[Ranunculales+[Sabiaceae+Proteales+[Trochodendrales+[Didymelales+Gunneridae]]]]
Berberidopsida Brongn., Enum. Plant. Mus. Paris: xxv, 94. 12 Aug 1843 [’Berberineae’]; Ranunculopsida Brongn., Enum. Plant. Mus. Paris: xxvi, 96. 12 Aug 1843 [’Ranunculineae’]; Ranunculanae Takht. ex Reveal in Novon 2: 236. 13 Oct 1992; Ranunculidae Takht. ex Reveal in Novon 2: 235. 13 Oct 1992; Berberidanae Doweld, Tent. Syst. Plant. Vasc.: xxv, xxvi. 23 Dec 2001; Papaveranae Doweld, Tent. Syst. Plant. Vasc.: xxv. 23 Dec 2001
Fossils Teixeiraea lusitanica has been assigned to Ranunculales (and possibly to Menispermaceae). It is a fossilized male flower from the Late Aptian to the Early Albian of Portugal. The spirally arranged floral parts are free, the outermost ones being bracteate and grading into tepaloid parts. The 20 stamens have basifixed anthers and the tectate-perforate pollen grains have a columellate infratectum.
Habit Usually bisexual (sometimes monoecious or dioecious, rarely polygamomonoecious), shrubs, lianas, suffrutices, perennial, biennial or annual herbs (rarely trees).
Vegetative anatomy Phellogen ab initio superficially or deeply seated, or absent. Primary vascular tissue consisting of one or several cylinders of vascular bundles, or of scattered bundles. Secondary lateral growth normal, from cylindrical cambium, anomalous, from normal successive cambia, or absent. Fusiform cambial initials storied (not in Glaucidiaceae). Vessels confined to central portions of fascicular areas (vessel restriction patterns, with very few or no vessels touching rays). Vessel elements with simple or scalariform (sometimes reticulate) perforation plates; lateral pits alternate, opposite or scalariform, bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres (sometimes tracheids) with simple or bordered pits, septate or non-septate (often also vasicentric tracheids). Wood rays usually multiseriate (sometimes uniseriate), homocellular or heterocellular, or absent. Axial parenchyma apotracheal, diffuse or diffuse-in-aggregates or banded, or paratracheal, intervascular or scanty vasicentric, banded, or absent. Sieve tube plastids S or Ss type. Nuclei sometimes with dispersive P-protein. Nodes usually ≥3:≥3, trilacunar or multilacunar with three or more leaf traces (rarely 1:1, 1:4 or 1:5–11, unilacunar with one to many traces, or 2:2, bilacunar with two traces). Latex cells and laticifers with white or coloured latex sometimes present. Idioblasts with raphides sometimes present. Prismatic or rhomboidal calciumoxalate crystals often frequent; crystal sand sometimes present. Calcium oxalate crystals usually present in wood rays (not in Glaucidiaceae and Ranunculaceae).
Trichomes Hairs unicellular och multicellular, usually uniseriate (sometimes multiseriate, rarely branched), or absent; glandular hairs often present.
LeavesUsually alternate (spiral or distichous; sometimes opposite), simple or compound, entire or pinnately or palmately lobed, with supervolute, involute, conduplicate, plicate, subplicate, reclinate, curved or equitant ptyxis. Stipules intrapetiolar or absent; petiole base sometimes sheathing. Petiole vascular bundle transection arcuate or annular. Venation pinnate or palmate, actinodromous or acrodromous (rarely parallelodromous or flabellate). Stomata usually anomocytic (sometimes paracytic, staurocytic or cyclocytic) or absent. Cuticular wax crystalloids usually as irregularly shaped platelets or clustered tubuli (Berberistype), dominated by nonacosan-10-ol (without triterpenoids), or absent. Mesophyll sometimes with sclerenchymatous idioblasts and mucilage cells. Idioblasts with ethereal oils absent. Leaf margin serrate, serrate-dentate, spinose-serrate or glandular-serrate, with chloranthoid or platanoid teeth, crenate or entire.
Inflorescence Terminal or axillary, simple or compound, cymose, raceme-, head- or umbel-like, fascicle, panicle, thyrsoid, spike, raceme, or flowers solitary. Floral prophylls (bracteoles) single or pairwise (sometimes absent).
Flowers Usually actinomorphic (sometimes zygomorphic or bisymmetric). Hypogyny. Perianth sometimes trimerous. Tepals (three or) four to 15, spiral or whorled (rarely absent). Outer tepals two or more, with imbricate or valvate (rarely open) aestivation, sepaloid or petaloid, persistent or caducous, usually free. Inner tepals (staminodial in origin?) one to 13, with imbricate or valvate (sometimes crumpled), free, often with one or several nectaries at base (nectary sometimes absent). Disc absent.
Androecium Stamens (one to) three to more than 500, spiral or whorled. Filaments free or more or less connate, free from tepals. Anthers basifixed to somewhat dorsifixed, usually non-versatile, usually tetrasporangiate (rarely disporangiate), extrorse, latrorse or introrse, usually longicidal (dehiscing by longitudinal slits) or valvate (dehiscing by longitudinal valves). Tapetum usually secretory (rarely amoeboid-periplasmodial). Staminodia extrastaminal, petaloid and/or nectariferous, or absent; female flowers sometimes with staminodia.
Pollen grains Microsporogenesis usually simultaneous (rarely successive). Pollen grains di- or tricolpate to polycolpate or -porate, di- or tricolporate, zono- or pantoaperturate (sometimes syncolpate, rarely spiraperturate, clypeate or inaperturate), usually shed as monads (rarely dyads or tetrads), usually bicellular (sometimes tricellular) at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate, microreticulate, reticulate or punctate, foveolate, striate, scabrate, spinulate, echinate, microechinate, verrucate or psilate.
Gynoecium Carpels one (monocarpellate or pseudomonomerous) to more than 100, spiral or whorled, usually free (sometimes more or less connate), or pistil composed of one to numerous carpels; carpel ascidiate, conduplicate or plicate, postgenitally usually entirely occluded, without canal. Ovary superior, unilocular (apocarpy or gynoecium monomerous) or trilocular to quinquelocular. Stylodia or style single, simple, or absent. Stigma of various types, lobate to capitate (sometimes decurrent), papillate or non-papillate, Dry or Wet type. Male flowers sometimes with pistillodium.
Ovules Placentation marginal or basal (when ovule single, or when ovary unilocular), laminal-lateral or marginal-lateral (when ovules several), or axile (when ovary plurilocular). Ovules one to numerous per carpel, usually anatropous (sometimes hemianatropous, rarely amphitropous or campylotropous), ascending, horizontal or pendulous, usually apotropous (rarely epitropous), usually bitegmic (sometimes unitegmic), usually crassinucellar (sometimes pseudocrassinucellar). Micropyle endostomal or bistomal, sometimes Z-shaped (zig-zag). Archespore unicellular to at least 15-celled. Nucellar cap usually present. Megagametophyte usually monosporous, Polygonum type (rarely disporous, Allium type, or tetrasporous, Adoxa type, Fritillaria type or Peperomia type). Synergids sometimes with a filiform apparatus. Antipodal cells usually persistent, proliferating or non-proliferating. Endosperm development ab initio usually nuclear (rarely cellular). Endosperm haustoria chalazal or absent. Embryogenesis usually onagrad (sometimes solanad, rarely caryophyllad or chenopodiad).
Fruit An assemblage of follicles or achenes, a berry, or a loculicidal, septicidal or poricidal capsule with basipetalous or acropetalous dehiscence (sometimes a multifolliculus or a nut, rarely a lomentum with nut-like mericarps).
Seeds Aril usually absent. Seed coat usually exotestal (rarely endotegmic). Testa often multiplicative (sometimes thin). Exotesta palisade, with often thickened non-lignified cell walls, or seeds more or less pachychalazal, with thin testa. Mesotesta, endotesta and tegmen usually unspecialized. Exotegmen sometimes multiplicative. Perisperm not developed. Endosperm scarce to copious (rarely absent), oily, proteinaceous or starchy. Embryo small to large, undifferentiated to well differentiated at dispersal, without chlorophyll. Cotyledons (one or) two. Germination phanerocotylar or cryptocotylar.
Cytology n = 6–9, 11–13, 15, 19, 21
DNA Nuclear gene AP3 present and usually triplicated.
Phytochemistry Flavonols (kaempferol, quercetin, myricetin, rhamnocitrin; frequently additional oxygenation at carbons 6 or 8 of ring A in contrast to magnoliid clades), O-methylated flavonoids, flavones, isoprenylated flavonoids, cyanidin, delphinidin, dihydrochalcones, diterpenoids, tannins, cardioactive bufadienolides, Digitalis cardenolides, poisonous sesquiterpene lactones, caffeic acid, benzylisoquinoline and aporphine alkaloids (benzyltetrahydroisoquinoline and aporphine derivatives in dimeric form, bulbocapnine and other aporphines, morphinanes, pavines, isopavines, dehydrogenated benzophene anthridines, reduced benzophene anthridines, tyrosine-derived berberine, tetrahydroberberines, berberidine, protopines, rhoeadines, narceines, spirobenzyl isoquinolines, hydrastine, protopine, quaternary magnoflorine and its precursor corytuberine), hasubanane alkaloids (protostephanines, erythrinanes, cocculolidines, morphines, quettamine-morphine dimers, hasubanonines, acutumines, etc.), azafluoranthene alkaloids, tropoloisoquinoline alkaloids, protoberberine alkaloids, diterpene alkaloids (aconitine, methyl lycaconitine etc.), quinolizidine alkaloids (e.g. darvasamine), pyrrolizidine alkaloids as macrocyclic diesters, tyrosine-derived cyanogenic glycosides, lignan-β-glycosides, ranunculins (glucosides), triterpene saponins, steroidal saponins, meconic acid, chelidonic acid, fumaric acid, nitrophenyl ethan, phenylic cinnamide, furofuran lignans, mannitol, and glaupalol (a furanocoumarin) present. Ethereal oils, prodelphinidin, and flavonoids and tannins containing a trihydroxylated B-ring (gallic and ellagic acid derivatives) not found.
Systematics Ranunculales are sister-group to the remaining Tricolpatae.
Euptelea is sister to all other Ranunculales, according to most molecular analyses. The majority of Ranunculales are characterized by wide and tall multiseriate wood rays little altered during ontogeny, and relatively intact extensions of primary rays. These contrast with multiseriate rays dominating in other Tricolpatae, in which the large primary rays are rapidly broken into smaller segments during stem and root growth. In general, multiseriate rays in Ranunculales are composed of procumbent cells with the exception of one or two layers of upright sheathing cells.
The clade [[[Lardizabalaceae+Circaeasteraceae]+[Menispermaceae+[Berberidaceae+ [Hydrastidaceae+Glaucidiaceae]+Ranunculaceae]]]+[Papaveraceae s.lat.]] is characterized by the following potential synapomorphies (Stevens 2001 onwards): vessel elements with simple perforation plates, present in diagonal groups; presence of nucleated libriform fibres and vasicentric tracheids; leaves with palmate secondary venation; and Wet type stigma. Herbaceous growth and woody habit have evolved several times in the two main clades above Euptelea. Likewise, petaloid tepals have originated several times from staminodial stamens (e.g. in Berberidaceae, Lardizabalaceae, Ranunculaceae; Drinnan & al. 1994, etc.). In Ranunculaceae, the petaloid tepals have a single vascular strand, share parastichs with the stamens, are similar to stamens in their early development, and are often peltate.
Pteridophyllum and Papaveraceae have among others the following potential synapomorphies in common (Stevens 2001 onwards): herbaceous growth; roots diarch, i.e. lateral roots tetrastichous; perianth differentiated into outer sepaloid and inner petaloid tepal whorls; sepaloid tepals two, median; petaloid tepals four; carpels at least two collateral, occluded by secretion; placentation parietal; capsule septicidal, with persistent woody placenta; and endotesta well developed.
The second main clade has the topology [[Lardizabalaceae+Circaeasteraceae]+ [Menispermaceae+[Berberidaceae+Ranunculaceae]]] and the potential synapomorphies: wide wood rays; trimerous flowers; outer and inner tepals and stamens opposite each other; outer tepals with three or more vascular traces; and triplication of nuclear gene AP3. Both Lardizabalaceae and Circaeasteraceae have extrorse anthers and cellular endosperm development.
The clade [Menispermaceae+[Berberidaceae+[[Hydrastis+Glaucidium]+Ranunculaceae]]] has the benzylisoquinoline berberine and nuclear endosperm development. According to Stevens (2001 onwards), the clade [Berberidaceae+[[Hydrastis+Glaucidium]+Ranunculaceae]] has the potential synapomorphies: usually herbs with non-tuberous rhizome; bright yellow roots and rhizome due to presence of berberine; roots diarch; lateral roots tetrastichous; nodes often multilacunar; vascular bundles V-shaped, in herbaceous species often closed, scattered or arranged in concentric cylinders; broad leaf base; presence of petaloid staminodial nectaries; outer integument at least four cell layers thick; presence of nucellar cap; endosperm with reserves other than oils or proteins; and loss of mitochondrial intron coxII.i3. Hydrastis, Glaucidium and Ranunculaceae share the synapomorphies: uniseriate perianth; and numerous spiral stamens and carpels. Hydrastis and Glaucidium have vessel elements with simple and scalariform perforation plates, medullary vascular bundles, flattened vascular bundles; petiole vascular bundles annular in cross-section; medullary petiole vascular bundles; no palisade mesophyll; distichous leaves; flowers solitary and terminal; no nectaries; bilobate stigma; outer integument four to 13 and inner integument two to five cell layers thick; unmodified antipodal cells; and also abaxial dehiscence of follicle.
Cladogram of Ranunculales based on DNA sequence data (Soltis & al. 2011). Euptelea is usually sister to the remainder with high bootstrap support and, likewise, the clade [Papaveraceae+Pteridophyllum] is sister to the remaining Ranunculales, often with a bootstrap support of 100%. The other clades show high support varying between 75% and 100%. Circaeasteraceae are sister to Lardizabalaceae with a bootstrap support of 78%. According to Wang & al. (2009), Pteridophyllum (Pteridophyllaceae) is nested inside Papaveraceae as sister to Hypecoum. Until this hypothesis has been further confirmed, Pteridophyllum is treated as sister to Papaveraceae, according to, e.g., Kadereit & al. (1994, 1995). |
BERBERIDACEAE Juss. |
( Back to Ranunculales ) |
Podophyllaceae DC., Syst. Nat. 1: 126. 1-15 Nov 1817 [’Podophylleae’], nom. cons.; Berberidales Bercht. et J. Presl, Přir. Rostlin: 226. Jan-Apr 1820 [‘Berberideae’]; Leonticales Bercht. et J. Presl, Přir. Rostlin: 217. Jan-Apr 1820 [‘Leonticinae’]; Podophyllales Dumort., Anal. Fam. Plant.: 45. 1829 [’Podophyllarieae’]; Diphylleiaceae Schultz Sch., Nat. Syst. Pflanzenr.: 328. 30 Jan-10 Feb 1832; Nandinaceae Horan., Prim. Lin. Syst. Nat.: 90. 2 Nov 1834 [’Nandinaceae (Berberideae)’]; Epimediaceae Menge, Cat. Plant. Grudent. Gedan.: 122. 1839 [’Epimedineae’]; Leonticaceae Airy Shaw in Kew Bull. 18:263. 8 Dec 1965; Ranzaniaceae (Kumaz. et Terab.) Takht. in Bot. Žurn. 79(1): 96. Jan 1994; Nandinales Doweld in Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 60. 9 Oct 2000
Genera/species 12–14/>600
Distribution Eurasia from Western Europe to Malesia, North Africa, East African mountains, North and Central America, mountains in South America.
Fossils Fossil representatives of Berberis are known from the Oligocene onwards in the Northern Hemisphere.
Habit Bisexual, evergreen or deciduous shrubs or biennial to perennial rhizomatous or tuberous herbs (rarely trees). Roots and rhizome often bright yellow inside due to presence of berberine.
Vegetative anatomy Phellogen ab initio superficially or deeply sited (pericyclic). Primary medullary rays wide in Nandina. Primary vascular tissue consisting of one or more cylinders of bundles or scattered bundles. Secondary lateral growth absent or from normal cylindrical cambium. Xylem V-shaped. Vessel elements with usually simple (in Berberis sometimes also scalariform) perforation plates; lateral pits usually opposite or alternate (in Vancouveria scalariform or pseudoscalariform), bordered pits. Imperforate tracheary xylem elements usually libriform fibres (in Nandina also fibre tracheids; in Jeffersonia tracheids) with usually simple pits (in Nandina bordered pits also), septate or non-septate (also vasicentric tracheids). Wood rays multiseriate, homocellular or heterocellular. Axial parenchyma usually absent (rarely vasicentric scanty). Wood elements partially storied. Sieve tube elements Ss type. Nodes ≥3:≥3, trilacunar or multilacunar with three or more leaf traces. Secondary tissue often yellow due to presence of berberine. Prismatic calciumoxalate crystals often abundant. Wood rays often with rhomboidal crystals.
Trichomes Hairs unicellular or multicellular, uniseriate, or absent.
Leaves Alternate (sometimes in a basal rosette), simple or compound (pinnately or palmately compound; in Nandina and sometimes Leontice bipinnate; in Berberis trifoliolate or unifoliolate), entire or lobate, with conduplicate, reclinate, equitant or curved ptyxis; leaves of long shoots in Berberis usually modified into spines. Stipules rudimentary, intrapetiolar and caducous, or absent; leaf sheath absent. Petiole vascular bundle transection annular or arcuate. Venation pinnate or palmate. Stomata anomocytic. Cuticular wax crystalloids usually as clustered tubuli (Berberis type), chemically dominated by nonacosan-10-ol (in ‘Podophyllum’ as solid rodlets sometimes aggregated to larger units). Idioblasts with ethereal oils absent. Leaf margin serrate (sometimes serrate-dentate or spinose-serrate), with chloranthoid teeth, or entire.
