; presence of nectaries; stamens as many as petals, antepetalous; staminodia antesepalous, represented by at least a vascular trace; carpels five, antepetalous; style short, hollow; stigma capitate; placentation free central, with large placenta; ovules at least partially immersed in swollen placenta, apotropous, bitegmic; micropyle bistomal; endosperm development nuclear; tanniniferous endothelium present; seeds angular; endotesta crystalliferous; endosperm copious, sometimes with amyloid (xyloglucans) or hemicellulose, and sometimes with thick and pitted cell walls.

The clade [[Theophrastaceae+Samolaceae]+[Myrsinaceae+Primulaceae]] is characterized by wood rays at least 5-seriate; absence of uniseriate rays in woody species; presence of small immersed often peltate or glandular hairs; absence of floral prophylls (bracteoles); corolla subrotate, with imbricate aestivation; corolla tube fairly short; petals arising abaxially from common primordium; and staminal primordium larger than petal primordium. Theophrastaceae and Samolus share the characters bracts displaced up pedicels and presence of petaloid staminodia, whereas Myrsinaceae och Primulaceae share two identical deletions in plastid genendhF.

The third clade of the trichotomy comprises (1) Theaceae, (2) the clade [Symplocaceae+ [Styracaceae+Diapensiaceae]] and (3) the clade [Sarraceniaceae+[Actinidiaceae+Roridulaceae]]+ [Clethraceae+[Cyrillaceae+Ericaceae]] and may be characterized by the synapomorphies: vessel elements with scalariform perforation plates, and serrate leaves. An additional lineage is the mycotrophical holoparasitic Mitrastemma although with a highly uncertain position.

The clade [Symplocaceae+[Styracaceae+Diapensiaceae]] is characterized by the features: woody habit; racemose inflorescence; hollow style; and copious endosperm. The lineage [Styracaceae+Diapensiaceae] has pericyclic phellogen; nodes 1:1; absence of glandular hairs; spiral leaves with usually serrate margin; nectariferous disc absent or poorly developed and annular; stamens usually twice as many as petals; filaments connate at base or adnate to corolla tube; anthers basifixed, introrse, longicidal; endothecium well developed and with fibrous thickenings; pollen grains tricolporate, shed as monads and usually bicellular at dispersal; pistil composed of two to four carpels; hollow style continuing without interruption into locules; ovules numerous per carpel; unitegmic, tenuinucellar; megagametophyte usually with large amount of starch; endosperm development cellular; and fruit usually a loculicidal capsule. Furthermore, calciumoxalate crystals are often present as aggregations in idioblasts in the parenchyma.

The [[Sarraceniaceae+[Actinidiaceae+Roridulaceae]]+[Clethraceae+[Cyrillaceae+Ericaceae]]] clade has the potential synapomorphies (Stevens 2001 onwards): inflorescence racemose; anthers extrorse, inverting during development, and dehiscing by apical pores or short slits; pollen grains rugulate; tectum and foot layer solid; infratectum granular; pistil composed of three carpels, with median carpel adaxial, or five antepetalous carpels; style impressed into ovary apex; ovules numerous per carpel; endothelium present; fruit a capsule; exotesta with strongly thickened inner cell walls; endosperm copious; and absence of mitochondrial intron coxII.i3. The clade [Sarraceniaceae+[Actinidiaceae+Roridulaceae]] is characterized by the features: absence of nectary; stigma Dry type; presence of hypostase; and presence of Route I secoiridoids. The lineage [Clethraceae+[Cyrillaceae+Ericaceae]] has the synapomorphies: phellogen pericyclic; absence of pericyclic fibres; leaves spiral; inflorescence racemose; absence of floral prophylls; flowers pendulous; basal part of ovary wall nectariferous; stamens twice as many as sepals; style hollow; endosperm with micropylar and chalazal haustoria; testa reduced; embryo terete; and presence of ellagic acid. Finally, Cyrillaceae and Ericaceae share the synapomorphies: presence of colleters; connate petals; stigma Wet type; and presence of myricetin.

The strongly supported clade [[Sarraceniaceae+[Actinidiaceae+Roridulaceae]]+[Clethraceae+[Cyrillaceae+Ericaceae]]] has the potential synapomorphies (Stevens 2001 onwards; Löfstrand & Schönenberger 2015): inflorescence racemose; anthers attached adaxially, extrorse, inverting during development, and dehiscing by apical pores or short slits; pollen grains rugulate; tectum and foot layer solid; infratectum granular; depression at ovary-to-style transition; pistil composed of three carpels, with median carpel adaxial, or five antepetalous carpels; style impressed into ovary apex; ovules numerous per carpel; endothelium present; fruit a capsule; exotesta with strongly thickened inner cell walls; endosperm copious; and absence of mitochondrial intron coxII.i3. The clade [Sarraceniaceae+[Actinidiaceae+Roridulaceae]] is characterized by features such as: petals thick to massive; nectary absent; polystemony; stigma Dry type; hypostase present; and Route I secoiridoids present. The lineage [Actinidiaceae+Roridulaceae] is characterized by, e.g.: presence of calcium oxalate raphides; mucilage cells; inner gynoecium surface secretory; and synlateral vasculature absent from ovary. The clade [Clethraceae+[Cyrillaceae+Ericaceae]] has the synapomorphies: phellogen pericyclic; absence of pericyclic fibres; leaves spiral; inflorescence racemose; absence of floral prophylls; flowers pendulous; androecium two-worled; basal part of ovary wall nectariferous; stamens twice as many as sepals; style hollow; endosperm with micropylar and chalazal haustoria; testa reduced; embryo terete; and presence of ellagic acid. Finally, Cyrillaceae and Ericaceae share the synapomorphies: presence of colleters; connate petals; stigma Wet type; and presence of myricetin.

Cladogram of Ericales based on DNA sequence data (Anderberg & Zhang 2002; Schönenberger & al. 2005; etc.). Only strongly supported groups (bootstrap support 90% to 100%) are shown. The clade [Balsaminaceae+[Marcgraviaceae+Tetrameristaceae]] as sister-group to the remainder is recovered here, which mirrors the usual topology; the relative position of these three groups varies, however (e.g. Geuten & al. 2004). Mitrastemon (Mitrastemonaceae) may be sister to Lecythidaceae and [Mitrastemonaceae+Lecythidaceae] sister to the remaining Ericales except balsaminoids (Rose & al. 2018).

ACTINIDIACEAE Gilg et Werderm.

( Back to Ericales )

Gilg et Werdermann in Engler et Prantl, Nat. Pflanzenfam., ed. 2, 21: 36. Dec 1925, nom. cons.

Saurauiaceae Griseb., Grundr. Syst. Bot.: 98. 1-2 Jun 1854 [’Sauraujeae’], nom. cons.; Actinidiales Takht. ex Reveal in Phytologia 74: 174. 25 Mar 1993

Genera/species 3/360

Distribution Tropical and subtropical regions of East and Southeast Asia, the Himalayas, Malesia to New Guinea, northeastern Queensland, Solomon Islands, Fiji, Mexico, Central America, the Andes to Chile.

Fossils Late Cretaceous records of Actinidiaceae are known from North America and Europe and they are found at many Cenozoic sites in the Northern Hemisphere. Saurauia alenae and S. antiqua, anatropous seeds with reticulate surface, have been found in the Late Turonian to the Maastrichtian of Central Europe, and fossils similar to Actinidia are recorded from the Late Eocene onwards. Actinidiophyllum has been described from Cenozoic strata in Japan. Parasaurauia allonensis and Glandulocalyx, represented by flowers with free pentamerous perianth, ten stamens in two series and three carpels with free styles, was described from the Late Cretaceous (Late Santonian/Early Campanian) of Georgia in the United States as sister-group to [Actinidia+Saurauia] (Keller & al. 1996). Leaf impressions resembling Saurauia are known from mid-Eocene layers of North America.

Habit Bisexual, morphologically dioecious (Clematoclethra), functionally dioecious or monoecious, evergreen or deciduous trees, shrubs or lianas.

Vegetative anatomy Phellogen ab initio superficially or deeply seated. Medulla often septate by diaphragms. Endodermis prominent. Pericycle with continuous ring of sclerenchyma. Vessel elements dimorphic, with scalariform or simple (sometimes reticulate) perforation plates; lateral pits usually opposite (sometimes scalariform or alternate), simple or bordered pits. Imperforate tracheary xylem elements tracheids or fibre tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric or banded. Sieve tube plastids S type. Nodes usually 1:1, unilacunar with one leaf trace (rarely 3:3, trilacunar with three traces). Parenchyma with idioblasts (raphide cells) containing raphides; calciumoxalate as crystal sand present in at least Clematoclethra.

Trichomes Hairs multicellular, uniseriate, often bristle-like or flattened, or branched, stellate or dendritic; glandular hairs, short and long, sometimes present.

Leaves Usually alternate (spiral; rarely opposite), simple, entire, with conduplicate ptyxis. Stipules very small and caducous or absent; leaf sheath absent. Petiole vascular bundle transection deeply arcuate with wing bundles (Actinidia), or annular (sometimes with medullary bundles). Venation usually pinnate, camptodromous (sometimes subpalmate); some veins proceeding into teeth. Stomata usually anomocytic (sometimes paracytic). Cuticular wax crystalloids as platelets or transversely ridged rodlets. Mesophyll with calciumoxalate raphides. Leaf margin usually serrate (sometimes entire); tooth apices widened, translucent, persistent.

Inflorescence Axillary, usually thyrsopaniculate etc. (flowers sometimes solitary, axillary). Floral prophylls (bracteoles) present or absent.

Flowers Actinomorphic. Hypogyny. Sepals (three to) five (to eight), with imbricate quincuncial aestivation, usually persistent, free. Petals (three to) five (to nine), with imbricate quincuncial aestivation, caducous, free or connate at base, sometimes nectariferous at base. Nectary usually absent. Disc absent.

Androecium Stamens c. 20 to c. 240 (in Clematoclethra ten), in two or more whorls (primarily diplostemonous), usually inflexed in bud (not in Saurauia), sometimes in five antepetalous fascicles. Filaments usually free (rarely connate at base), usually free from petals (sometimes epipetalous). Anthers dorsifixed, versatile, late inverted (finally resupinate), tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal or short slits widening at apex) or poricidal (dehiscing by seemingly subapical pores). Tapetum secretory, with multinucleate cells (sometimes with fused nuclei). Female flowers sometimes with staminodia?

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (sometimes tetracolporate), usually shed as monads (rarely tetrads), bicellular at dispersal. Exine tectate, with granular infratectum, imperforate, psilate, microgranulate or rugulate, often transversely striate.

Gynoecium Pistil composed of (three to) five to c. 20 incompletely connate synascidiate carpels. Ovary superior, (trilocular to) quinquelocular to 20-locular (sometimes incompletely septate). Stylodia (three to) five to c. 20, short, free or partially connate, sometimes impressed, sometimes persistent, or style single, simple and hollow (Clematoclethra; in Actinidia furrowed). Stigmas capitate, peltate or lobate, papillate, Dry type. Male flowers sometimes with pistillodia?

Ovules Placentation axile. Ovules usually numerous (in Clematoclethra approx. ten) per carpel, anatropous, unitegmic, tenuinucellar. Integument six to nine cell layers thick. Hypostase well developed. Parietal tissue approx. three cell layers thick. Nucellar cap approx. three cell layers thick. Megasporocytes usually one (occasionally several, archespore multicellular). Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustoria? Embryogenesis solanad. Polyembryony often occurring.

Fruit Usually a berry (sometimes a loculicidal capsule), often with persistent calyx; seeds embedded in pulp formed by placentae.

Seeds Aril usually absent (present in Actinidia). Testa multiplicative. Exotesta with inner cell walls of outer epidermis thick, with theoid exotestal thickenings. Endotesta? Perisperm not developed. Endosperm copious, oily or proteinaceous. Embryo large, usually straight (sometimes curved), well differentiated, without chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology n = 20, 24, 29, 30, 39 (x = 12 in Clematoclethra; x = 13 in Saurauia; x = 29 in Actinidia) – Polyploidy frequently occurring.

DNA Horizontal transfer of mitochondrial gene rps2 in Actinidia. Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin?), catechins, Route I secoiridoids, Group X secoiridoids (nepetalactones, iridoidpyridine alkaloids), gallic acid, proanthocyanidins (cyanidin, prodelphinidin), and polyacetate-derived arthroquinones present. Actinidin (a proteinase) present in Actinidia. Alkaloids usually absent (matatabi lactone and actinidine present). Ellagic acid, saponins, and cyanogenic compounds not found.

Use Ornamental plants, fruits.

Systematics Clematoclethra (1; C. scandens; western and central China), Actinidia (c 60; southern and eastern China, the Korean Peninsula, Japan, Siberia, Southeast Asia), Saurauia (c 300; tropical Asia, the Himalayas, tropical and subtropical regions of East and Southeast Asia, Malesia to New Guinea, northeastern Queensland, Solomon Islands, Fiji, Mexico and Central America, northern Andes to Chile).

Actinidiaceae are sister-group to Roridula (Roridulaceae).

Clematoclethra differs from Actinidia and Saurauia, e.g., in having ten (instead of numerous) stamens and a single hollow style, and in being morphologically dioecious. The topology [Clematoclethra+[Actinidia+Saurauia]] was suggested by Friis & al. (2011). Two geographical lineages were identified by Löfstrand & Schönenberger (2015) in Saurauia. One lineage is characterized by choripetaly and free styles, whereas the second lineage has sympetaly and partially united styles. Gynoecium merism and base chromosome numbers are additional characters.

BALSAMINACEAE A. Rich.

( Back to Ericales )

Richard in J. B. G. M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 2: 173. 31 Dec 1822 [’Balsamineae’], nom. cons.

Balsaminales Bercht. et J. Presl, Přir. Rostlin: 221. Jan-Apr 1820 [‘Balsamineae’]; Hydroceraceae Wilbrand, Nat. Pflanzenfam.: 26. Mai-Dec 1834 [’Hydrocereae’], nom. illeg.; Impatientaceae Lem., Ill. Hort. 1: ad t. 9. Mar 1854 [’Impatientiaceae’]; Balsaminineae Engl., Syllabus, ed. 2: 146. Mai 1898; Balsaminanae Doweld, Tent. Syst. Plant. Vasc.: xliv. 23 Dec 2001

Genera/species 2/>1.000

Distribution Tropical and subtropical Africa, Madagascar, tropical Asia to New Guinea, with their largest diversity in Madagascar and Southeast Asia, few species in temperate parts of Eurasia, Africa and North America.

Fossils Unknown.

Habit Bisexual, although usually functionally monoecious due to extreme protandry, usually perennial or annual herbs (rarely partially woody). Stem more or less succulent, often almost translucent. Impatiens tuberosa and the epiphytic I. etindensis with large stem tubers. Numerous species are helophytes.

Vegetative anatomy Phellogen? Primary vascular tissue a cylinder of vascular bundles. Secondary lateral growth usually absent. Wood paedomorphic. Vessels solitary. Vessel elements with simple perforation plates, lateral pits? Imperforate tracheary xylem elements? Wood rays absent. Axial parenchyma? Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Sclerenchyma and sclereids absent. Idioblasts with mucilage present. Cortex with calciumoxalate raphides in raphid sacs.

Trichomes Hairs usually absent.

Leaves Usually alternate (spiral; rarely opposite or verticillate), simple, entire, with involute ptyxis. Stipules and leaf sheath absent. Petiole often with glands (rarely with extrafloral nectaries or foliaceous outgrowths at leaf base, petiole or stem). Petiole vascular bundle transection arcuate. Venation pinnate. Stomata usually anomocytic (sometimes almost anisocytic). Cuticular wax crystalloids? Hydathodes abundant. Mesophyll with calciumoxalate raphides. Leaf margin usually serrate (sometimes crenate or entire); teeth apiculate, basal teeth often with nectariferous glands.

Inflorescence Axillary, raceme or umbel-like. Floral prophylls (bracteoles) sometimes absent.

Flowers Zygomorphic, usually resupinate (inverting during growth). Hypogyny. Sepals usually three (sometimes five), with imbricate aestivation, caducous, free, two lateral abaxial sepals reduced and small or absent, median adaxial sepal petaloid, usually with nectariferous spur (absent in some Malagasy species) with secretory cells on inner side, two abaxial/upper sepals very small or absent. Petals five, unequal in size, with imbricate aestivation, dorsal petal free, flat or cucullate, four lower/lateral petals usually pairwise connate (in Hydrocera free); when three sepals, then adaxial petal often with sepaloid keel. Disc absent.

Androecium Stamens five, haplostemonous, antesepalous, alternipetalous. Filaments short, stout, connate at apex and forming ring around gynoecium, upper filaments slightly longer than lower ones, free from tepals. Anthers ab initio connate into cucullate calyptra above stigma, finally coming loose at base and uplifted by accrescent gynoecium, dorsifixed to subbasifixed, non-versatile, usually dithecal (sometimes polythecal and septate by transverse trabeculae), tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–5)-colpate or 3(–5)-porate, starchy, shed as monads, usually bicellular (rarely tricellular) at dispersal. Exine semitectate, with granular infratectum, reticulate; with raphides and with cellulose threads adhering pollen grains to anther.

Gynoecium Pistil composed of (four or) five connate antepetalous carpels; when carpels four, then adaxial carpel larger. Ovary superior, (quadrilocular or) quinquelocular. Style single, very short, or absent. Stigmas usually one or (four or) five, relatively wide, non-papillate, Wet type. Pistillodium absent.

Ovules Placentation axile. Ovules usually numerous (in Hydrocera one to three) per carpel, usually anatropous (rarely hemitropous), pendulous, apotropous, usually (incompletely) bitegmic (sometimes unitegmic), incompletely tenuinucellar. Micropyle endostomal. Outer integument four to ten cell layers thick (in Hydrocera six to eight cell layers thick). Inner integument three to six cell layers thick. Micropylar epistase present. Megagametophyte usually monosporous, Polygonum type (sometimes disporous, 8-nucleate, Allium type), finally strongly prolonged. Endosperm development helobial (cellular?). Endosperm haustorium chalazal (in Hydrocera also micropylar). Embryogenesis onagrad.

Fruit Usually a loculicidal and septifragal carnose explosion capsule, dehiscing by capsule walls rolling in from base due to tensions in fleshy convex fruit wall; tensions liberated at slightest touch by bursting of wall along septa (in Hydrocera a drupaceous schizocarp with hard endocarp splitting into five mericarps each with one seed and two air chambers).

Seeds Seed pachychalazal. Seed mucilaginous hairs sclerotized, with spiral thickenings. Aril? Calciumoxalate raphide bundles abundant. Exotesta lignified, thickened. Mesotesta crushed. Endotesta? Tegmen? Testa in Hydrocera sclerotized, consisting of six to eight layers of thickened cells and five layers of unthickened cells. Perisperm not developed. Endosperm thin, rich in lipids, poor in starch. Embryo large, straight, well differentiated, without chlorophyll. Cotyledons two, large, planoconvex. Germination phanerocotylar.

Cytology n = (3–)7–10 (or more, up to 33; Impatiens), n = 8 (Hydrocera)

DNA Intron present in mitochondrial gene coxII.i3. Duplication of class B DEF genes.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin?), cyanidin, non-hydrolyzable tannins, proanthocyanidins (prodelphinidins), and naphthoquinones and their derivatives (e.g. lawsone) present. Ellagic acid, alkaloids, saponins, and cyanogenic compounds not found. Seed oils with glycerides of acetic acid and parinaric acid. Xyloclucans sometimes present in endosperm.

Use Ornamental plants.

Systematics Hydrocera (1; H. triflora; India, Indochina); Impatiens (>1.000; tropical and subtropical Africa, Madagascar, tropical Asia to southern China and New Guinea, with their largest diversity in Madagascar and mountain regions in India and Southeast Asia, few species in temperate parts of Eurasia, Africa and North America).

Balsaminaceae are probably sister to Tetrameristaceae.

CLETHRACEAE Klotzsch

( Back to Ericales )

Klotzsch in Linnaea 24: 12. Mai 1851, nom. cons.

Genera/species 2/90–95

Distribution Madeira, East Asia to the Korean Peninsula, Japan and Taiwan, Hainan, Southeast Asia, Malesia to New Guinea, eastern and southeastern United States, Mexico, tropical America.

Fossils Two species of Clethra are known from the Miocene of Europe. In addition several fossilized capsules from Maastrichtian sediments in Europe have been assigned to Clethraceae, although their systematic affiliation may be questioned, such as Disoclethra with three species, Purdiaeopsis campanulatus and Valvaecarpus with four species. A fossil flower, Glandulocalyx upatoiensis, from the Santonian of Georgia has been attributed to Actinidiaceae or Clethraceae by Schönenberger & al. (2012).

Habit Bisexual (rarely functionally gynodioecious), evergreen or deciduous trees or shrubs.

Vegetative anatomy Arbuscular mycorrhiza present. Phellogen ab initio pericyclic. Stem in Clethra with prominent endodermis and heterogeneous medulla. Vessel elements with scalariform perforation plates (often with numerous cross-bars); lateral pits opposite or alternate, bordered pits. Vestured pits sometimes present. Imperforate tracheary xylem elements tracheids or fibre tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Raphide cells absent.

Trichomes Hairs multicellular, uniseriate or tufted and/or stellate.

Leaves Alternate (spiral), simple, entire, sometimes coriaceous, with conduplicate-subplicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate or annular; petiole with medullary bundle. Venation pinnate, eucamptodromous, brochidodromous or semicraspedodromous (in Purdiaea acrodromous to palinactinodromous). Stomata anomocytic, anisocytic, paracytic or actinocytic. Cuticular wax crystalloids? Domatia as hair tufts present in some species. Petiole and phloem with secretory cells. Calciumoxalate druses abundant. Leaf margins usually serrate or glandular serrate (sometimes entire).

Inflorescence Terminal or axillary, simple racemes, or paniculate, fasciculate or umbel-like cymose. Bracts often caducous (in Purdiaea large). Floral prophylls (bracteoles) absent.

Flowers Actinomorphic or slightly zygomorphic, small. Pedicel articulated. Hypogyny. Sepals five (or six), with imbricate quincuncial aestivation, persistent, free or partially connate, sometimes unequal in length. Petals five (or six), with imbricate quincuncial aestivation, caducous, usually free (rarely connate below). Ovary base often nectariferous. Disc absent.

Androecium Stamens usually 5+5 (rarely 6+6; in Purdiaea with outer stamens alternipetalous), diplostemonous (often secondarily obdiplostemonous). Filaments free from each other, usually free from tepals (sometimes adnate to petal bases). Anthers bilobate-sagittate to caudate (seemingly apically prolonged), ventrifixed (dorsifixed?), versatile, late inverted (finally resupinated), tetrasporangiate, at anthesis inverted from extrorse to introrse, poricidal (dehiscing by seemingly apical pores or short slits). Tapetum secretory, with binucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate, shed as monads, bicellular at dispersal. Exine tectate, with granular infratectum, rugulate or psilate.

Gynoecium Pistil composed of three (to five) connate carpels. Ovary superior, usually trilocular (rarely quadri- or quinquelocular). Style single, simple. Stigma simple or usually trilobate (rarely quadri- or quinquelobate), papillate, Dry type. Pistillodium absent.

Ovules Placentation usually axile (in Purdiaea apical). Ovules few to numerous (in Purdiaea one) per carpel, usually anatropous (in Purdiaea orthotropous, pendulous), unitegmic, tenuinucellar. Integument ? cell layers thick (in Purdiaea gradually degenerating). Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustoria chalazal and micropylar. Embryogenesis asterad.

Fruit Usually a loculicidal capsule, sometimes with persistent calyx (in Purdiaea a nut).

Seeds Aril absent. Seed coat often winged. Testa consisting of thin exotesta, with theoid exotestal thickenings (testa in Purdiaea indistinct, disappearing). Perisperm not developed. Endosperm copious, fleshy, oily and with hemicellulose. Embryo short, straight, well differentiated, chlorophyll? Cotyledons two, short. Germination phanerocotylar.

Cytology n = 8 – Polyploidy occurring.

DNA Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (quercetin), cyanidin, triterpenes, ellagic and gallic acids, and proanthocyanidins (prodelphinidin) present. Iridoids? Alkaloids and cyanogenic compounds not found. Carbohydrates stored as oligosaccharides with kestose or isokestose bonds.

Use Ornamental plants, timber, carpentries.

Systematics Clethra (80–85; China, the Korean Peninsula, Japan, Taiwan, Southeast Asia, Malesia to New Guinea, eastern and southeastern United States [C. alnifolia], Mexico, Central America, the West Indies, tropical South America, one species, C. arborea, on Madeira), Purdiaea (12; southeastern United States, Central America, Cuba, Venezuela, Ecuador, Peru, with their highest diversity on Cuba).

Clethraceae are sister-group to [Cyrillaceae+Ericaceae].

Species delimitation in Clethra is difficult. Clethra arborea (Madeira) may be sister to C. alnifolia of eastern North America.

CYRILLACEAE (Torr. et A. Gray) Lindl.

( Back to Ericales )

Lindley, Veg. Kingd.: 445. 14-28 Mar 1846, nom. cons.

Cyrillales Doweld, Tent. Syst. Plant. Vasc.: xliv. 23 Dec 2001

Genera/species 2/2

Distribution Coastal plains in southeastern United States, the West Indies, Central America, northern South America.

Fossils Fossil wood and pollen grains assigned to Cyrilla are found in Oligocene layers in North America. Cenozoic brown coal in western Europe contains fossil wood similar to that in Cyrilla. The fossil fruits of Epacridicarpum from the Late Cretaceous and the Cenozoic of Europe have also been assigned to Cyrillaceae, but this systematic placement is doubtful.

Habit Bisexual, evergreen or deciduous shrubs or small trees.

Vegetative anatomy Phellogen ab initio pericyclic. Vessel elements with scalariform perforation plates; lateral pits scalariform or opposite, bordered pits. Imperforate tracheary xylem elements tracheids or fibre tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse. Sieve tube plastids Pcf type (with protein crystals and fibrils, but no starch). Nodes 1:1, unilacunar with one leaf trace. Raphid cells absent. Wood ray cells sometimes with prismatic calciumoxalate crystals.

Trichomes Hairs absent.

Leaves Alternate (spiral), simple, entire, sometimes coriaceous, with supervolute ptyxis. Stipules and leaf sheath absent; lateral or sublateral red or blackish ligulate? glandular structures – colleters – at buds and bracts may be reduced stipules. Petiole vascular bundle transection annular, complex or deeply concave. Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Epidermis with or without mucilage cells. Mesophyll with calciumoxalate as druses and solitary prismatic crystals. Leaf margin entire.

Inflorescence Terminal or axillary, racemes. Floral prophylls (bracteoles) absent?

Flowers Actinomorphic (occasionally slightly zygomorphic). Hypogyny. Sepals five (to seven), with open (or imbricate quincuncial) aestivation, unequal in size, persistent, connate at base. Petals five (to seven), with imbricate quincuncial aestivation, free or connate at base, in Cyrilla nectariferous. Disc intrastaminal (in Cliftonia with nectaries?).

Androecium Stamens five (to seven), haplostemonous, antesepalous (inner whorl absent; Cyrilla), or (5+5) 6+6 or 7+7, diplostemonous (Cliftonia). Filaments free from each other and from tepals. Anthers dorsifixed, not inverted at anthesis, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–6)-colporate, shed as monads, bicellular at dispersal. Exine tectate, with granular infratectum, microperforate, smooth.

Gynoecium Pistil composed of (two to) five connate carpels. Ovary superior, (bilocular to) quinquelocular. Basal part of ovary wall nectariferous? Style single, simple, very short, or absent. Stigma punctate or (bilobate to) quinquelobate, non-papillate, Dry type. Pistillodium absent.

Ovules Placentation axile or apical. Ovules one to three per carpel, anatropous, pendulous, usually apotropous, unitegmic, tenuinucellar. Integument four to seven cell layers thick, sometimes vascularized, gradually degenerating. Megagametophyte monosporous, Polygonum type (in at least Cliftonia sometimes also aposporous Hieracium type). Antipodal cells persistent. Endosperm development cellular. Endosperm haustoria chalazal and micropylar. Embryogenesis?

Fruit A one- to four-seeded dry drupe or a one-seeded two- to five-winged samara, often with persistent and accrescent calyx. Pericarp with tannins and druses.

Seeds Aril absent. Testa indistinct, early disappearing, with theoid exotestal thickenings? Perisperm not developed. Endosperm moderately developed, fleshy. Embryo large, straight, well differentiated, chlorophyll? Cotyledons two, small. Germination phanerocotylar?

Cytology n = 20

DNA

Phytochemistry Insufficiently known. Flavonols (kaempferol, quercetin, myricetin), cyanidin, and ellagic acid (Cyrilla) present. Alkaloids and cyanogenic compounds not found. Condensed and hydrolyzable tannins? Iridoids?

Use Ornamental plants.

Systematics Cyrilla (1; C. racemiflora; southeastern United States to northern South America), Cliftonia (1; C. monophylla; southeastern United States).

Cyrillaceae are sister to Ericaceae.

DIAPENSIACEAE (Link) Lindl.

( Back to Ericales )

Lindley, Intr. Nat. Syst. Bot., ed. 2: 233. 13 Jun 1836, nom. cons.

Galacinaceae D. Don in Edinburgh New Philos. J. 6: 53. Oct-Dec 1828 [’Galacinae’]; Diapensiineae Link, Handbuch 1: 595. Jan-Aug 1829 [‘Diapensiaceae’]; Diapensiales Engl. et Gilg in Engler, Syllabus, ed. 9-10: 314. Nov-Dec 1924; Diapensianae Doweld, Tent. Syst. Plant. Vasc.: xlv. 23 Dec 2001

Genera/species 5/12

Distribution Cold-temperate and arctic-alpine regions on the Northern Hemisphere, the Himalayas, eastern Tibet, western China, northern Burma, Japan, Taiwan, southeastern United States.

Fossils Uncertain. Actinocalyx bohrii was described from the Late Cretaceous of southern Sweden. It had separate stylodia and the pollen grains were smaller than in extant Diapensiaceae. However, the systematic affiliation is questioned (Martínez-Millán 2010).

Habit Bisexual, evergreen dwarf shrubs or perennial herbs.

Vegetative anatomy Mycorrhiza ectotrophic and endotrophic. Phellogen ab initio usually pericyclic (sometimes superficial). Pericyclic fibres usually absent (present in Shortia). Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits? Imperforate tracheary xylem elements ? with bordered pits. Wood rays absent. Axial parenchyma? Sieve tube plastids S type. Nodes usually 3:3, trilacunar with three leaf traces (in Pyxidanthera 1:1, unilacunar with one trace). Calciumoxalate crystals (single or compound) sometimes present.

Trichomes Hairs absent (always?); glandular hairs absent.

Leaves Alternate (spiral), simple, entire, coriaceous, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate to annular; medullary bundles sometimes present. Venation pinnate to palmate or leaves uninerved, in Diapensia and Pyxidanthera inverted eucamptodromous (lateral veins curved at base, narrowing without fusing with main vein or other lateral veins), in Galax and Shortia actinodromous or camptodromous, in Berneuxia brochidodromous; secondary veins subpinnate to palmate. Stomata usually anomocytic, without subsidiary cells (rarely anisocytic). Cuticular wax crystalloids? Calciumoxalate as groups of crystals or single crystals (Galax). Leaf margin serrate or entire.

Inflorescence Terminal, raceme-like cymose, or flowers solitary terminal (sometimes axillary).

Flowers Actinomorphic. Hypogyny. Sepals five, with imbricate aestivation, persistent, free or connate into tube. Petals five, usually with imbricate (rarely contorted) aestivation, caducous, usually connate below (in Galax free or almost free), sometimes dentate at apex. Basal part of ovary in some species nectar-producing. Disc absent or strongly reduced.

Androecium Stamens five, haplostemonous, antesepalous, alternipetalous. Filaments flattened, usually free (in Galax connate at base), at least outer staminal whorl epipetalous. Anthers usually basifixed (or transverse with horizontal thecae), incurved (inverted during development, base becoming directed upwards), non-versatile, in Galax and Pyxidanthera with basal appendages, usually tetrasporangiate (in Galax disporangiate), introrse, longicidal (dehiscing by longitudinal [Berneuxia, Diapensia, Shortia] or transverse [Galax, Pyxidanthera] slits). Tapetum secretory, with binucleate cells. Staminodia absent in Diapensia and Pyxidanthera; in Berneuxia, Galax and Shortia five epipetalous antepetalous inner staminodia alternating with five fertile outer (alternipetalous) stamens.

Pollen grains Microsporogenesis simultaneous. Pollen grains tri- or hexacolp(oroid)ate, shed as monads, tricellular (bicellular?) at dispersal. Exine semitectate, with columellate infratectum, reticulate, or intectate.

Gynoecium Pistil composed of three connate carpels; median carpel adaxial. Ovary superior, trilocular, sometimes nectariferous. Style single, usually simple (in Diapensia trilobate), hollow (with stylar canal). Stigma usually single, shortly trifid (stigmas in Diapensia capitate), non-papillate, Wet type. Pistillodium absent.

Ovules Placentation usually axile (sometimes parietal). Ovules several to numerous per carpel, usually anatropous (sometimes hemianatropous or campylotropous), unitegmic, tenuinucellar. Integument five to seven cell layers thick. Megagametophyte monosporous, Polygonum type (in at least Pyxidanthera with large amount of starch). Synergids in Diapensia with a filiform apparatus. Antipodal cells sometimes proliferating (in Shortia up to c. 40 cells), persistent. Endosperm development cellular. Endosperm haustoria absent. Embryogenesis solanad?

Fruit A loculicidal capsule.

Seeds Aril absent? Exotesta two or three cell layers thick, with thick inner cell walls, with theoid exotestal thickenings. Endotesta? Perisperm not developed. Endosperm copious, fleshy, containing lipids. Embryo relatively large, straight to somewhat curved, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = 6 (tetraploidy occurring in Galax urceolata)

DNA

Phytochemistry Flavonols (kaempferol, quercetin, gossypetin), ellagic and gallic acids present. Ursolic acid, proanthocyanidins, alkaloids, and cyanogenic compounds not found. Iridoids? Aluminium accumulated.

Use Ornamental plants.

Systematics Galax (1; G. urceolata; in and near the Appalachian Mountains in eastern United States), Pyxidanthera (1; P. barbulata; coastal regions in eastern United States), Diapensia (4; D. lapponica: arctic-alpine Europe; D. himalaica: the Himalayas, Burma, Yunnan, Xizang; D. purpurea: Yunnan, Sichuan; D. wardii: southeastern Xizang), Berneuxia (1; B. thibetica; eastern Himalayas, western China), Shortia (5; S. exappendiculata: Taiwan; S. galacifolia: the Appalachian Mountains in southeastern United States; S. sinensis: China; S. soldanelloides, S. uniflora: to Japan, Yakushima).

Diapensiaceae may be sister to Styracaceae, although the support is sometimes fairly weak.

Galax and Pyxidanthera are successive sister-groups to the remaining Diapensiaceae.

Cladogram of Diapensiaceae based on DNA sequence data and morphology (Rönblom & Anderberg 2002).

EBENACEAE Gürcke

( Back to Ericales )

Gürcke in Engler et Prantl, Nat. Pflanzenfam., IV, 1: 153. Dec 1891, nom. cons.

Guaiacanaceae Juss., Gen. Plant.: 155. 4 Aug 1789 [’Guiacanae’]; Diospyraceae Vest, Anleit. Stud. Bot.: 271, 294. 1818 [’Diospyroideae’]; Diospyropsida Brongn., Enum. Plant. Mus. Paris: xxi, 72. 12 Aug 1843 [’Diospyroideae’]; Diospyrales Prantl, Lehrb. Bot.: 216. 20 Apr 1874 [’Diospyrinae’]; Ebenales Engl., Syllabus: 155. Apr 1892; Ebenineae Bessey in C. K. Adams, Johnson’s Universal Cyclop. 8: 463. 15 Nov 1895 [‘Ebenales’]; Diospyrineae Engl., Syllabus, ed. 2: 170. Mai 1898; Lissocarpaceae Gilg in Engler et Gilg, Syllabus, ed. 9-10: 324. 6 Nov 1924, nom. cons.

Genera/species 2/550–600

Distribution Temperate to tropical regions on both hemispheres, with their highest diversity in Madagascar and Malesia; some species in temperate parts of eastern North America, India, eastern China, and Japan.

Fossils Leaves, flowers and fruits attributed to Ebenaceae are known from the Eocene onwards, also from Europe. Austrodiospyros cryptostoma is represented by male flowers and leaves from the Eocene of southeastern Australia. Diospyros pollen have been found in Eocene strata of North America.

Habit Usually dioecious (rarely monoecious, polygamomonoecious or bisexual), usually evergreen (rarely deciduous) trees or shrubs. Bark, roots and heartwood often black or, in air, blackening.

Vegetative anatomy Phellogen ab initio usually superficial (sometimes pericyclic). Primary medullary rays narrow. Vessel elements usually with simple (rarely scalariform) perforation plates; lateral pits alternate or opposite, bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple pits, non-septate. Wood rays uniseriate or multiseriate. heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric, reticulate, or banded. Wood elements often storied. Sieve tube plastids S type. Nodes usually 1:1, unilacunar with one leaf trace (sometimes 1:3 or 3:3, unilacunar or trilacunar with three traces). Heartwood with gum-like substances. Sclereids present. Prismatic calciumoxalate crystals frequent.

Trichomes Hairs unicellular, simple or furcate, often malpighiaceous, with branches of unequal lengths, or multicellular, uniseriate or stellate (in Lissocarpa absent); glandular hairs, sometimes peltate-lepidote.

Leaves Usually alternate (spiral or distichous; rarely opposite or verticillate), simple, entire, coriaceous, with conduplicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate. Abaxial side of lamina usually with flattened glands, extrafloral nectaries. Venation pinnate. Stomata usually anomocytic (sometimes cyclocytic or actinocytic). Cuticular wax crystalloids absent (in Lissocarpa?). Mesophyll often with sclerenchymatous idioblasts containing brachysclereids, osteosclereids or other types of sclereids. Extrafloral nectaries often present on abaxial side. Secretory cavities absent. Leaf margin usually entire.

Inflorescence Axillary fasciculate, raceme-like or paniculate cymose (flowers sometimes solitary, terminal).

Flowers Actinomorphic. Pedicel articulated. Usually hypogyny (in Lissocarpa epigyny). Sepals three to five (to eight), with valvate or imbricate aestivation, persistent, connate. Petals three to five (to eight), with contorted aestivation, connate (corolla in Lissocarpa usually with eight-lobed corona). Nectariferous disc usually absent.

Androecium Stamens (three to) twelve to 20 (to c. 100), as many as or twice or four (or more) times the number of petals, usually unequal in length, in two (to four) whorls. Filaments flattened, free or connate two, three or more together (sometimes all filaments connate into a tube), usually adnate at base to corolla tube. Anthers basifixed, non-versatile, tetrasporangiate, external anthers introrse, mid-anthers latrorse and internal anthers extrorse, usually longicidal (dehiscing by longitudinal slits; sometimes poricidal, with apical pores); connective often slightly prolonged. Tapetum secretory, with multinucleate cells. Female flowers usually with a single staminodial whorl.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (rarely tetracolporate; in Lissocarpa triporate), usually shed as monads (rarely tetrads), bicellular at dispersal. Exine tectate, with granular infratectum (Diospyros), rugulate, microrugulate, striate, gemmate or granulate (in Lissocarpa fossulate to rugulate).

Gynoecium Pistil composed of two to eight connate carpels. Ovary usually superior (in Lissocarpa inferior), usually bilocular to 16-locular; each locule usually divided by secondary septa (ovary rarely unilocular; ovary in Lissocarpa quadrilocular, not divided by secondary septa). Stylodia two to eight, free or partially connate (style in Lissocarpa single, simple, clavate). Stigmas capitate or bilobate (stigma in Lissocarpa often slightly quadrilobate), non-papillate, Dry type. Male flowers usually with pistillodium.

Ovules Placentation usually apical (in Lissocarpa axile). Ovules one or two per carpel, anatropous, pendulous, apotropous, bitegmic, tenuinucellar. Micropyle bistomal or endostomal. Outer integument three to seven cell layers thick. Inner integument five to ten cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development cellular (nuclear?). Endosperm haustoria? Embryogenesis probably chenopodiad.

Fruit Usually a berry (rarely capsule-like) with persistent and usually accrescent calyx. Pericarp with tanniniferous idioblasts.

Seeds Aril absent. Testa vascularized, with circumperipheral vascular loop surrounding seed. Tegmen? Perisperm not developed. Endosperm copious, hard, oily, with mannose-rich polysaccharides, sometimes ruminate. Embryo straight or curved, well differentiated (Lissocarpa), without chlorophyll. Cotyledons two, foliaceous. Radicula long. Germination phanerocotylar or cryptocotylar.

Cytology n = 15, 30, 45 (or more) – Polyploidy occurring.

DNA Mitochondrial coxI intron present.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, C-30-oxidized triterpenes, oleanolic acid derivatives, ellagic and gallic acids, methylated ellagic acids, condensed tannins, proanthocyanidins (prodelphinidins), saponins, naphthoquinone derivatives of 7-methyljugone and plumbagin (droserone; bark and wood blackening when substances oxidized, cf. ebony), anthraquinones, and benzopyrones present. Alkaloids and cyanogenic compounds rare. Aluminium accumulated in some species.

Use Ornamental plants, fruits, timber, medicinal plants, fish poison.

Systematics Ebenaceae may be sister-group to the clade [Maesa+[Samolus+Theophrastaceae]+ [Primulaceae+Myrsinaceae]] (Schönenberger & al. 2005).

Ebenaceae and Sapotaceae have similar malpighiaceous hairs (T-shaped with branches of unequal lengths).

Lissocarpa is sister to the remaining Ebenaceae.

Lissocarpoideae (Gilg) B. Walln. in Ann. Naturhist. Mus. Wien, Ser. B, 105: 523. 22 Apr 2004

1/8. Lissocarpa (8; northwestern South America). – Vessel elements sometimes with scalariform perforation plates. Hairs absent. Petiole sometimes with wing bundles and recurved edges. Stomata anomocytic or cyclocytic. Inflorescence subfasciculate, or flowers solitary axillary. Floral prophylls (bracteoles) large, apical. Epigyny. Sepals four (or five). Petals four (or five). Corolla with an eight-lobed corona. Stamens eight. Filaments connate. Connective prolonged. Pollen grains triporate. Ovary in Lissocarpa quadrilocular, not divided by secondary septa. Exine psilate. Pistil composed of four connate carpels. Ovary quadrilocular, without secondary septa, inferior. Style single, simple. Stigma clavate, often slightly quadrilobate, hairy at apex. Placentation axile. Seeds one or two. Endosperm bony. Embryo well differentiated. Cotyledons foliaceous. n = ? Iridoids, naphthoquinones etc.?

Ebenoideae (Juss.) Thorne et Reveal in Bot. Rev. (Lancaster) 73: 121. 29 Jun 2007

1/550–600. Diospyros (550–600; temperate to tropical regions on both hemispheres, with their highest diversity in Madagascar and Malesia). – Phellogen usually superficial (sometimes pericyclic). Cambium storied. Nodes sometimes 1:3, unilacunar with three leaf traces. Silica bodies sometimes (‘Euclea’, ‘Royena’) present. Secretory cells abundant. Hairs usually unicellular, sometimes T-shaped. Leaves usually distichous (sometimes spiral; rarely opposite), with conduplicate ptyxis. Stomata usually paracytic. Cuticular wax crystalloids absent. Inflorescence cymose, with short axis. Floral buds acute, with depressed brown hairs. Sepals three to seven. Petals three to seven, sometimes with valvate aestivation. Nectary absent. Stamens (three to) twelve to 20 (to c. 100). Anthers extrorse, often hairy. Female flowers usually with staminodia. Pollen grains usually tricolporate. Pistil composed of two to eight connate antesepalous or antepetalous carpels. Ovary locules usually divided by secondary septa. Stylodia two to eight, free or partially connate. Stigmas capitate or lobate, little expanded, Dry type. Male flowers with pistillodium. Placentation apical. Ovule often one per carpel, bitegmic. Micropyle bistomal or endostomal. Endothelium present. Fruit often with accrescent calyx. Seeds pachychalazal, often ruminate. Testa multiplicative, usually vascularized, often parenchymatous. Exotesta often fibriform or mucilaginous; exotestal cells cuboid to palisade. Endotesta often crystalliferous; endotestal cell walls often thickened. Endosperm hard, with thick cell walls. Radicula in the ‘Euclea’ and ‘Royena’ clades surrounded by ingrowth of seed coat. x = 15. Flavonols (myricetin etc.), C-30-oxidized triterpenes, proanthocyanidins (prodelphinidins), saponins, and naphthoquinone derivatives of 7-methyljugone and plumbagin present. Ellagic acid not found. – Euclea (Africa) and Royena (Africa) have sometimes been identified as the sister-group to Diospyros sensu stricto.

ERICACEAE Juss.

( Back to Ericales )

de Jussieu, Gen. Plant.: 159. 4 Aug 1789 [’Ericae’], nom. cons.

Kalmiaceae Durande, Notions Elém. Bot.: 271. 1782 [’Kalmiae’], nom. illeg.; Rhododendraceae Juss., Gen. Plant.: 158. 4 Aug 1789 [’Rhododendra’]; Rhodoraceae Vent., Tabl. Règne Vég. 2: 449. 5 Mai 1799; Ledaceae J. F. Gmel., Allg. Gesch. Pflanzengifte, ed. 2: 404. Jun 1803 [’Leda’]; Epacridaceae R. Br., Prodr. Fl. Nov.-Holl.: 535. 27 Mar 1810 [’Epacrideae’], nom. cons.; Azaleaceae Vest, Anleit. Stud. Bot.: 272, 294. 1818 [’Azaleoideae’]; Monotropaceae Nutt., Gen. N. Amer. Pl. 1: 272. 14 Jul 1818 [’Monotropeae’], nom. cons.; Vacciniaceae DC. ex Perleb, Vers. Artzneikr. Pfl.: 228. Mai 1818 [’Vaccinieae’], nom.cons.; Empetrales Bercht. et J. Presl, Přir. Rostlin: 251. Jan-Apr 1820 [‘Empetreae’]; Epacridales R. Br. ex Bercht. et J. Presl, Přir. Rostlin: 251. Jan-Apr 1820 [‘Epacrideae’]; Monotropales Bercht. et J. Presl, Přir. Rostlin: 252. Jan-Apr 1820 [‘Monotropeae’]; Empetraceae Hook. et Lindl. in W. J. Hooker, Fl. Scot.: 297. 10 Mai 1821 [’Empetreae’], nom. cons.; Pyrolaceae Lindl., Syn. Brit. Fl.: 175. 16 Mar 1829 [’Pyroleae’], nom. cons.; Empetrineae Link, Handbuch 1: 617. 4-11 Jul 1829 [‘Empetreae‘]; Epacridineae Link, Handbuch 1: 601. 4-11 Jul 1829 [‘Epacrideae‘]; Ericineae Link, Handbuch 1: 601. 4-11 Jul 1829 [‘Ericeae genuinae‘]; Vacciniales Dumort., Anal. Fam. Plant.: 28. 1829 [‘Vaccinarieae’]; Stypheliaceae Horan., Prim. Lin. Syst. Nat.: 72. 2 Nov 1834 [’Stypheliaceae (Epacrideae)’]; Arbutaceae (Meisn.) Miers in Bromhead in Mag. Nat. Hist., n.s., 4: 337, 338. Jul 1840 [’Arbuteae’]; Andromedaceae Döll, Rhein. Fl.: 428. 24-27 Mai 1843 [’Andromedeae’]; Arbutineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.]: 987. 1846; Pyrolineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.]: 987, 989. 1846 [‘Pyroleae‘]; Rhododendrineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.]: 987, 996. 1846 [‘Rhododendreae‘]; Rhodorales Horan., Char. Ess. Fam.: 105. 30 Jun 1847 [‘Rhodorastra’]; Hypopityaceae Klotzsch in Linnaea 24: 11. Mai 1851 [’Hypopithieae’]; Menziesiaceae Klotzsch in Linnaea 24: 11. Mai 1851; Siphonandraceae Klotzsch in Linnaea 24: 11. Mai 1851, nom. illeg.; Arctostaphylaceae J. Agardh, Theoria Syst. Plant.: 106. Apr-Sep 1858 [’Arctostaphyleae’]; Salaxidaceae J. Agardh, Theoria Syst. Plant.: 104. Apr-Sep 1858 [’Salaxideae’]; Diplarchaceae Klotzsch in Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1859: 15. 1857 [’Diplarchaceen’], nom. illeg.; Oxycoccaceae A. Kern., Pflanzenleben 2: 713, 714. 8 Aug 1891; Prionotaceae Hutch., Evol. Phylog. Fl. Pl.: 306. 28 Aug 1969

Genera/species c 117/3.900–3.950

Distribution Cosmopolitan, although few species in tropical lowland regions, with their largest diversity in the Himalayas to southwestern China, New Guinea, South Africa, Australia, and New Zealand.

Fossils Seeds and fruits from several genera with only extra-European recent distribution in the Northern Hemisphere, e.g. Eubotrys, Leucothoe, Lyonia and Zenobia, have been found in Late Cretaceous and Early Palaeogene strata in Europe. Diplycosiopsis walbeckensis and Viticocarpum minimum from the Maastrichtian of Germany is represented by drupes with five many-seeded and one-seeded locules, respectively. It is, however, uncertain whether they emanate from species of Ericaceae. Fossil leaves and pollen grains from supposed Styphelioideae are known from (possibly the Late Cretaceous to) the Early Palaeogene onwards in, above all, Australia.

Habit Usually bisexual (rarely monoecious or dioecious), usually evergreen (sometimes deciduous) shrubs or suffrutices (rarely trees, lianas or perennial herbs). Some genera consist of achlorophyllous and mycotrophic plants. Numerous species are xerophytic. Some species are helophytes. A starchy lignotuber is present especially in many species in mediterranean climates.

Vegetative anatomy Ectomycorrhiza usually with Basidiomycotina (i.a. Sebacinales) or often with certain Ascomycotina (particularly Pezizales, e.g. Hymenoscyphus) as intracellular hyphal complexes in root epidermis (monotropoid, ericoid or arbutoid mycorrhiza); ericoid mycorrhiza penetrates only epidermal and outer cortical cells of hair roots (consisting of endodermis, exodermis, tracheids, sieve tubes and companion cell) covered with hyphae (Hartig net and fungal mantle not formed); arbutoid mycorrhiza penetrates epidermal and outer cortical cells of hair roots, these being covered by Hartig net with hyphae following cell walls or forming complete envelope (Hartig net and fungal mantle formed); in monotropoid mycorrhiza root covered in the same way, although hyphae form peg-shaped invaginations into exodermal hair root cells (Hartig net and fungal mantle formed); arbuscular mycorrhiza present in Enkianthus; standard ectomycorrhiza not known in Ericaceae. Endophytic fungi frequently present. Phellogen ab initio usually pericyclic (sometimes superficial; absent in Monotropoideae). Pericyclic fibres little developed. Secondary lateral growth usually normal (absent in most Monotropoideae). Vessel elements usually with simple or scalariform (rarely reticulate) perforation plates; lateral pits scalariform, opposite or alternate (vessels absent in most Monotropoideae), simple and/or bordered pits. Vestured pits sometimes present. Imperforate tracheary xylem elements tracheids or fibre tracheids or libriform fibres with simple and/or bordered pits, usually non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, usually heterocellular. Axial parenchyma apotracheal diffuse (rarely diffuse-in-aggregates), or paratracheal scanty vasicentric or unilateral, or absent. Sieve tube plastids usually S type (sometimes S0 type). Endodermis rarely with suberised cell walls. Nodes usually 1:1, unilacunar with one leaf trace (rarely ≥3:≥3, trilacunar or multilacunar with three or more traces). Cortex with sclereids. Raphid cells absent. Calciumoxalate druses or single prismatic crystals often frequent.

Trichomes Hairs unicellular or multicellular, uniseriate or branched, dendritic, stellate, lepidote, bristle-like, sometimes candelabra-, funnel- or cup-shaped; glandular hairs present (sometimes peltate-lepidote), often thick and colleter-like.

Leaves Alternate (sometimes distichous or tetrastichous), opposite or verticillate, simple, entire, usually coriaceous, often ericoid (in Monotropoideae usually scale-like), with convolute, involute or revolute ptyxis. Stipules and leaf sheath absent. Colleter-like thick glandular hairs often present on adaxial side of petiole base. Petiole vascular bundle transection usually arcuate (sometimes annular). Extrafloral nectaries sometimes present on petiole or base of lamina. Venation usually pinnate (rarely palmate or parallelodromous) or leaves one-veined. Stomata usually anomocytic or paracytic (rarely parallelocytic, cyclocytic or stephanocytic). Cuticular wax crystalloids usually amorphous or as platelets (sometimes as tubuli, dominated by β-diketones, or as coiled or triangular rodlets). Epidermis with or without mucilage cells. Secretory oil cavities present or absent. Leaf margin serrate, crenate or entire; teeth united via multicellular hairs.

Inflorescence Terminal or axillary, racemes, spikes, panicles or fascicles (sometimes umbels, rarely heads or flowers solitary).

Flowers Actinomorphic or zygomorphic. Hypogyny to epigyny. Sepals (two to) four or five (to seven), with imbricate quincuncial aestivation, persistent, usually connate at base. Petals (three or) four or five (to seven), with valvate or imbricate (rarely contorted) aestivation, persistent or caducous, usually connate into campanulate, tubular or urceolate corolla (rarely free; in Richea connate into calyptra). Nectary or nectariferous disc (annular or of separate parts, intrastaminal) usually at base (sometimes at apex) of ovary (sometimes absent).

Androecium Stamens usually four or five (rarely two or three), antesepalous, alternipetalous, or 4+4, 5+5(–16), usually obdiplostemonous. Filament usually free from each other and from tepals (in, e.g., Styphelioideae often epipetalous). Anthers basifixed or dorsifixed, late inverted, finally resupinate (in Enkianthoideae, Monotropoideae and Arbutoideae sometimes not inverted), often versatile, usually free (rarely connate), often with two (rarely four) small usually apical horn-shaped outgrowths (sometimes dorsal spurs; in Vaccinioideae sometimes tubular outgrowths), usually tetrasporangiate (in Styphelioideae disporangiate), subintrorse and poricidal (dehiscing by apical pores), or introrse (rarely latrorse or extrorse) and longicidal (dehiscing by longitudinal slits; in Styphelioideae usually with a single slit). Tapetum secretory, with uni-, bi- or multinucleate cells. Staminodia absent. Secondary pollen display present in Styphelioideae.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually 3(–5)-colporate (sometimes 3(–5)-colpate, 3(–5)-colporoidate or porate), usually shed as tetrahedral tetrads (sometimes as monads, rarely as dyads, triads or polyads; in some Styphelioideae three pollen cells of tetrad degenerate), usually bicellular (sometimes tricellular) at dispersal. Exine tectate, with granular infratectum, scabrate, verrucate, rugulate, microrugulate or psilate. Viscinous threads present on pollen surface in many groups.

Gynoecium Pistil composed of (one to) four or five (to twelve) connate, usually antepetalous (in, e.g., Monotropa, Dracophyllum and Vaccinium antesepalous) carpels. Ovary superior to inferior, (unilocular to) quadri- or quinquelocular, nectariferous at base. Style single, simple, usually hollow (with stylar canal; rarely widened at apex). Stigma capitate or punctate to somewhat lobate or peltate, usually papillate, Dry or Wet type. Male flowers rarely with pistillodium.

Ovules Placentation usually axile to intrusively parietal (parietal placentation present in, e.g., Monotropoideae; rarely apical or basal). Ovules usually numerous (sometimes several, rarely single) per carpel, anatropous or hemianatropous to (almost) campylotropous, pendulous to ascending, apotropous to epitropous, unitegmic, tenuinucellar. Integument two to five cell layers thick. Megagametophyte usually monosporous, Polygonum type (in Arbutoideae sometimes disporous, Allium type). Synergids sometimes with a filiform apparatus. Antipodal cells often persistent, sometimes proliferating. Endosperm development cellular or nuclear. Endosperm haustoria chalazal and/or micropylar (rarely absent). Embryogenesis usually solanad (in Pyroleae caryophyllad).

Fruit A loculicidal or septicidal (rarely septifragal) capsule, a berry, or a drupe (with one or more pyrenes; rarely a nut surrounded by fleshy perianth), with persistent calyx.

Seeds Aril absent. Seed coat winged or unwinged. Testa usually one-layered, consisting of exotesta, with inner and radial but no outer cell walls thickened, with theoid exotestal thickenings (sometimes mucilaginous). Perisperm not developed. Endosperm copious, fleshy, often oily. Embryo straight, usually well differentiated (in Monotropoideae usually undifferentiated; in Monotropa uniflora two-celled, in M. hypopitys nine-celled, in Allotropa and Pleuricospora two- or three-celled, in Monotropsis four-celled, in Sarcodes several-celled with a globular structure, in Chimaphila undifferentiated), with or without chlorophyll. Cotyledons two, short. Germination phanerocotylar.

Cytology n = 11 (Enkianthoideae); n = 8, 13, 19, 23 etc. (Monotropoideae); n = 13 (Arbutoideae); n = 13 (Cassiopoideae); n = 12, 13 (26) (Ericoideae); n = 16 (Harrimanelloideae); n = 12 (17, 18, 24) (Vaccinioideae); n = 4, 6–13 (Styphelioideae) – Polyploidy occurring (12x in Rhododendron manipurense). Protein crystals present in nucleus in some species.

DNA Plastid gene infA lost/defunct (Andromeda, Chamaedaphne, Pyrola). Mitochondrial intron coxII.i3 lost. Mitochondrial coxI intron present in Pyrola.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin, gossypetin), cyanidin, catechins, Route I secoiridoids (also decarboxylated iridoids?), Group I carbocyclic iridoids (aucubin, daphylloside, monotropein), Group IV carbocyclic iridoids (unedoside, a C8 iridoid glycoside, in Arbutus and Arctostaphylos), diterpenes (e.g. andromedotoxin in Arbutoideae and Ericoideae), triterpene acids (ursolic acid), ellagic acid (rare), gallic acid, ellagitannins (geraniin), proanthocyanidins (prodelphinidins), alkaloids, cyanogenic compounds, chlorogenic acid, 3-galactoside, benzo- and naphthoquinones, myo-inisitol, and ethereal oils present. Arbutin present in Arbutoideae, Monotropoideae and Vaccinioideae. Monotropeoside present in Monotropoideae. Saponins not found. Polysaccharides stored as oligosaccharides with kestose and isokestose bonds.

Use Ornamental plants, fruits (of Vaccinium, Oxycoccus, Myrtillus, Gaylussacia, Arctostaphylos, etc.), honey (from, e.g., Calluna vulgaris), timber, carpentries, smoking-pipes (from Erica arborea and E. scoparia), medicinal plants.

Systematics Ericaceae are sister to Cyrillaceae.

A probable topology is the following: [Enkianthoideae+[Monotropoideae+[Arbutoideae+[[Cassiopoideae+Ericoideae]+[Harrimanelloideae+[Styphelioideae+Vaccinioideae]]]]]] (Kron & al. 2002).

According to the ICBN, the name Ericaceae Juss. should be preferred before Vacciniaceae Adans.

Cladogram (simplified) of Ericaceae based on morphology and DNA sequence data (Kron & al. 2002). Monotropoideae are sister-group to Arbutoideae and Pyroloideae are sister to the remaining Ericaceae except Enkianthoideae, Monotropoideae and Arbutoideae (Rose & al. 2018).

Enkianthoideae (P. F. Stevens) Kron, Judd & Anderb. in K. A. Kron et al., Bot. Rev. (Lancaster) 68: 401. 23 Oct 2002

1/17. Enkianthus (15–17; Japan, southern China, northern Burma, Indochina). – Mycorrhiza arbuscular, endomycorrhizal, Paris type; hair roots absent. Medulla heterocellular, with small thick-walled lignified larger and thin-walled cells mixed. Vestured pits present. Hairs with distal end dying off long before proximal end. Leaves pseudoverticillate. Buds perulate (axillary branches developing exclusively in axils of perulae; also present in some Rhodoreae). Anthers with paired bristles and fibrous endothecium. Pollen grains shed as monads, tricellular at dispersal. Tectum with granulate surface. Ventral carpel bundles present in septal plane. Megagametophyte inserted on megasporangial pedestal. Megagametophyte with ear-like appendages. Seed raphe with vascular bundles. n = 11. – Enkianthus has the most well preserved remnants of pit membranes in Ericaceae.

[Monotropoideae+[Arbutoideae+[[Cassiopoideae+Ericoideae]+[Harrimanelloideae+[Styphelioideae+Vaccinioideae]]]]]

Mycorrhiza types of ectendomycorrhiza. Hair roots present, consisting of endodermis, exodermis, tracheid, sieve tube and companion cell. Fungal hyphae with complex coiled intrusions into hair root exodermal cells (only pegs present in Monotropeae and Pterosporeae). Anthers poricidal, with exothecium. Pollen grains shed in tetrahedral tetrads. Seed without chalazal vascular bundle. Insertions present in plastid gene matK.

Monotropoideae Arn., Botany: 118. 9 Mar 1832 [‘Monotropeae’]

14/c 50. Pyroleae Dumort., Anal. Fam. Plant.: 47. 1829. Pyrola (c 35; temperate regions on the Northern Hemisphere to mountains on Taiwan and northern Sumatra, temperate South America), Orthilia (1; O. secunda; temperate and arctic-alpine regions on the Northern Hemisphere), Chimaphila (5; C. japonica, C. maculata, C. menziesii, C. monticola, C. umbellata; Europe, temperate Asia, North and tropical America), Moneses (1; M. uniflora; temperate regions on the Northern Hemisphere). – Monotropeae Dumort., Anal. Fam. Plant.: 47. 1829. Allotropa (1; A. virgata; western United States), Cheilotheca (3; C. khasiana, C. malayana, C. sleumerana; Assam to West Malesia), Hemitomes (1; H. congestum; western United States), Monotropa (2; M. hypopitys, M. uniflora; temperate regions on the Northern Hemisphere, mountains in Central America), Monotropastrum (2; M. humile, M. sciaphilum; East Asia, Sumatra), Monotropsis (1; M. odorata; southeastern United States), Pityopus (1; P. californica; western United States), Pleuricospora (1; P. fimbriolata; southwestern Canada, western United States). – Pterosporeae Baill., Hist. Plant. 11: 161, 206. Jun-Jul 1891. Pterospora (1; P. andromeda; southern Canada, western and northeastern United States, northern Mexico), Sarcodes (1; S. sanguinea; western United States, Mexico). – Temperate and arctic-alpine regions on the Northern Hemisphere, mountains in Central America and mountains on Taiwan and northern Sumatra. Many species achlorophyllous and hyperparasitic mycoheterotrophs. Herbs with ericoid or arbutoid mycorrhiza (Pyroleae) or monotropoid mycorrhiza (with fungal hyphae forming peg-shaped invaginations into exodermal hair root cells; Monotropeae, Pterosporeae). Association between achlorophyllous Monotropoideae and mycorrhiza-forming basidiomycetes often specific. Hartig net frequently present. Sieve tube plastids at least in some achlorophyllous species S0 type. Multicellular hairs usually absent (present in Pterosporeae). Leaves in Monotropeae and Pterosporeae scale-like, in Pyroleae foliaceous. Inflorescence racemose. Floral prophylls (bracteoles) usually absent (present in Pterospora and Sarcodes). Sepals and petals three to eight, often free (sometimes absent). Anthers with various types of dehiscence, usually longicidal (dehiscing by slits). Tapetum cells binucleate. Pollen grains usually shed as monads (in Pyroleae as tetrahedral tetrads). Placentation axile to intrusively parietal. Seed coat often winged. Testa with thickened or unthickened cell walls. Embryo reduced, small to minute and undifferentiated (Monotropa uniflora has bicellular embryo). n = 8, 11, 13, 16, 19, 23 (26). Cell nuclei with protein crystals. Polysaccharides stored as kestose and isokestose oligosaccharides. – Pyroleae (Pyroloideae Beilschm. in Flora 16(Beibl. 7): 72, 109. 14 Jun 1833) are sister-group to [Monotropeae+Pterosporeae]. Pyroleae are herbaceous, rhizomatous and have photosynthesizing foliaceous leaves. The mycorrhiza is ericoid or arbutoid. The anthers have very short or no tubules and no outgrowths. The pollen grains are usually shed as tetrahedral tetrads (sometimes as monads). Nectary is usually absent. The placentation is intrusively parietal. The testal walls are thin. A possible although unstable topology is [[Orthilia+Pyrola]+[Moneses+Chimaphila]] (Freudenstein & al. 1999; Liu & al. 2011). An alternative topology was recovered by Freudenstein & al. (2016), where Pyroleae (Pyroloideae) were sister-group to either [Arbutoideae+[Monotropeae+Pterosporeae]] or to core Ericaceae (with Arbutoideae sister to [Monotropeae+Pterosporeae]). The latter hypothesis was supported by Rose & al. (2018).

[Arbutoideae+[[Cassiopoideae+Ericoideae]+[Harrimanelloideae+[Styphelioideae+Vaccinioideae]]]]

Petiole vascular bundle transection annular. Floral prophylls (bracteoles) present. Anthers with poricidal dehiscence. Endothecium absent. Pollen grains shed as tetrahedral tetrads.

Arbutoideae (Benth.) Nied. in Engl. Bot. Jahrb. Syst. 11: 135. 18 Jun 1889

3–5/c 85. Arbutus (12; western Europe, the Canary Islands, the Mediterranean, southwestern Canada, western United States, northwestern Mexico; possibly paraphyletic and incl. Arctostaphylos, Comarostaphylis, Ornithostaphylos?), Arctostaphylos (c 60; southwestern Canada and western United States, Mexico, mountains in Central America; in Arbutus?), Arctous (3; A. alpina, A. microphyllus, A. ruber; temperate and arctic-alpine regions on the Northern Hemisphere), Comarostaphylis (10; southern California, northwestern Mexico; in Arbutus?), Ornithostaphylos (1; O. oppositifolia; southern California, northwestern Mexico; in Arbutus?). – Temperate regions on the Northern Hemisphere southwards to mountains in Central America, with their highest diversity in California. Mycorrhiza arbutoid. Hartig net frequently present. Corolla urceolate, with unicellular hairs on adaxial side. Filaments distinctly asymmetrically widened. Anthers with paired bristles. Endothecium absent. Style continuous. Ovules ten or fewer per carpel. Fruit a berry or a drupe (sometimes covered with large fleshy multicellular papillae), with bony or fibrous endocarp. Testal cell walls fairly thick. x = 13. C-8 iridoid glucosides and ellagic acid present.

[[Cassiopoideae+Ericoideae]+[Harrimanelloideae+[Styphelioideae+Vaccinioideae]]]

Mycorrhiza ericoid, usually with ascomycetes. Hartig net absent. Mycorrhiza-forming fungi usually ascomycetes. Stem with well developed pericyclic fibres connected to foliar vascular bundles. Anthers early inverted. Endothecium absent. Toxic andromedane diterpenes sometimes present.

[Cassiopoideae+Ericoideae]

Leaves opposite, ericoid (usually needle-like), with revolute ptyxis.

Cladogram of Cassiopoideae and Ericoideae based on DNA sequence data (Kron 1997).

Cassiopoideae (H. T. Cox ex P. F. Stevens) Kron et Judd in K. A. Kron et al., Bot. Rev. (Lancaster) 68: 404. 23 Oct 2002

1/12. Cassiope (12; arctic-alpine regions on the Northern Hemisphere, the Himalayas). – Mycorrhiza ericoid. Medulla Calluna type, with large thin-walled cells surrounded by smaller thick-walled lignified cells. Special fasciculate hairs present. Leaves decussate, linear, peltate, hypoascidiate etc., with flat to recurved ptyxis, without or with poorly developed associated fibres in mid vein. Inflorescence axillary, reduced. Bud scales absent. Anthers with bristles. Megagametophyte disporous.

Ericoideae Arn., Botany: 118. 9 Mar 1832 [’Ericeae’]

16/1.770–1.780. Phyllodoceae Drude in Engler et Prantl, Nat. Pflanzenfam. IV, 1: 31, 38. Oct 1889.Bejaria (15; southern United States, Mexico, Central America, tropical South America), Elliottia (4; E. bracteata, E. paniculata: Japan; E. pyroliflora: Alaska, western Canada, northwestern United States; E. racemosa: southeastern United States), Kalmia (10; Canada, United States, one species, K. ericoides, on Cuba, one species, K. procumbens, in arctic-alpine regions on the Northern Hemisphere), Epigaea (3; E. gaultherioides: eastern Turkey, the Caucasus; E. asiatica: Japan; E. repens: eastern United States), Rhodothamnus (2; R. chamaecistus: eastern Alps; R. sessilifolius: northeastern Turkey), Kalmiopsis (1; K. leachiana; Oregon), Phyllodoce (7; P. aleutica, P. breweri, P. caerulea, P. deflexa, P. empetriformis, P. glanduliflora, P. nipponica; cold-temperate and arctic-alpine regions on the Northern Hemisphere). – Bryantheae Gillespie et Kron in Brittonia 64(1): 75. 1 Mar 2012. Bryanthus (1; B. gmelinii; Kamchatka, Japan), Ledothamnus (7; L. atroadenus, L. decumbens, L. guyanensis, L. jauaensis, L. luteus, L. parviflorus, L. sessiliflorus; the Guayana Highlands). – Ericeae DC. ex Duby, Bot. Gall. 1: 316. 12-14 Apr 1828 [‘Ericaceae’]. Daboecia (2; D. cantabrica: Ireland to Spain; D. azorica: the Azores), Calluna (1; C. vulgaris; Europe, Turkey), Erica (c 860; Europe, Macaronesia, the Mediterranean, tropical and southern Africa, Madagascar, the Comoros, with their highest diversity in the Cape Provinces). – Empetreae Horan., Char. Ess. Fam.: 109. 17 Jun 1847. Ceratiola (1; C. ericoides; southeastern United States), Corema (2; C. album: Portugal, western Spain, the Azores; C. conradii: eastern Canada, northeastern United States), Empetrum (3; E. eamesii, E. nigrum, E. rubrum; temperate and arctic-alpine regions on the Northern Hemisphere, southern Andes in Chile from 35°S to 55°S, the Falkland Islands, Tristan da Cunha). – Rhodoreae DC. ex Duby, Bot. Gall. 1: 318. 12-14 Apr 1828 [‘Rhodoraceae’].Rhododendron (c 850; temperate and alpine regions on the Northern Hemisphere and south to mountains in Southeast Asia, Malesia to New Guinea and eastern Australia from northeastern Queensland to eastern Victoria, with their largest diversity in the Himalayas, western China, northern Burma and alpine New Guinea). – Temperate, arctic-alpine and montane regions in the Northern Hemisphere, mountain areas in the Southern Hemisphere, the Falkland Islands, Tristan da Cunha, with their highest diversity in South Africa, mountains in Southeast Asia and New Guinea. Usually bisexual (in Empetreae usually monoecious or dioecious). Mycorrhiza ericoid. Leaves alternate (spiral) or opposite (in Empetreae and Ericeae often verticillate), with usually flat (sometimes convolute, in Empetreae and Ericeae strongly revolute) ptyxis. Pedicel sometimes articulated. Petals usually four or five (in Rhodoreae often more than five; in Empetreae four, free). Anthers usually without appendages (in Ericeae often spurred). Pollen grains in Rhodoreae often with viscin threads. Stigma in Empetreae expanded. Ovule in Empetreae one per carpel, basal, apotropous. Fruit usually a septicidal capsule (in Erica also loculicidal; in Empetreae a drupe). Gossypetin present in Rhodoreae and Empetreae. – Phyllodoceae are sister to the remaining Ericoideae, according to Gillespie & Kron (2012), whereas Bryantheae are sister-group to the clade [Ericeae+[Empetreae+Rhodoreae]].

[Harrimanelloideae+[Styphelioideae+Vaccinioideae]]

Fruit with persistent and non-withering calyx.

Harrimanelloideae Kron et Judd in K. A. Kron et al., Bot. Rev. (Lancaster) 68: 409. 23 Oct 2002

1/2. Harrimanella (2; H. hypnoides: arctic-alpine regions in northern Europe to northern Ural, arctic Canada to Quebec and northeastern United States; H. stelleriana: high mountains in Japan, the Kurile Islands, Kamchatka, Alaska, northwestern Canada, northwestern United States). – Mycorrhiza ericoid? Leaves acicular, sublinear. Leaf margin entire. Flowers solitary, axillary. Floral prophylls (bracteoles) absent. Anthers spurred, poricidal.

[Styphelioideae+Vaccinioideae]

Cladogram (simplified) of Styphelioideae based on DNA sequence data (Crayn & Quinn 2000).

Styphelioideae Sweet, Fl. Australas.: ad t. 47. 1 Mai 1828 [‘Stypheliae’]

36/510–525. Prionoteae Drude in Engler et Prantl, Nat. Pflanzenfam. IV, 1: 72. Dec 1889. Lebetanthus (1; L. myrsinites; southernmost Andes, Patagonia, Tierra del Fuego), Prionotes (1; P. cerinthoides; Tasmania). – Archerieae Crayn et Quinn in Austral. Syst. Bot. 11: 23. 31 Mar 1998. Archeria (6; A. comberi, A. eriocarpa, A. hirtella, A. serpyllifolia: Tasmania; A. racemosa, A. traversii: New Zealand). – Oligarrheneae Crayn et Quinn in K. A. Kron et al., Bot. Rev. (Lancaster) 68: 412. 23 Oct 2002. Needhamiella (1; N. pumilio; southwestern Western Australia), Oligarrhena (1; O. micrantha; southwestern Western Australia), Dielsiodoxa (3; D. leucantha, D. oligarrhenoides, D. tamariscina; southwestern Western Australia). – Cosmelieae Crayn et Quinn in K. A. Kron et al., Bot. Rev. (Lancaster) 68: 413. 23 Oct 2002.Andersonia (c 35; southwestern Western Australia), Cosmelia (1; C. rubra; southwestern Western Australia), Sprengelia (4; S. distichophylla, S. incarnata, S. monticola, S. sprengelioides; eastern South Australia to southeastern Queensland, Tasmania). – Richeeae Crayn et Quinn in K. A. Kron et al., Bot. Rev. (Lancaster) 68: 412. 23 Oct 2002. Dracophyllum (50–55; eastern Queensland, eastern New South Wales, Tasmania, New Caledonia, New Zealand), Richea (11; southeastern New South Wales, Victoria, Tasmania, with their highest diversity in Tasmania), Sphenotoma (6; S. capitatum, S. dracophylloides, S. drummondii, S. gracilis, S. parviflorum, S. squarrosa; southwestern Western Australia). – Epacrideae Dumort., Anal. Fam. Plant.: 28. 1829 [‘Epacreae’]. Epacris (55–60; southeastern South Australia to southeastern Queensland, Tasmania, New Caledonia, New Zealand), Lysinema (6; L. ciliatum, L. conspicuum, L. elegans, L. fimbriatum, L. lasianthum, L. pentapetalum; southwestern Western Australia), Woollsia (1; W. pungens; southeastern Queensland, eastern New South Wales). – Styphelieae Bartl., Ord. Nat. Plant.: 158. Sep 1830 [‘Stypheliae’]. Pentachondra (4; P. dehiscens, P. ericifolia, P. involucrata, P. pumila; eastern New South Wales, eastern Victoria, Tasmania, New Zealand), Acrothamnus (6; A. colensoi, A. hookeri, A. maccraei, A. montanus, A. spathaceus, A. suaveolens; northeastern Queensland, eastern New South Wales, eastern Victoria, Tasmania, New Zealand), Acrotriche (16; southwestern Western Australia, southeastern South Australia to eastern Queensland, Tasmania), Androstoma (2; A. verticillata: Tasmania; A. empetrifolia: New Zealand), ’Astroloma’ (28; southwestern Western Australia, southeastern South Australia, Victoria, eastern New South Wales, Tasmania; non-monophyletic), Stenanthera (5; S. brachyloma, S. ciliata, S. conostephioides, S. pinifolia, S. squamuligera; eastern New South Wales, Victoria, Tasmania), Brachyloma (8; southwestern Western Australia, southeastern South Australia to southeastern Queensland, Tasmania), Coleanthera (3; C. coelophylla, C. myrtoides, C. virgata; southwestern Western Australia), Conostephium (10–12; southwestern Western Australia), Croninia (1; C. kingiana; southwestern Western Australia), Cyathodes (5; C. dealbata, C. glauca, C. petiolaris, C. platystoma, C. straminea; Tasmania), Cyathopsis (1; C. floribunda; New Caledonia), Decatoca (1; D. spenceri; New Guinea), Leptecophylla (13; New Guinea, Tasmania, New Zealand to the Hawaiian Islands), ’Leucopogon’ (155–165; Malesia to New Guinea, Australia, Tasmania, New Caledonia, New Zealand; non-monophyletic), ’Lissanthe’ (7; L. brevistyla, L. pluriloculata, L. powelliae, L. rubicunda, L. sapida, L. scabra, L. strigosa; southwestern Western Australia, southeastern South Australia to southeastern Queensland, Tasmania; non-monophyletic), Melichrus (13?; M. adpressus, M. erubescens, M. hirsutus, M. procumbens, M. urceolatus; continental southwestern Western Australia, eastern Queensland to Victoria), ’Monotoca’ (18; southwestern Western Australia, southeastern South Australia to eastern Queensland, Tasmania; non-monophyletic), Planocarpa (3; P. nitida, P. petiolaris, P. sulcata; Tasmania), Styphelia (15; southwestern Western Australia, southeastern South Australia to southeastern Queensland, Tasmania), Trochocarpa (12; Malesia to New Guinea, northeastern Queensland, eastern New South Wales, eastern Victoria, Tasmania). – Chile, southern Indochina, Malesia to New Guinea, Australia, Tasmania, Melanesia, New Zealand, the Hawaiian Islands and other islands in the Pacific. Ericoid mycorrhiza? Nodes in Richeeae ≥3:≥3. Leaves xeromorphic, ericoid, not recurved, often with apical spine, in Cosmelieae and Richeeae with sheathing base. Venation parallel or palmate; mid-vein usually indistinct (in Prionoteae distinct, with three veins from leaf base). Foliar vascular bundles with well developed abaxial fibrous envelopes. Adaxial cap absent. Leaf epidermis lignified (also in Lyonieae in Vaccinioideae); epidermal cells rectangular, arranged in longitudinally parallel rows; anticlinal epidermal cells walls sinuous (at least on abaxial side of leaf); abaxial epidermis and associated hypodermis detach from mesophyll in Archerieae. Stomata in Richeeae brachyparacytic; in Styphelieae parallel to foliar longitudinal axis. Abaxial foliar surface in Oligarrheneae without ribbon wax and papillae; adaxial cuticular wax crystalloids absent in Richeeae. Multicellular hairs and leaf teeth usually absent (present in Prionoteae). Inflorescence terminal or axillary, usually spicate; flowers often solitary axillary with numerous floral prophylls (absent in Richeeae). Inflorescence bracts membranous. Petals in Oligarrheneae with valvate or induplicate valvate aestivation. Stamens usually as many as sepals, antesepalous (in Oligarrheneae two to five). Filaments usually adnate to corolla tube (epipetalous). Anthers disporangiate (monothecal), longicidal (usually dehiscing by a single slit, in Prionoteae by two slits), without appendages. Tapetum with uninucleate cells. Pollen grains in Styphelieae shed as pseudomonads (only one out of four meiospores developing). Pistil in Oligarrheneae composed of two carpels. Ovule in Oligarrheneae one per carpel. Ovules usually epitropous (in Lysinema in Epacrideae apotropous). Fruit in Oligarrheneae a nut, in Styphelieae a drupe; corolla persistent in fruit. – A probable topology is (Crayn & Quinn 2000): [Prionoteae+[Archerieae+[Oligarrheneae+[Cosmelieae+[Richeeae+[Epacrideae+Styphelieae]]]]]].

Cladogram (simplified) of Vaccinioideae based on morphology and DNA sequence data (Kron, Judd & Crayn 1999).

Vaccinioideae Arn., Botany: 118. 9 Mar 1832 [‘Vaccinieae’] (under construction)

45/1.450–1.480. Vaccinieae Rchb., Fl. Germ. Excurs. 1(3): 203. Jul-Dec 1831. ’Vaccinium’ (c 150?; temperate and arctic-alpine regions on the Northern Hemisphere, mountains in Central and southeastern Africa and Madagascar, the Hawaiian Islands, mountains in tropical America; polyphyletic), Gaylussacia (>50; eastern Canada, eastern United States, the Andes in South America; incl. Vaccinium pro parte), Oxycoccus (4; O. erythrocarpus, O. macrocarpus, O. microcarpus, O. palustris; temperate and arctic-alpine regions on the Northern Hemisphere), Symphysia (15; Central America, the West Indies), Agapetes (c 400; tropical Asia from India to New Guinea; incl. Vaccinium pro parte), Didonica (4; D. crassiflora, D. panamensis, D. pendula, D. subsessilis; Costa Rica, Panamá), Notopora (5; N. auyantepuiensis, N. cardonae, N. chimantensis, N. schomburgkii, N. smithiana; eastern Venezuela), Orthaea (34; Mexico, Central America, the Andes south to Bolivia), Gonocalyx (9; Central America), Dimorphanthera (75–80; Malesia, with their highest diversity on New Guinea), Paphia (c 20; eastern New Guinea, eastern Queensland, New Caledonia, Fiji; incl. Dimorphanthera keysseri), Cavendishia (100–110; southern Mexico, Central America, tropical South America; incl. Thibaudia pro parte), Macleania (35–40; southern Mexico, Central America, western tropical America), Psammisia (c 60; tropical America), Satyria (c 25; southern Mexico, Central America, tropical South America), Mycerinus (3; M. chimantensis, M. sclerophyllus, M. viridiflorus; the Guayana Highlands), Polyclita (1; P. turbinata; Bolivia), Anthopteropsis (1; A. insignis; central Panamá), Ceratostema (23–32; mountain regions in South America, with their highest diversity in the Andes in Ecuador), Semiramisia (3; S. karsteniana, S. pulcherrima, S. speciosa; northern Andes), Oreanthes (7; O. buxifolius, O. ecuadorensis, O. fragilis, O. glanduliferus, O. hypogaeus, O. rotundifolius, O. sperlingii; the Andes in Ecuador), Siphonandra (5; S. boliviana, S. elliptica, S. magnifica, S. nervosa, S. santa-barbarensis; the Andes), Pellegrinia (6; P. coccinea, P. dichogama, P. grandiflora, P. guascensis, P. harmsiana, P. hirsuta; the Andes), ’Disterigma’ (c 35; northern and central Andes; polyphyletic), Utleya (1; U. costaricensis; Costa Rica), Sphyrospermum (>22; mountains in tropical America; incl. Disterigma pro parte), Rusbya (1; R. taxifolia; northern Bolivia), Themistoclesia (c 25; northern Andes), Plutarchia (11; Colombia, Ecuador), Anthopterus (12; the Andes; incl. Thibaudia pro parte), ’Thibaudia’ (c 60; Central America, northwestern tropical South America; polyphyletic), Demosthenesia (11; the Andes), ’Diogenesia’ (13; the Andes; polyphyletic). – Andromedeae Klotzsch, Pfl.-Abbild. Beschr.: 16. 1838. Andromeda (2; A. glaucophylla, A. polifolia; temperate regions on the Northern Hemisphere), Zenobia (1; Z. pulverulenta; southeastern United States). – Gaultherieae Nied. in Engl. Bot. Jahrb. Syst. 11: 145. 18 Jun 1889. Chamaedaphne (1; C. calyculata; temperate regions on the Northern Hemisphere), Eubotrys (2; E. racemosa, E. recurva; southeastern United States), Gaultheria (c 135; East Asia to Malesia, Australia, New Zealand, Alaska, Canada, United States, Mexico, Central America, South America), ’Leucothoe’ (5; L. axillaris, L. davisiae, L. fontanesiana, L. griffithiana, L. keiskei; the Himalayas, Japan, North America; polyphyletic), Tepuia (7; T. cardonae, T. intermedia, T. multiglandulosa, T. speciosa, T. tatei, T. vareschii, T. venusta; the Guayana Highlands). – Lyonieae Kron et Judd in K. A. Kron et al., Amer. J. Bot. 86: 1298. 15 Sep 1999. Agarista (c 30; tropical Africa, Madagascar, the Mascarene Islands, southeastern United States, Mexico, Central America, tropical South America), Craibiodendron (5; C. henryi, C. scleranthum, C. stellatum, C. vietnamense, C. yunnanense; southern China, Southeast Asia), Lyonia (c 35; East and Southeast Asia, eastern United States, Mexico, the West Indies), Pieris (7; P. cubensis, P. floribunda, P. formosa, P. japonica, P. nana, P. phillyreifolia, P. swinhoei; the Himalayas to East Asia and eastern Siberia, southeastern United States, Cuba). – Oxydendreae Cox ex Reveal in Phytoneuron 2012-37: 218. 23 Apr 2012.Oxydendrum (1; O. arboreum; eastern United States). – Cosmopolitan. Often epiphytic. Mycorrhiza ericoid. Phellogen in ‘Vaccinium’ and Agapetes superficial. Secondary phloem in Lyonieae often with bands of fibres. Apical bud aborted. Epidermis in Lyonieae lignified. Stomata often paracytic (in Lyonieae often anomocytic). Inflorescence usually axillary. Pedicel often articulated. Hypogyny frequent. Anthers spurred, with two or four bristles or without appendages; abaxial side of anthers with disintegration tissue. Tapetum cells in Vaccinium binucleate. Ovary often inferior, in ‘Vaccinium’ and Agapetes appearing decemlocular. Stigma truncate. x = 12.

Cladogram of Vaccinieae based on DNA sequence data (Kron, Powell & Luteyn 2002). – Agapetes clade A: Vaccinium caudatifolium, V. filiforme, V. lancifolium. – Agapetes clade B: Agapetes, V. gaultheriifolium, V. nummularia. – Bracteata-Oarianthe clade: V. cercidifolium, V. leptospermoides, V. summifaucis, V. finisterrae, V. horizontale. – Myrtillus clade: Costera endertii, V. hirtum, V. smallii, V. parvifolium, V. myrtillus, V. dentatum, V. reticulatum. – Orthaea-Notopera clade: V. crenatum, Notopora schomburgkii, Orthaea apophysata, Orthaea venamensis. – Vaccinium clade: V. macrocarpon, V. vitis-idaea. – East Malesian clade: Paphia, Dimorphanthera. – Andean clade A: Thibaudia floribunda, Anthopterus, Themistoclesia, Diogenesia, Demosthenesia; Satyria, Orthaea fimbriata, Cavendishia (incl. Thibaudia jahnii). – Andean clade B: Ceratostema, Oreanthes, Sphyrospermum (incl. Disterigma pro parte), Macleania, Psammisia, Plutarchia, Polyclita (incl. Thibaudia macrocalyx), Satyria boliviana, Thibaudia densiflora, Semiramisia, Thibaudia parvifolia, Siphonandra, Thibaudia pachyantha. – Meso-American/Caribbean clade: Symphysia, Disterigma trimerum, Utleya, V. poasanum, Gonocalyx, Macleania megabracteolata. – Vaccinium Section Hemimyrtillus may be sister-group to the remaining Vaccinieae, yet with weak support (Powell & Kron 2002).

FOUQUIERIACEAE DC.

( Back to Ericales )

de Candolle, Prodr. 3: 349. med Mar 1828 [’Fouquieraceae’], nom. cons.

Fouquieriales DC. in C. F. P. von Martius, Consp. Regn. Veg.: 50. Sep-Oct 1835 [’Fouquieriaceae’]; Fouquierineae Engl., Syllabus, ed. 2: 153. Mai 1898

Genera/species 1/11

Distribution Arid regions in Mexico and southwestern United States.

Fossils Unknown.

Habit Bisexual, deciduous shrubs or small trees. Xerophytic, often stem succulents, spiny, with little branched long and short shoots. Periderm transparent, often exfoliating.

Vegetative anatomy Phellogen ab initio superficially (in root) or deeply seated (often outer-cortical). Layers of fibre cells alternating with layers of cork cells in stem phelloderm. Stem cortex reticulum consisting of groups of superficial sclereids and assimilating tissue, and inside this partly water-storing and partly starch-storing tissue. Medulla septated by diaphragms. Vessel elements with usually simple (rarely scalariform) perforation plates; lateral pits alternate or opposite, simple and/or bordered pits. Imperforate tracheary xylem elements fibre tracheids with bordered pits, non-septate (also vasicentric tracheids). Wood rays multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty. Xylem parenchyma well developed and water-storing. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs unicellular or absent.

Leaves Alternate (spiral), simple, entire, heteromorphic, with ? ptyxis. Stipules and leaf sheath absent. Petioles of long shoots modified into long cortical spines, with base proceeding down stem as coarse ridges. Axillary short shoots with normal leaves. Petiole vascular bundles? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids absent. Epidermis with mucilage cells (with mucilaginous inner walls). Leaf margin entire.

Inflorescence Terminal or axillary, spike- or raceme-like, panicle or corymbo-paniculate.

Flowers Actinomorphic. Hypogyny. Sepals five, with imbricate quincuncial aestivation, spiral, free, with membranous margin, persistent. Petals five, with imbricate quincuncial aestivation, connate into tube. Base of ovary nectariferous. Disc small, annular.

Androecium Stamens usually ten (rarely up to 23), diplostemonous (antepetalous stamens sometimes duplicated). Filaments free, free from or slightly adnate to corolla tube, sometimes with ligulate spur at base. Anthers dorsifixed, versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate, often striate.

Gynoecium Pistil composed of three connate carpels. Ovary superior, unilocular, with nectariferous vascularized tissue at base. Stylodia three, connate in lower part. Stigmas punctate, type? Pistillodium absent.

Ovules Placentation at anthesis parietal with deeply intrusive placentae (axile at base), finally free central. Ovules six to c. 20 per carpel, anatropous, ascending, apotropous, bitegmic, tenuinucellar. Micropyle endostomal. Outer integument three or four cell layers thick. Inner integument (four to) seven or eight cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustoria chalazal and micropylar. Embryogenesis asterad.

Fruit A loculicidal capsule.

Seeds Aril? Seed coat winged. Testa multiplicative, gradually crushed; hypodermis with band-shaped thickenings. Tegmen multiplicative, crushed. Perisperm not developed. Endosperm thin, oily and proteinaceous, or absent. Embryo small, straight, well differentiated, chlorophyll? Cotyledons two, flat. Germination phanerocotylar.

Cytology x = 12 – Polyploidy occurring.

DNA Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols, cyanidin, Route I secoiridoids, dammarane, ellagic acid, pelargonidin (in red-flowered species), caffeic acid, indole alkaloids and their glycosides, and saponins present. Myricetin and cyanogenic compounds not found.

Use Ornamental plants, ocotillo-wax.

Systematics Fouquieria (11; southwestern United States, northern Mexico).

Fouquieriaceae are sister-group to Polemoniaceae.

LECYTHIDACEAE A. Rich.

( Back to Ericales )

Richard in J. B. G. M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 9: 269. 25 Feb 1825 [‘Lecythideae’], nom. cons.

Belvisiaceae R. Br. in Trans. Linn. Soc. London 13: 222. Mai-Jun 1821 [‘Belviseae’], nom. illeg.; Napoleonaeaceae A. Rich. in J. B. G. M. Bory de Saint-Vincent, Dict. Class. Hist. Nat. 11: 432. 10 Feb 1827 [‘Napoleoneae’]; Barringtoniaceae (DC.) F. Rudolphi, Syst. Orb. Veg.: 56. 5-12 Jul 1830 [‘Barringtonieae’], nom. cons.; Barringtoniales DC. in C. F. P. von Martius, Consp. Regn. Veg.: 65. Sep-Oct 1835 [‘Barringtonieae’]; Belvisiales R. Br. in C. F. P. von Martius, Consp. Regn. Veg.: 63. Sep-Oct 1835 [’Belvisieae’], nom. illeg.; Gustaviaceae Burnett, Outl. Bot.: 717, 1092, 1135. Feb 1835; Lecythidales Poit. in C. F. P. von Martius, Consp. Regn. Veg.: 65. Sep-Oct 1835 [’Lecythideae’]; Barringtoniineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 583, 602. 1846; Scytopetalaceae Engl. in Engler et Prantl, Nat. Pflanzenfam. Nachtr. 1: 242. Oct 1897, nom. cons.; Scytopetalineae Engl., Syllabus, ed. 2: 150. Mai 1898; Rhaptopetalaceae Tiegh. ex Solereder, Syst. Anat. Dicot. Ergänz.: 53. Mai 1908; Asteranthaceae R. Knuth in Engler, Pflanzenr., IV, 219b (Heft 105): 1. 22 Aug 1939, nom. cons.; Foetidiaceae (Engl.) Airy Shaw in Kew Bull. 18: 258. 8 Dec 1965; Lecythidanae Takht. ex Reveal in Novon 2: 236. 13 Oct 1992

Genera/species 24/355–360

Distribution Pantropical, subtropical regions of South and East Asia.

Fossils The fossil flower Lecythidoanthus kugleri has been described from the Miocene of Trinidad. Fossil wood, fruits and pollen grains assigned to Lecythidaceae were recorded from Late Cretaceous (Maastrichtian) and Cenozoic sediments in India and Europe.

Habit Bisexual, usually evergreen trees (sometimes shrubs or lianas; in Scytopetaloideae rarely perennial herbs). Foetidia has evil-smelling wood. Bark often fibrous.

Vegetative anatomy Phellogen ab initio superficial. Stem cortex with vascular bundles. Primary medullary rays narrow or wide. Vessel elements usually with simple (sometimes scalariform, rarely reticulate) perforation plates; lateral pits alternate or opposite, simple and/or bordered pits. Imperforate tracheary xylem elements tracheids (in Allantoma), fibre tracheids or libriform fibres usually with simple (sometimes bordered) pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate to multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric, reticulate or banded (rarely aliform, confluent or scalariform). Tyloses often abundant (sometimes sclerotic). Secondary phloem stratified into hard fibrous and soft parenchymatous layers, often with unilaterally thickened cells with crystals (sometimes with cuneate rays). Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace, or ≥3:≥3, trilacunar to multilacunar with three or more traces. Cristarque cells sometimes present. Cells with calciumoxalate crystals or silica bodies. Prismatic crystals abundant.

Trichomes Hairs unicellular or multicellular, usually uniseriate (sometimes stellate) or absent; glandular hairs sometimes present.

Leaves Usually alternate (sometimes distichous; rarely opposite), simple, entire, often coriaceous, with supervolute or involute ptyxis. Stipules usually absent (in Asteranthos and Scytopetalum small, paired, cauline, caducous); leaf sheath absent. Colleters present. Petiole vascular bundle transection arcuate or annular; petiole with numerous vascular bundles. Venation pinnate, sometimes brochidodromous. Stomata usually anisocytic (sometimes paracytic or anomocytic). Cuticular wax crystalloids as polygonal platelets. Domatia as pits (Combretodendron) or absent. Secretory cavities absent. Mesophyll in Napoleonaeoideae with idioblasts containing ethereal oils and sclerenchymatous idioblasts containing prismatic calciumoxalate crystals. Leaf margin usually entire (sometimes serrate or crenate).

Inflorescence Terminal or axillary, spike- or raceme-like, panicle, fasciculate, thyrsoid, botryoid cymose, or racemose, or flowers solitary axillary (each flower in Napoleonaeoideae subtended by four to seven often glanduliferous bracts, extrafloral nectaries).

Flowers Actinomorphic or zygomorphic (especially androecium), often large. Pedicel articulated. Hypanthium present or absent. Epigyny or half epigyny (in Scytopetaloideae usually hypogyny). Sepals (two or) four to six (to twelve), usually with imbricate (sometimes valvate) aestivation, persistent or caducous (in Asteranthos accrescent in fruit), usually more or less connate. Petals three to six (to eight, ten, twelve, 16, or 18), with imbricate aestivation, caducous, usually connate (absent in Foetidioideae and probably in Napoleonaeoideae and Scytopetaloideae). Nectaries often present at base of staminodia on androphore. Nectariferous disc annular, intrastaminal or extrastaminal, present in Napoleonaeoideae, Barringtonioideae and Foetidia (in Asteranthos formed by fused staminodia).

Androecium Stamens ten to more than 1.200, with various positions, often whorled, usually centrifugally (sometimes centripetally) developing from annular primordium, often (some Lecythidoideae) on annular or asymmetrical androphore (consisting of staminodia and/or fertile stamens), sometimes curved and hood-like above ovary. Filaments usually more or less connate (in Foetidioideae and Napoleonaeoideae free), free from tepals (in Napoleonaeoideae and Scytopetaloideae adnate to base of pseudocorolla probably consisting of staminodial tissue). Anthers basifixed, often versatile, usually tetrasporangiate (in Napoleonaeoideae disporangiate), extrorse, latrorse or introrse, usually longicidal (dehiscing by longitudinal slits; in Scytopetaloideae sometimes poricidal, with apical short slits or pores). Tapetum secretory or amoeboid-periplasmodial. Staminodia (sometimes with fodder pollen in anthers) often several to numerous on androphore or pseudocorolla, extrastaminal (outer staminodial whorl in Napoleonaea forming pseudocorolla, and two inner staminodial whorls forming corona; staminodial whorl in Scytopetaloideae forming pseudocorolla).

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate or tricolpor(oid)ate or syntricolpate (Barringtonioideae), shed as monads, bicellular or tricellular at dispersal. Exine tectate, with granular infratectum, smooth, perforate to microreticulate, foveolate or scabrate-verrucate.

Gynoecium Pistil composed of two to six (to eight) connate usually antesepalous (sometimes antepetalous) carpels. Ovary inferior to superior, unilocular to sexalocular (to octalocular). Style single, simple, or absent. Stigma one, capitate, punctate or trilobate to octalobate, papillate or non-papillate, Dry or Wet type. Pistillodium absent.

Ovules Placentation apical, apical-axile to basal-axile (in Eschweilera basal; in Foetidia axile, with peltate placentae). Ovules (one or) two to c. 115 per carpel, usually anatropous (rarely campylotropous), pendulous, horizontal or ascending, bitegmic, tenuinucellar. Micropyle usually endostomal (in, e.g., Couroupita exostomal). Outer integument six to 18 cell layers thick. Inner integument three to seven cell layers thick. Archespore multicellular. Megagametophyte monosporous, Polygonum type. Antipodal cells ephemeral. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A drupe (in Foetidioideae and Barringtonioideae, sometimes winged, in Napoleonaeoideae with persistent calyx and style), large to very large, indehiscent and juicy inside, or a woody pyxidium (rarely a loculicidal capsule or a berry-like fruit).

Seeds Aril present in many species of Lecythis. Seed coat mesotestal, in Cariniana and Couroupita winged. Testa vascularized, multiplicative, often strongly lignified. Exotestal cells of various thickness, palisade, or with sinuous anticlinal walls. Mesotesta often sclerotized. Endotesta? Tegmen? Perisperm not developed. Endosperm usually very sparse or absent (in Scytopetaloideae copious, with amyloidiferous cell walls and usually ruminate). Embryo large, straight or curved, undifferentiated or well differentiated, chlorophyll? Cotyledons two, fleshy planoconvex or foliaceous, or undifferentiated. Hypocotyl often strongly developed. Germination phanerocotylar or cryptocotylar.

Cytology n = 13 (26) (Barringtonioideae); n = 16 (Napoleonaeoideae); n = 11, 18, 21 (Scytopetaloideae); n = 17 (18) (34) (Lecythidoideae); n = ? (Foetidioideae)

DNA Mitochondrial intron coxII.i3 lost (Bertholletia). Mitochondrial coxI intron present (Barringtonia).

Phytochemistry Flavonols (quercetin etc.), cyanidin, oleanolic acid derivatives, ellagic and gallic acids, methylated ellagic acids, proanthocyanidins (prodelphinidins), triterpene saponins, and cyanogenic compounds present. Kaempferol and alkaloids not found. Selenium accumulated in some species. Aluminium accumulated in some Scytopetaloideae.

Use Ornamental plants, edible seeds (Bertholletia excelsa, Lecythis zabucajo), timber.

Systematics The sister-group relationships of Lecythidaceae are unresolved. They are part of a trichotomy also comprising [Fouquieriaceae+Polemoniaceae] and the majority of Ericales.

Lecythidaceae and Sapotaceae have seeds with multiplicative lignified testa.

A plausible topology of the Lecythidaceae subclades is the following: [Napoleonaeoideae+[Scytopetaloideae+[Lecythidoideae+[Barringtonioideae+Foetidioideae]]]].

Napoleonaeoideae (R. Br.) Benth. in W. J. Hooker, Niger Fl.: 360. Nov-Dec 1849 [‘Napoleoneae’]

2/c 13. Napoleonaea (c 10; tropical West and Central Africa to Angola and Zambia), Crateranthus (3; C. congolensis, C. le-testui, C. talbotii; southern Nigeria, Gabon, Congo). – Tropical West and Central Africa. Secondary xylem containing crystal chains. Leaves distichous, with supervolute ptyxis. Stipules present or absent. Lamina often with glands on abaxial side at base. Leaf margin serrate. Sepals three (Crateranthus) or five (Napoleonaea). Petals with valvate aestivation, connate, plicate. Nectaries present on abaxial side of sepals. Filaments adnate to corolla. Anthers long (in Napoleonaea ten, pairwise, antepetalous, extrorse, monothecal). Corona formed by two inner staminodial whorls. Carpels antepetalous, initiated prior to stamens. Style absent. Stigma wide, quinquangular, flat. Ovules four per carpel, in Napoleonaea collateral in pairs. Endothelium absent. Fruit a drupe with one or several seeds. Embryo curved. n = 16. – Napoleonaeoideae have mixed simple and scalariform vessel perforation plates, scalariform vessel-ray pitting, and high multiseriate wood rays, features also present in Scytopetaloideae. The wood structure of Napoleonaea is distinct, but its hypothetical sister-group Crateranthus strongly resembles Scytopetaloideae.

[Scytopetaloideae+[Lecythidoideae+[Barringtonioideae+Foetidioideae]]]

Scytopetaloideae O. Appel in Bot. J. Linn. Soc. 121: 225. 17 Sep 1996

6/22–23. Asteranthos (1; A. brasiliensis; Venezuela, northern Brazil), Oubanguia (3; O. africana, O. alata, O. laurifolia; tropical West and Central Africa), Scytopetalum (3; S. klaineanum, S. pierreanum, S. tieghemii; tropical West and Central Africa), Rhaptopetalum (11–12; tropical West and Central Africa), Pierrina (1; P. zenkeri; Cameroon, Gabon, Equatorial Guinea), Brazzeia (3; B. congoensis, B. longipedicellata, B. soyauxii; Central Africa). – Tropical West and Central Africa, northern Brazil. Leaf traces passing two internodes prior to entering leaves. Sclereids present. Leaves distichous. Stipules minute. Pedicel articulated. Usually hypogyny (sometimes half hypogyny). Sepals connate. Petals with valvate aestivation, calyptrate, caducous, sometimes connate at base (sometimes absent). Nectariferous disc usually present (nectary sometimes absent). Filaments connate at base, adnate to corolla and to staminodia. Tapetum secretory. Staminodia six to 28, petalous, connate. Pollen grains tricolpate or sometimes tricolporoidate. Staminodia six to 16 or 24 to 28 (Asteranthos), connate, petaloid. Style long, thin. Stigma punctate. Ovules two or four per carpel. Micropyle prolonged. Endothelium present. Fruit a capsule or indehiscent, often one-seeded. Seed coat hairy, usually ruminate (not in Oubanguia). Endosperm with hemicellulose. Embryo J-shaped. n = 11, 18, 21. Aluminium accumulated in some species. – Asteranthos resembles Napoleonaeoideae in its morphology and phytochemistry, but is placed in Scytopetaloideae by DNA sequence analyses.

[Lecythidoideae+[Barringtonioideae+Foetidioideae]]

Embryo usually with starch.

Lecythidoideae Beilschm. in Flora 16(Beibl. 7): 98, 108. 14 Jun 1833 [‘Lecythideae’]

10/c 220. Gustavia (c 40; Central America, tropical South America), Grias (12; Panamá to Peru), Allantoma (8; northeastern tropical South America), Cariniana (9; tropical South America), Couroupita (3; C. guianensis, C. nicaraguarensis, C. subsessilis; Central America, tropical South America), Corythophora (4; C. alta, C. amapaensis, C. labriculata, C. rimosa; French Guiana, Suriname, Brazil), Bertholletia (1; B. excelsa; tropical South America), Couratari (c 20; tropical South America), ’Eschweilera’ (c 95; southern Mexico, Central America, tropical South America; non-monophyletic), ’Lecythis’ (27; Central America, tropical South America; non-monophyletic). – Southern Mexico, Central America, northern and central South America to Uruguay. Bark fibrous. Cortical vascular bundles in Gustavia inverted. Secondary xylem with crystal chains. Leaves spiral or distichous, with involute ptyxis. Extraflora nectaries present in Gustavia. Flowers usually (secondarily?) zygomorphic (sometimes actinomorphic). Nectariferous disc present or absent. Filaments contracted at apex, connate at base forming basal ring. Pollen grains tricolp(oroid)ate, sometimes heteromorphic. Fodder pollen produced in many species. Style usually short (sometimes long). Endothelium absent. Fruit usually a pyxidium (rarely indehiscent). Wing-shaped aril or swollen funicle present or absent. Embryo often curved, with hypocotyl or long radicula and foliaceous (sometimes folded) or thick cotyledons. n = 17 (18) (34).

[Barringtonioideae+Foetidioideae]

Cortical vascular bundles inverted. Leaves with supervolute ptyxis. Fruit indehiscent.

Barringtonioideae Beilschm. in Flora 16(Beibl. 7): 98, 104. 14 Jun 1833 [‘Barringtonieae’]

5/c 84. Petersianthus (2; P. macrocarpus: tropical West and Central Africa to Angola and Congo; P. quadrialatus: the Philippines), Barringtonia (c 70; East Africa, Madagascar, tropical Asia to the Ryukyu Islands and Micronesia), Chydenanthus (1; C. excelsus; Burma, the Andaman and Nicobar Islands, Malesia to New Guinea), Abdulmajidia (2; the Malay Peninsula), Careya (3; C. arborea: Afghanistan to the Malay Peninsula; C. herbacea: the Himalayas; C. valida: the Andaman Islands), Planchonia (8; the Andaman and Nicobar Islands, the Malay Peninsula to New Guinea, Solomon Islands and tropical Australia). – Tropical East Africa, Madagascar, South and Southeast Asia, Malesia to New Guinea, tropical Australia, Melanesia to the Ryukyu Islands and Micronesia. Secondary xylem without crystal chains. Nodes 1:1. Leaves spiral. Glands often replacing stipules. Nectariferous disc annular. Filaments connate at base forming basal ring. Pollen grains syn(tri)colpate, with strong margin ridge at colpus. Style long. Endothelium usually absent. Fruit usually one-seeded. Embryo with hypocotyl or long radicula and foliaceous cotyledons. n = 13 (26). – Barringtonioideae and Lecythidoideae both have vessel elements with exclusively simple perforations and two types of vessel ray pitting. However, they may be distinguished from each other by the size of intervessel pitting, the shape of body ray cells arranged in multiseriate rays, and the type of crystalliferous axial parenchyma cells.

Foetidioideae Engl., Syllabus, ed. 1: 146. Apr 1892

1/18. Foetidia (18; Madagascar, the Comoros, the Mascarene Islands, one species, F. africana, in tropical East Africa). – Secondary xylem with crystal chains. Nodes 1:1. Leaves elongating in bud. Sepals with valvate aestivation, lignified. Petals absent. Nectariferous disc indistinct. Filaments free. Anthers introrse. Style trilobate or quadrilobate. Placentae peltate, with ovules inserted in two rows. Endothelium present. n = ? – The isolated position of Foetidia (Foetidioideae) may be supported by a unique type of vessel ray pitting similar in shape and size to intervessel pitting (distinctly bordered, <5 mm).

Cladogram of Lecythidaceae based on morphology, anatomy and DNA sequence data (Morton, Mori & al. 1997).

Cladogram of Lecythidaceae based on DNA sequence data (Mori & al. 2007).

MAESACEAE (A. DC.) Anderb., B. Ståhl et Källersjö

( Back to Ericales )

Anderberg, Ståhl et Källersjö in Taxon 49: 185. 16 Mai 2000

Genera/species 1/100–110

Distribution Tropical Africa, Southeast Africa, Madagascar, Yemen, Sri Lanka, East Asia to Japan, Southeast Asia, Malesia to New Guinea, Melanesia, Queensland, islands in the Pacific.

Fossils Uncertain.

Habit Usually bisexual (often functionally polygamous, or functionally or cryptically dioecious?), evergreen trees, shrubs or lianas.

Vegetative anatomy Phellogen ab initio superficial? Vessel arranged in radial multiples. Vessel elements with simple and/or scalariform (sometimes reticulate) perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres? with simple pits, septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty. Sieve tube plastids S type? Nodes unilacunar? with ? leaf trace; lateral vascular bundles arising approx. halfway down internode below supported leaf. Schizogenous secretory canals with tannins etc. Parenchyma cells with calciumoxalate druses.

Trichomes Hairs uniseriate or scale-like; glandular hairs sunken?

Leaves Alternate (spiral or distichous), simple, entire, with induplicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection annular. Venation pinnate, often indistinct. Stomata anisocytic? Cuticular wax crystalloids? Lamina with well developed schizogenous secretory canals. Abaxial epidermis often with groups of prismatic calciumoxalate druses. Leaf margin serrate or entire.

Inflorescence Axillary simple or compound raceme. Floral prophylles (bracteoles) two.

Flowers Actinomorphic. Half epigyny (perigyny). Sepals four or five (or six), with quincuncial aestivation, persistent, free or connate. Petals four or five (or six), with induplicate-valvate aestivation, connate into campanulate corolla. Petals and stamens developing from common primordia; stamen primordium smaller than petal primordium. Tepals with well developed and distinct canals. Nectaries present on ovary wall. Disc absent.

Androecium Stamens usually four or five (sometimes six), haplostemonous, antepetalous, alternisepalous. Filaments connate at base, adnate to corolla tube (epipetalous). Anthers dorsifixed, versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers with staminodia?

Pollen grains Microsporogenesis simultaneous? Pollen grains colpate or colpor(oid)ate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, subreticulate.

Gynoecium Pistil composed of usually three or four connate antepetalous carpels. Ovary semi-inferior, unilocular, nectariferous. Style single, simple (hollow?). Stigma truncate, capitate or bilobate to quinquelobate, type? Male flowers with pistillodium?

Ovules Placentation free central. Ovules numerous per ovary, anatropous, apotropous, bitegmic, tenuinucellar. Micropyle endostomal? Outer integument approx. two cell layers thick. Inner integument three or four cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit A many-seeded drupaceous berry with persistent calyx. Mesocarp often thin. Endocarp somewhat lignified.

Seeds Aril absent. Exotesta? Endotesta with rhomboidal crystals. Tegmen? Perisperm not developed. Endosperm copious, amyloidiferous and lipidiferous. Embryo small, straight, chlorophyll? Cotyledons two, small. Germination?

Cytology n = 10

DNA Intron present in mitochondrial gene coxII.i3.

Phytochemistry Insufficiently known. Flavonols (kaempferol, quercetin, myricetin?), alkaloids, triterpene saponins, and maesaquinone and other quinones present. Cyanidin? Ellagic acid? Proanthocyanidins? Glycosides? Cyanogenic compounds?

Use Medicinal plants, seed oil, spices (Maesa indica), fish poisons, insecticides, timber.

Systematics Maesa (100–110; tropical Africa, Southeast Africa, Madagascar, Yemen, Sri Lanka, East Asia to Japan, Southeast Asia, Malesia to New Guinea, Queensland, Melanesia, islands in the Pacific).

Maesa is sister to the clade [[Samolaceae+Theophrastaceae]+[Myrsinaceae+Primulaceae]].

MARCGRAVIACEAE Bercht. et J. Presl

( Back to Ericales )

Berchtold et Presl., Přir. Rostlin: 218. Jan-Apr 1820 [’Marcgraviae’], nom. cons.

Marcgraviales Juss. in C. F. P. von Martius, Consp. Regn. Veg.: 61. Sep-Oct 1835 [’Marcgraviaceae’]; Noranteaceae (Choisy) DC. ex Mart., Consp. Regn. Veg.: 61. Sep-Oct 1835

Genera/species 7/170–175

Distribution Southern Mexico, Central America, the West Indies, northern to central South America.

Fossils Fossil pollen sometimes attributed to Marcgravia and Norantea s.lat. have been reported from Early Oligocene sediments in Puerto Rico. Fossil wood from Cenozoic layers on Sumatra has been described under the name of Ruyschioxylon.

Habit Bisexual evergreen shrubs, often epiphytic or semi-epiphytic, or lianas (rarely small trees).

Vegetative anatomy Phellogen ab initio superficial. Primary medullary rays alternating wide and narrow. Primary vascular tissue a cylinder, without separate vascular bundles. Vessel elements with simple and/or scalariform perforation plates; lateral pits alternate or opposite, simple or bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple and/or bordered pits, usually septate. Wood rays uniseriate to multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric. Sieve tube plastids Ss type. Nodes 1:1, unilacunar with one leaf trace. Cortical parenchyma with idioblasts containing sclereids or calciumoxalate raphides (in raphid sacs).

Trichomes Hairs usually unicellular (rarely multicellular); glands frequent.

Leaves Alternate (spiral or in Marcgravia distichous), simple, entire, often coriaceous, with supervolute ptyxis; in Marcgravia often heterophyllous, with small cordate leaves on sterile shoots with climbing roots and ordinary leaves on fertile root-less shoots. Stipules and leaf sheath absent. Petiole vascular bundles? Extrafloral nectaries often present on basal parts of abaxial surface of lamina. Venation pinnate, brochidodromous, indistinct. Stomata staurocytic. Cuticular wax crystalloids as platelets. Mesophyll with sclerenchymatous idioblasts containing calciumoxalate raphides. Abaxial side of lamina often with nectariferous glands (in Marcgravia also along margin). Domatia as pits. Leaf margin usually entire (sometimes serrate). Leaf apex with often caducous mucro.

Inflorescence Terminal raceme, umbel or spike. Flower in some species with petaloid bract adnate to pedicel and modified into leaf-, spur-, sac-, cup- or pitcher-like extrafloral nectary (nectaries in Marcgravia inserted on central aborted flowers).

Flowers Actinomorphic. Hypogyny. Sepals usually five (in Marcgravia four), with imbricate quincuncial aestivation, unequal in size, persistent, free or somewhat connate at base. Petals three to five, with imbricate aestivation, free or more or less connate (in Marcgravia four, in the form of a calyptra falling off at beginning of anthesis). Nectariferous disc absent.

Androecium Stamens (three to) five to more than 100, in one or two whorls. Filaments filiform to flattened, free or connate at base, usually free from tepals (rarely adnate to petal bases). Anthers basifixed or subbasifixed, non-versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with uninucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (sometimes tetracolporate), shed as monads, bicellular at dispersal. Exine tectate to semitectate, with usually columellate infratectum, imperforate, perforate or reticulate.

Gynoecium Pistil composed of two to eight connate carpels. Ovary superior, unilocular at first, gradually entirely or incompletely bilocular to 15-(to 20-)locular. Style single, simple, short, or absent. Stigma simple or lobed, Dry type. Pistillodium absent.

Ovules Placentation strongly intrusively parietal (seemingly axile). Ovules five to c. 20 (in Marcgraviastrum much more than 20) per carpel, anatropous, (incompletely) bitegmic, incompletely tenuinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustorium micropylar. Embryogenesis?

Fruit A loculicidal and septifragal capsule (or irregularly dehiscing) with persistent calyx, style and stigma. Pericarp leathery. Placentae carnose.

Seeds Aril often present. Seed coat exotestal? Exotestal cells enlarged, with inner walls strongly thickened, with theoid exotestal thickenings. Endotesta? Tegmen? Perisperm not developed. Endosperm sparse, starchy, or absent. Embryo large, straight or somewhat curved, well differentiated, chlorophyll? Cotyledons two, small to large. Germination phanerocotylar.

Cytology n = 18? (Marcgravia evenia ssp. calcicola)

DNA

Phytochemistry Flavonols (myricetin), terpenes, tannins, proanthocyanidins, leucopelargonidin, alkaloids, and triterpene saponins present. Iridoids, ellagic acid and cyanogenic compounds not found. Carbohydrates sometimes stored as oligosaccharides with kestose or isokestose bonds (inulin).

Use Medicinal plants.

Systematics Marcgravia (c 100; southern Mexico, Central America, the West Indies, tropical South America); ‘Sarcopera’ (7; S. anomala, S. cordachida, S. flammifera, S. oxystylis, S. rosulata, S. sessiliflora, S. tepuiensis; Honduras, the Guayana Highlands, northern Andes; non-monophyletic), ’Souroubea’ (19; southern Mexico to Bolivia; non-monophyletic), Norantea (1; N. guianensis; the West Indies, tropical South America), Ruyschia (10; tropical America), Schwartzia (18–20; Central America, northern Andes, southeastern Brazil), Marcgraviastrum (15; Central America, tropical South America).

Marcgraviaceae are probably sister to [Balsaminaceae+Tetrameristaceae].

Marcgravia is sister to the remaining Marcgraviaceae. The leaves in Marcgravia are distichous. The inflorescence is umbel-like, racemose, with sterile flowers. The flowers have four sepals, four petals connate into a calyptra, and nectaries adnate to the sterile aborted flowers. The remaining Marcgraviaceae have spiral leaves, inflorescence with exclusively fertile flowers, three or five sepals, five entirely or partially free petals, and free (not adnate) nectaries. Marcgraviastrum has an umbel-like racemose inflorescence. ’Sarcopera’ (non-monophyletic) has a spicate inflorescence.

MITRASTEMONACEAE Makino

( Back to Ericales )

Makino in Bot. Mag. (Tokyo) 25: 252. Dec 1911, nom.cons.

Mitrastemonales Makino in Bot. Mag. (Tokyo) 25: 252. Dec 1911

Genera/species 1/2

Distribution Northeastern India, Japan, the Ryukyu Islands, Taiwan, Indochina, Malesia to New Guinea, southern Mexico, Guatemala, northwestern Colombia.

Fossils Unknown.

Habit Bisexual, achlorophyllous, herbaceous endophytes without rhizome or normal roots. Holoendoparasites on roots of Fagaceae (Castanopsis, Lithocarpus, Quercus, and Trigonobalanus).

Vegetative anatomy Mycorrhiza absent. Hypha-like threads of cells invading host plant and anastomosing forming reticulum in host root phloem. Phellogen absent. Secondary lateral growth absent. Vessels absent. Imperforate tracheary xylem elements? Wood rays absent. Axial parenchyma absent. Sieve tube plastids? Nodes absent. Crystals?

Trichomes Hairs absent.

Leaves Opposite, reduced, scale-like (uppermost scales storing nectar), or absent. Stipules and leaf sheath absent. Venation? Stomata abnormal. Cuticular wax crystalloids cushion- or granule-shaped. Leaf margin entire.

Inflorescence Flowers terminal, solitary (flowers sometimes forming ‘fairy rings’ on ground).

Flowers Actinomorphic. Hypogyny. Tepals usually four (rarely five or six), with decussate-imbricate aestivation, somewhat petaloid, connate in lower part. Nectar-secreting stomata present on ovary and on base of androecium and upper scales. Disc?

Androecium Stamens numerous, entirely connate into cone-shaped tubular synandrous structure surrounding gynoecium, except for apical pore. Anthers arranged in several successive vertical whorls on different heights each whorl with approx. ten anthers, dorsifixed, non-versatile, polysporangiate (polythecate), extrorse, longicidal (anther whorls dehiscing circumscissely, splitting when pushed up by expanding style). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains usually diporate or triporate (rarely tetraporate or possibly dicolpate?), shed as monads, bicellular at dispersal. Exine intectate?; ectexine reduced to small tubercles.

Gynoecium Pistil composed of eight to 15 connate carpels. Ovary superior, unilocular. Style single, simple, stout. Stigma hemispherical, sub-bilobate, type? Pistillodium absent.

Ovules Placentation parietal, with eight to 20 intrusive placentae. Ovules numerous per ovary, anatropous, unitegmic, tenuinucellar. Integument approx. two cell layers thick. Funicular obturator present. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio cellular. Endosperm haustoria? Embryogenesis solanad?

Fruit A many-seeded baccate pyxidium (dehiscing by horizontal slit along groove between style and ovary).

Seeds Aril absent. Funicle short, viscid. Seed coat endotestal. Exotestal cells with massive U-shaped thickenings. Endotesta? Perisperm not developed. Endosperm one-layered, oily, enclosing embryo. Embryo undifferentiated, quadricellular, without chlorophyll? Cotyledons two. Germination?

Cytology n = 20

DNA

Phytochemistry Unknown.

Use Unknown.

Systematics Mitrastemon (2; M. matudae: southern Mexico, Guatemala, northwestern Colombia; M. yamamotoi: northeastern India, Japan, the Ryukyu Islands, Taiwan, Indochina, Malesia to New Guinea).

Mitochondrial DNA indicates a position within the Ericales (perhaps close to Ericaceae). However, Rose & al. recovered the clade [Mitrastemonaceae+Lecythidaceae] with weak support.

Reveal (in Taxon 59: 299–300) proposed to conserve the generic name Mitrastemon.

MYRSINACEAE R. Br.

( Back to Ericales )

Brown, Prodr. Fl. Nov.-Holl.: 532. 27 Mar 1810 [’Myrsineae’], nom. cons.

Lysimachiaceae Juss., Gen. Plant.: 95. 4 Aug 1789 [’Lysimachiae’]; Anagallidaceae Batsch ex Borkh., Bot. Wörterb. 1: 19. 1797 [’Anagallides’]; Ardisiaceae Juss. in Ann. Mus. Natl. Hist. Nat. 15: 350. 1810; Myrsinales R. Br. ex Bercht. et J. Presl, Přir. Rostlin: 251. Jan-Apr 1820 [‘Myrsineae’]; Myrsinopsida Bartl., Ord. Nat. Plant.: 121, 158. Sep 1830 [’Myrsineae’]; Aegicerataceae Blume, Nov. Plant. Expos.: 17. Aug-Dec 1833 [’Aegicereae’]; Lysimachiales Döll, Rhein. Fl.: 385. 24-27 Mai 1843 [‘Lysimachiae’]; Ardisiales J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 1025. 1846 [’Ardisiaceae’]; Coridaceae J. Agardh, Theoria Syst. Plant.: 332. Apr-Sep 1858 [’Corideae’]; Embeliaceae J. Agardh, Theoria Syst. Plant.: 140. Apr-Sep 1858 [’Embelieae’]

Genera/species 34/1.525–2.350

Distribution Cosmopolitan except polar areas.

Fossils Lysimachia and Myrsine are reported from the Neogene of Europe.

Habit Usually bisexual (rarely monoecious, polygamomonoecious or dioecious), evergreen or deciduous trees (in Aegiceras mangrove trees), shrubs, lianas or suffrutices, perennial or annual herbs. Cyclamen has a tuber formed by the hypocotyl.

Vegetative anatomy Phellogen ab initio superficially or deeply seated. Endodermis sometimes prominent? Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits alternate, usually bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres usually with simple pits, usually septate. Wood rays usually multiseriate, homocellular or heterocellular. Axial parenchyma paratracheal scanty vasicentric. Wood elements sometimes partially storied. Sieve tube plastids S type. Nodes usually 1:1, unilacunar with one leaf trace (sometimes 1:3 or 3:3, unilacunar or trilacunar with three traces). Secretory cells and schizogenous resinous canals with often reddish or blackish-red substance. Styloids, crystal sand and acicular calciumoxalate crystals present. Prismatic crystals often abundant.

Trichomes Hairs unicellular or multicellular, uniseriate or branched (sometimes articulated, stellate, dendritic, peltate or lepidote); glandular hairs multicellular, often sunken and with unicellular or multicellular stalk and multicellular head; secretory hairs (colleters?) present in some species of Ardisia.

Leaves Usually alternate (spiral; sometimes opposite or verticillate), simple, entire, often coriaceous (in Coris ericoid), usually with involute, supervolute or conduplicate (rarely revolute) ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation usually pinnate (rarely palmate). Stomata anomocytic or anisocytic (rarely helicocytic). Cuticular wax crystalloids as irregular granules (Aegiceras). Lamina gland-dotted or glandular hairy, sometimes with extrafloral nectaries. Epidermis often with mucilage cells. Schizogenous secretory cavities with reddish-brown, red or yellow resin usually present. Mesophyll sometimes with sclerenchymatous idioblasts. Calciumoxalate as druses and solitary crystals present in most tropical woody representatives. Domatia as pockets or hair tufts, or absent. Leaf margin usually entire (sometimes serrate or crenate).

Inflorescence Terminal or axillary, spike-, raceme- or umbel-like, corymbose, fasciculate etc., or flowers solitary. Floral prophylls (bracteoles) absent.

Flowers Usually actinomorphic (in Coris zygomorphic; calyx in Aegiceras asymmetrical). Epicalyx (consisting of ten to 15 spine-shaped acute outgrowths below calyx) present in Coris. Hypogyny. Sepals (three or) four or five (to nine), usually with imbricate (rarely contorted or valvate) aestivation, free or connate (median sepal in Coris abaxial). Petals (three or) four or five (to nine), usually with imbricate or contorted (rarely valvate or conduplicate) aestivation, usually connate into campanulate or urceolate corolla (sometimes only at base; corolla lobes in Cyclamen strongly recurved; in Embelia and Heberdenia free; absent in some species of Lysimachia [’Glaux’]). Petals and stamens developing from common primordia (stamens sometimes initiated as adaxial appendages). Nectariferous hairs often present on petals and carpels; base of ovary in Coris with nectary. Disc?

Androecium Stamens (three or) four or five (to nine), obhaplostemonous, alternisepalous, antepetalous. Filaments free or connate; usually adnate to corolla tube (epipetalous). Anthers dorsifixed or basifixed, sometimes versatile, tetrasporangiate (in Aegiceras transversely septate, locellate), introrse, usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pore-like slits), usually free (often connivent into cone-shaped structure around style; rarely connate). Tapetum secretory, with uninucleate cells. Female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually 3(–5)-colporate or 3(–5)-colpate (rarely pantocolporate), shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate, scabrate or psilate.

Gynoecium Pistil composed of three to five (or six) connate antepetalous carpels. Ovary superior, unilocular, nectariferous. Style usually single, simple (sometimes absent). Stigma punctate, capitate or truncate (rarely discoid or fimbriate), papillate, Dry or Wet type. Male flowers often with pistillodium?

Ovules Placentation free central to basal. Ovules several (in Coris five or six) to numerous per ovary, usually anatropous (in Cyclamen campylotropous, in Coris hemianatropous), ascending to horizontal, usually bitegmic (in Aegiceras and Cyclamen unitegmic), usually tenuinucellar (in Aegiceras crassinucellar?). Micropyle usually bistomal (in Coris endostomal). Outer integument two or three cell layers thick. Inner integument two or three (to seven) cell layers thick. Integument in Aegiceras four or five cell layers thick, in Cyclamen approx. two cell layers thick. Parietal tissue approx. four cell layers thick (Cyclamen). Archespore multicellular. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria usually absent (in Aegiceras developed from secondary endosperm tissue and invading funicle and integument). Embryogenesis usually caryophyllad (rarely onagrad). Polyembryony sometimes present.

Fruit A drupe, berry or capsule, often dehiscing irregularly (in some species of Lysimachia a pyxidium). Placentae juicy.

Seeds Aril absent. Funicle in Aegiceras not vascularized. Testa multiplicative. Exotesta? Endotestal cells in Cyclamen with crystals and U-shaped wall thickenings. Tegmen at first thick, finally crushed. Endotegmen sometimes with crystals. Perisperm not developed. Endosperm usually copious (often ruminate; absent in Aegiceras), oily and amyloidiferous (in Cyclamen with thick and pitted cell walls). Embryo usually straight (sometimes curved; in Cyclamen diagonal; in Aegiceras very large), without chlorophyll. Cotyledons usually two (in Cyclamen one), short (in Aegiceras connate into tube around plumule). Germination phanerocotylar or cryptocotylar (vivipary present in Aegiceras).

Cytology n = 10–13, 15, 17, 23 (48) – Polyploidy occurring.

DNA Two deletions present in the plastid gene ndhF.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin) and their glycosides, cyanidin, delphinidin, alkaloids, triterpene saponins, and benzoquinones present. Ellagic acid and cyanogenic compounds not found.

Use Ornamental plants, medicinal plants.

Systematics (under construction) Coris (1; C. monspeliensis; western and central Mediterranean, Somalia), Ardisiandra (3; A. primuloides, A. sibthorpioides, A. wettsteinii; mountains in tropical Africa), Lysimachia (c 175; temperate and subtropical regions on both hemispheres, with their highest diversity in East Asia), Cyclamen (22; southern Europe, the Mediterranean to the Caucasus and Iran, northeastern Somalia), Embelia (c 130; tropical and subtropical regions in the Old World), Grenacheria (12; Malesia), Heberdenia (1; H. bahamensis; Madeira, the Canary Islands), Pleiomeris (1; P. canariensis; the Canary Islands), Myrsine (c 300; tropical to warm-temperate regions on both hemispheres), Ardisia (250–1.050; tropical to warm-temperate regions of Asia and America, few species in Australia), Hymenandra (17; tropical Asia, Nicaragua to Colombia), Solonia (1; S. reflexa; eastern Cuba), Geissanthus (50–55; western tropical South America), Emblemantha (1; E. urnulata; Sumatra), Sadiria (4; S. aberrans, S. boweri, S. erecta, S. subsessilifolia; Assam, eastern Himalayas), Stylogyne (c 60; Mexico, Central America, the West Indies, tropical South America), Ctenardisia (5; C. amplifolia, C. ovandensis, C. purpusii, C. speciosa, C. stenobotrys; Central Amerca, tropical South America), Antistrophe (6; A. caudata, A. curtisii, A. glabra, A. oxyantha, A. serratifolia, A. solanoides; tropical Asia from northern India to Southeast Asia and Malesia), Parathesis (70–80; tropical America), Aegiceras (1; A. corniculatum; coastal areas in Southeast Asia to islands in the Pacific), Amblyanthus (3; A. glandulosus, A. multiflorus, A. obovatus; eastern Himalayas to Southeast Asia, Malesia to New Guinea), Amblyanthopsis (3; A. bhotanica, A. membranacea, A. philippinensis; the Himalayas to Southeast Asia and West Malesia), Elingamita (1; E. johnsonii; Three Kings Islands in New Zealand), Loheria (10; the Philippines, New Guinea), Cybianthus (150–160; Mexico, Central America, the West Indies, tropical South America), Vegaea (1; V. pungens; Hispaniola), Oncostemum (c 90; Madagascar, the Mascarene Islands), Badula (17; Madagascar, Mauritius, Réunion), Discocalyx (c 105; Central Malesia to tropical Australia, Melanesia and Polynesia, with their largest diversity in the Philippines and on New Caledonia), Labisia (17; Southeast Asia, Malesia), Systellantha (3; S. brookeae, S. fruticosa, S. serratifolia; Borneo), Monoporus (9; Madagascar), Fittingia (7; F. carnosifolia, F. conferta, F. grandiflora, F. mariae, F. tuberculata, F. tubiflora, F. urceolata; New Guinea), Conandrium (2; C. polyanthum, C. rhynchocarpum; East Malesia to New Guinea and the Bismarck Archipelago).

Myrsinaceae are sister to Primulaceae.

Herbaceous lineages such as Coris, Ardisiandra, Lysimachia and Cyclamen are probably basal in Myrsinaceae. Phylogenetic analyses of the entire Myrsinaceae are in demand.

PENTAPHYLACACEAE Engler

( Back to Ericales )

Engler in Engler et Prantl, Nat. Pflanzenfam., Nachtr. 1: 214. Oct 1897, nom. cons.

Genera/species 1/1

Distribution Southeastern China, northern Indochina, the Malay Peninsula, Sumatra.

Fossils Uncertain. Fossil fruits assigned to Pentaphylax are described from the Maastrichtian of Central Europe, yet their affinity is questioned.

Habit Bisexual or unisexual, evergreen tree or shrub.

Vegetative anatomy Phellogen? Pericyclic envelope consisting of fibres alternating with lignified parenchyma cells. Vessel elements with scalariform perforation plates; lateral pits opposite to scalariform, simple and/or bordered pits. Imperforate tracheary xylem elements tracheids usually with bordered (sometimes simple) pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular? Axial parenchyma apotracheal diffuse, diffuse-in-aggregates or in short tangential lines. Articulated laticifers abundant. Sieve tube plastids S type? Nodes? Druses absent. Crystals?

Trichomes Hairs simple.

Leaves Leaves alternate (spiral or distichous), simple, entire or lobed, with supervolute ptyxis. Stipules and leaf sheath absent. Buds perulate (perulae present). Petiole vascular bundle transection annular. Venation pinnate, often indistinct. Stomata usually paracytic. Cuticular wax crystalloids? Lamina with blackish, caducous and probably glanduliferous apex. Leaf margin serrate or entire.

Inflorescence Up to c. 15 flowers in terminal or axillary racemose inflorescences, with flowers principally solitary in axils of reduced leaves; when floral shoot strongly reduced, then inflorescence becoming fasciculate. Bracts with black, caducous and probably glanduliferous apex. Floral prophylls (bracteoles) two.

Flowers Actinomorphic. Hypogyny. Sepals five, with imbricate quincuncial aestivation, free or more or less connate. Some sepals with black, caducous and probably glanduliferous apex. Petals five, with imbricate quincuncial aestivation, free or more or less connate. Tepals with well developed and distinct canals. Nectary present on ovary wall. Disc absent.

Androecium Stamens five, haplostemonous, alternisepalous, antepetalous. Filaments very wide and relatively long, narrowing distally and incurved at apex, free, tightly pressed against petals and forming tube. Anthers basifixed, non-versatile?, tetrasporangiate, introrse, valvicidal (dehiscing by uplifted subapical valve). Tapetum secretory. Female flowers with staminodia?

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine tectate, with intermediate infratectum (columellae poorly developed), smooth. Tectum thin. Endexine thick.

Gynoecium Pistil composed of five connate antepetalous carpels. Ovary superior, unilocular. Style single, simple, hollow. Stigmatic areas shortly radiate, type? Male flowers with pistillodium?

Ovules Placentation apical-axile. Ovules two per carpel, campylotropous to hemitropous, pendulous, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument approx. three? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A loculicidal capsule, with midrib separating from rest of valves. Endocarp cells transversely elongate.

Seeds Seeds flattened Aril absent. Seed coat winged. Exotestal cells somewhat thickened, with theoid exotestal thickenings, elongate. Mesotestal cells large, thin-walled. Endotesta? Tegmen? Perisperm not developed. Endosperm sparse. Embryo straight?, chlorophyll? Cotyledons longer than radicula. Germination phanerocotylar.

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Aluminium accumulated.

Use Unknown.

Systematics Pentaphylax (1; P. euryoides; Guangdong, Hainan, northern Indochina, the Malay Peninsula, Sumatra).

Pentaphylax is sister to Ternstroemiaceae.

POLEMONIACEAE Juss.

( Back to Ericales )

de Jussieu, Gen. Plant.: 136. 4 Aug 1789 [’Polemonia’], nom. cons.

Polemoniales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 248. Jan-Apr 1820 [‘Polemoniae’]; Cobaeaceae D. Don in Edinburgh Philos. J. 10: 111. Jan 1824 [’Cobeaceae’]; Cobaeineae Link, Handbuch 1: 822. 4-11 Jul 1829 [‘Cobaeaceae’]; Polemoniineae Bessey in C. K. Adams, Johnson’s Universal Cyclop. 8: 463. 15 Nov 1895 [‘Polemoniales’]

Genera/species 23/375–380

Distribution Temperate and arctic Eurasia, the Himalayas, North America including arctic areas, Mexico, Central America, northern and western South America to southern Chile and southern Argentina, with their largest diversity in western North America.

Fossils The herbaceous fossil Gilisenium hueberi from the mid-Eocene of Utah has been assigned to Polemoniaceae.

Habit Bisexual, usually perennial, biennial or annual herbs (sometimes shrubs or suffrutices; rarely lianas; in Cantua trees). Often evil-smelling.

Vegetative anatomy Phellogen ab initio usually superficial (sometimes pericyclic). Cambium usually not storied. Endodermis sometimes prominent. Vessel elements usually with simple (rarely also scalariform) perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements tracheids, fibre tracheids or libriform fibres with simple or bordered pits, septate or non-septate. Wood rays uniseriate or multiseriate, heterocellular, or absent. Axial parenchyma paratracheal scanty vasicentric. Wood elements often storied. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Phloem in Cobaea with secretory cavities containing yellow secretion. Crystals?

Trichomes Hairs multicellular, usually uniseriate (in, e.g., Langloisia branched), sometimes arachnoid, bristle-shaped or dendritic (sometimes calcified/silicified); glandular hairs with unicellular or multicellular head often present.

Leaves Usually alternate (spiral; in Linanthus and Phlox opposite; in Gymnosteris verticillate), simple or pinnately or palmately compound, entire or lobed (in Cobaea with terminal leaflet modified into tendril; in Acanthogilia dimorphic, with young leaves pinnately compound and older leaves simple and entire), with conduplicate ptyxis. Stipules usually absent (in Cobaea intrapetiolar, foliaceous); leaf sheath absent. Colleter-like glandular hairs often present on adaxial side of petiole base. Petiole vascular bundles? Venation usually pinnate (sometimes palmate). Stomata usually anomocytic (sometimes almost paracytic). Cuticular wax crystalloids? Epidermis with or without mucilage cells. Leaf margin lobed, serrate or entire. Multicellular bristles present in Langloisia and some species of Loeselia.

Inflorescence Usually terminal (in Acanthogilia axillary), umbel-like, capitate, corymbose, panicle, thyrsopaniculate or botryoid (flowers rarely solitary). Inflorescences sometimes pseudanthia with involucral bracts. Floral prophylls (bracteoles) absent.

Flowers Usually actinomorphic (sometimes zygomorphic). Hypogyny. Sepals (four or) five (or six), with imbricate, valvate or open aestivation, persistent, connate (rarely almost free). Petals (four or) five (or six), usually with convolute or contortuplicate (rarely imbricate) aestivation, connate into campanulate, infundibuliform or discoid corolla; median petal adaxial or abaxial; corolla sometimes bilabiate (e.g. 2:3, 3:2 or 5:0). Nectariferous disc intrastaminal, annular, entire or lobed (rarely absent).

Androecium Stamens (three to) five (or six), usually as many as sepals, haplostemonous, antesepalous, alternipetalous, often unequal in length. Filaments free from each other, usually adnate to corolla tube (epipetalous; sometimes free from petals). Anthers usually ventrifixed (rarely dorsifixed), in Cobaea versatile, tetrasporangiate, introrse?, longicidal (dehiscing by longitudinal slits). Tapetum usually secretory (in Cobaea amoeboid-periplasmodial?). Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually (tetra- to) hexa- to c. 50-pantoporate (rarely zonotreme, bizonotreme, anomotreme/porate or [stephano]colp[or]ate; in Acanthogilia zonotreme), shed as monads, bicellular at dispersal. Exine tectate to semitectate, with columellate infratectum, reticulate, striate or verrucate.

Gynoecium Pistil composed of (two or) three (or four) connate carpels, median carpel adaxial. Ovary superior, (bilocular or) trilocular (or quadrilocular). Style single, filiform, usually trilobate. Stigmas decurrent along entire lobes, papillate, Dry type. Pistillodium absent.

Ovules Placentation axile. Ovules one to numerous per carpel, anatropous to hemitropous, apotropous, unitegmic, usually tenuinucellar (in Cobaea pseudocrassinucellar). Integument three to 20 cell layers thick. Nucellar cap present at least in Cobaeoideae. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear (endosperm finally cellular). Endosperm haustoria absent. Embryogenesis chenopodiad.

Fruit Usually a loculicidal (in Acanthogilia and Cobaea septicidal) capsule (rarely a nut).