Inflorescence Terminal or axillary, spike, raceme or fasciculate etc. (in Nandina panicle), or flowers solitary.
Flowers Actinomorphic. Hypogyny. Tepals (eight to) twelve (to 15) (3+3+3, 3+3, 2+2+2, or 2+2; in Epimedium 4+4+4 or 4+5+5; absent in Achlys) in three to six (rarely seven) series (in Nandina slightly spiral), with imbricate aestivation, free, all tepals in Nandina sepaloid; outer tepals three to nine (in Nandina c. 20 to c. 50), in two series, sepaloid or petaloid (or bracts?), caducous; inner tepals six to twelve, in two to four series, outer series petaloid sepals?, inner two or three series petaloid staminodia? with nectaries (in Nandina nectar secreting staminodia; absent inAchlys, Diphylleia and ‘Podophyllum’). Four inner tepals in Epimedium with four nectariferous spurs. Disc absent.
Androecium Stamens (three to) six (to 19), usually as many (sometimes twice as many) as inner petals (in Achlys seven to 15; in Epimedium 2+2), in one whorl, alternisepalous, antepetalous, or in two or more whorls. Filaments free from each other, free? from or adnate? at base to tepals. Anthers basifixed, non-versatile, tetrasporangiate, usually extrorse (often with valves directed ab initio backwards, later usually inverted and turned up-side-down, with pollen grains against floral centre; in Dysosma and Nandina introrse), usually valvicidal (dehiscing by valves; in Dysosma, Nandina and ‘Podophyllum’ longicidal, dehiscing by longitudinal slits); connective sometimes slightly prolonged. Tapetum secretory or amoeboid-periplasmodial, with multinucleate cells. Staminodia three to nine, petaloid, extrastaminal (or absent?).
Pollen grains Microsporogenesis usually simultaneous (in Berberis and Ranzania? at least sometimes successive). Pollen grains usually tricolpate (rarely hexa- to dodecacolpate or spiraperturate; in Berberis sometimes irregularly polysyncolpate, spiraperturate or clypeate [with surface divided into platelets]; in Ranzania hexacolpate), usually shed as monads (in Ranzania etc. dyads; in some species of ‘Podophyllum’ tetrads), bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, usually perforate, microreticulate, striate-reticulate, psilate-punctate, punctate-striate, echinate, gemmate (in Diphylleia spinulate), in Achlys, Epimedium, Jeffersonia, and Vancouveria striate (with compound layer of striae).
Gynoecium Pistil composed of (seemingly?) one carpel (pseudomonomerous gynoecium developed from two or three connate carpels?); carpel secondarily ascidiate (primarily plicate, rarely ascoplicate), seemingly occluded postgenitally by secretion; closure of carpels sometimes delayed. Ovary superior, unilocular. Style short or absent. Stigma wide, often trilobate (rarely quadrilobate), papillate or non-papillate, Dry or Wet type. Carpellary walls in Caulophyllum etc. not enclosing ripening blue seeds. Pistillodium absent.
Ovules Placentation basal (when single ovule) or marginal-lateral (when several ovules). Ovules one to numerous per ovary (in Achlys one ovule; in Nandina two ovules, one of which degenerating), usually anatropous (sometimes hemianatropous or campylotropous), ascending, horizontal or pendulous, bitegmic, crassinucellar to pseudocrassinucellar. Micropyle bistomal, often Z-type (zig-zag). Outer integument five to eleven cell layers thick. Inner integument two to five cell layers thick. Parietal tissue one or two cell layers thick or absent. Nucellar cap six to eight cell layers thick, formed by periclinal divisions from apical cells of megasporangial epidermis. Megagametophyte usually monosporous, Polygonum type (in Caulophyllum at least sometimes tetrasporous, Peperomia type). Synergids sometimes with a filiform apparatus. Antipodal cells persistent, endopolyploid, with large nuclei, non-proliferating. Endosperm development ab initio usually nuclear (sometimes cellular). Endosperm haustoria usually chalazal (absent in some genera, e.g. in ‘Podophyllum’). Embryogenesis onagrad (or variations of this type).
Fruit Usually a berry or a follicle (in Achlys a nut; in Jeffersonia a capsule; in Gymnospermium a papery not completely closed envelope; fruit in Caulophyllum entirely strongly reduced, with fleshy seeds growing out through carpellary wall).
Seeds Elaiosome and aril usually absent (more or less rudimentary aril present in, e.g., Nandina, Epimedium, Jeffersonia and certain species of Berberis). Seed coat usually exotestal (in Nandina endotegmic). Testa often multiplicative. Exotesta palisade, usually well developed, in Berberis with thick-walled lignified cuboid cells. Mesotesta and endotesta unspecialized. Tegmen usually unspecialized (endotegmen in Nandina sclerotic). Perisperm not developed. Endosperm copious, oily or with hemicellulose. Embryo very small, straight, rudimentary, without chlorophyll. Cotyledons two. Germination phanerocotylar or cryptocotylar.
Cytology n = 6 (Podophylloideae); n = 7 (Berberidoideae); n = 8, 10 (Nandinoideae)
DNA Plastid inverted repeat expanded by 11.5 kb into large single copy region in Berberis. Plastid gene rps7 lost in Podophyllum. Mitochondrial intron coxII.i3 lost. Triplication of nuclear gene AP3.
Phytochemistry Flavonols (kaempferol, quercetin, myricetin), isoprenylated flavonoids, cyanidin, delphinidin, tannin, frequent caffeic acid, benzylisoquinoline alkaloids (berberine, magnoflorine, protopine etc.), aporphine alkaloids, quinolizidine alkaloids (in Caulophyllum, Leontice and Gymnospermium; in Gymnospermium also darvasamine), cyanogenic compounds (in Nandina tyrosine-derived), and saponins present. Lignan-β-glycosides and similar compounds accumulated in Epimedium, ‘Podophyllum’ and Diphylleia (Dysosma?, Vancouveria?). Ellagic acid not found.
Use Ornamental plants, fruits (Berberis), medicinal plants, dyeing (yellow) substances.
Systematics Berberidaceae are sister-group to the clade [Ranunculaceae+[Hydrastis+Glaucidium]].
Nandina was sister to the remaining Berberidaceae in several molecular analyses (e.g. Kim & Jansen 1998). However, Wang & al. (2007) identified the Podophylloideae clade as sister-group to Berberidoideae in a strict sense, in which Nandina were nested in a clade sister to [Berberis+Ranzania]. The subdivision below follows the latter alternative, although the support for this topology is at most moderate.
Podophylloideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836 [‘Podophylleae’]
6–8/c 90. Epimedium (55–60; the Mediterranean and North Africa to southwestern Asia, western Himalayas, northeastern Asia, Japan), Jeffersonia (2; J. dubia: Manchuria, northern China, the Korean Peninsula; J. diphylla: eastern United States), Achlys (2–3; A. californica, A. triphylla: southwestern Canada, western United States; A. japonica: Japan), Bongardia (1; B. chrysogonum; Greece to Afghanistan), ‘Podophyllum’ (14; the Himalayas to East Asia, southeastern Canada, eastern United States; paraphyletic; incl. Diphylleia and Dysosma?), Diphylleia (3; D. sinensis: western China, D. grayi: central and northern Japan, Sakhalin; D. cymosa: eastern United States; in Podophyllum?), Dysosma (10–12; Tibet, China, Vietnam; in Podophyllum?), Vancouveria (3; V. chrysantha, V. hexandra, V. planipetala; western United States). – Temperate regions on the Northern Hemisphere. Lowermost inflorescence branch arising from axil of reduced leaf. Outer tepals four to 18 (absent in Achlys). Inner tepals four to nine (absent in Achlys), with or without nectariferous spurs. Stamens in Achlys seven to 15, in ‘Podophyllum’ up to 19. Anthers longicidal (dehiscing by longitudinal slits). Microsporogenesis successive. Pollen grains sometimes shed as dyads or tetrads. Pollen wall development by centripetal furrowing. Exine usually striate (sometimes spinulate). Gynoecium arising from two carpellary primordia. Ovules one to numerous per carpel. Micropyle sometimes bistomal. Integuments lobate. Inner integument two or three cell layers thick. Megasporocytes in Diphylleia several. Parietal tissue one or two cell layers thick (sometimes absent). Fruit an achene, a berry or a follicle (also with transverse dehiscence). Aril rudimentary or absent. Testa multiplicative. n = 6. Lignan-β-glycosides and similar compounds often accumulated. – Podophylloideae may be sister-group to [Nandinoideae+Berberidoideae].
[Nandinoideae+Berberidoideae]
Tepals with a single trace. Gynoecium arising from two or three carpellary primordia. Stigma usually Wet type.
Nandinoideae Heintze, Cormofyt. Fylog.: 101. 1 Jun 1927
4/15. Nandina (1; Nandina domestica; central China?); Caulophyllum (3; C. robustum: northeastern Asia; C. giganteum, C. thalictroides: southeastern Canada, eastern United States), Gymnospermium (12; southern Balkan Peninsula, Iran, Central Asia, China, the Korean Peninsula), Leontice (3; L. leontopetalum: southeastern Europe to North Africa; L. armeniacum: Turkey to Iran; L. incerta: Central Asia). – East Europe to East Asia. Primary medullary rays wide. In Nandina also fibre tracheids present. Petiole concave at base. Inflorescence paniculate, with lowermost branch arising from axil of expanded leaf. Tepals sepaloid, usually with three traces. Outer tepals in Nandina c. 20–50, spiral. Inner tepals (’petals’) six. Nectary in Nandina absent. Petaloid staminodium and stamen developing from single common primordium. Anthers in Nandina longicidal (dehiscing by longitudinal slits). Pollen grains in Nandina with massive endexine. Ovules one or two (to four) per carpel, (in Nandina two, one of which degenerating). Megasporangium in Nandina early absorbed. Fruit a berry or with evanescent or bladder-like pericarp. Funicle often swollen. Seed coat in Nandina endotegmic, with thin-walled testal cells. Exotesta and mesotesta crushed (Nandina). Endotestal cells in Nandina crystalliferous. Endotegmic cells in Nandina enlarged, lignified, thickened particularly on inner side, crystalliferous. Embryo minute. n = 8, 10. Protopine (a benzylisoquinoline alkaloid) and in Nandina tyrosine-derived cyanogenic compounds present.
Berberidoideae Eaton, Bot. Dict., ed. 4: 41. Apr-Mai 1836
2/>500. Berberis (>500; Europe, the Mediterranean, the Atlas Mountains, East African mountains, temperate Asia, North to South America), Ranzania (1; R. japonica; Japan). – Temperate and mountainous regions, North Africa, South America, with their highest diversity in East Asia and eastern North America. Usually shrubs. Phellogen also pericyclic. Vessel elements usually with simple (in Berberis sometimes scalariform) perforation plates. Leaves imparipinnate or unifoliolate, with conduplicate to curved ptyxis. Stipules numerous. Petiole vascular bundles in Berberis arcuate. Venation sometimes pinnate. Leaf margin usually glandular- or spinose-dentate (sometimes entire). Lowermost inflorescence bransch arising from axil of reduced leaf. Outer tepals three to twelve. Nectar often secreted from paired nectaries at base of four or six inner petaloid staminodia. Stamens (four to) six (to more than 20). Anthers usually dehiscing by valves (rarely slits), often sensitive. Tapetum amoeboid-periplasmodial. Pollen grains 6–12-colpate or spiraperturate etc. Exine striate-reticulate, often undifferentiated. Placentation basal-lateral; placentae sometimes protruding-diffuse and vascularized. Ovules one to numerous per carpel. Megasporocytes sometimes several. Parietal tissue approx. two cell layers thick. Endosperm development nuclear or cellular. Fruit a berry. Embryo elongate, with relatively long radicula. n = 7.
Cladogram of Berberidaceae based on DNA sequence data (Kim & Jansen 1998). |
Cladogram of Berberidaceae based on DNA sequence data (Wang & al. 2007) |
CIRCAEASTERACEAE Kuntze ex Hutch. |
( Back to Ranunculales ) |
Kingdoniaceae A. S. Foster ex Airy Shaw in Kew Bull. 18: 262. 8 Dec 1965; Circaeasterales Takht., Divers. Classif. Fl. Pl.: 97. 24 Apr 1997
Genera/species 2/2
Distribution The Himalayas, southwestern, western and northwestern China.
Fossils Unknown.
Habit Bisexual, annual or perennial (Kingdonia) or annual (Circaeaster) herbs.
Vegetative anatomy Mycorrhiza endotrophic (Kingdonia). Phellogen absent. Vessel elements usually with simple (in Kingdonia sometimes scalariform) perforation plates, bordered pits absent? Imperforate tracheary xylem elements?, non-septate? Wood rays absent. Axial parenchyma absent? Sieve tube plastids? Nodes 1:1 (Circaeaster) or 1:1–4 (Kingdonia), unilacunar with one or four leaf traces, respectively. Crystals?
Trichomes Hairs unicellular or multicellular, uniseriate, uncinate (on surface of achenes in Circaeaster), or absent.
Leaves Alternate (in Circaeaster in basal rosette; in Kingdonia usually only a single basal leaf, sometimes distichous), simple, entire or palmately lobed, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate? Venation flabellate (open-dichotomously branched), with branches running into leaf teeth. Stomata anomocytic. Cuticular wax crystalloids as clustered tubuli of Berberis type, dominated by nonacosan-10-ol (Circaeaster). Leaf margin serrate.
Inflorescence Flowers inCircaeaster in terminal, compound thyrsoid inflorescences; flowers in Kingdonia terminal, solitary, long-pedunculate (scapose). Floral prophyll (bracteole) in Kingdonia adaxial, in Circaeaster absent.
FlowersAlmost actinomorphic, small. Hypogyny. Tepals with valvate aestivation, spiral, persistent, in Circaeastertwo or three scale-like sepaloid, in Kingdonia (four or) five to seven petaloid. Kingdoniawith eight to 13 intratepalous clavate glistening glands (nectar-secreting staminodia?). Nectary absent in Circaeaster. Disc absent.
Androecium Stamens inCircaeaster usually two (sometimes one or three), alternitepalous, in Kingdonia three to eight. Filaments free from each other and from tepals. Anthers in Circaeaster basifixed, non-versatile, disporangiate, introrse to latrorse, in Kingdonia tetrasporangiate, extrorse, valvicidal (dehiscing by longitudinal valves). Tapetum secretory. Staminodia in Circaeaster one sepaloid or absent, in Kingdonia eight to 13 extrastaminal, apically nectariferous and petaloid.
Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (sometimes tricolporate?), shed as monads, bicellular at dispersal. Exine (tectate to) semitectate, with columellate infratectum, striate-reticulate (with compound layer of fine striae).
Gynoecium Carpels usually two (sometimes one or three; Circaeaster) or three to nine (Kingdonia), short- to long-stalked, free; carpel ascidiate, occluded by secretion? Ovary superior, unilocular (monomerous or apocarpous). Stylodia short (Circaeaster) or subulate and recurved (Kingdonia). Stigma somewhat oblique, papillate (Circaeaster), Wet? type. Pistillodium absent.
Ovules Placentation subapical-marginal. Ovules two submarginal (Circaeaster, upper one degenerating) or one (Kingdonia) per carpel, orthotropous (Circaeaster) or hemianatropous (Kingdonia), pendulous, unitegmic, incompletely tenuinucellar, with meiocyte hypodermal at apex of megasporangium. Integument in Circaeaster approx. two cell layers thick (degenerating following fertilization), in Kingdonia two to five cell layers thick. Megagametophyte in Kingdonia monosporous, Polygonum type, in Circaeaster tetrasporous, Adoxa type (tetranucleate or octanucleate). Endosperm formation at least in Circaeaster cellular (in Kingdonia helobial?). Endosperm haustorium chalazal (Circaeaster). Embryogenesis chenopodiad.
Fruit An achene or assemblage of achenes.
Seeds Aril absent. Testa thin or absent (degenerating; in Circaeaster replaced by inner epidermis of pericarp and outer layer of endosperm). Perisperm not developed. Endosperm copious. Embryo small (Circaeaster) or fairly large (Kingdonia), straight, chlorophyll? Hypocotyl in Circaeaster strongly elongated. Cotyledons two, linear, persistent (Circaeaster). Germination phanerocotylar (Circaeaster). Leaves in Circaeaster at apex of elongated hypocotyl.
Cytology n = 9 (Kingdonia), n = 15 (Circaeaster)
DNA
Phytochemistry Virtually unknown. Flavonols? Cyanogenic compounds not found.
Use Unknown.
Systematics Circaeaster (1; C. agrestis; northwestern Himalayas from Kumaun in India through Nepal to southeastern Tibet and northwestern Yunnan, and the Kansu and Shensi mountains in northwestern China), Kingdonia (1; K. uniflora; western and northwestern China).
Circaeasteraceae are sister group to Lardizabalaceae.
EUPTELEACEAE K. Wilh. |
( Back to Ranunculales ) |
Eupteleales Hu ex Reveal in Phytologia 74: 174. 25 Mar 1993; Eupteleanae Doweld, Tent. Syst. Plant. Vasc.: xxv. 23 Dec 2001; Eupteleineae Shipunov in A. Shipunov & J. L. Reveal, Phytotaxa 16: 63. 4 Feb 2011
Genera/species 1/2
Distribution Eastern Himalayas, Assam, southwestern and central China, Japan.
Fossils Fossilized leaves, pollen grains and fruits have been found in Paleocene to Miocene layers in several places in the Northern Hemisphere.
Habit Usually bisexual (sometimes unisexual male), deciduous trees.
Vegetative anatomy Phellogen ab initio cortical. Vessel elements with scalariform or partially reticulate perforation plates; lateral pits usually opposite to intermediary (sometimes alternate or scalariform), bordered pits. Vessel restriction patterns absent. Imperforate tracheary xylem elements fibre tracheids with usually bordered (sometimes simple) pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, diffuse-in-aggregates, or in tangential bands. Multiseriate phloem rays strongly sclerified. Sieve tube plastids S type, with approx. ten globular starch grains. Nodes 1:5–11, unilacunar with five to eleven leaf traces. Medulla and petioles with secretory cells, tanniniferous cells and cells with cluster crystals.
Trichomes Hairs present on young leaves, uniseriate, caducous, or absent.
Leaves Alternate (spiral), simple, entire, with subplicate-conduplicate ptyxis. Stipules and leaf sheath absent. Petiole base hollow; petiole vascular bundles? Venation pinnate, craspedodromous, with lateral veins ascending and running almost to leaf teeth, or palmate. Stomata anomocytic. Cuticular wax crystalloids absent or as clustered tubuli (Berberis type), chemically dominated by nonacosan-10-ol. Mesophyll without sclerenchymatous idioblasts. Calciumoxalate druses present. Idioblasts with ethereal oils absent. Leaf margin glandular-serrate, with platanoid teeth (each gland with an apical cavity).
Inflorescence Axillary, with flowers one or few together in raceme- or umbel-like fasciculate inflorescence. Lowermost flowers often with one or two floral prophylls (bracteoles).
Flowers Bisymmetric, small, bent downwards. Hypogyny? Tepals absent. Nectary absent. Disc absent.
Androecium Stamens six to c. 20, in one whorl. Filaments short or somewhat elongated, filiform, free. Anthers basifixed, non-versatile, tetrasporangiate, latrorse, valvicidal (dehiscing by longitudinal valves), horizontally somewhat widened; connective prolonged. Tapetum secretory, with uninucleate to quadrinucleate cells. Staminodia absent.
Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate or penta- to heptacolpate (rarely tetracolpate), shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate to microreticulate, verrucate.
Gynoecium Carpels six to 18 (to 31), whorled, free (apocarpous); carpel plicate and ascidiate (intermediary), postgenitally closed, without canal, stipitate. Ovary superior?, unilocular. Style absent. Stigma decurrent, not reaching carpellary apex (due to asymmetrical growth of carpel), brush-like, papillate (with long unicellular papillae), Dry or slightly Wet type. Pistillodium absent.
Ovules Placentation lateral (submarginal). Ovules usually one to three (rarely four) per carpel, anatropous, pendulous, apotropous or epitropous, bitegmic, crassinucellar. Micropyle bistomal. Outer integument two to five cell layers thick. Inner integument (except its inner epidermis) crushed, two or three cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development cellular. Endosperm haustoria? Embryogenesis caryophyllad or solanad.
Fruit A stalked discoid samara with the brush-like stigma persistent on one side.
Seeds Aril absent. Seed coat testal. Epidermis tanniniferous. Exotestal cells enlarged (wider than endo- and mesotestal cells). Mesotesta often sclerotic. Endotesta subpalisade, with lignified cell walls. Tegmen unspecialized. Perisperm not developed. Endosperm copious, oily and proteinaceous. Embryo small, straight, little differentiated, chlorophyll? Cotyledons two. Germination phanerocotylar.
Cytology n = 14
DNA The plastid gene rpl22 is perhaps absent from Euptelea. Nuclear gene AP3 triplicated?
Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, chalcones, dihydrochalcones, and triterpene saponins present. Myricetin, ellagic acid and cyanogenic compounds not found.
Use Medicinal plants, timber.
Systematics Euptelea (2; E. pleiosperma: eastern Himalayas, Assam, southwestern and central China; E. polyandra: Japan).
Euptelea is sister to the remaining Ranunculales.
GLAUCIDIACEAE Tamura |
( Back to Ranunculales ) |
Glaucidiales Takht. ex Reveal in Novon 2: 238. 13 Oct 1992
Genera/species 1/1
Distribution Japan.
Fossils Unknown.
Habit Bisexual, perennial herb.
Vegetative anatomyPhellogen? Primary vascular tissue consisting of two irregularly concentric cylinders of vascular bundles: one outer cylinder with smaller bundles and one inner cylinder with larger bundles. Endodermis absent. Palisade mesophyll absent. Rhizome with normal secondary lateral growth. Xylem not V-shaped in cross-section. Vessel elements usually with simple (sometimes scalariform with few bars or reticulate) perforation plates; lateral pits scalariform or pseudoscalariform (in reality alternate). Vessel restriction patterns occurring. Imperforate tracheary xylem elements usually libriform fibres (sometimes tracheids) with bordered pits. Wood rays multiseriate, heterocellular? (with non-lignified cell walls). Axial parenchyma paratracheal, pervasive or intervascular. Sieve tube plastids S type. Nodes multilacunar with several? leaf traces. Crystals absent?
Trichomes Hairs unicellular?
Leaves Alternate (distichous), simple, palmately lobed, with conduplicate, supervolute to curved and plicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection annular and medullary. Venation palmate. Stomata anomocytic. Cuticle wax crystalloids as few small irregular platelets, dominated by nonacosan-10-ol. Leaf margin serrate.
Inflorescence Flowers terminal, usually solitary (rarely pairwise).
Flowers Actinomorphic. Hypogyny. Tepals four, petaloid, decussate, caducous, free. Nectary absent. Disc absent.
Androecium Stamens c. 350 to more than 500, spiral, fasciculate. Filaments filiform, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, extrorse?, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.
Pollen grains Microsporogenesis simultaneous? Pollen grains tricolpate, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum (with reduced columellae), spinulate, punctate-perforate.
Gynoecium Carpels (one or) two (to four), antesepalous, conduplicate-plicate, somewhat connate at base. Ovary superior, unilocular (apocarpy; bilocular at base). Stylodia very short. Stigma bifid, decurrent?, type? Pistillodium absent.
Ovules Placentation marginal. Ovules c. 15 to c. 20 (to more than 30) per carpel, anatropous, bitegmic, usually tenuinucellar (rarely pseudocrassinucellar). Micropyle endostomal. Outer integument seven to ten (to 13) cell layers thick, vascularized. Inner integument three to five cell layers thick. Archespore usually ten- to 15-celled (megasporocytes). Primary parietal cell not formed. Nucellar cap c. 15 to c. 20 cell layers thick, massive, formed by periclinal divisions from apical cells of megasporangial epidermis. Megagametophyte monosporous, Polygonum type. Antipodal cells ephemeral or persistent (degenerating immediately after fertilization or earlier), non-proliferating. Endosperm development nuclear. Endosperm haustoria? Embryogenesis unclassified type (resembles onagrad). Polyembryony frequent.
Fruit Ventricidal and dorsicidal follicles. Adaxial side of carpels expanding more than abaxial side during fruit development, causing stigma to become inserted on ‘lower’ (abaxial) side at fruit maturation.
Seeds Aril absent. Seeds flattened. Seed coat testal. Outer integument vascularized, developing into a wing-like structure on testa. Inner integument degenerating. Tegmen collapsed? Perisperm not developed. Endosperm copious, starchy? Embryo small, elongate, well differentiated, chlorophyll? Cotyledons two, foliaceous, with more or less connate petioles. Germination?
Cytology n = 10 – Chromosomes 1,5–2,5 µm long, reniform, T type (Thalictrum type).
DNA Mitochondrial intron coxII.i3 lost?
Phytochemistry Insufficiently known. Flavonols (kaempferol, quercetin, rhamnocitrin) and glaupalol (a furanocoumarin) present. Berberine and other alkaloids, and cyanogenic compounds not found.
Use Ornamental plants.
Systematics Glaucidium (1; G. palmatum; high mountains on Hokkaido and northern and central Honshu in Japan).
Glaucidium is sister to Hydrastis (Hydrastidaceae) or, alternatively, sister to Ranunculaceae.
HYDRASTIDACEAE Martinov |
( Back to Ranunculales ) |
Hydrastidales Takht., Divers. Classif. Fl. Pl.: 98. 24 Apr 1997
Genera/species 1/1
Distribution Central and eastern parts of temperate North America.
Fossils Unknown.
Habit Bisexual, perennial herb. Roots and rhizome inside bright yellow due to presence of berberine. Erect stem with swollen nodes.
Vegetative anatomyPhellogen? Upright stem (not rhizome) multilacunar, with cortical vascular bundles. Medullary bundles present. Primary vascular tissue amphicribral, consisting of two irregularly concentric cylinders of vascular bundles: an outer cylinder with smaller bundles and an inner cylinder with larger bundles. Endodermis absent. Palisade mesophyll absent. Secondary lateral growth absent. Xylem not V-shaped in cross-section. Vessel elements usually with simple (rarely scalariform with a single bar, or reticulate) perforation plates; lateral pits scalariform, bordered pits? Imperforate tracheary xylem elements libriform fibres with bordered pits. Wood rays multiseriate, heterocellular? Axial parenchyma paratracheal? Sieve tube plastids Ss type. Nodes multilacunar with several leaf traces; lower leaves usually with 9-lacunar nodes, upper leaves with 3–5-lacunar nodes. Crystals?
Trichomes Hairs absent?
Leaves Alternate (distichous, usually one basal leaf and two stem leaves), simple, entire or usually palmately lobed, with plicate ptyxis. Stipules and leaf sheath absent. Petiole base enclosing rhizome. Petiole vascular bundles eight to 24, radially arranged (transection annular and medullary: medullary petiole bundles present). Venation palmate. Palisade mesophyll absent. Stomata anomocytic. Cuticular wax crystalloids as few small irregular platelets, dominated by nonacosan-10-ol. Leaf margin serrate to biserrate.
Inflorescence Flowers terminal, solitary.
Flowers Actinomorphic. Hypogyny. Tepals (two or) three (or four), petaloid, small, with imbricate aestivation, early caducous. Nectary absent. Disc absent.
Androecium Stamens c. 40 to c. 75, spiral, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, extrorse?, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Staminodia absent.
Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, striate-reticulate or striate (with complex layer of striae).
Gynoecium Carpels five to c. 15, spiral, conduplicate, ab initio free, later connate at base. Ovary superior, unilocular (apocarpy). Stylodium very short. Stigma bifid, with multicellular processes, type? Pistillodium absent.
Ovules Placentation marginal. Ovules one or two (sometimes three or four) per carpel, anatropous, bitegmic, crassinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument four to eight (to 13) cell layers thick. Inner integument two to four (or five) cell layers thick. Integument two or more cell layers thick, non-vascularized. Archespore probably unicellular. Hypostase absent. Nucellar cap approx. eight to ten cell layers thick, formed by periclinal divisions from apical cells of megasporangial epidermis. Megagametophyte monosporous, Polygonum type. Antipodal cells non-modified, proliferating (dividing into five to nine long-lived cells). Endosperm development nuclear. Endosperm haustoria? Embryogenesis?
Fruit A multifolliculus consisting of five to c. 15 usually one-seeded fleshy berry-like (drupaceous?) follicles, dehiscing adaxially and abaxially (cf. Glaucidium with follicle both dorsicidal and ventricidal).
Seeds Aril absent. Seed coat exotestal-exotegmic. Exotesta palisade, with very elongated cells, multiplicative, accumulating dark-brown substance. Exotegmen lignified, multiplicative. Remaining testal and tegmic cell layers parenchymatous and collapsed. Perisperm not developed. Endosperm copious, starchy? Embryo very small, straight, without chlorophyll. Cotyledons two. Germination?
Cytology n = 13 – Chromosomes small, reniform, T type (Thalictrum type).
DNA Mitochondrial intron coxII.i3 lost?
Phytochemistry Flavonols and isoquinoline alkaloids (berberine, hydrastine etc.) present. Rhizome containing a ribitole-like substance and benzylisoquinoline alkaloid compounds with D-galactose. Cyanogenic compounds not found.
Use Medicinal plant.
Systematics Hydrastis (1; H. canadensis; northeastern United States, southeastern Canada).
Hydrastis may be sister to Glaucidium (Glaucidiaceae), the two species together forming a sister-group of Ranunculaceae. The cuticular wax crystalloids in Hydrastis are very similar to those occurring in Glaucidium. Hydrastis has a special organization of those vascular strands that supply the stamens (more or less fascicled, supplied from vascular bundles of the central cylinder) and the carpels (each carpel supplied by four vascular bundles).
LARDIZABALACEAE R. Br. |
( Back to Ranunculales ) |
Sargentodoxaceae Stapf ex Hutch., Fam. Fl. Pl. 1: 100. 15 Jan 1926 [‘Sargentadoxaceae’], nom. cons.; Decaisneaceae (Takht. ex H. N. Qin) Loconte in H. Loconte, L. M. Campbell et D. W. Stevenson, Plant Syst. Evol. 9: 105. Dec 1995; Lardizabalales Loconte in D. W. Taylor et L. J. Hickey, Fl. Pl. Orig. Evol. Phylog.: 274. 21 Dec 1995; Sinofranchetiaceae Doweld in Byull. Mosk. Obshch. Ispyt. Prir., Biol. 105(5): 60. 9 Oct 2000; Lardizabalineae Shipunov in A. Shipunov et J. L. Reveal, Phytotaxa 16: 63. 4 Feb 2011
Genera/species 7/29–34
Distribution Southern and eastern Himalayas, East Asia, Indochina, southern South America.
Fossils Seeds of
Sargentodoxa are known from the Miocene of North America, and seeds of
Akebia and Decaisnea have been found in Miocene layers in
Germany. Kajanthus lusitanicus was described from a late Aptian to
early Albian layer in western Portugal. It is a trimerous, radially
symmetrical, bisexual flower with several perianth whorls, six stamens in two
whorls, and three free carpels.
Habit Usually monoecious or dioecious (in Decaisnea polygamomonoecious), usually climbing or scrambling evergreen or deciduous shrubs or lianas (Decaisnea an upright shrub).
Vegetative anatomy Phellogen ab initio usually superficial (in Sargentodoxa in innermost layer of pericycle). Primary vascular tissue consisting of a cylinder of vascular bundles. Primary medullary strands wide, usually lignified. Vessel elements usually with simple (sometimes scalariform) perforation plates; lateral pits usually alternate (in Decaisnea scalariform or transitional), usually with bordered (in Decaisnea simple) pits. Imperforate tracheary elements tracheids or fibre tracheids, usually with bordered pits (in Holboellia and often also in Decaisnea simple pits), septate or non-septate (also vasicentric tracheids). Wood rays usually multiseriate (in Decaisnea usually uniseriate), homocellular or heterocellular. Axial parenchyma apotracheal diffuse, paratracheal scanty vasicentric or banded, or absent. Wood elements (particularly in secondary phloem) partially storied (sometimes irregularly). Sieve tube plastids Ss type, very large. Phloem in Sargentodoxa with tanniniferous secretory cells. Nodes 3:3, trilacunar with three leaf traces. Medulla with sclerenchyma cells (not in Decaisnea). Prismatic calciumoxalate crystals sometimes abundant. Wood rays sometimes with rhomboidal crystals (Stauntonia).
Trichomes Hairs multicellular, uniseriate, or absent.
Leaves Alternate (spiral), usually palmately compound (in Decaisnea pinnately compound; in Sargentodoxa sometimes simple), entire or lobate, with conduplicate ptyxis; petiolules usually pulvinate at base. Stipules usually absent (present in Lardizabala); leaf sheath absent. Petiole vascular bundle transection arcuate. Venation usually palmate (in Decaisnea pinnate). Stomata usually anomocytic (in some species of Stauntonia cyclocytic). Cuticular wax crystalloids as clustered tubuli (Berberis type), chemically dominated by nonacosan-10-ol. Mesophyll with calciumoxalate druses or single prismatic crystals. Idioblasts with ethereal oils absent. Leaflet margins entire or serrate with chloranthoid teeth.
Inflorescence Axillary, panicle or raceme. Floral prophylls (bracteoles) present or absent.
Flowers Actinomorphic. Hypogyny. Outer tepals (three to) 3+3 (to eight), with imbricate – or outermost ones with valvate – aestivation, whorled, petaloid, free. Inner tepals (nectariferous staminodia?) usually 3+3, whorled, petaloid (sometimes absent). Nectaries present on apex of inner tepals (nectariferous staminodia?) or stamens, or absent. Disc absent.
Androecium Stamens (three to) 3+3 (to eight), antepetalous, alternisepalous, occasionally somewhat foliaceous. Filaments free or connate into tube, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, extrorse or latrorse, longicidal (dehiscing by longitudinal slits); connective often elongated into prolonged appendage; microsporangia often sunken into almost foliaceous wide connective. Tapetum secretory, with usually binucleate (sometimes trinucleate or quadrinucleate) cells. Female flowers usually with six staminodia.
Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate to tricolporate (sometimes dicolpate to dicolporate, rarely syncolpate), shed as monads, bicellular at dispersal. Exine tectate, with sparsely columellate or almost acolumellate infratectum, reticulate, microreticulate, (micro)perforate, punctate, foveolate, psilate, striate, or smooth.
Gynoecium Carpels usually three or six to nine (to twelve) in one to five whorls of three (in Sargentodoxa c. 50 to c. 90, spiral), free; carpel plicate, postgenitally partially occluded, with open secretory canal; extragynoecial compitum sometimes present. Ovary superior, unilocular (apocarpy). Stylodia very short or absent. Stigma peltate, often oblique, hairy, non-papillate, usually Wet type. Male flowers sometimes with pistillodium.
Ovules Placentation usually laminal or laminal-lateral (in Decaisnea submarginal, with ovules along ventral line of fusion). Ovules usually numerous (sometimes few) per carpel (in Sargentodoxa a single subapical pendulous ovule), usually anatropous (in Boquila and Lardizabala hemitropous), horizontal, bitegmic, crassinucellar. Micropyle endostomal. Outer integument three to five cell layers thick. Inner integument two or three cell layers thick. Parietal tissue approx. three cell layers thick. Megagametophyte monosporous, Polygonum type. Antipodal cells usually not persistent. Endosperm development ab initio cellular. Endosperm haustoria? Embryogenesis?
Fruit An assemblage of fleshy (with fleshy placenta) follicles (Akebia, species of Decaisnea) or a berry with leathery pericarp. Fruit in Decaisnea with laticifers.
Seeds Aril usually absent (present in Akebia). Seed coat exotestal. Testa usually multiplicative. Exotesta palisade. Mesotesta and endotesta unspecialized. Tegmen unspecialized. Perisperm not developed. Endosperm copious, oily (sometimes, e.g. in Sargentodoxa, also starchy or with hemicellulose). Embryo small, straight, well differentiated, chlorophyll? Cotyledons two. Germination phanerocotylar.