Seeds Aril?Seed coat sometimes winged, usually mucilaginous when wet. Exotesta of various thickness, with thickened radial cell walls. Epidermal cells often cylindrical with distinct spiral wall thickenings and mucilage. Endotesta reduced to pigmentary layer. Perisperm not developed. Endosperm usually copious (sometimes sparse), oily (absent in Cobaea). Embryo usually straight (sometimes curved), well differentiated (Cobaea), with or without chlorophyll. Cotyledons two. Germination usually phanerocotylar (in Cobaea cryptocotylar).

Cytology n = 6–12, with large chromosomes (Polemonioideae); n = (9, Acanthogilia) 15, 26, 27, with small chromosomes (Cobaeoideae) – Polyploidy and aneuploidy occurring.

DNA Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin), 6-metoxyflavonols, flavone-C-glycosides etc., cyanidin, oleanolic acid derivatives, triterpene saponins, and cucurbitacins present. Iridoids, ellagic acid, alkaloids, and cyanogenic compounds not found. Carbohydrates stored as oligosaccharides with kestose and isokestose bonds (inulin).

Use Ornamental plants.

Systematics Polemoniaceae are sister to Fouquieriaceae.

Cobaeoideae Arn., Botany: 121. 9 Mar 1832 [‘Cobaeeae’]

3/31–33. Cantua (12; the Andes in Ecuador, Peru and Bolivia), Cobaea (18–20; Mexico, Central America, tropical South America), Bonplandia (1; B. geminiflora; Mexico, Guatemala). – Baja California in northwestern Mexico to tropical South America. Twining herbs, lianas, trees. Stipules in Cobaea intrapetiolar, foliaceous. Flowers large, in Cobaea somewhat zygomorphic. Sepals largely connate (sometimes only at base), with green midrib. Petal veins united at base of lobe (sometimes also upper lobe). Staminal traces present in two whorls. Filaments often superficially adnate to corolla. Pollen grains sometimes 100–220 μm, with verrucate exine. Nucellar cap present. Fruit a septicidal and/or loculicidal capsule. Seed coat narrowly or broadly winged. Mesotestal cell walls thinly lignified. n = 15, 26, 27. – Cobaeoideae may be sister-group to [Acanthogilioideae+Polemonioideae] (Johnson & al. 2008).

Acanthogilioideae J. M. Porter et L. A. Johnson in Aliso 19: 60. 28 Jul 2000

1/1. Acanthogilia (1; A. gloriosa; Baja California in northwestern Mexico). – Shrub. Leaves very dimorphic, deciduous on short shoots, modified into branched spines on long shoots. Sepals with green midrib. Pollen grains stephanocolporate. Exine corsely verrucate. Seeds few. n = 9. – Acanthogilia is sister to either the clade [Cobaeoideae+Polemonioideae], Cobaeoideae or Polemonioideae. Johnson & al. (2008) recovered Acanthogilia as sister to Polemonioideae.

Polemonioideae Arn., Botany: 121. 9 Mar 1832 [‘Polemonieae’]

19/345–350. Western North America, northern temperate regions, southern South America. Usually herbs (sometimes suffrutices). Flowers sometimes zygomorphic. Petal veins usually free or united high above base. Filaments usually adnate to corolla tube (free from petals in, e.g., Collomia and Loeselia. Hypostase present. Seed coat usually not winged (in Loeselia narrowly winged). Testa sometimes multiplicative. n = (6) 7 (8) 9 (or more). – A plausible topology is [[Polemonieae+Phlocideae]+[Gilieae+Loeselieae]] with high posterior probability but low bootstrap support (Johnson & al. 2008).

[Polemonieae+Phlogieae]

Polemonieae Dumort., Anal. Fam. Plant.: 25. 1829 [‘Polemoneae’].

1/c 30. Polemonium (c 30; temperate regions on the Northern Hemisphere south to Mexico, Chile). – Usually perennial (P. micranthum annual) herbs. Leaves alternate (spiral), pinnate. Calyx accrescent. Seeds dark, shiny. – Polemonium has sometimes been recovered as sister to the remaining Polemonioideae, to Phlocideae, or to [Gilieae+Phlocideae].

Phlocideae J. M. Porter et L. A. Johnson in Aliso 17: 84. 8 Jun 1998 (Phlocideae Dumort., Anal. Fam. Plant.: 25. 1829).

3/120–125. Linanthus (c 55; southwestern Canada, western United States, Mexico), Gymnosteris (2; G. nudicaulis, G. parvula; western United States), Phlox (65–70; northeastern Asia, Canada, United States, northern Mexico, one species in Siberia). – Northeastern Asia, North America to northern Mexico. Leaves usually opposite. Corolla usually hypocraterimorphous. – Linanthus is sister to the remainder.

[Loeselieae+Gilieae]

Loeselieae J. M. Porter et L. A. Johnson in Aliso 17: 84. 8 Jun 1998.

9/c 97. Aliciella (21; western United States, northwestern Mexico), Giliastrum (10; western United States, Mexico, Central America), Loeselia (14; California), Dayia (5; D. glutinosa, D. grantii, D. havardii, D. scabra, D. sonorae; southern United States, northern and northwestern Mexico, northern Chile), Bryantiella (1; B. palmeri; southern California; in Ipomopsis?), Ipomopsis (c 30; southwestern Canada, United States, Mexico, Chile, Argentina; non-monophyletic?), Microgilia (1; M. minutiflora; western United States), Eriastrum (14; southwestern United States), Langloisia (1; L. setosissima; southwestern United States, northern Mexico). – Style usually persistent in fruit. – Aliciella is sister-group to the remaining Loeselieae.

Gilieae (Rchb.) V. E. Grant, Nat. Hist. Phlox Fam.: 120. 1959.

6/c 100. Saltugilia (4; S. australis, S. caruifolia, S. latimeri, S. splendens; California, Baja California); Lathrocasis (1; L. tenerrima; western United States, northwestern Mexico), ’Gilia’ (c 40; southwestern Canada, western United States, Mexico to northern Chile; non-monophyletic), Allophyllum (5; A. divaricatum, A. gilioides, A. glutinosum, A. integrifolium, A. nemophilophyllum; western United States), Collomia (15; southwestern Canada, western United States, Mexico, Bolivia to temperate Chile and Argentina), Navarretia (35; southwestern Canada, western United States, northern Mexico, Chile, Argentina). – Saltugilia is sister to the rest.

Cladogram of Polemoniaceae based on DNA sequence data (Johnson & al. 2008). Acanthogilia is sometimes recovered as sister to Cobaeoideae and/or Polemonioideae.

PRIMULACEAE Batsch ex Borkh.

( Back to Ericales )

Borkhausen, Bot. Wörterbuch 2: 240. 1797 [‘Primulae’], nom. cons.

Primulales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 241. Jan-Apr 1820 [‘Primulaceae’]; Primulineae Burnett, Outlines Bot.: 901, 1101. Feb 1835 [‘Primulosae’]; Primulopsida Brongn., Enum. Plant. Mus. Paris: xxi, 69. 12 Aug 1843 [’Primulineae’]; Hottoniaceae Döll, Fl. Baden 2: 641. med 1858 [’Hottonieae’]

Genera/species 6/590–600

Distribution Temperate and arctic-alpine regions on the Northern Hemisphere, tropical mountains in East Africa, the Arabian Peninsula and Malesia, southernmost South America.

Fossils Fossil long-stalked ebracteate hypogynous to almost hypogynous pentamerous flowers of primuloid origin were described from the Campanian to the Maastrichtian of Portugal. The ovary is unilocular and the placentation is free central, with numerous anatropous ovules. Most of the outer tissues are beset with schizogenous secretory cavities.

Habit Bisexual, perennial or annual herbs (sometimes cushion-shaped and woody at base), usually with a basal leaf rosette. Some species are xerophytes. Hottonia is aquatic.

Vegetative anatomy Phellogen? Primary vascular tissue a cylinder without separate vascular bundles, or a cylinder of bundles or scattered bundles. Secondary lateral growth anomalous or absent. Endodermis usually prominent. Vessel elements with simple perforation plates; lateral pits alternate. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits. Wood rays multiseriate, heterocellular? Axial parenchyma? Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Secretory cells and schizogenous resinous canals present. Crystals?

Trichomes Hairs multicellular, uniseriate, articulated, often long, stellate hairs present in some species of Androsace and Primula; glandular hairs short; immersed glandular hairs absent.

Leaves Usually alternate (sometimes opposite or verticillate), usually simple (rarely pinnately compound), usually entire (rarely pinnately lobed), with involute or conduplicate (sometimes revolute) ptyxis. Stipules or leaf sheath absent. Petiole vascular bundles? Venation pinnate or palmate; marginal veins ending with a hydathode. Stomata usually anomocytic. Cuticular wax crystalloids as threads, chemically dominated by flavonoids. Lamina in Omphalogramma, Bryocarpum and some species of Primula with black flattened glandular dots. Sclereids present in some species. Schizogenous or lysigenous secretory cavities? Leaf margin serrate, crenate or entire.

Inflorescence Terminal or axillary, verticels, a single umbel, raceme, spike, or head, or cymose and usually long-stalked (scapose), or flowers solitary. Floral prophylls (bracteoles) absent.

Flowers Usually actinomorphic (rarely somewhat zygomorphic). Hypogyny. Sepals five (to eight), usually with imbricate aestivation, usually persistent, often connate. Petals five (to eight), usually with imbricate aestivation, connate into campanulate or discoid (hypocraterimorphous) corolla (corolla lobes in Soldanella fimbriate, in some species of Primula [’Dodecatheon’] strongly recurved). Petals and stamens developing from common primordia. Nectaries present on ovary. Disc absent. Diheterostyly frequent.

Androecium Stamens five (to eight), haplostemonous, antepetalous, alternisepalous. Filaments free, adnate to corolla tube (epipetalous). Anthers sometimes connivent and strongly protruding, dorsifixed or basifixed, non-versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with uninucleate cells. Staminodia usually absent (in Soldanella extrastaminal, antesepalous, scale-like).

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–10)-colporate, -colporoidate or -colpate (in many species of Primula syncolpate or stephanocolpate), shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, perforate, often granulate.

Gynoecium Pistil composed of five connate antepetalous (in Primula antesepalous?) carpels. Ovary superior, unilocular (rarely with rudimentary septa at base), nectariferous. Style single, simple, with stylar canal. Stigma truncate to capitate, papillate or non-papillate, Dry type. Pistillodium absent.

Ovules Placentation free central. Ovules five to more than 100 per ovary, anatropous or hemitropous, ascending, usually bitegmic (in Androsace [‘Douglasia’] unitegmic), tenuinucellar. Micropyle bistomal. Outer integument approx. two cell layers thick. Inner integument three or four cell layers thick. Integument in ‘Douglasia’ six to ten cell layers thick. Archespore multicellular. Megagametophyte monosporous, Polygonum type Endosperm development ab initio nuclear. Endosperm haustoria absent. Embryogenesis caryophyllad. Polyembryony present in some species.

Fruit A denticidal or irregularly dehiscing capsule (in one? species of Androsace [’Pomatosace’] a pyxidium).

Seeds Aril absent. Exotesta persistent; exotestal cell walls often thick. Endotesta in Primula with thick inner cell walls. Exotegmen? Endotegmen often with rhomboidal crystals. Perisperm not developed. Endosperm usually copious, usually with thick and pitted cell walls, oily and amyloidiferous (absent in Hottonia and Soldanella). Embryo short, straight, without chlorophyll. Cotyledons two, short. Germination phanerocotylar.

Cytology x = 8–12 – Polyploidy frequently occurring.

DNA Plastid gene infA lost/defunct (Primula). Two deletions in plastid gene ndhF.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, oleanolic acid derivatives, ellagic acid (at least in Hottonia), proanthocyanidins (prodelphinidins), alkaloids, triterpene saponins, benzoquinones (rapanone), and cucurbitacins (absent from Soldanella) present. Cyanogenic compounds not found.

Use Ornamental plants, medicinal plants.

Systematics Androsace (c 110; temperate regions on the Northern Hemisphere, with their largest diversity in alpine regions), Primula (c 450; temperate and alpine regions on the Northern Hemisphere, tropical mountains in Ethiopia and tropical Asia to high mountains on Java and New Guinea, southern Andes, with their largest diversity in eastern Himalayas to western China), Omphalogramma (15; the Himalayas, western China), Hottonia (2; H. palustris: Europe, western Asia; H. inflata: southeastern Canada, eastern United States), Soldanella (16; mountain regions in central and southern Europe), Bryocarpum (1; B. himalaicum; eastern Himalayas).

Primulaceae are sister-group to Myrsinaceae. Androsace is sister to the clade [Primula+[Omphalogramma+[Hottonia+Soldanella]]], according to Trift & al. (2002).

Cladogram of Primulaceae based on DNA sequence data (Trift & al. 2002).

RORIDULACEAE Augier ex Martinov

( Back to Ericales )

Martinov, Tekhno-Bot. Slovar: 549. 3 Aug 1820 [’Roriduleae’], nom. cons.

Roridulales Bercht. et J. Presl, Přir. Rostlin: 217. Jan-Apr 1820 [‘Roridulae’]

Genera/species 1/2

Distribution Mountains in Western Cape in southwestern South Africa.

Fossils Unknown.

Habit Bisexual, evergreen shrubs. Semicarnivorous (producing resins without digesting enzymes); living in mutualistic relationship with two species of carnivorous hemipterans, Pameridea marlothii (on Roridula dentata) and P. roridulae (on both species of Roridula), which feed on insects trapped by the sticky resins from the glandular hairs. The urea excreted by the bugs is absorbed by the Roridula plant through the leaf surface. The Pameridea species have not been found in nature outside Roridula.

Vegetative anatomy Mycorrhiza absent? Phellogen? Stem endodermis continuous and starchy; inside this a sclerenchymatous ring. Primary medullary rays narrow. Pericyclic fibres absent. Vessel elements with scalariform or reticulate perforation plates; lateral pits usually alternate, scalariform or opposite, bordered pits. Imperforate tracheary xylem elements tracheids with bordered pits. Wood rays usually uniseriate (rarely biseriate or multiseriate), homocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty. Sieve tube plastids Ss type. Nodes? Wood ray cells sometimes with gum-like deposits. Calciumoxalate druses sometimes present.

Trichomes Foliar hairs unicellular bristle-like and multicellular glandular hairs; glandular hairs stalked, capitate, resin-producing; gland stalk uniseriate to quinqueseriate; head sexacellular to multicellular, in larger glandular hairs with central column bearing resin-producing cells.

Leaves Alternate (spiral), simple, entire to narrowly pinnately lobed (lamina linear, narrowing towards apex), with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation brochidodromous. Stomata anomocytic. Cuticular wax crystalloids? Epidermis with calciumoxalate druses. Leaf margin entire or narrowly lobate. Resin-producing glandular hairs numerous along margin and along midvein on abaxial side, also elsewhere.

Inflorescence Terminal, botryoid or raceme-like cymose, or flowers solitary axillary.

Flowers Actinomorphic. Hypogyny. Sepals five, with quincuncial imbricate aestivation, persistent, free (connate at base?). Petals five, with quincuncial imbricate aestivation, free (slightly connate at base?). Nectaries present on staminal bases. Disc absent.

Androecium Stamens five, haplostemonous, antesepalous, alternipetalous. Filaments filiform, thicker at base, free, adnate to petal base, nectariferous. Anthers subbasifixed, in bud inflexed, early inverted (as mature resupinated), versatile?, tetrasporangiate, seemingly extrorse, poricidal (dehiscing by apical pores or short slits); connective swollen at anther base. Fibrous endothecium absent. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpor(oid)ate (rarely tetracolporate), shed as monads, bicellular at dispersal. Exine tectate, with granular infratectum, perforate, spinulate (Roridula dentata) or insular with angular to rounded segments (Roridula gorgonias).

Gynoecium Pistil composed of three connate carpels. Ovary superior, trilocular. Style single, simple. Stigma capitate or reversed conical, papillate, type? Pistillodium absent.

Ovules Placentation axile to apical. Ovules one to four per carpel, anatropous, pendulous, unitegmic, tenuinucellar. Integument ? cell layers thick. Hypostase? Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustorium micropylar. Embryogenesis solanad.

Fruit A loculicidal (and septicidal?) capsule, with central columella persistent after dehiscence.

Seeds Aril? Exotesta mucilaginous when moistened; outer epidermal cells of exotesta with thickened inner tangential and radial walls. Endotesta? Perisperm not developed. Endosperm copious, fleshy. Embryo small, straight, well differentiated, chlorophyll? Cotyledons two. Germination phanerocotylar.

Cytology n = 6

DNA

Phytochemistry Insufficiently known. Route I iridoids (also secoiridoids?) present. Tannins present in endosperm and integument. Ellagic acid? Proanthocyanidins, cyanogenic compounds and naphthoquinones not found.

Use Ornamental plants.

Systematics Roridula (2; mountains in Western Cape; R. dentata: Pakhuis to Elandskloof Mountains; R. gorgonias: Hottentots Holland to Kleinrivier and Riviersonderend Mountains).

Roridula is sister to Actinidiaceae.

The stamens of Roridula are tigmotactic and the anthers revert instantaneously when touched releasing their pollen on the pollinator, which may be a specimen of Pameridea.

SAMOLACEAE Raf.

( Back to Ericales )

Rafinesque in Ann. Gén. Sci. Phys. Bruxelles 5: 349. Jul-Sep 1820 [’Samolia’]

Samolales Dumort., Anal. Fam. Plant.: 29. 1829 [‘Samolinarieae’]

Genera/species 1/c 12

Distribution Europe, Macaronesia, Africa, southwestern Asia to southern China, East Asia to Japan, southern Australia, Tasmania, New Caledonia, New Zealand, eastern and southern North America, southern and central South America.

Fossils Unknown.

Habit Bisexual, usually perennial or annual herbs (sometimes woody at base).

Vegetative anatomy Phellogen? Vessel elements with simple? perforation plates; lateral pits alternate? Imperforate tracheary xylem elements libriform fibres? Wood rays absent? Axial parenchyma? Sieve tube plastids S type? Nodes 1:1?, unilacunar with one leaf trace? System of secretory canals present especially in inflorescence. Crystals?

Trichomes Hairs usually absent; sessile or stalked glandular hairs with one or few stalk cells and unicellular or multicellular head sometimes present.

Leaves Alternate (spiral), simple, entire (rarely scale-like), with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate; bundles probably diverging very soon after leaf trace departs from central stele. Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Leaf margin entire.

Inflorescence Terminal, simple or compound raceme or corymbose. Floral prophylls (bracteoles) absent.

Flowers Actinomorphic. Half epigyny (perigyny). Sepals five, with open aestivation, persistent, connate, adnate to ovary. Petals five, with imbricate aestivation, connate into campanulate or urceolate corolla. Petals and stamens developing from common primordia; stamen primordia initially larger. Nectaries present on ovary. Disc absent.

Androecium Stamens five, haplostemonous, antepetalous, alternisepalous. Filaments free, adnate to corolla tube (epipetalous). Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective sometimes prolonged. Tapetum secretory? Staminodia five, extrastaminal, antesepalous, alternipetalous, triangular or linear, epipetalous, or absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolporoidate, shed as monads, bicellular at dispersal. Exine tectate, with columellate? infratectum, finely reticulate.

Gynoecium Pistil composed of five connate antepetalous carpels. Ovary semi-inferior, unilocular, nectariferous. Style single, simple, impressed. Stigma truncate to capitate, type? Pistillodium absent.

Ovules Placentation free central to basal. Ovules numerous per ovary, hemitropous, bitegmic, tenuinucellar. Micropyle bistomal? Outer integument approx. two cell layers thick. Inner integument approx. two cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria absent? Embryogenesis caryophyllad?

Fruit A many-seeded, loculicidal-denticidal, quinquedentate capsule with five antesepalous valves.

Seeds Aril absent? Seed coat indistinct. Exotestal cells tanniniferous. Endotesta? Exotegmen? Endotegmen tanniniferous, with rhomboidal crystals. Perisperm not developed. Endosperm copious, with thin to slightly thickened cell walls, amyloidiferous. Embryo small, straight, chlorophyll? Cotyledons two, narrow. Germination phanerocotylar?

Cytology n = (12) 13

DNA

Phytochemistry Insufficiently known. Flavonols (kaempferol, quercetin, myricetin)? and other polyphenols present. Cyanidin? Delphinidin? Glycosides? Triterpene saponins? Ellagic acid, alkaloids and cyanogenic compounds not found?

Use Aquarium plants.

Systematics Samolus (c 12; Europe, Macaronesia, Africa, Southwest Asia to southern China, East Asia to Japan, southern Australia, Tasmania, New Caledonia, New Zealand, eastern and southern North America, central to southern South America, with their largest diversity on the Southern Hemisphere).

Samolus is sister to Theophrastaceae.

SAPOTACEAE Juss.

( Back to Ericales )

de Jussieu, Gen. Plant.: 151. 4 Aug 1789 [’Sapotae’], nom. cons.

Achradaceae Vest, Anleit. Stud. Bot.: 273, 299. 1818 [’Achratoideae’]; Sapotales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 250. Jan-Apr 1820 [‘Sapoteae’]; Bumeliaceae Barnhart in Bull. Torrey Bot. Club 22: 21. 15 Jan 1895; Sapotineae Engl., Syllabus, ed. 2: 169. Mai 1898; Boerlagellaceae H. J. Lam in Bull. Jard. Bot. Buitenzorg, sér. 3, 7: 250. Feb 1925; Sarcospermataceae H. J. Lam in Bull. Jard. Bot. Buitenzorg, sér. 3, 7: 248. Feb 1925 [’Sarcospermaceae’], nom. cons.

Genera/species 66/1.200–1.225

Distribution Mainly pantropical; some species in subtropical regions (southeastern United States, central South America, southeastern Africa, South Asia).

Fossils Pollen resembling those in Sapotaceae have been reported from Eocene and younger layers. Late Oligocene branches and fruits of putative sapotacean origin are known from Germany.

Habit Usually bisexual (sometimes monoecious or dioecious, rarely gynomonoecious), evergreen trees or shrubs (rarely lianas).

Vegetative anatomy Phellogen ab initio superficial. Medullary vascular bundles sometimes present. Vessel elements usually with simple (rarely scalariform) perforation plates; lateral pits alternate, usually simple pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres usually with simple (sometimes bordered) pits, usually non-septate (in Sarcosperma also septate; vasicentric tracheids abundant). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal reticulate, scalariform or banded. Tyloses often frequent (sometimes sclerotic). Sieve tube plastids S type. Nodes usually 3:3, trilacunar with three leaf traces (rarely 1:1, unilacunar with one trace). Laticifers articulated, usually with white (rarely yellow or bluish-green) latex. Wood elements often silicified and/or with silica bodies. Calciumoxalate crystals as druses, styloids, acicular and prismatic crystals and/or crystal sand sometimes present.

Trichomes Hairs usually unicellular (in Delpydora multicellular), uniseriate or T-shaped, often malpighiaceous, with branches of unequal lengths, often brownish.

Leaves Usually alternate (spiral or distichous; sometimes opposite or verticillate), simple, entire, coriaceous, with conduplicate ptyxis. Stipules cauline (intrapetiolar) or absent; leaf sheath absent. Petiole often swollen at base (in some species of Sarcosperma and Pradosia with two stipule-like appendages, stipulules, at apex). Petiole vascular bundle transection arcuate, D-shaped or annular; petiole sometimes with wing bundles. Venation pinnate, usually brochidodromous (sometimes eucamptodromous or craspedodromous); secondary veins often parallel and densely spaced. Stomata usually anomocytic (sometimes paracytic). Cuticular wax crystalloids? Epidermis with or without mucilage cells. Mesophyll usually with sclerenchymatous idioblasts; mesophyll fibres sometimes with spiral thickenings. Special laticifers and cells secreting gutta-percha. Sclereids present. Domatia as pits. Leaf margin usually entire (sometimes serrate, rarely serrate-dentate). Two-branched hairs frequent.

Inflorescence Axillary, usually fasciculate, raceme-like or panicle (sometimes solitary axillary).

Flowers Actinomorphic. Pedicel not articulated. Hypogyny. Sepals four to six, in one whorl, usually with imbricate quincuncial aestivation, free or connate in lower part; or six to eleven, spiral, with imbricate aestivation, free; or 2+2, 3+3 or 4+4, outer sepals with valvate, inner sepals with imbricate aestivation, free or connate at base. Petals three to six, 4+4, 5+5 or up to 18, entire, lobed or divided above, or divided down to base into three segments with mid-segment entire and two lateral (dorsal) segments entire, lobed or connate. Nectariferous disc annular or cushion-shaped, or absent.

Androecium Stamens four to c. 35(–43), as many as petals, alternisepalous, antepetalous; or (when more numerous than petals) some stamens antepetalous and others alternipetalous; or many stamens in antepetalous fascicles; or numerous stamens (rarely up to six times as many as petals) in two or three whorls. Filaments usually free (rarely connate into a tube), usually adnate to corolla tube or corolla lobes. Anthers basifixed or dorsifixed, sometimes versatile?, tetrasporangiate (in Magodendron locellate, with septa), introrse to extrorse (in Sarcosperma sometimes latrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate to quadrinucleate cells. Staminodia up to eight (to twelve), extrastaminal, in one whorl, antesepalous, alternating with stamens, often adnate to corolla tube, often lobed or divided (sometimes petaloid), or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3–4(–6)-colporate, shed as monads, bicellular or tricellular at dispersal. Exine tectate, with columellate or granular infratectum, punctate, perforate, microreticulate, reticulate, psilate, scabrate, verruculate, striate or rugulate (rarely spinulate).

Gynoecium Pistil composed of (one to) four to 14 (to 30) connate antesepalous carpels. Ovary superior (unilocular to) quadrilocular to 14-locular (to 30-locular), with hairs inside. Style single, intire. Stigma punctate or somewhat lobate, papillate, Dry type. Pistillodium?

Ovules Placentation usually axile or axile-basal (when ovary unilocular, then basal-parietal). Ovules one (to five) per carpel, anatropous to hemianatropous, ascending, apotropous, unitegmic, tenuinucellar. Integument ? cell layers thick. Hypostase absent (not organized). Megagametophyte monosporous, Polygonum type. Synergids at least sometimes with a filiform apparatus. Antipodal cells ephemeral. Endosperm development ab initio nuclear. Endosperm haustorium absent. Embryogenesis?

Fruit Usually a berry (rarely a drupe or a loculicidal capsule) with persistent calyx.

Seeds Aril absent. Testa multiplicative. Exotestal cells isodiametric and strongly lignified and sclerotized (tanniniferous). Endotesta finally crushed. Perisperm not developed. Endosperm copious to sparse, oily, with or without amyloid?, or absent. Embryo straight, well differentiated, without chlorophyll. Cotyledons two, foliaceous. Germination phanerocotylar or cryptocotylar.

Cytology n = (10–)12–14

DNA Mitochondrial intron coxII.i3 lost (Chrysophyllum).

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, oleanolic acid derivatives, C-30-oxidized triterpenes, pentacyclic triterpenes, latex of trans- and/or cis-polyisoprenes, dammaranes, gallic acid, condensed and hydrolyzable tannins, proanthocyanidins (prodelphinidins), pyrrolizidine alkaloids as aliphatic monocarboxylic esters and esters of arylic and aralkylic acids, saponins, tyrosine- or phenylalanine-derived cyanogenic compounds naphthoquinones, dihydrosterculic acid, myo-inisitol, and resins present. Ellagic acids not found.

Use Fruits (Manilkara, Chrysophyllum), latex (gutta-percha, balata, chicle, tewing gums), seed oil (Butyrospermum), timber.

Systematics Sapotaceae may be sister to the clade [Ebenaceae+[Maesa+[Samolus+ Theophrastaceae]+[Myrsinaceae+Primulaceae]]].

Sapotaceae and Ebenaceae have similar malpighiaceous hairs. Sapotaceae and Lecythidaceae have seeds with lignified multiplicative testal cells.

A plausible topology is [Sarcosperma+[Eberhardtia+[Xantolis+[‘Sapotoideae’+’Chrysophylloideae’]]]].

Bayesian majority rule consensus tree of Sapotaceae based on DNA sequence data and morphology (Smedmark & al. 2006).

Sarcospermatoideae (H. J. Lam) Swenson et Anderb. in Cladistics 21: 120. Apr 2005

1/11. Sarcosperma (11; eastern Himalayas, southern China, Southeast Asia, Malesia). – Laticifers and latex sometimes absent? Leaves opposite. Stipules cauline. Some species with paired stipulules on petiole apex. Inflorescence axis well developed (in reality consisting of a reduced branch). Staminodia scale-like, short and relatively wide. Pistil composed of one or two connate carpels. Style stout. Hilar scar distinct. Endosperm absent. – Sarcosperma is sister-group to the remaining Sapotaceae.

[Eberhardtia+[Xantolis+[‘Sapotoideae’+’Chrysophylloideae’]]]

Stipules cauline or absent. Stamens as many as corolla lobes, antepetalous, or twice (to six times) as many as corolla lobes. Staminodia present, often petaloid, antesepalous (sometimes absent). Pistil composed of one to 14 (to 30) connate antesepalous carpels. Seed in Omphalocarpum with amyloid (xyloglucans).

Eberhardtia

1/3. Eberhardtia (3; E. aurata, E. krempfii, E. tonkinensis; southern China, Laos, Vietnam).

[Chrysophylloideae+[Neohemsleya+[[Xantolis+Spiniluma oxyacantha]+Sapotoideae]]]

Chrysophylloideae Leurss., Handb. Syst. Bot. 2: 946. Jul 1882 [‘Chrysophylleae’]

36/660–680. Vanroyena (1; V. castanosperma; northeastern Queensland), Sersalisia (2; S. sericea, S. sessiliflora; tropical Australia), Pichonia (10; the Moluccas, New Guinea, the Bismarck Archipelago, Solomon Islands, New Caledonia), Magodendron (2; M. mennyae, M. venefici; Papua New Guinea), Niemeyera (3; N. chartacea, N. prunifera, N. whitei; Queensland, New South Wales), Pycnandra (c 60; New Caledonia),‘Planchonella’ (c 60; East Malesia to islands in western Pacific; polyphyletic), Amorphospermum (1; A. antilogum; northeastern and eastern Queensland, northeastern New South Wales), Micropholis (c 40?; Central America, tropical South America), Ragala (5; R. balata, R. guianensis, R. sanguinolenta, R. spuria, R. ulei; northeastern South America), Ecclinusa (11; Trinidad, tropical South America), Elaeoluma (4; E. crispa, E. glabrescens, E. nuda, E. schomburgkiana; Panamá to central Brazil), Nemaluma (2; N. anomala, N. engleri; northeastern South America), Pleioluma (>30; Malesia to tropical Australia, New Caledonia), Prieurella (7; tropical South America), Diploon (1; D. cuspidatum; southeastern Brazil), Martiusella (2?; M. gonocarpa, M. imperialis; eastern Brazil), Cornuella (1; C. venezuelanensis; northern South America), Achrouteria (2; A. durifructa, A. pomifera; northeasternmost South America?; in Chloroluma?), Chloroluma (1; C. gonocarpum; tropical South America; incl. Achrouteria?), Chrysophyllum (15–20?; Africa, Madagascar, India, Southeast Asia, Malesia to tropical Australia, tropical America; incl. Villocuspis?), Villocuspis (6?; tropical South America; in Chrysophyllum?), Donella (17; tropical Africa, Madagascar), Gambeya (2–5; G. africana, G. korupensis, G. lacourtiana, G. madagascariensis, G. subnuda; Central Africa), Lucuma (20–25; tropical South America), Sarcaulus (5; S. brasiliensis, S. inflexus, S. oblatus, S. vestitus, S. wurdackii; tropical South America; in Pouteria?), Chromolucuma (8; southern Central America, tropical South America; in Pouteria?), Pradosia (23; tropical South America; in Pouteria?), Pouteria (c 300?; tropical Africa, tropical Asia to the Pacific, tropical America). – Unplaced Chrysophylloideae Aubregrinia (1; A. taiensis; Ivory Coast, Ghana), Breviea (1; B. sericea; Ivory Coast, Ghana, Congo?), Delpydora (2; D. gracilis, D. macrophylla; Gabon), Diploon (1; D. cuspidatum; southeastern Brazil), Englerophytum (10–15; tropical Africa), Omphalocarpum (27; tropical West and Central Africa), Sarcaulus (5; tropical South America), Synsepalum (c 20?; tropical Africa), Tridesmostemon (4; T. bequaertii, T. congoense, T. mortehani, T. omphalocarpoides; Central Africa).

Simplified phylogeny (maximum clade credibility tree) of Chrysophylloideae based on nuclear DNA sequence data (Swenson & al. 2013).

[Neohemsleya+[[Xantolis+Spiniluma oxyacantha]+Sapotoideae]]

Neohemsleya

1/1. Neohemsleya (1; N. usambarensis; Tanzania). – Neohemsleya usambarensis was sister to Sapotoideae in Gautier & al. (2013).

[[Xantolis+Spiniluma oxyacantha]+Sapotoideae]

[Xantolis+Spiniluma oxyacantha]

2?/c 16. Xantolis (c 15; South Asia, southern China, Indochina, the Philippines), Spiniluma (1; S. oxyacantha; Ethiopia, Erithrea, southern Arabian Peninsula). – The sister-group relationship between Xantolis and Spiniluma is uncertain. The only species of Spiniluma investigated by Gautier & al. (2013) was S. oxyacantha (S. discolor is the second species in Spiniluma). They found this clade to be sister-group to Sapotoideae.

Sapotoideae Eaton, Bot. Dict., ed. 4: 35. Apr-Mai 1836

c 23?/515–520. Sideroxyleae Small, Man. S.E. Fl.: 1031. 30 Nov 1933. Sideroxylon (75–80; tropical and subtropical regions on both hemispheres). – Lecomtedoxa (6; L. biraudii, L. heitzana, L. klaineana, L. nogo, L. plumosa, L. saint-aubinii; Gabon), Neolemonniera (3; N. batesii, N. clitandrifolia, N. ogouensis; tropical West Africa). The clade [Lecomtedoxa+Neolemonniera] was sister-group to the remaining Sapotoideae in Gautier & al. (2013). – Tseboneae L. Gaut. Et Naciri in Taxon 62: 979. 22 Oct 2013. Tsebona (1; T. macrantha; Madagascar), Bemangidia (1; B. lowryi; southeastern Madagascar), Capurodendron (23; Madagascar). – Isonandreae T. D. Penn., Gen. Sapotac.: 147. 1991. Burckella (14; East Malesia to Tonga), ’Madhuca’ (c 100; India, Sri Lanka, Southeast Asia, Malesia to New Guinea, tropical Australia; polyphyletic), Diploknema (7; D. butyracea, D. butyraceoides, D. oligomera, D. ramiflora, D. sebifera, D. siamensis, D. yunnanensis; India to Yunnan, Southeast Asia and Borneo), Payena (c 20; West Malesia, Mindanao, with their highest diversity on Borneo; non-monophyletic?), Isonandra (c 10; southern India, Sri Lanka), Palaquium (c 110; India, Sri Lanka, southern China, Southeast Asia, Taiwan, Malesia to Samoa), Northia (1; N. seychellana; the Seychelles). – Sapoteae Reichenb., Handb. Nat. Pflanz.-Syst.: 214. 1–7 Oct 1837. Inhambanella (2; I. guereensis, I. henriquezii; western and southeastern tropical Africa), Vitellariopsis (5; V. cuneata, V. dispar, V. ferruginea, V. kirkii, V. marginata; East Africa), Vitellaria (1; V. paradoxa; tropical West and Central Africa; in Vitellariopsis?), Tieghemella (2; T. africana, T. heckelii; tropical West and Central Africa), Mimusops (c 40; tropical Africa, Madagascar, the Mascarene Islands, the Seychelles, one species, M. elengi, to tropical Asia), Autranella (1; A. congolensis; tropical West and Central Africa), Labramia (9; Madagascar), Labourdonnaisia (7; L. calophylloides, L. glauca, L. lecomtei, L. madagascariensis, L. revoluta, L. richardiana, L. thouarsii; Madagascar, Mauritius, Réunion), Faucherea (11; Madagascar), Manilkara (c 65; tropical regions on both hemispheres).

Bayesian majority rule consensus tree of Sapotoideae based on DNA sequence data (Gautier & al. 2013).

Unplaced Sapotaceae

Baillonella (1; B. toxisperma; Central Africa to Angola), Gluema (1; G. ivorensis; tropical West and Central Africa).

SARRACENIACEAE Dumort.

( Back to Ericales )

Dumortier, Anal. Fam. Plant.: 53. 1829, nom. cons.

Sarraceniales Lindl. in C. F. P. von Martius, Consp. Regn. Veg.: 61. Sep-Oct 1835 [’Sarracenieae’]; Heliamphoraceae Chrtek, Slavíková et Studnička in Preslia 64: 8. 10 Feb 1992; Sarracenianae Thorne ex Reveal in Phytologia 79: 71. 29 Apr 1996; Sarraceniineae Reveal in Kew Bull. 66: 48. Mar 2011

Genera/species 3/33–34

Distribution Western United States, eastern North America, the Guayana Highlands.

Fossils Uncertain. Archaeamphora longiservia from the Lower Cretaceous of northeastern China may be a conifer.

Habit Bisexual, perennial rhizomatous herbs. Carnivorous. Helophytes.

Vegetative anatomy Mycorrhiza absent. Phellogen absent? Primary vascular tissue in scattered separate bundles. Secondary lateral growth absent. Vessel elements (in rhizome) with scalariform perforation plates; lateral pits scalariform, opposite or alternate, simple and/or bordered pits. Imperforate tracheary xylem elements tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular?, or absent. Axial parenchyma apotracheal diffuse. Sieve tube plastids S type. Nodes? Crystals?

Trichomes Colleter-like glandular hairs (on petioles).

Leaves Alternate spiral, simple, entire, usually in basal rosette (in some species of Heliamphora on upright, usually unbranched stem), with ? ptyxis. Leaves ascidiate, infundibuliform or tubular, usually directed inwards (in Darlingtonia twisted 180° hence directed outwards), modified into water-holding (not in Heliamphora?) insect-trapping organs, usually with lid- or hood-like dorsal terminal lobe. Funnel-shaped zone of lamina in Heliamphora and Sarracenia consisting of adaxially fused margins (in Sarracenia with adaxial keel) and in uppermost part operculum (in Heliamphora small). In Darlingtonia a winged sheathing lower zone, a keeled tubular zone above and, in uppermost part, a stout dome-shaped almost closed zone. Distally, especially around entrance of pitcher, a nectar-secreting zone with nectariferous glands. Inner side of trap with a zone covered by downwardly directed hairs or bristles (in Darlingtonia scattered waxy platelets). In lower part of lamina an absorption zone. Proteolytic enzymes absent from pitcher leaf, nutrients instead becoming available to plant by bacterial decomposition of animal bodies in pitcher liquid. Lepidote or ensiform leaves sometimes forming late in season. Stipules and leaf sheath absent. Colleter-like glandular hairs present on adaxial side of petiole base. Petiole vascular bundle transection hippocrateromorphous (Ω-shaped), collateral, each bundle surrounded by sclerenchyma and starchy tissue. Venation pinnate? Stomata anomocytic. Cuticular wax crystalloids as platelets (in Darlingtonia, detachable, on inner side of pitcher). Leaf margin crenate to entire.

Inflorescence Flowers Sarracenia and Darlingtonia solitary, terminal; in Heliamphora usually terminal few-flowered raceme-like inflorescences. Floral prophylls (bracteoles) three.

Flowers Actinomorphic, often large. Hypogyny. Sepals (three or) four to six, with imbricate aestivation, persistent, free (in Heliamphora petaloid). Petals (three or) four to six, with imbricate aestivation, caducous, free (absent in Heliamphora). Ovary wall in Sarracenia with ten nectaries on stylar base above staminal groups; flowers in Darlingtonia and Heliamphora without nectaries. Disc absent.

Androecium Stamens eight to ten (Heliamphora) or numerous (Darlingtonia, Sarracenia), often in fascicles (in Sarracenia usually originating from ten staminal primordia). Filaments short, free or connate in ten fascicles (in Sarracenia), free from tepals. Anthers basifixed (Darlingtonia, Heliamphora) or dorsifixed (Sarracenia), non-versatile (Darlingtonia, Heliamphora) or versatile (Sarracenia), tetrasporangiate, introrse, usually longicidal (dehiscing by longitudinal slits; in Heliamphora poricidal, with short pore-like slits on caudate appendages). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains (3–)4–5-colpor(oid)ate (Heliamphora), 4–6-colpor(oid)ate (Darlingtonia) or 6–9-colpor(oid)ate (Sarracenia), shed as monads, bicellular at dispersal. Exine tectate, with granular infratectum, verruculate (Heliamphora) or scrobiculate (Darlingtonia, Sarracenia).

Gynoecium Pistil composed of three (Heliamphora) or five (Darlingtonia, Sarracenia) connate carpels. Ovary superior, trilocular (Heliamphora) or quinquelocular (often incompletely divided in upper part). Style trilobate and apically truncate (Heliamphora), quinquelobate (Darlingtonia) or widened like an umbrella (Sarracenia), hollow?, in Sarracenia nectariferous. Stigmas three or five, small (in Sarracenia present on lower sides of five lobe apices), papillate, Dry type. Pistillodium absent.

Ovules Placentation axile in lower part, often intrusively parietal in upper part. Ovules numerous per carpel, anatropous, horizontal, usually unitegmic (in Darlingtonia bitegmic?), tenuinucellar. Integument approx. four cell layers thick. Hypostase? Megagametophyte monosporous, Polygonum type. Antipodal cells sometimes persistent. Endosperm development cellular. Endosperm haustoria? Embryogenesis caryophyllad.

Fruit A loculicidal capsule.

Seeds Aril? Seed coat with wings or hairs. Exotesta with thick radial and inner cell walls, with theoid exotestal thickenings. Inner testal layers crushed. Perisperm not developed. Endosperm copious, oily and proteinaceous. Embryo straight, well differentiated, chlorophyll? Cotyledons two. Germination phanerocotylar.

Cytology n = 13 (Sarracenia), 15 (Darlingtonia), 21 (Heliamphora)

DNA Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin), O-methyl flavonols; cyanidin Route I iridoids (also decarboxylated iridoids), Group VI secoiridoids (morroniside), sarracenin (enoldiacetal monoterpene), and alkaloids present. sometimes present. Ellagic acid, saponins and cyanogenic compounds not found. Tannins?

Use Ornamental plants.

Systematics Darlingtonia (1; southwestern Oregon, northern California), Heliamphora (23; the Guayana Highlands in southeastern Colombia, southern Venezuela, northwestern Brazil and Guyana), Sarracenia (9–10; eastern United States, southern and southeastern Canada).

Sarraceniaceae are sister to [Actinidiaceae+Roridulaceae].

Darlingtonia is sister to [Sarracenia+Heliamphora] (Bayer & al. 1996).

Cladogram of Sarraceniaceae based on DNA sequence data (Bayer & al. 1996).

SLADENIACEAE (Gilg et Werderm.) Airy Shaw

( Back to Ericales )

Airy Shaw in Kew Bull. 18: 267. 8 Dec 1965

Genera/species 2/3

Distribution East Africa, Southeast Asia.

Fossils Uncertain. Fossil wood (Sladenioxylum africanum), resembling the wood in extant Sladenia, has been found in Albian-Cenomanian layers in eastern Sudan.

Habit Bisexual, evergreen trees.

Vegetative anatomy Phellogen ab initio pericyclic. Vessel elements in Sladenia arranged in radial groups. Vessel elements with scalariform perforation plates; lateral pits scalariform (Ficalhoa), opposite to alternate, simple or bordered pits. Imperforate tracheary xylem elements fibre tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric. Sieve tube plastids S type? Nodes 1:1?, unilacunar with one? leaf trace. Exudate in Ficalhoa white, latex-like. Chambered crystals present or absent. Calciumoxalate prismatic crystals or druses.

Trichomes Hairs unicellular or absent.

Leaves Alternate (spiral or distichous), simple, entire, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate; petiole in Sladenia also with wing bundles (associated fibres absent in Ficalhoa). Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Epidermis in Sladenia with mucilage cells. Mesophyll with calciumoxalate druses. Sclereids absent. Leaf margin usually serrate (sometimes entire).

Inflorescence Axillary, few-flowered cymose, or flowers solitary axillary.

Flowers Actinomorphic, small. Hypogyny. Sepals four to seven, with imbricate aestivation, persistent, free (Sladenia) or connate (Ficalhoa). Petals five (or six), spiral or whorled, with imbricate aestivation, free (Sladenia) or connate at base (Ficalhoa). Spiral scale-like leaves present below perianth. Nectaries present on lower part of ovary (Sladenia). Disc absent.

Androecium Stamens (eight to) ten to 15, in one whorl. Filaments free, swollen (Sladenia) or connate in five fascicles, narrow (Ficalhoa), in Sladenia free from tepals, in Ficalhoa adnate to petals. Anthers basifixed, non-versatile, tetrasporangiate, introrse (Sladenia), poricidal (in Sladenia dehiscing by apical pores; in Ficalhoa by apical transverse slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis successive. Pollen grains tricolp(or)ate (Sladenia), shed as monads, bicellular at dispersal. Exine tectate, with columellate? infratectum, verruculate or smooth.

Gynoecium Pistil composed of (two or) three (Sladenia) or five (or six) antepetalous (Ficalhoa) connate carpels. Ovary superior, in Sladenia usually trilocular (rarely bilocular), in Ficalhoa? usually quinquelocular (sometimes sexalocular). Style single, usually simple, short (sometimes with short acute lobes). Stigmas (two or) three (Sladenia), punctate, type? Pistillodium absent.

Ovules Placentation apical-axile (Sladenia) or axile (Ficalhoa). Ovules two collateral anatropous pendulous and epitropous (Sladenia) or numerous (Ficalhoa) per carpel, bitegmic, tenuinucellar. Micropyle endostomal (Sladenia). Outer integument three or four cell layers thick (Sladenia). Inner integument three or four cell layers thick (Sladenia). Obturator, hypostase, nucellar beak, and nucellar cap absent (Sladenia). Megagametophyte tetrasporous, 8-nucleate, Adoxa type. Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit A loculicidal capsule with persistent calyx and central columella (Ficalhoa) or a schizocarp? with thin exocarp, crustaceous endocarp and three mericarps (Sladenia).

Seeds Aril absent. Seed coat in Sladenia winged. Testa crustaceous, with polygonal cells, little thickened (Ficalhoa). Perisperm not developed.. Endosperm copious. Embryo straight, well differentiated, chlorophyll? Cotyledons two, short. Germination?

Cytology n = 24 (Sladenia) – Sladenia has cell wall development of monocotyledonous type (also in Ficalhoa?).

DNA

Phytochemistry Unknown.

Use Timber.

Systematics Sladenia (2; S. celastrifolia, S. integrifolia; Burma, Yunnan, northern Thailand), Ficalhoa (1; F. laurifolia; tropical mountains in East Africa).

Sladeniaceae are sister to [Pentaphylax+Ternstroemiaceae] and resemble this clade, e.g., in their wood anatomy and pollen morphology.

Some analyses do not place Sladenia as sister to Ficalhoa. Ficalhoa is sister to Euryodendron (Ternstroemiaceae) in an analysis by Luna & Ochoterena (2004).

STYRACACEAE DC. et Spreng.

( Back to Ericales )

de Candolle et Sprengel (transl. W. Jameson), Elem. Philos. Pl.: 140. Jul 1821 [’Styraceae’], nom. cons.

Halesiaceae D. Don in Edinburgh New Philos. J. 6: 49. Oct-Dec 1828; Halesiales Link, Handbuch 1: 667. 4-11 Jul 1829; Styracopsida Bartl., Ord. Nat. Plant.: 121, 158. Sep 1830 [’Styracinae’]; Styracales Rich. in C. F. P. von Martius, Consp. Regn. Veg.: 26. Sep-Oct 1835 [’Styraceae’]

Genera/species 13/160–165

Distribution The United States, Mexico, the West Indies, Central America, South America south to Argentina, the northern and eastern Mediterranean, eastern Himalayas (Nepal to Arunachal-Pradesh), Assam, eastern India, East Asia to the Korean Peninsula and Japan, Southeast Asia, Malesia, New Guinea and Solomon Islands.

Fossils Fossils assigned to Rehderodendron have been found in Eocene to Miocene layers of Europe.

Habit Usually bisexual (in Bruinsmia gynodioecious), evergreen or deciduous trees or shrubs.

Vegetative anatomy Phellogen ab initio pericyclic. Vessel elements usually with scalariform perforation plates (with numerous cross-bars; vessel elements rarely with simple perforation plates); lateral pits opposite or alternate (sometimes scalariform), bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform? fibres usually with bordered (sometimes also simple) pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Secretory cavities with resinous canals often present. Silica present in wood at least in many species of Styrax. Prismatic calciumoxalate crystals present in some species.

Trichomes Hairs multicellular, uniseriate, stellate, peltate or lepidote (often brown to reddish-brown).

Leaves Alternate (spiral), simple, entire, with conduplicate-plicate or supervolute ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate or D-shaped; medullary bundles and/or wing bundles sometimes present (in Parastyrax complex). Venation pinnate, camptodromous. Stomata usually anomocytic. Cuticular wax crystalloids? Calciumoxalate as druses and/or solitary prismatic crystals. Leaf margin serrate, crenate or entire; leaf teeth gland-tipped.

Inflorescence Terminal or axillary, often raceme-like or paniculate (rarely one- or two-flowered) cymose. Floral prophylls (bracteoles) often absent.

Flowers Actinomorphic. Pedicel often articulated. Hypanthium present or absent. Half epigyny or sometimes (Halesia) epigyny. Sepals four or five (to nine), with open or valvate aestivation, persistent, connate. Petals (four or) five (to eight), with imbricate or subinduplicate-valvate aestivation, connate (in Halesia largely connate). Nectary absent. Disc absent.

Androecium Stamens (five to) eight to ten (to 20), usually twice as many as (rarely the same number or three or four times as many as) petals, usually obdiplostemonous (rarely haplostemonous, alternipetalous). Filaments stout (not distinctly delimited from anthers), usually flattened, usually connate below, usually adnate to petals (epipetalous). Anthers basifixed, non-versatile, tetrasporangiate, introrse or latrorse, longicidal (dehiscing by longitudinal slits); connective sometimes apically prolonged. Tapetum secretory. Female flowers with five staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpor(oid)ate or tetracolpor(oid)ate, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, perforate, spinulate, verruculate or smooth.

Gynoecium Pistil composed of usually two to four (sometimes five) connate, alternisepalous, antepetalous carpels, often hairy inside; median carpel abaxial. Ovary inferior or semi-inferior, usually bilocular to quadrilocular in lower part (sometimes quinquelocular), usually unilocular in upper part (in Parastyrax multilocular). Style usually single, simple, filiform (occasionally lobed), hollow (with stylar canal). Stigma punctate, capitate or somewhat lobate, Dry type. Pistillodium absent.

Ovules Placentation usually axile (rarely subbasal). Ovules usually four to nine (rarely one or up to c. 30) per carpel, anatropous or hemianatropous, pendulous to ascending, usually apotropous (sometimes epitropous), unitegmic or bitegmic (Styrax), tenuinucellar. Micropyle endostomal. Outer integument in Styrax ? cell layers thick. Inner integument ? cell layers thick. Placental obturator present in some species. Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustoria? Embryogenesis solanad.

Fruit A loculicidal capsule (Alniphyllum, Huodendron, Styrax), a drupe (Parastyrax, Styrax), a samara (Halesia, Pterostyrax), or a berry-like (Bruinsmia) or nutlike (Pterostyrax, Melliodendron, Rehderodendron, Sinojackia, Styrax) fruit with persistent hypanthium and calyx.

Seeds Aril? Seed coat in Alniphyllum winged. Testa thin, vascularized, crushed. Tegmen in Styrax? Perisperm not developed. Endosperm copious, oily. Embryo straight or somewhat curved, well differentiated, without chlorophyll. Cotyledons two, flat or almost terete. Germination phanerocotylar.

Cytology n = 8 (12)

DNA Intron present in mitochondrial gene coxII.i3.

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, oleanolic acid derivatives, ellagic acid, tannins, triterpene saponins, caffeic acid, and hydroxycinnamic acids (p-coumaric acid, ferulic acid) present. Myricetin, alkaloids and cyanogenic compounds not found.

Use Ornamental plants, medicinal plants, balsam resins (benyamin-gum, benzoin etc. from Styrax) for pharmaceutical, confectionery and perfume industries, incense.

Systematics Styrax (c 130; the Mediterranean, Southeast Asia, Malesia, southern and southeastern United States, Mexico, Central America, Puerto Rico, tropical South America), Huodendron (4; H. biaristatum, H. parviflorum, H. tibeticum, H. tomentosum; southern China, Southeast Asia); Bruinsmia (2; B. polysperma, B. styracoides; eastern Himalayas, Burma, southern China, Indochina, Malesia to New Guinea), Alniphyllum (3; A. eberhardtii, A. fortunei, A. pterospermum; eastern Himalayas, southwestern and central China, Taiwan, Southeast Asia), Halesia (1; H. carolina; southeastern United States), 'Halesia' monticola (Arkansas, North Carolina), Melliodendron (1; M. xylocarpum; southern China), Changiostyrax (1; C. dolichocarpus; southeastern China), Perkinsiodendron (1; P. macgregorii; eastern China), Rehderodendron (5; R. gongshanense, R. indochinense, R. kwangtungense, R. kweichowense, R. macrocarpum; southern and western China, Burma, Vietnam), 'Pterostyrax' (4; P. burmanicus: Burma; P. corymbosus, P. hispidus, P. psilophyllus: China, Japan; polyphyletic), Sinojackia (8; southern China); unplaced: Parastyrax (2; P. lacei, P. macrophyllus; Yunnan, Burma).

Styracaceae are probably sister to Diapensiaceae.

Styrax or the clade [Styrax+Huodendron] is sister to the remainder (Fritsch & al. 2001, Yan & al. 2018). The East North American Halesia carolina is nested in a clade together with Pterostyrax, whereas the Chinese Perkinsiodendron macgregorii is closely allied to Rehderodendron, according to Yan & al. (2018).

One of three equally parsimonious cladograms of Styracaceae based on morphology and DNA sequence data (Fritsch & al. 2001). ‘Halesiamacgregorii is recombined into Perkinsiodendron (Fritsch & al. 2016). Styrax was sister to the remaining Styracaceae in the analyses by Yan & al. (2018). Moreover, according to their study, Halesia carolina was closely allied to Pterostyrax hispidus.

SYMPLOCACEAE Desf.

( Back to Ericales )

Desfontaines in Mém. Mus. Natl. Hist. Nat. 6: 9. 1820 [’Symplocearum’, ’Symploceae’], nom. cons.

Genera/species 1/300–320

Distribution Tropical and subtropical regions in southern, eastern and southeastern Asia, Malesia to New Guinea, eastern Australia, Melanesia, southeastern United States, southern Mexico, Central America, the West Indies, tropical South America; some species in temperate regions in East Asia and eastern North America.

Fossils Fossil Triporopollenites pollen from the Maastrichtian of California has been assigned to Symplocos. Fossil endocarps, pollen grains and leaves of Symplocaceae have been found in sediments from the Early Eocene to Miocene of Europe. Symplocos Subgenus Hopea as well as the extinct Pallioporia and Sphenotheca occur as fossil endocarps in European Eocene and later layers and Sphenotheca is very similar to some extant species of Symplocos in East Asia. During the Palaeogene Symplocos seems to have been widely distributed and largely dominating on the North American and Eurasiatic continents.

Habit Usually bisexual (rarely polygamomonoecious or dioecious), usually evergreen trees or shrubs (Symplocos paniculata is deciduous).

Vegetative anatomy Phellogen ab initio superficial. Vessel elements with scalariform perforation plates (often with numerous cross-bars); lateral pits scalariform, alternate or opposite, simple and/or bordered pits. Vestured pits sometimes present. Imperforate tracheary xylem elements tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, or absent. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Calciumoxalate as crystal sand and lumps of prismatic crystals.

Trichomes Hairs unicellular or multicellular, uniseriate, septate (rarely with swollen base), or absent.

Leaves Alternate (usually spiral, sometimes distichous), simple, entire, often coriaceous, with supervolute ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate. Stomata usually paracytic and as sparsely occurring large water stomata (protruding unicellular water-secreting, bladder-like on outer part, constricted internally where they run into lamina via rosette of epidermal cells). Cuticular wax crystalloids? Leaf margin serrate, glandular serrate (usually with caducous glands) or entire.

Inflorescence Usually axillary (rarely terminal), spike, raceme, panicle, fasciculate or head-like cymose (flowers sometimes solitary axillary).

Flowers Actinomorphic. Pedicel usually articulated (in Cordyloblaste clade not articulated). Usually epigyny (rarely half epigyny). Sepals (three to) five, with valvate or imbricate aestivation, persistent, connate at base. Petals (three to) five or ten (or eleven), with imbricate aestivation, deeply bifid, entirely fused into tube or connate only at base. Nectariferous disc annular, cylindrical or quinquelobate, with five glands.

Androecium Stamens usually numerous (sometimes three to five antesepalous, or ten), obdiplostemonous. Filaments fused into tube or connate only at base all or in five antesepalous alternipetalous fascicles (sometimes? free), usually adnate to corolla tube (epipetalous). Anthers almost spherical, basifixed to dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–4)-colporate, shed as monads, bicellular at dispersal. Exine tectate to semitectate, with granular or columellate infratectum, punctate, perforate to reticulate, psilate, scabrate, rugulate, areolate, verrucate, spinulate or echinate.

Gynoecium Pistil composed of two to five connate carpels; median carpel abaxial. Ovary usually inferior (rarely semi-inferior), usually trilocular (sometimes bi-, quadri- or quinquelocular), in upper part with incomplete septa, nectariferous. Style single, simple, narrow or wide, usually hollow (with stylar canal). Stigma small, capitate or bilobate to quinquelobate, Dry type or Wet type. Male flowers with pistillodium.

Ovules Placentation mostly axile. Ovules (two to) four per carpel, anatropous, pendulous, epitropous, unitegmic, tenuinucellar. Integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustoria? Embryogenesis?

Fruit Usually a one-seeded drupe with persistent calyx. Pyrene with as many germination pores as fertile carpels.

Seeds Aril absent. Testa vascularized. Inner walls of exotestal cells usually thick (theoid exotestal thickenings) or thin. Endotesta? Perisperm not developed. Endosperm copious, oily and often starchy. Embryo large, straight or curved (sometimes U-shaped), chlorophyll? Cotyledons two, very short. Germination phanerocotylar.

Cytology n = 11 (12) – Polyploidy occurring.

DNA Mitochondrial intron coxII.i3 lost. Mitochondrial coxI intron present.

Phytochemistry Flavonols (kaempferol), O-methyl flavonols, cyanidin, catechins, davidigenin, Group II decarboxylated iridoids (e.g. cornine), oleanolic acid derivatives, arjunolic acid derivatives, ellagic and gallic acids, hydrolyzable tannins, proanthocyanidins (prodelphinidins), saponins, and lignans (pinoresinol) present. Indole alkaloids rare. Myricetin and cyanogenic compounds not found. Aluminium accumulated in many species.

Use Beverages (maté), dyeing sources, carpentries, carvings.

Systematics Symplocos (300–320; tropical and subtropical regions in southern, eastern and southeastern Asia, Malesia to New Guinea, eastern Australia and Melanesia, southeastern United States, southern Mexico, Central America, the West Indies, tropical South America; few species in temperate regions in East Asia and eastern North America).

Symplocos may be sister to [Diapensiaceae+Styracaceae].

The clade Cordyloblaste appears to be sister-group to the remaining species of Symplocos.

TERNSTROEMIACEAE Mirb. ex DC.

( Back to Ericales )

de Candolle, Essai Propr. Méd. Pl., ed. 2: 203. 11 Mai 1816, nom. cons. prop.

Ternstroemiales Mirb. in C. F. P. von Martius, Consp. Regn. Veg.: 52. Sep-Oct 1835 [‘Ternstroemiaceae’]

Genera/species 11/330–340

Distribution Tropical and subtropical regions, the Canary Islands, tropical West and Central Africa, the Himalayas, East Asia, Southeast Asia, Malesia to New Guinea and Queensland, Melanesia, islands in southwestern Pacific, the Hawaiian Islands, Mexico, Central America, the West Indies, tropical South America.

Fossils Campylotropous seeds assigned to Eurya (e.g. Eurya crassitesta) and Visnea have been described from the Santonian onwards of Central Europe and from the Maastrichtian of Germany, and fossil pentamerous capsules and seeds of Protovisnea from the Late Turonian to the Maastrichtian. Seeds of Eurya having thick sclerotic testa are frequently recorded from Cenozoic sediments.

Habit Bisexual or dioecious, evergreen trees and shrubs.

Vegetative anatomy Phellogen ab initio superficial. Medulla often septated by diaphragms consisting of sclereids. Narrow primary medullary rays alternating with wide ones. Vessel elements usually with scalariform (rarely reticulate) perforation plates; lateral pits scalariform or opposite (rarely alternate), simple and/or bordered pits. Vestured pits sometimes present. Imperforate tracheary xylem elements (tracheids? or) fibre tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty, or absent. Tyloses often abundant. Sieve tube plastids S type. Nodes usually 1:1, unilacunar with one leaf trace (rarely 3:3, trilacunar with three traces). Calciumoxalate as prismatic crystals.

Trichomes Hairs unicellular, simple.

Leaves Alternate (spiral or distichous), simple, entire, usually coriaceous, with conduplicate-involute or supervolute ptyxis. Stipules and leaf sheath absent. Colleters sometimes present (in, e.g., Freziera). Perulae absent. Petiole vascular bundles one to five, arcuately arranged. Venation usually brochidodromous (sometimes reticulodromous). Stomata usually anomocytic (sometimes cyclocytic). Cuticular waxes? Domatia in Eurya as pits. Epidermis in some species with mucilage cells. Mesophyll and petiolar cortex with sclerenchymatous idioblasts containing simple or branched sclereids. Leaf margin usually serrate (sometimes entire), with blackish caducous gland at leaf apex and tooth apices.

Inflorescence Flowers usually solitary axillary (sometimes in few-flowered axillary racemose inflorescence). Bracts with blackish gland at apex.

Flowers Actinomorphic. Usually hypogyny (rarely epigyny). Sepals (four or) five (to seven), with imbricate quincuncial aestivation, persistent, usually free (sometimes connate at base), usually with small gland at apex. Petals (four or) five (to seven; in Archboldiodendron usually 5+5), with imbricate quincuncial aestivation, usually free (sometimes connate at base). Nectaries present or absent.

Androecium Stamens (five to) numerous, often inflexed at apex. Filaments wide, flat or thick, often narrowing against apex, shorter than to at least twice as long as anthers, free or connate at base in five fascicles (in Visnea in antepetalous pairs), often adnate to petals at base. Anthers basifixed, non-versatile, tetrasporangiate, introrse, usually longicidal (dehiscing by longitudinal slits; sometimes poricidal, dehiscing with short pore-like slits; anthers in Eurya septate); connective usually prolonged, crystalliferous. Tapetum secretory, with binucleate to quadrinucleate cells. Female flowers usually with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate, shed as monads, bicellular at dispersal. Exine tectate, with columellate? infratectum, psilate to scabrate, rugulate or foveolate.

Gynoecium Pistil composed of (two or) three to five (or six) connate carpels. Ovary usually superior (rarely inferior), (bilocular or) trilocular to quinquelocular (or sexalocular). Style single, hollow, simple or branched at apex, or stylodia several, free. Stigmas usually capitate?, papillate, Wet? type. Male flowers usually with pistillodium.

Ovules Placentation usually axile (rarely apical or parietal). Ovules (one to) numerous per carpel, anatropous (amphitropous?) or campylotropous, apotropous or epitropous, bitegmic, usually tenuinucellar. Micropyle endostomal. Outer integument three to nine cell layers thick. Inner integument approx. three cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad.

Fruit In Freziereae usually a berry; in Ternstroemia an irregularly dehiscing capsule; in some species of Freziera a drupe; in Visnea a nut surrounded by fleshy accrescent calyx.

Seeds Aril absent. Seed coat mesotestal. Sarcotesta present in Anneslea and Ternstroemia. Exotestal cells often enlarged, sometimes with thickened walls, with theoid exotestal thickenings. Mesotesta of various thickness, often with lignified cell walls, sometimes with sclereids, often crystalliferous. Endotesta? Tegmen? Perisperm not developed. Endosperm copious or sparse, oily. Embryo large, U-shaped to almost straight, well differentiated, without chlorophyll. Cotyledons two, incumbent, shorter than radicula. Germination phanerocotylar?

Cytology n = 20, 25 (Ternstroemieae); n = 12, 15, 18, 21–23 or more (21 most frequent) (Freziereae)

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, triterpene acids (betulinic acid), ellagic acid, proanthocyanidins (prodelphinidins), and saponins present. Iridoids not found. Aluminium accumulated in many species.

Use Ornamental plants, timber.

Systematics Ternstroemiaceae are sister-group to Pentaphylax (Pentaphylacaceae). The clade [Sladeniaceae+[Pentaphylax+Ternstroemiaceae]] may be sister to Primulaceae clade. An updated phylogenetic analysis of Ternstroemiaceae is badly needed.

Ternstroemieae DC., Prodr. 1: 523. Jan (med.) 1824

2/90–100. Anneslea (4; A. donnaiensis, A. fragrans, A. paradoxa, A. steenisii; tropical Asia, southern China), Ternstroemia (90–100; tropical and subtropical regions on both hemispheres, with their largest diversity in Malesia and in Central and South America, few species in tropical West and Central Africa). – Pantropical. Sclereids richly branched. Leaves pseudoverticillate, often with black spots. Leaf margin usually entire (sometimes crenulate). Flower solitary, axillary, subtended by reduced leaf. Usually hypogyny (in Anneslea epigyny). Sepals antepetalous. Filament shorter than anther. Pistil composed of two or three connate carpels. Placentation apical. Ovules four to twelve per carpel. Outer integument six to nine cell layers thick. Fruit a few-seeded irregularly dehiscing capsule. Sarcotesta exotestal or consisting of pockets of fleshy cells on either side of seed. Exotesta ten or more cell layers thick. Mesotesta sclerified, seven to 15 cell layers thick. n = 20, 25. – Anneslea, Ternstroemia and Freziereae form a trichotomy in the analyses by Wu & al. (2007).

Freziereae DC., Prodr. 1: 524. Jan (med.) 1824

9/c 240. Visnea (1; V. mocanera; Madeira, the Canary Islands), Adinandra (c 85; India, Sri Lanka, Burma, China, southern Japan, Southeast Asia, Malesia to New Guinea, tropical Africa), Archboldiodendron (1; A. calosericeum; mountains on New Guinea), Cleyera (18; Mexico, Central America, the West Indies, one species, C. japonica, in the Himalayas and China to the Korean Peninsula and Japan); Euryodendron (1; E. excelsum; southern China), Symplococarpon (5; S. airy-shawianum, S. australe, S. flavifolium, S. guatemalense, S. purpusii; tropical America), Freziera (57; tropical America, with their largest diversity in mountain areas), Eurya (c 70; tropical and subtropical regions in Asia, islands in the western Pacific, the Hawaiian Islands), Balthasaria (1; B. schliebenii; tropical Africa). – Macaronesia, tropical Africa, tropical and subtropical Asia to Japan, islands in western Pacific and the Hawaiian Islands, Central America, northern South America, with their highest diversity in Southeast Asia and Malesia. Bisexual or dioecious. Nodes sometimes 1:3 or 3:3 (some species of Freziera). Sclereids usually little branched. Leaves usually distichous (sometimes spiral). Leaf margin serrate or entire. Inflorescence fasciculate or flowers solitary, at least some axillary (in axils of expanded leaves). Usually hypogyny (in Symplococarpon epigyny). Sepals sometimes connate. Petals in Freziera urceolate. Stamens five to c. 30 (to c. 60), in a single whorl, arising from annular primordium. Connective usually prolonged. Pistil composed of (one to) three (to ten) connate carpels. Ovary base in Cleyera and Eurya nectar secreting. Style single or stylodia separate. Placentation usually axile (sometimes parietal). Ovules four to numerous per carpel. Outer integument three or four cell layers thick. Fruit usually a many-seeded berry (sometimes a one-seeded drupe). Inner exotestal cell walls often thickened and lignified. Mesotesta sclerified, one to five cell layers thick. Embryo usually straight (sometimes curved). n = 12, 13?, 15, 18, 21(most frequent) to 23 or more. – Visnea was found to be sister-group to [Adinandra+Cleyera], [Euryodendron+Symplococarpon], Freziera, and Eurya (Tsou & al. 2016).

Phylogeny (simplified) of Ternstroemiaceae based on DNA sequence data (Wu & al. 2007).

TETRAMERISTACEAE (H. Hallier) Hutch.

( Back to Ericales )

Hutchinson, Fam. Fl. Pl. ed. 2, 1: 277, Fig. 140. 4 Jun 1959

Pellicieraceae (Triana et Planch.) L. Beauvis. ex Bullock in Taxon 8: 192. 24 Jul 1959

Genera/species 3/3

Distribution West Malesia, southern Venezuela, mangroves along the Pacific coast and islands in Central America, Colombia and northern Ecuador, and the Atlantic coast in Colombia.

Fossils Fossil pollen grains (Lanagiopollis crassa) assigned to Pelliciera from the Eocene onwards indicate that during the Paleogene this group was widely distributed along the Caribbian and Central American coasts, and also along the Nigerian coast.

Habit Bisexual, evergreen trees or shrubs (Pelliciera consists of mangrove trees with buttresses). Aerial roots frequent along stem base in Pelliciera.

Vegetative anatomy Phellogen ab initio inner-cortical (Pentamerista, Tetramerista) or superficial (Pelliciera). Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits usually alternate (rarely opposite), bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple or bordered pits, septate or non-septate. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty (in Tetramerista also ray-adjacent). Sieve tube plastids S type? Nodes 3:3, trilacunar (in Pelliciera unilacunar?) with three leaf traces. Cortex and medulla in Pelliciera with branched sclerenchymatous idioblasts and thick-walled fibres. Heartwood in Tetramerista with gum-like substances. Parenchyma in Pelliciera with calciumoxalate raphides in raphid sacs. Crystal sand present or absent.