Cytology n = 11 (Sargentodoxa), n = 14 (Lardizabala), n = 15 (Decaisnea), n = 16 (Akebia)
DNA The nuclear gene AP3 is triplicated.
Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, phenols, and triterpene saponins present. Ellagic acid, alkaloids and cyanogenic compounds not found. Aluminium accumulated in some species of Holboellia and Stauntonia.
Use Ornamental plants, medicinal plants, fruits (Boquila, Lardizabala).
Systematics Lardizabalaceae are sister-group to Circaeasteraceae.
Sargentodoxoideae (Stapf ex Hutch.) Thorne et Reveal in Bot. Rev. (Lancaster) 73: 89. 29 Jun 2007
1/1. Sargentodoxa (1; S. cuneata; China, Laos, Vietnam). – Usually dioecious (with few bisexual flowers). Phellogen ab initio inner-pericyclic. Tanniniferous cells present. Leaves trifoliolate. Outer tepals four to nine. Inner tepals five to seven. Staminodia petaloid. Carpels c. 50 to c. 90, spiral, ascidiate. Ovule one per carpel, pendulous. Outer integument approx. four cell layers thick. Placenta fleshy in fruit. Testal surface unspecialized. n = 11. Triterpenoid saponins not found.
Lardizabaloideae Burnett, Outlines Bot.: 830. Feb 1835 [‘Lardizabalidae’]
6/28–33. Decaisnea (1; D. insignis; eastern Himalayas to central China), Sinofranchetia (1; S. chinensis; western and central China), Lardizabala (1; L. funaria; central and southern Chile between the Andes and the Pacific, southern Argentina), Boquila (1; B. trifoliolata; central and southern Chile between the Andes and the Pacific, southern Argentina), Akebia (4; A. chingshuiensis, A. longeracemosa, A. quinata, A. trifoliata; China, the Korean Peninsula, Japan, Taiwan), Stauntonia (20–25; northeastern India, the Himalayas, China, the Korean Peninsula, Japan, Taiwan). – Southern and eastern Himalayas, East Asia, southern South America. Usually monoecious (rarely dioecious or bisexual). Phellogen ab initio superficial. Vessel elements sometimes with scalariform perforation plates. Stomata sometimes cyclocytic. Leaves sometimes palmately compound or imparipinnate, with basal tooth or lobe. Venation sometimes pinnate. Outer tepals sometimes three. Inner tepals sometimes absent. Stamens sometimes three or eight. Filaments connate. Tapetum with up to quadrinucleate cells. Pollen grains sometimes colporoidate, sometimes tricellular at dispersal. Female flowers with staminodia. Carpels sometimes up to twelve. Stigma sometimes peltate. Placentation sometimes laminar. Ovules (few to) numerous per carpel, sometimes hemitropous. Outer integument three to five cell layers thick. Inner integument two or three cell layers thick. Parietal tissue approx. three cell layers thick. Antipodal cells in Decaisnea persistent. Endosperm development usually cellular (in Decaisnea nuclear). Fruit a berry or a fleshy follicle, often with fleshy placenta. Testa multiplicative. Exotestal cells lignified, elongated (in Decaisnea), or non-lignified and fibrous (in Akebia and Stauntonia). Hypodermal cells thickened. Endosperm starchy or with hemicellulose. n = 14–16, 17?, 18. Oleanone triterpenoid saponins present. Aluminium accumulation occurs in Stauntonia, a synapomorphy of this clade.
Cladogram of Lardizabalaceae based on DNA sequence data (Hoot & al. 1995). |
MENISPERMACEAE Juss. |
( Back to Ranunculales ) |
Menispermales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 225. Jan-Apr 1820 [‘Menispermeae’]; Pseliaceae Raf., New Fl. N. Amer. 4: 8. med 1838 [’Pselides’]
Genera/species 74/535–540
Distribution Tropical and subtropical regions in the Northern and Southern Hemispheres, and a few species in temperate eastern North America and temperate East Asia.
Fossils The oldest fossil consists of keeled endocarps of Prototinomiscium from the Turonian to the Maastrichtian of Central Europe. Anamirta pfeifferi is fossilized wood (probably of a liana) from the Maastrichtian Deccan Intertrappean Beds in India. A large number of endocarps, which can be assigned to Menispermaceae, are known from Cenozoic layers in Europe and North America.
Habit Dioecious, usually evergreen lianas, or scrambling and climbing perennial herbs (rarely shrubs or trees [Burasaia, Penianthus, Sphenocentrum]; one species of Stephania an erect herb).
Vegetative anatomy Phellogen ab initio superficially or deeply seated. Secondary lateral growth usually anomalous (particularly in lianas), from successive cambia. Vessel elements with simple perforation plates; lateral pits alternate or scalariform, simple and/or bordered pits. Imperforate tracheary xylem elements tracheids or libriform fibres with simple and/or bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate, interfascicular, usually wide and very tall (rarely narrow), homocellular or heterocellular, often lignified. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty vasicentric, scalariform or in short bands connecting successive layers of vascular bundles. Wood elements often storied, especially in secondary phloem. Intraxylary (concentric) phloem usually present. Sieve tube plastids Ss type, very large. Nodes 3:3, trilacunar with three leaf traces. Stem and leaves with rows of secretory cells. Parenchyma with numerous asterosclereids and osteosclereids. Crystal sand present or absent. Raphid idioblasts (raphid cells) present or absent. Prismatic calciumoxalate crystals abundant. Wood rays and axial parenchyma often with rhomboidal crystals.
Trichomes Hairs unicellular or multicellular, uniseriate.
Leaves Alternate (spiral), usually simple (in Burasaia trifoliolate), entire or lobed (one species of Cocculus with phyllocladia), often peltate, with ? ptyxis. Stipules usually absent; leaf sheath absent. Petiole often with proximal and distal pulvinus. Petiole vascular bundle transection annular. Venation palmate, actinodromous or acrodromous, or pinnate. Stomata anomocytic, paracytic, staurocytic or often more or less cyclocytic (sometimes actinocytic), often surrounded by a rosette of subsidiary cells. Cuticular wax crystalloids as clustered tubuli (Berberis type), chemically dominated by nonacosan-10-ol. Domatia usually as pockets (rarely hair tufts). Epidermal cells often with calciumoxalate crystals, sometimes with silica or trichome hydathodes. Mesophyll with sclerenchymatous idioblasts and mucilage cells. Idioblasts with ethereal oils absent. Laminar surface sometimes with ridges of laticifers. Leaf margin usually entire (sometimes serrate or lobed). Extrafloral nectaries present or absent.
Inflorescence Terminal or axillary, raceme- or headlike, or compound panicle (flowers rarely solitary or paired).
Flowers Usually actinomorphic (female flowers in Antizoma, Cyclea, Cissampelos and some species of Stephania slightly zygomorphic). Hypogyny. Tepals usually whorled (sometimes spiral); in female flowers sometimes fewer than in male flowers. Outer tepals (one to) six (to more than twelve), with imbricate or valvate aestivation, sepaloid, usually in whorls each one with usually three (rarely one), usually free (in Cyclea and Synclisia slightly connate). Inner tepals (absent or one to) six (to eight), with usually imbricate aestivation, petaloid, usually free (in Cyclea and some species of Disciphania connate; rarely enclosing stamens). Nectary absent. Disc absent.
Androecium Stamens three, six, twelve or more (in one species of Odontocarya one; in Hypserpa up to c. 40), majority antepetalous, spiral or whorled. Filaments free or more or less connate into synandrium, free from tepals. Anthers basifixed, non-versatile, usually tetrasporangiate (rarely disporangiate), with superposed thecae, usually introrse (rarely extrorse), usually longicidal (dehiscing by usually longitudinal [sometimes transversal] slits). Tapetum secretory. Female flowers often with staminodia.
Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–4)-colpate, (2–)3(–4)-colporate (sometimes syncolporate), (2–)3(–4)-porate or (2–)3(–4)-pororate (rarely cryptoporate or inaperturate), shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate or microreticulate.
Gynoecium Carpels usually three, six or more (rarely one or two; in one species of Tiliacora and one species of Triclisia c. 20 to 32), free or slightly connate at base, often stipitate (on gynophore); carpel plicate (ascidiate?), postgenitally partially fused, with open secretory canal. Ovary superior, unilocular (apocarpy). Style very short or absent. Stigma entire, bifid or trifid, expanded above, hairy to non-papillate, usually Dry (occasionally Wet) type. Male flowers often with pistillodium.
Ovules Placentation ventral-marginal. Ovules usually two per carpel (one of which degenerating), anatropous or campylotropous (often amphitropous after fertilization), apotropous or epitropous, pendulous to horizontal (ascending?), unitegmic (derived from integumentary shifting) or bitegmic, crassinucellar. Micropyle endostomal or bistomal, Z-shaped (zig-zag). Outer integument two to five cell layers thick. Inner integument two cell layers thick (when one integument, then three or four cell layers thick). Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Antipodal cells multinucleate, often proliferating. Endosperm development ab initio nuclear (finally cellular). Endosperm haustoria? Embryogenesis onagrad.
Fruit An assemblage of single-seeded stipitate drupes on a globose, discoid, columnar or branched carpophore, often flattened or strongly curved (cf. the name Menispermum = ’moon-seed’). Exocarp thin or leathery. Mesocarp fleshy to fibrous, sometimes sclerified. Endocarp sclerified, hard, usually sculptured in different ways, usually with a condyle (placentary outgrowth or invagination; sometimes absent; condyle produced during ovary development due to intruding ovary wall on placenta, causing seed to curve).
Seeds Aril absent. Seed usually curved. Testa little differentiated (sometimes absent). Exotesta sometimes tabular, lignified. Mesotesta and endotesta unspecialized. Tegmen unspecialized. Perisperm not developed. Endosperm usually copious (sometimes partially or entirely ruminate; absent in most genera in cladogram 2), oily. Embryo small to large, straight or curved, chlorophyll? Cotyledons usually two (rarely one), flat or terete, often fleshy (genera in cladogram 2). Germination phanerocotylar or cryptocotylar.
Cytology n = (9-)11-13 – Polyploidy (tetraploids, hexaploids) occurring.
DNA The nuclear gene AP3 is triplicated.
Phytochemistry Flavonols (kaempferol), flavones, diterpenoids, sesquiterpenoids, tannins, benzylisoquinoline and aporphine alkaloids (benzyltetrahydroisoquinoline and aporphine derivatives in dimeric form, e.g. berberine, morphinane), hasubanane alkaloids (protostephanines, erythrinanes, cocculolidines, morphines, quettamine-morphine dimers, hasubanonines, acutumines, etc.), azafluoranthene alkaloids, tropoloisoquinoline alkaloids, tubocurarine chloride (a curare mixture of alkaloids), toxic sesquiterpene lactones, phenylic cinnamide, furofuran lignans, and frequent cyanogenic compounds present. Tyrosine-derived cyanogenic glycosides and caffeic acid rare. Ellagic acid and proanthocyanidins not found.
Use Ornamental plants, medicinal plants (Anamirta cocculus, Chondrodendron tomentosum, Jateorhiza palmata etc), fish- and arrow poisons (curare from Chondrodendron, Curarea, Sciadotenia etc., coccel kernels and picrotoxine from Anamirta), timber.
Systematics Menispermaceae are sister-group to the clade [Berberidaceae+[Ranunculaceae+ [Hydrastis+Glaucidium]]].
Burasaia was sister to the remaining Menispermaceae, according to analyses of morphological data by Jacques & Bertolino (2008). Ortiz & al. (2007), using ndhF sequence data, recovered Tinomiscium sister to the remainder. Hoot & al. (2009), using atpB and rbcL sequence data, identified a clade comprising Menispermum and Sinomenium as sister to the rest with low to moderate support, and Burasaia was nested deep inside Menispermaceae. On the other hand, adding ndhF data rendered Tinomiscium again sister to the rest and Menispermum was nested deep within Menispermaceae. Chasmantheroideae are sister-group to Menispermoideae (Ortiz & al. 2016). The taxonomy below follows Ortiz & al. (2016).
Chasmantheroideae Luerss., Handb. Syst. Bot. 2: 574. Nov 1880
29/>156. Pantropical. Tangential cell walls of wood rays in Tinomiscium oblique to ray axis in cross-section. Leaf surface sometimes (e.g. in Fibraurea and Tinomiscium) with laticifers as fine ridges. Seed subglobose to reniform, ruminate. Embryo spathuliform. Cotyledons foliaceous, more or less divaricate.
Coscinieae Hook. f. et Thomson, Flora Ind.: 177. 1855
3/6. Coscinium (2; C. blumeanum, C. fenestratum; India, Sri Lanka, Southeast Asia, West Malesia to Borneo), Anamirta (1; A. cocculus; India, Southeast Asia, Malesia to Timor), Arcangelisia (3; A. flava, A. gusanlung, A. tympanopoda; Southeast Asia, Malesia to New Guinea). – Tropical Asia. Sepals in three worls. Petals absent. Filaments more or less connate. Drupelet with remnant of style/stigma subapical-adaxial. Endocarp and seed subglobose.
Burasaieae Endl., Gen. Plant. Suppl. 5: 25. 1850
26/>150. Calycocarpum (1; C. lyonii; eastern North America); Parabaena (6; P. denudata, P. echinocarpa, P. elmeri, P. megalocarpa, P. sagittata, P. tuberculata; Southeast Asia, Malesia), Aspidocarya (1; A. uvifera; northeastern India to southwestern China), Disciphania (c 25; Mexico, Central America, tropical South America); Tinomiscium (1; T. petiolare; Southeast Asia, Malesia), Fibraurea (3; F. darshanii: India; F. recisa: southern China, Indochina; F. tinctoria: India, Assam, Southeast Asia, the Philippines, Borneo, Sulawesi), Borismene (1; B. japurensis; tropical South America), Paratinospora (2; P. dentata: Taiwan; P. sagittata: China), ‘Penianthus’ (4; P. camerounensis, P. longifolius, P. patulinervis, P. zenkeri; tropical West and Central Africa; non-monophyletic), Sphenocentrum (1; S. jollyanum; tropical West Africa), Burasaia (4; B. australis, B. congesta, B. gracilis, B. madagascariensis; Madagascar), Orthogynium (1; O. gomphloides; Madagascar?), Dioscoreophyllum (3; D. cumminsii, D. gossweileri, D. volkensii; tropical Africa), Jateorhiza (2; J. macrantha, J. palmata; tropical Africa), ’Tinospora’ (36; tropical Asia, tropical Australia; polyphyletic), Kolobopetalum (4; K. auriculatum, K. chevalieri, K. leonense, K. ovatum; tropical Africa), Rhigiocarya (2; R. peltata, R. racemifera; tropical West and Central Africa), Hyalosepalum (>10; tropical Africa), Sarcolophium (1; S. tuberosum; tropical Africa), Chasmanthera (2; C. dependens: tropical Africa; C. welwithschii: Congo), Leptoterantha (1; L. mayumbense; tropical Africa), Syntriandrium (1; S. preussii; tropical West and Central Africa), Dialytheca (1; D. gossweileri; Angola), Odontocarya (36; southern Mexico, Central America, tropical South America). – Unplaced Burasaieae Chlaenandra (1; C. ovata; New Guinea), Platytinospora (1; P. buchholzii; tropical West and Central Africa). – Pantropical, one genus, Calycocarpum, in eastern North America. Ovules anatropous. Endocarp and seed straight. Seed abaxially-adaxially compressed, naviculiform. Calycocarpum is sister to the remaining Burasaieae (e.g. Wang & al. 2017).
Menispermoideae Arn. in R. Wight et G. A. W. Arnott, Prodr. Fl. Ind. Orient.: 11. 10 Oct 1834 [’Menispermeae’]
45/380–385. Pantropical, few species in temperate regions. Style lateral to basal. Drupelet with remnant of style/stigma subbasal to basal. Endocarp laterally compressed, usually curved (in Orthomene straight), often sculptured. Seed curved, usually not ruminate. Endosperm sometimes absent. Embryo curved, strap-shaped. Cotyledons fleshy, cylindrical, adpressed. – Menispermeae are sister-group to the remaining Menispermoideae and Anomospermeae successive sister-group to the rest. – Ortiz & al. (2016) found the following topology: [Menispermeae+[Anomospermeae+[Limacieae+[Tiliacoreae+[Pachygoneae+[Spirospermeae+Cissampelideae]]]]]]
Menispermeae DC., Syst. Nat. 1: 510, 511. 1-15 Nov 1817 [’Menispermeae verae’]
2/3. Menispermum (2; M. dauricum: East Asia; M. canadense: southeastern Canada, eastern United States), Sinomenium (1; S. acutum; central China, Japan). – East Asia, eastern North America. Stamens free, numerous. Endocarp longitudinally and transversally ridged. Seed semiannular-crescentic.
Anomospermeae Miers in Ann. Mag. Nat. Hist., ser. 2, 7: 36. Jan 1851
13/c 80. Diploclisia (2; D. affinis: China; D. glaucescens: India, Sri Lanka, Burma, southern China, Southeast Asia, Malesia to New Guinea), Sarcopetalum (1; S. harveyanum; southern New Guinea, eastern Queensland, eastern New South Wales, eastern Victoria), Legnephora (5; L. acuta, L. microcarpa, L. minutiflora, L. moorei, L. philippinensis; New Guinea, eastern Queensland), Parapachygone (1; P. longifolia; northeastern Queensland), Hypserpa (10; Southeast Asia, Malesia to Polynesia), Pericampylus (3; P. glaucus, P. incanus, P. macrophyllus; China, Taiwan, tropical Asia from India to Malesia), Echinostephia (1; E. aculeata; southeastern Queensland, northeastern New South Wales); ’Anomospermum’ (8; tropical America; polyphyletic), Caryomene (5; C. foveolata, C. glaucescens, C. grandifolia, C. olivascens, C. prumnoides; tropical America), ’Orthomene’ (4; O. hirsuta, O. prancei, O. schomburgkii, O. verruculosa; tropical America; non-monophyletic), Elephantomene (1; E. eburnea; northeastern South America), Telitoxicum (8; tropical South America), Abuta (31; tropical South America). – Tropical Asia to eastern Australia and Polynesia, tropical America. Seed hippocrepiform. Embryo hippocrepiform, strap-shaped. Cotyledons shorter than radicle. Neotropical species with ruminate endosperm and cotyledons longer than radicle; paleotropical species with continuous endosperm.