Trichomes Hairs absent; glands present.

Leaves Alternate (spiral), simple, entire, coriaceous (in Pelliciera somewhat asymmetrical), with supervolute (Tetramerista, Pentamerista) or involute (Pelliciera) ptyxis. Stipules and leaf sheath absent. Petiole in Pelliciera with one pair of extrafloral nectaries. Petiole vascular bundle transection in Pelliciera annular. Venation pinnate. Stomata usually anomocytic (sometimes paracytic; in Pelliciera cyclocytic). Cuticular wax crystalloids? Abaxial side of lamina in Tetramerista with black glandular dots, in Pentamerista with domatia along veins. Mesophyll in Tetramerista with sclerenchymatous idioblasts with calciumoxalate raphides and often crystal sand. Spongy tissue in Pelliciera with stone cells. Margin of young leaves glandular-serrate, with gland-like structures (in Pelliciera salt-excreting?).

Inflorescence In Pentamerista and Tetramerista axillary, umbel-like, corymbose or capitate cymose; flowers in Pelliciera solitary, axillary. Bracts in Pelliciera large and petaloid. Bud scales absent in Pelliciera. Floral prophylls (bracteoles) often large, caducous or persistent.

Flowers Actinomorphic, usually small (in Pelliciera large). Hypogyny. Sepals four or five, with imbricate aestivation, petaloid, unequal in size, with shining glandular dots on adaxial side near middle (Tetramerista) or close to base? (Pelliciera; absent in Pentamerista), persistent or caducous, free. Petals four or five, with imbricate aestivation, in Tetramerista and Pelliciera with adaxial glandular dots, persistent or caducous, free. Nectaries as bottle-shaped glands at calyx base. Disc absent.

Androecium Stamens four or five, haplostemonous, antesepalous, alternipetalous. Filaments flattened, inflexed in bud (finally reversed), at base usually somewhat connate (in Pelliciera free), free from tepals. Anthers in Pentamerista and Tetramerista dorsifixed, in Pelliciera basifixed and sagittate with apical appendage, non-versatile, tetrasporangiate, usually introrse (finally extrorse; in Pelliciera extrorse to latrorse), longicidal (dehiscing by longitudinal slits); connective in Pelliciera apically prolonged. Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolporate (constricticolporate), shed as monads, bicellular at dispersal. Exine semitectate, with granular infratectum, reticulate (in Pelliciera also scabrate).

Gynoecium Pistil composed of usually four or five (in Pelliciera two) connate carpels. Ovary superior, quadrilocular or quinquelocular (in Pelliciera bilocular, one locule sterile or aborted, although basically quinquecarpellate). Style single, simple (in Pelliciera persistent in fruit). Stigma punctate or somewhat lobate (in Pelliciera bifid), type? Pistillodium absent.

Ovules Placentation subapical (Pelliciera) to basal (Tetramerista, Pentamerista). Ovule one per carpel, in Pentamerista and Tetramerista anatropous and ascending (epitropous?), in Pelliciera campylotropous and pendulous, (incompletely) bitegmic, incompletely tenuinucellar. Micropyle endostomal? Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type? Endosperm development nuclear? Endosperm haustorium micropylar? Embryogenesis?

Fruit A four- or five-seeded coriaceous berry (in Pelliciera up to 13 cm in diameter, spongy inside and with persistent style).

Seeds Aril absent. Testa in Tetramerista and Pentamerista multi-layered; testa in Pelliciera absent, with mature seed consisting of large naked embryo, hemispherical cotyledons surrounding red plumule, and radicula at maturation penetrating stylar beak of fruit. Tegmen? Perisperm not developed. Endosperm usually copious (absent? in Pelliciera). Embryo large, straight, well differentiated, chlorophyll? Cotyledons two, usually much shorter than hypocotyl (in Pelliciera large, fleshy). Germination phanerocotylar.

Cytology n = ?

DNA

Phytochemistry Unknown. Tannins? Polyphenols? Aluminium not accumulated.

Use Timber.

Systematics Tetrameristaceae are probably sister to Balsaminaceae.

Pelliciera is sister to [Pentamerista+Tetramerista].

Tetrameristeae Hallier in Beih. Bot. Centralbl. 34: 37. 1917

2/2. Tetramerista (1; T. glabra; the Malay Peninsula, Sumatra, Borneo), Pentamerista (1; P. neotropica; the Guayana Highlands in southern Venezuela). – Malesia, the Guayana Highlands. Shrubs or small trees. Phellogen inner-cortical. Wood fluorescent. Stone cells present in stem. Branched sclereids absent? Nodes trilacunar. Leaves spiral, simple, entire. Venation indistinct. Leaf margin glandular. Flowers in umbel-like, corymbose or capitate cymose inflorescences, small. Floral prophylls (bracteoles) sometimes persistent. Sepals and petals similar, petaloid, with lobes spreading. Adaxial surface of sepals glandular. Filaments slightly connate at base. Anthers dorsifixed. Pistil composed of four or five connate carpels. Stigma punctate to slightly lobate. Placentation basal. Ovule anatropous, ascending (epitropous?). Fruit a berry. Testa multi-layered, with thickened cell walls. Endosperm copious. Cotyledons small.

Pelliciereae Triana et Planch. in Ann. Sci. Nat. Bot., sér. 4, 17: 380. Jun 1862 [‘Pellicerieae’]

1/1. Pelliciera (1; P. rhizophorae; mangroves along the Pacific coast and islands in Nicaragua, Costa Rica, Panamá, Colombia and northern Ecuador, and the Atlantic coast in Colombia). – Mangrove trees. Buttresses consisting of vertical rows of adventitious roots and conically surrounding stem base. Phellogen superficial. Vessels present in multiples. Nodes unilacunar? Leaves pseudoverticillate, with involute ptyxis; leaf base asymmetrical. Petiole vascular bundle transection annular; petiole bundle almost cylindrical, flat where joining stem. Stomata cyclocytic. Leaf margin dentate. Terminal buds long, pointed. Bud scales absent. Flowers solitary, axillary, large. Floral prophylls (bracteoles) petaloid. Sepals caducous, with adaxial glands. Petals caducous. Filaments free. Anthers basifixed, extrorse, very long; connective prolonged and pointed. Exine reticulate, scabrate. Pistil composed of two connate carpels; carpels oblique or floral prophylls not in lateral position and carpels transverse. Ovary bilocular, with one locule reduced. Style long, persistent in fruit. Stigma bifid, punctate. Placentation subapical. Ovule campylotropous, pendulous. Fruit one-seeded, large, acute, dry, indehiscent, berry-like. Testa absent. Endosperm absent. Cotyledons large, fleshy. Germination phanerocotylar.

THEACEAE Mirb. ex Ker Gawl.

( Back to Ericales )

Ker Gawler in Bot. Reg. 2: ad t. 112. 1 Mai 1816, nom. cons.

Camelliaceae Mirb. ex A. P. de Candolle, Essai Propr. Méd. Pl., ed. 2: 97. 11 Mai 1816 [‘Camellieae’]; Theales Bercht. et J. Presl, Přir. Rostlin: 219. Jan-Apr 1820 [‘Theaceae’]; Gordoniaceae (DC.) Spreng., Syst. Veg. 3: 12. Jan-Mar 1826; Camelliales Link, Handbuch 2: 346. 4-11 Jul 1829 [’Camelliaceae’]; Gordoniales J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 180. 1846 [‘Gordoniaceae’]; Malachodendraceae J. Agardh, Theoria Syst. Plant.: 130. Apr-Sep 1858 [’Malachodendreae’], nom. illeg.; Theineae Engl., Syllabus, ed. 2: 150. Mai 1898

Genera/species c 9/250–450

Distribution Southeastern United States, the West Indies, Central America, tropical South America, East Asia to the Korean Peninsula and Japan, Southeast Asia, Malesia, New Guinea.

Fossils A large number of seeds from the Late Cretaceous and especially from the Cenozoic have been assigned to Theaceae, although it is sometimes doubtful whether these should be attributed to Theaceae. Palaeoschima consists of fruits and seeds that has been described from the Late Cretaceous, but the systematic affiliation is problematic. Camellia is represented by a number of Cenozoic fossils and was formerly distributed also in North America. Fossil flowers of Theaceae have been found in amber from the Baltic area, and several extant genera are known from the Cenozoic of Europe.

Habit Bisexual, usually evergreen (rarely deciduous) trees and shrubs.

Vegetative anatomy Phellogen ab initio usually close to pericycle (rarely subepidermal). Pericyclic envelope collenchymatous, lignified or with groups of fibres. Vessel elements with scalariform perforation plates; lateral pits scalariform, alternate or opposite, simple pits. Vestured pits sometimes present. Imperforate tracheary xylem elements tracheids or fibre tracheids with bordered pits, non-septate. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, or absent. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Sclereids abundant. Mucilage cells frequently present. Calciumoxalate as prismatic crystals.

Trichomes Hairs unicellular or multicellular, usually uniseriate (sometimes stellate, rarely fasciculate), or absent.

Leaves Alternate (usually spiral, sometimes distichous), simple, entire, usually coriaceous, usually with involute or supervolute (sometimes conduplicate) ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate (U- or V-shaped), sometimes also with lateral bundles. Venation pinnate, craspedodromous. Stomata usually paracytic, anisocytic to cyclocytic, gordoniaceous type, with guard cells surrounded by two to four narrow subsidiary cells (rarely anomocytic). Cuticular wax crystalloids as rodlets. Epidermal cells sometimes mucilaginous. Mesophyll and petiolar cortex with or without sclerenchymatous idioblasts containing numerous branched thickened sclereids (often visible as points or dots). Leaf margin usually serrate (rarely entire), with small caducous gland associated with each tooth (theoid teeth).

Inflorescence Flowers axillary, solitary. Buds usually perulate. Floral prophylls (bracteoles) two or more, alternate (spiral) and grading into usually whorled (sometimes spiral) sepals.

Flowers Actinomorphic, often large. Usually hypogyny (rarely half epigyny). Sepals (four or) five to seven, with imbricate aestivation, often persistent, usually free or connate at base. Petals usually five (sometimes 5+5, rarely numerous), with imbricate aestivation, free or connate at base, sometimes spiral. Nectary absent or nectar produced at base of filaments or ovary. Disc absent.

Androecium Stamens (ten to) 20 to c. 40 (to much more than 100), in two to five whorls, produced from five antepetalous primordia or an annular primordium. Filaments usually free (sometimes in five antepetalous fascicles; rarely connate into a tube), often adnate to petal bases. Anthers articulated, usually dorsifixed (rarely basifixed), often versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective sometimes prolonged. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpor(oid)ate, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, rugulate or perforate to finely reticulate, scabrate. Pseudopollen formed in cells of connective.

Gynoecium Pistil composed of (three to) five (to ten) connate, usually antepetalous carpels. Ovary usually superior (rarely semi-inferior), (trilocular to) quinquelocular (to decemlocular), often nectariferous. Style single, simple or branched, or stylodia several, free. Stigma capitate or slightly lobate or stigmas punctate, papillate, Wet type. Pistillodium absent.

Ovules Placentation usually axile (sometimes basal). Ovules two or more per carpel, usually anatropous (in Schima campylotropous), usually pendulous, apotropous or pleurotropous, bitegmic, tenuinucellar. Micropyle endostomal. Outer integument four to ten cell layers thick. Inner integument four to eleven cell layers thick. Hypostase present. Megagametophyte usually monosporous, Polygonum type (in ‘Camellia’ disporous, Allium type). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad. Polyembryony occurring.

Fruit Usually a loculicidal (in Franklinia also septicidal) capsule often with persistent columella and calyx (in some species of Pyrenaria a drupe; a capsule in some species of ‘Camellia’ irregularly dehiscing).

Seeds Aril absent. Seed coat mesotestal, in Gordonia, Schima and Stewartia winged. Testa and tegmen vascularized. Exotesta with thickenings on radial and inner tangential cell walls (not on outer tangential walls), with theoid exotestal thickenings, often lignified. Mesotesta lignified (sometimes with fibres, sometimes with sclereids). Endotesta often lignified. Tegmen? Perisperm not developed. Endosperm usually sparse, oily, or absent. Embryo usually straight (rarely curved), without chlorophyll. Cotyledons two, large (longer than radicula). Germination phanerocotylar or cryptocotylar.

Cytology n = 15, 18 – Polyploidy occurring.

DNA Plastid gene rpl22 absent in Stewartia (present in nuclear genome?). Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), biflavonoids, catechins (e.g. epigallocatechin-3-gallate), cyanidin, oleanolic acid derivatives, triterpenes, gallic acid (in cultivated species of ‘Camellia’ Section Thea), ellagic acid, methylated ellagic acids, ellagitannins (pedunculagin, tellimagrandin II), proanthocyanidins (prodelphinidins), chlorogenic acid, alkaloids (purine bases such as theobromine, theofylline and caffeine in cultivated species of ‘Camellia’ Section Thea), and triterpene saponins present. Cyanogenic compounds not found. Aluminium and fluorides accumulated.

Use Ornamental plants, stimulants (Camellia sinensis), seed-oils (Camellia sasanqua), timber.

Systematics The sister-group relationships of Theaceae are unresolved. Theaceae are sometimes recovered as sister to Symplocaceae and these two lineages in turn forming a sister-group to [Styracaceae+Diapensiaceae]. On the other hand, Symplocaceae is more probably sister to the [Styracaceae+Diapensiaceae] clade.

A probable topology is the following: [Theeae+[Gordonieae+Stewartieae]] (Li & al. 2013). Species delimitations, particularly in ‘Camellia’, Gordonia, Schima and Stewartia, are notorious.

Theeae Szyszyl. in Engler et Prantl, Nat. Pflanzenfam. III, 6: 180, 181. Mai 1893

c 5/c 260. ’Camellia’ (c 125?; East Asia to Japan and Taiwan, tropical Asia; paraphyletic), Laplacea (57; tropical America), Polyspora (c 40; southern China, Southeast Asia), Pyrenaria (42; southern China, Southeast Asia, West Malesia), Apterosperma (1; A. oblatum; China). – East and Southeast Asia, Malesia, tropical America. Pedicel with numerous spirally arranged floral prophylls (bracteoles). Prophylls successively modified into sepals intergrading into petals. Stamens arranged in two whorls. Filament bases nectariferous. Pseudopollen provided with ribs. Outer integument vascularized. Megagametophyte in ‘Camellia’ sometimes disporous (with chalazal megaspores), octacellular, Allium type. Fruit a capsule with persistent central columella. Seed coat often winged. n = 15. – Theeae form a polytomy.

[Gordonieae+Stewartieae]

Gordonieae DC., Prodr. 1: 527. Jan (med.) 1824

3/3–60. Gordonia (1–40; southern China, Taiwan, Southeast Asia, southeastern United States), Schima (1–20; northeastern India, southern Himalayas, China, the Ryukyu Islands, Southeast Asia, Malesia), Franklinia (1; F. alatamaha; southeastern Georgia, probably extinct in the wild). – Southeast Asia, West Malesia, Georgia (probably extinct). Pedicel with two floral prophylls (bracteoles). Sepals five, different from petals. Stamens in three to five whorls. Anther connective with stomata. Pseudopollen provided with pores. Ovules in Schima campylotropous. Inner integument vascularized. Fruit a capsule with persistent central columella (in Franklinia with septicidal-loculicidal dehiscence). Seed coat in Gordonia and Schima apically winged. Testa in Schima proliferating. n = (15) 18. – Franklinia is sister to Schima with high support, according to Li & al. (2013).

Stewartieae Choisy in D. F. L. von Schlechtendal in Bot. Zeitung 31: 773. 31 Oct 1856

1/9–30. Stewartia (9–30; central China, the Korean Peninsula, Japan, southeastern United States). – Pedicel with two floral prophylls (bracteoles). Sepals five, different from petals. Stamens numerous, initiated in fascicles and arranged in radii of innermost petals. Fruit a capsule without columella. Seed coat often narrowly winged. n = 15, 17, 18. – Stewartia is paraphyletic, according to Li & al. (2013).

Cladogram of Theaceae based on DNA sequence data (Prince & Parks 2001).

THEOPHRASTACEAE (Bartl.) G. Don

( Back to Ericales )

Don in Edwards’s Bot. Reg. 21: ad t. 1764. 1835 [’Theophrasteae’], nom. cons.

Genera/species 7/95–100

Distribution Southern Florida, Mexico, Central America, the West Indies, South America south to northern Paraguay.

Fossils Uncertain.

Habit Usually bisexual (in Clavija usually dioecious, gynodioecious? or polygamodioecious), usually evergreen (rarely deciduous) trees or shrubs, often pachycaul.

Vegetative anatomy Phellogen? Primary medullary rays wide. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres with simple pits, septate or non-septate. Wood rays usually multiseriate, heterocellular. Axial parenchyma paratracheal scanty vasicentric, or absent. Sieve tube plastids S type? Nodes 1:1, unilacunar with one leaf trace, 3:3, trilacunar with three traces, or 5:5, pentalacunar with five traces. Subepidermal fibres sometimes non-lignified. Resins absent. Wood ray cells often with silica bodies and/or prismatic calciumoxalate crystals. Styloids present in some species.

Trichomes Hairs simple or branched; glandular hairs (on leaves) consisting of unicellular stalk and multicellular head; glandular hairs usually sunken.

Leaves Alternate (usually pseudoverticillate on branch tips), simple, entire, coriaceous, gland-dotted (often scale-like; in Jacquinia sometimes needle-like, in Theophrasta sometimes very large), with conduplicate (or involute?) ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection deeply arcuate or annular; petiole with small adaxial inverted bundles. Venation pinnate. Stomata? Cuticular wax crystalloids? Lamina on both sides usually striated by subepidermal fibres. Mesophyll with calciumoxalate druses. Leaf margin serrate (often serrate-dentate) or entire.

Inflorescence Usually terminal (in Clavija and Neomezia lateral), racemes, corymbs or panicles (flowers rarely solitary). Bracts inserted on pedicels. Floral prophylls (bracteoles) absent?

Flowers Actinomorphic. Hypogyny to half epigyny. Sepals (four or) five, with imbricate aestivation, persistent, free or somewhat connate at base. Petals (four or) five, with imbricate aestivation, usually slightly unequal in size, usually connate into a campanulate or infundibuliform corolla. Petals and stamens developing from common primordia. Nectary? Disc absent.

Androecium Stamens (four or) five, antepetalous, alternisepalous. Filaments flattened, connate usually only at base (in Clavija often entirely connate into tube), adnate to lower part of corolla tube. Anthers forming cone in centre of young flower, later spreading, basifixed to dorsifixed, sometimes versatile?, tetrasporangiate, extrorse or introrse, longicidal (dehiscing by longitudinal slits); connective in Neomezia and Theophrasta prolonged at apex, ab initio incurved above stigma. Nectariferous hairs sometimes present. Tapetum secretory, with uninucleate cells. Staminodia (four or) five, antesepalous, alternipetalous, extrastaminal, epipetalous (inserted above fertile stamens), petaloid, gibbous, narrow or triangular, often glanduliferous. Upper and lower parts of thecae filled with druses and single crystals of calciumoxalate.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate (or tetracolporate), shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate, foveolate, fossulate or rugulate.

Gynoecium Pistil composed of (four or) five connate antepetalous carpels. Ovary superior or semi-inferior, unilocular, mucilaginous. Style single, simple. Stigma capitate, punctate, discoid, truncate or somewhat lobate, non-papillate Dry type, or papillate Wet type. Pistillodium?

Ovules Placentation free central to basal (central column sometimes reduced). Ovules numerous per ovary, anatropous, hemitropous or campylotropous, ascending, bitegmic, tenuinucellar. Micropyle bistomal. Outer integument two to four cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit Usually a one- or several-seeded berry with dry (sometimes woody) pericarp and juicy placentae (rarely a one-seeded drupe).

Seeds Aril absent. Seed coat exotestal. Testa multiplicative. Exotestal cells flattened, with thick walls. Hypodermal cells sometimes with thick anticlinal walls. Mesotestal cells often with crystals. Endotesta? Tegmen? Perisperm not developed. Endosperm copious, hard, oily (in many species with thick cell walls with pores), amyloid? Embryo large, straight, well differentiated, chlorophyll? Cotyledons two, usually foliaceous (sometimes small). Germination phanerocotylar.

Cytology n = 14, 20, (24)

DNA

Phytochemistry Insufficiently known. Saponins present. Ellagic acid, proanthocyanidins, alkaloids, and cyanogenic compounds not found. Polyphenols? Glycosides?

Use Ornamental plants, fruits (Clavija), fish poison, soap (bark and cortex of Jacquinia).

Systematics Clavija (c 55; southern Nicaragua to Brazil, Hispaniola), Theophrasta (2; T. americana, T. jussieui; Hispaniola), Neomezia (1; N. cubensis; Cuba), Jacquinia (13; the West Indies), Bonellia (22; tropical America), Deherainia (3; D. lageniformis, D. matudai, D. smaragdina; Central America), Votschia (1; V. nemophila; Panamá).

Theophrastaceae are sister to Samolus (Samolaceae).

Cladogram of three of the genera in Theophrastaceae based on DNA sequence data (Ståhl 2010).


Literature

Abbott CL. 1936. The phylogeny of the Ericales. – Trillia 9: 62-69.

Abe JP. 2005. An arbuscular mycorrhizal genus in the Ericaceae. – Inoculum 56(4): 6.

Abou-El-Enain MM. 2006. Chromosomal variability in the genus Primula (Primulaceae). – Bot. J. Linn. Soc. 150: 211-219.

Ackerman WI. 1973. Species compatibility relationships within the genus Camellia. – J. Hered. 64: 356-358.

Adams JE. 1940. A systematic study of the genus Arctostaphylos Adans. – J. Elisha Mitchell Sci. Soc. 56: 1-62.

Adlassnig W, Peroutka M, Lendl T. 2011. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities. – Ann. Bot. 107: 181-194.

Affre L, Thompson JD. 1998. Floral trait variation in four Cyclamen (Primulaceae) species. – Plant Syst. Evol. 212: 279-293.

Agostini G. 1980. Una nueva clasificación del género Cybianthus (Myrsinaceae). – Acta Biol. Venez. 10: 129-185.

Airy Shaw HK. 1936. Notes on the genus Schima and on the classification of the Theaceae-Camellioïdeae. – Kew Bull. 1936: 496-499.

Airy Shaw HK. 1948. Studies in the Ericales VIII. A new section of Vaccinium from the eastern Himalayas. – Kew Bull. 1948: 244-247.

Airy Shaw HK. 1951. Coris (Primulaceae?) in Somaliland. – Kew Bull. 1951: 29-31.

Airy Shaw HK. 1964. Studies in the Ericales XIV. The systematic position of the genus Diplarche. – Kew Bull. 17: 507-509.

Akiyama S, Wakabayashi M, Ohba H. 1992. Chromosome evolution in Himalayan Impatiens (Balsaminaceae). – Bot. J. Linn. Soc. 109: 247-257.

Akuzawa E. 1985. Problems concerning the period of occurrence of Kinabalu Mitrastemon. – Parasitic Plant Mag. 13: 23-27.

Akuzawa E. 1985. Confirmation of the inflorescence of Mitrastemon in Mt. Kinabalu, North Borneo. – Parasitic Plant Mag. 14: 33-37.

Albert VA, Williams SE, Chase MW. 1992. Carnivorous plants: phylogeny and structural evolution. – Science 257: 1491-1495.

Albrecht DE, Hislop M. 2011. A revision of Dielsiodoxa (Ericaceae: Styphelioideae: Oligarrheneae). – Nuytsia 21: 107-126.

Albrecht DE, Owens CT, Weiller CM, Quinn CJ. 2010. Generic concepts in Ericaceae-Styphelioideae-the Monotoca group. – Aust. Syst. Bot. 23: 320-332.

Allaway WG, Ashford AE. 1996. Structure of the hair roots in Lysinema ciliatum R. Br. and its implications for their water relations. – Ann. Bot., N. S., 77: 383-388.

Almeida Jr E, Araújo J, Santos-Filho F, Zickel C. 2013. Leaf morphology and antomy of Manilkara Adans. (Sapotaceae) from northeastern Brazil. – Plant Syst. Evol. 299: 1-9.

Alvarado JL, Ludlow-Wiechers B. 1982. Catálogo palinológico para la flora de Veracruz 10. Familia Clethraceae. – Biotica 8: 619-629.

Alves-Araújo A, Alves M. 2011. Two new species of Pouteria (Sapotaceae) from the Atlantic Forest in Brazil. – Syst. Bot. 36: 1004-1007.

Alves-Araújo A, Alves M. 2012a. Two new species and a new combination of Neotropical Sapotaceae. – Brittonia 64: 23-29.

Alves-Araújo A, Alves M. 2012b. Pouteria ciliata, P. confusa, P. nordestinensis and P. velutinicarpa spp. nov. (Sapotaceae) from Brazil. – Nord. J. Bot. 30: 399-406.

Al Wadi H, Richards AJ. 1992. Palynological variation in Primula L. subgenus Sphondylia (Duby) Rupr., and its relationship with Dionysia Fenzl. – New Phytol. 121: 303-310.

Amaral MCE. 1991. Phylogenetische Systematik der Ochnaceae. – Bot. Jahrb. Syst. 113: 105-196.

An H-X, Cai D-R, Wang J-R, Quan N-F. 1983. Investigations on early embryogenesis of Actinidia chinensis Planch. var. chinensis. – Acta Bot. Sin. 25: 99-104.

Anderberg AA. 1992. The circumscription of the Ericales, and their cladistic relationships to other families of “higher” dicotyledons. – Syst. Bot. 17: 660-675.

Anderberg AA. 1993. Cladistic interrelationships and major clades of the Ericales. – Plant Syst. Evol. 184: 207-231.

Anderberg AA. 1994a. Cladistic analysis of Enkianthus with notes on the early diversification of the Ericaceae. – Nord. J. Bot. 14: 385-401.

Anderberg AA. 1994b. Phylogeny of the Empetraceae, with special emphasis on character evolution in the genus Empetrum. – Syst. Bot. 19: 35-46.

Anderberg AA. 1994c. Phylogeny and subgeneric classification of Cyclamen L. (Primulaceae). – Kew Bull. 49: 455-467.

Anderberg AA. 2000. Maesaceae, a new primuloid family in the order Ericales s.l. – Taxon 49: 183-187.

Anderberg AA. 2004. Primulaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 313-319.

Anderberg AA, El-Ghazaly G. 2000. Pollen morphology in Primula sect. Carolinella (Primulaceae) and its taxonomic implications. – Nord. J. Bot. 20: 5-14.

Anderberg AA, Kelso S. 1996. Phylogenetic implications of endosperm cell wall morphology in Douglasia, Androsace and Vitaliana (Primulaceae). – Nord. J. Bot. 16: 481-486.

Anderberg AA, Ståhl B. 1995. Phylogenetic interrelationships in the order Primulales, with special emphasis on the family circumscriptions. – Can. J. Bot. 73: 1699-1730.

Anderberg AA, Swenson U. 2003. Evolutionary lineages in Sapotaceae (Ericales): a cladistic analysis based on ndhF sequence data. – Intern. J. Plant Sci. 164: 763-773.

Anderberg AA, Zhang X-P. 2002. Phylogenetic relationships of Cyrillaceae and Clethraceae (Ericales) with special emphasis on the genus Purdiaea Planch. – Organisms Divers. Evol. 2: 127-137.

Anderberg AA, Ståhl B, Källersjö M. 1998. Phylogenetic relationships in the Primulales inferred from rbcL sequence data. – Plant Syst. Evol. 211: 93-102.

Anderberg AA, Trift I, Källersjö M. 1998. On the systematic position of the genus Coris (Primulaceae). – Nord. J. Bot. 18: 203-207.

Anderberg AA, Ståhl B, Källersjö M. 2000. Maesaceae, a new primuloid family in the order Ericales s.l. – Taxon 49: 183-187.

Anderberg AA, Trift I, Källersjö M. 2000. Phylogeny of Cyclamen L. (Primulaceae): evidence from morphology and sequence data from the internal transcribed spacers of nuclear ribosomal DNA. – Plant Syst. Evol. 220: 147-160.

Anderberg AA, Peng C-I, Trift I, Källersjö M. 2001. The Stimpsonia problem: evidence from DNA sequences of plastid genes atpB, ndhF and rbcL. – Bot. Jahrb. Syst. 123: 369-376.

Anderberg AA, Rydin C, Källersjö M. 2002. Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. – Amer. J. Bot. 89: 677-687.

Anderberg AA, Manns U, Källersjö M. 2007. Phylogeny and floral evolution of the Lysimachieae (Ericales, Myrsinaceae): evidence from ndhF sequence data. – Willdenowia 37: 407-421.

Anderson AJ. 1988. Mycorrhizae-host specificity and recognition. – Phytopathology 78: 375-378.

Anderson B, Midgley JJ, Stewart BB. 2003. Facilitated selfing offers reproductive assurance: a mutualism between a hemipteran and carnivorous plant. – Amer. J. Bot. 90: 1009-1015.

Anderson GJ, Bernardello G, Lopez P, Stuessy TF, Crawford DJ. 2000. Dioecy and wind pollination in Pernettya rigida (Ericaceae) of the Juan Fernandez Islands. – Bot. J. Linn. Soc. 132: 121-141.

Anderson LC. 1983. Trichomes and stomata of Gordonia lasianthus (Theaceae). – Sida 10: 103-113.

Anderson RC, Beare MH. 1983. Breeding system and pollination ecology of Trientalis borealis (Primulaceae). – Amer. J. Bot. 70: 408-415.

Anderson RC, Loucks OL. 1973. Aspects of the biology of Trientalis borealis Raf. – Ecology 54: 798-808.

Andres H. 1914a. Studien zur speziellen Systematik der Pirolaceae. – Österr. Bot. Zeitschr. 64: 45-50, 232-254.

Andres H. 1914b. Piroleen-Studien. – Verhandl. Bot. Ver. Prov. Brandenburg 56: 1-76.

Andres H. 1936. Beiträge zur speziellen Systematik der Pirolaceae. – Feddes Repert. 40: 233-236.

Antlfinger AE. 1986. Field germination and seedling growth of chasmogamous and cleistogamous progeny of Impatiens capensis (Balsaminaceae). – Amer. J. Bot. 73: 1267-1273.

Appel O. 1996. Morphology and systematics of the Scytopetalaceae. – Bot. J. Linn. Soc. 121: 207-227.

Appel O. 2004. Scytopetalaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 426-429.

Aranha Filho, JLM, Fritsch PW, Almeda F, Martins AB. 2007. Symplocos saxatilis (Symplocaceae), a new dioecious species from Serra do Cipó, Minas Gerais, Brazil. – Brittonia 59: 233-237.

Aranha Filho JLM, Fritsch PW, Almeda F, Martins AB. 2009. Cryptic dioecy is widespread in South American species of Symplocos section Barberina (Symplocaceae). – Plant Syst. Evol. 244: 99-104.

Arber A. 1941. On the morphology of the pitcher-leaves in Heliamphora, Sarracenia, Darlingtonia, Cephalotus, and Nepenthes. – Ann. Bot., N. S., 5: 563-578.

Arends JC. 1976. Somatic chromosome numbers of some African Sapotaceae. – Acta Bot. Neerl. 25: 449-457.

Argent G. 2006. Rhododendrons of Subgenus Vireya. – Royal Horticultural Society.

Arisawa M, Pezzuto J, Kinghorn A, Douglas A, Cordell G, Farnsworth N. 1984. Plant anticancer agents 30. Cucurbitacins from Ipomopsis aggregata (Polemoniaceae). – J. Pharmaceut. Sci. 73: 411-413.

Arisumi T. 1974. Chromosome numbers and breeding behavior of hybrids among Celebes, Java and New Guinea species of Impatiens L. – Hort. Sci. 9: 478-479.

Arisumi T. 1980. Chromosome numbers and comparative breeding behavior of certain Impatiens from Africa, India, and New Guinea. – J. Amer. Soc. Hort. Sci. 105: 99-102.

Arroyo S. 1975. Lebetanthus, género austroamericano de Epacridaceae y sus differencias con el género Prionotes de Tasmania. – Darwiniana 19: 312-330.

Artopoeus A. 1903. Über den Bau und die Öffnungsweise der Antheren und die Entwickelung der Samen der Erikaceen. – Flora 92: 309-345.

Ashford AE, Allaway WG, Reed ML. 1996. A possible role for thick-walled epidermal cells in the mycorrhizal hair roots of Lysinema ciliatum R. Br. and other Epacridaceae. – Ann. Bot., 77: 375-381.

Assem J van den. 1953. Revision of the Sapotaceae of the Malaysian area in a wider sense 4. Ganua Pierre ex Dubard. – Blumea 7: 364-400.

Assi LA. 2001. Observations sur la diversité des Sapotaceae de la flore naturelle de la Côte d’Ivoire. – Syst. Geogr. Plants 71: 187-195.

Atkinson RG, Cipriani G, Whittaker DJ, Gardner RC. 1994. The allopolyploid origin of kiwifruit, Actinidia deliciosa (Actinidiaceae). – Plant Syst. Evol. 205: 111-124.

Atkinson R, Jong K, Argent G. 1995. Cytotaxonomic observations in tropical Vaccinieae (Ericaceae). – Bot. J. Linn. Soc. 117: 135-145.

Auamcharoen W, Kijjoa A, Chandrapatya A, Pinto MM, Silva AMS, Naengchomnong W, Herz W. 2009. A new tetralone from Diospyros cauliflora. – Biochem. Syst. Ecol. 37: 690-692.

Aubréville A. 1961a. Notes sur les Sapotacées de l’Afrique equatoriale. – Notulae Syst. (Paris) 16: 223-279.

Aubréville A. 1961b. Notes sur les Pouteriées africaines et sud américaines. – Adansonia, sér II, 1: 6-38.

Aubréville A. 1962a. Notes sur des Pouteriées américaines. – Adansonia, sér II, 1: 150-191.

Aubréville A. 1962b. Notes sur les Sapotacées de la Nouvelle Calédonie. – Adansonia, sér II, 2: 172-199.

Aubréville A. 1963a. Notes sur les Sapotacées. – Adansonia, sér. II, 3: 19-42.

Aubréville A. 1963b. Notes sur les Poutériées océaniennes (Sapotacées). – Adansonia, sér. II, 3: 327-335.

Aubréville A. 1964a. Les Sapotacées: taxonomie et phytogéographie. – Adansonia, Mém. 1: 1-157.

Aubréville A. 1964b. Notes sur des Sapotacées III. 1. Réhabilitation des genres américains Ragala Pierre et Prieurella Pierre. – Adansonia, sér. II, 4: 367-391.

Aubréville A. 1964c. Système de classification des Sapotacées. – Adansonia, sér. II, 4. 38-42.

Aubréville A. 1965. Notes sur des Sapotacées australiennes. – Adansonia, sér. II, 5: 21-26.

Aubréville A. 1967. Sapotacées. – In: Aubréville A, Leroy J-F (eds), Flore de la Nouvelle Calédonie et Dépendances 1, Muséum National d’Histoire Naturelle, Paris, pp. 1-168.

Aubréville A. 1971. Éssais de géophylétique des Sapotacées 2. – Adansonia, sér. II, 11: 425-436.

Aubréville A. 1974. 164e famille. Sapotacées. – In: Humbert H (ed), Flore de Madagascar et des Comores, Muséum National d’Histoire Naturelle, Paris, pp. 3-125.

Aubréville A, Pellegrin F. 1934. De quelques Sapotacées de la Côte d’Ivoire. – Bull. Soc. Bot. France 81: 792-800.

Aurada E, Jurenitsch J, Kubelka W. 1982. Structure of triterpene sapogenins from Polemonium caeruleum L. – Sci. Phar. 50: 331-350.

Ayala-Nieto ML, Ludlow-Wiechers B. 1983. Catálogo Palinológico para la Flora de Veracruz 13. Familia Ebenaceae. – Biótica 8: 215-226.

Ayensu EA. 1972. Morphology and anatomy of Synsepalum dulcificum (Sapotaceae). – Bot. J. Linn. Soc. 65: 179-187.

Baas P. 1985. Comparative leaf anatomy of Pernettya Gaud. (Ericaceae). – Bot. Jahrb. Syst. 105: 481-495.

Bačić T, Lawrence TJ, Cutler DF. 1992. Leaf anatomy of an Arbutus taxon from Yugoslavia. – Kew Bull. 47: 535-543.

Baehni C. 1938. Mémoires sur les Sapotacées I. Système de classification. – Candollea 7: 394-507.

Baehni C. 1942. Mémoires sur les Sapotacées II. Le genre Pouteria. – Candollea 9: 147-475.

Baehni C. 1964. Genres nouveaux de Sapotacées. – Arch. Sci. 17: 77-79.

Baehni C. 1965. Mémoires sur les Sapotacées III. Inventaire des genres. – Boissiera 11: 1-261.

Bailey IW. 1922. The pollination of Marcgravia: a classical case of ornithophily? – Amer. J. Bot. 9: 370-384.

Baillon HE. 1890. Observations sur les Sapotacées de la Nouvelle-Calédonie. – Bull. Mens. Soc. Linn. Paris 2: 889-896.

Baillon HE. 1891. Remarques sur les Ternstroemiacées. – Bull. Mens. Soc. Linn. Paris, sér. II, 121: 965-966.

Baker HA, Oliver EGH. 1967. Ericas in southern Africa. – Cape Town, Johannesburg.

Bakhuizen van den Brink RC. 1936-1955. Revisio Ebenacearum Malayensium. – Bull. Jard. Bot. Buitenzorg III, 15: 1-49 (1936), 50-368 (1938), 369-515 (1941); i-xx, 1-92 (1955).

Baldwin JT. 1939. Chromosomes of the Diapensiaceae: a cytological approach to a phylogenetic problem. – J. Hered. 30: 169-171.

Baldwin JT. 1941. Galax: The genus and its chromosomes. – J. Hered. 32: 249-254.

Balthazar M von, Schönenberger J. 2013. Comparative floral structure and systematics in the balsaminoid clade including Balsaminaceae, Marcgraviaceae and Tetrameristaceae (Ericales). – Bot. J. Linn. Soc. 173: 325-386.

Banik D, Sanjappa M. 2008. Notes on identity of some Indian species of Agapetes (Ericaceae). – Nord. J. Bot. 26: 4-9.

Baretta-Kuipers T. 1976. Comparative wood anatomy of Bonnetiaceae, Theaceae, and Guttiferae. – In: Baas P, Bolton AJ, Catling DM (eds), Wood structure in biological and technological research, Leiden, Bot., Ser. III, Leiden University Press, Leiden, Netherlands, pp. 76-101.

Barker WR. 1980. Taxonomic revisions in Theaceae in Papuasia 1. Gordonia, Ternstroemia, Adinandra and Archboldiodendron. – Brunonia 3: 1-60.

Barrett RL. 2006. A review of Planchonia (Lecythidaceae) in Australia. – Aust. Syst. Bot. 19: 147-153.

Barrett SCH, Harder LD, Worley AC. 1996. The comparative biology of pollination and mating in flowering plants. – Phil. Trans. Roy. Soc. London, Sect. B, 351: 1271-1280.

Barros MA, Barth OM. 1994. Catálogo sistemático do pólen das plantas arbóreas do Brasil meridional 28. Burseraceae e Clethraceae. – Revista Brasil. Biol. 54: 317-322.

Barry AR, Perez de Paz J. 1979. Estudio anatómico/palinológico Myrsinaceae y Sapotaceae en la region Macaronésica. – Bot. Macaron. 5: 21-39.

Barth OM. 1973. ‘Caracteres palinológicos’. – In: Rizzini CT. 1973. Sobre Pouteria venosa (Mart.) Baehni e espécies afins (Sapotaceae). – Rev. Brasil. Biol. 33: 595-606.

Barth OM. 1979. Pollen morphology of Brazilian Symplocos. – Grana 18: 99-107.

Barth OM. 1982. The sporoderm of Brazilian Symplocos pollen types (Symplocaceae). – Grana 21: 65-69.

Bartish IV, Swenson U, Munzinger J, Anderberg AA. 2005. Phylogenetic relationships among New Caledonian Sapotaceae (Ericales): molecular evidence for generic polyphyly and repeated dispersal. – Amer. J. Bot. 92: 667-673.

Bartish IV, Antonelli A, Richardson JE, Swenson U. 2011. Vicariance or long-distance dispersal: historical biogeography of the pantropical subfamily Chrysophylloideae (Sapotaceae). – J. Biogeogr. 38: 177-190.

Barua PK, Wight W. 1959. Leaf sclereids in the taxonomy of the camellias I. Wilson’s and related camellias. – Phytomorphology 8: 257-264.

Basinger JF, Christophel DC. 1985. Fossil flowers and leaves of the Ebenaceae from the Eocene of southern Australia. – Can. J. Bot. 63: 1825-1843.

Bate-Smith EC. 1964. Chemistry and taxonomy of Fouquieria splendens Engelm.: a new member of the asperuloside group. – Phytochemistry 3: 623-625.

Bawa B. 1970. Theaceae. – Bull. Indian Natl. Sci. Acad. 41: 75-77.

Bayer RJ, Hufford L, Soltis DE. 1996. Phylogenetic relationships in Sarraceniaceae based on rbcL and ITS sequences. – Syst. Bot. 21: 121-134.

Baylis GTS. 1975. The magnolioid mycorrhiza and mycotrophy in root systems derived from it. – In: Sanders FE, Mosse B, Tinker PB (eds), Endomycorrhizas. Proceedings of a symposium held at the University of Leeds, 22-25 July 1974, Academic Press, London, pp. 373-389.

Beauvisage L. 1920. Contribution à l’étude anatomique de la famille des Ternstroemiacées. – E. Arrault, Tours, France.

Beck AR, Weigle JL, Kruger EW. 1974. Breeding behavior and chromosome numbers among New Guinea and Java Impatiens species, cultivated varieties, and their interspecific hybrids. – Can. J. Bot. 52: 923-925.

Bedell HG. 1981. Leaf architecture and foliar sclereids in Marcgraviaceae (Theales). – Publ. Bot. Soc. Amer., Misc. Ser. 160: 62.

Bedell HG. 1985. A generic revision of Marcgraviaceae I. The Norantea complex. – Ph.D. diss., University of Maryland, College Park, Maryland.

Beentje HJ. 1990. Name changes in East African Ericaceae. – Utafiti 3(1): 13.

Behnke H-D. 1976. Sieve-element plastids of Fouquieria, Frankenia (Tamaricales), and Rhabdodendron (Rutaceae), taxa sometimes allied with Centrospermae (Caryophyllales). – Taxon 25: 265-268.

Behnke H-D. 1982. Sieve-element plastids of Cyrillaceae, Erythroxylaceae, and Rhizophoraceae: description and significance of subtype PV plastids. – Plant Syst. Evol. 141: 31-39.

Bell CD, Patterson RW. 2000. Molecular phylogeny and biogeography of Linanthus (Polemoniaceae). – Amer. J. Bot. 87: 1857-1870.

Bell CD, Patterson R, Hamilton LA. 2000. Sectional integrity in Linanthus (Polemoniaceae): a molecular phylogeny of Section Dianthoides. – Syst. Bot. 24: 632-644.

Bell CR. 1949. A cytotaxonomic study of the Sarraceniaceae of North America. – J. Elisha Mitchell Sci. Soc. 65: 137-166.

Bell CR. 1952. Natural hybrids in the genus Sarracenia I. History, distribution, and taxonomy. – J. Elisha Mitchell Sci. Soc. 68: 55-80.

Bell TL. 1995. Biology of Australian Epacridaceae: with special reference to growth, fire response and mycorrhizal nutrition. – Ph.D. diss., Department of Botany, University of Western Australia.

Bell TL, Ojeda F. 1999. Underground storage in Erica species of the Cape floristic region – differences between seeders and resprouters. – New Phytol. 144: 143-152.

Bell TL, Pate JS. 1996a. Growth and fire response of selected Epacridaceae of south-western Australia. – Aust. J. Bot. 44: 509-526.

Bell TL, Pate JS. 1996b. Nitrogen and phosphorus nitrution in mycorrhizal Epacridaceae of South-west Australia. – Ann. Bot., 77: 389-397.

Bell TL, Pate JS, Dixon KW. 1996. Relationships between fire response, morphology, root anatomy and starch distribution in south-west Australian Epacridaceae. – Ann. Bot., 77: 357-364.

Bennell AP, Hu C-M. 1983. The pollen morphology and taxonomy of Lysimachia. – Notes Roy. Bot. Gard. Edinb. 40: 425-458.

Bennett ST, Grimshaw JM. 1991. Cytological studies in Cyclamen subg. Cyclamen (Primulaceae). – Plant Syst. Evol. 176: 135-143.

Berazaín R, Rodríguez S. 1992. Novedades taxonómicas en el género Purdiaea Planchon (Cyrillaceae) en Cuba. – Rev. Jard. Bot. Nac. Univ. Habana 13: 21-25.

Berazaín IR Sorribes A BE. 1987. El género Kalmia L. (Ericaceae) en Cuba. – Rev. Jard. Bot. Nac. Univ. Habana 8: 3-17.

Bergman HF. 1920. Internal stomata in ericaceous and other unrelated fruits. – Bull. Torrey Bot. Club 47: 213-221.

Berry EW. 1924. A fossil flower from the Miocene of Trinidad. – Amer. J. Sci. 7: 103-108.

Berry PE. 1999. A synopsis of the family Lissocarpaceae. – Brittonia 51: 214-216.

Berry PE. 2001. Lissocarpaceae. – In: Berry PE, Yatskievych K, Holst BK (eds), Flora of the Venezuelan Guayana 6, Missouri Botanical Garden Press, St. Louis, pp. 19-20.

Berry PE, Savolainen V, Sytsma KJ, Hall JC, Chase MW. 2001. Lissocarpa is sister to Diospyros (Ebenaceae). – Kew Bull. 56: 725-729.

Bezbaruah HP. 1971. Cytological investigations in the family Theaceae I. Chromosome numbers in some Camellia species and allied genera. – Caryologia 24: 423-426.

Bhatnagar SP, Gupta M. 1969. Structure and ontogeny of stomata in Mimusops elengi. – J. Indian Bot. Soc. 48: 362-367.

Bhatnagar SP, Gupta M. 1970. Morphology and embryology of Mimusops elengi L. – Bot. Not. 123: 455-473.

Bidartondo MI, Bruns TD. 2001. Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. – Mol. Ecol. 10: 2285-2295.

Bidartondo MI, Bruns TD. 2002. Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. – Mol. Ecol. 11: 557-569.

Bittrich V, Amaral MCE, Melo GAR. 1993. Pollination biology of Ternstroemia laevigata and T. dentata (Theaceae). – Plant Syst. Evol. 185: 1-6.

Björkman E. 1960. Monotropa hypopithys L. – an epiparasite on tree roots. – Physiol. Plant. 13: 308-327.

Blasdale WC. 1945. Composition of the solid secretion produced by Primula denticulata. – J. Amer. Chem. Soc. 67: 493-495.

Blasdale WC. 1948. The cultivated species of Primula. – University of California Press, Berkeley, California.

Bloembergen S. 1952. A critical study in the complex-polymorphous genus Schima (Theaceae). – Reinwardtia 2: 133-183.

Bobbit JM, Rao KV, Kiely DE. 1966. The constituents of Monotropa uniflora. – Lloydia 29: 90-93.

Böcher TW. 1981. Evolutionary trends in Ericalean leaf structure. – Kong. Danske Vidensk.-Selsk. Biol. Skr. 23(2): 1-64.

Boesewinkel FD, Bouman F. 1991. The development of bi- and unitegmic ovules and seeds in Impatiens (Balsaminaceae). – Bot. Jahrb. Syst. 113: 87-104.

Bohm BA, Averett JE. 1989. Flavonoids in some Monotropoideae. – Biochem. Syst. Ecol. 17: 399-401.

Bohm BA, Brim SW, Hebda RJ, Stevens PF. 1978. Generic limits in the tribe Cladothamneae (Ericaceae) and its position in the Rhododendroideae. – J. Arnold Arbor. 59: 311-341.

Bohm BA, Banek HM, Maze JR. 1984. Flavonoid variation in North American Menziesia (Ericaceae). – Syst. Bot. 9: 324-345.

Bokdam J. 1977. Seedling morphology of some African Sapotaceae and its taxonomical significance. – Meded. Landbouwhogesch. Wageningen 77(20): 1-84.

Bokhari MH. 1988. Importance of foliar anatomy in taxonomy and phylogeny of Dionysia. – Biologia (Lahore) 34: 367-395.

Bokhari MH, Wendelbo P. 1976. Anatomy of Dionysia I. Foliar sclereids. – Notes Roy. Bot. Gard. Edinb. 35: 131-141.

Bokhari MH, Wendelbo P. 1985. Anatomy of Dionysia II. Xeromorphic features. – Notes Roy. Bot. Gard. Edinb. 42: 327-345.

Bone RE, Strijk JS, Fritsch PW, Buerki S, Strasberg D, Thébaud C, Hodkinson TR. 2012. Phylogenetic inference of Badula (Primulaceae), a rare and threatened genus endemic to the Mascarene Archipelago. – Bot. J. Linn. Soc. 169: 284-296.

Bonfante-Fasolo P, Gianinazzi-Pearson V, Martinengo L. 1984. Ultrastructural aspcts of endomycorrhiza in the Ericaceae IV. Comparison of infection by Pezizella ericae in host and non-host plants. – New Phytologist 98: 329-333.

Bonnefille R. 1971. Atlas des pollens d’Éthiopie. Principales espèces de forêts de montagne. – Pollen Spores 13: 15-72.

Boojh R, Ramakrishnan PS. 1982. Seed germination and seedling establishment of two closely related Schima species. – Proc. Indian Acad. Sci Plant Sci. 91: 397-407.

Boojh R, Ramakrishnan PS. 1983. The growth pattern of two species of Schima. – Biotropica 15: 142-147.

Boratyński A, Puente MLV de la. 1995. The Empetraceae on the Iberian Peninsula. – Willdenowia 25: 39-53.

Borhidi A, Muñiz O. 1978. El género Jacquinia (Theophrastaceae) en Cuba. – Plant Syst. Evol. 129: 1-11.

Boyd DW, Harris WM, Murry LE. 1982. Sclereid development in Camellia petioles. – Amer. J. Bot. 69: 339-347.

Boykin LM, Vasey MC, Parker VT. 2005. Two lineages of Arctostaphylos (Ericaceae) identified using the internal transcribed spacer (ITS) region of the nuclear genome. – Madroño 52: 139-147.

Bradshaw WE, Creelman RA. 1984. Mutualism between the carnivorous purple pitcher plant and its inhabitants. – Amer. Natur. 112: 294-304.

Brand A. 1908. Polemoniacea peruviana. – Engl. Bot. Jahrb. Syst. 42: 174-175.

Braukmann T, Stafanović S. 2012. Plastid genome evolution in mycoheterotropich Ericaceae. – Plant Mol. Biol. 79: 5-20.

Breteler FJ. 2002. Scytopetalaceae are stipulate. – Kew Bull. 57: 759-761.

Breuer B, Stuhlfauth T, Fock H, Huber H. 1987. Fatty acids of some Cornaceae, Hydrangeaceae, Aquifoliaceae, Hamamelidaceae and Styracaceae. – Phytochemistry 26: 1441-1445.

Briggs CL, Ashford AE. 2001. Structure and composition of the thick wall in hair root epidermal cells of Woolsia pungens. – New Phytol. 149: 219-232.

Brough P. 1924. Studies in the Epacridaceae I. The life history of Styphelia longifolia (R. Br.). – Proc. Linn. Soc. New South Wales 49: 162-178.

Brown EA, Streiber N. 1999. Systematic studies in Dracophyllum (Epacridaceae) 2. New species of Dracophyllum in New South Wales. – Telopea 8: 393-401.

Brown EGS. 1935. The floral mechanism of Saurauia subspinosa Anth. – Trans. Proc. Bot. Soc. Edinb. 31: 485-497.

Brown GK. 2003. Vireya rhododendrons: an insight into their relationships. – In: Argent G, McFarlane M (eds), Rhododendrons in horticulture and science, Royal Botanic Gardens, Edinburgh, pp. 95-110.

Brown GK, Craven LA, Udovicic F, Ladiges PY. 2006a. Phylogeny of Rhododendron section Vireya (Ericaceae) based on two non-coding regions of cpDNA. – Plant Syst. Evol. 257: 57-93.

Brown GK, Craven LA, Udovicic F, Ladiges PY. 2006b. Phylogenetic relationships of Rhododendron section Vireya (Ericaceae) inferred from the ITS nrDNA region. – Aust. Syst. Bot. 19: 329-342.

Brown GK, Nelson G, Ladiges PY. 2006. Historical biogeography of Rhododendron section Vireya and the Malesian archipelago. – J. Biogeogr. 33: 1929-1944.

Brown WL, Clark RB. 1940. The chromosome complement of Bumelia lanuginosa and its phylogenetic significance. – Amer. J. Bot. 27: 237-239.

Bruce AN. 1907. On the distribution, structure, and function of the tentacles of Roridula. – Notes Roy. Bot. Gard. Edinb. 17: 83-98.

Brummitt RK. 1972. Nomenclatural and historical considerations concerning the genus Galax. – Taxon 21: 303-317.

Brundell DJ. 1975a. Flower development of the Chinese gooseberry (Actinidia chinensis Planch.) I. Development of the flowering shoot. – New Zealand J. Bot. 13: 473-483.

Brundell DJ. 1975b. Flower development of the Chinese gooseberry (Actinidia chinensis Planch.) II. Development of the flower bud. – New Zealand J. Bot. 13: 485-496.

Brunotte C. 1900. Recherches embryogéniques et anatomiques sur quelques espèces des genres Impatiens (L.) et Tropaeolum (L.). – Ph.D. diss., L’Université de Paris, France.

Bruun HG. 1930. The cytology of the genus Primula. – Svensk Bot. Tidskr. 24: 468-475.

Bruun HG. 1932. Cytological studies in Primula with special reference to the relation between the karyology and taxonomy of the genus. – Symb. Bot. Upsal. 1: 1-239.

Buckmire RE, Francis FJ. 1976. Anthocyanins and flavonols in miracle fruit Synsepalum dulcificum Schum. – J. Food Sci. 41: 1363-1365.

Bullock AA. 1954. A new name for Lagenocarpus Klotzsch (Ericaceae). – Kew Bull. 1953: 533.

Bunge A. 1871. Die Arten der Gattung Dionysia Fenzl. – Bull. Acad. Imp. Sci. St. Petersburg 16: 547-563.

Burrows J. 1999. Myrsine. – Plant Life (South Afr.) 20: 25-26.

Burton TL, Husband BC. 1999. Population cytotype structure in the polyploid Galax urceolata (Diapensiaceae). – Heredity 82: 381-390.

Busch P. 1913. Anatomisch-systematische Untersuchung der Gattung Diospyros. – Wilhelm Greven, Crefeld.

Bush CM, Kron KA. 2008. A phylogeny of Bejaria (Ericaceae: Ericoideae) based on molecular data. – J. Bot. Res. Inst. Texas 2: 1193-1205.

Bush CM, Wagstaff SJ, Fritsch PW, Kron KA. 2009. The phylogeny, biogeography and morphological evolution of Gaultheria (Ericaceae) from Australia and New Zealand. – Aust. Syst. Bot. 22: 229-242.

Bush CM, Lu L, Fritsch PW, Li DZ, Kron KA. 2009. Phylogeny of Gaultherieae (Ericaceae: Vaccinioideae) based on DNA sequence data from matK, ndhF and ITS. – Intern. J. Plant Sci. 170: 355-364.

Cador L. 1900. Blattstruktur der matelieferenden Symplocos-Arten. – Bot Centralbl. II, 184: 248-251, 345, 369-371.

Cairney JWG, Ashford AE. 2002. Biology of mycorrhizal associations of epacrids (Ericaceae). – New Phytol. 154: 305-326.

Callan HG. 1941. The cytology of Gaultheria wisleyensis (Marchant) Rehder, a new mode of species formation. – Ann. Bot., N. S., 5: 579-585.

Camp WH. 1939. Studies in the Ericales IV. Notes on Chimaphila, Gaultheria and Pernettya in Mexico and adjacent regions. – Bull. Torrey Bot. Club 66: 7-28.

Camp WH. 1940. Aphyllous forms in Pyrola. – Bull. Torrey Bot. Club 67: 453-465.

Camp WH. 1941. Studies in the Ericales. A discussion of the genus Befaria in North America. – Bull. Torrey Bot. Club 68: 100-111.

Cane JH, 1993. Role of sterile pollen in Saurauia (Actinidiaceae), a cryptically dioecious Neotropical tree. – Biotropica 25: 493-495.

Cane JH, Eickwort GC, Wesley FR, Spielholz J. 1985. Pollination ecology of Vaccinium stamineum (Ericaceae: Vaccinioideae). – Amer. J. Bot. 72: 135-142.

Capuron R. 1962. Contributions à l’étude de la flore forestière de Madagascar 4. Tsebona, genre nouveau de Sapotacées de Madagascar. – Adansonia, sér. II, 2: 122.

Caratini C. 1974. Sapotaceae. – In: Caratini C, Guinet PC (eds), Pollen et spores d’Afrique tropicale, A.P.L.E. Travaux et Documents de Géographie Tropicale.

Carey G, Fraser L. 1932. The embryology and seedling development of Aegiceras majus Gaertn. – Proc. Linn. Soc. New South Wales 57: 341-360.

Caris P. 2013. Bloemontogenetische patronen in de Ericales sensu lato. – Leuven Groep Wetenschap & Technologie, Leuven, Belgium.

Caris P, Smets EF. 2004. A floral ontogenetic study on the sister group relationship between the genus Samolus (Primulaceae) and the Theophrastaceae. – Amer. J. Bot. 91: 627-643.

Caris P, Ronse De Craene LP, Smets E, Clinckemaillie D. 2000. Floral development of three Maesa species, with special emphasis on the position of the genus within Primulales. – Ann. Bot. 86: 87-97.

Caris P, Ronse De Craene LP, Smets E, Clinckemaillie D. 2002. The uncertain systematic position of Symplocos (Symplocaceae): evidence from a floral ontogenetic study. – Intern. J. Plant Sci. 163: 67-74.

Caris P, Geuten KP, Janssens SB, Smets EF. 2006. Floral development in three species of Impatiens (Balsaminaceae). – Amer. J. Bot. 93: 1-14.

Carlquist SJ. 1976. Wood anatomy of Roridulaceae: ecological and phylogenetic implications. – Amer. J. Bot. 63: 1003-1008.

Carlquist SJ. 1984 [1985]. Wood anatomy and relationships of Pentaphylacaceae: significance of vessel features. – Phytomorphology 34: 84-90.

Carlquist SJ. 1988. Wood anatomy of Scytopetalaceae. – Aliso 12: 63-76.

Carlquist SJ. 1989. Wood and bark anatomy of Empetraceae; comments on paedomorphosis in woods of certain small shrubs. – Aliso 12: 497-515.

Carlquist SJ. 2001. Wood anatomy of Fouquieriaceae in relation to habit, ecology, and systematics; nature of meristems in wood and bark. – Aliso 19: 137-163.

Carlquist SJ, Schneider EL. 2004. Perforation plate pit membrane remanants and other vessel details of Clethraceae: primitive features in wood of Ericales. – Intern. J. Plant Sci. 165: 369-375.

Carlquist SJ, Schneider EL. 2005. Vestigial pit membrane remnants in perforation plates and helical thickening in vessels of Ericaceae. – Nord. J. Bot. 23: 353-363.

Carlquist SJ, Eckhart VM, Michener DC. 1984. Wood anatomy of Polemoniaceae. – Aliso 10: 547-572.

Carrasquel N. 1970. Estudios anátomo-morfológicos de las especies del género Jacquinia en Venezuela para su interpretación taxonómica. – Acta Bot. Venezuel. 4: 303-357.

Carrijo TT, Freitas M de F, Peixoto AL. 2012. The genus Stylogyne (Myrsinoideae-Primulaceae) in Brazil. – Syst. Bot. 37: 478-489.

Carrion JS, Delgado MJ, Garcia M. 1993. Pollen grain morphology of Coris (Primulaceae). – Plant Syst. Evol. 184: 89-100.

Case FW, Case RB. 1974. Sarracenia alabamensis, a newly recognized species from central Alabama. – Rhodora 76: 650-655.

Case FW, Case RB. 1976. The Sarracenia rubra complex. – Rhodora 78: 270-325.

Chamberlain DF, Rae SJ. 1990. A revision of Rhododendron IV. Subgenus Tsutsusi. – Edinburgh J. Bot. 47: 89-200.

Chambers KL. 1960. On the origin of an unusual Dipholis from the Florida Keys. – Tropical Woods 112: 40-57.

Chandler B. 1911. Deherainia smaragdina Dcne. – Notes Roy. Bot. Gard. Edinb. 5: 49-56.

Chang H-T. 1963. Euryodendron, a new genus of Theaceae. – Acta Sci. Nat. Univ. Sunyatseni 1963: 129-132. [In Chinese]

Chang H-T. 1976. Apterosperma – genus novum theacearum. – Acta Sci. Nat. Univ. Sunyatseni 1976: 89-92. [In Chinese]

Chang H-T. 1981. A taxonomy of the genus Camellia. – Acta Sci. Nat. Univ. Sunyatseni, Monogr. Ser. 1: 1-180. [In Chinese]

Chang H-T. 1996. Diagnosis on the systematic development of Theaceae I. A review on the sections Chrysantha and Archaecamellia of the genus Camellia. – Acta Sci. Nat. Univ. Sunyatseni 35: 77-83.

Chang H-T, Bartholomew B. 1984. Camellias. – BT Batsford, London, and Timber Press, Portland, Oregon.

Chantaranothai P. 1995a. Barringtonia (Lecythidaceae) in Thailand. – Kew Bull. 50: 677-694.

Chantaranothai P. 1995b. Six new species of Barringtonia (Lecythidaceae). – Kew Bull. 50: 695-705.

Chat J, Jauregui B, Petit RJ, Nadot S. 2004. Reticulate evolution in kiwifruit (Actinidia, Actinidiaceae) identified by comparing their material and paternal phylogenies. – Amer. J. Bot. 91: 736-747.

Cheek M, Fischer E. 1999. A tuberous and epiphytic new species of Impatiens (Balsaminaceae) from Southwest Cameroon. – Kew Bull. 54: 471-475.

Chen F-H, Hu C-M. 1979. Taxonomic and phytogeographic studies on Chinese species of Lysimachia. – Acta Phytotaxon. Sin. 17: 21-53.

Chen C-T. 1995. Changiostyrax, a new genus of Styracaceae from China. – Guihaia 15: 289-292.

Chen C-T, Li G-Y. 1997. A new species of Sinojackia Hu (Styracaceae) from Zhejiang, east China. – Novon 7: 350-352.

Cherry W, Gadek PA, Brown EA, Heslewood MM, Quinn CJ. 2001. Pentachondra dehiscens sp. nov. – an aberrant new member of Styphelieae. – Aust. Syst. Bot. 14: 513-533.

Chesnais F. 1944. Étude anatomique du genre Sarcosperma Hook. f. (Sarcospermacées). – Bull. Mus. Natl. Hist. Nat. Paris, sér. II, 16: 514-518.

Chester E. 1966. A biosystematic study of the genus Halesia, Ellis (Styracaceae). – Ph.D. diss., University of Tennessee, Knoxville, Tennessee.

Chirtoiü M. 1918. Lacistemacées et Symplocacées. – Bull. Soc. Bot. Genève XI(10): 350-361.

Chou Y-L. 1952. Floral morphology of three species of Gaultheria. – Bot. Gaz. 114: 198-221.

Christensen NL. 1977. The role of carnivory in Sarracenia flava L. with regard to specific nutrient deficiencies. – J. Elisha Mitchell Sci. Soc. 92: 144-147.

Christoph H. 1921. Untersuchungen über die mycotrophen Verhältnisse der ‘Ericales’ und die Keimung von Pyrolaceen. – Beih. Bot. Centralbl. 38: 115-157.

Christophel DC, Basinger JF. 1982. Earliest floral evidence for the Ebenaceae in Australia. – Nature 296: 439-441.

Chrtek J, Slavíková Z, Studnička M. 1992. Beitrag zur Morphologie und Taxonomie der Familie Sarraceniaceae. – Preslia 64: 1-10.

Chuang T-I, Hsieh WC, Wilken DH. 1978. Contribution of pollen morphology to systematics of Collomia (Polemoniaceae). – Amer. J. Bot. 65: 450-458.

Chun WY. 1925. Two new trees from Chekiang. – J. Arnold Arbor. 6: 144-145.

Chun WY, Chun F. 1935. Notes on some Chinese Styracaceae. – Sunyatsenia 3: 28-35.

Chung J-D, Lin T-P, Chen Y-L, Cheng Y-P, Hwang S-Y. 2007. Phylogeographic study reveals the origin and evolutionary history of a Rhododendron species complex in Taiwan. – Mol. Phylogen. Evol. 42: 14-24.

Chung M-G, Kang S-S. 1996. Comparisons of genetic diversity in a narrow endemic, Impatiens hypophylla, and in its widespread congener, I. textori (Balsaminaceae). – Nord. J. Bot. 16: 359-365.

Clemants SE. 1995. Ericaceae subfamily Rhododendroideae 6. Bejaria Mutis ex Linnaeus. – In: Luteyn JL (ed), Flora neotropica. Monograph 66. Ericaceae, part II. The superior-ovaried genera, New York Botanical Garden, New York, pp. 54-106.

Clennett JCB. 2002. An analysis and revision of Cyclamen L. with emphasis on subgenus Gyrophoebe O. Schwarz. – Bot. J. Linn. Soc. 138: 473-481.

Clinckemaillie D, Smets EF. 1992. Floral similarities between Plumbaginaceae and Primulaceae: systematic significance. – Belg. J. Bot. 125: 151-153.

Cochrane S, Day A. 1994. A heterostylous Gilia (Polemoniaceae) from central Nevada. – Madroño 41: 120-127.

Collins JP, Berkelhamer RC, Mesler M. 1977. Notes on the natural history of the mangrove Pelliciera rhizophorae Tr. & Pl. (Theaceae). – Brenesia 10/11: 17-29.

Collinson ME, Crane PR. 1978. Rhododendron seeds from the Palaeocene of England. – Bot. J. Linn. Soc. 76: 195-205.

Conran JG. 2004. Roridulaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 339-342.

Conran JG, Dowd JM. 1993. The phylogenetic relationships of Byblis and Roridula (Byblidaceae-Roridulaceae) inferred from partial 18S ribosomal RNA sequences. – Plant Syst. Ecol. 188: 73-86.

Constance L. 1938. A revision of the genus Douglasia Lindl. – Amer. Midl. Natur. 19: 249-259.

Conti E, Suring E, Boyd D, Jorgensen J, Grant J, Kelso S. 2000. Phylogenetic relationships and character evolution in Primula L.: the usefulness of ITS sequence data. – Plant Biosystems 134: 385-392.

Contreras LS, Lersten NR. 1984. Extrafloral nectaries in Ebenaceae: anatomy, morphology, and distribution. – Amer. J. Bot. 71: 865-872.

Coode MJE. 1976. Notes on Pittosporaceae and Myrsinaceae of the Mascarenes. – Kew Bull. 31: 221-225.

Copeland HF. 1932. Philippine Ericaceae III. A taxonomic revision. – Philipp. J. Sci. 47: 57-63.

Copeland HF. 1933. The development of seeds in certain Ericales. – Amer. J. Bot. 20: 513-517.

Copeland HF. 1935. On the genus Pityopus. – Madroño 3: 154-168.

Copeland HF. 1937. The reproductive structures of Pleuricospora. – Madroño 4: 1-40.

Copeland HF. 1938a. The structure of Allotropa. – Madroño 4: 137-168.

Copeland HF. 1938b. The Styrax of northern California and the relationships of the Styracaceae. – Amer. J. Bot. 25: 771-780.

Copeland HF. 1939. The structure and function of Monotropsis and the classification of the Monotropoideae. – Madroño 5: 105-136.

Copeland HF. 1941. Further studies on the Monotropoideae. – Madroño 6: 97-119.

Copeland HF. 1943. A study, anatomical and taxonomic, of the genera of Rhododendroideae. – Amer. Midl. Natur. 30: 533-625.

Copeland HF. 1947. Observations on the structure and classification of the Pyroleae. – Madroño 9: 65-102.

Copeland HF. 1953. Observations on the Cyrillaceae, particularly on the reproductive structures of the North American species. – Phytomorphology 3: 405-411.

Copeland HF. 1954. Observations on certain Epacridaceae. – Amer. J. Bot. 41: 215-222.

Cox HT. 1948. Studies in the comparative anatomy of the Ericales I. Ericaceae – subfamily Rhododendroideae. – Amer. Midl. Natur. 39: 220-245.

Cox HT. 1949. Studies in the comparative anatomy of the Ericales II. Ericaceae – subfamily Arbutoideae. – Amer. Midl. Natur. 40: 493-516.

Craig T. 1934. A revision of the subgenus Hugelia of the genus Gilia (Polemoniaceae). – Bull. Torrey Bot. Club 61: 385-397, 411-428.

Crampton B. 1954. Morphological and ecological considerations in the classification of Navarretia (Polemoniaceae). – Madroño 12: 225-256.

Craven LA. 2011. Diplarche and Menziesia transferred to Rhododendron (Ericaceae). – Blumea 56: 33-35.

Craven LA, Goetsch LA, Hall BD, Brown GK. 2008. Classification of the Vireya group of Rhododendron (Ericaceae). – Blumea 53: 435-442.

Craven LA, Danet F, Veldkamp JF, Goetsch LA, Hall BD. 2011. Vireya rhododendrons: their monophyly and classification (Ericaceae, Rhododendron section Schistanthe). – Blumea 56: 153-158.

Crayn DM, Quinn CJ. 1998. Archerieae: a new tribe in Epacridaceae. – Aust. Syst. Bot. 11: 23-24.

Crayn DM, Quinn CJ. 2000. The evolution of the atpB-rbcL intergenic spacer in the epacrids (Ericales) and its systematic and evolutionary implications. – Kew Bull. 55: 238-252.

Crayn DM, Kron KA, Gadek PA, Quinn CJ. 1996. Delimitation of Epacridaceae: preliminary molecular evidence. – Ann. Bot. 77: 317-321.

Crayn DM, Kron KA, Gadek PA, Quinn CJ. 1998. Phylogenetics and evolution of epacrids: a molecular analysis using the plastid gene rbcL with a reappraisal of the position of Lebetanthus. – Aust. J. Bot. 46: 187-200.

Crayn DM, Brown EA, Powell JM. 2003. A revision of Lissanthe (Styphelioideae: Ericaceae). – Aust. Syst. Bot. 16: 595-619.

Crayn DM, Hislop M, Heslewood MM. 2005. Additions to Lissanthe (Styphelioideae: Ericaceae) in Western Australia: L. synandra sp. nov. and L. pleurandroides comb. nov. – Aust. Syst. Bot. 18: 555-561.

Creech JL. 1955. An embryological study in the Rhododendron subgenus Anthodendron Endl. – Bot. Gaz. 116: 234-243.

Crepet WL, Nixon KC, Gandolfo MA. 1996. Turonian flowers of the Theales. – Amer. J. Bot. 83: 148-149.

Crepet WL, Nixon KC, Daghlian CP. 2013. Fossil Ericales from the Upper Cretaceous of New Jersey. – Intern. J. Plant Sci. 174: 572-584.

Cresswel JE, Galen C. 1991. Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. – Amer. Natur. 138: 1342-1353.

Crété P. 1944a. Polyembryonie chez l’Actinidia chinensis Planch. – Bull. Soc. Bot. France 91: 89-92.

Crété P. 1944b. Recherches anatomiques sur la séminogenèse de l’Actinidia chinensis Planch. Affinités des Actinidiacées. – Bull. Soc. Bot. France 91: 153-160.

Cristofolini G, Pignatti S. 1962. Revisione delle forme italiane di Soldanella L. – Webbia 16: 443-475.

Cronquist A. 1945a. Studies in the Sapotaceae III. Dipholis and Bumelia. – J. Arnold Arbor. 26: 435-471.

Cronquist A. 1945b. Studies in the Sapotaceae IV. The North American species of Manilkara. – Bull. Torrey Bot. Club 72: 550-562.

Cronquist A. 1946a. Studies in the Sapotaceae II. Survey of the North American genera. – Lloydia 9: 241-292.

Cronquist A. 1946b. Studies in the Sapotaceae V. The South American species of Chrysophyllum. – Bull. Torrey Bot. Club 73: 286-311.

Cronquist A. 1946bc. Studies in the Sapotaceae VI. Miscellaneous notes. – Bull. Torrey Bot. Club 73: 465-471.

Crowden RK, Menadue Y. 1990. Morphometric analysis of variation in the ‘Epacris tasmanica complex’ (Epacridaceae). – Aust. Syst. Bot. 3: 253-264.

Crowhurst RN, Lints R, Atkinson RG, Gardner RC. 1990. Restriction fragment length polymorphisms in the genus Actinidia (Actinidiaceae). – Plant Syst. Evol. 174: 193-203.

Crusio WE. 1981. Die Gattung Samolus. – Inform. ZAG Wasserpfl. 11: 3-8.

Cullen J. 1980. A revision of Rhododendron 1. Subgenus Rhododendron sections Rhododendron & Pogonanthum. – Notes Roy. Bot. Gard. Edinb. 39: 1-207.

Cullings KW. 1994. Molecular phylogeny of the Monotropoideae (Ericaceae) with a note on the placement of the Pyroloideae. – J. Evol. Biol. 7: 501-516.

Cullings KW. 1996. Single phylogenetic origin of ericoid mycorrhizae within the Ericaceae. – Can. J. Bot. 74: 1896-1909.

Cullings KW. 2000. Reassessment of phylogenetic relationships of some members of the Monotropoideae based on partial 28S ribosomal RNA gene sequencing. – Can. J. Bot. 78: 1-2.

Cullings KW, Bruns TD. 1992. Phylogenetic origin of the Monotropoideae inferred from partial 28S ribosomal RNA gene sequences. – Can. J. Bot. 70: 1703-1708.

Cullings KW, Hileman L. 1997. The Monotropoideae is a monophyletic sister group to the Arbutoideae (Ericaceae): a molecular test of Copeland’s hypothesis. – Madroño 44: 297-299.

Cullings KW, Szaro TM, Bruns TD. 1996. Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. – Nature 379: 63-66.

Cuong NM, Soejarto DD, Li J. 2007. A taxonomic revision of Actinidiaceae of Vietnam. – Blumea 52: 209-243.

Dahl AO, Rowley JR. 1991. Microspore development in Calluna (Ericaceae). Exine formation. – Ann. Sci. Nat. Bot., Paris, 13e sér., 11: 155-176.

Dahlgren KVO. 1916. Zytologische und embryologische Studien über die reihen Primulales und Plumbaginales. – Kungl. Sv. Vetensk.-Akad. Handl. 56(4): 1-80.

Dahlgren RMT, Wyk AE van. 1988. Structures and relationships of families endemic to or centered in Southern Africa. – Monogr. Syst. Bot. Missouri Bot. Gard. 25: 1-94.

Dahlgren RMT, Jensen SR, Nielsen BJ. 1976. Iridoid compounds in Fouquieriaceae and notes on its possible affinities. – Bot. Not. 129: 207-212.

Danet F. 2005. Trois nouvelles espèces et un nouvel hybride naturel de Rhododendron (Ericaceae) de Nouvelle-Guinée. – Adansonia, sér. III, 27: 267-280.

Danet F. 2007. Deux nouvelles espèces de Rhododendron section Siphonovireya (Ericaceae) de Nouvelle-Guinée. – Adansonia, sér. III, 29: 105-111.

D’Arcy WG. 1973. Corelliana (Myrsinaceae), a new palmoid genus of the tropical rain forest. – Ann. Missouri Bot. Gard. 60: 442-448.

Dawson MI. 2000. Index of chromosome numbers in the Epacridaceae. – Proc. Linn. Soc. New South Wales 73: 37-56.

Dawson ML. 1936. The floral morphology of the Polemoniaceae. – Amer. J. Bot. 23: 501-511.

Day AG. 1965. The evolution of a pair of sibling allotetraploid species of cobwebby gilias (Polemoniaceae). – Aliso 6: 25-75.

Day AG. 1993. New taxa and nomenclatural changes in Allophyllum, Gilia, and Navarretia (Polemoniaceae). – Novon 3: 331-340.

Day AG, Moran R. 1986. Acanthogilia, a new genus of Polemoniaceae from Baja California, Mexico. – Proc. Calif. Acad. Sci. 44: 111-126.

Day RT, Scott PJ. 1981. Autecological aspects of Diapensia lapponica L. in Newfoundland. – Rhodora 83: 101-109.

Day RT, Scott PJ. 1984. The biology of Diapensia lapponica in Newfoundland. – Can. Field-Natur. 98: 425-439.

Dean FM, Costa AMBSRCS, Harborne JB, Smith DM. 1978. Leptodactylone, a yellow coumarin from Leptodactylon and Linanthus species. – Phytochemistry 17: 505-509.

DeBuhr LE. 1975. Phylogenetic relationships of the Sarraceniaceae. – Taxon 24: 297-306.

DeBuhr LE. 1977. Wood anatomy of the Sarraceniaceae: ecological and evolutionary implications. – Plant Syst. Evol. 128: 159-169.

Debussche M, Thompson JD. 2002. Morphological differentiation among closely related species with disjunct distributions: a case study of Mediterranean Cyclamen L. subgen. Psilanthum Schwarz (Primulaceae). – Bot. J. Linn. Soc. 139: 133-144.

Debussche M, Garnier E, Thompson JD. 2004. Exploring the causes of variation in phenology and morphology in Mediterranean geophytes: a genus-wide study of Cyclamen. – Bot. J. Linn. Soc. 145: 469-484.

Decaisne MJ. 1876. Note sur quelques plantes du groupe des Théophrastées. – Ann. Sci. Nat. Bot., sér. VI, 3: 138-145.

Decrock E. 1901. Anatomie des Primulacées. – Ann. Sci. Nat. Bot. Biol. Veg., sér. VIII, 13: 1-199.

De Faria AD, Pirani JR, Da Silva Ribeiro JEL, Nylinder S, Terra-Araujo MH, Vieira PP, Swenson U. 2017. Towards a natural classification of Sapotaceae subfamily Chrysophylloideae in the Neotropics. – Bot. J. Linn. Soc. 185: 27-55.

De Groot S. 2011. Spatial analysis of morphology in Eriastrum eremicum (Polemoniaceae). – Syst. Bot. 36: 449-464.

Dehay C. 1955. Caractères de la feuille chez les Scytopétalacées. – Bull. Soc. Bot. Nord France 8: 76-81.

Delpino F. 1869. Rivista monografica della famiglia delle Marcgraviaceae. – Nuovo Giorn. Bot. Ital. 1: 257-290.

Denford KE. 1981. Chemical subdivisions within the genus Arctostaphylos based on flavonoid profiles. – Experientia 37: 1287-1288.

Deng L, Baas P. 1990. Wood anatomy of trees and shrubs from China II. Theaceae. – IAWA Bull., N. S., 11: 337-378.

Deng L, Baas P. 1991. The wood anatomy of the Theaceae. – IAWA Bull., N. S., 12: 333-353.

De-Nova JA, Sánchez-Reyes LL, Eguiarte LE, Magallón S. 2018. Recent radiation and dispersal of an ancient lineage: the case of Fouquieria (Fouquieriaceae, Ericales) in North American deserts. – Mol. Phylogen. Evol. 126: 92-104.

Dickison WC. 1972. Observations on the floral morphology of some species of Saurauia, Actinidia, and Clematoclethra. – J. Elisha Mitchell Scient. Soc. 88: 43-54.

Dickison WC. 1993. Floral anatomy of the Styracaceae, including observations on intra-ovarian trichomes. – Bot. J. Linn. Soc. 112: 223-255.

Dickison WC, Phend KD. 1985. Wood anatomy of the Styracaceae: evolutionary and ecological considerations. – IAWA Bull., N.S., 6: 3-22.

Dickison WC, Nowicke JW, Skvarla JJ. 1982. Pollen morphology of the Dilleniaceae and Actinidiaceae. – Amer. J. Bot. 69: 1055-1073.

Dickson J. 1936. Studies in floral anatomy III. An interpretation of the gynaeceum in the Primulaceae. – Amer. J. Bot. 23: 385-393.

Diehl GA. 1935. A study of the Lecythidaceae. – Trop. Woods 43: 1-15.

Diels L. 1914. Diapensiaceen-Studien. – Engl. Bot. Jahrb. Syst. [Suppl.] 50: 304-330.

Diels L. 1930. Roridulaceae. – In: Engler A, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 18a, W. Engelmann, Leipzig, pp. 346-348.

Diggs Jr GM. 1981. Systematic studies in the Arbuteae (Ericaceae, Vaccinioideae) including a revision of the genus Comarostaphylis. – Ph.D. diss., University of Wisconsin, Madison, Wisconsin.

Diggs Jr GM. 1987. Numerical systematics of Comarostaphylis (Ericaceae: Arbuteae). – Syst. Bot. 12: 586-600.

Diggs Jr GM. 1995. Comarostaphylis Zuccarini. – In: Luteyn JL (ed), Flora neotropica. Monograph 66. Ericaceae, part II. The superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 146-193.

Diggs Jr GM, Breckon GJ. 1981. Generic circumscription in the Arbuteae (Ericaceae). – In: Diggs GM Jr (ed), Systematic studies in the Arbuteae (Ericaceae, Vaccinioideae) including a revision of the genus Comarostaphylis, Ph.D. diss., University of Wisconsin, Madison, Wisconsin, pp. 5-88.

Ditsch F, Barthlott W. 1994. Mikromorphologie der Epicuticularwachse und die Systematik der Dilleniales, Lecythidales, Malvales und Theales. – Trop. Subtrop. Pflanzenwelt 88: 1-74.

Dixon CJ, Schönswetter P, Schneeweiss GM. 2008. Morphological and geographical evidence are misleading with repect to the phylogenetic position and origin of the narrow endemic polyploid Androsace cantabrica (Primulaceae). – Syst. Bot. 33: 384-389.

Dobbins DR, Alden H, Marvel D. 1983. Developmental anatomy of juvenile and adult shoots of Marcgravia rectifolia L. – Amer. J. Bot. 70: 1263-1271.

Docters van Leeuwen WM. 1922. Über einige von Aphiden an Styrax-Arten gebildete Gallen. – Bull. Jard. Bot. Buitenzorg, sér. III, 4: 147-162.

Dome AP. 1999. xPhylliopsisPhyllodoce spp. x Kalmiopsis – ericaceous aristocrats. – Rock Gard. Quart. 57: 35-45.

Dormer KJ. 1944. Morphology of the vegetative shoot in Epacridaceae. – New Phytol. 44: 149-151.

Dorr LJ. 1980. The reproductive biology and pollination ecology of Zenobia (Ericaceae). – Master’s thesis, University of North Carolina, Chapel Hill, North Carolina.

Douglas GE. 1936. Studies in the vascular anatomy of the Primulaceae. – Amer. J. Bot. 23: 199-212.

Doyle BE, Goss LM. 1941. Some details of the reproductive structures of Sarcodes. – Madroño 6: 1-7.

Dressler S. 1997. 321. Marcgravia umbellata. – [Curtis’s] Bot. Mag., ser. VI, 14: 130-136.

Dressler S. 1999. Nektarkannen im Kronendach – zur blütenökologischen Vielfalt der Marcgraviaceae. – In: Zizka G, Schneckenburger S (eds), Blütenökologie – faszinierendes Miteinander von Pflanzen und Tieren, pp. 141-148. [Kleine Senckenberg-Reihe 33; Palmengarten Sonderheft 31]

Dressler S. 2000a. Marcgraviaceae – ein Portät der neotropischen Familie. – In: Breckle S-W, Schweizer B, Arndt U (eds), Ergebnisse weltweiter ökologischer Forschung / Results of worldwide ecological studies, Stuttgart, pp. 413-424.

Dressler S. 2000b. A new species of Marcgravia (Marcgraviaceae) from Amazonia with some notes on the Galeatae group including a key. – Willdenowia 30: 369-374.

Dressler S. 2004. Marcgraviaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 258-265.

Dressler S, Bayer C. 2004. Actinidiaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 14-19.

Dressler S, Tschapka M. 2002. Bird versus bat pollination in the genus Marcgravia and the description of a new species. – [Curtis’s] Bot. Mag., ser. VI, 19: 104-114.

Drinkell C, Utteridge TMA. 2015. A revision of the genus Systellantha B. C. Stone. Studies in Malaysian Myrsinaceae IV. – Kew Bull. 70: 50 DOI 10.1007/S12225-015-9603-8

Drude O. 1891a. Clethraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 1-2.

Drude O. 1891b. Pirolaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 3-11.

Drude O. 1891c. Ericaceae (Haidegewächse). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 15-65.

Drude O. 1891d. Epacridaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 66-79.

Drude O. 1891e. Diapensiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 80-84.

Drude O. 1891f. Droseraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 261-272.

Du XY, Zhang QL, Luo Z-R. 2009. Comparison of four molecular markers for genetic analysis in Diospyros L. (Ebenaceae). – Plant Syst. Evol. 281: 171-181.

Duangjai S, Wallnoeffer B, Samuel R, Munzinger F, Chase MW. 2006. Generic delimitation and relationships in Ebenaceae sensu lato: evidence from six plastid DNA regions. – Amer. J. Bot. 93: 1808-1827.

Duangjai S, Samuel R, Munzinger J, Forest F, Wallnöfer B, Barfuss MHJ, Fischer G, Chase MW. 2009. A multi-locus plastid phylogenetic analysis of the pantropical genus Diospyros (Ebenaceae), with an emphasis on the radiation and biogeographic origins of the New Caledonian endemic species. – Mol. Phylogen. Evol. 52: 602-620.

Dubard M. 1908. Les Sapotacées du groupe des Illipées. – Rev. Gén. Bot. 20: 193-206.

Dubard M. 1909. Les Sapotacées de groupe des Isonandrées. – Rev. Gén. Bot. 21: 392-398.

Dubard M. 1911. Descriptions de quelques espèces de Lucumées africaines d’aprés les documents de L. Pierre. – Notul. Syst. (Paris) 2: 89-91.

Dubard M. 1912. Les Sapotacées de groupe des Sideroxylinées. – Ann. Inst. Bot.-Géol. Colon. Marseille, sér II, 10: 1-98.

Dubard M. 1915. Les Sapotacées du groupe des Sideroxylinées-Mimusopées. – Ann. Inst. Bot.-Géol. Colon. Marseille, sér. III, 3: 1-62.

Dubéarnès A, Julius A, Utteridge TMA. 2015. A synopsis of the genus Embelia in Peninsular Malaysia and Singapore. Studies in Malaysian Myrsinaceae III. – Kew Bull. 70: 25 DOI 10.1007/S12225-015-9570-0

Duddridge J, Read DJ. 1982. An ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum. – Can. J. Bot. 60: 2345-2356.

Dunbar A. 1970. A surface specialization on the wall of pollen grains in Aegiceras corniculatum. – J. Cell Biol. 47: 53a-54a.

Dunbar A, Erdtman G. 1969. On the pollen grains of Aegiceras corniculatum (Myrsinaceae). – Grana Palynol. 9: 63-71.

Dunn ST. 1911. A revision of the genus Actinidia, Lindl. – Bot. J. Linn. Soc. 34: 394-411.

Eastwood A. 1934. A revision of the genera formerly included in Arctostaphylos. – Leafl. Western Bot. 1: 97-100.

Ebinger JE. 1974. A systematic study of the genus Kalmia (Ericaceae). – Rhodora 76: 315-398.

Eck P. 1990. The American cranberry. – Rutgers University Press, New Brunswick.

Elias TS, Gelband H. 1977. Morphology, anatomy, and relationship of extrafloral nectaries and hydathodes in two species of Impatiens (Balsaminaceae). – Bot. Gaz. 138: 206-212.

Ellis AG, Midgley JJ. 1996. A new plant-animal mutualism involving a plant with sticky leaves and a resident hemipteran insect. – Oecologia 106: 478-481.

Elmer ADE. 1908. Six new Myrsinaceae. – Leafl. Philipp. Bot. 2(22): 439-444.

Elmer ADE. 1910. Myrsinaceae from Mt. Apo. – Leafl. Philipp. Bot. 2(38): 659-675.

Elsler E. 1907. Das extraflorale Nektarium und die Papillen der Blattunterseite bei Diospyros discolor Willd. – Sitzungsber. K. Akad. Wiss., Math.-Naturwiss. Cl., Abt. 1, 116: 1563-1590.

Englander L, Hull RJ. 1980. Reciprocal transfer of nutrients between ericaceous plants and a Clavaria sp. – New Phytologist 84: 661-667.

Engler A. 1891. Sapotaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 126-153; Engler A. 1897. Nachträge zu IV(1), pp. 271-280.

Engler A. 1897a. Pentaphylacaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(5), W. Engelmann, Leipzig, pp. 214-215.

Engler A. 1897b. Scytopetalaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(6), W. Engelmann, Leipzig, pp. 242-245.

Engler A. 1897c. Theaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(6), W. Engelmann, Leipzig, pp. 245-247.

Engler A. 1904. Monographien afrikanischer Pflanzen-Familien und -Gattungen 8. Sapotaceae. – W. Engelmann, Leipzig.

Engler A. 1909. Scytopetalaceae Africanae II. – Engl. Bot. Jahrb. Syst. 43: 373-377.

Epling C, Dobzhansky T. 1942. Genetics of natural populations VI. Microgeographic races in Linanthus parryae. – Genetics 27: 317-332.

Erbar C. 1986. Untersuchungen zur Entwicklung der spiraligen Blüte von Stewartia pseudocamellia (Theaceae). – Bot. Jahrb. Syst. 106: 391-407.

Étienne P. 1919. Étude anatomique de la famille des Épacridacées. – Thèse Doctorale, Faculté Pharmacologique, Université de Toulouse.

Eugster CH, Hürlimann H, Leuenberger HJ. 1969. 90. Crocetindialdehyd und Crocetinhalbaldehyd als Blütenfarbstoffe von Jacquinia angustifolia. – Helvetica Chem. Acta 52: 806-807.

Evans RC, Vander Kloet S. 2010. Comparative analysis of hypocotyl development in epiphytic, lignotuber-forming, and terrestrial Vaccinieae (Ericaceae). – Botany 88: 556-564.

Evans WE. 1927. A revision of the genus Diapensia with special reference to the Sino-Himalayan species. – Notes Roy. Bot. Gard. Edinb. 15: 209-236.

Ewane-Nyambi G, Bois P, Raymond G. 1993. The effects of Agauria salicifolia leaf extract on calcium current and excitation-contraction coupling of isolated frog muscle cells. – J. Ethnopharmacol. 38: 55-61.

Ewango CEN, Kenfack D, Sainge MN, Thomas DW, van der Burgt XM. 2016. Gambeya korupensis (Sapotaceae: Chrysophylloideae), a new rain forest tree species from the Southwest Region in Cameroon. – Kew Bull. 2016: 1–6. DOI 10.1007/S12225-016-9633-X

Eyma PJ. 1936. Notes on Guiana Sapotaceae. – Rec. Trav. Bot. Néerl. 33: 156-210.

Fajardo D, Senalik D, Ames M, Zhu H, Steffan SA, Harbut R, Polashock J, Vorsa N, Gillespie E, Kron K, Zalapa JE. 2013. Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. – Tree Gene Genomes 9: 489-498.

Fan GS. 1996. Generic numerical taxonomy of Styracaceae from Asia. – Guihaia 16: 305-307.

Fang M-Y. 1985. A new species of Enkianthus Lour. from Hunan. – Bull. Bot. Res. North-East. Forest. Inst. 5: 165-168.

Faure P. 1968. Contribution à l’étude caryo-taxonomique des Myrsinacées et des Théophrastacées. – Mém. Mus. Natl. Hist. Nat., sect. B, Bot. 18: 37-57.

Federov A. 1950. Sredinskya Fed. Genus novum Primulacearum. – Not. Syst. (Leningrad) 13: 199-203.

Fenderson GK. 1986. A synoptic guide to the genus Primula. – Allen, Lawrence, Kansas.

Ferguson AR. 1990. Botanical nomenclature: Actinidia chinensis, Actinidia deliciosa and Actinidia setosa. – In: Warrington IJ, Weston GC (eds), Kiwifruit: science and management, Ray Richards, Auckland, pp. 36-56.

Ferguson AR, Bollard EG. 1990. Domestication of the kiwifruit. – In: Warrington IJ, Weston GC (eds), Kiwifruit: science and management, Ray Richards, Auckland, pp. 165-246.

Ferguson CJ, Jansen RK. 2002. A chloroplast DNA phylogeny of eastern Phlox (Polmoniaceae): implications of congruence and incongruence with the ITS phylogeny. – Amer. J. Bot. 89: 1324-1335.

Ferguson CJ, Krämer F, Jansen RK. 2000. Relationships of eastern North American Phlox (Polemoniaceae) based on ITS sequence data. – Syst. Bot. 24: 616-631.

Fernald ML. 1920. The American varieties of Pyrola chlorantha. – Rhodora 22: 49-53.

Fernald ML, Wiegand KM. 1913. The genus Empetrum in North America. – Rhodora 15: 211-217.

Fernandes A. 1978. 76. Barringtoniaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 216-219.

Fior S, Karis PO, Anderberg AA. 2003. Phylogeny, taxonomy, and systematic position of Clethra (Clethraceae, Ericales) with notes on biogeography: evidence from plastid and nuclear DNA sequences. – Intern. J. Plant Sci. 164: 997-1006.

Fischer E. 2004. Balsaminaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 20-25.

Fischer E, Rahelivololona ME. 2002. New taxa of Impatiens (Balsaminaceae) from Madagascar I. – Adansonia, sér. III, 24: 271-294.

Fischer E, Rahelivololona ME. 2004. New taxa of Impatiens (Balsaminaceae) from Madagascar III. – Adansonia, sér. III, 26: 37-52.

Fischer E, Rahelivololona ME. 2007a. New taxa of Impatiens (Balsaminaceae) from Madagascar IV. – Adansonia, sér. III, 29: 296-315.

Fischer E, Rahelivololona ME. 2007b. New taxa of Impatiens (Balsaminaceae) from Madagascar V. New species of Impatiens from Masoala Peninsula. – Adansonia, sér. III, 29: 317-332.

Fischer E, Dhetchuvi J-B, Ntaganda C. 2003. A new species of Impatiens (Balsaminaceae) from Nyungwe Forest, Rwanda. – Syst. Geogr. Plants 73: 91-95.

Fischer E, Wohlhauser S, Rahelivololona ME. 2003. New taxa of Impatiens (Balsaminaceae) from Madagascar II. A collection from Masoala Peninsula. – Adansonia, sér. III, 25: 17-31.

Fischer O. 1992. New knowledges about the distribution of the genus Kalmia L. in the European Tertiary. – Cour. Forsch.-Inst. Senck. 147: 383-391.

Fletcher HR. 1939. The genus Omphalogramma. – Notes Roy. Bot. Gard. Edinb. 20: 125-159.

Floyd JW. 2002. Phylogenetic and biogeographic patterns in Gaylussacia (Ericaceae) based on morphological, nuclear DNA, and chloroplast DNA variation. – Syst. Bot. 27: 99-115.

Ford JH. 1971. Ultrastructural and chemical studies of pollen wall development in the Epacridaceae. – In: Brooks J, Grant PR, Muir M, Gijzel P van, Shaw G (eds), Sporopollenin, Academic Press, London, New York, pp. 130-173.

Foss PJ, Doyle GJ. 1988. A palynological study of the Irish Ericaceae and Empetrum. – Pollen Spores 30: 151-178.

Foster AS. 1944. Structure and development of sclereids in the petiole of Camellia japonica. – Bull. Torrey Bot. Club 71: 302-326.

Foster AS. 1950. Venation and histology of the leaflets in Touroulia guianensis Aubl. and Froesia tricarpa Pires. – Amer. J. Bot. 37: 848-862.

Fourny AC da S, Carrijo TT, Mendonça CBF, Gonçalves-Esteves V. 2018. Pollen morphology in delimiting subgenera and species of the genus Cybianthus s.l. (Myrsinoideae-Primulaceae). – Plant Syst. Evol. 304: 535-548.

Frame D, Durou S. 2001. Morphology and biology of Napoleonaea vogelii (Lecythidaceae) flowers in relation to the natural history of insect visitors. – Biotropica 33: 458-471.

Franceschi G de. 1993. Phylogénie des Ebénales: analyse de l’ordre et origine biogéographique des espèces indiennes.. – Publications du Département d’Écologie, Inst. Franç. Pondichéry, 33, pp. 1-153.

Francis SP. 1991. The relationships of the Sapotaceae within the Ebenales. – In: Pennington TD (ed), The genera of Sapotaceae, Royal Botanic Gardens, Kew, pp. 1-13.

Franks JW, Watson L. 1963. The pollen morphology of some critical Ericales. – Pollen Spores 5: 51-68.

Freudenstein JV. 1999. Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology, and development. – Syst. Bot. 24: 398-408.

Freudenstein JV, Broe MB, Feldenkris ER. 2016. Phylogenetic relationships at the base of Ericaceae: implications for vegetative and mycorrhizal evolution. – Taxon 65: 794-804.

Frezet C, Raynaud J, Bouillant M-L. 1975. Sur la présence de la di-C-glucosyl-6,8 apigénine chez Coris monspeliensis (Primulaceae). – Compt. Rend. Acad. Sci. Paris 280: 1079-1081.

Friedmann F. 1981. 116. Sapotacées. – In: Bosser J, Cadet T, Guého J, Marais W (eds), Flore des Mascareignes, IRD Éditions, Institut de recherche pour le développement, Paris, Mauritius Sugar Industry Research Institute, Ile Maurice, and The Royal Botanic Gardens, Kew, pp. 1-27.

Fries TCE. 1923. Die Anagallis-Arten der afrikanischen Hochgebirge. – Notizbl. Bot. Gart. Berlin-Dahlem 8: 329-339.

Friis I. 1978. A reconsideration of the genera Monotheca and Spiniluma (Sapotaceae). – Kew Bull. 33: 91-98.

Friis I. 1985. The identity of E. Chiovenda’s Somalian Sapotaceae. – Kew Bull. 40: 395-398.

Frimodt-Møller C, Grey-Wilson C. 1999. Two new taxa of Impatiens (Balsaminaceae) from the Udzungwa Mountains, Tanzania. – Kew Bull. 54: 179-184.

Fritsch PW. 1994. Systematic and biogeographic studies in the genus Styrax. – Ph.D. diss., Claremont Graduate School, Claremont, California.

Fritsch PW. 1996a. Isozyme analysis of intercontinental disjuncts within Styrax (Styracaceae): implications for the Madrean-Tethyan hypothesis. – Amer. J. Bot. 83: 342-355.

Fritsch PW. 1996b. Population structuring and patterns of morphological variation in California Styrax (Styracaceae). – Aliso 14: 205-218.

Fritsch PW. 1997. A revision of Styrax (Styracaceae) for western Texas, Mexico, and Mesoamerica. – Ann. Missouri Bot. Gard. 84: 705-761.

Fritsch PW. 1999. Phylogeny of Styrax based on morphological characters, with implications for biogeography and infrageneric classification. – Syst. Bot. 24: 356-378.

Fritsch PW. 2001. Phylogeny and biogeography of the flowering plant genus Styrax (Styracaceae) based on chloroplast DNA restriction sites and DNA sequences of the Internal Transcribed Spacer region. – Mol. Phylogen. Evol. 19: 387-408.

Fritsch PW. 2003. Multiple geographic origins of Antillean Styrax. – Syst. Bot. 28: 421-430.

Fritsch PW. 2004. Styracaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 434-442.

Fritsch PW, Lucas SD. 2000. Clinal variation in the Halesia carolina complex (Styracaceae). – Syst. Bot. 25: 197-210.

Fritsch PW, Morton CM, Chen T, Meldrum C. 2001. Phylogeny and biogeography of the Styracaceae. – Intern. J. Plant Sci. 162(6 Suppl.): S95-S116.

Fritsch PW, Cruz BC, Almeida F, Wang Y, Shi S. 2006. Phylogeny of Symplocos based on DNA sequences of the chloroplast trnC-trnD intergenic region. – Syst. Bot. 31: 181-192.

Fritsch PW, Kelly LM, Wang Y, Almeda F, Kriebel R. 2008. Revised infrafamilial classification of Symplocaceae based on phylogenetic data from DNA sequences and morphology. – Taxon 57: 823-852.

Fritsch PW, Zhou L, Lu L, Bartholomew B. 2008. The flowering plant genus Gaultheria (Ericaceae) in the Gaoligong Shan, along the border region of China and Myanmar. – Proc. Calif. Acad. Sci., ser. 4, 59: 147-214.

Fritsch PW, Bush CM, Cruz BC, Kron KA, Li D-Z. 2011. Phylogenetic analysis of the wintergreen-group (Ericaceae) based on six genic regions. – Syst. Bot. 36: 990-1003.

Fritsch PW, Cruz BC, Simison WB, Campbell AJ, Harris JK. 2015. Early phylogenetic divergence of gynodioecious species warrants the recognition of subseries in Styrax Series Valvatae. – Syst. Bot. 40: 1081-1092.

Fritsch PW, Manchester SR, Stone RD, Cruz BC, Almeda F. 2015. Northern Hemisphere origins of the amphi-Pacific tropical plant family Symplocaceae. – J. Biogeogr. 42: 891-901.

Fritsch PW, Lu L, Wang H, Li D-Z. 2015. New species, taxonomic renovations, and typifications in Gaultheria series Trichophyllae (Ericaceae). – Phytotaxa 201: 1-26.

Fritsch PW, Yao X, Simison WB, Cruz BC, Chen T. 2016. Perkinsiodendron, a new genus in the Styracaceae based on morphology and DNA sequences. – J. Bot. Res. Inst. Texas 10: 109-117.

Frohne D, John J. 1978. The Primulales: serological contributions to the problem of their systematic position. – Biochem. Syst Ecol. 6: 315-322.

Frye EM. 1934. American Diapensiaceae. – New Flora and Silva 6: 192-193.

Fuchs HP. 1970. Ecological and palynological notes on Pelliciera rhizophorae. – Acta Bot. Neerl. 19: 884-894.

Furness CA. 2009. Pollen evolution and development in Ericaceae, with particular reference to pseudomonads and variable pollen sterility in Styphelioideae. – Intern. J. Plant Sci. 170: 476-495.

Fusconi A, Bonfante-Fasolo P. 1984. Ultrastructural aspects of host-endophyte relationships in Arbutus unedo L. mycorrhizas. – New Phytol. 96: 397-410.

Galen C. 1989. Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine skypilot Polemonium viscosum. – Evolution 43: 882-890.

Galen C. 1992. Pollen dispersal dynamics in an alpine wildflower, Polemonium viscosum. – Evolution 46: 1043-1051.

Galen C, Newport M. 1988. Pollination quality, seed set, and flower traits in Polemonium viscosum: complementary effects of variation in flower scent and size.- Amer. J. Bot. 75: 900-905.

Ganapathy PS, Palser BF. 1964. Studies of floral morphology in the Ericales VII. Embryology in the Phyllodoceae. – Bot. Gaz. 125: 280-297.

Gao L-M, Li D-Z, Zhang C-Q, Yang J-B. 2002. Infrageneric and sectional relationships in the genus Rhododendron (Ericaceae) inferred from ITS sequence data. – Acta Bot. Sin. 44: 1351-1356.

Gao M, Xu WB, Yang HL, Yu SX. 2011. Characters of leaf epidermis and their taxonomic significance in Impatiens (Balsaminaceae) obligated to limestone region from China. – Guihaia 31: 730-734.

Gardner IC, Miller IM, Scott A. 1981. The fine structure of the leaf nodules of Ardisia crispa (Thunb.) A. D. C. (Myrsinaceae). – Bot. J. Linn. Soc. 83: 93-102.

Gautier L, Naciri Y. 2018.Three critically endangered new species of Capurodendron (Sapotaceae) from Madagascar. – Candollea 73: 121-129.

Gautier L, Naciri Y, Anderberg AA, Smedmark JEE, Randrianaivo R, Swenson U. 2013. A new species, genus and tribe of Sapotaceae, endemic to Madagascar. – Taxon 62: 972-983.

Geeraerts A, Raeymaekers JAM, Vinckier S, Pletsers A, Smets E, Huysmans S. 2009. Systematic palynology in Ebenaceae with focus on Ebenoideae: morphological diversity and character evolution. – Rev. Palaeobot. Palynol. 153: 336-353.

Geetha K, Umadevi I, Daniel M. 1993. Primulales – a reassessment of the taxonomy and phylogeny of the group. – Feddes Repert. 104: 67-71.

Geuten K, Smets E, Schols P, Yuan Y-M, Janssens S, Küpfer P, Pyck N. 2004. Conflicting phylogenies of balsaminoid families and the polytomy in Ericales: combining data in a Bayesian framework. – Mol. Phylogen. Evol. 31: 711-729.

Geuten K, Becker A, Kaufmann K, Caris P, Janssens S, Viaene T, Theißen G, Smets E. 2006. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia. – Plant J. 47: 501-518.

Gibbs PE, Talavera S. 2001. Breeding system studies in three species of Anagallis (Primulaceae): self-incompatibility and reduced female fertility in A. monelli L. – Ann. Bot. 88: 139-144.

Gibson DN. 1967. Flora of Peru, Polemoniaceae. – Field Mus. Nat. Hist., Bot. Ser. 8: 112-131.

Giebel KP, Dickison WC. 1975. Wood anatomy of Clethraceae. – J. Elisha Mitchell Sci. Soc. 92: 17-26.

Gielly L, Debussche M, Thompson JD. 2001. Geographic isolation and evolution of Mediterranean endemic Cyclamen: insights from chloroplast trnL(UAA) intron sequence variation. – Plant Syst. Evol. 230: 75-88.

Gilg E. 1896. Cyrillaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 179-182.

Gilg E, Werdermann E. 1925a. Actinidiaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 36-47.

Gilg E, Werdermann E. 1925b. Marcgraviaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 94-106.

Gillespie EL, Kron KA. 2010. Molecular phylogenetic relationships and a revised classification of the subfamily Ericoideae (Ericaceae). – Mol. Phylogen. Evol. 56: 343-354.

Gillespie EL, Kron KA. 2012. A new tribe, Bryantheae (Ericoideae: Ericaceae), composed of disjunct genera from South America and Japan. – Brittonia 64: 73-75.

Gillespie EL, Kron KA. 2013. Molecular phylogenetic relationships and morphological evolution within the tribe Phyllodoceae (ericoideae, Ericaceae). – Syst. Bot. 38: 752-763.

Gilly CL. 1943. Studies in the Sapotaceae 2. The Sapodilla-Nispero complex. – Trop. Woods 73: 1-22.

Giovannetti M, Lioi L. 1990. The mycorrhizal status of Arbutus unedo in relation to compatible and incompatible fungi. – Can.. J. Bot. 68: 1239-1244.

Giraud B, Bussert R, Schrank E. 1992. A new Theacean wood from the Cretaceous of northern Sudan. – Rev. Palaeobot. Palynol. 75: 289-299.

Glasau F. 1939. Monographie der Gattung Cyclamen auf morphologisch-cytologischer Grundlage. – Planta 30: 507-550.

Godley EJ. 1966. Breeding systems in New Zealand plants 4. Self sterility in Pentachondra pumila. – New Zeland J. Bot. 53: 324-355.

Goetsch L, Eckert AJ, Hall BD. 2005. The molecular systematics of Rhododendron (Ericaceae): a phylogeny based on RPB2 gene sequences. – Syst. Bot. 30: 616-626.

Goetsch L, Raven LA, Hall BD. 2011. Major speciation accompanied the dispersal of vireya rhododendrons (Ericaceae, Rhododendron sect. Schistanthe) through the Malayan archipelago: evidence from nuclear gene sequences. – Taxon 60: 1015-1028.

Gonsoulin GJ. 1974. A revision of Styrax (Styracaceae) in North America, Central America, and the Carribbean. – Sida 5: 191-258.

González MV, Coque M, Herrero M. 1996. Pollen-pistil interaction in kiwifruit (Actinidia decliciosa; Actinidiaceae). – Amer. J. Bot. 83: 148-154.

Good RDO. 1926. The genera Phyllodoce and Cassiope. – J. Bot. 64: 1-10.

Good RDO. 1927. The genus Empetrum L. – Bot. J. Linn. Soc. 47: 489-523.

Goodwillie C. 1999. Multiple origins of self-compatibility in Linanthus section Leptosiphon (Polemoniaceae): phylogenetic evidence from internal-transcribed-spacer sequence data. – Evolution 53: 1387-1395.

Govaerts R, Frodin DG, Pennington TD. 2001. World checklist and bibliography of Sapotaceae. – Royal Botanic Gardens, Kew.

Govindarajan T, Subramanian D. 1986. Karyotaxonomy of South Indian Balsaminaceae. – Cytologia 51: 107-116.

Graham A. 1977. New records of Pelliciera (Theaceae/Pellicieraceae) in the Tertiary of the Caribbean. – Biotropica 9: 48-52.

Grant A, Grant V. 1955. The genus Allophyllum (Polemoniaceae). – Aliso 3: 93-110.

Grant A, Grant V. 1956. Gentic and taxonomic studies in Gilia VIII. The cobwebby gilias. – Aliso 3: 203-287.

Grant V. 1950. Genetic and taxonomic studies in Gilia I. Gilia capitata. – Aliso 2: 239-316.

Grant V. 1952a. Genetic and taxonomic studies in Gilia II. Gilia capitata abrotanifolia. – Aliso 2: 361-374.

Grant V. 1952b. Genetic and taxonomic studies in Gilia III. Gilia tricolor. – Aliso 2: 375-388.

Grant V. 1953. The role of hybridization in the evolution of the leafy-stemmed gilias. – Evolution 7: 51-64.

Grant V. 1954a. Genetic and taxonomic studies in Gilia IV. Gilia achilleaefolia. – Aliso 3: 1-18.

Grant V. 1954b. Genetic and taxonomic studies in Gilia V. Gilia clivorum. – Aliso 3 19-34.

Grant V. 1954c. Genetic and taxonomic studies in Gilia VI. Interspecific relationships in the leafy-stemmed Gilias. – Aliso 3: 35-50.

Grant V. 1956. A synopsis of Ipomopsis. – Aliso 3: 351-362.

Grant V. 1959. Natural history of the phlox family I. Systematic Botany. – Martinus Nijhoff, The Hague, Netherlands.

Grant V. 1964. Genetic and taxonomic studies in Gilia XII. Fertility relationships of the polyploidy cobwebby gilias. – Aliso 5: 479-507.

Grant V. 1966. The selective origin of incompatibility barriers in the plant genus Gilia. – Amer. Natur. 100: 99-118.

Grant V. 1989. Taxonomy of the tufted alpine and subalpine Polemoniums (Polemoniaceae). – Bot. Gaz. (Crawfordsville) 150: 158-169.

Grant V. 1992. Systematics and phylogeny of the Ipomopsis aggregata group (Polemoniaceae): traditional and molecular approaches. – Syst. Bot. 17: 683-691.

Grant V. 1997 [1998]. Nomenclature of subfamilies and tribes in the Polemoniaceae. – Phytologia 83: 385-389.

Grant V. 1998a. Primary classification and phylogeny of the Polemoniaceae, with comments on molecular cladistics. – Amer. J. Bot. 85: 741-752.

Grant V. 1998b [1999]. Classification of the genus Gilia (Polemoniaceae). – Phytologia 84: 69-86.

Grant V. 2001. A guide to understanding recent classifications of th family Polemoniaceae. – Lundellia 4: 12-24.

Grant V. 2003. Taxonomy of the Polemoniaceae: the subfamilies and tribes. – SIDA 20: 1371-1385.

Grant V. 2004. Taxonomy of he Poleoniaceae: Gilia and Lathrocasis. – SIDA 21: 531-546.

Grant V, Day AG. 1998. Transfer of some species from Gilia to Allophyllum and Tintinabulum, and the effects of the transfer on the generic definition of Gilia (Polemoniaceae). – Phytologia 84: 368-382.

Grant V, Grant A. 1954. Genetic and taxonomic studies in Gilia VII. The woodland gilias. – El Aliso 3: 59-91.

Grant V, Grant A. 1956. Genetic and taxonomic studies in Gilia IX. Conspectus of the subgenus Gilia. – Aliso 3: 297-300.

Grant V, Grant A. 1960. Genetic and taxonomic studies in Gilia XI. Fertility relationships of the diploid cobwebby gilias. – Aliso 4: 435-481.

Grant V, Grant A. 1965. Flower pollination in the Phlox family. – Columbia University Press, New York, London.

Gray A. 1870. Revision of the North American Polemoniaceae. – Proc. Amer. Acad. Arts 8: 247-282.

Gray A. 1873. Reconstruction of the order Diapensiales. – Proc. Amer. Acad. Arts Sci. 8: 243-247.

Gray A. 1878. Note sur les Shortia galacifolia et révision des Diapensiacées. – Ann. Sci. Nat. Bot. Biol. Vég. 7: 173-179.

Greene EL. 1887. Some American Polemoniaceae I. – Pittonia 1: 120-139.

Greene EL. 1892. Some American Polemoniaceae II. – Pittonia 2: 251-260.

Greene EL. 1898a. A new genus of Polemoniaceae. – Pittonia 3: 29-30.

Greene EL. 1898b. Some western Polemoniaceae. – Pittonia 3: 299-305.

Greilhuber J. 1989. Karyotype structure and evolution in Cyclamen L. subg. Psilanthus Schwz. (Primulaceae). – Flora 183: 103-113.

Greuter W. 2001. Proposal to conserve Manilkara nom. cons. (Sapotaceae), against an additional name, Sapota. – Taxon 50: 1215-1216.

Grey-Wilson C. 1976. The genus Dionysia in cultivation and in the wild. – Alpine Garden Society, Woking, England.

Grey-Wilson C. 1977. The genus Dionysia in cultivation and in the wild. Supplement and key. – Alpine Garden Society, Woking, England.

Grey-Wilson C. 1980a. Studies in Balsaminaceae II. Hybridization in African Impatiens. – Kew Bull. 34: 689-722.

Grey-Wilson C. 1980b. Studies in Balsaminaceae V. Hydrocera triflora, its floral anatomy and relationship with Impatiens. – Kew Bull. 35: 213-219.

Grey-Wilson C. 1980c. Studies in Balsaminaceae VI. Some observations on the floral vascular anatomy of Impatiens. – Kew Bull. 35: 221-227.

Grey-Wilson C. 1980d. Impatiens of Africa. Morphology, pollination and pollinators, ecology, phytogeography, hybridisation, keys and systematic treatment of all African species. – A. A. Balkema, Rotterdam.

Grey-Wilson C. 1982. Balsaminaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-76.

Grey-Wilson C. 1988. The genus Cyclamen. – Royal Botanic Gardens, Kew, and Timber Press, Portland, Oregon.

Grey-Wilson C. 1989a. The genus Dionysia. – Alpine Garden Society, Woking, England.

Grey-Wilson C. 1989b. Studies in Balsaminaceae VII. Impatiens bicornuta and ist allies. – Kew Bull. 44: 61-66.

Grey-Wilson C. 1989c. Studies in Balsaminaceae VIII. A revision of Sumatran Impatiens. – Kew Bull. 44: 67-106.

Grey-Wilson C. 1989d. Studies in Balsaminaceae IX. Semeiocardium Zoll.; is it a good genus? – Kew Bull. 44: 107-113.

Grey-Wilson C. 1989e. Studies in Balsaminaceae X. The Impatiens jurpia complex. – Kew Bull. 44: 115-122.

Grey-Wilson C. 1989f. Studies in Balsaminaceae XI. Impatiens cymbifera and ist allies. – Kew Bull. 44: 711-716.

Grey-Wilson C. 1997. Cyclamen. A guide for gardeners, horticulturists and botanists. – B. T. Batsford, London.

Griss A. 1959. Neue Primulaceen und Chenopodiaceen aus Afghanistan. – Feddes Repert. 62: 22-26.

Gross J, Husband BC, Stewart SC. 1998. Phenotypic selection in a natural population of Impatiens pallida Nutt. (Balsaminaceae). – J. Evol. Biol. 11: 589-609.

Grosse A. 1908. Anatomisch-systematische Untersuchungen der Myrsinaceen. – Bot. Jahrb. Syst., Beibl. 95: 1-46.

Grote PJ, Dilcher DL. 1989. Investigations of angiosperms from the Eocene of North America: a new genus of Theaceae based on fruit and seed remains. – Bot. Gaz. 150: 190-206.

Grote PJ, Dilcher DL. 1992. Fruits and seeds of tribe Gordonieae (Theaceae) from the Eocene of North America. – Amer. J. Bot. 79: 744-753.

Grubert M, Hambch M. 1972. Untersuchungen über die verschleimenden Samen von Collomia grandiflora Dougl. (Polemoniaceae). – Beitr. Biol. Pflanzen 48: 187-206.

Guédès MS, Schmid R. 1978. The peltate (ascidiate) carpel theory and carpel peltation in Actinidia chinensis (Actinidiaceae). – Flora 167: 525-543.

Guillaumin A. 1944. Matériaux pour la flore de la Nouvelle-Calédonie 82. Sapotacées nouvelles. – Bull. Soc. Bot. France 91: 68-72.

Gunasekera SP, Kumar V, Sultanbawa MUS, Balasubramaniam S. 1977. Triterpenoids and steroids of some Sapotaceae and their chemotaxonomic significance. – Phytochemistry 16: 923-926.

Gupta HP, Sharma C. 1977. Palynotaxonomy and phylogeny of Indian Symplocaceae and Sapotaceae. – Geophytology 7: 147-159.

Gürke M. 1891a. Ebenaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 153-165.

Gürke M. 1891b. Symplocaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 165-172.

Gürke M. 1891c. Styracaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 172-180.

Gustafsson C. 1992. 146A. Clethraceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 45, Nord. J. Bot., Copenhagen, pp. 1-26.

Haan I de, Doorenbos J. 1951. The cytology of the genus Cyclamen. – Meded. Landbouwh. Wageningen 51: 151-166.

Haber E. 1983. Morphological variability and flavonol chemistry of the Pyrola asarifolia complex (Ericaceae) in North America. – Syst. Bot. 8: 277-298.

Haber E. 1987. Variability, distribution, and systematics of Pyrola picta s.l. (Ericaceae) in western North America. – Syst. Bot. 12: 324-335.

Haber E, Cruise JE. 1974. Generic limits in the Pyoloideae (Ericaceae). – Can. J. Bot. 52: 877-883.

Haber WA, Bawa KS. 1984. Evolution of dioecy in Saurauia (Dilleniaceae). – Ann. Missouri Bot. Gard. 71: 289-293.

Hagerup E, Hagerup O. 1953. Thrips pollination of Erica tetralix. – New Phytol. 52: 1-7.

Hagerup O. 1928. Morphological and cytological studies of Bicornes. – Dansk Bot. Ark. 6(1): 1-26.

Hagerup O. 1941. Zytoökologische Bicornes-Studien. – Planta 32: 6-14.

Hagerup O. 1946. Studies on the Empetraceae. – Biol. Meddel. Kong. Danske Vidensk. Selsk. 20(5): 1-49.

Hagerup O. 1953. The morphology and systematics of the leaves in Ericales. – Phytomorphology 3: 459-464.

Hague SM. 1911. A morphological study of Diospyros virginiana. – Bot. Gaz. (Crawfordsville) 52: 34-44.

Halda JJ. 1992. The genus Primula in cultivation and in the wild. – Tethys Books, Denver, Colorado.

Hall JB. 1996. Vitellaria paradoxa: a monograph. – University of Wales, Bangor.

Halliday P. 1984. Myrsinaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-21.

Hamilton MB, Braverman JM, Soria-Hernanz DF. 2003. Patterns and relative rate of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in New World species of the Lecythidaceae. – Mol. Biol. Evol. 20: 1710-1721.

Handel-Mazzetti H. 1928. A revision of the Chinese species of Lysimachia, with a new system of the whole genus. – Notes Roy. Bot. Gard. Edinb. 16: 51-122.

Handel-Mazzetti H, Peter-Stibal E. 1943. Eine Revision der chinesischen Arten der Gattung Symplocos Jacq. – Beih. Bot. Centralbl. 62B: 1-42.

Hansen I. 1950. Die europäischen Arten der Gattung Erica L. – Bot. Jahrb. Syst. 75: 1-81.

Hao G, Hu C-M. 2001. Phylogenetic relationships in Lysimachia (Primulaceae): a cladistic analysis. – J. Trop. Subtrop. Bot. 9: 93-100.

Hao G, Yuan Y-M, Hu C-M, Ge X-J, Zhao N-X. 2004. Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trnL-F and nuclear ribosomal ITS sequences. – Mol. Phylogen. Evol. 31: 323-339.

Hara N. 1958. Structure of the vegetative shoot apex and development of the leaf in the Ericaceae and their allies. – J. Fac. Sci. Univ. Tokyo, Sect. 3; Bot. 7: 367-450.

Harborne JB, Smith DM. 1978. Correlations between anthocyanin chemistry and pollination ecology in Polemoniaceae. – Biochem. Syst. Ecol. 6: 127-130.

Harborne JB, Williams CA. 1973. A chemotaxonomic survey of flavonoids and simple phenols in leaves of the Ericaceae. – Bot. J. Linn. Soc. 66: 37-54.

Harder LD, Barclay RMR. 1994. The functional significance of poricidal anthers and buzz pollination: controlled pollen removal from Dodecatheon. – Funct. Ecol. 8: 509-517.

Hardin JW. 1966. An analysis of variation in Symplocos tinctoria. – J. Elisha Mitchell Sci. Soc. 82: 6-12.

Harley MM. 1986a. Ditinguishing pollen characters for the Sapotaceae. – Can. J. Bot. 64: 3091-3100.

Harley MM. 1986b. The nature of the endoaperture in the pollen of the Sapotaceae. – In: Blackmore S, Ferguson IK (eds), Pollen and spores: form and function, Linn. Soc. Symp. Ser. 12, Academic Press, London, pp. 417-419.

Harley MM. 1990. Pollen morphology of neotropical Sapotaceae. – In: Pennington TD (ed), Sapotaceae, Flora Neotropica. Monograph 52, New York Botanical Garden, New York, pp. 11-29, 710-741.

Harley MM. 1991a. The pollen morphology of the Sapotaceae. – Kew Bull. 46: 379-491.

Harley MM. 1991b. Pollen morphology of the Sapotaceae. – In: Pennington TD (ed), The genera of Sapotaceae, Royal Botanic Gardens, Kew, NewYork Botanical Garden, New York, pp. 23-50.

Harley MM, Kurmann MH, Ferguson IK. 1991. Systematic implications of comparative morphology in selected Tertiary and extant pollen from the Palmae and the Sapotaceae. – In: Blackmore S, Barnes HS (eds), Pollen and spores: patterns of diversification, Clarendon Press, Oxford, pp. 225-238.

Harms H. 1935. Rafflesiaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16b, W. Engelmann, Leipzig, pp. 243-281.

Harrison HK. 1972. Contributions to the study of the genus Eriastrum II. Notes concerning the type specimens and descriptions of the species. – Brigham Young Univ. Sci. Bull. Biol. Ser. 16: 1-26.

Hartog MM. 1878. On the floral structure and affinities of Sapotaceae. – J. Bot. 16: 65-72, 145.

Hartog MM. 1879. Notes on Sapotaceae II. – J. Bot. 17: 356-359.

Harvey CF, Fraser LG. 1988. Floral biology of two species of Actinidia (Actinidiaceae) II. Early embryology. – Bot. Gaz. 149: 37-44.

Harvey CF, Fraser LG, Pavis SE, Considine JA. 1987. Floral biology of two species of Actinidia (Actinidiaceae) I. The stigma, pollination, and fertilization. – Bot. Gaz. 148: 426-432.

Hatusima S. 1936. Miscellaneous notes on the Symplocaceae of Eastern Asia. – J. Jap. Bot. 12: 279-283.

Hausen BM. 1978. On the occurrence of the contact allergen primin and other quinoid compounds in species of the family Primulaceae. – Arch. Dermatol. Res. 261: 311-322.

Hayata B. 1913. Über die systematische Stellung von Mitrastemon als einer neuen Gattung und besonderern Tribus der Rafflesiaceen. – Bot. Jahrb. 51: 154-176.

Hayata B. 1913. On the systematic position of Mitrastemon. – Icon. Plant. Form. 3: 199-213.

He Z-C, Li J-Q, Cai Q, Wang Q. 2005. The cytology of Actinidia, Saurauia and Clematoclethra (Actinidiaceae). – Bot. J. Linn. Soc. 147: 369-374.

Heads M. 2003. Ericaceae in Malesia: vicariance biogeography, terrane tectonics and ecology. – Telopea 10: 211-449.

Hebda RJ, Chinnappa CC. 1980. Cytological evidence for generic limits in tribe Cladothamneae (Ericaceae). – Can. J. Bot. 58: 1119-1120.

Heel WA van. 1987. Androecium development in Actinidia chinensis and A. melanandra (Actinidiaceae). – Bot. Jahrb. Syst. 109: 17-23.

Heine H. 1960. Notes on African Sapotaceae I. – Kew Bull. 14: 301-303.

Heine H. 1963. Sapotaceae in Flora of West tropical Africa, 2nd ed., vol. II: 16-30.

Heine H, Hemsley JH. 1960. Notes on African Sapotaceae II. The genus Bequaertiodendron De Wild. – Kew Bull. 14: 304-309.

Hemsley JH. 1966. Notes on African Sapotaceae. – Kew Bull. 20: 461-510.

Hemsley JH. 1968. Sapotaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-78.

Henderson MW. 1919. A comparative study of the structure and saprophytism of the Pyrolaceae and the Monotropaceae, with reference to their derivation from the Ericaceae. – Contr. Bot. Lab. Morris Arbor. Univ. Pennsylvania 5: 42-109.

Henderson RJ. 1982. Lecythidaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 1-6.

Henrickson J. 1967. Pollen morphology of the Fouquieriaceae. – Aliso 6: 137-160.

Henrickson J. 1968. Vegetative morphology of the Fouquieriaceae. – Ph.D. diss., Claremont Graduate School, Claremont, California.

Henrickson J. 1969a. An introduction to the Fouquieriaceae. – Cactus Succ. J. 41: 97-106.

Henrickson J. 1969b. Anatomy of periderm and cortex of Fouquieriaceae. – Aliso 7: 97-126.

Henrickson J. 1969c. The succulent fouquierias. – Cactus Succ. J. 41: 178-184.

Henrickson J. 1972. A taxonomic revision of the Fouquieriaceae. – Aliso 7: 439-537.

Henrickson J. 1973. Fouquieriaceae DC. – World Pollen and Spore Flora 1, Almqvist & Wiksell, pp. 1-12.

Henrickson J. 1983. A revision of Samolus ebracteatus (sensu lato) (Primulaceae). – SouthWestern Nat. 28: 303-314.

Henrickson J. 1987. New species, combinations, and notes in Ipomopsis (Polemoniaceae). – Aliso 11: 589-598.

Hepburn JS, St. John EQ, Jones FM. 1920. The absorption of nutrients and allied phenomena in the pitchers of the Sarraceniaceae. – J. Franklin Inst. 189: 147-184.

Hepburn JS, St. John EQ, Jones FM. 1927. The biochemistry of the American pitcher plants. – Trans. Wagner Free Inst. Sci. Philadelphia 11: 1-95.

Hermann PM, Cambi VN. 1992. Nuevas datos sobre la sexualidad de Gaultheria caespitosa P. & E. (Ericaceae). – Parodiana 7: 83-90.

Hermann PM, Palser BF. 2000. Stamen development in the Ericaceae I. Anther wall, microsporogenesis, inversion, and appendages. – Amer. J. Bot. 87: 934-957.

Hermann-Erlee MPM, Royen P van. 1957. Revision of the Sapotaceae of the Malaysian area in a wider sense IX. Pouteria Aublet. – Blumea 8: 452-509.

Hersey RE, Vander Kloet SP. 1976. Taxonomy and distribution of Gaultheria in the Caribbean. – Can. J. Bot. 54: 2465-2472.

Hess H. 1953. Anagallis kochii H. Hess, n. sp., eine neue Wasserpflanze aus Süd-Angola. – Ber. Schweiz. Bot. Ges. 63: 213-217.

Hess H. 1957. Anagallis hürneri H. Hess, nov. spec., eine neue Wasserpflanze aus der Belgischen Kongo. – Ber. Schweiz. Bot. Ges. 67: 80-82.

Hiern WP. 1873. A monograph of Ebenaceae. – Trans. Cambridge Philos. Soc. 12: 27-300.

Hiern WP. 1898. A new genus of Ericaceae from Angola. – J. Bot. 36: 329-330.

Higashi H, Ikeda H, Setoguchi H. 2015. Molecular phylogeny of Shortia sensu lato (Diapensiaceae) based on multiple nuclear sequences. – Plant Syst. Evol. 301: 523-529.

Higham RK, McQuillan PB. 2000. Cyathodes divaricata (Epacridaceae) – the first record of a bird-pollinated dioecious plant in the Australian flora. – Aust. J. Bot. 48: 93-99.

Hildebrand F. 1898. Die Gattung Cyclamen L., eine systematische und biologische Monographie. – Gustav Fischer, Jena.

Hileman LC, Vasey MC, Parker VT. 2001. Phylogeny and biogeography of the Arbutoideae (Ericaceae): implications for the Madrean-Tethyan hypothesis. – Syst. Bot. 26: 131-143.

Hiller K, Paulick A, Doehnert H, Franke P. 1979. Saponins of Polemonium caeruleum L. – Pharmazie 34: 565-566.

Hillis WE, Soenardi P. 1994. Formation of ebony and streaked woods. – I.A.W.A. J. 15: 425-437.

Hindakova M, Schwarzova T. 1980. Chromosome number reports LXIX. – Taxon 29: 728.

Hislop M. 2011. New, locally endemic taxa in Leucopogon (Ericaceae: Styphelioideae: Styphelieae) from the Perth and midwest regions of Western Australia. – Nuytsia 21: 75-89.

Hislop M. 2013. A taxonomic update of Conostephium (Ericaceae: Styphelioideae: Styphelieae). – Nuytsia 23: 313-335.

Hislop M, Puente-Lelievre C, Crayn D. 2012. Leucopogon extremus (Styphelieae, Styphelioideae, Ericaceae), a remarkable new species that expands the morphological circumscription of Leucopogon sens. str. – Aust. Syst. Bot. 25: 202-209.

Hislop M, Wilson AJG, Puente-Lelièvre C. 2013. Four new species of Astroloma (Ericaceae: Styphelioideae: Styphelieae) from Western Australia. – Nuytsia 23: 23-42.

Hitzemann C. 1886. Beiträge zur vergleichende Anatomie der Terstroemiaceen, Dilleniaceen, Dipterocarpaceen und Chlaenaceen. – von Giebel & Oehlschlägel, Osterode.

Hoerold R. 1909. Systematische Gliderung und geographische Verbreitung der amerikansichen Thibaudieen. – Engl. Bot. Jahrb. Syst. 42: 251-334.

Holle G. 1892. Über den anatomischen Bau des Blattes in der Familie der Sapotaceae und dessen Bedeutung für die Systematik. – Ph.D. diss., Universität Erlangen.

Holm T. 1898. Pyrola aphylla: a morphological study. – Bot. Gaz. 25: 246-254.

Hooker JD. 1899. Icones Plantarum, Ser. IV, vol. 7(1): t. 2624.

Hopping ME. 1976. Structure and development of fruit and seeds in Chinese gooseberry (Actinidia chinensis Planch.). – New Zealand J. Bot. 14: 63-68.

Hopping ME. 1990. Floral biology, pollination, and fruit set. – In: Warrington IJ, Weston GC (eds), Kiwifruit: science and management, Ray Richards, Auckland, pp. 71-96.

Hopping ME, Jerram EM. 1979. Pollination of kiwifruit (Actinidia chinensis Planch.): stigma-style structure and pollen tube growth. – New Zealand J. Bot. 17: 233-240.

Hosaka EY. 1940. A revision of the Hawaiian species of Myrsine (Suttonia, Rapanea), Myrsinaceae. – Occas. Pap. Bernice P. Bishop Mus. 16: 25-76.

House HD. 1907. The genus Shortia. – Torreya 7: 233-235.

Howard RA. 1970. The ecology of an elfin forest in Puerto Rico X. Notes on two species of Marcgravia. – J. Arnold Arbor. 51: 41-55.

Howpage D, Vithanage V, Spooner-Hart R. 1998. Pollen tube distribution in the kiwifruit (Actinidia deliciosa A. Chev. C. F. Liang) pistil in relation to its reproductive process. – Ann. Bot., N. S., 81: 697-703.

Hsieh CF, Ling LK, Yang KC. 1996. Theaceae. – In: Huang TC (ed), Flora of Taiwan, 2nd ed., Vol. 2, Editorial Committee of the Flora of Taiwan, Taipei, pp. 662-693.

Hsu T-Z. 1982. Classification, distribution and phylogeny of the genus Enkianthus. – Acta Bot. Yunnan. 4: 355-362.

Hsu T-Z. 1985. A new species of Enkianthus from China. – Acta Bot. Yunnan. 7: 151-152.

Hu CM. 1983a. Two new Asiatic Primulas of the Malacoides section. – Notes Roy.Bot. Gard. Edinb. 41: 327-331.

Hu CM. 1983b. Two new species of Lysimachia (Primulaceae). – Kew Bull. 38: 333-334.

Hu CM. 1990. A new species of Primula from Thailand with critical notes on the section Carolinella. – Nord. J. Bot. 10: 399-401.

Hu H-H. 1965. New species and varieties of Camellia and Theopsis of China 1. – Acta Phytotaxon. Sin. 10: 131-142. [In Chinese]

Huang T-C, Hsiao A. 1998. Notes on the Flora of Taiwan 31 – Shortia (Diapensiaceae). – Taiwania 43: 33-37.

Huang Y-Y, Scott AM, Prance GT. 2008. A phylogeny of Cariniana (Lecythidaceae) based on morphological and anatomical data. – Brittonia 60: 69-81.

Huang Y-Y, Mori SA, Kelly LM. 2011. A morphological cladistic analysis of Lecythidoideae with emphasis on Bertholletia, Corythophora, Eschweilera, and Lecythis. – Brittonia 63: 396-417.

Huertas GG. 1969. Un nuevo genero y especie fosiles de las lecitidaceas. – Caldasia 10(48): 365-369.

Humphrey RR. 1931. Thorn formation in Fouquieria splendens and Idria columnaris. – Bull. Torrey Bot. Club 58: 263-264.

Humphrey RR. 1935. A study of Idria columnaris and Fouquieria splendens. – Amer. J. Bot. 22: 184-206.

Humphrey RR, Marx DB. 1980. Distribution of the boojum tree (Idria columnaris) on the coast of Sonora, Mexico, as influenced by climate. – Desert Plants 2: 183-187.

Hunter GE. 1966. Revision of Mexican and Central American Saurauia (Dilleniaceae). – Ann. Missouri Bot. Gard. 53: 47-89.

Hunter JR. 1981. Tendu (Diospyros melanoxylon) leaves, bidi cigarettes, and resource management. – Econ. Bot. 35: 450-459.

Hurlbert AH, Hosoi SA, Temeles EJ, Ewald PW. 1996. Mobility of Impatiens capensis flowers: effect on pollen deposition and hummingbird foraging. – Oecologia 105: 243-246.

Hutton BJ. 1997. Biology and ecology of endophytes of Australian native heaths (Epacridaceae). – Ph.D. diss., Department of Botany, University of Western Australia.

Hutton BJ, Dixon KW, Sivasithamparam K. 1994. Ericoid endophytes of Western Australian heaths (Epacridaceae). – New Phytol. 127: 557-566.

Huynh K-L. 1968. Morphologie du pollen des Tropaeolacées et des Balsaminacées. – Grana Palynol. 8: 88-184, 277-516.

Huynh K-L. 1970a. Quelques caractères cytologiques, anatomiques, et embryologiques distinctifs du genre Tropaeolum et du genre Impatiens, et position taxinomique de la famille des Balsaminacées. – Bull. Soc. Neuchâtel. Sci. Nat. 93: 165-177.

Huynh K-L. 1970b. Le pollen et la systématique chez le genre Lysimachia (Primulaceae) I. Morphologie générale du pollen et palynotaxonomie. – Candollea 25: 267-296.

Huynh K-L. 1971. Le pollen et la systématique chez le genre Lysimachia (Primulaceae) II. Considérations générales. – Candollea 26: 279-295.

Hynson NA, Bruns TD. 2009. Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. – Proc. Roy. Soc. B, Biol. Sci. 276: 4053-4059.

Hynson NA, Preiss K, Gebauer G, Bruns TD. 2009. Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae). – New Phytol. 182: 719-726.

Ikuse M. 1954. The presence of the viscid threads among pollen grains in Phyllodoceae, etc. of Ericaceae. – J. Jap. Bot. 29: 146-148.

Infantes Ver JG. 1962. Revision del género Cantua (Polemoniaceae). – Lilloa 31: 75-107.

Iturralde RB. 2009. New species of Cyrilla (Cyrillaceae) from Cuba. – Willdenowia 39: 121-140.

Jackes BR. 1968. Floral anatomy of the genus Oligarrhena R. Br. (Epacridaceae). – Aust. J. Bot. 16: 451-454.

Jackes BR. 2005. Revision of Myrsine (Myrsinaceae) in Australia. – Aust. Syst. Bot. 18: 399-438.

Jackes BR, Powell JM. 1980. Additions to the genus Acrotriche R. Br. (Epacridaceae). – Telopea 1: 421-428.

Jacobs SWL. 1980. A new species of Samolus (Primulaceae). – J. Adelaide Bot. Gard. 2: 187-189.

Jacques F. 1965. Morphologie de pollen et des ovules de Couroupita guianensis Aubl. (Lécythidacées). – Pollen Spores 7: 175-180.

Jaffé K, Michelangeli F, Gonzalez JM, Miras B, Ruiz MC. 1992. Carnivory in pitcher plants of the genus Heliamphora (Sarraceniaceae). – New Phytol. 122: 733-744.

Jamzad Z. 1996. The genus Dionysia (Primulaceae) in Iran. – Iranian J. Bot. 7: 15-30.

Janaki Ammal EK, Enoch IC, Bridgwater M. 1950. Chromosome numbers in species of Rhododendron. – Rhodod. Year Book 5: 78-95.

Jansen S, Watanabe T, Caris P, Geuten K, Lens F, Pyck N, Smets E. 2004. The distribution and phylogeny of aluminium accumulating plants in the Ericales. – Plant Biol. 6: 498-505.

Janssens SB, Lens F, Dressler S, Geuten K, Smets E, Vinckler S. 2005. Palynological variation in balsaminoid Ericales II. Balsaminaceae, Tetrameristaceae, Pellicieraceae and general conclusions. – Ann. Bot. 96: 1061-1073.

Janssens SB, Geuten K, Yuan YM, Song Y, Küpfer P, Smets E. 2006. Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL spacer sequences. – Syst. Bot. 31: 171-180.

Janssens SB, Geuten K, Viaene T, Yuan Y-M, Song Y, Smets E. 2007. Phylogenetic utility of the AP3/DEF K-domain and its molecular evolution in Impatiens (Balsaminaceae). – Mol. Phylogen. Evol. 43: 225-239.

Janssens SB, Knox EB, Dessein S, Smets EF. 2009. Impatiens msisimwanensis (Balsaminaceae): description, pollen morphology and phylogenetic position of a new East African species. – South Afr. J. Bot. 75: 104-109.

Janssens SB, Knox EB, Huysmans S, Smets EF, Merckx VSFT. 2009. Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. – Mol. Phylogen. Evol. 52: 806-824.

Janssens SB, Fischer E, Stévart T. 2010. New insights into the origin of two new epiphytic Impatiens species (Balsaminaceae) from West Central Africa based on molecular phylogenetic analyses. – Taxon 59: 1508-1518.

Janssens SB, Wilson YS, Yuan Y-M, Nagels A, Smets EF, Huysmans S. 2012. A total evidence approach using palynological characters to infer the complex evolutionary history of the Asian Impatiens (Balsaminaceae). – Taxon 61: 355-367.