Limacieae Prantl in Engler et Prantl, Nat. Pflanzenfam. 3(2): 88. 1888
1/3. Limacia (3; L. blumei, L. oblonga, L. scandens; Burma to West Malesia). – Burma to West Malesia. Endocarp with raised longitudinal band along axis and with weakly convex lateral sides; external apertures large.
Tiliacoreae Miers in Ann. Mag. Nat. Hist., ser. 2, 7: 36. Jan 1851
16/111. Chondrodendron (3; C. microphyllum, C. platiphyllum, C. tomentosum; Central America, tropical South America), Sciadotenia (19; tropical America), Curarea (5; C. candicans, C. crassa, C. cuatrecasasii, C. tecunarum, C. toxicofera; tropical South America), Syrrheonema (3; S. fasciculatum, S. hexastamineum, S. welwitschii; tropical West and Central Africa), Carronia (4; C. multisepalea, C. pedicellata, C. protensa, C. thyrsiflora; New Guinea, eastern Queensland, eastern New South Wales), Pycnarrhena (9; Southeast Asia, Malesia to tropical Australia), Beirnaertia (1; B. cabindensis; tropical Africa), Triclisia (15; tropical Africa, Madagascar), ‘Albertisia’ (19; tropical and subtropical Africa; paraphyletic; incl. Anisocycla?), Anisocycla (5; A. blepharosepala, A. cymosa, A. grandidieri, A. jollyana, A. linearis; tropical Africa, Madagascar; in Albertisia?), Tiliacora (22; tropical regions in the Old World); unplaced Tiliacoreae: Eleutharrhena (1; E. macrocarpa; Assam, Yunnan), Macrococculus (1; M. pomiferus; New Guinea), Pleogyne (1; P. australis; eastern Queensland), Synclisia (1; S. scabrida; Central Africa), Ungulipetalum (1; U. filipendulum; Brazil). – Pantropical. Male flower often with at least 4-tetracyclic calyx. Endocarp with longitudinal grooves, ribs or rugose ornamentation abaxially. Seed hippocrepiform. Endosperm usually absent. Embryo subcylindric.
Pachygoneae Miers ex Hook. f et Thomson, Flora Ind. 1: 176, 202. 1-19 Jul 1855
4/45. Haematocarpus (2; H. subpeltatus, H. validus; eastern Himalayas, Southeast Asia to Sulawesi), ’Hyperbaena’ (22; Central America, tropical South America; paraphyletic), Cocculus (9; tropical and southern Africa, Madagascar, Socotra, tropical and subtropical Asia to northern Australia, subtropical to temperate North America), Pachygone (12; southern China, Southeast Asia, Malesia to islands in western Pacific). – Pantropical, subtropical to temperate North America. Endosperm usually absent. Embryo usually subcylindric (in Cocculus strap-shaped), dehiscence usually transversal.
Spirospermeae R. Ortiz et Wei Wang in Taxon 65(6): 1306. Dec 2016
4/10. Limaciopsis (1; L. loangensis; tropical Africa), Rhaptonema (6; R. bakeriana, R. cancellata, R. densiflora, R. glabrifolium, R. latifolia, R. swinglei; Madagascar), Spirospermum (1; S. penduliflorum; Madagascar), Strychnopsis (1; S. thouarsii; Madagascar). – Tropical Africa (one species), Madagascar. Usually trees. Stamens three. Carpels at least six. Seed cochleate or spiral. Embryo subcylindric. Cotyledons laterally adpressed.
Cissampelideae Hook. f. et Thomson, Flora Ind. 1: 176, 194. 1-19 Jul 1855
5/c 130. ‘Stephania’ (c 70; tropical regions in the Old World; paraphyletic), Perichasma (2; P. laetificata, P. miersii; Central Africa, Angola), Antizoma (3; A. angolensis, A. angustifolia, A. miersiana; arid regions in southern Africa), ‘Cissampelos’ (23; tropical regions on both hemispheres; paraphyletic; incl. Cyclea?), Cyclea (32; China to the Philippines; in Cissampelos?). – Pantropical, southern Africa. Male flower with 1-cyclic corolla. Synandria present, with anthers horizontally arranged on peltiform connective. Anthers dehiscing transversally. Carpel one. Embryo strap-shaped. Cotyledons shorter than radicle.
Cladogram 1 of Menispermaceae based on morphological data (Jacques & Bertolino 2008). |
Cladogram 2 of Menispermaceae based on morphological data (Jacques & Bertolino 2008). |
Bayesian inference tree of Menispermaceae based on atpB/rbcL sequence data (Hoot & al. 2009). |
Bayesian inference tree of Menispermaceae based on atpB, rbcL and ndhF sequence data (Hoot & al. 2009). |
Bayesian inference tree of Menispermaceae based on DNA sequence data (Wefferling & al. 2013; Sciadotenia added). |
PAPAVERACEAE Juss. |
( Back to Ranunculales ) |
Corydalaceae Vest, Anleit. Stud. Bot.: 266, 283. 1818 [‘Corydaloidea’, ‘Corydaloideae’], nom. illeg.; Chelidoniaceae Martinov, Tekhno-Bot. Slovar: 124. 3 Aug 1820 [’Chelidoneae’]; Fumariaceae Marquis, Esq. Règne Vég.: 50. 15-22 Jul 1820 [‘Fumarieae’], nom. cons.; Fumariales Bercht. et J. Presl, Přir. Rostlin: 216. Jan-Apr 1820 [‘Fumariae’]; Papaverales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 216. Jan-Apr 1820 [‘Papaveraceae’]; Papaveropsida Brongn., Enum. Plant. Mus. Paris: xxv, 93. 12 Aug 1843 [’Papaverineae’]; Eschscholziaceae Ser., Fl. Jard. 2: 106. Apr 1847; Platystemonaceae (Spach) Lilja, Skånes Fl., ed. 2: 862, 979. Apr-Dec 1870 [’Platystemoneae’]; Hypecoaceae (Dumort.) Willkomm et Lange, Prodr. Fl. Hispan. 3: 875. Apr-Mai 1880 [’Hypecoëae’]; Papaverineae Thorne et Reveal in Bot. Rev. (Lancaster) 73: 91. 29 Jun 2007
Genera/species 43/c 755
Distribution Temperate and subtropical parts if the Northern Hemisphere, Central America, northern South America, East African mountains, southern Africa, Macaronesia, with their largest diversity in the Mediterranean, West, Central and East Asia, and the southwestern United States.
Fossils Uncertain. No entirely convincing reports, although some Miocene seeds are similar to Corydalis.
Habit Bisexual, usually perennial, biennial or annual herbs (sometimes climbing; some species of Argemone, Bocconia, Dendromecon, Hunnemannia, and Romneya evergreen shrubs or small trees). Some species have tuberous rhizome or tuberous roots. Stem sometimes pachycaul.
Vegetative anatomy Mycorrhiza at least usually absent. Roots diarch and lateral roots tetrastichous. Phellogen? Primary vascular tissue consisting of one or several cylinders of vascular bundles; cross section of stem usually with a ring of loose collateral vascular bundles separated by wide multiseriate medullary rays. Cortex and medulla without vascular bundles. Secondary lateral growth usually absent (sometimes from normal cylindrical cambium). Vessel elements with simple perforation plates; lateral pits alternate, simple or bordered pits. Imperforate tracheary xylem elements libriform fibres with simple pits, non-septate (also vasicentric tracheids). Wood rays multiseriate, heterocellular. Axial parenchyma paratracheal scanty, vasicentric. Wood elements often storied. Sieve tube plastids Ss type. Nodes 1:1 or ≥3:≥3, unilacunar or trilacunar (rarely multilacunar) with one or more leaf traces. Latex cells and laticifers often articulated, often anastomosing, usually with white, yellow, orange or red latex, numerous in most genera of Papaveroideae. Idioblasts with watery secretions present in Fumarioideae. Crystals absent.
Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate (in Bocconia and Macleaya sometimes branched), or absent (multicellular glandular hairs present in Dicranostigma and Glaucium).
Leaves Usually alternate (spiral; rarely opposite or verticillate), simple or compound (usually once or twice pinnately compound), entire or lobed (usually pinnately lobed), with ptyxis of various types. Stipules and leaf sheath absent (petiole base occasionally somewhat sheathing). Petiole vascular bundle transection arcuate. Venation usually pinnate (sometimes palmate). Stomata anomocytic. Cuticular wax crystalloids as clustered tubuli (Berberis type), chemically dominated by nonacosan-10-ol. Hydathodes present in some species. Idioblasts with ethereal oils absent. Leaf margin serrate (with chloranthoid teeth, often incised), lobed or entire.
Inflorescence Terminal or axillary, simple or compound, cymose or racemose of different shapes, or flowers solitary terminal.
Flowers Actinomorphic, bisymmetric or zygomorphic (transversely zygomorphic in most Fumarioideae). Hypanthium usually absent (present in Platystemon). Usually hypogyny (in Platystemon half epigyny). Outer (sepaloid) tepals usually two or three (rarely four), with imbricate or open aestivation, median, in one whorl, usually caducous, usually free (in Eomecon and Eschscholzia connate either at base or entirely into operculum), with or without basal spur or other type of appendage. Inner (petaloid) tepals usually 2+2 or 3+3, crumpled or with imbricate aestivation, whorled (in Sanguinaria six to twelve, often in several whorls; absent in Bocconia and Macleaya), usually free (in Fumarioideae more or less connate and adnate to stamens), usually caducous, without spur, in Fumarioideae one or two petals usually spurred. Nectaries in Papaveroideae absent, in Fumarioideae present at staminal bases. Disc absent.
Androecium Stamens usually 16 up to more than 200 (in Meconella four to six or 6+6; in Canbya six to twelve; in Hypecoum 2+2; in Romneya up to c. 700) in three to 15 whorls; androphore present or absent. Filaments filiform, clavate or wide (in some species of Dicentra petaloid), usually free (in Fumarioideae two free stamens and two groups of connate stamens opposite outer petaloid tepals, each group consisting of one median entire and two lateral half anthers), free from tepals. Anthers basifixed, non-versatile, usually tetrasporangiate (in Hypecoum sometimes disporangiate; in Fumarioideae lateral anther halves in each staminal group disporangiate and remaining anthers tetrasporangiate), usually extrorse (rarely latrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory or amoeboid-periplasmodial. Staminodia absent.
Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate to hexacolpate, syncolpate, polyporate or polyforate (sometimes polycolpate, pantoaperturate; in some species of Meconopsis inaperturate; in Dicentra, Hypecoum, and Platystemon dicolpate; in Fumarieae often polypantoporate, colliculate, with intine bulging from pores), shed as monads, usually bicellular at dispersal (in Papaver sometimes tricellular). Exine tectate or semitectate, with columellate infratectum (columellae in Fumarioideae small), reticulate, microreticulate, perforate, microperforate or punctate, psilate, verrucate or echinulate (sometimes spinulate).
Gynoecium Pistil composed of two (up to c. 25) paracarp and connate carpels (carpels in Platystemon etc. partially free; carpels in Fumarioideae two transverse); carpel plicate, seemingly occluded by secretion; closure of carpels sometimes delayed. Ovary usually superior (in Platystemon semi-inferior), usually unilocular (sometimes seemingly bilocular to 20-locular by intrusion of placentae), stipitate or sessile (gynophore present or absent). Style single, simple, short, with stylar canal (sometimes closed by hairs), or absent (stylodia in Hypecoum two, partially connate). Stigma carinal and/or commissural, capitate, or stigmas often connate and forming a disc-like roof on top of ovary, papillate, Dry type. Pistillodium absent.
Ovules Placentation usually parietal (when ovary unilocular) or axile (when ovary multilocular) (placentae in Bocconia basal; in Romneya plurilocular ovary with parietal placentation; placentae sometimes protruding to diffuse). Ovules one to c. 100 per ovary (in Bocconia and one speces of Macleaya one ovule), anatropous, hemicampylotropous to campylotropous or hemiamphitropous, pendulous?, horizontal or ascending (with ventral raphe, collateral or superposed or above carpellary surface or biseriate), bitegmic, usually crassinucellar (in Papaver and Platystemon pseudocrassinucellar). Micropyle bistomal (sometimes Z-shaped, zig-zag). Outer integument (two to) four to ten cell layers thick. Inner integument two to four cell layers thick. Parietal tissue two to four cell layers thick. Nucellar cap approx. three cell layers thick. Megagametophyte usually monosporous, Polygonum type (in Platystemon tetrasporous, Fritillaria type). Synergids usually with a filiform apparatus. Antipodal cells usually three (in Papaver sometimes five), non-proliferating, persistent, endopolyploid (sometimes binucleate). Endosperm development ab initio nuclear. Suspensor haustorium present in Fumarioideae. Endosperm haustoria absent? Embryogenesis irregularly solanad (Papaveroideae) or caryophyllad (Fumarioideae).
Fruit A poricidal, septicidal (placenticidal) or loculicidal capsule with basipetalous or acropetalous dehiscence, sometimes siliquiform with replum (in Fumaria and one species of Macleaya a nut; in Platystemon and species of Hypecoum lomentum-like with two to c. 30 one-seeded nut-like mericarps).
Seeds Aril present or absent. Elaiosome present in numerous species (in, e.g., Chelidonium, Corydalis, Dendromecon); strophiole (tiny swellings of raphe) sometimes (in, e.g., Chelidonium) present. Seed coat testal-tegmic. Exotesta usually well developed, palisade. Endotesta often well developed, with calciumoxalate crystals and coarse fibrillar endoreticulum. Exotegmen often fibrous. Endotegmic cell walls thickened. Perisperm not developed. Endosperm copious, oily (rarely granular). Embryo small, straight or curved, well developed or poorly developed (seed in many Fumarioideae containing only proembryo, further growth being intraseminal), without chlorophyll. Cotyledons usually two (in some species of Dicentra and in tuberous species of Corydalis one). Germination phanerocotylar or cryptocotylar.
Cytology n = 6–11, (14, 19, 21) – Polyploidy frequently occurring (up to 2n = c. 140).
DNA Duplication of nuclear CYCLOIDEA genes
Phytochemistry Flavonols (kaempferol, quercetin), benzylisoquinoline alkaloids (e.g. 1-benzyltetrahydroisoquinoline alkaloids) and aporphine alkaloids (dehydrogenated benzophene anthridines, reduced benzophene anthridines in Chelidonieae, berberines, tetrahydroberberines, stylopine, chelidonine, protopines, rhoeadines, narceines, spirobenzylisoquinolines, etc. in Fumarioideae, aporphines, morphinanes, pavines, isopavines, reticuline, scoulerine, narcotine), meconic acid (in Meconopsis, Papaver and Roemeria), chelidonic acid (at least in Chelidonium and Stylophorum), fumaric acid (in Glaucium, Papaver and Fumarioideae), and nitrophenyl ethan present. Tyrosine-derived cyanogenic glycosides sometimes present. Ellagic acid, tannins and proanthocyanidins not found. Caffeic acid? The free amino acid δ-acetylornithine is probably the principal nitrogen transport compound in Fumarioideae.
Use Ornamental plants, baking (seeds from Papaver somniferum), seed oils for soap (Argemone, Glaucium, Papaver), medicinal plants, narcotics (opium from Papaver somniferum and P. bracteatum).
Systematics Papaveraceae are probably sister to Pteridophyllum (Pteridophyllaceae).
Papaveroideae Eaton, Bot. Dict., ed. 4: 38. Apr-Mai 1836 [‘Papaveraceae’]
23/c 235. Mainly temperate regions on the Northern Hemisphere. Usually herbs (rarely small trees). Nodes 1:1 or ≥3:≥3, unilacunar or trilacunar (rarely multilacunar) with one or more leaf traces. Latex milky white, yellow, orange or red. Leaves with ptyxis of various types. Colleters present. Flowers usually large. Outer tepals enclosing bud, caducous. Inner (petaloid) tepals four or six, wrinkled, usually early caducous (rarely absent). Nectary absent. Stamens (four to) numerous (possibly evolved from a small number), in multiples of two or three. Style present or absent. Stigmas often connate, Dry type. Placentation sometimes axile or almost axile. Ovules numerous per carpel, anatropous or campylotropous. Hypostase present. Outer integument (two to) four to ten cell layers thick. Inner integument two to four cell layers thick. Parietal tissue two to four cell layers thick. Nucellar cap approx. three cell layers thick. Antipodal cells uninucleate or multinucleate. Embryogenesis irregularly solanad. Capsule often also transversely dehiscing, sometimes siliquiform with replum (rarely a nut or schizocarp). Exotegmen often with thickened outer cell walls, unlignified; anticlinal cell walls sometimes sinuate. Endotegmen usually persistent. n = 5–10 (14, 19). Duplication of nuclear gene PAPACYL. – The gametophytic self-incompatibility system in Papaveraceae is non-RNase-based (differing from other Triaperturatae).
Eschscholzieae Baill., Hist. Plant. 3: 130, 142. 1871
3/13–15. Dendromecon (2; D. rigida: California, Baja California; D. harfordii: Channel Islands off California), Eschscholzia (10–12; southwestern Canada, western United States), Hunnemannia (1; H. fumariifolia; eastern Mexico). – Western North America, northern and eastern Mexico. Stem with subepidermal collenchyma. Nodes usually 1:1. Hairs unicellular. Flowers in Eschscholtzia shortly perigynous. Pollen grains polycolpate. Outer integument in Dendromecon seven cell layers thick. Capsule explosively dehiscent from base. – Eschscholzieae are sister-group to [Papavereae+Chelidonieae].