Janssens SB, Smets EF, Vrijdaghs A. 2012. Floral development of Hydrocera and Impatiens reveals evolutionary trends in the most early diverged lineages of the Balsaminaceae. – Ann. Bot. 109: 1285-1296.

Janzen DH. 1970. Jacquinia pungens, a heliophile from the understory of tropical deciduous forest. – Biotropica 2: 112-119.

Jarman SJ. 1975. Experimental taxonomy in the family Epacridaceae. – Ph.D. diss., Department of Botany, University of Tasmania.

Jarman SJ, Crowden RK. 1974. Anthocyanins in the Epacridaceae. – Phytochemistry 13: 743-750.

Jarman SJ, Crowden RK. 1977. The occurrence of flavonol arabinosides in the Epacridaceae. – Phytochemistry 16: 929-930.

Jay M, Lebreton P. 1973. Recherches chimiotaxinomiques sur les plantes vasculaires XXVI. Les flavanoides des Sarracéniacées, Nepenthacées, Droséracées, et Céphalotacées; étude critique de l’ordre des Sarracéniales. – Nat. Can. 91: 607-613.

Jaynes RA. 1968. Interspecific crosses of Kalmia. – Amer. J. Bot. 55: 1120-1125.

Jaynes RA. 1969. Chromosome counts of Kalmia species and reevaluation of K. polifolia var. microphylla. – Rhodora 71: 280-284.

Jaynes RA. 1971. The kalmias and their hybrids. – Quart. Bull. Amer. Rhododendron Soc. 25: 160-164.

Jensen LCW. 1961. Pollination studies with native Minnesota Pyrola and Moneses species. – Proc. Minnesota Acad. Sci. 29: 210-218.

Jensen SR, Nielsen BJ. 1982. Iridoid glucosides in Fouquieriaceae. – Phytochemistry 21: 1623-1629.

Jerling L. 1988. Population dynamics of Glaux maritima L. along a distributional cline. – Vegetatio 74: 161-170.

Jessup LW. 2001. New combinations and a new name in Australian Sapotaceae. – Austrobaileya 6: 161-163.

Jessup LW. 2014. A taxonomic revision of Diospyros L. (Ebenaceae) in Australia. – Austrobeileya 9: 155-194.

Jiang B, Peng Q-F, Shen Z-G, Möller M, Pi E-X, Lu H-F. 2010. Taxonomic treatments of Camellia (Theaceae) species with secretory structures based on integrated leaf characters. – Plant Syst. Evol. 290: 1-20.

Jímenez JA. 1984. A hypothesis to explain the reduced distribution of the mangrove Pelliciera rhizophorae Tr. & Pl. – Biotropica 16: 304-308.

Jin X-F, Yang S-Z, Chen Z-H, Qian L. 2008. Impatiens yilingiana sp. nov. and I. huangyanensis subsp. attenuata subsp. nov. (Balsaminaceae) from Zhejiang, eastern China. – Nord. J. Bot. 26: 207-213.

Jochems SCJ. 1928. Die Verbreitung der Rafflesiaceengattung Mitrastemon. – Rec. Trav. Bot. Néerl. 25A: 203-207.

Johansen DA. 1936. Morphology and embryology of Fouquieria. – Amer. J. Bot. 23: 95-99.

John J, Kolbe K-P. 1980. The systematic position of the “Theales” from the view point of serology. – Biochem. Syst. Ecol. 8: 241-248.

Johnson KA, Holland BR, Heslewood MM, Crayn DM. 2012. Supermatrices, supertrees and serendipitous scaffolding: inferring a well-resolved, genus-level phylogeny of Styphelioideae (Ericaceae) despite missing data. – Mol. Phylogen. Evol. 62: 146-158.

Johnson LA. 1996. A molecular approach to resolving phylogenetic relationships in Polemoniaceae. – Ph.D. diss., Washington State University, Pullman, Washington.

Johnson LA. 2007. Transfer of the western north American species Gilia splendens to Saltugilia (Polemoniaceae), and the taxonomic affinities of Gilia scopulorum, Gilia stellata, and Gilia yorkii. – Novon 17: 193-197.

Johnson LA, Johnson RL. 2006. Morphological delimitation and molecular evidence for allopolyploidy in Collomia wilkenii (Polemoniaceae), a new species from northern Nevada. – Syst. Bot. 31: 349-360.

Johnson LA, Porter M. 2017. Fates of angiosperm species following long-distance dispersal: examples from American amphitropical Polemoniaceae. – Amer. J. Bot. 104: 1729-1744.

Johnson LA, Soltis DE. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. – Ann. Missouri Bot. Gard. 82: 149-175.

Johnson LA, Soltis DE. 1998. Assessing congruence: examples from molecular data. – In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular systematics of plants II: DNA sequencing, Kluwer Academic Publ., Boston, Massachusetts, pp. 297-348.

Johnson LA, Weese TL. 2000. Geographic distribution, morphological and molecular characterization, and relationships of Lathrocasis tenerrima (Polemoniaceae). – West. N. Amer. Nat. 60: 355-373.

Johnson LA, Schultz JL, Soltis DE, Soltis PS. 1996. Monophyly and generic relationships of Polemoniaceae based on matK sequences. – Amer. J. Bot. 83: 1207-1224.

Johnson LA, Soltis DE, Soltis PS. 1999. Phylogenetic relationships of Polemoniaceae inferred from 18S ribosomal DNA sequences. – Plant Syst. Evol. 214: 65-89.

Johnson LA, Huish KH, Porter JM. 2004. Seed surface sculpturing and its systematic significance in Gilia (Polemoniaceae) and segregate genera. – Int. J. Plant Sci. 165: 153-172.

Johnson LA, Chan LM, Weese TL, Busby LD, McMurry S. 2008. Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae). – Mol. Phylogen. Evol. 48: 997-1012.

Johnson MAT. 1991. Cytology. – In: Pennington TD (ed), The genera of Sapotaceae, chapter 2, Royal Botanic Gardens, Kew, New York Botanical Garden, New York, pp. 15-22.

Jones K, Smith JB. 1966. The cytogeography of Impatiens L. (Balsaminaceae). – Kew Bull. 20: 63-72.

Jones K, Anderberg AA, Ronse De Craene LP, Wanntorp L. 2012. Origin, diversification, and evolution of Samolus valerandi (Samolaceae, Ericales). – Plant Syst. Evol. 298: 1523-1531.

Jordan GJ, Hill RS. 1995. Oligocene leaves of Epacridaceae from Little Rapid River, Tasmania, and the identification of fossil Epacridaceae leaves. – Aust. Syst. Bot. 8: 71-83.

Jordan GJ, Hill RS. 1996. The fossil record of the Epacridaceae. – Ann. Bot., II, 77: 341-346.

Jordan GJ, Bromfield KE, Sniderman JMK, Crayn D. 2007. Diverse fossil epacrids (Styphelioideae; Ericaceae) from early Pleistocene sediments at Stony Creek Basin, Victoria, Australia. – Int. J. Plant Sci. 168: 1359-1376.

Jordan GJ, Bannister JM, Mildenhall DC, Zetter R, Lee FE. 2010. Fossil Ericaceae from New Zealand: deconstructing the use of fossil evidence in historical biogeography. – Amer. J. Bot. 97: 59-70.

Judd WS. 1979. Generic relationships in the Andromedeae (Ericaceae). – J. Arnold Arbor. 60: 477-503.

Judd WS. 1981. A monograph of Lyonia (Ericaceae). – J. Arnold Arbor. 62: 63-128, 129-209, 315-436.

Judd WS. 1982. A taxonomic revision of Pieris (Ericaceae). – J. Arnold Arbor. 63: 103-144.

Judd WS. 1983. Kalmia ericoides revisited. – Rhodora 85: 45-54.

Judd WS. 1984. A taxonomic revision of the American species of Agarista (Ericaceae). – J. Arnold Arbor. 65: 255-342.

Judd WS. 1986. A taxonomic revision of Craibiodendron (Ericaceae). – J. Arnold Arbor. 67: 441-469.

Judd WS. 1990. A new variety of Lyonia (Ericaceae) from Puerto Rico. – J. Arnold Arbor. 71: 129-133.

Judd WS. 1995a. 13. Lyonia Nuttall. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II – the superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 222-294.

Judd WS. 1995b. 14. Agarista D. Don ex G. Don. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II – the superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 295-344.

Judd WS. 1995c. 15. Pieris D. Don. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II – the superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 345-350.

Judd WS, Hermann PM. 1990. Circumscription of Agarista boliviensis (Ericaceae). – Sida 14: 263-266.

Judd WS, Kron KA. 1993. Circumscription of Ericaceae (Ericales) as determined by preliminary cladistic analyses based on morphological, anatomical, and embryological features. – Brittonia 45: 99-114.

Judd WS, Melvin NC III, Waselkov K, Kron KA. 2012. Taxonomic revision of Eubotrys (Ericaceae, Gaultherieae). – Brittonia 64: 165-178.

Judd WS, Melvin NC III, Waselkov K, Kron KA. 2013. A taxonomic revision of Leucothoë (Ericaceae; tribe Gaultherieae). – Brittonia 65: 417-438.

Juel HO. 1887. Beiträge zur Anatomie der Marcgraviaceae. – Kongl. Sv. Vetensk.-Acad. Handl. 12, Afd. 3, Nr. 5, Bihang: 1-28.

Julius A, Utteridge TMA. Revision of Ardisia subgenus Bladhia in Peninsular Malaysia; studies in Malaysian Myrsinaceae I. – Kew Bull. 67: 379-388.

Jurenitsch J, Haslinger E, Kubelka W. 1979. Structure of sapogenins from Polemonium reptans. – Pharmazie 34: 445-446.

Källersjö M, Ståhl B. 2003. Phylogeny of Theophrastaceae (Ericales s. lat.). – Int. J. Plant Sci. 164: 579-591.

Källersjö M, Bergqvist G, Anderberg AA. 2000. Generic realignment in primuloid families of the Ericales s. l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. – Amer. J. Bot. 87: 1325-1341.

Kamelina OP. 1997. Dopolneniya k embriologii semeystv Lactoridaceae i Fouquieriaceae. – Bot. Žurn. 82: 25-29.

Kang N, Wang S, Huang R, Wu X. 1993. Studies on the pollen morphology of nine species of genus Actinidia. – J. Wuhan Bot. Res. 11: 111-116.

Kapil RN, Sethi S Bala. 1963. Development of male and female gametophytes in Camellia sinensis (L.) O. Kuntze. – Proc. Indian Natl. Inst. Sci., Sect. B, 29: 567-574.

Kapil RN, Rustagi PN, Venkataraman R. 1968. A contribution to the embryology of the Polemoniaceae. – Phytomorphology 18: 403-412.

Karagatzides JD, Butler JL, Ellison AM. 2009. The pitcher plant Sarracenia purpurea can directly acquire organic nitrogen and short-circuit the inorganic nitrogen cycle. – PLoS ONE 4: 1-9.

Kartawinata EK. 1965. The genus Planchonia Blume (Lecythidaceae). – Bull. Bot. Surv. India 7: 162-187.

Kato E, Hiura T. 1999. Fruit set in Styrax obassia (Styracaceae): the effect of light availability, display size, and local floral density. – Amer. J. Bot. 86: 495-501.

Kato M. 1988. Bumblebee visits to Impatiens spp. – pattern and efficiency. – Oecologia 76: 364-370.

Kavaljian LG. 1952. The floral morphology of Clethra alnifolia with some notes on C. acuminata and C. arborea. – Bot. Gaz. 113: 392-413.

Keeley JE, Parker VT, Vasey MC. 2017. Characters in Arctostaphylos taxonomy. – Madroño 64: 138-153.

Keighery GJ. 1988. A new species of Samolus (Primulaceae) from Western Australia. – Nord. J. Bot. 8: 329-330.

Keighery GJ. 1996. Phytogeography, biology and conservation of Western Australian Epacridaceae. – Ann. Bot., N. S., 77: 347-355.

Keller BT, Breedlove DE. 1981. Two new species of Saurauia (Actinidiaceae) from Mexico. – Syst. Bot. 6: 65-73.

Keller JA, Herendeen PS, Crane PR. 1996. Fossil flowers and fruits of the Actinidiaceae from the Campanian (Late Cretaceous) of Georgia. – Amer. J. Bot. 83: 528-541.

Kelly LM, Almeda F. 2006. Symplocos pachycarpa (Symplocaceae), a new species from southern Mexico. – Brittonia 53: 318-321.

Kelso S. 1991a. Conspectus of the genus Douglasia (Primulaceae) with comments on Douglasia alaskana, an Alaska-Yukon alpine endemic. – Can. J. Bot. 70: 593-596.

Kelso S. 1991b. Taxonomy of Primula sections Aleuritia and Armerina in North America. – Rhodora 93: 67-99.

Keng H. 1950. The Theaceae of Taiwan. – Taiwania 1: 223-268.

Keng H. 1962. Comparative morphological studies in the Theaceae. – Univ. Calif. Publ. Bot. 33: 269-384.

Keng H. 1980a. The genus Pyrenaria (Theaceae) in Malesia (Flora Malesianae Precursores LVIII, Part One). – Gard. Bull. Singapore 33: 264-289.

Keng H. 1980b. On the unification of Laplacea and Gordonia (Theaceae). – Gard. Bull. (Singapore) 33: 303-311.

Kerdell-Vargas F. 1966. The depilatory and cytotoxic action of Coco de Mono (Lecythis ollaria) and its relationship to chronic seloniosis. – Econ. Bot. 20: 187-195.

Khan R. 1943. The ovule and embryo sac of Fouquieria. – Proc. Natl. Inst. Sci. India, Sect. B, 9: 253-256.

Kim KH, Nilsson S, Praglowski J. 1988. A note on the pollen morphology of the Empetraceae. – Grana 27: 283-290.

Kirchheimer F. 1950. Die Symplocaceae der erdgeschichtlichen Vergangenheit. – Palaeontographica, Ser. B, 90: 1-52.

Kiredjian M, Smith DM. 1985. A chemosystematic investigation on Ipomopsis. – Biochem. Syst. Ecol. 13: 141-143.

Kirkman WB, Ballington JR. 1990. Creeping blueberries (Ericaceae: Vaccinium sect. Herpothamnus) – a new look at V. crassifolium including V. sempervirens. – Syst. Bot. 15: 679-699.

Kloet SP van der. 1985. On the generic status of Symphysia. – Taxon 34: 440-447.

Kloet SP van der, Avery TS. 2007. The taxonomic utility of staminal features in Vaccinieae (Ericaceae). – Taxon 56: 897-904.

Kloet SP van der, Baltzer JL, Appleby JH, Evans RC, Stewart DT. 2004. A re-examination of the taxonomic boundaries of Symphysia (Ericaceae). – Taxon 53: 91-98.

Knaben G, Engelskjøn T. 1968. Studies in Pyrolaceae, especially in the Pyrola rotundifolia complex. – Årb. Univ. Bergen. Mat.-Naturv. Ser. 167: 1-71.

Knudsen J, Mori SA. 1996. Floral scents and pollination in Lecythidaceae. – Biotropica 28: 42-60.

Knudsen JT, Olesen JM. 1993. Buzz-pollination and patterns in sexual traits in north European Pyrolaceae. – Amer. J. Bot. 80: 900-913.

Knudsen JT, Ståhl B. 1994. Floral odours in the Theophrastaceae. – Biochem. Ecol. Syst. 22: 259-268.

Knudsen JT, Tollsten L. 1991. Floral scent and intrafloral scent differentiation in Moneses and Pyrola (Pyrolaceae). – Plant Syst. Evol. 177: 81-91.

Knuth R. 1934. Über die Gattung Asteranthos. – Notizbl. Bot. Gart. Berlin-Dahlem 11: 1034-1036.

Ko SC, Im IT, Kim YS. 1986. A cytotaxonomic study on the genus Lysimachia in Korea. – Korean J. Plant Taxon. 16: 187-197.

Kobayashi N, Handa T, Yoshimyura K, Tsumura Y, Arisumi K, Takayanagi K. 2000. Evidence for introgressive hybridization based on chloroplast DNA polymorphisms and morphological variation in wild evergreen azalea populations of the Kirishima mountains, Japan. – Edinburgh J. Bot. 57: 209-219.

Kobuski CE. 1937. Studies in the theaceae II. Cleyera. – J. Arnold Arbor. 18: 118-129.

Kobuski CE. 1940. Studies in the Theaceae V. The Theaceae of New Guinea. – J. Arnold Arbor. 21: 134-162.

Kobuski CE. 1941a. Studies in the Theaceae VII. The American species of the genus Cleyera. – J. Arnold Arbor. 22: 395-416.

Kobuski CE. 1941b. Studies in the Theaceae VIII. A synopsis of the genus Freziera. – J. Arnold Arbor. 22: 457-496.

Kobuski CE. 1942a. Studies in the Theaceae XII. Notes on the South American species of Ternstroemia. – J. Arnold Arbor. 23: 298-343.

Kobuski CE. 1942b. Studies in the Theaceae XIII. Notes on the Mexican and Central American species of Ternstroemia. – J. Arnold Arbor. 23: 464-478.

Kobuski CE. 1943. Studies in the Theaceae XIV. Notes on the West Indian species of Ternstroemia. – J. Arnold Arbor. 24: 60-76.

Kobuski CE. 1947. Studies in the Theaceae XV. A review of the genus Adinandra. – J. Arnold Arbor. 28: 1-98.

Kobuski CE. 1949. Studies in the Theaceae XVIII. The West Indian species of Laplacea. – J. Arnold Arbor. 30: 166-186.

Kobuski CE. 1950. Studies in the Theaceae XX. Notes on the South and Central American species of Laplacea. – J. Arnold Arbor. 31: 405-429.

Kobuski CE. 1951a. Studies in the Theaceae XXIII. The genus Pelliciera. – J. Arnold Arbor. 32: 256-262.

Kobuski CE. 1951b. Studies in the Theaceae XXIV. The genus Sladenia. – J. Arnold Arbor. 32: 403-409.

Kobuski CE. 1952a. Studies in the Theaceae XXV. The genus Anneslea. – J. Arnold Arbor. 33: 79-90.

Kobuski CE. 1952b. Studies in the Theaceae XXVI. The genus Visnea. – J. Arnold Arbor. 33: 188-191.

Kobuski CE. 1956. Studies in the Theaceae XXVIII. Melchiora, a new genus in Africa. – J. Arnold Arbor. 37: 153-159.

Kobuski CE. 1957. Studies in the Theaceae XXIX. Further studies in the genus Melchiora. – J. Arnold Arbor. 38: 199-205.

Kobuski CE. 1961. Studies in the Theaceae XXXII. A review of the genus Ternstroemia in the Philippine Islands. – J. Arnold Arbor. 42: 263-275.

Kobuski CE. 1963a. Studies in the Theaceae XXXIV. Some Asiatic taxa of Ternstroemia. – J. Arnold Arbor. 44: 421-434.

Kobuski CE. 1963. Studies in the Theaceae XXXV. Two new species of Ternstroemia from the Lesser Antilles. – J. Arnold Arbor. 44: 434-435.

Kodela PG. 2006. Lysimachia (Myrsinaceae) in New South Wales. – Telopea 11: 147-154.

Kolbe K-P, John J. 1980. Serology and systematics of the Ebenales and the Theales. – Biochem. Syst. Ecol. 8: 249-256.

Kollmann F, Feinbrun N. 1968. A cyto-taxonomic study in Palestinian Anagallis arvensis L. – Notes Roy Bot. Gard. Edinb. 28: 173-186.

Kondo K. 1977a. Chromosome numbers in the genus Camellia. – Biotropica 9: 86-94.

Kondo K. 1977b. Cytological studies and cultivated species of Camellia. – Japan. J. Breeding 27: 28-38.

Kong H-Z, Liu J-Q. 1999. Karyomorphology of the genus Pomatosace Maxim. (Primulaceae). – Acta Phytotaxon. Sin. 37: 445-450.

Koske RE, Gemma JN, Englander L. 1990. Vesicular-arbuscular mycorrhizae in Hawaiian Ericales. – Amer. J. Bot. 77: 64-68.

Kowal RR. 1989. Chromosome numbers of Asteranthos and the putatively related Lecythidaceae. – Brittonia 41: 131-135.

Kowal RR, Mori SA, Kallunki JA. 1977. Chromosome numbers of Panamanian Lecythidaceae and their use in subfamilial classification. – Brittonia 29: 399-410.

Kraemer M. 2001. On the pollination of Bejaria racemosa Mutis ex Linné f. (Ericaceae), an ornithophilous Andean páramo shrub. – Flora 196: 59-62.

Kreß A. 1963a. Zytotaxonomische Untersuchungen an den Primeln der Sektion Auricula Pax. – Österr. Bot. Zeitschr. 110: 53-102.

Kreß A. 1963b. Zytotaxonomische Untersuchungen an Primulaceen. – Phyton 10: 225-236.

Kreß A. 1969. Zytotaxonomische Untersuchungen an Primulaceen. – Phyton 13: 211-225.

Kreß A. 1970. Zytotaxonomische Untersuchungen an einigen Insektenfängern (Droseraceae, Byblidaceae, Cephalotaceae, Roridulaceae, Sarraceniaceae). – Ber. Deutsch. Bot. Ges. 83: 55-62.

Kreß A. 1981. Primulaceen-Studien 2. Primula section Auricula subsection Erythrodrosum: neue Unterarten und Hybriden. – Grobenzell bei München.

Kretzer AM, Bidartondo MI, Grubisha LC, Spatafora JW, Szaro TM, Bruns TD. 2000. Regional specialization of Sarcodes sanguinea on a single fungal symbiont from the Rhizopogon ellenae (Rhizopogonaceae) complex. – Amer. J. Bot. 87: 1778-1782.

Křisa B. 1965. Beitrag zur Gliederung der Gattung Pyrola L. in holoarktischen Gebieten. – Novit. Bot. Inst. Bot. Univ. Carol. Pragensis 1965: 31-35.

Křisa B. 1966. Contribution to the taxonomy of the genus Pyrola L. in North America. – Bot. Jahrb. Syst. 85: 612-637.

Křisa B. 1967. Two new species of Pyrola from the Himalayan region of Asia. – Bot. Not. 120: 423-432.

Křísa B. 1971. Beiträge zur Taxonomie und Chorologie der Gattung Pyrola L. – Bot. Jahrb. Syst. 90: 476-508.

Kron KA. 1996. Phylogenetic relationships of Empetraceae, Epacridaceae, Ericaceae, Monotropaceae, and Pyrolaceae: evidence from nuclear ribosomal 18S sequence data. – Ann. Bot., N. S., 77: 293-303.

Kron KA. 1997. Phylogenetic relationships of Rhododendroideae (Ericaceae). – Amer. J. Bot. 84: 973-980.

Kron KA. 2003. Phylogenetic relationships and major clades of Rhododendron (Rhodoreae, Ericoideae, Ericaceae). – In: Argent G, McFarlane M (eds), Rhododendrons in horticulture and science, Royal Botanic Gardens, Edinburgh, pp. 79-85.

Kron KA, Chase MW. 1993. Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequence data. – Ann. Missouri Bot. Gard. 80: 735-741.

Kron KA, Judd WS. 1990. Phylogenetic relationships within the Rhodoreae (Ericaceae) with specific comments on the placement of Ledum. – Syst. Bot. 15: 57-68.

Kron KA, Judd WS. 1997. Systematics of the Lyonia group (Andromedeae, Ericaceae) and the use of species as terminals in higher-level cladistic analyses. – Syst. Bot. 22: 479-492.

Kron KA, King JM. 1996. Cladistic relationships of Kalmia, Leiophyllum, and Loiseleuria (Phyllodoceae, Ericaceae) based on rbcL and nrITS data. – Syst. Bot. 21: 17-29.

Kron KA, Luteyn JL. 2005. Origin and biogeographic patterns in Ericaceae: new insights from recent phylogenetic analyses. – Biol. Skr. 55: 479-500. [Friis I, Balslev H (eds), Proceedings of a symposium on plant diversity and complexity patterns – Local, regional and global dimensions, Danish Academy of Sciences and Letters, Copenhagen, pp. 479-500]

Kron KA, Fuller R, Crayn DM, Gadek PA, Quinn CJ. 1999. Phylogenetic relationships of epacrids and vaccinioids (Ericaceae s. l.) based on matK sequence data. – Plant Syst. Evol. 218: 55-65.

Kron KA, Judd WS, Crayn DM. 1999. Phylogenetic analyses of Andromedeae (Ericaceae subfam. Vaccinioideae). – Amer. J. Bot. 86: 1290-1300.

Kron KA, Powell EA., Luteyn JL. 2002. Phylogenetic relationships within the blueberry tribe (Vaccinieae, Ericaceae) based on sequence data from matK and nuclear ribosomal ITS regions, with comments on the placement of Satyria. – Amer. J. Bot. 89: 327-336.

Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL. 2002. Phylogenetic classification of Ericaceae: molecular and morphological evidence. – Bot. Rev. 68: 335-423.

Kron KA, Judd WS, Anderberg AA. 2008. Validation of Kalmia buxifolia (Bergius) Gift & Kron and Kalmia procumbens (L.) Gift & Kron. – Nord. J. Bot. 26: 47-48.

Kubitzki K. 2004a. Cyrillaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 114-116.

Kubitzki K. 2004b. Fouquieriaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 195-198.

Kubitzki K. 2004c. Sarraceniaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 422-425.

Kubitzki K. 2004d. Pellicieraceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 297-299.

Kubitzki K. 2004e. Tetrameristaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 461-462.

Kubota M, McGonigle TP, Hyakumachi M. 2001. Clethra barbinervis, a member of the order Ericales, forms arbuscular mycorrhizae. – Can. J. Bot. 79: 300-306.

Kühdorf K, Muenzenberger B, Begerow D, Karasch-Wittmann C, Gomez-Laurito J, Huettl RF. 2014. Sebacina sp. is a mycorrhizal partner of Comarostaphylis arbutoides (Ericaceae). – Mycol. Progr. 13: 733-744.

Kühdorf K, Muenzenberger B, Begerow D, Gomez-Laurito J, Huettl RF. 2015. Leotia cf. lubrica forms arbutoid mycorrhiza with Comarostaphylis arbutoides (Ericaceae). – Mycorrhiza 25: 109-120.

Kukachka BF. 1978-1981. Wood anatomy of the Neotropical Sapotaceae I-XXIII. – U.S.D.A. Forest Service Res. Pap. Forest Products Laboratory, Madison, pp. 325-331 (1978), 349-354 (1979), 358-363 (1980).

Kümpers BMC, Richardson JE, Anderberg AA, Wilkie P, Ronse de Craene LP. 2016. The significance of meristic changes in the flowers of Sapotaceae. – Bot. J. Linn. Soc. 180: 161-192.

Kupicha FK. 1978. Notes on East African Sapotaceae. – Candollea 33: 29-41.

Kupicha FK. 1983a. 104. Primulaceae. – In: Launert E (ed), Flora Zambesiaca 7 (Part 1), Flora Zambesiaca Managing Committee, London, pp. 184-197.

Kupicha FK. 1983b. 105. Myrsinaceae. – In: Launert E (ed), Flora Zambesiaca 7 (Part 1), Flora Zambesiaca Managing Committee, London, pp. 198-210.

Kupicha FK. 1983c. 106. Sapotaceae. – In: Launert E (ed), Flora Zambesiaca 7 (Part 1), Flora Zambesiaca Managing Committee, London, pp. 210-247.

Kurashige Y, Etoh J-I, Handa T, Takayanagi K, Yukawa T. 2001. Sectional relationships in the genus Rhododendron (ERicaceae): evidence from matK and trnK intron sequences. – Plant Syst. Evol. 228: 1-14.

Kurtto A. 1996. Impatiens glandulifera (Balsaminaceae) as an ornamental and escape in Finland, with notes on the other Nordic countries. – Symb. Bot. Upsal. 31: 221-228.

Kvaček Z, Walther H. 1984a. Nachweis tertiärer Theaceen Mitteleuropas nach blatt-epidermalen Untersuchungen. I. Teil – Epidermale Merkmalskomplexe rezenter Theaceae. – Feddes Repert. 95: 209-227.

Kvaček Z, Walther H. 1984b. Nachweis tertiärer Theaceen Mitteleuropas nach blatt-epidermalen Untersuchungen. II. Teil – Bestimmung fossiler Theaceen-Sippen. – Feddes Repert. 95: 331-346.

Kwiatkowska D. 1992. The relationships between the primary vascular system and phyllotactic patterns of Anagallis arvensis (Primulaceae). – Amer. J. Bot. 79: 904-913.

Lam HJ. 1925. The Sapotaceae, Sarcospermaceae, and Boerlagellaceae of the Dutch East Indies and surrounding countries (Malay Peninsula and Philippine Islands). – Bull. Jard. Bot. Buitenzorg, sér. III, 7: 1-289.

Lam HJ. 1927. Further studies on Malayan Sapotaceae 1. – Bull. Jard. Bot. Buitenzorg, sér. III, 8: 381-493.

Lam HJ. 1938. Monograph of the genus Nesoluma (Sapotaceae). – Occas. Pap. Bernice Pauahi Bishop Mus. 14: 127-165.

Lam HJ. 1939. On the system of the Sapotaceae, with some remarks on taxonomical methods. – Rec. Trav. Bot. Néerl. 36: 509-525.

Lam HJ. 1941. Note on the Sapotaceae-Mimusopoideae in general and on the far-eastern Manilkara allies in particular. – Blumea 4: 323-358.

Lam HJ, Royen P van. 1952. Concise revision of the Sarcospermataceae. – Blumea 7: 148-153.

Lam HJ, Varossieau WW. 1938. Revision of the Sarcospermataceae. – Blumea 3: 183-200.

Langlet O. 1936. Några bidrag till kännedomen om kromosomtalen inom Nymphaeaceae, Ranunculaceae, Polemoniaceae, och Compositae. – Svensk Bot. Tidskr. 30: 288-294.

Largent DL, Sugihara N, Wishner C. 1980. Occurrence of mycorrhizae on ericaceous and pyrolaceous plants in northern California. – Can. J. Bot. 58: 2274-2279.

Larsen K. 1981. Chromosome numbers in Impatiens from Thailand. – Nord. J. Bot. 1: 43-44.

Larsen K, Hu C-M. 1991. New taxa of Myrsinaceae from Thailand. – Nord. J. Bot. 11: 61-78.

Larsen K, Hu C-M. 1992. Additional new taxa of Ardisia (Myrsinaceae) from Thailand. – Nord. J. Bot. 12: 311-313.

Larsen K, Hu C-M. 1995. Reduction of Tetrardisia to Ardisia. – Nord. J. Bot. 15: 161-162.

Launert E. 1963. 39. Balsaminaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 162-180.

Lavier-George L. 1936. Recherches sur les epidermis foliaires des Philippia de Madagascar, utilisation de leurs caractères comme bases d’une classification. – Bull. Mus. Natl. Hist. Nat. Paris 8: 173-199.

Lechner S. 1914. Anatomische Untersuchungen über die Gattungen Actinidia, Saurauia, Clethra und Clematoclethra mit besonderer Berücksichtigung ihrer Stellung im System. – Beih. Bot. Zentralbl. 32: 431-467.

Lecocq O. 2000. Een bloemontogenetische studie van de Ericaceae sensu APG. – Thesis, Katholieke Universiteit Leuven, Leuven, Belgium.

Lee ST. 1987. A palynotaxonomic study on the Korean Theaceae. – Korean J. Bot. 30: 215-223.

Leins P. 1964. Entwicklungsgeschichtliche Studien an Ericales-Blüten. – Bot. Jahrb. Syst. 83: 57-88.

Leins P. 1972. Das zentrifugale Androeceum von Couroupita guianensis (Lecythidaceae). – Beitr. Biol. Pflanzen 48: 313-319.

Leins P, Winhard W. 1973. Entwicklungsgeschichtliche Studien an Loasaceenblüten. – Österr. Bot. Zeitschr. 122: 145-165.

Leiser AT. 1968. A mucilaginous root sheath in Ericaceae. – Amer. J. Bot. 55: 391-398.

Lems K. 1962a. Evolutionary studies in the Ericaceae I. Shoot development in the Andromedeae. – Ecology 43: 524-528.

Lems K. 1962b. Evolutionary studies in the Ericaceae II. Leaf anatomy as a phylogenetic index in the Andromedeae. – Bot. Gaz. 125: 178-186.

Lems K. 1964. Evolutionary studies in the Ericaceae II. Leaf anatomy as a phylogenetic index in the Andromedeae. – Bot. Gaz. 125: 178-186.

Lemson KL. 1996. Current problems in the taxonomy of Andersonia R. Br. – Ann. Bot., II, 77: 323-326.

Lemson KL. 2001. The phylogeny and taxonomy of Andersonia R. Br. (Ericaceae/Epacridaceae). – Ph.D. diss., Department of Botany, University of Western Australia.

Lemson KL. 2011. Pollen development in Cosmelieae (Ericaceae: Styphelioideae): are monads in Andersonia macranthera unique? – Intern. J. Plant Sci. 172: 664-673.

Leins P. 1964. Entwicklungsgeschichtliche Studien an Ericales-Blüten. – Bot. Jahrb. Syst. 83: 57-88.

Lens F. 2005. Systematic significance of wood anatomical characters in Ericales. – Doctor in de Wetenschappen, K. U. Leuwen, Laboratory of Plant Systematics.

Lens F, Gasson P, Smets E, Jansen S. 2003. Comparative wood anatomy of epacrids (Styphelioideae, Ericaceae s.l.). – Ann. Bot., II, 91: 835-856.

Lens F, Luteyn JL, Smets E, Jansen S. 2004. Ecological trends in the wood anatomy of Vaccinioideae (Ericaceae s. l.). – Flora 199: 309-319.

Lens F, Smets E, Jansen S. 2004. Comparative wood anatomy of Andromedeae s. s., Gaultherieae, Lyonieae and Oxydendreae (Vaccinioideae, Ericaceae s. l.). – Bot. J. Linn. Soc. 144: 161-179.

Lens F, Kron KA, Luteyn JL, Smets E, Jansen S. 2004. Comparative wood anatomy of the blueberry tribe (Vaccinieae, Ericaceae s. l.). – Ann. Missouri Bot. Gard. 91: 566-592.

Lens F, Jansen S, Caris P, Serlet L, Smets E. 2005. Comparative anatomy of the primuloid clade (Ericales s.l.). – Syst. Bot. 30: 163-183.

Lens F, Dressler S, Jansen S, Evelghem L van, Smets E. 2005. Relationships with balsaminoid Ericales: a wood anatomical approach. – Amer. J. Bot. 92: 941-953.

Lens F, Dressler S, Vinckier S, Janssens S, Dessein S, Evelghem L van, Smets E. 2005. Palynological variation in balsaminoid Ericales I. Marcgraviaceae. – Ann. Bot. 96: 1047-1060.

Lens F, Baas P, Jansen S, Smets E. 2007. A search for phylogenetically informative wood characters within Lecythidaceae s. l. – Amer. J. Bot. 94: 483-502.

Lens F, Schönenberger J, Baas P, Jansen S, Smets E. 2007. The role of wood anatomy in phylogeny reconstruction of Ericales. – Cladistics 23: 229-254.

Lens F, Baas P, Jansen S, Smets E. 2007. A search for phylogenetically informative wood characters within Lecythidaceae s. l. – Amer. J. Bot. 94: 483-502.

Lens F, Eeckhout S, Zwartjes R, Smets E, Janssens SB. 2012. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach. Where do we draw the line? – Ann. Bot. 109: 783-799.

Lepper L. 1975. Nachtrag zur Cytologie von Cyclamen L. – Wiss. Zeitschr. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe 24: 429-436.

Lepper L. 1983a. Die Familie Theophrastaceae in Cuba. Überblick und floristiche Mitteilungen. – Wiss. Zeitschr. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. R. 32: 865-874.

Lepper L. 1983b. Theophrastaceae cubanae novae II. Jacquinia lippoldii Lepper spec. nov. – Wiss. Zeitschr. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. R. 32: 875-880.

Lepper L. 1985a. Theophrastaceae cubanae novae III. Jacquinia bissei Lepper sp. nov. – Feddes Repert. 96: 517-521.

Lepper L. 1985b. Die Bedeutung einiger morphologischer und anatomischer Merkmalskomplexe für die Gliederung der Gattung Jacquinia L. (Theophrastaceae) in Cuba. – Feddes Repert. 96: 677-678.

Lepper L. 1989. Infloreszenzstruktur, Blütenbau und Blütenökologie von Deherainia smaragdina Decne. (Theophrastaceae). – Wiss. Zeitschr. Friedrich-Schiller-Univ. Jena, Naturwiss. R. 38: 337-345.

Lersten NR. 1977. Trichome forms in Ardisia (Myrsinaceae) in relation to the bacterial leaf nodule symbiosis. – Bot. J. Linn. Soc. 75: 229-244.

Lersten NR, Carvey KA. 1974. Leaf anatomy of ocotillo (Fouquieria splendens; Fouquieriaceae) especially vein-endings and associated veinlet elements. – Can. J. Bot. 52: 2017-2021.

Lersten NR, Horner HT. 1976. Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. – Bot. Rev. 42: 145-214.

Letouzey R. 1960. Notes sur les Scytopétalacées: révision des Scytopétalacées de l’herbier de Paris. – Adansonia, sér. II, 1: 106-142.

Letouzey R. 1977. Nouvelle espèces de Rhaptopetalum Oliv. (Scytopétalacées) du Cameroun et du Gabon. – Adansonia, sér. II, 17: 129-138.

Letouzey R. 1978a. Scytopétalacées. – In: Aubreville A, Leroy J-F (eds), Flore du Cameroun 20, Muséum National d’Histoire Naturelle, Paris, pp. 139-193.

Letouzey R. 1978b. Scytopétalacées. – In: Aubreville A, Leroy J-F (eds), Flore du Gabon 24, Muséum National d’Histoire Naturelle, Paris, pp. 139-193.

Levin DA. 1966. The Phlox pilosa complex: crossing and chromosome relationships. – Brittonia 18: 142-162.

Levin DA, Smith DM. 1965. An enigmatic Phlox from Illinois. – Brittonia 17:254-266.

Li H-L. 1943. On the Sino-Himalayan species of Shortia and Berneuxia. – Rhodora 45: 333-337.

Li H-L. 1952. A taxonomic review of the genus Actinidia. – J. Arnold Arbor. 23: 1-61.

Li J, Alexander III J, Ward T, Del Tredici P, Nicolson R. 2002. Phylogenetic relationships of Empetraceae inferred from sequences of chloroplast gene matK and nuclear ribosomal DNA ITS region. – Mol. Phylogen. Evol. 25: 306-215.

Li J, Tredici P del, Yang S, Donoghue MJ. 2002. Phylogenetic relationships and biogeography of Stewartia (Camellioideae, Theaceae) inferred from nuclear ribosomal DNS ITS sequences. – Rhodora 104: 117-133.

Li J, Huang H, Sant T. 2002. Molecular phylogeny and infrageneric classification of Actinidia (Actinidiaceae). – Syst. Bot. 27: 408-415.

Li J-W, Rui G, Liang M-Y, Pang C. 1989. Studies on the pollen morphology of the Actinidia. – Guihaia 9: 335-339.

Li L. 2001. Chromosome number of Sladenia celastrifolia. – Acta Bot. Yunnan. 23: 223-224.

Li L, Liang H-X, Peng H, Lei L-G. 2003. Sporogenesis and gametogenesis in Sladenia and their systematic implication. – Bot. J. Linn. Soc. 143: 305-314.

Li L, Liang H-X, Peng H. 2003. Karyotype of Sladenia and its systematic insights. – Acta Bot. Yunnan. 25: 321-326. [In Chinese with English summary]

Li M-M, Li J-H, Del Tredici P, Corajod J, Fu C-X. 2013. Phylogenetics and biogeography of Theaceae based on sequences of plastid genes. – J. Syst. Evol. 51: 396-404.

Li R, Yang J-B, Yang S-X, Li D-Z. 2011 [2012]. Phylogeny and taxonomy of the Pyrenaria complex (Theaceae) based on nuclear ribosomal ITS sequences. – Nord. J. Bot. 29: 780-787.

Li Y-H, Yu C-H. 1985. Pollen morphology of Styracaceae and its taxonomic significance. – Acta Phytotaxon. Sin. 23: 81-90. [In Chinese with English summary]

Liang C-F. 1983. On the distribution of actinidias. – Guihaia 3: 229-248.

Liang C-F, Ferguson AR. 1986. The botanical nomenclature of the kiwifruit and related taxa. – New Zealand J. Bot. 24: 183-184.

Liang D, Baas P. 1990. Wood anatomy of trees and shrubs from China II. Theaceae. – IAWA Bull., N. S., 11: 337-378.

Liang D, Baas P. 1991. The wood anatomy of the Theaceae. – I.A.W.A. Bull., N. S., 12: 333-353.

Liben L. 1971. Révision du genre africain Napoleonaea P. Beauv. (Lecythidaceae). – Bull. Jard. Bot. Natl. Belg. 41: 363-382.

Liben L. 1989. La véritable identité des genres et espèces confondus sous le nom de Bequaertiodendron magalismontanum (Sond.) Heine & Hemsley (Sapotaceae) en Afrique centrale et occidentale. – Bull. Jard. Bot. Natl. Belg. 59: 151-169.

Lidén M. 2000. Notes on Dionysia, Corydalis and Fumaria in Iran. – Iranian J. Bot. 8: 303-308.

Lidén M. 2007. The genus Dionysia (Primulaceae), a synopsis and five new species. – Willdenowia 37: 37-61.

Lignier O. 1890. Recherches sur l’anatomie des organes végétatifs des Lécythidées, des Napoléonées et des Barringtoniées (Lecythidacées). – Bull. Sci. France Belgique 21: 291-420.

Liu Y-J, Liu J, Hu C-M, Hao G. 2015. Non-monophyly of Primula subgenera Auganthus and Carolinella (Primulaceae) as confirmed by the nuclear DNA sequence variation. – Plant Syst. Evol. 301: 2057-2071.

Liu Z-W, Zhou J, Liu E-D, Peng H. 2010. A molecular phylogeny and a new classification of Pyrola (Pyroleae, Ericaceae). – Taxon 59: 1690-1700.

Liu Z-W, Wang Z-H, Zhou J, Peng H. 2011. Phylogeny of Pyroleae (Ericaceae): implications for character evolution. – J. Plant Res. 124: 325-337.

Liu Z-W, Jolles DD, Zhou J, Peng H, Milne RI. 2014. Multiple origins of circumboreal taxa in Pyrola (Ericaceae), a group with a Tertiary relict distribution. – Ann. Bot. 114: 1701-1709.

Lloyd FM. 1934. Is Roridula a carnivorous plant? – Can. J. Res. 10: 780-786.

Lloyd FM. 1942. The carnivorous plants. 2nd ed. – Chronica Botanica Co., Waltham, Massachusetts.

Loesener T. 1896. Beiträge zr Kenntnis der Matéepflanzen. – Ber. Deutsch. Pharm. Ge. 6: 203.

Löfstrand SD, Schönenberger J. 2015a. Molecular phylogenetics and floral evolution in the sarracenioid clade (Actinidiaceae, Roridulaceae and Sarraceniaceae) of Ericales. – Taxon 64: 1209-1224.

Löfstrand SD, Schönenberger J. 2015b. Comparative floral structure and systematics in the sarracenioid clade (Actinidiaceae, Roridulaceae and Sarraceniaceae) of Ericales. – Bot. J. Linn. Soc. 178: 1-46.

Löfstrand SD, Balthazar M von, Schönenberger J. 2016. Early floral development and androecium organization in the sarracenioid clade (Actinidiaceae, Roridulaceae and Sarraceniaceae) of Ericales. – Bot. J. Linn. Soc. 180: 295-318.

Lott TA, Manchester SR, Dilcher DL. 1998. A unique and complete polemoniaceous plant from the middle Eocene of Utah, USA. – Rev. Palaeobot. Palynol. 104: 39-49.

Lourteig A. 1942. Primulaceae Argentinae. – Lilloa 8: 231-267.

Lu H-F, Jiang B, Shen Z-G, Shen J-B, Peng Q-F, Cheng C-G. 2008. Comparative leaf anatomy, FTIR discrimination and biogeographical analysis of Camellia section Tuberculata (Theaceae) with a discussion of its taxonomic treatments. – Plant Syst. Evol. 274: 223-235.

Lu H-F, Shen J-B, Lin X-Y, Fu J-L. 2008. Relevance of Fourier transform infrared spectroscopy and leaf anatomy for species classification in Camellia (Theaceae). – Taxon 57: 1274-1288.

Lu L, Fritsch PW, Wang H, Li HT, Li DZ, Chen JQ. 2009. Pollen morphology of Gaultheria L. and related genera of subfamily Vaccinioideae: taxonomic and evolutionary significance. – Rev. Palaeobot. Palynol. 154: 106-123.

Lu L, Fritsch PW, Bush CM, Dong L-N, Li H-T, Li D-Z. 2010. Systematic implications of seed coat diversity in Gaultherieae (Ericaceae). – Bot. J. Linn. Soc. 162: 477-495.

Lu L, Fritsch PW, Cruz BC, Wang H, Li D-Z. 2010. Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae). – Mol. Phylogen. Evol. 57: 364-379.

Lu X, Chen L, Chen Y-P, Peng H. 2014. Molecular phylogeography and conservation genetics of Sladenia celastrifolia inferred from chloroplast DNA sequence variation. – J. Syst. Evol. 52: 458-465.

Lu Y-Q. 1991. Pollen morphology of Impatiens L. (Balsaminaceae) and its taxonomic implications. – Acta Phytotaxon. Sin. 29: 352-357.

Lu Y-Q, Chen Y-L. 1991. Seed morphology of Impatiens L. (Balsaminaceae) and its taxonomic significance. – Acta Phytotaxon. Sin. 29: 252-257.

Luna BN de, Freitas M de F, Baas P, De Toni KLG, Barros CF. 2017. Leaf anatomy of five Neotropical genera of Primulaceae. – Intern. J. Plant Sci. 178: 362-377.

Luna BN de, Freitas M de F, Barros CF. 2018. Systematic and phylogenetic implications of the wood anatomy of six Neotropical genera of Primulaceae. – Plant Syst. Evol. 304: 775-791.

Luna I. 1997. Relaciones filogenéticas de los géneros de la familia Theaceae D. Don. – Ph.D. thesis. Facultad de Ciencias, UNAM, México.

Luna I, Contreras-Medina R. 2000. Distribution of the genera of Theaceae (Angiospermae: Theales): a panbiogeographic analysis. – Biogeographica 76: 79-88.

Luna I, Ochoterena H. 2004. Phylogenetic relationships of the genera of Theaceae based on morphology. – Cladistics 20: 223-270.

Luna I, Villaseñor JL. 1996 Géneros de Theaceae: aspectos taxonómicos y nomenclaturales. – Bol. Soc. Bot. México 59: 81-95.

Lundell CL. 1963. Studies of American Myrsinaceae I. – Wrightia 3: 77-90.

Lundell CL. 1964. Studies of the American Myrsinaceae II. – Wrightia 3: 97-114.

Lundell CL. 1966. The genus Parathesis of the Myrsinaceae. – Contr. Tex. Res. Found. Bot. Stud. 5: 1-206.

Lundell CL. 1981a. Neotropical Myrsinaceae IV. – Phytologia 48: 137-142.

Lundell CL. 1981b. Neotropical Myrsinaceae VI. – Phytologia 49: 341-354.

Lundell CL. 1982. Neotropical Myrsinaceae VII. – Wrightia 7: 38-50.

Lundell CL. 1983. Neotropical Myrsinaceae VIII. – Wrightia 7: 245-250, 255-265.

Luteyn JL. 1976. A revision of the Mexican-Central American species of Cavendishia (Vacciniaceae). – Mem. New York Bot. Gard. 28: 1-138.

Luteyn JL. 1977. Notes on Neotropical Vaccinieae (Ericaceae) IV. A review of the genus Oreanthes. – Brittonia 29: 173-176.

Luteyn JL. 1983. Cavendishia. – In: Luteyn JL (ed), Flora Neotropica. Monograph 35. Ericaceae I – in inferior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 1-290.

Luteyn JL. 1984. Revision of Semiramisia (Ericaceae: Vaccinieae). – Syst. Bot. 9: 359-367.

Luteyn JL. 1987. Orthaea (Ericaceae-Vaccinieae): new species and redefinition of the genus. – Nord. J. Bot. 7: 31-37.

Luteyn JL. 1989. Speciation and diversity of Ericaceae in neotropical montane vegetation. – In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds), Tropical forests: botanical dynamics, speciation and diversity, Academic Press, London, pp. 297-310.

Luteyn JL. 1990. Gonocalyx amplexicaulis (Ericaceae): a new Panamanian blueberry. – Syst. Bot. 15: 745-747.

Luteyn JL. 1991a. A synopsis of the genus Didonica (Ericaceae: Vaccinieae) with two new species. – Syst. Bot. 16: 587-597.

Luteyn JL. 1991b. Key to the subfamilies and genera of neotropical Ericaceae. – Nord. J. Bot. 11: 623-627.

Luteyn JL. 1995a. 16. Tepuia. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II – the superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 351-364.

Luteyn JL. 1995b. 17. Pernettya. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II – the superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 365-383.

Luteyn JL. 1995c. 18. Gaultheria. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II – the superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 384-488.

Luteyn JL (ed). 1995. Flora Neotropica. Monograph 66. Ericaceae II. The superior-ovaried genera. – New York Botanical Garden, New York.

Luteyn JL. 1996. Ericaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 54, Nord. J. Bot., Copenhagen, pp. 1-402.

Luteyn JL. 1996 [1997]. Redefinition of the neotropical genus Anthopterus (Ericaceae: Vaccinieae). – Brittonia 48: 605-614.

Luteyn JL. 2001. Two new species and two new combinations in Mesoamerican Ericaceae. – Brittonia 53: 437-446.

Luteyn JL. 2002a. Diversity, adaptation and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccinieae. – Bot. Rev. 68: 55-87.

Luteyn JL. 2002b. Key to the subfamilies and genera of Neotropical Ericaceae. – Nord. J. Bot. 11: 623-627.

Luteyn JL, Pedraza-Peñalosa P. 2013. Nomenclature, taxonomy, and conservation of the neotropical genus Sphyrospermum (Ericaceae: Vaccinieae), including five new species for Colombia, Ecuador, and Peru. – Phytotaxa 79: 1-29.

Luteyn JL, Sylva S DS. 1999. “Murrí” (Antioquia Department, Colombia): hotspot for neotropical blueberries (Ericaceae: Vaccinieae). – Brittonia 51: 280-302.

Luteyn JL, Wilbur RL. 1977. New genera and species of Ericaceae (Vaccinieae) from Costa Rica and Panama. – Brittonia 29: 255-276.

Luteyn JL, Harborne JB, Williams CA. 1980. Survey of the flavonoids and simple phenols in the leaves of Cavendishia (Ericaceae). – Brittonia 32: 1-16.

Lys J. 1955. Sur la nature et l’évolution biochimique des glucides des Lysimaques. – Compt. Rend. Hebd. Séances Acad. Sci. 241: 1842-1844.

Lys J. 1956. Les glucides de quelques Primulacées. – Rev. Gén. Bot. 63: 95-100.

Ma OSW, Saunders RMK. 2003. Comparative floral ontogeny of Maesa (Maesaceae), Aegiceras (Myrsinaceae) and Embelia (Myrsinaceae): taxonomic and phylogenetic implications. – Plant Syst. Evol. 243: 39-58.

Mabberley DJ. 2002. A note on the Macaronesian Sideroxylon (Sapotaceae). – Taxon 51: 179-180.

Machado IC, Lopes AV. 2000. Souroubea guianensis Aubl.: quest for its legitimate pollinator and the first record of tapetal oil in the Marcgraviaceae. – Ann. Bot., N. S., 85: 705-711.

McAbee JM, Kuzoff RK, Gasser CS. 2005. Mechanisms of derived unitegmy among Impatiens species. – Plant Cell 17: 1674-1684.

MacBride JF. 1944. Vaccinium and relatives in the Andes of Peru. – Univ. Wyoming Publ. 11: 37-46.

MacBride JF. 1959. Flora of Peru. Ericaceae. – Field Mus. Nat. Hist., Bot. Ser. 13(5, 1): 50-149.

McCloskey R. 1948. Blueberries for Sal. – Viking, New York.

McConchie CA, Hough T, Singh MB, Knox RB. 1986. Pollen presentation on petal combs in the geoflorous heath Acrotriche serrulata (Epacridaceae). – Ann. Bot., II, 57: 155-164.

McDaniel S. 1971. The genus Sarracenia (Sarraceniaceae). – Bull. Tall Timbers Res. Station 9: 1-36.

McDowall MA. 1970. Anionic proteinase from Actinidia chinensis. Preparation and properties of the crystalline enzyme. – Eur. J. Biochem. 14: 214-221.

MacDougal DT, Lloyd FT. 1900. The roots and mycorrhizas of some of the Monotropaceae. – Bull. New York Bot. Gard. 1: 419-429.

McEwen M. 1894. The comparative anatomy of Corema alba and Corema conradii. – Bull. Torrey Bot. Club 21: 277-285.

MacFarlane JM. 1889. Observations on pitchered insectivorous plants I. Introduction. – Ann. Bot. 3: 253-265.

MacFarlane JM. 1893. Observations on pitchered insectivorous plants II. Histology of Darlingtonia, Sarracenia, and Heliamphora with remarks on adaptations for insect-catching. – Ann. Bot. 7: 403-458.

MacKay M, Smith G, Gardiner SE. 2016. Analysis of geographic and taxonomic groups informs conservation of Rhododendron subgenus Vireya (Ericaceae). – Blumea 61: 170-180.

Mackinder B, Harris DJ, Gautier L. 2016. A reinstatement, recircumscription and revision of the genus Donella (Sapotaceae). – Edinburgh J. Bot. 73: 297-339.

McLean CB. 1995. Mycorrhizae of the Epacridaceae and its use in propagation. – Combined Proc. Int. Plant Propagators 45: 108-111.

McLean CB. 1999. Investigation of mycorrhizas of the Epacridaceae. – Ph.D. diss., Department of Applied Biology and Biotechnology, RMIT University.

McLennan E. 1935. Non-symbiotic development of seedlings of Epacris impressa Labill. – New Phytol. 34: 55-63.

McPherson S, Schnell DE. 2011. Sarraceniaceae of North America. – Redfern Natural History Publ., Poole.

McPherson S, Wistuba A, Fleischmann A, Nerz J. 2011. Sarraceniaceae of South America. – Redfern Natural History Publ., Poole.

Maguire B. 1972. Tetrameristaceae. – In: Maguire B & al. (eds), The botany of the Guayana Highlands IX, Mem. New York Bot. Gard. 23: 165-192.

Maguire B. 1978. Sarraceniaceae. – In: Maguire B & al. (eds), The botany of the Guayana Highland X, Mem. New York Bot. Gard. 29: 36-62.

Maguire B, Huang Y-C. 1978. Symplocaceae. – In: Maguire B & al. (eds), The botany of the Guayana Highlands X, Mem. New York Bot. Gard. 29: 223-230.

Maguire B, Steyermark JA, Luteyn JL. 1978. The botany of the Guayana Highland, Ericaceae. – Mem. New York Bot. Gard. 29: 139-203.

Maguire B, Zeeuw C de, Huang Y-C, Clare CC Jr. 1972. Tetrameristaceae. – In: Maguire B et al. (eds), The botany of Guayana Highland IX, Mem. New York Bot. Gard. 23: 165-192.

Mai DH. 1971. Über fossile Lauraceae und Theaceae in Mitteleuropa. – Feddes Repert. 82: 313-341.

Mai DH. 1988. Über antillanische Styracaceae. – Feddes Repert. 99: 173-181.

Majourhat K, Jabbar Y, Araneda L, Zeinalabedini M, Hafidi A, Martinez-Gomez P. 2007. Karyotype characterization of Argania spinosa (L.) Skeel (Sapotaceae). – South Afr. J. Bot. 73: 661-663.

Makino T. 1894. Revision of the Japanese species of Andromeda, Pieris and Enkianthus. – Bot. Mag. (Tokyo) 8: 212-216.

Makino T. 1909. Mitrastemma yamamotoi. – Bot. Mag. (Tokyo) 23: 325-327.

Makino T. 1911. Observations on the flora of Japan: Mitrastemon yamamotoi. Bot. Mag. (Tokyo) 25: 251-257.

Mallavadhani UV, Panda AK, Rao YR. 1998. Pharmacology and chemotaxonomy of Diospyros. – Phytochemistry 49: 901-951.

Manchester SR, Fritsch PW. 2014. European fossil fruits of Sphenotheca related to extant Asian species of Symplocos. – J. Syst. Evol. 52: 68-74.

Mandossian AJ. 1965. Some aspects of the ecological life history of Sarracenia purpurea. – Ph.D. diss., Michigan State University, East Lansing.

Manns U, Anderberg AA. 2005. Molecular phylogeny of Anagallis (Myrsinaceae) based on ITS, trnL-F, and ndhF sequence data. – Intern. J. Plant Sci. 166: 1019-1028.

Manns U, Anderberg AA. 2007a. Character evolution in Anagallis (Myrsinaceae) inferred from morphological and molecular data. – Syst. Bot. 32: 166-179.

Manns U, Anderberg AA. 2007b. Relationships of Anagallis foemina and A. arvensis (Myrsinaceae): new insights inferred from DNA sequence data. – Mol. Phylogen. Evol. 45: 971-980.

Manns U, Anderberg AA. 2009. New combinations and names in Lysimachia (Myrsinaceae) for species of Anagallis, Pelletiera, and Trientalis. – Willdenowia 39: 49-54.

Manshard E. 1936. Embryologische Untersuchungen an Styrax obassia Sieb. et Zucc. – Planta 25: 364-383.

Marie-Victorin [Frère]. 1948. Le genre Purdiaea (Cyrillaceae), avec description de quatre espèces et de trois variétés nouvelles. – Contr. Inst. Bot. Univ. Montréal 63: 49-62.

Markgraf F. 1955. Über Laubblatt-Homologien und verwandtschaftliche Zusammenhänge bei Sarraceniales. – Planta 46: 414-446.

Markos SE. 1995. Phylogeny of Arctostaphylos hookeri (Ericaceae) based on ribosomal DNA sequence from the ITS region. – M.A. thesis, San Francisco State University, San Francisco, California.

Markos SE, Parker VT, Hileman LC, Vasey MC. 1999. Phylogeny of the Arctostaphylos hookeri complex (Ericaceae) based on nrDNA data. – Madroño 45: 187-199.

Marloth R. 1903. Some recent observations on the biology of Roridula. – Ann. Bot. 17: 151-157.

Marloth R. 1910. Further observations on the biology of Roridula. – Trans. Roy. Soc. South Afr. 2: 59-61.

Marr KL, Bohm BA. 1997. A taxonomic revision of the endemic Hawaiian Lysimachia (Primulaceae) including three new species. – Pacific Sci. 51: 254-287.

Marr KL, Bohm BA. 2000. Allozyme variation in endemic Hawaiian Lysimachia (Primulaceae). – Syst. Bot. 24: 545-557.

Marsden-Jones EM, Weiss FE. 1938. The essential differences between Anagallis arvensis Linn. and Anagallis foemina Mill. – Proc. Linn. Soc. London 150: 146-155.

Martínez-Millán M, Crepet WL, Nixon KC. 2009. Pentapetalum trifasciculandricus gen. et sp. nov., a thealean fossil flower from the Raritan Formation, New Jersey, USA (Turonian, Late Cretaceous). – Amer. J. Bot. 96: 933-949.

Martins L, Oberprieler C, Hellwig FH. 2003. A phylogenetic analysis of Primulaceae s.l. based on internal transcribed spacer (ITS) DNA sequence data. – Plant Syst. Evol. 237: 75-85.

Mason HL. 1941. The taxonomic status of Microsteris Greene. – Madroño 6: 122-127.

Mason HL. 1945. The genus Eriastrum and the influence of Bentham and Gray upon the problem of generic confusion in Polemoniaceae. – Madroño 8: 33-59.

Mason HL, Grant AD. 1948. Some problems in the genus Gilia. – Madroño 9: 201-220.

Massicotte HB, Melville LH, Peterson RL. 2005a. Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. – Can. J. Bot. 83: 1057-1064.

Massicotte HB, Melville LH, Peterson RL. 2005b. Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea. – Mycorrhiza 15: 101-110.

Massicotte HB, Melville LH, Tackab erry LE, Peterson RL. 2007. Pityopus californicus: structural characteristics of seed and seedling development in a myco-heterotrophic species. – Mycorrhiza 17: 647-653.

Massicotte HB, Melville LH, Tackaberry LE, Peterson RL. 2008. A comparative study of mycorrhizas in several genera of Pyroleae (Ericaceae) from western Canada. – Botany 86: 610-622.

Massicotte HB, Melville LH, Peterson RL, Tackaberry LE, Luoma DL. 2010. Structural characteristics of root-fungus associations in two mycoheterotrophic species, Allotropa virgata and Pleuricospora fimbriolata (Monotropoideae), from southwest Oregon, USA. – Mycorrhiza 20: 391-397.

Mast AR, Reveal JL. 2007. Transfer of Dodecatheon to Primula (Primulaceae). – Brittonia 59: 79-82.

Mast AR, Kelso S, Richards AJ, Lang DJ, Feller DMS, Conti E. 2001. Phylogenetic relationships in Primula L. and related genera (Primulaceae) based on noncoding chloroplast DNA. – Intern. J. Plant Sci. 162: 1381-1400.

Mast AR, Feller DMS, Kelso S, Conti E. 2004. Buzz-pollinated Dodecatheon originated within Primula section Auriculastrum: a seven gene cpDNA phylogeny and its implications for floral evolution. – Amer. J. Bot. 91: 918-925.

Mast AR, Kelso S, Conti E. 2006. Are any primroses (Primula) primitively monomorphic? – New Phytol. 171: 605-616.

Masters MT. 1869. On the structure of the flower in the genus Napoleona. – Bot. J. Linn. Soc. 10: 492-504.

Mathew CJ. 1978. Development of male and female gametophytes in Camellia susanqua. – Phytomorphology 28: 262-269.

Matsuura H. 1935. A karyological investigation of Mitrastemon yamamotoi Mk. with special reference to the so-called ‘diffuse’ stage in meiosis. – J. Fac. Sci. Hokkaido Imp. Univ., Ser. V, Bot 3: 189-204.

Mattfeld J. 1942. Pentaphylacaceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 20b, W. Engelmann, Leipzig, pp. 13-21.

Matthews JR, Knox EM. 1926. The comparative morphology of the stamen in the Ericaceae. – Trans. Proc. Bot. Soc. Edinb. 29: 243-281.

Matthews JR, Taylor G. 1926. The structure and development of the stamen in Erica hirtiflora. – Trans. Proc. Bot. Soc. Edinb. 29: 235-242.

Mattick F. 1935. Übersicht der Cyrillaceae. – Notizbl. Bot. Gart. Berlin-Dahlem 12: 668-677.

Matuda E. 1947. On the genus Mitrastemon. – Bull. Torrey Bot. Club 74: 133-141.

Mauritzon J. 1936. Embryologische Angaben über Theophrastaceen. – Ark. f. Bot. 28B(1): 1-4.

Mauritzon J. 1939. Über die Embryologie von Marcgravia. – Bot. Not. 1939: 249-255.

Meeuse ADJ. 1960. Notes on the Sapotaceae of Southern Africa. – Bothalia 7: 317-379.

Meijden R van der. 1970. A survey of the pollen morphology of the Indo-Pacific species of Symplocos (Symplocaceae). – Pollen Spores 12: 513-551.

Meijer W. 1993. Rafflesiaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 557-563.

Meijer W. 1997. Rafflesiaceae. – In: Kalkman C et al. (eds), Flora Malesiana, I, 13, Flora Malesiana Foundation, Rijksherbarium/Hortus Botanicus, Leiden, pp. 1-42.

Meijer W, Veldkamp JF. 1993. A revision of Mitrastema (Rafflesiaceae). – Blumea 38: 221-229.

Melchior H. 1924. Über das Vorkommen von Inulin in den Blättern der Marcgraviaceen. – Ber. Deutsch. Bot. Ges. 42: 198-204.

Melchior H. 1925. Theaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 109-154.

Melchior H. 1943. Entwicklungsgeschichte der Primulaceen – Gattung Dionysia. – Mitt. Thüring. Bot. Ver., N. F., 50: 156-174.

Melhem TS, Moura CAF, Lieu J. 1971. Pollen grains of plants of the “Cerrado” – Styracaceae and Turneraceae. – Hoehnea 1: 153-178.

Melvin NC. 1980. A systematic investigation of the genus Leucothoë (Ericaceae). – Ph.D. diss., Miami University, Oxford, Ohio.

Menadue Y, Crowden RK. 2000. Taxonomic revision of Richea R. Br. (Epacridaceae). – Aust. Syst. Bot. 13: 773-802.

Méndez M, Munzinger M. 2010. Planchonella, first record of gynomoecy for the family Sapotaceae. – Plant Syst. Evol. 287: 65-73.

Mennechet ML-A. 1902. Sur le fruit du Jacquinia ruscifolia Jacq. et sur les poils épidermiques des Myrsinéacées. – J. Bot. (Paris) 16: 349-358.

Merlin CM, Grant WF. 1986. Hybridization studies in the genus Impatiens. – Can. J. Bot. 64: 1069-1074.

Mez C. 1901. Theophrastaceae. – In: Urban I (ed), Symbolae antillanae 2, pp. 434-451.

Middleton DJ. 1991a. Ecology, reproductive biology and hybridization in Gaultheria L. – Edinburgh J. Bot. 48: 81-89.

Middleton DJ. 1991b. Taxonomic studies in the Gaultheria group of genera of the tribe Andromedeae (Ericaceae). – Edinburgh J. Bot. 48: 283-306.

Middleton DJ. 1991c. Infrageneric classification of the genus Gaultheria L. (Ericaceae). – Bot. J. Linn. Soc. 106: 229-258.

Middleton DJ. 1992. A chemotaxonomic survey of flavonoids and simple phenols in the leaves of Gaultheria L. and related genera. – Bot. J. Linn. Soc. 110: 313-324.

Middleton DJ. 1993. A systematic survey of leaf and stem anatomical characters in the genus Gaultheria and related genera (Ericaceae). – Bot. J. Linn. Soc. 113: 199-215.

Middleton DJ, Wilcock CC. 1990a. A critical examination of the status of Pernettya as a genus distinct from Gaultheria. – Edinburgh J. Bot. 47: 291-301.

Middleton DJ, Wilcock CC. 1990b. Chromosome counts in Gaultheria and related genera. – Edinburgh J. Bot. 47: 303-313.

Midgley JJ, Stock WD. 1998. Natural abundance of Delta N-15 confirms insectivorous habit of Roridula gorgonias, despite it having no proteolytic enzymes. – Ann. Bot. 82: 387-388.

Miers J. 1874. On the Lecythidaceae. – Trans. Linn. Soc. London, Bot. 30: 157-318.

Miers J. 1875a. On Napoleona, Omphalocarpum, and Asteranthos. – Trans. Linn. Soc. London, Bot., ser. II, 1: 17-19.

Miers J. 1875b. On the Barringtoniaceae. – Trans. Linn. Soc. London, Bot., ser. II, 1: 47-118.

Miers J. 1879. On the Symplocaceae. – J. Linn. Soc. 17: 283-306.

Mihaich CM. 1989. Leaf epicuticular waxes in the taxonomy of the Epacridaceae. – Ph.D. diss., Department of Plant Sciences, University of Tasmania.

Miki S. 1968. Paleodavidia, synonym of Melliodendron and fossil remains in Japan. – Bull. Mukogawa Women Univ. 16: 287-291.

Miller IM, Gardner IC, Scott A. 1984. Structure and function of trichomes in the shoot tip of Ardisia crispa (Thunb.) A. DC. (Myrsinaceae). – Bot. J. Linn. Soc. 88: 223-236.

Milne RI. 2004. Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a Tertiary relict distribution. – Mol. Phylogen. Evol. 33: 389-401.

Ming T-L. 2000. Monograph of the genus Camellia. – Yunnan Sci. Techn. Press, Kunming. [In Chinese]

Mitra K, Mondal, M. 1982. A note on the pollen morphology of Mitrastemon yamamotoi (Makino) Makino (Rafflesiaceae). – Bangladesh J. Bot. 11: 179-181.

Mochizuki R. 1969. A new species of the genus Enkianthus in central Japan. – Hokuriku J. Geobot. 17: 38-39.

Molau U. 1997. Age-related growth and reproduction in Diapensia lapponica, an arctic-alpine cushion plant. – Nord. J. Bot. 17: 225-234.

Molina R, Trappe JM. 1982. Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. – New Phytol. 90: 495-509.

Monfils AK, Prather LA. 2004. The conserved nature and taxonomic utility of pollen morphology in Cantua. –Grana 43: 249-256.

Monteiro-Scanavacca WR. 1974. Vascularização do gineceu em Lecythidaceae. – Bol. Bot. Univ. São Paulo 2: 53-69.

Monteiro-Scanavacca WR. 1975a. Vascularização e natureza de estruturas do androceu em Lecythidaceae. – Bol. Bot. Univ. São Paulo 3: 61-74.

Monteiro-Scanavacca WR. 1975b. Estudo da placentação em Lecythidaceae. – Bol. Bot. Univ. São Paulo 3: 75-86.

Moore DM, Harborne JB, Williams CA. 1970. Chemotaxonomy, variation, and geographical distribution of the Empetraceae. – Bot. J. Linn. Soc. 63: 277-293.

Morales F. 2012. Nuevas especies de Sapotaceae para Costa Rica. – Darwiniana 50: 107-113.

Morawetz W. 1991. The karyology of some Neotropical Styracaceae. – Plant Syst. Evol. 177: 111-115.

Mori SA. 1989. Diversity of Lecythidaceae in the Guianas. – In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds), Tropical forests: botanical dynamics, speciation, and diversity, Academic Press, New York, pp. 319-331.

Mori SA. 1992. The Brazil nut industry – past, present, and future. – In: Plotkin M, Famolare L (eds), Sustainable harvest and marketing of rain forest products, Island Press, Washington, D.C., pp. 241-251.

Mori SA. 1995. Observações sobre as espécies de Lecythidaceae do leste do Brasil. – Bol. Bot. Dep. Bot. Inst. Bioci. Univ. São Paulo 14: 1-31.

Mori SA, Black D. 1987. Chapter VII. Stem and leaf. – In: Mori SA et al. (eds), The Lecythidaceae of a lowland neotropical forest: La Fumée Mountain, French Guiana, Mem. New York Bot. Gard. 44: 72-85.

Mori SA, Black D. 1987. Chapter VIII. Habit and bark. – In: Mori SA et al. (eds), The Lecythidaceae of a lowland neotropical forest: La Fumée Mountain, French Guiana, Mem. New York Bot. Gard. 44: 137-155.

Mori SA, Kallunki J. 1976. Phenology and floral biology of Gustavia superba (Lecythidaceae) in Central Panama. – Biotropica 8: 184-192.

Mori SA, Prance GT. 1981. Relações entre a classificação genérica de Lecythidaceae do Novo Mundo seus polinizadores e dispersadores. – Rev. Bras. Bot. 4: 31-37.

Mori SA, Prance GT. 1987. A guide to collecting Lecythidaceae. – Ann. Missouri Bot. Gard. 74: 321-330.

Mori SA, Prance GT. 1990a. Flora Neotropica. Monograph 21(2). Lecythidaceae II. The zygomorphic-flowered New World genera (Couroupita, Corythophora, Bertholletia, Couratari, Eschweilera, and Lecythis). With a study of secondary xylem of neotropical Lecythidaceae by Carl de Zeeuw. – New York Botanical Garden, Bronx, New York.

Mori SA, Prance GT. 1990b. Taxonomy, ecology, and economic botany of the Brazil nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae). – Adv. Econ. Bot. 8: 130-150.

Mori SA, Prance GT, Bolten AB. 1978. Additional notes on the floral biology of neotropical Lecythidaceae. – Brittonia 30: 113-130.

Mori SA, Orchard JE, Prance GT. 1980. Intrafloral pollen differentiation in the New World Lecythidaceae, subfamily Lecythidoideae. – Science 209: 400-403.

Mori SA, Black D, Zeeuw C de. 1987. Habit and bark. – In: Mori SA et al. (eds), The Lecythidaceae of a lowland neotropical forest: La Fumée Mountain, French Guiana VII, Mem. New York Bot. Gard. 44: 86-99.

Mori SA & al. (eds). 1987. The Lecythidaceae of a lowland neotropical forest: La Fumée Mountain, French Guiana VII, Mem. New York Bot. Gard. 44: 1-190.

Mori SA, Tsou C-H, Wu C-C, Cronholm B, Anderberg AA. 2007. Evolution of Lecythidaceae with an emphasis on the circumscription of neotropical genera: information from combined ndhF and trnL-F sequence data. – Amer. J. Bot. 94: 289-301.

Moritz A. 1984. Estudos biológicos da floração e da frutificação da Castanha-do-brasil (Bertholletia excelsa H.B.K.). – EMBRAPA-CPATU, Documentos (Bélem) 29: 1-82.

Morozowska M, Czarna A, Kujawa M, Jagodzinski AM. 2011. Seed morphology and endosperm structure of selected species of Primulaceae, Myrsinaceae, and Theophrastaceae and their systematic importance. – Plant Syst. Evol. 291: 159-172.

Morton CM. 1994. The use of pollen morphology and wood anatomy in the study of the phylogeny of Ebenaceae. – Ph.D. diss., New York Botanical Garden and City University of New York.

Morton CM, Dickison WC. 1992. Comparative pollen morphology of the Styracaceae. – Grana 31: 1-15.

Morton CM, Chase MW, Kron KA, Swensen SM. 1996. A molecular evaluation of the monophyly of the order Ebenales based upon rbcL sequence data. – Syst. Bot. 21: 567-586.

Morton CM, Mori SA, Prance GT, Karol KG, Chase MW. 1997. Phylogenetic relationships of Lecythidaceae: a cladistic analysis using rbcL sequence and morphological data. – Amer. J. Bot. 84: 530-540.

Morton CM, Prance GT, Mori SA, Thorburn LG. 1998. Recircumscription of the Lecythidaceae. – Taxon 47: 817-827.

Muller J. 1972. Pollen morphological evidence for subdivision and affinities of Lecythidaceae. – Blumea 20: 351-355.

Muller J. 1973. Pollen morphology of Barringtonia calyptrocalyx K. Sch. (Lecythidaceae). – Grana 13: 29-44.

Muller J. 1979. Pollen. – In: Prance GT, Mori SA (eds), Flora Neotropica. Monograph 21. Lecythidaceae I. The actinomorphic-flowered New World Lecythidaceae (Asteranthos, Gustavia, Grias, Allantoma, and Cariniana), New York Botanical Garden, Bronx, New York, pp. 72-76.

Müller-Stoll WR, Mädel-Angeliewa E. 1969. Actinidioxylon princeps (Ludwig) n. comb., ein Lianenholz aus dem Pliozän von Dernbach im Westerwald. – Senckenb. Leth. 50: 103-115.

Munzinger JAA, Swenson U. 2009. Three new species of Planchonella Pierre (Sapotaceae) with a dichotomous and an online key to the genus in New Caledonia. – Adansonia, sér. III, 31: 175-189.

Munzinger JAA, Swenson U. 2015. Revision of Pycnandra subgenus Leptostylis and description of subgenus Wagapensia (Sapotaceae), a genus endemic to New Caledonia. – Aust. Syst. Bot. 28: 91-110.

Murata J. 2006. Mitrastemonaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds), Flora of Japan IIa, Kodansha Ltd., Tokyo, p. 387.

Muravnik LE, Shavarda AL. 2012. Leaf glandular trichomes in Empetrum nigrum:morphology, histochemistry, ultrastructure and secondary metabolites. – Nord. J. Bot. 30: 470-481.

Murphy HT, Hardin JW. 1976. A new and unique venation pattern in the Diapensiaceae. – Torreya 103: 177-179.

Murthy SN. 1941. Morphological studies in the Sapotaceae I. Embryology of Bassia latifolia Roxb. and related genera. – J. Mysore Univ. 2: 67-80.

Nagamasu H. 1989a. Pollen morphology and relationship of Symplocos tinctoria (L. f.) L’Her. (Symplocaceae). – Bot. Gaz. 150: 314-318.

Nagamasu H. 1989b. Pollen morphology of Japanese Symplocos (Symplocaceae). – Bot. Mag. (Tokyo) 102: 149-164.

Nagamasu H. 1993. The Symplocaceae of Japan. – Contr. Biol. Lab. Kyoto Univ. 28: 173-260.

Nakai T. 1941. Mitrastemon cochinchinensis Nakai. – Icon. Plant. As. Orient 306: 104.

Namikawa I, Sisa M, Asai K. 1932. On flower types of Diospyros kaki L. f. – Jap. J. Bot. 6: 139-172.

Narayana LL. 1963. Contributions to the embryology of Balsaminaceae 1. – J. Indian Bot. Soc. 42: 102-109.

Narayana LL. 1965. Contributions to the embryology of Balsaminaceae 2. – J. Jap. Bot. 40: 104-116.

Narayana LL. 1970. Balsaminaceae. – In: Proceedings of the symposium on comparative embryology of angiosperms, Indian National Science Academy, New Delhi, pp. 158-162.

Narayana LL. 1974. A contribution to the floral anatomy of Balsaminaceae. – J. Jap. Bot. 49: 315-322.

Nash GV. 1903. A revision of the family Fouquieriaceae. – Bull. Torrey Bot. Club 30: 449-459.

Nayar MP, Giri GS. 1986. Parardisia – a new genus in the family Myrsinaceae with two species. – Bull. Bot. Surv. India 28: 247-252.

Nelson BW, Absy ML, Barbosa EM, Prance GT. 1987. Observations on flower visitors to Bertholletia excelsa H.B.K. and Couratari tenuicarpa A. C. Sm. (Lecythidaceae). – Acta Amazonica 15(Suppl.): 225-234.

Nesom GL. 1983. Galax (Diapensiaceae): geographic variation in chromosome numbers. – Syst. Bot. 8: 1-14.

Newman T, Ibrahim S, Wheeler JW, McLaughlin WB, Petersen RL, Duffield RM. 2000. Identification of sarracenin in four species of Sarracenia (Sarraceniaceae). – Biochem. Syst. Ecol. 28: 193-195.

Neyland R, Merchant M. 2006. Systematic relationships of Sarraceniaceae inferred from nuclear ribosomal DNA sequences. – Madroño 53: 223-232.

Ng FSP. 1971. A taxonomic study of the Ebenaceae with special reference to Malesia. – Ph.D. diss., University of Oxford.

Ng FSP. 1991a. The relationships of the Sapotaceae within the Ebenales. – In: Pennington TD (ed), The genera of Sapotaceae, chapter 1, Royal Botanic Gardens, Kew, and New York Botanical Garden, New York, pp. 1-13.

Ng FSP. 1991b. Manual of forest fruits, seeds and seedlings 1. – Forest Research Institute Malaysia, Kuala Lumpur, Malayan Forest Record 34: 61-62, 319-327.

Niedenzu F. 1890. Über den anatomischen Bau der Laubblätter der Arbutoideae und Vaccinioideae in Beziehung zu ihrer systematischen Gruppierung und geographischen Verbreitung. – Engl. Bot. Jahrb. 11: 134-263.

Niedenzu F. 1893. Lecythidaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, III(7), W. Engelmann, Leipzig, pp. 26-41.

Niedenzu F. 1895b. Tamaricaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 289-298.

Nishino E. 1983. Corolla tube formation in the Primulaceae and Ericales. – Bot. Mag. (Tokyo) 96: 319-342.

Nishino E. 1988. Early floral organogenesis in Tripetaleia (Ericaceae). – In. Leins P, Tucker SC, Endress PK (eds), Aspects of floral development, Cramer, Berlin, pp. 181-190.

Nixon KC, Crepet WL. 1993. Late Cretaceous fossil flowers of ericalean affinity. – Amer. J. Bot. 80: 616-623.

Nooteboom HP. 1975. Revision of the Symplocaceae of the Old World, New Caledonia excepted. – Leiden Bot. Ser. 1: 1-335, Leiden University, Leiden.

Nooteboom HP. 1977. Symplocaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 8(2), Sijthoff & Noordhoff International Publ., Alphen aan den Rijn, The Netherlands, pp. 205-274.

Nooteboom HP. 1981. A revision of the Australian species of Symplocos (Symplocaceae). – Brunonia 4: 309-326.

Nooteboom HP. 1989. Symplocaceae of New Caledonia. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 11: 295-306.

Nooteboom HP. 1991. Symplocos. – In: Prosea. Plant resources of South-East Asia 3. Dye and tannin producing plants, Pudoc, Wageningen, pp. 115-118.

Nooteboom HP. 2004. Symplocaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 443-449.

Nooteboom HP. 2005. Additions to Symplocaceae of the old world including New Caledonia. – Blumea 50: 407-411.

Noshiro S, Suzuki M, Ohba H. 1995. Ecological wood anatomy of Nepalese Rhododendron 1. Interspecific variation. – J. Plant Res. 108: 1-9.

Nowicke JW. 1966. Pollen morphology and classification of the Pyrolaceae and Monotropaceae. – Ann. Missouri Bot. Gard. 53: 213-219.

Nowicke JW, Skvarla JJ. 1977. Pollen morphology and the relationship of the Plumbaginaceae, Polygonaceae, and Primulaceae to the order Centrospermae. – Smithsonian Contr. Bot. 37: 1-64.

Obase K, Matsuda Y, Ito S-I. 2013. Enkianthus campanulatus (Ericaceae) is commonly associated with arbuscular mycorrhizal fungi. – Mycorrhiza 23: 199-208.

Odell EA, Vander Kloet SP. 1991. The utility of stem characters in the classification of Vaccinium L. (Ericaceae). – Taxon 40: 273-283.

Odell EA, Vander Kloet SP, Newell RE. 1989. Stem anatomy of Vaccinium section Cyanococcus and related taxa. – Can. J. Bot 67: 2328-2334.

Oever L van den, Baas P, Zandee M. 1981. Comparative wood anatomy of Symplocos and latitude and altitude of provenance. – IAWA Bull., N. S., 2: 3-24.

Oginuma K, Tobe H. 1991. Karyomorphology of two species of Impatiens from Kenya. – Acta Phytotaxon. Geobot. 42: 67-71.

Oh I-C, Anderberg A-L, Schönenberger J, Anderberg AA. 2008. Comparative seed morphology and character evolution in the genus Lysimachia (Myrsinaceae) and related taxa. – Plant Syst. Evol. 271: 177-197.

Ohara K, Kondo Y, Kawamura M. 1936a. Einteilung der Ericaceae und Kalkoxalatkristalle 1. – Theor. Appl. Bot. Zool. 4: 831-844.

Ohara K, Kondo Y, Kawamura M. 1936b. Einteilung der Ericaceae und Kalkoxalatkristalle 2. – Theor. Appl. Bot. Zool. 4: 993-1004.

Oldfield F. 1959. The pollen morphology of some of the West European Ericales. – Pollen Spores 1: 19-48.

Olechnowicz-Stepien W, Rzadkowska-Bodalska H, Lamer-Zarawska E. 1978. Flavonoids of Calluna vulgaris flowers (Ericaceae). – Pol. J. Chem. 52: 2167-2172.

Oliver D. 1888. Talisia princeps Oliv. – Hooker’s Icon. Plant. 8: pl. 1769.

Oliver D. 1895. Lissocarpa benthamii Gürke. – Hooker’s Icon. Plant. 25: pl. 2413.

Oliver EGH. 1987a. Studies in the Ericoideae (Ericaceae) V. the genus Coilostigma. – Bothalia 17: 163-170.

Oliver EGH. 1987b. Studies in the Ericoideae VII. The placing of the genus Philippia into synonymy under Erica; the southern African species. – South Afr. J. Bot. 53: 455-458.

Oliver EGH. 1988. Studies in the Ericoideae (Ericaceae) VI. The generic relationship between Erica and Philippia in southern Africa. – Bothalia 18: 1-10.

Oliver EGH. 1989. The Ericoideae and the southern African heathers. – Bot. J. Linn. Soc. 101: 319-327.

Oliver EGH. 1991. The Ericoideae (Ericaceae) – a review. – Contr. Bolus Herb. 13: 158-208.

Oliver EGH. 1992. Studies in the Ericoideae (Ericaceae) IX. New combinations for Philippia are made in Erica for the Flora Zambesiaca region. – Kew Bull. 47: 665-668.

Oliver EGH. 1993a. Studies in the Ericoideae (Ericaceae) X. Nomenclatural changes for the Flore des Mascareignes region. – Kew Bull. 48: 767-769.

Oliver EGH. 1993b. Studies in the Ericoideae (Ericaceae) XI. The generic relationship between Erica and Blaeria. – Kew Bull. 48: 771-780.

Oliver EGH. 1993c. Studies in the Ericoideae (Ericaceae) XII. The placing of the genus Blaeria into synonymy under Erica; nomenclatural and taxonomic changes for the southern African region. – Bothalia 23: 1-7.

Oliver EGH. 1994. Studies in the Ericoideae (Ericaceae) XV. The generic relationship between Erica and Ericinella. – Bothalia 24: 121-126.

Oliver EGH. 2000. Systematics of Ericeae (Ericaceae: Ericoideae): species with indehiscent and partially dehiscent fruits. – Contr. Bolus Herb. 19: 1-483.

Oliver EGH, Linder HP, Rourke JP. 1983. Geographical distribution of present-day Cape taxa and their phytogeographical significance. – Bothalia 14: 427-440.

Olson AR. 1980. Seed morphology of Monotropa uniflora L. (Ericaceae). – Amer. J. Bot. 67: 986-974.

Olson AR. 1991. Postfertilization changes in ovules of Monotropa uniflora L. (Monotropaceae). – Amer. J. Bot. 78: 99-107.

Osmundson TW, Halling RE, Bakker HC. 2007. Morphological and molecular evidence supporting an arbutoid mycorrhizal relationship in the Costa Rican páramo. – Mycorrhiza 17: 217-222.

Oswald WW, Doughty ED, Ne’eman G, Ne’eman R, Ellison AM. 2011. Pollen morphology and its relationship to taxonomy of the genus Sarracenia (Sarraceniaceae). – Rhodora 113: 235-251.

Otegui M. 1998. Sinopsis del género Myrsine L. (Myrsinaceae) en el cono sur de América del Sur. – Candollea 53: 133-157.

Otegui M, Cocucci A. 1999. Flower morphology and biology of Myrsine laetevirens, structural and evolutionary implications of anemophily in Myrsinaceae. – Nord. J. Bot. 19: 71-85.

Pacini E. 1969. Embryology of Arbutus unedo L. – Giorn. Bot. Ital. 103: 623-624.

Paige KN, Whitham TG. 1985. Individual and population shifts in flower color by scarlet gilia: a mechanism for pollinator tracking. – Science 227: 315-317.

Palibin JV. 1899. Revisio generis Enkianthus Lour. – Scr. Bot. Horti Univ. Imp. Petropolitanae 15: 1-18.

Palm BT. 1934. A Mitrastemon, Rafflesiaceae, from Sumatra. – Acta Hort. Gothoburg. 147-152.

Palser BF. 1951. Studies of floral morphology in the Ericales I. Organography and vascular anatomy in the Andromedeae. – Bot. Gaz. 112: 447-485.

Palser BF. 1952. Studies of floral morphology in the Ericales II. Megasporogenesis and megagametophyte development in the Andromedeae. – Bot. Gaz. 114: 33-52.

Palser BF. 1954. Studies of floral morphology in the Ericales III. Organography and vascular anatomy in several species of the Arbuteae. – Phytomorphology 4: 335-354.

Palser BF. 1958. Studies of floral morphology in the Ericales IV. Observations on three members of the Gaultherieae. – Trans. Illinois Acad. Sci. 51: 24-34.

Palser BF. 1961a. Studies of floral morphology in the Ericales V. Organography and vascular anatomy in several United States species of the Vacciniaceae. – Bot. Gaz. 123: 79-111.

Palser BF. 1961b. Additional observations on the floral morphology of the Andromedeae. – Amer. J. Bot. 48: 535-536.

Palser BF. 1961c. Some aspects of embryology in the Ericales. – In: Recent advances in botany 1, (IX International Botanical Congress Montreal, 1959), University of Toronto Press, Toronto, pp. 685-689.

Palser BF. 1963. Studies of floral morphology in the Ericales VI. The Diapensiaceae. – Bot. Gaz. 124: 200-219.

Palser BF, Murty YS. 1967. Studies of floral morphology in the Ericales VIII. Organography and vascular anatomy in Erica. – Bull. Torrey Bot. Club 94: 243-320.

Palser BF, Philipson WR, Philipson MN. 1989. Development of ovule, megagametophyte and early endosperm in representative species of Rhododendron L. (Ericaceae). – Bot. J. Linn. Soc. 101: 363-393.

Pankow H. 1959. Histogenetische Untersuchungen an der Plazenta der Primulaceen. – Ber. Deutsch. Bot. Ges. 72: 111-122.

Paoletti C, Holsinger KE. 1999. Spatial patterns of polygenic variation in Impatiens capensis, a species with an environmentally controlled mixed mating system. – J. Evol. Biol. 12: 689-696.

Parry CC. 1884. Arctostaphylos Adans. Notes on the U.S. Pacific coast species. – Proc. Davenport Acad. Nat. Sci. 4: 31-37.

Pascarella JB. 1997a. Breeding systems of Ardisia Sw. (Myrsinaceae). – Brittonia 49: 45-53.

Pascarella JB. 1997b. Pollination ecology of Ardisia escallonioides (Myrsinaceae). – Castanea 62: 1-7.

Patel RC, Inamdar JA. 1971. Structure and ontogeny of stomata in some Polemoniales. – Ann. Bot. 35: 389-409.

Paterson BR. 1961. Studies of floral morphology in the Epacridaceae. – Bot. Gaz. 122: 259-279.

Patterson R. 1977. The generic status of perennial species of Linanthus (Polemoniaceae). – Taxon 26: 507-511.

Patterson R. 1980a. The occurrence of B chromosomes in Linanthus pachyphyllus. – Caryologia 33: 141-149.

Patterson R. 1980b. Crossing relationships in perennial Linanthus taxa (Polemoniaceae). – Syst. Bot. 5: 384-390.

Patterson R. 1989. Taxonomic relationships of Gilia maculata (Polemoniaceae). – Madroño 36: 15-27.

Patterson R, Yoder-Williams M. 1984. Leptodactylon glabrum, a new intermountain species of Polemoniaceae. – Syst. Bot. 9: 261-262.

Pax F. 1889. Monographische Übersicht über die Arten der Gattung Primula. – Engl. Bot. Jahrb. Syst. 18: 75-241.

Pax F. 1891a. Myrsinaceae. – In: Engler A, Prantl K, (eds), Die natürlichen Pflanzenfamilien, IV(1), W. Engelmann, Leipzig, pp. 84-97.

Pax F. 1891b. Primulaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 98-116.

Pax F. 1896. Empetraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 123-127.

Payens JPDW. 1967. A monograph of the genus Barringtonia (Lecythidaceae). – Blumea 15: 157-263.

Pearson V, Read DJ. 1973. The biology of mycorrhiza in the Ericaceae I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic culture. – New Phytol. 72: 371-379.

Pedraza-Peñalosa P. 2008. Three new species of Disterigma (Ericaceae: Vaccinieae) from western Colombia, with comments on morphological terminology. – Brittonia 60: 1-10.

Pedraza-Peñalosa P. 2009. Systematics of the Neotropical blueberry genus Disterigma (Ericaceae). – Syst. Bot. 34: 406-413.

Pedraza-Peñalosa P. 2010. Insensitive blueberries: a total-evidence analysis of Disterigma s.l. (Ericaceae) exploring transformation costs. – Cladistics 26: 388-407.

Pedraza-Peñalosa P, Salinas NR, Wheeler WC. 2013. Venation patterns of neotropical blueberries (Vaccinieae: Ericaceae) and their phylogenetic utility. – Phytotaxa 96: 1-53.

Pedraza-Peñalosa P, Salinas NR, Virnig AS, Wheeler WC. 2015. Preliminary phylogenetic analysis of the Andean clade and the placement of new Colombian blueberries (Ericaceae, Vaccinieae). – PhytoKeys 49: 13-31.

Pellegrin F. 1938. Sur un genre africain peu connu: Tridesmostemon Engl. (Sapotacées). – Bull. Soc. Bot. France 85: 179-181.

Peltrisot C-N. 1904. Développement et structure de la graine chez les Ericacées. – Diss., Université de Paris, France.

Peng C-I, Goldblatt P. 1983. Confirmation of the chromosome number in Cephalotaceae and Roridulaceae. – Ann. Missouri Bot. Gard. 70: 197-198.

Pennington TD. 1990. Flora Neotropica. Monograph 52. Sapotaceae. – New York Botanical Garden, Bronx, New York.

Pennington TD. 1991. The genera of Sapotaceae. – Royal Botanic Gardens, Kew, and New York Botanical Garden, Bronx, New York.

Pennington TD. 2004. Sapotaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 390-421.

Pennington TD. 2007. 152. Sapotaceae. – In: Harling G, Persson C (eds), Flora of Ecuador 80, Department of Plant and Environmental Sciences, Göteborg University, pp. 1-193.

Pereira JT. 1997. Five new species of Payena (Sapotaceae) and notes on the genus in Borneo. – Kew Bull. 52: 903-922.

Perkins J. 1928. Übersicht über die Gattungen der Styracaceae. – W. Engelmann, Leipzig.

Perotto S, Perotto R, Faccio A, Schubert A, Varma A, Bonfante P. 1995. Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. – Can. J. Bot. 73 (Suppl.): S557-S568.

Perrier de la Bâthie H. 1953. Myrsinacées. – In: Humbert H (ed), Flore de Madagascar et des Comores 161, Mus. Natl. Hist. Nat., Paris.

Peter A. 1897. Polemoniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(3a), W. Engelmann, Leipzig, pp. 40-54, 377.

Petersen HE. 1912. The structure and biology of arctic flowering plants II. Diapensiaceae. Diapensia lapponica L. – Meddel. Grønland 36: 141-154.

Philipson WR. 1985. Shoot morphology in Rhododendron. – Notes Roy. Bot. Gard. Edinb. 43: 161-171.

Philipson WR, Philipson MN. 1968. Diverse nodal types in Rhododendron. – J. Arnold Arbor. 49: 193-224.

Pichon M. 1945. Le genre Combretodendron et les Lecythidacées. – Not. Syst. (Paris) 12: 192-197.

Pierre JBL. 1890-1891. Notes botaniques Sapotacées. – Paris.

Pillon Y, Nooteboom HP. 2009. A new species of Symplocos (Symplocaceae) from Mont Panié (New Caledonia). – Adansonia, sér. III, 31: 191-196.

Pipoly JJ. 1983. Contributions toward a monograph of Cybianthus (Myrsinaceae) III. A revision of subgenus Laxiflorus. – Brittonia 35: 61-80.

Pipoly JJ. 1987. A systematic revision of the genus Cybianthus subgenus Grammadenia (Myrsinaceae). – Mem. New York Bot. Gard. 43: 1-76.

Pipoly JJ. 1992a. The genus Cybianthus subgenus Conomorpha (Myrsinaceae) in Guayana. – Ann. Missouri Bot. Gard. 79: 908-957.

Pipoly JJ. 1992b. Estudios en el género Myrsine (Myrsinaceae) de Colombia. – Caldasia 17: 3-10.

Pipoly JJ. 1993. The genus Geissanthus (Myrsinaceae) in the Chocó floristic province. – Novon 3: 463-474.

Pipoly JJ. 1999. Two new species of Myrsinaceae from French Guiana. – Brittonia 51: 128-133.

Pipoly JJ, Ricketson JM. 1999. Discovery of the Indo-Malesian genus Hymenandra (Myrsinaceae) in the Neotropics, and its boreotropical implications. – Sida 18: 701-746.

Pirie MD, Oliver EGH, Bellstedt DU. 2011. A densely sampled ITS phylogeny of the Cape flagship genus Erica L. suggests numerous shifts in floral macro-morphology. – Mol. Phylogen. Evol. 61: 593-601.

Pitard J. 1930. Myrsinaceae. – In: Lecomte H, Humbert H (eds), Flore générale de l’Indo-Chine 3, Masson, Paris, pp. 765-877.

Plitmann U, Levin DA. 1983. Pollen-pistil relationships in the Polemoniaceae. – Evolution 37: 957-967.

Plitmann U, Levin DA. 1990. Breeding systems in the Polemoniaceae. – Plan Syst. Evol. 170: 205-214.

Pohl F. 1931. Über sich öffnende Kristallräume in den Antheren von Deherainia smaragdina. – Jahrb. Wiss. Bot. 75: 481-493.

Porter JM. 1993. Phylogenetic systematics of Gilia sect. Giliandra (Polemoniaceae). – Ph.D. diss., University of Arizona, Tucson, Arizona.

Porter JM. 1996 [1997]. Phylogeny of Polemoniaceae based on nuclear ribosomal internal transcribed spacer DNA sequences. – Aliso 15: 57-77.

Porter JM. 1998a. Aliciella, a recircumscribed genus of Polemoniaceae. – Aliso 17: 23-46.

Porter JM. 1998b. Nomenclatural changes in Polemoniaceae. – Aliso 17: 83-85.

Porter JM, Johnson LA. 1998. Phylogenetic relationships of Polemoniaceae: inferences from mitochondrial nad1B intron sequences. – Aliso 17: 157-188.

Porter JM, Johnson LA. 2000. A phylogenetic classification of Polemoniaceae. – Aliso 19: 55-91.

Porter JM, Patterson RW. 2015. A fistful of Polemoniaceae: new names and combinations. – Aliso 32: 55-88.

Porter JM, Steinmann VW. 2009. Two new Loeselia (Polemoniaceae) species from Michoacán, Mexico. – Syst. Bot. 34: 730-736.

Porter JM, Johnson LA, Wilken D. 2010. Phylogenetic systematics of Ipomopsis (Polemoniaceae): relationships and divergence times estimated from chloroplast and nuclear DNA sequences. – Syst. Bot. 35: 181-200.

Powell EA, Kron KA. 2001. An analysis of the phylogenetic relationships in the wintergreen group (Diplycosia, Gaultheria, Pernettya, Tepuia; Ericaceae). – Syst. Bot. 26: 808-817.

Powell EA, Kron KA. 2002. Hawaiian blueberries and their relatives – a phylogenetic analysis of Vaccinium sections Macropelma, Myrtillus, and Hemimyrtillus (Ericaceae). – Syst. Bot. 27: 768-779.

Powell EA, Kron KA. 2003. Molecular systematics of the northern Andean blueberries (Vaccinieae, Vaccinioideae, Ericaceae). – Int. J. Plant Sci. 164: 987-995.

Powell EA, Vander Kloet SP. 1997. Foliar venation characteristics of Vaccinium sect. Macropelma and sect. Myrtillus (Ericaceae): a comparative analysis. – Can. J. Bot. 75: 2015-2025.

Powell JM, Chapman AR, Doust ANL. 1987. Classification and generic status in the Epacridaceae – a preliminary analysis. – Aust. Syst. Bot. Soc. Newsl. 53: 70-78.

Powell JM, Robertson G, Wiecek BM, Scott JA. 1992. Studies in Australian Epacridaceae: changes to Styphelia. – Telopea 5: 207-227.

Powell JM, Crayn DM, Gadek PA, Quinn CJ, Morrison DA, Chapman AR. 1996. A re-assessment of relationships within Epacridaceae. – Ann. Bot., N. S., 77: 305-315.

Powell JM, Morrison DA, Gadek PA, Crayn DM, Quinn CJ. 1997. Relationships and generic concepts within Styphelieae (Epacridaceae). – Aust. Syst. Bot. 10: 15-29.

Prakash V, Dayal R. 1965. Barringtonioxylon eopterocarpum sp. nov. A fossil wood of Lecythidaceae from Deccan intertrappean beds of Mahurzari. – Paleobotanist 13: 25-29.

Prance GT. 1976. The pollination and androphore structure of some Amazonian Lecythidaceae. – Biotropica 8: 235-241.

Prance GT. 2004. Napoleonaeaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 282-284.

Prance GT. 2008. A revision of Foetidia (Lecythidaceae subfamily Foetidioideae). – Brittonia 60: 336-348.

Prance GT, Jongkind CCH. 2015. A revision of African Lecythidaceae. – Kew Bull. 70: 6 DOI 10.1007/S12225-014-9547-4

Prance GT, Mori SA. 1978. Observations on the fruits and seeds of neotropical Lecythidaceae. – Brittonia 30: 21-33.

Prance GT, Mori SA. 1979. Flora Neotropica. Monograph 21. Lecythidaceae I. The actinomorphic-flowered New World genera (Asteranthos, Gustavia, Grias, Allantoma, & Cariniana). – New York Botanical Garden, Bronx, New York.

Prance GT, Mori SA. 1983. Dispersal and distribution of Lecythidaceae and Chrysobalanaceae. – Sonderbd. Naturw. Ver. Hamburg 7: 163-186.

Prance GT, Mori SA. 2004. Lecythidaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 221-232.

Prather LA. 1994. A new species of Phlox (Polemoniaceae) from northern Mexico with an expanded circumscription of subsection divaricatae. – Plant Syst. Evol. 192: 61-66.

Prather LA. 1996. Three new species of Cobaea (Polemoniaceae). – Brittonia 48: 111-119.

Prather LA. 1999a. Systematics of Cobaea (Polemoniaceae). – Syst. Bot. Monogr. 57: 1-81.

Prather LA. 1999b. The relative lability of floral vs non-floral characters and a morphological phylogenetic analysis of Cobaea (Polemoniaceae). – Bot. J. Linn. Soc. 131: 433-450.

Prather LA, Jansen RK. 1998. Phylogeny of Cobaea (Polemoniaceae) based on sequence data from the ITS region of nuclear ribosomal DNA. – Syst. Bot. 23: 57-72.

Prather LA, Ferguson CJ, Jansen RK. 2000. Polemoniaceae phylogeny and classification: implications of sequence data from the chloroplast gene ndhF. – Amer. J. Bot. 87: 1300-1308.

Primack RB, Wyatt R. 1975. Variation and taxonomy of Pyxidanthera (Diapensiaceae). – Brittonia 27: 115-118.

Prince LM. 1998. Systematics of the Theoideae (Theaceae) and the resolution of morphological, anatomical and molecular data. – Ph.D. diss., Department of Biology, University of North Carolina at Chapel Hill.

Prince LM. 2002. Circumscription and biogeographic patterns in the eastern North American-East Asian genus Stewartia (Theaceae: Stewartieae): insight from chloroplast and nuclear DNA sequence data. – Castanea 67: 290-301.

Prince LM. 2007. A brief nomenclatural review of genera and tribes in Theaceae. – Aliso 24: 105-121.

Prince LM, Parks CR. 2001. Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data. – Amer. J. Bot. 88: 2309-2320.

Puente-Lelièvre C. 2013. Systematics and biogeography of Styphelieae (Epacridoideae, Ericaceae). – Ph.D. thesis, James Cook University, Cairns, Australia.

Puente-Lelièvre C, Hislop M, Harrington M, Brown EA, Kuzmina M, Crayn DM. 2016. A five-marker molecular phylogeny of the Styphelieae (Epacridoideae, Ericaceae) supports a broad concept of Styphelia. – Aust. Syst. Bot. 28: 368-387.

Punt W. 1971. Pollen morphology of the genera Norantea, Souroubea, and Marcgravia (Marcgraviaceae). – Pollen Spores 13: 199-232.

Punt W, de Leeuw van Weenen JS, Oostrum AP van. 1974. The Northwest European pollen flora 3. Primulaceae. – Rev. Palaeobot. Palynol. 14: 31-70.

Pyykkö M. 1968. Embryological and anatomical studies on Finnish species of the Pyrolaceae. – Ann. Bot. Fenn. 5: 153-165.

Pyykkö M. 1969. Placentation in the Ericales I. Pyrolaceae and Monotropaceae. – Ann. Bot. Fenn. 6: 255-268.

Qi C-J. 1981. A new species of Styracaceae from Hunan. – Acta Phytotaxon. Sin. 19: 526-528.

Quinn CJ, Crayn DM, Heslewood MM, Brown EA, Gadek PA. 2003. A molecular estimate of the phylogeny of Styphelieae (Ericaceae). – Aust. Syst. Bot. 16: 581-594.

Quinn CJ, Brown EA, Heslewood MM, Crayn DM. 2005. Generic concepts in Styphelieae (Ericaceae): the Cyathodes group. – Aust. Syst. Bot. 18: 439-454.

Quinn CJ, Crowden RK, Brown EA, Southam MJ, Thornhill AH, Crayn DM. 2015. A reappraisal of the generic concepts of Epacris, Rupicola and Budawangia (Ericaceae, Epacridoideae, Epacrideae) based on phylogenetic analysis of morphological and molecular data. – Aust. Syst. Bot. 28: 63-77.

Radhakrishnan N, Gnanamani A, Mandal AB. 2011. A potential antibacterial agent embelin, a natural benzoquinone extracted from Embelia ribes. – Biol. Med. 3 (Spec. Issue): 1-7.

Raju MVS. 1952. Embryology of Anagallis pumila Swartz. – Proc. Indian Acad., Sci. Sect. B, 36: 34-42.

Raju VS, Nair VJ, Narayana LL, Dutt BSM. 2002. Proposal to conserve the name Hydrocera against Tytonia (Balsaminaceae). – Taxon 51: 383-384.

Rama Devi D. 1991. Floral anatomy of six species of Impatiens. – Feddes Repert. 102: 395-398.

Rama Devi D, Narayana LL. 1989. Floral anatomy of Balsaminaceae. – In: Trivedi M, Gill B, Saini S (eds), Plant Science Research in India, pp. 407-413.

Randall JL, Hilu KW. 1990. Interference through improper pollen transfer in mixed stands of Impatiens capensis and I. pallida (Balsaminaceae). – Amer. J. Bot. 77: 939-944.

Rao A, Balakrishnan, NP. 1972. Mitrastemon yamamotoi (Makino) Makino (Rafflesiaceae) – a unique root parasite new to the Indian flora. – Indian Forester 98: 234-235.

Rao AN. 1953. Inverted polarity in the embryo-sac of Saurauia napaulensis DC. – Curr. Sci. 22: 282.

Rao AN. 1971. Morphology and morphogenesis of foliar sclereids in Aegiceras corniculatum. – Isr. J. Bot. 20: 124-132.

Rao RVS, Ayyangar KR, Sampathkumar R. 1986. On the karyological characteristics of some members of Balsaminaceae. – Cytologia 51: 251-260.

Rao TA. 1951. Studies on foliar sclereids in dicotyledons I. Structure and ontogeny of sclereids in the leaf of Diospyros discolor. – Proc. Ind. Acad. Sci., Ser. B, 34: 92-96.

Rao TA. 1961. Studies in foliar sclereids in dicotyledons VII. Origin and development of sclerenchymatous idioblasts in the leaf of Manilkara hexandra (Roxb.) Dubard. – Proc. Indian Acad. Sci., Sect. B, 52: 27-31.

Rao TA, Chakraborti S. 1985. The veinlet syndrome in the tribe Andromedeae (Ericaceae). – Proc. Indian Acad. Sci. 94: 639-654.

Rathcke B, Real L. 1993. Autogamy and inbreeding depression in mountain laurel, Kalmia latifolia (Ericaceae). – Amer. J. Bot. 80: 143-146.

Rathore JS. 1971. Studies in the root system and regeneration of Diospyros melanoxylon Roxb. – Indian Forester 97: 379-386.

Raus T. 1987. Soldanella (Primulaceae) in Griechenland. – Willdenowia 16: 335-342.

Ray JD Jr. 1956. The genus Lysimachia in the New World. – Illinois Biol. Monogr. 24(3-4): 1-160.

Read DJ. 1983. The biology of mycorrhiza in the Ericales. – Can. J. Bot. 61: 985-1004.

Read DJ. 1996. The structure and function of the ericoid mycorrhizal root. – Ann. Bot., N. S., 77: 365-374.

Reader RJ. 1977. Bog ericad flowers: self compatibility and relative attractiveness to bees. – Can. J. Bot. 55: 2279-2287.

Rebelo AG, Siegfried WR, Oliver EGH. 1985. Pollination syndromes of Erica species in the south-western Cape. – South Afr. J. Bot. 51: 270-280.

Record SJ. 1932. Woods of the Ericales, with particular reference to Schizocardia. – Trop. Woods 32: 11-14.

Record SJ. 1939. American woods of the family Sapotaceae. – Trop. Woods 59: 21-51.

Record SJ. 1942. American woods of the family Theaceae. – Trop. Woods 70: 23-33.

Redgwell RJ. 1983. Composition of Actinidia mucilage. – Phytochemistry 22: 951-956.

Renner SS. 1989. Floral biological observations on Heliamphora tatei (Sarraceniaceae) and other plants from Cerro de la Neblina in Venezuela. – Plant Syst. Evol. 163: 21-29.

Reveal JL. 2010. Proposal to conserve the name Mitrastemon (Rafflesiaceae) with that spelling. – Taxon 59: 299-300.

Reynolds JD. 1968. Morphological studies in Diapensiaceae I. Chromosome number and microspore development in Pyxidanthera brevifolia Wells. – Torreya 95: 653-656.

Richards J. 1993. Primula. – Timber Press, Portland, Oregon.

Richards J. 2003. Primula. 2nd ed. – Timber Press, Portland, Oregon.

Richardson JE, Bakar AM, Tosh J, Armstrong K, Smedmark J, Anderberg AA, Slik F, Wilkie P. 2014. The influence of tectonics, sea-level changes and dispersal on migration and diversification of Isonandreae (Sapotaceae). – Bot. J. Linn. Soc. 174: 130-140.

Richter HG. 1982. The wood structure of Couratari Aubl. and Couroupita Aubl. (Lecythidaceae). – IAWA Bull., N. S., 3: 45-55.

Ricketson JM, Pipoly JJ. 1999. The genus Myrsine (Myrsinaceae) in Venezuela. – Sida 18: 1095-1144.

Ricketson JM, Pipoly JJ. 2003. Revision of Ardisia subg. Auriculardisia (Myrsinaceae). – Ann. Missouri Bot. Gard. 90: 179-317.

Rivera Nunez D, Ruiz Liminana JB. 1987. Argania spinosa (L.) Skeels (Sapotaceae) subespontanea en la peninsula Iberica. – An. Jard. Bot. Madrid 44(12): 173.

Robertson DC, Robertson JA. 1982. Ultrastructure of Pterospora andromedea Nuttall and Sarcodes sanguinea Torrey mycorrhizas. – New Phytol. 92: 539-551.

Robertson DC, Robertson JA. 1985. Ultrastructural aspects of Pyrola mycorrhizae. – Can. J. Bot. 63: 1089-1098.

Robson NKB. 1961a. The taxonomic position of Ficalhoa laurifolia Hiern. – Comptes Rendus de la IVe Réunion de l’Association pour l’étude taxonomique de la flore d’Afrique tropicale, Junta de Investigações do Ultramar, Lisboa, pp. 299-308.

Robson NKB. 1961b. 26. Theaceae (Ternstroemiaceae). – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 405-407

Rodrígues S, Berazaín R. 1991. Caracterización de la nervadura foliar en el género Purdiaea Planch. (Cyrillaceae). – Revista Jard. Bot. Nac. Univ. Habana 12: 69-73.

Rodrígues S, Berazaín R. 1992. Caracteres diagnósticos en el género Purdiaea Planchon (Cyrillaceae) en Cuba. – Revista Jard. Bot. Nac. Univ. Habana 13: 17-20.

Romeo JT, Bacon JD, Mabry TJ. 1977. Ecological considerations of amino acids and flavonoids in Sarracenia species. – Biochem. Syst. Ecol. 5: 117-120.

Rönblom K, Anderberg AA. 2002. Phylogeny of Diapensiaceae based on molecular data and morphology. – Syst. Bot. 27: 383-395.

Ronse De Craene L-P. 2011. Floral development of Napoleonaea (Lecythidaceae), a deceptively complex flower. – In: Wanntorp L, Ronse de Craene LP (eds), Flowers on the Tree of Life, Syst. Assoc. Spec. Vol. 80, Cambridge University Press, Cambridge, pp. 279-295.

Ronse De Craene L-P, Smets E, Clinckemaillie D. 1995. The floral development and floral anatomy of Coris monspeliensis. – Can. J. Bot. 73: 1687-1698.

Roon AC de. 1967. Foliar sclereids in the Marcgraviaceae. – Acta Bot. Neerl. 15: 585-628.

Roon AC de. 1970. Flora of Panama VI. 121. Marcgraviaceae. – Ann. Missouri Bot. Gard. 57: 29-50.

Roon AC de. 1975. Contributions towards a monograph of the Marcgraviaceae. – Ph.D. diss., University of Utrecht.

Roon AC de, Dressler S. 1997. New taxa of Norantea Aubl. s. l. (Marcgraviaceae) from Central America and adjacent South America. – Bot. Jahrb. Syst. 119: 327-335.

Rosatti TJ. 1981. A new chromosome number in Arctostaphylos uva-ursi. – Can. J. Bot. 59: 272-273.

Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ. 2018. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. – Mol. Phylogen. Evol. 122: 59-79.

Ross MN. 1936. Seed reproduction of Shortia galacifolia. – J. New York Bot. Gard. 37: 208-211.

Ross R. 1983. 102. Ericaceae. – In: Launert E (ed), Flora Zambesiaca 7 (Part 1), Flora Zambesiaca Managing Committee, London, pp. 157-181.

Røsvik A. 1966. On the taxonomic position of the genera Dodecatheon L. and Cyclamen L. within Primulaceae. – Årb. Univ. Bergen, Mat. Nat. Ser. 5: 1-16.

Røsvik A. 1968. Investigations on petal epidermis and its bearing on taxonomy in Primulaceae. – Årb. Univ. Bergen, Mat. Nat. Ser. 3: 1-32.

Røsvik A. 1969. On the taxonomic position of the genera Ardisiandra Hook. and Stimpsonia Wright within Primulaceae. – Årb. Univ. Bergen, Mat. Nat. Ser. 7: 1-15.

Roth I. 1959a. Histogenese und morphologische Deutung der Kronblätter von Primula. – Bot. Jahrb. Syst. 79: 1-16.

Roth I. 1959b. Histogenese und morphologische Deutung der Plazenta von Primula. – Flora 148: 129-152.

Roth I. 1969. Estructura anatómica de la corteza de algunas especies arbóreas venezolanas de Lecythidaceae. – Act Bot. Venez. 4: 89-117.

Roth I, Carrasquel G. 1970. The peeling off of the epidermis in fruits of Jacquinia loeflingii Carrasquel. – Acta Biol. Venezuel. 6: 139-145.

Roy RP, Jha RP. 1965. Cytological studies in Lecythidaceae II. – J. Indian Bot. Soc. 44: 209-217.

Royen P van. 1957. Revision of the Sapotaceae of the Malaysian area in a wider sense VII. Planchonella Pierre. – Blumea 8: 235-445.

Royen P van. 1958. Revision of the Sapotaceae of the Malaysian area in a wider sense XIV. Diploknema Pierre. – Blumea 9: 75-88.

Royen P van. 1959. Revision of the Sapotaceae of the Malaysian area in a wider sense XIX. Chelonespermum Hemsley. – Nova Guinea, n. s., 10: 137-142.

Royen P van. 1960. Revision of the Sapotaceae of the Malaysian area in a wider sense XXII. Mastichodendron. – Blumea 10: 122-125.

Ruchisansakun S, Niet T van der, Janssens SB, Triboun P, Techaprasan J, Jenjittikul T, Suksathan P. 2015. Phylogenetic analyses of molecular data and reconstruction of morphological character evolution in Asian Impatiens Section Semeiocardium (Balsaminaceae). – Syst. Bot. 40: 1063-1074.

Rust RW. 1977. Pollination in Impatiens capensis and Impatiens pallida (Balsaminaceae). – Bull. Torrey Bot. Club 104: 361-367.

Rust RW. 1979. Pollination of Impatiens capensis: pollinators and nectar robbers. – J. Kansas Entomol. Soc. 52: 297-308.

Rzedowski J, Calderón de Rzedowski G, Villarreal JA. 1995. Notas sobre algunas Polemoniaceae Mexicanas. – Acta Bot. Mex. 31: 55-61.

Safijowska LD. 1960. Male gametophyte in Enkianthus. – Bot. Gaz. 121: 190-195.

Salasoo I. 1983. Alkane distribution in epicuticular waxes of Epacridaceae. – Phytochemistry 22: 937-942.

Salasoo I. 1985. Rimuene in Epacridaceae and Ericaceae: ixistence of chemotypes? – Aust. J. Bot. 33: 239-243.

Salasoo I. 1988. Epicuticular wax hydrocarbons of Richea (Epacridaceae). – Aust. Syst. Bot. 1: 185-188.

Saleh NAM, Towers GHN. 1974. Flavonol glycosides of Norantea guianensis flowers. – Phytochemistry 13: 2012.

Salter TM. 1953. A note on sex in Royena glabra L. (Ebenaceae). – J. South Afr. Bot. 19: 29-30.

Samuelson G. 1913. Studien über Entwicklungsgeschichte der Blüten einiger Bicornes-typen: ein Beitrag zur Kenntnis der systematischen Stellung der Diapensiaceen und Empetraceen. – Svensk Bot. Tidskr. 7: 97-188.

Sangai GRW. Lecythidaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-6.

Sankara Rao K. 1972. Studies in Myrsinaceae I. A contribution to the embryology of Maesa dubia Wall. – Proc. Indian Acad. Sci., Sect. B, 75: 160-166.

Saraiva L, Cesar O, Monteiro R. 1988. Biologia da polinização e sistema de reprodução de Styrax camporum Pohl e S. ferrugineus Nees et Mart. (Styracaceae). – Rev. Brasil. Bot. 11: 71-80.

Sarkar AK. 1988. Primulaceae – its evolution and assessment in status as judged through cytotaxonomy. – Feddes Repert. 99: 113-132.

Sarwar AKMG, Takahashi H. 2006a. Pollen morphology of Enkianthus (Ericaceae) and its taxonomic significance. – Grana 45: 161-174.

Sarwar AKMG, Takahashi H. 2006b. The taxonomic significance of pollen morphology in Andromedeae s.s., Gaultherieae, Lyonieae and Oxydendreae (Ericaceae). – Jap. J. Palyn. 52: 77-96.

Sarwar AKMG, Takahashi H. 2008. An overview of pollen morphology and its systematic significance in tribe Vaccinieae (Vaccinioideae: Ericaceae). – Jap. J. Palyn. 53: 87-104.

Sarwar AKMG, Takahashi H. 2009. Pollen morphology and systematics in two subfamilies of Ericaceae: Cassiopoideae and Harrimanelloideae. – Bangladesh J. Plant Taxon. 16: 37-46.

Sarwar AKMG, Takahashi H. 2014. Pollen morphology of Erica L. and related genera and its taxonomic significance. – Grana 53: 221-231.

Sarwar AKMG, Ito T, Takahashi H. 2006a. Pollen of Ceratostema (Ericaceae, Vaccinieae): tetrads without septa. – J. Plant Res. 119: 685-688.

Sarwar AKMG, Ito T, Takahashi H. 2006b. An overview of pollen morphology and its relevance to the sectional classification of Vaccinium (Ericaceae). – Jap. J. Palyn. 52: 15-34.

Sarwar AKMG, Ito T, Takahashi H. 2008. An overview of pollen morphology in subfamily Arbutoideae (Ericaceae), and its systematic significance. – Jap. J. Palyn. 54: 79-92.

Sattler R. 1962. Zur frühen Infloreszenz- und Blütenentwicklung der Primulales sensu lato mit besonderer Berücksichtigung der Stamen-Petalum-Entwicklung. – Bot. Jahrb. Syst. 81: 385-396.

Sauer H. 1933. Blüte und Frucht der Oxalidaceen, Linaceen, Geraniaceen, Tropaeolaceen und Balsaminaceen. Vergleichend-entwicklungsgeschichtliche Untersuchungen. – Planta 19: 417-481.

Saunders DE. 1975. Cyclamen, the genus in the wild and in cultivation. Rev. by R. D. Meikle and C. Grey-Wilson. – Alpine Garden Society, Woking.

Sax JH. 1960. Polyploidy in Enkianthus (Ericaceae). – J. Arnold Arbor. 41: 191-196.

Sazima M, Sazima I. 1980. Bat visits to Marcgravia myriostigma Tr. et Pl. (Marcgraviaceae) in southeastern Brazil. – Flora 169: 84-88.

Sazima I, Buzato S, Sazima M. 1993. The bizarre inflorescence of Norantea brasiliensis (Marcgraviaceae): visits of hovering and perching birds. – Bot. Acta 106: 507-513.

Schadel WE. 1978. Leaf anatomy and venation patterns of the Styracaceae. – Ph.D. diss., Master of Arts, University of North Carolina at Chapel Hill.

Schadel WE, Dickison WC. 1979. Leaf anatomy and venation patterns of Styracaceae. – J. Arnold Arbor. 60: 8-37.

Schaeppi H. 1934. Untersuchungen über die Narben- und Antherenstellung in den Blüten der Primulaceen. – Arch. Julius Klaus-Stift. Vererbungsforsch. Sozialanthropol. Rassenhyg. Zürich 9: 133-236.

Schaeppi H. 1937. Vergleichend-morphologische Untersuchungen am Gynoeceum der Primulaceen. – Zeitschr. Gesamte Naturwiss. (Brunswick) 3: 239-250.

Schemske DW. 1978. Evolution of reproductive characteristics in Impatiens (Balsaminaceae): the significance of cleistogamy and chasmogamy. – Ecology 59: 596-613.

Schemske DW. 1984. Population structure and local selection in Impatiens pallida (Balsaminaceae), a selfing annual. – Evolution 38: 817-832.

Schierenbeck KA, Stebbins GL, Patterson RW. 1992. Morphological and cytological evidence for polyphyletic allopolyploidy in Arctostaphylos mewukka (Ericaceae). – Plant Syst. Evol. 179: 187-205.

Schlichting CD, Levin DA. 1986. Effects of inbreeding on phenotypic plasticity in cultivated Phlox. – Theor. Appl. Genet. 72: 114-119.

Schmid M. 2006. Contribution à la connaissance des Myrsinaceae de Nouvelle-Calédonie I. Le genre Maesa Forssk. – Adansonia, sér. III, 28: 143-148.

Schmid M. 2009. Contribution à la connaissance des Primulaceae (ex Myrsinaceae) de Nouvelle-Calédonie II. Le genre Rapanea Aubl. – Adansonia, sér. III, 31: 341-395.

Schmid M. 2012. Contribution à la connaissance des Primulaceae (ex Myrsinaceae) de Nouvelle-Calédonie III. Les genres Tapeinosperma Hook. f. et Mangenotiella gen. nov. – Adansonia 34: 279-341.

Schmid R. 1978a. Reproductive anatomy of Actinidia chinensis (Actinidiaceae). – Bot. Jahrb. Syst. 100: 149-195.

Schmid R. 1978b. Actinidiaceae, Davidiaceae, and Paracryphiaceae: systematic considerations. – Bot. Jahrb. Syst. 100: 196-204.

Schnarf K. 1924. Bemerkungen zur Stellung der Gattung Saurauia im System. – Sitzungsber. K. Akad. Wiss. Wien, Math.-Naturw. Kl., Abt. 1, 133: 17-28.

Schneeweiss GM, Schönswetter P, Kelso S, Niklfeld H. 2004. Complex biogeographic patterns in Androsace (Primulaceae) and related genera: evidence from phylogenetic analyses of nuclear internal transcribed spacer and plastid trnL-F sequences. – Syst. Biol. 53: 856-876.

Schneider EL, Carlquist SJ. 2003. Unusual pit membrane remnants in perforation plates of Cyrillaceae. – J. Torrey Bot. Club 130: 225-230.

Schneider EL, Carlquist SJ. 2004. Perforation plate pit remnants in vessels of Sarraceniaceae: possible indicators of relationship and ecology. – J. Torrey Bot. Club 131: 1-7.

Schneider JV, Bayer C. 2004. Clethraceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 69-73.

Schneider JV, Paule J, Gitaí J, Dressler S, Gusmão CLS, Benko-Iseppon AM. 2015. Divergent genome sizes reflect the infrafamilial subdivision of the neotropical woody Marcgraviaceae. – Bot. J. Linn. Soc. 177: 1-14.

Schnell D. 1977. Infraspecific variations in Sarracenia rubra Walt.: some observations. – Castanea 42: 149-170.

Schnell D. 1978. Sarracenia L. petal extract chromatography. – Castanea 43: 107-115.

Schnell D. 1980. Notes on the biology of Sarracenia oreophila (Kearney) Wherry. – Castanea 45: 166-170.

Schnell D. 1983. Notes on the pollination of Sarracenia flava L. (Sarraceniaceae) in the Piedmont Province of North Carolina. – Rhodora 85: 405-420.

Schnell D, Krider DM. 1976. Cluster analysis of the genus Sarracenia L. in the southeastern United States. – Castanea 41: 165-170.

Schnopf E, Deichgraber G. 1983. Structure and formation of fibrillar mucilages in seed epidermal cells I. Collomia grandiflora (Polemoniaceae). – Protoplasma 114: 210-221.

Schoen DJ. 1982. The breeding system of Gilia achilleifolia: variation in floral characteristics and outcrossing rate. – Evolution 36: 352-360.

Schönenberger J. 2009. Comparative floral structure and systematics of Fouquieriaceae and Polemoniaceae (Ericales). – Intern. J. Plant Sci. 170: 1132-1167.

Schönenberger J, Friis EM. 2001. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. – Amer. J. Bot. 88: 467-480.

Schönenberger J, Grenhagen A. 2005. Early floral development and androecium organization in Fouquieriaceae (Ericales). – Plant Syst. Evol. 254: 233-249.

Schönenberger J, Anderberg AA, Sytsma KJ. 2005. Molecular phylogenetics and patterns of floral evolution in the Ericales. – Intern. J. Plant Sci. 166: 265-288.

Schönenberger J, Balthazar M von, Sytsma KJ. 2010. Diversity and evolution of floral structure among early diverging lineages in the Ericales. – Philos. Trans. Roy. Soc. London, B, Biol. Sci. 365: 437-448.

Schönenberger J, Barthazar M von, Takahashi M, Xioao X, Crane PR, Herendeen PS. 2012. Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the Late Cretaceous (Santonian) of Georgia, U.S.A. – Ann. Bot. 109: 921-936.

Schultheis LM, Baldwin BG. 1999. Molecular phylogenetics of Fouquieriaceae: evidence from nuclear rDNA ITS studies. – Amer. J. Bot. 86: 578-589.

Schulze W, Schulze ED, Pate JS, Gillison AN. 1997. The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. – Oecologia 112: 464-471.

Schumann D, Kirsten G. 1992. Ericas of South Africa. – Timber Press, Portland, Oregon.

Schürhoff PN. 1931. Die Haploidgeneration der Balsaminaceae und ihre Bedeutung für die Systematik. – Bot. Jahrb. Syst. 64: 324-356.

Schwarz O. 1938. Cyclamen-Studien. – Gartenflora, N. F., pp. 11-38.

Schwarz O. 1955. Systematische Monographie der Gattung Cyclamen L. 1. – Feddes Repert. 58: 234-283.

Schwarz O. 1963. Die Gattung Vitaliana Sesl. und ihre Stellung innerhalb der Primulaceen. – Feddes Repert. 67: 16-41.

Schwarz O. 1964. Systematische Monographie der Gattung Cyclamen L. 2. – Feddes Repert. 69: 79-103.

Schwarz O. 1968. Beiträge zur Kenntnis der Gattung Primula. – Wissensch. Zeitschr. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe, Beitr. Phytotaxon. 17: 307-322.

Schweiger J. 1909. Vergleichende Untersuchungen über Sarracenia und Cephalotus follicularis betreffs ihrer etwaigen systematischen Verwandtschaft. – Beih. Bot. Centralbl. 25: 490-539.

Scogin R. 1977. Anthocyanins of the Fouquieriaceae. – Biochem. Syst. Ecol. 5: 265-267.

Scogin R. 1978. Leaf phenolics of the Fouquieriaceae. – Biochem. Syst. Ecol. 6: 297-298.

Scott FM. 1932. Some features of the anatomy of Fouquieria splendens. – Amer. J. Bot. 19: 673-678.

Scott PE, Buchmann SL, O’Rourke MK. 1993. Evidence for mutualism between a flower-piercing carpenter bee and ocotillo: use of pollen and nectar by nesting bees. – Ecol. Entomol. 18: 234-240.

Scott PJ. 2004. Diapensiaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 117-121.

Scott PJ, Day RT. 1983. Diapensiaceae: a review of the taxonomy. – Taxon 32: 417-423.

Sealy JR. 1958. A revision of the genus Camellia. – Royal Horticultural Society, London.

Seithe A. 1980. Rhododendron hairs and taxonomy. – In: Luteyn JL, O’Brien M (eds), Contributions toward a classification of Rhododendron, New York Botanical Garden, New York, pp. 89-115.

Selosse M-A, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M. 2007. Sebacinales are common mycorrhizal associates of Ericaceae. – New Phytol. 174: 864-878.

Sen S, Sen NK. 1954. Studies on the cytology of Quisqualis indica and Mimusops elengi. – Sci. & Culture 20: 244-245.

Setaro S, Weiß M, Oberwinkler F, Kottke I. 2006. Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. – New Phytol. 169: 355-365.

Setaro S, Kottke I, Oberwinkler F. 2006. Anatomy and ultrastructure of mycorrhizal associations of neotropical Ericaceae. – Mycol. Progr. 5: 243-254.

Sethi S Bala. 1965. Structure and development of seed in Camellia sinensis (L.) O. Kuntze. – Proc. Indian Natl. Inst. Sci., Sect. B, 31: 24-33.

Setoguchi H, Watanabe W, Maeda Y, Peng, C-I. 2008. Molecular phylogeny of the genus Pieris (Ericaceae) with special reference to phylogenetic relationships of insular plants on the Ryukyu Islands. – Plant Syst. Evol. 270: 217-230.

Shevock JR, Day AG. 1998. A new Gilia (Polemoniaceae) from limestone outcrops in the southern Sierra Nevada of California. – Madroño 45: 137-140.

Shimizu T. 1979. A comment on the limestone flora of Thailand, with special reference to Impatiens. – Acta Phytotaxon. Geobot. 30: 180-188.

Shimizu T, Utami N. 1997. Three new species of Impatiens (Balsaminaceae) added to Flora Malesiana. – Kew Bull. 52: 435-442.

Shreve F. 1906. The development and anatomy of Sarracenia purpurea. – Bot. Gaz. 42: 107-126.

Shui Y-M, Zhang G-J, Zhou Z-K, Mo M-Z. 2002. Sladenia integrifolia (Sladeniaceae), a new species from China. – Novon 12: 539-542.

Shyamala R, Gulati N. 1981. Contribution to the embryology of Symplocos cochinchinensis. – Indian J. Bot. 4: 229-235.

Shyamala R, Gulati N. 1986. Origin and structure of integuments in Ebenales I. Symplocaceae. – Swamy Bot. Club 2: 113-117.

Simon L. 1975. Le gynécée de l’Impatiens balsamina: Étude morphologique, ontogenique, et tératologique. – Can. J. Bot. 53: 2361-2383.

Simpson BB, Neff JL, Seigler DL. 1983. Floral biology and floral rewards of Lysimachia (Primulaceae). – Amer. Midl. Natur. 110: 249-256.

Simpson RB. 1994. Pitchers in trade: a conservation review of the carnivorous genera of Sarracenia, Darlingtonia, and Heliamphora. – Royal Botanic Gardens, Kew.

Singh KG. 1974. Mycorrhiza in the Ericaceae with special reference to Calluna vulgaris. – Svensk Bot. Tidskr. 68: 1-16.

Skallerup HR. 1953. The distribution of Diospyros virginiana L. – Ann. Missouri Bot. Gard. 40: 211-225.

Sleumer H. 1934. Ericaceae americanae novae vel minus cognitae I. – Notizbl. Bot. Gart. Berlin-Dahlem 12: 119-140.

Sleumer H. 1935. Revision der Gattung Pernettya Gaud. – Notizbl. Bot. Gart. Berlin-Dahlem 12: 626-655.

Sleumer H. 1941. Vaccinioideen-Studien. – Bot. Jahrb. Syst. 71: 375-510.

Sleumer H. 1959. Studien über die Gattung Leucothoé D. Don. – Bot. Jahrb. Syst. 78: 435-480.

Sleumer H. 1964. Epacridaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 6, Noordhoff, Groningen.

Sleumer H. 1966-1967. Ericaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 6, Noordhoff, Leiden, pp. 469-914.

Sleumer H. 1967. Monographia Clethracearum 1-2. – Bot. Jahrb. Syst. 87: 36-175.

Sleumer H. 1971. Clethraceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 7, Wolters-Noordhoff, Groningen, pp. 139-150.

Sleumer H. 1987. A revision of the genus Maesa Forssk. (Myrsinaceae) in New Guinea, the Moluccas, and the Solomon Islands. – Blumea 32: 39-65.

Sleumer H. 1988a. The genera Discocalyx Mez, Fittingia Mez, Loheria Merr. and Tapeinosperma Hook. f. (Myrsinaceae) in New Guinea. – Blumea 33: 81-107.

Sleumer H. 1988b. The genus Conandrium Mez (Myrsinaceae). – Blumea 33: 109-113.

Sleumer H. 1988c. A revision of the genus Ardisia Sw. (Myrsinaceae) in New Guinea. – Blumea 33: 115-140.

Smedmark JEE, Anderberg AA. 2007. Boreotropical migration explains hybridization between geographically distinct lineages in the pantropical clade Sideroxyleae (Sapotaceae). – Amer. J. Bot. 94: 1491-1505.

Smedmark JEE, Swenson U, Anderberg AA. 2006. Accounting for variation in substitution rates through time in Bayesian phylogeny reconstruction of Sapotoideae (Sapotaceae). – Mol. Phylogen. Evol. 39: 706-721.

Smith AC. 1932. The American species of Thibaudieae. – Contr. U.S. Natl. Herb. 28: 311-547.

Smith AC. 1933. The genera Sphyrospermum and Disterigma. – Brittonia 1: 203-232.

Smith AC. 1936. Studies on South American plants V. Additional notes on Thibaudieae. – Bull. Torrey Bot. Club 63: 307-316.

Smith AC. 1946. Studies of South American plants XI. Noteworthy species of Hippocrateaceae and Vacciniaceae. – J. Arnold Arbor. 27: 86-120.

Smith AC. 1950. Studies of South American plants XII. – Contr. U.S. Natl. Herb. 29: 317-393.

Smith AC. 1952. Plants collected in Ecuador by W. H. Camp – Vacciniaceae. – Mem. New York Bot. Gard. 8: 41-85.

Smith AC. 1973. Studies of Pacific island plants XXV. The Myrsinaceae of the Fijian region. – J. Arnold Arbor. 54: 1-41, 228-292.

Smith AC, Standley PC. 1932. Schizocardia, a new genus of trees of the family Clethraceae. – Trop. Woods 32: 8-11.

Smith DM, Levin DA. 1967. Karyotypes of eastern North American Phlox. – Amer. J. Bot. 54: 324-334.

Smith DM, Glennie CW, Harborne JB, Williams CA. 1977. Flavonoid diversification in the Polemoniaceae. – Biochem. Syst. Ecol. 5: 107-115.

Smith DM, Glennie CW, Harborne JB. 1982. Flavonoid patterns in Leptodactylon and Linanthus. – Biochem. Syst. Ecol. 10: 37-42.

Smith DW. 1969. A taximetric study of Vaccinium in northeastern Ontario. – Can. J. Bot. 47: 1747-1759.

Smith GF, Lowe DB. 1977. Androsaces. – Alpine Garden Society, Woking, England.

Smith WW, Fletcher HR. 1941. The genus Primula: section Candelabra. – Trans. Roy. Soc. Edinb. 33: 122-181.

Smith WW, Fletcher HR. 1942a. The genus Primula: sections Amethystina, Minutissima, Bella, Muscarioides. – Trans. Roy. Soc. Edinb. 33: 209-294.

Smith WW, Fletcher HR. 1942b. The genus Primula: section Nivales. – Trans. Roy. Soc. Edinb. 60: 563-627.

Smith WW, Fletcher HR. 1942c. The section Soldanelloideae of the genus Primula. – Bot. J. Linn. Soc. 52: 321-335.

Smith WW, Fletcher HR. 1943a. The genus Primula: sections Sikkimensis, Souliei and Rotundifolia. – Trans. Roy. Soc. Edinb. 33: 431-487.

Smith WW, Fletcher HR. 1943b. The genus Primula: section Farinosae. – Trans. Roy. Soc. Edinb. 61: 1-69.

Smith WW, Fletcher HR. 1944a. The genus Primula: section Petiolares. – Trans. Roy. Soc. Edinb. 61: 271-314.

Smith WW, Fletcher HR. 1944b. The genus Primula: sections Cortusoides, Malvacea, Pycnoloba, Dryadifolia, Capitatae. – Trans. Roy. Soc. Edinb. 34: 55-158.

Smith WW, Fletcher HR. 1946. The genus Primula: sections Obconica, Sinensis, Reinii, Pinnatae, Malacoides, Bullatae, Carolinella, Grandis and Denticulata. – Trans. Roy. Soc. Edinb. 61: 415-478.

Smith WW, Fletcher HR. 1948a. The genus Primula: sections Cuneifolia, Floribundae, Parryi, and Auricula. – Trans. Roy. Soc. Edinb. 61: 631-686.

Smith WW, Fletcher HR. 1948b. The genus Primula: section Vernales. – Trans. Roy. Soc. Edinb. 34: 402-468.

Smith WW, Fletcher HR. 1950. Additions and corrections to the genus Primula (up to and including 1949). – Trans. Proc. Bot. Soc. Edinb. 35: 180-202.

Smith WW, Forrest G. 1928. The sections of the genus Primula. – Notes Roy. Bot. Gard. Edinb. 16: 1-50.

Smith WW, Forrest G, Fletcher HR. 1977. The genus Primula. – In: Cramer J, Swann HK (eds), Plant Monograph Reprints No. 11, J. Cramer, Vaduz.

Smith-White S. 1948. A survey of chromosome numbers in the Epacridaceae. – Proc. Linn. Soc. New South Wales 73: 37-56.

Smith-White S. 1955. Chromosome numbers and pollen types in the Epacridaceae. – Aust. J. Bot. 3: 48-67.

Smith-White S. 1959. Pollen development patterns in the Epacridaceae. A problem of cytoplasm-nucleus interaction. – Proc. Linn. Soc. New South Wales 84: 8-35.

Soejarto DD. 1969. Aspects of reproduction in Saurauia. – J. Arnold Arbor. 50: 180-196.

Soejarto DD. 1970. Saurauia species and their chromosomes. – Rhodora 72(789): 81-93.

Soejarto DD. 1980. Revision of South American Saurauia (Actinidiaceae). – Fieldiana Botany, N. S., 2: 1-141.

Soejarto DD. 1982. 60. Actinidiaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 17, Swedish Natural Science Research Council, Stockholm, pp. 1-47.

Soejima A, Nagamasu H. 2004. Phylogenetic analysis of Asian Symplocos (Symplocaceae) based on nuclear and chloroplast DNA sequences. – J. Plant Res. 117: 199-207.

Soejima A, Nagamasu H, Ito M, Ono M. 1994. Allozyme diversity and the evolution of Symplocos (Symplocaceae) on the Bonin (Ogasawara) Islands. – J. Plant Res. 107: 221-228.

Soltis DE, Bohm BA, Nesom GL. 1983. Flavonoid chemistry of cytotypes in Galax (Diapensiaceae). – Syst. Bot. 8: 15-23.

Song Y, Yuan Y-M, Kupfer P. 2003. Chromosomal evolution in Balsaminaceae, with cytological observations on 45 species from Southeast Asia. – Caryologia 56: 463-481.

Song Y, Yuan Y-M, Kupfer P. 2005. Seedcoat micromorphology of Impatiens (Balsaminaceae) from China. – Bot. J. Linn. Soc. 149: 195-208.

Sørensen PD. 1995. Arbutus Linnaeus. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II: the superior-ovaried genera, New York Botanical Garden, New York, pp. 194-221.