Papavereae Dumort., Fl. Belg.: 130. 1827
11/c 170. Arctomecon (3; A. californica, A. humilis, A. merriamii; Mojave Desert in the United States), Argemone (23; North America, the West Indies, South America, the Hawaiian Islands), Cathcartia (4; C. cheidoniifolia, C. oliveriana, C. smithiana, C. villosa; the Himalayas, Tibet, Burma, China), Meconopsis (c 50; the Himalayas to western China), ‘Papaver’ (c 80; Europe, the Cape Verde Islands, the Mediterranean, southern Africa, temperate and subtropical Asia, western North America; paraphyletic), Roemeria (3; R. hybrida, R. procumbens, R. refracta; the Mediterranean to Afghanistan; in Papaver?), Romneya (1–2; R. coulteri, R. trichocalyx; southern California, northern Baja California), Canbya (2; C. aurea: western United States; C. candida: western Mojave Desert), Hesperomecon (1; H. linearis; southern Oregon, California), Meconella (3; M. californica, M. denticulata, M. oregana; western United States), Platystemon (1; P. californicus; western United States, Baja California). – Temperate regions on the Northern Hemisphere. Nodes often 1:1 or 3:3. Hairs often multicellular, multiseriate. Hypogyny. Pistil composed of (three or) four (diagonally arranged) to numerous (in Platystemon up to c. 25) usually connate (in Platystemon free) carpels. Style sometimes present. Epistase present. Megasporocytes sometimes several. Capsule often poricidal, often with replum. Benzylisoquinoline alkaloids in Papaver synthesized in sieve tubes. – Papavereae are sister to Chelidonieae.
Chelidonieae Dumort., Fl. Belg.: 130. 1827
9/53. Sanguinaria (1; S. canadensis; southeastern Canada, eastern United States), Eomecon (1; E. chionantha; eastern China), Bocconia (10; Mexico, Central America, the West Indies, northern and central Andes), Dicranostigma (8; the Himalayas, western China), Eomecon (1; E. chionantha; eastern China), Glaucium (c 25; western Europe, the Mediterranean, southwestern to Central Asia), Chelidonium (1; C. majus; Europe, temperate and subarctic Asia), Hylomecon (2; H. hylomeconoides, H. vernalis; northeastern China, the Korean Peninsula, Japan), Macleaya (2; M. cordata: temperate China, Taiwan, Japan; M. microcarpa: temperate China), Stylophorum (3; S. sutchuenense: temperate China; S. lasiocarpum: temperate China; S. diphyllum: eastern United States). – Europe, Asia, eastern North America, Central and South America, the West Indies. Latex yellow, orange, or red. Nodes 3–5(–9):3–5(–9). Hairs multicellular, uniseriate at apex. Perianth in Sanguinaria dimerous. Pollen grains also polyporate. Pistil sometimes composed of three connate carpels. Gynophores present in Bocconia. Ovules sometimes one per carpel (in Bocconia basal). Fruit elongate. Aril often present. δ-acetylornithine present. – Chelidonieae are sister to Papavereae.
Fumarioideae Eaton, Bot. Dict., ed. 4: 46. Apr-Mai 1836 [‘Fumariaceae’]
20/c 520. Mainly temperate regions in the Northern Hemisphere, southern Africa. Nodes usually 1:1, unilacunar with one leaf trace (rarely multilacunar with up to five traces). Stem with subepidermal collenchyma. Latex absent; watery juice present in often non-articulated idioblasts (probably reduced laticifers). Flowers bisymmetric or transversely zygomorphic. Tepals in multiples of two. Outer (sepaloid) tepals minute, not enclosing inner tepals. Inner (petaloid) tepals four, often spurred. Stamens four or six, free or connate in groups. Nectaries inserted at staminal bases. Pollen grains sometimes tricolporoidate. Exine often spinulate. Secondary pollen presentation frequent. Style present, often long. Stigma very variable. Placentation sometimes axile. Ovules one to numerous per carpel, campylotropous. Outer integument two to four cell layers thick. Inner integument approx. two cell layers thick. Parietal tissue approx. four cell layers thick. Nucellar cap usually absent. Suspensor haustorium present. Embryogenesis caryophyllad. Fruit sometimes lomentum-like or a nutlet. Seed curved. Exotesta often palisade. Endotesta without fibrillar reticulum. Exotegmen not fibrous. Embryo sometimes elongate. n = (6–)8 (or more). Coularine, δ-acetylornithine, and sometimes berberine present. – Hypecoum is sister-group of Fumarieae.
Hypecoeae Dumort., Fl. Belg.: 130. 1827
1/c 20. Hypecoum (c 20; the Mediterranean and eastwards to Central Asia, western and northern China). – Outer tepals two, sepaloid, anterio-posterior, with open aestivation. Inner tepals petaloid; outer ones not spurred; inner ones trilobate. Stamens 2+2. Anthers latrorse, with monothecal median anthers fused in pairs. Secondary pollen presentation: pollen deposited in bud within pockets inside innermost tepals, which close prior to stigmatic maturation, and open at touch of pollinators, these then becoming dusted with pollen. Pollen grains dicolpate. Stylodia two, partially connate. Inner integument approx. three cell layers thick. Fruit usually an elongate schizocarp detaching into one-seeded units (resembling a lomentum), sometimes siliqua-like, acropetalous, and with replum and persistent placentae. Seed coat with rectangular crystals. Suspensor consisting of two massive cells. n = 9. – Pteridophyllum was identified as sister to Hypecoum with fairly high bootstrap support in Wang & al. (2009), using both morphological and a number of molecular data. On the other hand, there are arguments from many other analyses that Pteridophyllum is instead sister to the entire Papaveraceae.
Fumarieae Dumort., Anal. Fam. Plant.: 51. 1829
19/c 500. Lamprocapnos (1; L. spectabilis; Siberia, northern China, the Korean Peninsula, Japan), Ehrendorferia (2; E. chrysantha, E. ochroleuca; California, Baja California), Dicentra (10; temperate Asia, North America), Ichtyoselmis (1; I. macrantha; southern China, northern Burma), Adlumia (1; A. fungosa; southeastern Canada, northeastern United States), Capnoides (1; C. sempervirens; southeastern Canada, northeastern United States), Dactylicapnos (10; the Himalayas to Southeast Asia), Corydalis (c 400; temperate regions on the Northern Hemisphere, tropical African mountains), Cysticapnos (2–3; C. cracca, C. vesicaria; southern Africa), Discocapnos (1; D. mundtii; Western Cape), Trigonocapnos (1; T. lichtensteinii; southern Africa), Fumaria (c 50; Europe, the Mediterranean to Central Asia and the Himalayas, mountains in tropical East Africa), Cryptocapnos (1; C. chasmophytica; Afghanistan), Fumariola (1; F. turkestanica; Central Asia), Rupicapnos (6; R. africana, R. calcarata, R. muricata, R. numidica, R. ochracea, R. sarcocapnoides; southern Spain, northwestern Africa), Pseudofumaria (2; P. alba: northwestern Balkan Peninsula; P. lutea: southern Alps), Platycapnos (3; P. saxicola, P. spicata, P. tenuiloba; the Iberian Peninsula, western Mediterranean, Macaronesia), Ceratocapnos (3; C. claviculata, C. heterocarpa, C. turbinata; western Europe, the Mediterranean), Sarcocapnos (9; the Iberian Peninsula, western Mediterranean). – Mainly temperate regions in the Northern Hemisphere (with their highest diversity in Himalaya and southwestern China), southern and eastern Africa. Nodes sometimes with up to five traces. Inflorescence often racemose. Flowers transversely zygomorphic or bisymmetric. Outer (sepaloid) tepals minute. One or two outer petaloid tepals spurred; inner petaloid tepals connate at apex, not lobate. Stamens in two groups of three: two median dithecal and four lateral monothecal anthers (some species of Dicentra with six separate stamens). Secondary pollen presentation: pollen deposited on stigma. Stigma Wet type, sometimes flattened, with marginal lobes. Ovule often one per carpel. Fruit often a nut. Elaiosome often present. Exotesta usually pigmented. Endotesta sometimes palisade, usually not crystalliferous. Suspensor cells resembling a bunch of grapes. Embryo sometimes undifferentiated. – Disymmetry of the flower is a synapomorphy of Fumarioideae and zygomorphy has evolved secondarily from dissymmetry (Sauquet & al. 2015).
Phylogeny of Papaveraceae and Pteridophyllum (Papaveroideae: strict consensus tree based on morphology and DNA sequence data, Hoot & al. 1997; Fumarioideae: 50% majority rule bootstrap tree based on DNA sequence data, Lidén & al. 1997; Discocapnos to Sarcocapnos: Bayesian consensus tree of ITS and cpDNA sequences, Pérez-Gutiérrez & al. 2012, 2015). A similar topology was recovered by Sauquet & al. (2015). Papaver is sister to [Argemone+[Romneya+Platystemon]] with high support, according to Hoot & al. (2015). Likewise, Eomecon is sister to Sanguinaria. In the same analysis, Dicentra is sister to all other Fumarieae except Lamprocapnos, and Ichtyoselmis successive sister to the rest. Moreover, Dactylicapnos was found to be sister-group to the clade [Corydalis+[Cysticapnos+Trigonocapnos]+[Sarcocapnos+[Pseudofumaria+[Rupicapnos+Fumaria]]]]. |
PTERIDOPHYLLACEAE (Murb.) Nakai ex Reveal et Hoogland |
( Back to Ranunculales ) |
Genera/species 1/1
Distribution Japan.
Fossils Unknown.
Habit Bisexual, perennial herbs. Blackening when drying.
Vegetative anatomy Mycorrhiza absent. Roots diarch. Phellogen? Secondary lateral growth absent. Vessel elements with simple perforation plates; lateral pits? Imperforate tracheary xylem elements libriform fibres with simple pits. Wood rays absent? Axial parenchyma paratracheal. Sieve tube plastids Ss type. Nodes? Watery juice in non-articulate idioblasts, probably representing reduced laticifers? Crystals?
Trichomes Hairs multicellular, pointed.
Leaves Alternate (spiral, in basal rosette), pinnately compound (with ten to c. 20 pairs of leaflets) to pinnetely lobed, with ? ptyxis. Leaf base surrounded by several large round membranous cataphylls. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? (as platelets?). Mesophyll without sclerenchymatous idioblasts. Leaflet margins serrate-dentate (glandular-serrate?).
Inflorescence Terminal, one- to four-flowered, raceme-like (scapiflorous with separate one- to four-flowered cyme).
Flowers Actinomorphic to slightly bisymmetric. Pedicel thin. Hypogyny. Outer tepals two, with open aestivation, median, petaloid, caducous, free. Inner tepals 2+2, petaloid, outer ones with imbricate aestivation, caducous, free. Nectary? Disc absent.
Androecium Stamens four (lateral two stamens absent; rarely six), in two alternipetalous diagonally arranged groups. Filaments narrow, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.
Pollen grains Microsporogenesis simultaneous? Pollen grains usually tricolpate (rarely di- or tetracolpate), shed as monads, bicellular at dispersal. Exine tectate, with columellate? infratectum, perforate, echinulate.
Gynoecium Pistil composed of two connate transverse carpels; carpel occluded by secretion. Ovary superior, unilocular. Style single, simple, long. Stigmatic lobes commissural; stigmatic area bifid, densely papillate, Dry? type. Pistillodium absent.
Ovules Placentation parietal. Ovules usually one (rarely two) per carpel, anatropous (or amphitropous) to almost campylotropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type? Antipodal cells persistent? Endosperm development nuclear. Endosperm haustoria? Embryogenesis?
Fruit A many-seeded, siliqua-like, septicidal (placenticidal) capsule with persistent placental strands, acropetally dehiscing.
Seeds Aril absent. Seed coat endotestal. Exotesta more or less collapsing. Endotesta well developed, with coarse network of cellulose fibrils. Tegmen thin. Perisperm not developed. Endosperm copious (starchy?). Embryo small, chlorophyll? Cotyledons two. Germination?
Cytology n = 9
DNA
Phytochemistry Very insufficiently known. Protopine present. Flavonols? Berberine?
Use Ornamental plant.
Systematics Pteridophyllum (1; P. racemosum; Honshu in Japan).
Pteridophyllum was identified as sister to Papaveroideae by Sauquet & al. (2015) and as sister to Hypecoum with fairly high bootstrap support in Wang & al. (2009), using both morphological and a number of molecular data. On the other hand, there are arguments from many other analyses that Pteridophyllum is instead sister to the entire Papaveraceae.
RANUNCULACEAE Juss. |
( Back to Ranunculales ) |
Thalictraceae Raf., Anal. Nat.: 176. Apr-Jul 1815 [‘Thalictria’]; Anemonaceae Vest, Anleit. Stud. Bot.: 264, 275. 1818 [’Anemonoideae’]; Helleboraceae Vest, Anleit. Stud. Bot.: 264, 274. 1818 [‘Helleboroideae’]; Aconitaceae Bercht. et J. Presl, Přir. Rostlin: 216. Jan-Apr 1820 [‘Aconiteae’]; Calthaceae Martinov, Tekhno-Bot. Slovar: 92. 3 Aug 1820 [‘Calthoideae’]; Clematidaceae Martinov, Tekhno-Bot. Slovar: 134. 3 Aug 1820 [‘Clematites’]; Actaeaceae Bercht. et J. Presl, Přir. Rostlin 1 (16*-53): 2, 140. 1823; Xanthorhizaceae Bercht. et J. Presl, Přir. Rostlin 1(16*-53): 2, 145. 1823 [‘Xanthorhizeae’]; Cimicifugaceae (Arn.) Bromhead in Mag. Nat. Hist., n. s., 4: 336, 338. Jul 1840 [’Cimicifugeae’]; Ranunculineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7:2, 10. 1846 [’Ranunculeae’]; Nigellaceae J. Agardh, Theoria Syst. Plant.: 76. Apr-Sep 1858; Aquilegiaceae Lilja, Skånes Fl., ed. 2: 375, 861, 979. Apr-Dec 1870; Delphiniaceae Brenner, Florist. Handb.: 52. 1886; Helleborales Nakai in J. Jap. Bot. 24: 10. Dec 1949
Genera/species 43–44/1.730–1.880
Distribution Cosmopolitan, with their largest diversity in temperate regions in the Northern and Southern Hemispheres.
Fossil Numerous fossilized fruits and seeds and a few records of fossil leaves are known from Cenozoic sediments. Leefructus, a Lower Cretaceous fossil with leaves and reproductive organs found in the Yixian Formation (125.8–123.0 Ma), may be closely allied to Ranunculaceae (Wang & al. 2016).
Habit Usually bisexual (rarely dioecious), usually perennial, biennial or annual herbs (in Xanthorrhiza suffrutices; in Clematis lianas). Some species of Ranunculus and Caltha are aquatic. Main root often early withering and replaced by adventitious roots; some species with tuberous roots. Roots and rhizomes in Xanthorhiza and Coptis and bark in Xanthorhiza intensively yellow-coloured due to presence of berberine (a major alkaloid).
Vegetative anatomyPhellogen ab initio deeply seated. Medullary, primary, rays (in ligneous representatives) wide, persistent. Primary vascular tissue consisting of one or several cylinders of vascular bundles, or as scattered bundles, atactostele. Secondary lateral growth usually absent (sometimes from normal cylindrical cambium). Xylem usually V-shaped in cross-section, surrounding phloem. Vessel elements with simple and/or scalariform (sometimes reticulate) perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple pits, non-septate (vasicentric tracheids usually absent, although present in many species of Clematis, especially in temperate regions). Wood rays multiseriate, heterocellular, or absent. Axial parenchyma apotracheal intervascular or scanty vasicentric (Clematis) (paratracheal parenchyma absent or pervasive). Wood elements sometimes (Clematis) partially storied. Phloem surrounded by xylem. Sieve tube plastids Ss type. Nodes usually 3:3, trilacunar with three leaf traces, or ≥5:≥5, multilacunar with at least five traces (rarely 1:1, unilacunar with one trace, or 2:2, bilacunar with two traces). Calciumoxalate crystals rhomboidal or absent.
Trichomes Hairs unicellular och multicellular, uniseriate; glandular hairs often present.
Leaves Usually alternate (spiral or sometimes distichous; in Clematis opposite), usually compound (sometimes simple, sometimes two to several times pinnately compound), usually lobed (sometimes entire); lamina and/or lobes with supervolute, involute, curved-involute, or conduplicate ptyxis. Stipules intrapetiolar or absent; petiole base often sheathing. Petioles in Clematis modified into tactile tendrils. Petiole vascular bundle transection annular or arcuate. Venation usually palmate (rarely parallelodromous; in some species of Ranunculus flabellate, with open dichotomously branched veins). Stomata usually anomocytic (sometimes paracytic), sometimes on adaxial side of leaf only, or absent. Cuticular wax crystalloids usually as irregularly shaped platelets (sometimes as clustered tubuli of Berberis type), chemically dominated by nonacosan-10-ol, or absent. Hydathodes present in some representatives. Idioblasts with ethereal oils absent. Leaf margin usually glandular serrate, with chloranthoid teeth (sometimes crenate or entire). Extrafloral nectaries present or absent.
Inflorescence Terminal or axillary, usually cymose, simple or compound, of different types (rarely racemes), or flowers solitary terminal. Bracts in Anemone often sepaloid.
Flowers Usually actinomorphic (in Aconitum and Delphinium zygomorphic). Receptacle usually elongate (in Myosurus strongly prolonged). Hypogyny. Tepals spiral or whorled. Outer tepals usually five (sometimes two to four, six or more), with imbricate or valvate aestivation, sepaloid or petaloid, persistent or early caducous, usually free. Inner tepals absent or one to 13, often interpreted as staminodia, usually petaloid, with imbricate or valvate aestivation, free, often (e.g. in Ranunculus) with one or several nectaries at base (in Ranunculus giganteus up to c. 30) as nectar-producing pockets or spurs (in Aquilegia five spurs; nectariferous spurs in Delphinium pairwise). Nectariferous hairs present on carpels in Caltha. Disc absent. Androgynophore present in some species of Ranunculus.
Androecium Stamens usually (secondarily?) abundant (rarely few; in Laccopetalum up to more than 2.000), usually (secondarily?) spiral (rarely whorled). Filaments free from each other and from tepals. Anthers basifixed to somewhat dorsifixed, usually non-versatile, tetrasporangiate, extrorse, latrorse or introrse, usually longicidal (dehiscing by longitudinal slits, rarely by longitudinal valves). Tapetum usually secretory (in Actaea sometimes amoeboid-periplasmodial), with binucleate to quadrinucleate cells. Staminodia extrastaminal, petaloid and/or nectariferous, or absent.
Pollen grains Microsporogenesis usually simultaneous (in Thalictrum successive). Pollen grains tri-, hexa- or polycolpate or -porate (zono- or pantoaperturate or syncolpate; rarely spiraperturate; in ’Souliea’ inaperturate), shed as monads, usually bicellular (sometimes tricellular) at dispersal. Exine usually tectate (rarely semitectate), with columellate infratectum, usually perforate and scabrate or micro-echinate, sometimes spinulate (larger columellae projecting through tectum) or punctate (in Helleborus reticulate; in Trollius striate).
Gynoecium Carpels one to more than 100 (in Ranunculus giganteus to more than 10.000), spiral or whorled, usually free (sometimes, e.g. in Nigella, more or less connate, compitum absent); carpel conduplicate-plicate, postgenitally usually entirely fused, without canal (sometimes ascidiate). Closure by transverse slit occasionally occurring together with longitudinal slit; closure of carpels sometimes delayed. Ovary superior, unilocular (apocarpy or gynoecium monomerous) or trilocular to quinquelocular. Stylodia short to long, or absent. Stigmas of different types, papillate or non-papillate, Dry type. Pistillodium absent.
Ovules Placentation marginal or basal (when ovary unilocular) or axile (when ovary plurilocular). Ovules one to numerous per carpel, usually anatropous (sometimes hemianatropous), ascending, horizontal or pendulous, apotropous, usually bitegmic (sometimes unitegmic, derived from integumentary shifting, especially when ovule single), crassinucellar or pseudocrassinucellar (especially when unitegmic; in Anemone-Clematis clade). Micropyle usually endostomal (sometimes bistomal). Outer integument (two to) four to six (to ten) cell layers thick. Inner integument (one or) two or three cell layers thick. Parietal tissue one or two cell layers thick or absent. Nucellar cap present, two to six cell layers thick (mainly in taxa with a single ovule per carpel), or absent. Megagametophyte usually monosporous, Polygonum type (sometimes disporous, Allium type; in Thalictrum etc. sometimes tetrasporous, Adoxa type). Synergids sometimes with a filiform apparatus. Antipodal cells usually persistent, often large, proliferating (sometimes multinucleate). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis usually onagrad (sometimes solanad, rarely caryophyllad).
Fruit Usually an assemblage of follicles or achenes (sometimes a capsule with more or less fused walls, or single; in some species of Actaea a berry).
Seeds Aril absent. Seed coat exotestal. Exotesta palisade, with often thickened non-lignified cell walls, or seeds pachychalazal, with a thin testa. Mesotesta and endotesta unspecialized. Tegmen unspecialized. Perisperm not developed. Endosperm scarce to copious (rarely absent), usually starchy. Embryo very small to large, undifferentiated to well differentiated at dispersal, without chlorophyll. Cotyledons usually two (in some species of Anemone, Eranthis and Ranunculus one), often connate (cotyledonary tube often present; embryo without organs at seed dispersal, further growth intraseminal). Germination phanerocotylar or cryptocotylar. Radicula often ephemeral.
Cytology x = 8, 9 (Coptoideae), x = 7 (Thalictroideae), x = 6–9 (Ranunculoideae) – Polyploidy and aneuploidy frequent; one group of genera with small reniform T type (Thalictrum type) chromosomes and a second group of genera with long two-armed and often curved R type (Ranunculus type) chromosomes.
DNA Plastid gene infA lost/defunct (Caltha with pseudogene, Clematis, Ranunculus). Plastid inverted repeat in Anemone and Clematis expanded by 4,1 kb into large single copy region. Two inversions (39 and 24 kb, respectively) in plastid genome of Adonis Subg. Adonis; one inversion of 42 kb in plastid genome of Adonis Subg. Adonanthe. Four inversions in plastid genome of Anemone and Clematis. Two (or four [two parallel]) inversions in plastid genome of Clematis and at least three species of Anemone. Plastid gene rps16 lost in Adonis Subg. Adonis. One intron absent from plastid gene rps12 of Anemone canadensis, A. dichotoma and A. richardsonii. Mitochondrial intron coxII.i3 lost. Nuclear gene AP3 triplicated.
Phytochemistry Flavonols, (kaempferol, quercetin; frequently additional oxygenation at carbons 6 or 8 of ring A in contrast to magnoliid clades), cyanidin, caffeic acid, cardioactive bufadienolides (in Helleborus), Digitalis cardenolides (in Adonis), diterpenoid alkaloids (e.g. strongly poisonous aconitine and methyl lycaconitine, in Aconitum and Delphinium), damascenine (a protoalkaloid), benzylisoquinoline alkaloids (berberine, quaternary magnoflorine and its precursor corytuberine in Coptoideae and Thalictroideae), quinolizidine alkaloids (in Actaea etc.), pyrrolizidine alkaloids as macrocyclic diesters (in Caltha), tyrosine-derived cyanogenic compounds (abundant in Thalictroideae), ranunculines (in Ranunculeae, Anemoneae and Helleborus in Ranunculoideae), triterpene saponins (in Anemone, Ranunculus etc.), tetracyclic triterpene saponins with lanostane sapogenins (in Actaea, Beesia and some species of Thalictrum), and steroidal saponins (in Helleborus etc.), chelidonic acid present. Ellagic acid and tannins not found. Mannitol accumulation occurring in Aconitum and Delphinium. Oxalate accumulation sometimes occurring.
Use Ornamental plants, spices (seeds of Nigella sativa), medicinal plants, dyeing sources (Xanthorhiza, Coptis).
Systematics Ranunculaceae may be sister to the clade [Glaucidiaceae+Hydrastidaceae].
Coptoideae Tamura in Sci. Rep. Coll. N. Coll. Osaka Univ. 17: 52. 1 Feb 1968
2/10–15. Coptis (10–15; temperate regions on the Northern Hemisphere), Xanthorhiza (1; X. simplicissima; southeastern Canada, eastern United States). – Temperate regions on the Northern Hemisphere. Perennial herbs or suffrutices. Nectaries five to ten, petaloid, thick, stipitate. Carpels stipitate. n = (8) 9. Chromosomes small and rod-like, T type (Thalictrum type). Benzylisoquinoline alkaloids present in Coptis. – Coptoideae may be sister to [Thalictroideae+Ranunculoideae], although the support is low.
Thalictroideae Raf., Anal. Nat.: 176. Apr-Jul 1815 [‘Thalictrinia’]
7–8/280–340. Thalictrum (150–200; temperate regions on the Northern Hemisphere, tropical and southern Africa, New Guinea, tropical America), Leptopyrum (1; L. fumarioides; western Siberia to East Asia), Paraquilegia (4; P. anemonoides, P. caespitosa, P. microphylla, P. uniflora; western Iran to the Himalayas and western China), Urophysa (2; U. henryi, U. rockii; China), Aquilegia (100–110; temperate regions on the Northern Hemisphere), Dichocarpum (18; the Himalayas, East Asia), Enemion (6–7; E. biternatum, E. hallii, E. leveilleanum, E. occidentale, E. raddeanum, E. savilei, E. stipitatum; northeastern Asia, southwestern Canada, western United States; in Isopyrum?), Isopyrum (3; I. anemonoides, I. manshuricum, I. thalictroides; Central Europe, temperate Asia; incl. Enemion?). – Temperate regions on the Northern Hemisphere, tropical and southern Africa, New Guinea, tropical America. Hairs capitate. Leaflets with curved-involute ptyxis, papillate. Stipule-like processes present in Thalictrum. Nectaries petaloid, stipitate. Intrastaminal staminodia sometimes present. Integument single, seven or eight cell layers thick. x = 7. Chromosomes small and reniform, T type (Thalictrum type). Tyrosine-derived cyanogenic compounds often present. Benzylisoquinoline alkaloids present in Isopyrum. – Thalictroideae may be sister to Ranunculoideae.
Ranunculoideae Arn., Botany: 94. 9 Mar 1832 [’Ranunculineae’]
c 35/1.440–1.540. Calathodes (4; C. oxycarpa, C. palmata, C. polycarpa, C. unciformis; the Himalayas, China, Taiwan), Adonis (c 30; Europe, temperate Asia), Trollius (c 30; temperate regions on the Northern Hemisphere), Callianthemum (14–15; Central Europe to Central Asia), Caltha (12; temperate regions on both hemispheres; section Psychrophila: the Andes to Ecuador, Tierra del Fuego, Falkland Islands, southeastern Australia, Tasmania, New Zealand), Helleborus (c 20; West, Central and South Europe, the Mediterranean to the Caucasus and northern Syria, one species, H. thibetanus, in Tibet and western China); Delphinium (300–320; temperate regions on the Northern Hemisphere), Staphisagria (3; S. brevipes, S. hirtella, S. moschata; the Mediterranean), Aconitum (>250; temperate regions on the Northern Hemisphere), Gymnaconitum (1; G. gymnandrum; Tibet, western China), Nigella (18; Europe, the Mediterranean, temperate Asia); Actaea (29; temperate regions on the Northern Hemisphere), Anemonopsis (1; A. macrophylla; central Honshu in Japan), Beesia (2; B. calthifolia, B. deltophylla; western and southwestern China, northern Burma), Asteropyrum (2; A. cavaleriei, A. peltatum; China), Eranthis (8–9; Europe, temperate Asia). – Ranunculeae DC., Syst. Nat. 1: 130, 228. 1-15 Nov 1817. Kumlienia (1; K. hystricula; Sierra Nevada in California), Callianthemoides (1; C. semiverticillatus; the Andes in southern Chile and southern Argentina), Hamadryas (7; H. argentea, H. delfini, H. kingii, H. magellanica, H. paniculata, H. sempervivoides, H. tomentosa; southern Chile, Tierra del Fuego), Peltocalathos (1; P. baurii; southern Africa), Beckwithia (3; B. andersonii, B. camissonis, B. glacialis; temperate and polar regions on the Northern Hemisphere), Oxygraphis (4–5; O. delavayi, O. endlicheri, O. polypetala, O. shaftoanus, O. tenuifolia; temperate Asia), Halerpestes (8; temperate Asia, Canada, United States), Arcteranthis (1; A. cooleyae; Alaska, northwestern Canada), Trautvetteria (1; T. caroliniensis; Japan, Sakhalin, southwestern Canada, western and eastern United States), Coptidium (2; C. lapponicum, C. pallasii; cold-temperate and arctic regions on the Northern Hemisphere), Ficaria (4; F. fascicularis, F. ficarioides, F. popovii, F. verna; Europe, the Mediterranean to Central Asia), Myosurus (5–6; M. apetalus, M. cupulatus, M. minimus, M. nitidus, M. sessilis; temperate regions on both hemisphere), Ceratocephala (5; C. caulifolia, C. falcata, C. furfurascens, C. pungens, C. testiculata; nearly cosmopolitan), Krapfia (8–10; the Andes), Laccopetalum (1; L. giganteum; the Andes in Peru), Ranunculus (>400; polar, temperate and subtropical regions, tropical mountains), Paroxygraphis (1; P. sikkimensis; eastern Himalayas). – Anemoneae DC., Syst. Nat. 1: 129, 168. 1-15 Nov 1817. Anemone (160–170; temperate regions on the Northern Hemisphere, East African mountains, southern Africa, Sumatra, Tasmania, New Zealand, North America to the Andes in Chile), Clematis (300–350; temperate regions on the Northern Hemisphere, tropical African mountains, Madagascar, Pacific islands, South America). – Cosmopolitan. Hairs clavate. Leaflets usually with involute (sometimes supervolute and/or curved) ptyxis. Petiole vascular bundle transection sometimes arcuate; wing bundles and medullary bundles sometimes present. Flowers sometimes zygomorphic. Ovule in Ranunculeaeand Anemoneaeone per carpel, unitegmic, pseudocrassinucellar, and integument six to twelve cell layers thick. Micropyle sometimes bistomal. Parietal tissue one or two cell layers thick or absent. Nucellar cap usually present. Endosperm development nuclear. Testa sometimes vascularized. Exotesta sometimes short-palisade. Endotesta sometimes developed. Embryo sometimes undifferentiated. x = (6–)8(–9). Chromosomes large, elongated, two-armed and often curved, R type (Ranunculustype). Lactone-forming glycosides (ranunculin, etc.). Cardenolides and bufadienolides sometimes present. Berberine absent. Benzylisoquinoline alkaloids sparse or absent. – Ranunculoideae are paraphyletic (Cossard & al. 2016).
Cladogram (simplified) of Ranunculaceae based on DNA sequence data (Ro & al. 1997; Wang & al. 2005; Wang & Chen 2007, Wang & al. 2010, Cossard & al. 2016). The positions of Actaea+Eranthis, Adonis, Asteropyrum, Callianthemum, Caltha, Helleborus, and Nigella, in particular, are very uncertain, and several other clades also have low support clades have low support. Staphisagria is sister to [Consolida+Delphinium] (Cossard & al. 2016). |
Cladogram of Ranunculeae based on DNA sequence data (Emadzade & al. 2010). |
Literature
Adachi J, Kosuge K, Denda T, Watanabe K. 1995. Phylogenetic relationships of the Berberidaceae based on partial sequences of the gapA gene. – In: Jensen U, Kadereit JW (eds), Systematics and evolution of the Ranunculiflorae, Plant Syst. Evol. [Suppl.] 9: 351-353.
Adhikari B, Milne R, Pennington RT, Särkinen T, Pendry CA. 2015. Systematics and biogeography of Berberis s.l. inferred from nuclear ITS and chloroplast ndhF gene sequences. – Taxon 64: 39-48.
Ahmad SM, Hoot SB, Qazi PH, Verma V. 2009. Phylogenetic patterns and genetic diversity of Indian Tinospora species based on chloroplast sequence data and cytochrome P450 polymorphisms. – Plant Syst. Evol. 281: 87-96.
Ahrendt LWA. 1961. Berberis and Mahonia: a taxonomic revision. – Bot. J. Linn. Soc. 57: 1-410.
Aichele D, Schwegler HW. 1957. Die Taxonomie der Gattung Pulsatilla. – Feddes Repert. 60: 1-230.
Aitzetmüller K. 1995. Fatty acid patterns of Ranunculaceae seed oils: phylogenetic relationships. – Plant Syst. Evol. [Suppl.] 9: 229-240.
Aitzetmüller K, Tsevegsüren N. 1994. Seed fatty acids, ‘Front-end’ – desaturases and chemotaxonomy – a case study in the Ranunculaceae. – J. Plant Physiol. 143: 538-543.
Akkemik U, Akalin E, Ozhatay N. 2007. Ranunculus anatolicus sp. nov. (Ranunculaceae) from northeast Turkey. – Nord. J. Bot. 25: 311-314.
Al-Eisawi D. 1986. Pollen morphology of Ranunculaceae in Jordan. – Pollen Spores 28: 311-328.
Aleykutty KM, Inamdar JA. 1980. Structure, ontogeny and classification of trichomes in Ranales. – Feddes Repert. 91: 95-108.
Arber A. 1931. Studies in floral morphology II. On the Fumarioideae, with special reference to the androecium. – New Phytol. 30: 317-354.
Arber A. 1932. Studies in floral morphology III. On the Hypecoideae with special reference to the androecium. – New Phytol. 31: 145-173.
Arber A. 1936. Studies in flower structure II. Vascular supply to the nectary in Ranunculus. – Ann. Bot. 50: 305-319.
Arber A. 1938. Studies in flower structure IV. On the gynoeceum of Papaver and related genera. – Ann. Bot., N. S., 2: 649-664.
Archangelsky DB. 1973. Palynological taxonomy of Berberidaceae. – In: Kuprianova LA (ed), Pollen and spore morphology of recent plants, Nauka, Leningrad, pp. 18-21.
Aswal BS. 1985. Meconopsis bikramii Aswal (Papaveraceae), a new species from Lahul Valley, Himachal Pradesh, India. – Indian J. Forest 8: 84-85.
Avita S, Inamdar JA. 1980. Structure and ontogeny of stomata in Ranunculaceae and Paeoniaceae. – Flora 171: 354-370.
Ba TL. 1974. Embryogénie comparée et phylogénie des Helléborées. – Rev. Gen. Bot. 81: 151-191.
Balfour IB, Smith WW. 1914. Diagnoses specierum novarum LI-CII (Species Chinenses). Kingdonia uniflora. – Notes Roy. Bot. Gard. Edinb. 8: 191-192.
Balthazar M von, Pedersen KR, Friis EM. 2005. Teixeiraea lusitanica, a new fossil flower from the Early Cretaceous of Portugal with affinities to the Ranunculales. – Plant Syst. Evol. 255: 55-75.
Baltisberger M. 1980. Die Artengruppe des Ranunculus polyanthemos L. in Europa. – Ber. Schweiz. Bot. Ges. 90: 143-188.
Baltisberger M. 1981. Verwandtschaftsbeziehungen zwischen der gruppe des Ranunculus polyanthemos L. und R. repens L. sowie Arten der Gruppen des R. acris L. und R. bulbosus L. – Bot. Helvetica 91: 61-74.
Baltisberger M. 1994. Ranunculus cacuminis and R. crenatus, representatives of the R. alpestris-group (Ranunculaceae) on the Balkan Peninsula. – Plant Syst. Evol. 190: 231-244.
Baltisberger M, Müller M. 1981. Vergleichende cytotaxonomische Untersuchungen an Ranunculus seguieri und der Artengruppe des R. alpestris (Ranunculaceae). – Plant Syst. Evol. 138: 47-60.