Solthers CA. 2003. New species of Diospyros (Ebenaceae) from Brazil. – Kew Bull. 58: 473-477.

Souèges R. 1937. Embryogénie des Primulacées: développement de l’embryon chez le Samolus Valerandi L. – Compt. Rend. Hebd. Séances Acad. Sci. 204: 145-147.

Southall RM, Hardin JW. 1974. A taxonomic revision of Kalmia (Ericaceae). – J. Elisha Mitchell Sci. Soc. 90: 1-23.

Spanowsky W. 1962. Die Bedeutung der Pollenmorphologie für die Taxonomie der Primulaceae-Primuloideae. – Feddes Repert. 65: 149-214.

Spencer S, Porter J. 1997. Evolutionary diversification and adaptation to novel environments in Navarretia (Polemoniaceae). – Syst. Bot. 22: 649-668.

Spongberg SA. 1974. A review of deciduous-leaved species of Stewartia (Theaceae). – J. Arnold Arbor. 55: 182-214.

Spongberg SA. 1976. Styracaceae hardy in temperate North America. – J. Arnold Arbor. 57: 54-73.

Stace HM, Fripp YJ. 1977. Raciation in Epacris impressa III. Polymorphic populations. – Aust. J. Bot. 25: 325-336.

Stace HM, Chapman AR, Lemson KL, Powell JM. 1997. Cytoevolution, phylogeny and taxonomy in Epacridaceae. – Ann. Bot., N. S., 79: 283-290.

Ståhl B. 1987. The genus Theophrasta (Theophrastaceae). Foliar structures, floral biology and taxonomy. – Nord. J. Bot. 7: 529-538.

Ståhl B. 1989. A synopsis of Central American Theophrastaceae. – Nord. J. Bot. 9: 15-30.

Ståhl B. 1990a. Taxonomic studies in the Theophrastaceae. – Ph.D. diss, Department of Systematic Botany, University of Gothenburg, Sweden.

Ståhl B. 1990b. 149. Theophrastaceae, 150. Primulaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 39, Nord. J. Bot., Copenhagen, pp. 1-35.

Ståhl B. 1991a. A revision of Clavija (Theophrastaceae). – Opera Bot. 107: 1-77.

Ståhl B. 1991b. 155. Symplocaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 43, Nord. J. Bot., Copenhagen, pp. 1-44.

Ståhl B. 1992a. On the identity of Jacquinia armillaris (Theophrastaceae) and related species. – Brittonia 44: 54-60.

Ståhl B. 1992b. 146B. Cyrillaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 45, Nord. J. Bot., Copenhagen, pp. 29-34.

Ståhl B. 1993. Votschia, a new genus of Theophrastaceae from northeastern Panama. – Brittonia 45: 204-207.

Ståhl B. 1995a. A synopsis of Jacquinia (Theophrastaceae) in the Antilles and South America. – Nord. J. Bot. 15: 493-511.

Ståhl B. 1995b. Diversity and distribution of Andean Symplocaceae. – In: Churchill SP, Balslev H, Forero H, Luteyn JL (eds), Biodiversity and conservation of neotropical montane forests, The New York Botanical Garden, Bronx, New York, pp. 397-405.

Ståhl B. 1996. The relationships of Heberdenia bahamensis and H. penduliflora (Myrsinaceae). – Bot. J. Linn. Soc. 122: 314-333.

Ståhl B. 2004a. Samolaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 387-389.

Ståhl B. 2004b. Theophrastaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 472-478.

Ståhl B. 2010. Flora Neotropica 105. Theophrastaceae. – The New York Botanical Garden, Bronx, New York.

Ståhl B, Anderberg AA. 2004a. Maesaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 255-257.

Ståhl B, Anderberg AA. 2004b. Myrsinaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 266-281.

Standley PC. 1914. A revision of the genus Cobaea. – Contr. U.S. Natl. Herb. 17: 448-458.

Stearn WT. 1968. Jamaican and other species of Bumelia (Sapotaceae). – J. Arnold Arbor. 49: 280-289.

Stearn WT. 1969. A synopsis of Jamaican Myrsinaceae. – Bull. Brit. Mus. (Nat. Hist.) Bot. 4: 145-178.

Stearn WT. 1992. The genus Jacquinia (Theophrastaceae) in Jamaica. – Nord. J. Bot. 12: 231-238.

Steele KP, Vilgalys R. 1994. Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. – Syst. Bot. 19: 126-142.

Steenis CGGJ van. 1932. The Styracaceae of Netherlands India. – Bull. Jard. Bot. Buitenzorg, sér. III, 12: 212-272.

Steenis CGGJ van. 1949. Styracaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(2), Noordhoff-Kolff N. V., Batavia, pp. 49-56.

Steenis CGGJ van. 1956a. Pentaphylacaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(2), Noordhoff-Kolff N. V., Djakarta, pp. 121-124.

Steffen K. 1951. Zur Kenntnis des Befruchtungsvorganges bei Impatiens glandulifera Lindl. – Planta 39: 175-244.

Stephens JD, Rogers WL, Heyduk K, Cruse-Sanders JM, Determann RO, Glen TC, Malmberg RL. 2015. Resolving phylogenetic relationships of the recently radiated carnivorous plant genus Sarracenia using target enrichment. – Mol. Phylogen. Evol. 85: 76-87.

Stevens NE. 1911. Dioecism in trailing arbutus, with notes on the morphology of the seed. – Bull. Torrey Bot. Club 38: 531-543.

Stevens NE. 1919. The development of the endosperm in Vaccinium corymbosum. – Bull. Torrey Bot. Club 46: 465-468.

Stevens PF. 1969. Taxonomic studies in the Ericaceae. – Ph.D. diss., University of Edinburgh, Scotland.

Stevens PF. 1970a. Agauria and Agarista: an example of tropical transatlantic affinity. – Notes Roy. Bot. Gard. Edinb. 30: 341-359.

Stevens PF. 1970b. Calluna, Cassiope and Harrimanella: a taxonomic and evolutionary problem. – New Phytol. 69: 1131-1148.

Stevens PF. 1971. A classification of the Ericaceae: subfamilies and tribes. – Bot. J. Linn. Soc. 64: 1-53.

Stevens PF. 1972. Notes on the infrageneric classification of Agapetes with four new taxa from New Guinea. – Notes Roy. Bot. Gard. Edinb. 32: 13-28.

Stevens PF. 1974. Circumscription and relationships of Dimorphanthera (Ericaceae) and notes on some Papuasian species. – Contr. Herb. Austral. 8: 1-34.

Stevens PF. 1976. The altitudinal and geographical distribution of flower types in Rhododendron section Vireya, especially in the Papuasian species, and their significance. – Bot. J. Linn. Soc. 72: 1-33.

Stevens PF. 1982. Phytogeography and evolution of the Ericaceae of New Guinea. – In: Gressitt JL (ed), Biogeography and ecology of New Guinea, Monogr. Biol. 42: 331-354.

Stevens PF. 1985. Notes on Vaccinium and Agapetes (Ericaceae) in Southeast Asia. – J. Arnold Arbor. 66: 471-490.

Stevens PF. 1995. Familial and interfamilial relationships. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II – the superior-ovaried genera, New York Botanical Garden, Bronx, New York, pp. 1-12.

Stevens PF, Weitzman AL. 2004. Sladeniaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 431-433.

Stevens PF, Luteyn J, Oliver EGH, Bell TL, Brown EA, Crowden RK, George AS, Jordan GJ, Ladd P, Lemson K, McLean CB, Menadue Y, Pate JS, Stace HM,Weiller CM. 2004. Ericaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 145-194.

Stevens PF, Dressler S, Weitzman AL. 2004. Theaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 463-471.

Stierle DB, Stierle AA, Larsen RD. 1988. Terpenoid and flavone constituents of Polemonium viscosum. – Phytochemistry 27: 517-522.

Stone BC. 1982. New and noteworthy Malaysian Myrsinaceae I. – Mal. For. 45: 101-121.

Stone BC. 1988a. Notes on the genus Labisia Lindl. (Myrsinaceae). – Malayan Nat. J. 42: 43-51.

Stone BC. 1988b. New and noteworthy Malesian Myrsinaceae II. Emblemantha, a new genus from Sumatra. – Proc. Acad. Nat. Sci. Philadelphia 141: 263-306.

Stone BC. 1989. New and noteworthy Malesian Myrsinaceae III. On the genus Ardisia Sw. in Borneo. – Proc. Acad. Nat. Sci. Philadelphia 141: 263-306.

Stone BC. 1990. Studies in Malesian Myrsinaceae V. Additional new species of Ardisia Sw. – Proc. Acad. Nat. Sci. Philadelphia 142: 21-58.

Stone BC. 1991a. The genus Loheria Merrill (Myrsinaceae). – Micronesica 24: 65-80.

Stone BC. 1991b. New and noteworthy Malesian Myrsinaceae VI. Revision of the genus Hymenandra A. DC. – Gard. Bull. (Singapore) 43: 1-17.

Stone BC. 1992. Systellantha, a new genus of Myrsinaceae from Borneo. – Malayan Nat. J. 46: 13-24.

Stone BC. 1993a. Reduction of the genus Parardisia (Myrsinaceae). – Nord. J. Bot. 13: 55-57.

Stone BC. 1993b. New and noteworthy Malesian Myrsinaceae VII. Sclerantha, a new subgenus of Ardisia. – Pac. Sci. 47: 276-294.

Stone BC, Whitmore TC. 1970. Notes on they systematy of Solomon Islands’ plants and some of their New Guinea relatives XI. Tapeinosperma (Myrsinaceae). – Reinwardtia 8: 3-11.

Strand AE, Wyatt R. 1991. Geographical variation and biosystematics of sand myrtle, Leiophyllum buxifolium (Ericaceae). – Syst. Bot. 16: 529-545.

Streiber N, Brown EA, Conn BJ, Quinn CJ. 1999. Systematic studies in Dracophyllum (Epacridaceae) 1. Morphometric analyses of Dracophyllum secundum sensu lato. – Telopea 8: 381-391.

Stride G, Nylinder S, Swenson U. 2014. Revisiting the biogeography of Sideroxylon (Sapotaceae) and an evaluation of the taxonomic status of Argania and Spiniluma. – Aust. Syst. Bot. 27: 104-118.

Stuchlik L. 1967a. Pollen morphology and taxonomy of the family Polemoniaceae. – Rev. Palaeobot. Palyn. 4: 325-333.

Stuchlik L. 1967b. Pollen morphology in the Polemoniaceae. – Grana Palynol. 7: 146-240.

Stushnoff C, Palser BF. 1969 [1970]. Embryology of five Vaccinium taxa including diploid, tetraploid, and hexaploid species or cultivars. – Phytomorphology 19: 312-331.

Su Y, Liao W, Wang T, Sun Y, Wei Q, Chang H. 2011. Phylogeny and evolutionary divergence times in Apterosperma and Euryodendron: evidence of a Tertiary origin in southern China. – Biochem. Syst. Ecol. 39: 769-777.

Subramanyam K, Narayana LL. 1968. Floral anatomy and embryology of Primula floribunda Wall. – Phytomorphology 18: 105-113.

Subramanyam K, Narayana LL. 1976. A contribution to the floral anatomy and embryology in certain members of Primulaceae. – J. Indian Bot. Soc. 55: 274-282.

Subramaniam SS, Nair AGR. 1973. Myricetin and quercetin glycosides from the leaves of four sapotaceous species. – Curr. Sci. (India) 42: 746-747.

Sugawara T, Akiyama S, Murata J, Yang Y-P. 1995. Karyology of ten species of Impatiens (Balsaminaceae) from SW Yunnan, China. – Acta Phytotaxon. Geobot. 45: 119-125.

Sugawara T, Akiyama S, Yang Y-P, Murata J. 1997. Karyological characteristics of Impatiens (Balsaminaceae) in Yunnan, China. – Acta Phytotaxon. Geobot. 48: 7-14.

Sugden EA. 1986. Anthecology and pollinator efficacy of Styrax officinale subsp. redivivum (Styracaceae). – Amer. J. Bot. 73: 919-930.

Sugiyama M. 1991. Scanning electron microscopy observation on early ontogeny of the flower of Camellia japonica L. – J. Jap. Bot. 66: 295-299.

Sugiyama M. 1997. Floral anatomy of Camellia japonica (Theaceae). – J. Plant Res. 110: 45-54.

Sundberg MD. 1982a. Floral ontogeny in Cyclamen persicum, F-1 Rosemunde Rose’ (Primulaceae). – Amer. J. Bot. 69: 380-388.

Sundberg MD. 1982b. Petal-stamen initiation in the genus Cyclamen (Primulaceae). – Amer. J. Bot. 69: 1707-1709.

Svengsuksa BKK, Vidal JE. 1992. Styracaceae. – In: Morat P (ed), Flore du Cambodge, du Laos et du Viêtnam 26, Mus. Natl. Hist. Nat. Paris, pp. 145-195.

Swamy BGL. 1948. A contribution to the embryology of the Marcgraviaceae. – Amer. J. Bot. 35: 628-633.

Swenson U, Anderberg AA. 2005. Phylogeny, character evolution, and classification of Sapotaceae (Ericales). – Cladistics 21: 101-130.

Swenson U, Munzinger JAA. 2009. Revision of Pycnandra subgenus Pycnandra (Sapotaceae), a genus endemic to New Caledonia. – Aust. Syst. Bot. 22: 437-465.

Swenson U, Munzinger JAA. 2010a. Revision of Pycnandra subgenus Achradotypus (Sapotaceae), with five new species from New Caledonia. – Aust. Syst. Bot. 23: 185-216.

Swenson U, Munzinger JAA. 2010b. Taxonomic revision of Pycnandra subgenus Trouettia (Sapotaceae), with six new species from New Caledonia. – Aust. Syst. Bot. 23: 333-370.

Swenson U, Munzinger JAA. 2010c. Revision of Pycnandra subgenus Sebertia (Sapotaceae) and a generic key to the family in New Caledonia. Adansonia, sér. 3: 239-249.

Swenson U, Munzinger JAA. 2012. Revision of Pichonia (Sapotaceae) in New Caledonia. – Aust. Syst. Bot. 25: 31-48.

Swenson U, Munzinger JAA. 2016. Five new species and a systematic synopsis of Pycnandra (Sapotaceae), the largest endemic genus in New Caledonia. – Aust. Syst. Bot. 29: 1-40.

Swenson U, Bartisch IV, Munzinger JAA. 2007. Phylogeny, diagnostic characters and generic limitation of Australasian Chrysophylloideae (Sapotaceae, Ericales): evidence from ITS sequence data and morphology. – Cladistics 23: 201-228.

Swenson U, Munzinger JAA, Bartisch IV. 2007. Molecular phylogeny of Planchonella (Sapotaceae) and eight new species from New Caledonia. – Taxon 56: 329-354.

Swenson U, Lowry II PP, Munzinger JAA, Rydin C, Bartish IV. 2008. Phylogeny and generic limits in the Niemeyera complex of New Caledonian Sapotaceae: evidence of multiple origins of the anisomerous flower. – Mol. Phylogen. Evol. 49: 909-929.

Swenson U, Richardson JE, Bartish IV. 2008. Multi-gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): evidence of generic polyphyly and extensive morphological homoplasy. – Cladistics 24: 1006-1031.

Swenson U, Nylinder S, Munzinger JAA. 2013. Towards a natural classification of Sapotaceae subfamily Chrysophylloideae in Oceania and Southeast Asia based on nuclear sequence data. – Taxon 62: 746-770.

Swenson U, Nylinder S, Munzinger JAA. 2014. Sapotaceae biogeography supports New Caledonia being an old Darwinian island. – J. Biogeogr. 41: 797-809.

Swenson U, Munzinger JAA, Lowry II PP, Cronholm B, Nylinder S. 2015. Island life – classification, speciation and cryptic species of Pycnandra (Sapotaceae) in New Caledonia. – Bot. J. Linn. Soc. 179: 57-77.

Swenson U, Nylander JAA, Munzinger J. 2018. Phylogeny, species delimitation and revision of Pleioluma (Sapotaceae) in New Caledonia, a frequently gynodioecious genus. – Aust. Syst. Bot. 31: 120-165.

Szkudlarz P. 2009. Variation in seed morphology in the genus Erica L. (Ericaceae). – Biodiv. Res. Conserv. 16: 1-105.

Szyszyłowicz I von. 1895a. Marcgraviaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 157-164.

Szyszyłowicz I von. 1895b. Theaceae (Ternstroemiaceae). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 175-192.

Taaffe G, Brown EA, Crayn DM, Gadek PA, Quinn CJ. 2001. Generic concepts in Styphelieae: resolving the limits of Leucopogon. – Aust. J. Bot. 49: 107-120.

Takahashi H. 1986a. Pollen morphology of Pyrola and its taxonomic significance. – Bot. Mag. (Tokyo) 99: 137-154.

Takahashi H. 1986b. Pollen polyads and their variation in Chimaphila (Pyrolaceae). – Grana 25: 161-169.

Takahashi H. 1987. Pollen morphology and its taxonomic significance in the Monotropoideae (Ericaceae). – Bot. Mag. (Tokyo) 100: 385-405.

Takahashi H. 1988. Pollen morphology and systematics in two subfamilies of the Ericaceae: Pyroloideae and Monotropoideae. – Korean J. Plant Tax. 18: 9-17.

Takahashi H. 1993. Seed morphology and its systematic implications in Pyroloideae (Ericaceae). – Int. J. Plant Sci. 154: 175-186.

Takahashi H, Sohma K. 1980. Pollen development in Pyrola japonica Klenze. – Sci. Rep. Tohoku Univ., Ser. IV (Biology) 38: 57-71.

Takasi Y. 1972. Embryological studies in Ebenales 4. – J. Jap. Bot. 47: 20-28.

Tam P-C. 1986. A new species of genus Enkianthus. – Bull. Bot. Res. North-East. Forest. Inst. 6: 125-127.

Tamura S, Hiura T. 1998. Proximate factors affecting fruit set and seed mass of Styrax obassia in a masting year. – Ecoscience 5: 100-107.

Tanaka R, Oginuma K. 1980. Karyomorphologal studies on Clethra barbinervis and two allied species. – J. Jap. Bot. 55: 65-72.

Tanrisever N, Fronczek FR, Fischer NH, Williamson GB. 1987. Ceratiolin and other flavonoids from Ceratiola ericoides. – Phytochemistry 26: 175-179.

Taton A. 1979. Contribution à l’étude du genre Ardisia Sw. (Myrsinaceae) en Afrique tropicale. – Bull. Jard. Bot. Natl. Belg. 49: 81-120.

Taylor DW. 1989. Select palynomorphs from the middle Eocene Claiborne formation. – Tennessee (U.S.A.), Rev. Palaeobot. Palynol. 58: 111-128.

Taylor P. 1955. The genus Anagallis in tropical and South Africa. – Kew Bull. 10: 321-350.

Taylor P. 1958a. Primulaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-20.

Taylor P. 1958b. Tropical African Primulaceae. – Kew Bull. 13: 133-149.

Taylor TN, Levin DA. 1975. Pollen morphology of Polemoniaceae in relation to systematics and pollination systems: scanning electron microscopy. – Grana 15: 91-112.

Tedersoo L, Pellet P, Kõljalg U, Selosse M-A. 2007. Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. – Oecologia 151: 206-217.

Teillier S, Escobar F. 2013. Revisión del género Gaultheria L. (Ericaceae) en Chile. – Gayana Bot. 70: 136-153.

Telford IR. 1992. Budawangia and Rupicola, new and revised genera of Epacridaceae. – Telopea 5: 229-239.

Temple A. 1975. Ericaceae: étude architecturale de quelques espèces. – Montpellier.

Terekhin ES. 1963. the development of the ovule and the female gametophyte in Pyroleae and Monotropeae. – Bot. Žurn. 48: 406-414. [In Russian]

Terra-Araujo MH, Faria AD, Ribeiro JELS, Swenson U. 2012. Flower biology and subspecies concepts in Micropholis guyanensis (Sapotaceae): evidence of ephemeral flowers in the family. – Aust. Syst. Bot. 25: 295-303.

Terra-Araujo MH, Faria AD de, Vicentini A, Nylinder S, Swenson U. 2015. Species tree phylogeny and biogeography of the Neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). – Mol. Phylogen. Evol. 87: 1-13.

Terra-Araujo MH, Faria AD de, Swenson U. 2016. A taxonomic update of Neotropical Pradosia (Sapotaceae, Chrysophylloideae). – Syst. Bot. 41: 634-650.

Testolin R, Ferguson AR. 1997. Isozyme polymorphism in the genus Actinidia and the origin of the kiwifruit genome. – Syst. Bot. 22: 685-700.

Thanikaimoni G, Vasanthy G. 1972. Sarraceniaceae: palynology and systematics. – Pollen Spores 14: 143-155.

Thenen S. 1911. Zur Phylogenie der Primulaceenblüte. Studien über den Gefässbündelverlauf in Blütenachse und Perianth. – Gustav Fischer, Jena.

Thomas JL. 1960. A monographic study of the Cyrillaceae. – Contr. Gray Herb. Harvard Univ. 186: 1-114.

Thomas JL. 1961. Schizocardia belizensis: a species of Purdiaea (Cyrillaceae) from Central America. – J. Arnold Arbor. 42: 110-111.

Thompson HJ. 1953. The biosystematics of Dodecatheon. – Contr. Dudley Herb. 4: 73-154.

Thompson JM. 1921. Studies in floral morphology II. The staminal zygomorphy of Couroupita guianensis Aubl. – Trans. Roy Soc. Edinb. 53: 1-15.

Thompson WK. 1986. Effects of origin, time of collection, auxins and planting media on rooting of cuttings of Epacris impressa Labill. – Scientia Hortic. 30: 127-134.

Thulin M, Warfa AM. 1989. Cyclamen (Primulaceae) in tropical Africa. – Plant Syst. Evol. 166: 249-252.

Tieghem P van. 1899. Sur les genres Actinidia et Saurauia, considérées comme types d’une famille nouvelle, les Actinidiacées. – Ann. Sci Nat. Bot. Biol. Vég. 10: 137-140.

Tieghem P van. 1905. Sur les Rhaptopetalacées. – Ann. Sci. Nat. Bot. 9: 321-388.

Tiffney WN Jr. 1972. Snow cover and the Diapensia lapponica habitat in the White Mountains, New Hampshire. – Rhodora 74: 358-377.

Timbrook S. 1986. Segregation of Loeseliastrum from Langloisia (Polemoniaceae). – Madroño 33: 157-174.

Togashi M. 1974. Mitrastemon sp. found in North Borneo. – J. Jap. Bot. 49: 214.

Towers GHN, Tse A, Maas WSG. 1966. Phenolic acids and phenolic glycosides of Gaultheria species. – Phytochemistry 5: 677-681.

Tralau H. 1965. Halesia cf. carolina L. (Styracaceae) im oberen Pliozän von Weilerswist in Westdeutschland. – Bot. Not. 118: 171-176.

Trift I. 2004. Cladistic studies in primuloid Ericales. – Ph.D. diss., University of Stockholm, Sweden.

Trift I, Anderberg AA. 2006. Foliar sclereids in Dionysia (Primulaceae) from a phylogenetic perspective. – Edinburgh J. Bot. 63: 21-48.

Trift I, Källersjö M, Anderberg AA. 2002. The monophyly of Primula (Primulaceae) evaluated by analysis of sequences from the chloroplast gene rbcL. – Syst. Bot. 27: 396-407.

Trift I, Lidén M, Anderberg AA. 2004. Phylogeny and biogeography of Dionysia (Primulaceae). – Intern. J. Plant Sci. 165: 845-860.

Triono T, Brown AHD, West JG, Crisp MD. 2007. A phylogeny of Pouteria (Sapotaceae) from Malesia and Australasia. – Aust. Syst. Bot. 20: 107-118.

Tschapka M, Helversen O von. 1999. Pollinators of syntopic Marcgravia species in Costa Rican lowland rainforest: bats and opossums. – Plant Biol. 1: 382-388.

Tsou C-H. 1993. Applications of comparative embryology to plant taxonomy: taking the Lecythidaceae as an example. – Rec. Adv. Bot. 13: 293-302.

Tsou C-H. 1994a. The classification and evolution of pollen types of Planchonioideae (Lecythidaceae). – Plant Syst. Evol. 189: 15-27.

Tsou C-H. 1994b. The embryology, reproductive morphology and systematics of Lecythidaceae. – Mem. New York Bot. Gard. 71: 1-110.

Tsou C-H. 1995. Embryology of Theaceae – anther and ovule development of Adinandra, Cleyera and Eurya. – J. Plant Res. 108: 77-86.

Tsou C-H. 1997. Embryology of the Theaceae – anther and ovule development of Camellia, Franklinia, and Schima. – Amer. J. Bot. 84: 369-381.

Tsou C-H. 1998. Early floral development of Camellioideae (Theaceae). – Amer. J. Bot. 85: 1531-1547.

Tsou C-H, Mori SA. 2002. Seed coat anatomy and its relationship to seed dispersal in subfamily Lecythidoideae of the Lecythidaceae (the Brazil nut family). – Bot. Bull. Acad. Sin. 43: 37-56.

Tsou C-H, Mori SA. 2007. Floral organogenesis and floral evolution of the Lecythidoideae (Lecythidaceae). – Amer. J. Bot. 94: 716-736.

Tsou C-H, Li L, Vijayan K. 2016. The intra-familial relationships of Pentaphylacaceae s.l. as revealed by DNA sequence analysis. – Biochem. Genet. 54: 270-282.

Turner B, Paun O, Munzinger JAA, Chase MW, Samuel R. 2016. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence. – Ann. Bot. 117: 1175-1185.

Turner BL. 1994a. Taxonomic overview of Gilia section Giliastrum (Polemoniaceae) in Texas and Mexico. – Phytologia 76: 52-68.

Turner BL. 1994b. Synopsis of the North American species of Loeselia (Polemoniaceae). – Phytologia 77: 318-337.

Turner B, Munzinger JAA, Duangjai S, Temsch EM, Stockenhuber R, Barfuss MHJ, Chase MW, Samuel R. 2013. Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers. – Mol. Phylogen. Evol. 69: 740-763.

Turner B, Paun O, Munzinger JAA, Duangjai S, Chase MW, Samuel R. 2013. Analyses of amplified fragment length polymorphisms (AFLP) indicate rapid radiation of Diospyros species (Ebenaceae) endemic to New Caledonia. – BMC Evol. Biol. 13: 269.

Ueno J. 1950. On Enkianthus. A classification of the genus Enkianthus based upon the characters of pollen grains and of crystals in the leaf. – J. Inst. Polytechn. Osaka City Univ. 1: 55-62.

Ukers WH. 1935. All about tea 1-2. – The Tea and Coffee Trade Journal Company, New York.

Uphof JCT. 1936. Sarraceniaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 704-727.

Uphof JCT. 1942. Cyrillaceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 20b, W. Engelmann, Leipzig, pp. 1-12.

Urcelay C. 2002. Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC. in Central Argentina. – Mycorrhiza 12: 89-92.

Utami N, Shimizu T. 2005. Seed morphology and classification in Impatiens (Balsaminaceae). – Blumea 50: 447-456.

Utsunomiya N, Subhadrabandhu S, Yonemori K, Oshida M, Kanzaki S, Nakatsubo F, Sugiura A. 1998. Diospyros species in Thailand: their distribution, fruit morphology and uses. – Econ. Bot. 52: 343-351.

Utteridge TMA. 2000. Contributions tot he flora of Mt Jaya I. Two new species of Maesa (Myrsinaceae) from Puncak Jaya, New Guinea. – Kew Bull. 55: 443-449.

Utteridge TMA. 2001. Two new species of Maesa (Maesaceae) from New Guinea. – Kew Bull. 56: 677-683.

Utteridge TMA. 2012. Four new species of Maesa Forssk. (Primulaceae) from Malesia. – Kew Bull. 67: 367-378.

Utteridge TMA, Saunders RMK. 2001. Sexual dimorphism and functional dioecy in Maesa perlarius and M. japonica (Maesaceae/Myrsinaceae). – Biotropica 33: 368-374.

Utteridge TMA, Saunders RMK. 2004. The genus Maesa (Maesaceae) in the Philippines. – Bot. J. Linn. Soc. 145: 17-43.

Valdés B. 1980. A new species of Pelletiera (Prtimulaceae) from Macaronesia. – Candollea 35: 641-648.

Valdés CP. 2003a. New species of Ardisia and Myrsine (Myrsinaceae) from Cuba. – Willdenowia 33: 173-178.

Valdés CP. 2003b. Additions to Wallenia subg. Homowallenia (Myrsinaceae) in Cuba. – Willdenowia 33: 179-182.

Valentin M, Reyes M, Berazaín R. 1992. La nervadura foliar del género Cyrilla Garden ex L. en Cuba. – Revista Jard. Bot. Nac. Univ. Habana 13: 27-31.

Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM. 2008. Root anatomy, morphology and longevity among root orders in Vaccinium corymbosum (Ericacae). – Amer. J. Bot. 95: 1506-1514.

Vales MA, Moncada M, Machado S. 1988. Anatomía comparada de Clethraceae en Cub. – Revista Jard. Bot. Nac. Univ. Habana 9: 69-73.

Vander Kloet SP. 1978. The taxonomic status of Vaccinium pallidum, the hillside blueberries including Vaccinium vacillans. – Can. J. Bot. 56: 1559-1574.

Vander Kloet SP. 1980. The taxonomy of the highbush blueberry, Vaccinium corymbosum. – Can. J. Bot. 58: 1187-1201.

Vander Kloet SP. 1983. The taxonomy of Vaccinium sect. Cyanococcus: a summation. – Can. J. Bot. 61: 256-266.

Vander Kloet SP. 1985. On the generic status of Symphysia. – Taxon 34: 440-447.

Vander Kloet SP. 1988. The genus Vaccinium in North America. – Res. Branch Agricult. Can. Publ. 1828.

Vander Kloet SP. 1996. Taxonomy of Vaccinium Section Macropelma (Ericaceae). – Syst. Bot. 21: 355-364.

Vander Kloet SP, Dickinson TA. 1992. The taxonomy of Vaccinium section Hemimyrtillus. – Bot. Mag. (Tokyo) 105: 601-614.

Vander Kloet SP, Dickinson TA. 1999. The taxonomy of Vaccinium section Myrtillus (Ericaceae). – Brittonia 51: 231-254.

Vander Kloet SP, Paterson IG. 2000. RAPD assessment of novelties resulting in a new species of Vaccinium L. (Ericaceae) from Vietnam. – Bot. J. Linn. Soc. 134: 575-586.

Vander Kloet SP, Dickinson TA. 2005. RAPD typification: phenetic analysis of Vaccinium inflorescences. – Bot. J. Linn. Soc. 148: 445-457.

Vander Kloet SP, Dickinson TA, Strickland W. 2003. From Nepal to Formosa, a much larger foot print for Vaccinium sect. Aëthopus. – Acta Bot. Yunnan. 25: 1-24.

Vani-Hardev S. 1972. Systematic embryology of Roridula gorgonias Planch. – Beitr. Biol. Pflanzen 48: 339-351.

Vasanthy G, Pocock SA. 1981. A comparative study of anomalous and normal pollen of Rapanea: morphology, elemental analyses, sterility and fungal parasitism. – Pollen Spores 23: 349-379.

Vaudois-Miéja N. 1983. Extension palaéogéographique en Europe de l’actuel genre asiatique Rehderodendron Hu (Styracacées). – Compt. Rend. Acad. Sci. Paris, sér. II, 296: 125-130.

Veillet-Bartoszewska M. 1959. Développement de l’albumen chez le Rhododendron ferrugineum L. – Bull. Soc. Bot. France 106: 17-20.

Veillet-Bartoszewska M. 1960a. Embryogénie des Styracacées. Développement de l’embryon chez le Styrax officinalis L. – Compt. Rend. Acad. Sci. Paris, sér. II, 250: 905-907.

Veillet-Bartoszewska M. 1960b. Embryogénie des Clethracées. Développement de l’embryon chez le Clethra alnifolia L. – Compt. Rend. Acad. Sci. Paris, sér. II, 251: 2572-2574.

Veillet-Bartoszewska M. 1961. Embryogénie des Epacridacées. Développement de l’embryon chez le Dracophyllum secundum R. Br. – Compt. Rend. Acad. Sci. Paris, sér. II, 253: 1000-1002.

Veillet-Bartoszewska M. 1963. Recherches embryogéniques sur les Ericales: comparaison avec les Primulales. – Rev. Gén. Bot. 70: 141-230.

Venkata Rao C. 1961. Pollen types in the Epacridaceae. – J. Indian Bot.Soc. 40: 409-423.

Venkatasamy S, Khittoo G, Nowbuth P, Vencatasamy DR. 2006. Phylogenetic relationships based on morphology among the Diospyros (Ebenaceae) species endemic to the Mascarene Islands. – Bot. J. Linn. Soc. 150: 307-313.

Venkateswarlu J. 1952. Embryological studies in Lecythidaceae I. – J. Indian Bot. Soc. 31: 103-116.

Venkateswarlu J, Lakshminarayana L. 1957. A contribution to the embryology of Hydrocera triflora W. et A. – Phytomorphology 7: 194-203.

Venter S, Munzinger J. 2007. Paphia paniensis (Ericaceae), a new species from New Caledonia critically compared with P. neocaledonica. – New Zealand J. Bot. 45: 503-508.

Verdaguer D, Ojeda F. 2005. Evolutionary transition from resprouter to seeder life history in two Erica (Ericaceae) species: insights from seedling axillary buds. – Ann. Bot. 95: 593-599.

Verdcourt B. 1962. Theaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Overseas Governments, London, pp. 1-8.

Verdcourt B. 1968. Scytopetalaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-3.

Vijayan K, Zhang W-J, Tsou C-H. 2009. Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. – Amer. J. Bot. 96: 1348-1360.

Vijayaraghavan MR. 1965. Morphology and embryology of Actinidia polygama Franch. et Sav. and systematic position of the family Actinidiaceae. – Phytomorphology 15: 224-235.

Vijayaraghavan MR. 1969. Studies in the family Cyrillaceae I. Development of male and female gametophytes in Cliftonia monophylla (Lam.) Britton ex Sarg. – Bull. Torrey Bot. Club 96: 484-489.

Vijayaraghavan MR. 1970a. Actinidiaceae. – In: Johri BM (convener), Proceedings of the symposium on comparative embryology of angiosperms, Bull. Indian Natl. Acad. 41: 69-71.

Vijayaraghavan MR. 1970b. Comparative embryology of angiosperms: Cyrillaceae. – Indian Nat. Sci. Acad. Bull. 41: 163-167.

Vijayaraghavan MR, Dhar U. 1976. Scytopetalum tieghemii – embryologically unexplored taxon and affinities of the family Scytopetalaceae. – Phytomorphology 26: 16-22.

Vijayaraghavan MR, Dhar U. 1978. Embryology of Cyrilla and Cliftonia (Cyrillaceae). – Bot. Not. 131: 127-138.

Villamil P, Palser B. 1981. Studies of floral morphology in the Ericales IX. Organography, vascular anatomy, and megagametophyte in three species of Gaultherieae. – Phytomorphology 30: 250-265.

Vink W. 1957. Revision of the Sapotaceae of the Malaysian area in a wider sense X. Leptostylis. XI. Pycnandra. – Nova Guinea, N. S., 8: 87-124.

Vink W. 1958. Revision of the Sapotaceae of the Malaysian area in a wider sense XIII. Chrysophyllum. – Blumea 9: 21-74.

Virot R. 1975. Epacridacées. – In: Flore de la Nouvelle Calédonie et Dépendances 6, Muséum National d’Histoire Naturelle, Paris.

Vishenskaya TD. 1980. Polymerous androecium and its development in the flower of Thea sinensis L. (Theaceae). – Bot. Žurn. 65: 39-50. [In Russian]

Vogel S. 1986. Ölblumen und ölsammelnde Bienen 2. Lysimachia und Macropis. – Trop. Subtrop. Pflanzenwelt 54: 1-168.

Vogel S, Cocucci AA. 1988. Pollen threads in Impatiens: their nature and function. – Beitr. Biol. Pflanzen 63: 271-287.

Vohnik M, Sadowsky JJ, Kohout P, Lhotakova Z, Nestby R, Kolarik M. 2012. Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. – PLoS One 7: e39524.

Votsch W. 1904. Neue systematische-anatomische Untersuchungen von Blatt und Achse der Theophrastaceen. – Engl. Bot. Jahrb. Syst. 33: 502-546.

Wagstaff SJ, Dawson MI, Venter S, Munziger J, Crayn DM, Steane DA, Lemson KL. 2010. Origin, diversification and classification of the Australasian genus Dracophyllum (Richeeae, Ericaceae). – Ann. Missouri Bot. Gard. 97: 235-258.

Wahlert GA. 2005. A phylogeny of Arctostaphylos (Ericaceae) inferred from nuclear ribosomal ITS sequence data. – M.Sc. thesis, San Francisco State University, San Francisco, California.

Wahlert GA, Parker VT, Vasey MC. 2009. A phylogeny of Arctostaphylos (Ericaceae) inferred from nuclear ribosomal ITS sequences. – J. Bot. Res. Inst. Texas 3: 673-682.

Walker EH. 1940. A revision of the eastern Asiatic Myrsinaceae. – Philipp. J. Sci. 73: 1-258.

Walker EH. 1954. Concerning the Myrsinaceae (’’Ardisiaceae’’) of Japan IV. – Bot. Mag. (Tokyo) 67: 795-796.

Walker EH. 1959. A revision of the Myrsinaceae of Taiwan. – Quart. J. Taiwan Mus. 12: 161-194.

Wallace GD. 1975a. Interrelationships of the subfamilies of the Ericaceae and derivation of the Monotropoideae. – Bot. Not. 128: 286-298.

Wallace GD. 1975b. Studies of the Monotropoideae (Ericaceae): taxonomy and distribution. – Wassmann J. Biol. 33: 1-88.

Wallace GD. 1976. Interrelationships of the subfamilies of the Ericaceae and derivation of the Monotropoideae. – Bot. Not. 128: 286-298.

Wallace GD. 1977. Studies of the Monotropoideae (Ericaceae). Floral nectaries: anatomy and function in pollination ecology. – Amer. J. Bot. 64: 199-206.

Wallace GD. 1987. Transfer of Eremotropa sciaphila to Monotropastrum (Ericaceae). – Taxon 36: 128-130.

Wallace GD. 1995. Ericaceae subfamily Monotropoideae. – In: Luteyn JL (ed), Flora Neotropica. Monograph 66. Ericaceae II. The superior-ovaried genera. – New York Botanical Garden, New York, pp. 13-27.

Wallnöfer B. 1997. A revision of Styrax L. section Pamphilia (Mart. ex A. DC.) B. Walln. (Styracaceae). – Ann. Naturhist. Mus. Wien, B, 99: 681-720.

Wallnöfer B. 2001. The biology and systematics of Ebenaceae: a review. – Ann. Naturhist. Mus. Wien, B, 103: 485-512.

Wallnöfer B. 2004a. A revision of Lissocarpa Benth. (Ebenaceae subfam. Lissocarpoideae (Gilg in Engler) B. Walln.) – Ann. Naturhist. Mus. Wien, B, 105: 515-564.

Wallnöfer B. 2004b. Ebenaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 125-130.

Wallnöfer B. 2004c. Lissocarpaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 236-238.

Walton EF, Fowke PJ, Weis K, McLeay PL. 1997. Shoot axillary bud morphogenesis in kiwifruit (Actinidia deliciosa). – Ann. Bot. 80: 13-21.

Wang H-C, Meng A-P, Chu H-J, Li X-W, Li J-Q. 2010. Floral ontogeny of Sinojackia xylocarpa (Styracaceae), with special reference to the development of the androecium. – Nord. J. Bot. 28: 371-375.

Wang M-K, Peng S-L, Ding L-S, Wu F-E, Chen Y-Z. 1998. Triterpenoid saponins from Berneuxia thibetica. – Phytochemistry 48: 1411-1414.

Wang Y-J, Li X-J, Hao G, Liu J-Q. 2004. Molecular phylogeny and biogeography of Androsace (Primulaceae) and the convergent evolution of cusion morphology. – Acta Phytotaxon. Sin. 42: 481-499. [In Chinese]

Wang Y, Fritsch PW, Shi S, Almeda F, Cruz BC, Kelly LM. 2004. Phylogeny and infrageneric classification of Symplocos (Symplocaceae) inferred from DNA sequence data. – Amer. J. Bot. 91: 1901-1914.

Wang Y-H, He H, Min T-L, Zhou LH, Fritsch PW. 2006. The phylogenetic position of Apterosperma (Theaceae) based on morphological and karyotype characters. – Plant Syst. Evol. 260: 39-52.

Wang Y-H, Lu L, Fritsch PW, Wang H, Wang Y-H, Li D-Z. 2015. Leaf epidermal character variation and evolution in Gaultherieae (Ericaceae). – Bot. J. Linn. Soc. 178: 686-710.

Wang ZY, Gould KS, Patterson KJ. 1994. Comparative root anatomy of five Actinidia species in relation to root-stock effects on kiwifruit flowering. – Ann. Bot., N. S., 73: 403-413.

Wanntorp L, Anderberg AA. 2011. Evolution and diversification of brook weeds (Samolus, Samolaceae, Ericales). – Intern. J. Plant Sci. 172: 250-266.

Wanntorp L, Ronse De Craene L, Peng C-I, Anderberg A. 2012. Floral ontogeny and morphology of Stimpsonia and Ardisiandra, two aberrant genera of the primuloid clade of Ericales. – Intern. J. Plant Sci. 173: 1023-1035.

Warburg O, Reiche K. 1896. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 383-392.

Ward NM, Price RA. 2002. Phylogenetic relationships of Marcgraviaceae: insights from three chloroplast genes. – Syst. Bot. 27: 149-160.

Ward S. 1981. The cytology of the genus Cyclamen. – In: Bailey RH (ed), Cyclamen 1980: Proc. Conf. Cyclamen Soc., Cyclamen Society, Chigwell, pp. 17-25.

Warner BG, Chinnappa CC. 1986. Taxonomic implications and evolutionary trends in pollen of Canadian Ericales. – Can. J. Bot. 64: 3113-3126.

Warrington IJ, Weston GC (eds). 1990. Kiwifruit: science and management. – Ray Richards, Auckland.

Waselkov K, Judd WS. 2008. A phylogenetic analysis of Leucothoé s.l. (Ericaceae; tribe Gaultherieae) based on phenotypic characters. – Brittonia 60: 382-397.

Waser NM. 1979. Pollinator availability as a determinant of flowering time in ocotillo (Fouquieria splendens). – Oecologia 39: 107-121.

Waser NM, Price MV. 1989. Optimal outcrossing in Ipomopsis aggregata: seed set and offspring fitness. – Evolution 43: 1097-1109.

Watanabe H. 1933. Ungeschlechtliche Fortpflanzung von Mitrastemon yamamotoi. – Proc. Imp. Acad. Japan 9: 412-415.

Watanabe H. 1934a. Biologie von Mitrastemon yamamotoi Makino (Rafflesiaceae) II. Vegetative Fortpflanzung. – Bot. Mag. Tokyo 48: 467-472.

Watanabe H. 1934b. Geschlechtliche Fortpflanzung von Mitrastemon yamamotoi. Proceedings of the Imperial Academy of Japan 10: 421-423.

Watanabe H. 1934c. Über die Flüssigkeitsabsonderung der Blüten von Mitrastemon yamamotoi. – Proc. Imp. Acad. Japan 10: 507-508.

Watanabe H. 1934d. Abweichende Formen von Mitrastemon yamamotoi. – Proc. Imp. Acad. Japan 10: 600-603.

Watanabe H. 1935a. Beziehung zwischen Mitrastemon yamamotoi und M. kanehirai. – Proc. Imp. Acad. Japan 11: 280-282.

Watanabe H. 1935b. Mitrastemon kawa-sasakii aus Formosa. – Proc. Imp. Acad. Japan 11: 283-285.

Watanabe K. 1933. Biologie von Mitrastemon yamamotoi Makino (Rafflesiaceae) I. Früchte und Samen. – Bot. Mag. Tokyo 67: 798-805.

Watanabe K. 1936. Morphologische-biologische Studien über die Gattung Mitrastemon I-IV. – J. Jap. Bot. 12: 603-618, 698-711, 759-773, 848-858.

Watanabe K. 1937. Morphologische-biologische Studien über die Gattung Mitrastemon V-VII. – J. Jap. Bot. 13: 14-24, 75-86, 154-162.

Waterman PG, Mahmoud EN. 1991. Chemical taxonomy of the Sapotaceae: patterns in the distribution of some simple phenolic compounds. – In: Pennington TD (ed), the genera of Sapotaceae, chapter 4, Royal Botanic Gardens, Kew, New York Botanical Garden, New York, pp. 51-74.

Watson L. 1962. The taxonomic significance of stomatal distribution and morphology in Epacridaceae. – New Phytol. 61: 36-40.

Watson L. 1964a. The taxonomic significance of certain anatomical observations on Ericaceae – the Ericoideae, Calluna, and Cassiope. – New Phytol. 63: 274-280.

Watson L. 1964b. Some remarkable inflorescences in the Ericales and their taxonomic significance. – Ann. Bot., N. S., 28: 311-318.

Watson L. 1965. The taxonomic significance of certain anatomical variations among Ericaceae. – Bot. J. Linn. Soc. 59: 111-125.

Watson L. 1967. Taxonomic implications of a comparative anatomical study of Epacridaceae. – New Phytol. 66: 495-504.

Watson L. 1976. Ericales revisited. – Taxon 35: 269-271.

Watson L, Williams WT, Lance GN. 1967. A mixed-data approach to angiosperm taxonomy: the classification of Ericales. – Proc. Linn. Soc. London 178: 25-35.

Watt G. 1904. Observations on Indian primulas. – J. Roy. Hortic. Soc. 19: 295-326.

Webby RF, Wilson RD, Ferguson AR. 1994. Leaf flavonoids of Actinidia. – Biochem. Syst. Ecol. 22: 277-286.

Weber H. 1955. Haben die Marcgraviaceen “Inulinblätter”? – Ber. Deutsch. Bot. Ges. 68: 408-412.

Weber H. 1956. Über die Blütenstände und die Hochblätter von Norantea Aubl. (Marcgraviaceae). – Beitr. Biol. Pflanzen 32: 313-329.

Weberling F. 1956. Weitere Untersuchungen zur Morphologie des Unterblattes bei den Dikotylen I. Balsaminaceae; II. Plumbaginaceae. – Beitr. Biol. Pfl. 33: 17-32.

Weberling F. 1958. Über das Vorkommen rudimentärer Stipeln bei den Lecythidaceae (s. l.) und Sonneratiaceae. – Flora 116: 72-77.

Weberling F. 1968. Bemerkungen über das Vorkommen rudimentärer Stipeln I. Cyrillaceae und die Gattung Cyrillopsis Kuhlm. II. Alzatea Ruiz & Pav. (Lythraceae) und Tristania R. Br. – Acta Bot. Neerl. 17: 282-287.

Weese TL, Johnson LA. 2005. Utility of NADP-dependent isocitrate dehydrogenase for species-level evolutionary inference in angiosperm phylogeny: a case study in Saltugilia. – Mol. Phylogen. Evol. 36: 24-41.

Wehnert A. 1906. Anatomisch-systematische Untersuchungen der Gattung Symplocos. – Ph.D. diss., München.

Wei Z-X. 1997. Pollen ultrastructure of Theaceae and its systematic significance. – Acta Bot. Yunnan. 19: 143-153. [In Chinese]

Wei Z-X, Li D-Z, Fan X-K, Zhang X-L. 1997. Pollen ultrastructure of Pentaphylacaceae and Sladeniaceae and their relationships to the family Theaceae. – Acta Bot. Yunnan. 21: 202-206. [In Chinese with English summary]

Weiller CM. 1996a. Reassessment of Cyathodes (Epacridaceae). – Aust. Syst. Bot. 9: 491-507.

Weiller CM. 1996b. Planocarpa (Epacridaceae), a new generic name. – Aust. Syst. Bot. 9: 509-519.

Weiller CM. 1996c. Reinstatement of the genus Androstoma Hook. f. (Epacridaceae). – New Zealand J. Bot. 34: 179-185.

Weiller CM. 1999. Leptecophylla, a new genus for species formerly included in Cyathodes (Epacridaceae). – Muelleria 12: 195-214.

Weiller CM, Crowden RK, Powell JM. 1994. Morphology and taxonomic significance of leaf epicuticular waxes in the Epacridaceae. – Aust. Syst. Bot. 7: 125-152.

Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F. 2004. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. – Mycol. Res. 108: 1003-1010.

Weitzman AL. 1987a. The systematics of Freziera Willd. (Theaceae). – Ph.D. diss., Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts.

Weitzman AL. 1987b. Taxonomic studies in Freziera (Theaceae), with notes on reproductive biology. – J. Arnold Arbor. 68: 323-334.

Weitzman AL, Dressler S, Stevens PF. 2004. Ternstroemiaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 450-460.

Wels PV. 1969. The relation between mode of reproduction and extent of speciation in woody genera of the California chaparral. – Evolution 23: 264-267.

Wells PV. 1992. Subgenera and sections of Arctostaphylos. – The Four Seasons 9: 64-69.

Wells PV. 2000. The manzanitas of California, also of Mexico and the World. – Publ. by the author.

Wells TC, Bohm BA. 1994. Isozyme variation in North American Menziesia (Ericaceae). – Syst. Bot. 19: 407-423.

Wendelbo P. 1959. Two new species of Dionysia from Afghanistan. – Bot. Not. 1959: 495-501.

Wendelbo P. 1961a. Studies in Primulaceae I. A monograph of the genus Dionysia. – Årb. Univ. Bergen, Mat. Nat., Ser. 1961(3): 1-83.

Wendelbo P. 1961b. Studies in Primulaceae II. An account of Primula subgenus Sphondylia (syn. Sect. Floribundae) with a review of the subdivision of the genus. – Årb. Univ. Bergen, Mat. Nat., Ser. 1961(11): 1-49.

Wendelbo P. 1961c. Studies in Primulaceae III. On the genera related to Primula with special reference to their pollen morphology. – Årb. Univ. Bergen, Mat. Nat., Ser. 1961(19): 1-31.

Wendelbo P. 1964. Studies in Primulaceae IV. The genus Dionysia in Afghanistan with descriptions of 6 new species. – Årb. Univ. Bergen, Mat.-Nat., Ser. 1963(19): 1-28.

Wendelbo P. 1970. New and noteworthy species of Primulaceae from the ‘Flora Iranica’-Area. – Bot. Not. 123: 300-309.

Wendelbo P. 1971. On xeromorphic adaptations in the genus Dionysia (Primulaceae). – Ann. Naturhist. Mus. Wien 75: 249-254.

Wendelbo P. 1980. New species of Dionysia, Kickxia and Onobrychis from Iran. – Notes Roy. Bot. Gard. Edinb. 38: 105-110.

Weynants C. 1993. Studie van de systematische verwantschappen binnen de Primulanae door middel van een cladistiche analyse. – Unpubl. thesis, Katholieke Universiteit, Leuven, Belgium.

Wherry ET. 1933. The Appalachian relative of Sarracenia flava. – Bartonia 15: 7-8.

Wherry ET. 1940. A provisional key to the Polemoniaceae. – Bartonia 20: 14-17.

Wherry ET. 1943. Microsteris, Phlox, and an intermediate. – Brittonia 5: 60-63.

Wherry ET. 1944a. The minor genus Polemoniella. – Amer. Midl. Natur. 31: 211-215.

Wherry ET. 1944b. Review of the genera Collomia and Gymnosteris. – Amer. Midl. Natur. 31: 216-231.

Wherry ET. 1955. Morris Arboretum Monographs III. The genus Phlox. – Morris Arboretum of the University of Pennsylvania, Philadelphia.

Wherry ET. 1961. Remarks on the genus Linanthus. – Aliso 5: 9-10.

White EB. 1956a. Notes on Ebenaceae I. – Bull. Jard. Bot. L’État 26: 237-246.

White EB. 1956b. Notes on Ebenaceae II. – Bull. Jard. Bot. L’État 26: 277-307.

White EB. 1957. Notes on Ebenaceae III. – Bull. Jard. Bot. L’État 27: 515-531.

White EB. 1962. Notes on Ebenaceae IV. – Bol. Soc. Brot. 36: 97-100.

White EB. 1963. Notes on Ebenaceae V. – Bull. Jard. Bot. L’État 33: 345-367.

White EB. 1981. Lissocarpaceae. – In: Maguire B (ed), The botany of the Guayana Highland 11, Mem. New York Bot. Gard.32: 329-330.

White F. 1962. Geographic variation and speciation in Africa with particular reference to Diospyros. – Syst. Assoc. Publ. 4: 71-103.

White F. 1980. Notes on the Ebenaceae VIII. The African sections of Diospyros. – Bull. Jard. Bot. Belg. 50: 445-460.

White F. 1983. 107. Ebenaceae. – In: Launert E (ed), Flora Zambesiaca 7 (Part 1), Flora Zambesiaca Managing Committee, London, pp. 248-300.

White F. 1988. The taxonomy, ecology and chorology of African Ebenaceae II. The non-Guineo-Congolian species of Diospyros (excluding section Royena). – Bull. Jard. Bot. Natl. Belg. 58: 325-448.

White F. 1998. The vegetative structure of African Ebenaceae and the evolution of rheophytes and ring species. – In: Hopkins HCF, Huxley CR, Pannell CM, Prance GT, White F (eds), The biological monograph, Royal Botanic Gardens, Kew, pp. 95-113.

White F, Barnes RD. 1958. Generic characters in the Ebenaceae. – J. Oxford Univ. Forest Soc. IV, 6: 31-34.

White F, Verdcourt B. 1996. Ebenaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-51.

White F, Vosa CG. 1980. The chromosome cytology of African Ebenaceae with special reference to polyploidy. – Bol. Soc. Brot. II, 53: 275-297.

White J. 1990. Pollen development in Actinidia deliciosa var. deliciosa: histochemistry of the microspore mother cell walls. – Ann. Bot. 65: 231-239.

Whitmore TC. 1974. Abdulmajidia, a new genus of Lecythidaceae from Malaysia. – Kew Bull. 29: 207-211.

Widmer E. 1891. Die europäischen Arten der Gattung Primula. – Oldenburg, München.

Wilken DH. 2004. Polemoniaceae. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 300-312.

Wilken DH, Hartman RL. 1991. A revision of the Ipomopsis spicata complex (Polemoniaceae). – Syst. Bot. 16: 143-161.

Wilken DH, Smith DM, Harborne JB, Glennie CW. 1982. Flavonoid and anthocyanin patterns and the systematic relationships in Collomia. – Biochem. Syst. Ecol. 10: 239-243.

Willson MF, Miller LJ, Rathcke BJ. 1979. Floral display in Phlox and Geranium: adaptative aspects. – Evolution 33: 52-63.

Wilson P. 1995. Selection for pollination success and the mechanical fit of Impatiens flowers around bumblebee bodies. – Biol. J. Linn. Soc. 55: 355-383.

Wit HCD de. 1957. Some remarks on Heberdenia A. DC., Pleiomeris A. DC. and Afrardisia Mez (Myrs.). – Bull. Jard. Bot. État. Brux. 27: 233-242.

Wit HCD de. 1958. Revision of Afrardisia Mez (Myrsinaceae). – Blumea 4 [Suppl.]: 242-262.

Wolf PG, Soltis PS. 1992. Estimates of gene flow among populations, geographic races, and species in the Ipomopsis aggregate complex. – Genetics 130: 639-647.

Wolf PG, Soltis PS, Soltis DE. 1993. Phylogenetic significance of chloroplast DNA restriction site variation in the Ipomopsis aggregata complex and related species (Polemoniaceae). – Syst. Bot. 18: 652-662.

Wollenweber E, Kohorst G. 1981. Epicuticular leaf flavonoids from Eucalyptus species and from Kalmia latifolia. – Zeitschr. Naturforsch. 36c: 913-915.

Wollenweber E, Kohorst G. 1984. Novel epicuticular leaf flavonoids from Kalmia and Gaultheria (Ericaceae). – Zeitschr. Naturforsch. 39c: 710-713.

Wollenweber E, Schnepf E. 1970. Vergleichende Untersuchungen über die flavonoiden Exkrete von “Mehl”– und “Öl”-Drüsen bei Primeln und die Feinstruktur der Drüsenzellen. – Zeitschr. Pflanzenphysiol. 62: 216-227.

Woodcock EF. 1933. Seed studies in Cyclamen persicum Mill. – Ann. Rep. Michigan Acad. Sci. 17: 415-419.

Worley AC, Ghazvini H, Schemske DW. 2009. A phylogeny of the genus Polemonium based on amplified fragment length polymorphism (AFLP) markers. – Syst. Bot. 34: 149-161.

Wright H. 1904. The genus Diospyros in Ceylon: its morphology, anatomy, and taxonomy. – Ann. Roy. Bot. Gard. (Peradeniya) 2: 1-106, 133-210.

Wright S. 1943. An analysis of local variability of flower color in Linanthus parryae. – Genetics 28: 139-156.

Wu C-C, Hsu Z-F, Tsou C-H. 2003. Studies of Eurya (Ternstroemeriaceae) in Taiwan (1), a new endemic species, Eurya septata. – Bot. Bull. Acad. Sin. 44: 67-72.

Wu C-C, Hsu Z-F, Tsou C-H. 2007. Phylogeny and taxonomy of Eurya (Ternstroemiaceae) from Taiwan, as inferred from ITS sequence data. – Bot. Stud. 48: 97-116.

Wunschmann E. 1891. Sarraceniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 244-252.

Xi Y-Z, Tang Y-C. 1990. Pollen morphology and phylogenetic relationships in the Diapensiaceae. – Cathaya 2: 89-112.

Xiao G, Berch SM. 1995. The ability of known ericoid mycorrhizal fungi to form mycorrhizae with Gaultheria shallon. – Mycologia 87: 467-470.

Xiao T-J, Parks CR. 2003. Molecular analysis of the genus Camellia. – Intern. Camellia J. 35: 57-65.

Xiong Z-T, Huang R-H. 1933. Chromosome numbers of 10 species and 3 varieties in Actinidia Lindl. – Acta Phytotaxon. Sin. 26: 245-247.

Xu HJ, Yang TB, Zeng B. 2012. Variation of stomatal length and stomatal density in leaves of Rhododendron with elevation. – Arid Zone Res. 29: 1054-1058.

Xu Y, Hu C-M, Hao G. 2016. Pollen morphology of Androsace (Primulaceae) and its systematic implications. – J. Syst. Evol. 54: 48-64.

Yamamoto Y. 1925. Species nova Rafflesiacearum ex Formosa. – Bot. Mag. Tokyo 39: 142-145.

Yamamoto Y. 1926. Rafflesiaceae. – Suppl. Icon. Plant Form. 2: 10-13.

Yamamoto Y. 1927. Notae ad plantas Japoniae et Formosae VI. Mitrastemon kawa-sasakii Hayata ex Sumatra. – Bot. Mag. Tokyo 41: 736-737.

Yamamoto Y. 1933. On Mitrastemon. – Bot. & Zool. Tokyo 1: 1249-1258.

Yamamoto Y. 1936. Species nova Mitrastemonacearum (Rafflesiacearum) ex Mexico. – Bot. Mag. Tokyo 50: 539-541.

Yamazaki T. 1966. The embryology of Shortia uniflora with brief review of the systematic position of the Diapensiaceae. – J. Jap. Bot. 41: 245-251.

Yamazaki T. 1970a. Embryological studies in Ebenales 1. Styracaceae. – J. Jap. Bot. 45: 267-273.

Yamazaki T. 1970b. Embryological studies in Ebenales 2. Symplocaceae. – J. Jap. Bot. 45: 353-358.

Yamazaki T. 1971. Embryological studies in Ebenales 3. Sapotaceae. – J. Jap. Bot. 46: 161-165.

Yamazaki T. 1972. Embryological studies in Ebenales 4. Ebenaceae. – J. Jap. Bot. 47: 20-28.

Yamazaki T. 1975. Floral anatomy and embryology of Tripetaleia paniculata and T. bracteata (Ericaceae). – Bot. Mag. (Tokyo) 88: 267-279.

Yan G, Yao J, Ferguson AR, McNeilage MA, Seal AG, Murray BG. 1997. New reports of chromosome numbers in Actinidia (Actinidiaceae). – New Zealand J. Bot. 35: 181-186.

Yan H-F, He C-H, Peng C-I, Hu C-M, Hao G. 2010. Circumscription of Primula subgenus Auganthus (Primulaceae) based on chloroplast DNA sequences. – J. Syst. Evol. 48: 123-132.

Yan M, Moore MJ, Meng A, Yao X, Wang H. 2017. The first complete plastome sequence of the basal asteroid family Styracaceae (Ericales) reveals a large inversion. – Plant Syst. Evol. 303: 61-70.

Yan M, Fritsch PW, Moore MJ, Feng T, Meng A, Yang J, Deng T, Zhao C, Yao X, Sun H, Wang H. 2018. Plastid phylogenomics resolves infrafamilial reationships of the Styracaceae and sheds light on the backbone relationships of the Ericales. – Mol. Phylogen. Evol. 121: 198-211.

Yang B-Y. 1952. Pollen grain morphology in the Ericaceae. – Quart. J. Taiwan Mus. 5: 1-24.

Yang J-B, Min TL. 1995a. Embryological studies on genera Pyrenaria and Tutcheria of family Theaceae. – Acta Bot. Yunnan. 17: 67-71. [In Chinese]

Yang J-B, Min TL. 1995b. Systematic position of genera Pyrenaria, Tutcheria and Parapyrenaria of family Theaceae. – Acta Bot. Yunnan. 17: 192-196. [In Chinese]

Yang J-B, Yang S-X, Li D-Z, Lei L-G, Ikeda T, Yoshino H. 2006. Phylogenetic relationships of Theaceae inferred from mitochondrial matR gene sequence data. – Acta Bot. Yunnan. 29: 29-36.

Yang S-X. 1988. Systematics, diversification, and geographical distribution of Pyrenaria sensu lato (Theaceae). – Ph.D. diss., Kunming Institute of Botany, Kunming, Yunnan. [In Chinese]

Yang S-X, Ming T-L. 1995a. Embryological studies on genera Pyrenaria and Tutcheria of family Theaceae. – Acta Bot. Yunnan. 17: 67-71. [In Chinese]

Yang S-X, Ming T-L. 1995b. Studies on the systematic position of genera Pyrenaria, Tutcheria and Parapyrenaria of family Theaceae. – Acta Bot. Yunnan. 17: 192-196. [In Chinese]

Yang S-X, Yang J-B, Lei L-G, Li D-Z, Yoshino H, Ikeda T. 2004. Reassessing the relationships between Gordonia and Polyspora (Theaceae) based on the combined analysis of molecular data from the nuclear, plastid and mitochondrial genomes. – Plant Syst. Evol. 248: 45-55.

Yang Y-P, Dwyer JD. 1989. Taxonomy of subgenus Bladhia of Ardisia (Myrsinaceae). – Taiwania 34: 192-298.

Yao X, Ye Q, Fritsch PW, Cruz BC, Huang H. 2008. Phylogeny of Sinojackia (Styracaceae) based on DNA sequence and microsatellite data: implications for taxonomy and conservation. – Ann. Bot. 101: 651-659.

Yao X, Tang P, Li Z, Li D, Liu Y, Huang H. 2015. The first complete chloroplast genome sequences in Actinidiaceae: genome structure and comparative analysis. – PloS ONE 10: e0129347. https://doi.org/10.1371/journal.pone.0129347

Yarsick S, Xena de Enrech N, Ramirez N, Agostini G. 1986. Notes on the floral biology of Couroupita guianensis Aubl. (Lecythidaceae). – Ann. Missouri Bot. Gard. 73: 99-101.

Yasui K. 1915. Studies of Diospyros kaki I. – Bot. Gaz. (Crawfordsville) 60: 362-373.

Ye C-X. 1988. The subdivisions of genus Camellia with a discussion on their phylogenetic relationship. – Acta Bot. Yunnan. 10: 61-67. [In Chinese]

Ye C-X. 1990a. The range of Gordonieae (Theaceae) and limitation of genera in the tribe. – Guihaia 10: 99-103. [In Chinese]

Ye C-X. 1990b. A discussion on relationship among the genera in Theoideae (Theaceae). – Acta Sci. Nat. Univ. Sunyatseni 29: 74-81. [In Chinese]

Yonemori K, Sugiura A, Yamada M. 2000. Persimmon genetics and breeding. – In: Janick J (ed), Plant breeding reviews, vol. 19, Wiley, New York, pp. 191-225.

Young BW, Massicotte HB, Tackaberry LE, Baldwin QF, Egger KN. 2002. Monotropa uniflora: morphological and molecular assessment of mycorrhizae retrieved from sites in the Sub-Boreal Spruce biogeoclimatic zone in central British Columbia. – Mycorrhiza 12: 75-82.

Yu S-X, Chen Y-L, Qin H-N. 2007. Impatiens angulata (Balsaminaceae), a new species from Guangxi, China. – Nord. J. Bot. 25: 27-30.

Yu S-X, Zhou X-R, Xu G-F, Meng L, Bi H-Y. 2010. Floral development in Impatiens chishuiensis (Balsaminaceae): formation of two well-developed anterolateral sepals and four carpels. – Plant Syst. Evol. 286: 21-26.

Yu S-X, Janssens SB, Zhu X-Y, Lidén M, Gao T-G, Wang W. 2016. Phylogeny of Impatiens (Balsaminaceae): integrating molecular and morphological evidence into a new classification. – Cladistics 32: 179-197.

Yuan Y-M, Song Y, Geuten K, Rahelivololona E, Wohlhauser S, Fischer E, Smets E, Küpfer P. 2004. Phylogeny and biogeography of Balsaminaceae inferred from ITS sequences. – Taxon 53: 391-403.

Zak B. 1974. Ectendomycorrhiza of Pacific madrone (Arbutus menziesii). – Trans. Brit. Mycol. Soc. 62: 202-204.

Zakharov AM, Glyzin VI, Ban’Kovskii AI. 1971. Flavonoids of Primula turkestanica. – Khim. Prir. Soedin. 7: 814. [In Russian]

Zavada MS, Wei Z-X. 1993. A contribution to the pollen morphology of Camellia (Theaceae). – Grana 32: 233-242.

Zeeuw CH de. 1987. Chapter IX. Wood anatomy. – In: Mori SA et al. (eds), The Lecythidaceae of a lowland neotropical forest: La Fumée Mountain, French Guiana, Mem. New York Bot. Gard. 44: 100-112.

Zeeuw CH de. 1990. Secondary xylem of neotropical Lecythidaceae. – In: Mori SA, Prance GT (eds), Flora Neotropica. Monograph 21. Lecythidaceae II. The zygomorphic-flowered New World genera (Couroupita, Corythophora, Bertholletia, Couratari, Eschweilera, and Lecythis), pp. 49-59.

Zetter RM, Hesse M. 1996. The morphology of pollen tetrads and viscin threads in some Tertiary, Rhododendron-like Ericaceae. – Grana 35: 285-294.

Zeybek N. 1970. Liefert Styrax officinalis L. ein Harz? – Ber. Schweiz. Bot. Ges. 80: 189-193.

Zhang L-B, Kadereit JW. 2002. The systematics of Soldanella (Primulaceae) based on morphological and molecular (ITS, AFLPs) evidence. – Nord. J. Bot. 22: 129-169.

Zhang L-B, Kadereit JW. 2004a. Classification of Primula sect. Auricula (Primulaceae) based on two molecular data sets (ITS, AFLPs), morphology and geographical distribution. – Bot. J. Linn. Soc. 146: 1-26.

Zhang L-B, Kadereit JW. 2004b. Nomenclature of Soldanella L. (Primulaceae). – Taxon 53: 741-752.

Zhang L-B, Comes HP, Kadereit JW. 2001. Phylogeny and quaternary history of the European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. – Amer. J. Bot. 88: 2331-2345.

Zhang M-Y, Fritsch PW, Ma P-F, Wang H, Lu L, Li D-Z. 2017. Plastid phylogenomics and adaptive evolution of Gaultheria series Trichophyllae (Ericaceae), a clade from sky islands of the Himalaya-Hengduan Mountains. – Mol. Phylogen. Evol. 110: 7-18.

Zhang R-J, Ma H-Y, Wang Y-H. 2007. Early floral development of endangered Euryodendron excelsum (Ternstroemioideae: Theaceae). – Acta Bot. Yunnan. 29: 648-654.

Zhang R-J, Schönenberger J. 2014. Early floral development of Pentaphylacaceae (Ericales) and its systematic implications. – Plant Syst. Evol. 300: 1547-1560.

Zhang R-J, Ma H-Y, Wang Y-H. 2008. Early development of Adinandra latifolia (Theaceae). – Guihaia 28: 160-163.

Zhang W, Hu Y, Li Z, Wang, P, Xu M. 2009. Foliar sclereids in tea and its wild allies, with reference to their taxonomy. – Aust. Syst. Bot. 22: 286-295.

Zhang X-P, Anderberg AA. 2002. Pollen morphology in the ericoid clade of the order Ericales, with special emphasis on Cyrillaceae. – Grana 41: 201-215.

Zhang Z-Y. 1987. A study on the pollen morphology of Actinidiaceae and its systematic position. – Acta Phytotaxon. Sin. 25: 9-23. [In Chinese with English summary]

Ziemer RR. 1973. Some field observations of Darlingtonia and Pinguicula. – Carniv. Plant Newsl. 2: 25-27.

Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ. 2007. Wide geographic and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. – New Phytol. 175: 166-175.

Zinderen Bakker EM van. 1969. Observations on the distribution of Ericaceae in Africa. – Argum. Geogr. 12: 89-97.

Zinoveva-Stahevitch AE, Grant WF. 1984. Chromosome numbers in Impatiens (Balsaminaceae). – Can. J. Bot. 62: 2630-2635.

Zorzanelli JPF, Carrijo TT, Fiaschi P, Jardim JG, Santamaría-Aguillar D, Amorim AM. 2015. A first record of Freziera (Pentaphylacaceae) from the Brazilian Atlantic Forest, with the description of a new species. – Syst. Bot. 40: 1075-1080.

Zusi RL, Hamas MJ. 2001. Bats and birds as potential pollinators of three species of Marcgravia lianas on Dominica. – Caribbean J. Sci. 37: 274-278.