Baltisberger M, Widmer A. 2005. Cytological investigations on some Ranunculus-species from Crete. – Candollea 60: 335-344.
Barbosa-Filho JM, Leitão da-Cunha EV, Greay AI. 2000. Alkaloids of the Menispermaceae. – The Alkaloids 54: 1-190.
Barbosa-Filho JM, Leitão da-Cunha EV, Greay AI. 2000. Alkaloids of the Menispermaceae. – In: Cordell GA (ed), The alkaloids: Chemistry and biology, vol. 54, Academic Press, San Diego etc.
Barina Z, Caković D, Pifkó D, Schönswetter P, Somogyi G, Frajiman B. 2017. Phylogenetic relationships, biogeography and taxonomic revision of European taxa of Gymnospermium (Berberidaceae). – Bot. J. Linn. Soc. 184: 298-311.
Barnáth J. 1998. Poppy: the genus Papaver. – Harwood Academic, Australia.
Barneby RC. 1970. Revision of neotropical Menispermaceae tribe Tinosporeae. – Mem. New York Bot. Gard. 20: 81-158.
Barneby RC. 1972. New and notable Menispermaceae tribe Tinosporeae. – Mem. New York Bot. Gard. 22: 137-151.
Barneby RC. 1987. The fruit and tribal affinity of genus Cionomene (Menispermaceae). – Brittonia 39: 258-259.
Barneby RC, Krukoff BA. 1971. Supplementary notes on American Menispermaceae VIII. A generic survey of the American Triclisieae and Anomospermeae. – Mem. New York Bot. Gard. 22: 1-89.
Barthlott W, Theisen I. 1995. Epicuticular wax structure and classification of Ranunculiflorae. – Plant Syst. Evol. [Suppl.] 9: 39-45.
Baumberger H. 1970. Chromosomenzahlbestimmungen und Karyotypanalysen bei den Gattungen Anemone, Hepatica, und Pulsatilla. – Ber. Schweiz. Bot. Ges. 80: 17-96.
Baytop A. 1983. A new Roemeria from Turkey. – Notes Roy. Bot. Gard. Edinb. 41: 281.
Behnke H-D. 1971. Sieve-tube plastids of Magnoliidae and Ranunculidae in relation to systematics. – Taxon 20: 723-730.
Behnke H-D. 1995. Sieve-element plastids, phloem proteins, and the evolution of Ranunculanae. – Plant Syst. Evol. [Suppl.] 9: 25-37.
Belyaeva NS. 1983. Ultrastructure of chalazal end of ovule of Delphinium before fertilization. – In: Erdelska O (ed), Fertilization and embryogenesis in ovulated plants, Veda, Bratislava, pp. 199-203.
Benson L. 1940. The North American subdivisions of Ranunculus. – Amer. J. Bot. 27: 799-807.
Benson L. 1948. A treatise on the North American Ranunculi. – Amer. Midl. Natur. 40: 1-264.
Benson L. 1954. Supplement to a treatise on North American Ranunculi. – Amer. Midl. Natur. 52: 328-369.
Benzing DH. 1967a. Developmental patterns in stem primary xylem of woody Ranales I. Species with unilacunar nodes. – Amer. J. Bot. 54: 805-813.
Benzing DH. 1967b. Developmental patterns in stem primary xylem of woody Ranales II. Species with trilacunar and multilacunar nodes. – Amer. J. Bot. 54: 813-820.
Berg RY. 1966. Seed dispersal of Dendromecon: its ecologic, evolutionary, and taxonomic significance. – Amer. J. Bot. 53: 61-73.
Berg RY. 1967. Megagametogenesis and seed development in Dendromecon rigida (Papaveraceae). – Phytomorphology 17: 223-232.
Berg RY. 1969. Adaptation and evolution in Dicentra (Fumariaceae) with special reference to seed, fruit, and dispersal mechanism. – Nytt Mag. Bot. 16: 49-75.
Berg RY. 1972. Dispersal ecology of Vancouveria (Berberidaceae). – Amer. J. Bot. 59: 109-122.
Bersillon G. 1955. Rechèrches sur les Papavéracées. Contribution à l’étude du développement des dicotylédones herbacées. – Ann. Sci. Nat. Bot., sér. II, 16: 225-443.
Bhandari NN. 1965. Studies in the family Ranunculaceae VIII. Variations in the development of the embryo sac of Anemone vitifolia. – Phytomorphology 15: 285-291.
Bhandari NN. 1966. Studies in the family Ranunculaceae IX. Embryology of Adonis. – Phytomorphology 16: 578-587.
Bhandari NN, Asnani S. 1966. Studies in the family Ranunculaceae XI. Morphology and embryology of Ceratocephalus falcatus Per. – Beitr. Biol. Pflanzen 45: 271-290.
Bhandari NN, Vijayaraghavan MR. 1970. Studies in the family Ranunculaceae XII. Embryology of Aquilegia vulgaris. – Beitr. Biol. Pflanzen 46: 337-354.
Bhatnagar SP. 1965. Some observations on the embryology of Holboellia latifolia Wall. – Curr. Sci. 54: 28-29.
Bhattarai S. 1989. Karyomorphological studies of four species of Anemone. – Cytologia 54: 709-713.
Bird DA, Franceschi VR, Faccini PJ. 2003. A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. – Plant Cell 15: 2626-2635.
Blackmore S, Stafford P, Persson V. 1995. Palynology and systematics of Ranunculiflorae. – Plant Syst. Evol. [Suppl.] 9: 71-82.
Blanché C. 1990. Delphinium L. Subgen. Delphinium: origin and evolutionary treds. – Collect. Bot. (Barcelona) 19: 75-95.
Blanc-Louvel C. 1984. Le genre “Ranunculus L.” dans le Berriasien (Crétace inf.) de la province de Lérida (Espagne). – Inst. Est. Ilerdense Diputación Prov. Lleida 45: 83-92.
Blaque G, Maheu J. 1926. Les falsifications actuelles de l’Hydrastis canadensis. – Bull. Sci. Pharmacol. 33: 375-384.
Blattner FR. 1996. Gattungsbeziehungen innerhalb der Chelidonioideae (Papaveraceae): Analyse molekularer und morphologischer Merkmale. – Ph.D. diss., Universität Mainz, Germany.
Blattner FR, Kadereit JW. 1995. Three intercontinental disjunctions in Papaveraceae subfamily Chelidonioideae: evidence from chloroplast DNA. – Plant Syst. Evol. [Suppl.] 9: 147-157.
Böcher TW. 1932. Beiträge zur Zytologie der Gattung Anemone. – Bot. Tidsskr. 42: 183-206.
Böcher TW. 1938. Cytological studies in the genus Ranunculus. – Dansk Bot. Ark. 9: 1-33.
Böhm H, Dolejs L, Prininger V, Santavy F, Simanek V. 1975. Isolierung und Chemie die Alkaloide der Pflanzenfamilie Papaveraceae LXVIII. – Planta Medica 28: 210-214.
Boivin B. 1957. Études thalictrologiques III. Réduction du genre Anemonella Spach (Ranunculaceae). – Bull. Soc. Roy. Bot. Belg. 89: 319-321.
Boivin JRB. 1944. American Thalictra and their Old World allies. – Rhodora 46: 337-377, 391-445, 453-487.
Bonde SD. 1997. Fossil dicotyledonous liana Anamirta pfeifferi sp. nov. (Menispermaceae) from the Deccan Intertrappean beds of India. – The Palaeobotanist 47: 89-94.
Boraiah G. 1964. Phylogenetic studies in Anemone stylosa. – Can. J. Bot. 43: 361-372.
Boraiah G, Heimburger M. 1964. Cytotaxonomic studies on New World Anemone (section Eriocephalus) with woody rootstocks. – Can. J. Bot. 42: 891-922.
Botha DJ. 1980a. The endocarp of the southern African Menispermaceae. – J. South African Bot. 46: 23-31.
Botha DJ. 1980b. The identity of Antizoma harveyana Miers ex Harv. and A. capensis (L. f.) Diels. – J. South Afr. Bot. 46: 1-5.
Bottini MCJ, Bustos A de, Sanso AM, Jouve N, Poggio L. 2007. Relationships in Patagonian species of Berberis (Berberidaceae) based on the characterization of rDNA internal transcribed spacer sequences. – Bot. J. Linn. Soc. 153: 321-328.
Bowers H. 1891. A contribution to the life-history of Hydrastis canadensis. – Bot. Gaz. (Crawfordsville) 16: 73-82.
Brett JF, Posluszny U. 1982. Floral development in Caulophyllum thalictroides (Berberidaceae). – Can. J. Bot. 60: 2133-2141.
Briggs BG. 1960. Ranunculus lappaceus and allied species of the Australian mainland. – Proc. Linn. Soc. New South Wales 84: 295-324.
Briggs BG. 1994. A new species and new status in Australian Ranunculus: R. diminutus and R. acrophilus (Ranunculaceae). – Telopea 5: 583-587.
Britton NL. 1892. The American species of the genus Anemone and the genera which have been referred to it. – Ann. New York Acad. Sci. VI: 215-238.
Brouland M. 1935. Recherches sur l’anatomie florale des Renonculacées. – Botaniste 27: 1-252.
Browicz K. 1976. Genus Bongardia C. A. Mey. and its range. – Fragm. Flor. Geobot. 22: 435-444.
Brückner C. 1982. Zur Kenntnis der Fruchtmorphologie der Papaveraceae Juss. s. str. und Hypecoaceae (Prantl et Kündig) Nak. – Feddes Repert. 93: 153-212.
Brückner C. 1983a. Numerische Methoden in der Karpomorphologie der Chelidonieae Reichenb. (Papaveraceae). – Gleditschia 10: 71-92.
Brückner C. 1983b. Zur Morphologie der Samenschale in den Papaveraceae Juss. s. str. und Hypecoaceae (Prantl et Kündig) Nak. – Feddes Repert. 94: 361-405.
Brückner C. 1984. Zur Narbenform und zur karpelmorphologischen Stellung der Fumariaceae DC. in den Papaverales. – Gleditschia 11: 5-16.
Brückner C. 1985a. Frucht- und Samenanatomie von Pteridophyllum racemosum Sieb. et Zucc. und die Position der monotypischen Gattung in den Papaverales. – Feddes Rep. 96: 199-213.
Brückner C. 1985b. Zur Samenmorphologie in Corydalis Vent. (Fumariaceae DC.). – Gleditschia 13: 53-61.
Brückner C. 1992a. Gynoecium morphology and fruit anatomy in Pseudofumaria Medik. (Fumariaceae), with discussion of carpellary composition. – Bot. Jahrb. Syst. 114: 251-274.
Brückner C. 1992b. A tool for better identification of Dicranostigma species (Papaveraceae). – Feddes Repert. 103: 399-409.
Brückner C. 1992c. Gynoecium ontogeny and carpology in Corydalis DC. section Cheilanthifoliae Lidén (Fumariaceae). – Flora 187: 299-316.
Brückner C. 1995. Comparative seed structure in the Ranunculiflorae. – Plant Syst. Evol. [Suppl.] 9: 83-84.
Brückner C. 1996. Carpelloid stamens in Papaveraceae Juss. and Brassicaceae Burnett (Cruciferae Juss.) and their bearing on theories of gynoecium organization. – Feddes Repert. 107: 321-337.
Brückner C. 2000. Clarification of the carpel number in Papaverales, Capparales, and Berberidaceae. – Bot. Rev. 66: 155-307.
Brummitt RK. 2000. Inclusion of Clematopsis Hutch. in Clematis L. (Ranunculaceae). – Kew Bull. 55: 97-108.
Cai YF, Li SW, Liu Y, Quan S, Chen M, Xie YF, Jiang HZ, Wei EZ, Yin NW, Wang L, Zhang R, Huang CL, He XH, Jiang MF. 2009. Molecular phylogeny of Ranunculaceae based on internal transcribed spacer sequences. – African J. Biotechn. 8: 5215-5224.
Candau P, Fernandez-Paniagua I. 1985. Polen en Papaveraceae de Andalucia occidental. – An. Asoc. Palinol. Leng. Esp. 2: 25-34.
Candau P, Soler A. 1981. Contribucion à la palinologia de la familia Fumariaceae en la Peninsula Iberica. – Bot. Macaronesica 8-9: 147-162.
Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX. 2016. Evolution of East Asia’s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. – BMC Evol. Biol. 16: 166.
Carlquist SJ. 1984. Wood and stem anatomy of Lardizabalaceae, with comments on the vining habit, ecology, and systematics. – Bot. J. Linn. Soc. 88: 257-277.
Carlquist SJ. 1995a. Wood and bark anatomy of Ranunculaceae (including Hydrastis) and Glaucidiaceae. – Aliso 14: 65-84.
Carlquist SJ. 1995b. Wood anatomy of Berberidaceae: ecological and phylogenetic considerations. – Aliso 14: 85-103.
Carlquist SJ. 1995c. Wood anatomy of Ranunculiflorae: a summary. – Plant Syst. Evol. [Suppl.] 9: 11-24.
Carlquist SJ. 1996. Wood and stem anatomy of Menispermaceae. – Aliso 14: 155-170.
Carlquist SJ, Zona S. 1988. Wood anatomy of Papaveraceae, with comments on vessel restriction patterns. – IAWA Bull., N. S., 9: 253-267.
Carlquist SJ, Schneider EL, Miller RB. 1994. Wood and bark anatomy of Argemone (Papaveraceae). – IAWA J. 15: 247-255.
Carolan JC, Hook ILI, Chase MW, Kadereit JW, Hodkinson TR. 2006. Phylogenetics of Papaver and related genera based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. – Ann. Bot. (Oxford) 98: 141-155.
Chang H-L. 2005. Floral morphogenesis and metamorphose in Ranunculaceae and their systematic significance. – Ph.D. diss., Northwest University, Xi’an, People’s Republic of China.
Chang K-T, Wang P-L. 1983. Study on the pollen morphology of the family Berberidaceae. – Acta Phytotaxon. Sin. 21: 130-142.
Chapman M. 1936. Carpel anatomy of the Berberidaceae. – Amer. J. Bot. 23: 340-348.
Chartier M, Dressler S, Schönenberger J, Mora AR, Sarthou C, Wang W, Jabbour F. 2016. The evolution of afro-montane Delphinium (Ranunculaceae): morphospecies, phylogenetics and biogeography. – Taxon 65: 1313-1327.
Chaturvedi M, Datta K, Pal M. 1999 [2000]. Pollen anomaly – a clue to natural hybridity in Argemone (Papaveraceae). – Grana 38: 339-342.
Chen IS. 1975. The constituents of Tinospora dentata Diels. – J. Chin. Chem. Soc.. 22: 271-274. [In Chinese]
Cheng J, Xie L. 2014. Molecular phylogeny and
historical biogeography of Caltha (Ranunculaceae) based on analyses
of multiple nuclear and plastid sequences. – J. Syst. Evol. 52: 51-67.
Christenhusz MJM. 2012. An overview of Lardizabalaceae. – Curtis’s Bot. Mag. 29: 235-276.
Chuang H. 1981. The systematic evolution and the geographical distribution of Meconopsis Vig. – Acta Bot. Yunnan. 3: 139-146.
Clark C. 1978a. Pollen shed as tetrads by plants of Eschscholzia californica (Papaveraceae). – Madroño 25: 59-60.
Clark C. 1978b. Systematic studies of Eschscholzia (Papaveraceae) I. The origin and affinities of E. mexicana. – Syst. Bot. 3: 374-385.
Clark C, Jernstedt JA. 1978. Systematic studies of Eschscholzia (Papaveraceae) II. Seed coat microsculpturing. – Syst. Bot. 3: 386-402.
Coles SM. 1971. The Ranunculus acris complex in Europe. – Watsonia 8: 237-262.
Colombo ML, Tome F, Bugatti C. 1991. Lipid content and fatty acid composition in hypogeous organs of Helleborus species (Ranunculaceae). – Plant Syst. Evol. 178: 55-63.
Compton JA, Culham A. 2002. Phylogeny and circumscription of tribe Actaeeae (Ranunculaceae). – Syst. Bot. 27: 502-511.
Compton JA, Hedderson TAJ. 1997. A morphometric analysis of the Cimicifuga foetida L. complex (Ranunculaceae). – Bot. J. Linn. Soc. 123: 1-23.
Compton JA, Culham A, Jury SL. 1998. Reclassification of Actaea to include Cimicifuga and Souliea (Ranunculaceae): phylogeny inferred from morphology, nrDNA ITS, and cpDNA trnL-F sequence variation. – Taxon 47: 593-634.
Compton JA, Culham A, Gibbings JG, Jury SL. 1998. Phylogeny of Actaea including Cimicifuga (Ranunculaceae) inferred from nrDNA ITS sequence variation. – Biochem. Syst. Ecol. 26: 185-197.
Cook CDK. 1962. Studies in Ranunculus L. subgenus Batrachium (DC.) A. Gray I. Chromosome numbers. – Watsonia 5: 123-126.
Cook CDK. 1963. Studies in Ranunculus L. subgenus Batrachium (DC.) A. Gray II. General morphological considerations in the taxonomy of the subgenus. – Watsonia 5: 294-303.
Cook CDK. 1966. A monographic study of Ranunculus subgenus Batrachium (DC.) A. Gray. – Mitt. Bot. Staatssamml. München 6: 47-237.
Cook CDK. 1970. Hybridization in the evolution of Batrachium. – Taxon 19: 161-166.
Coonen LP. 1939. The chromosomes of Ranunculus. – Amer. J. Bot. 26: 48-58.
Cossard G, Sannier J, Sauquet H, Damerval C, Ronse de Craene L, Jabbour F, Nadot S. 2016. Subfamilial and tribal relationships of Ranunculaceae: evidence from eight molecular markers. – Plant Syst. Evol. 302: 419-431.
Cresson RA, Schneider EL. 1988. Ovule and seed structure in Argemone aurantiaca (Papaveraceae). – Bull. Torrey Bot. Club 115: 108-112.
Cumbie BG.1983. Developmental changes in the wood of Bocconia vulcanica Donn. Smith. – IAWA Bull., N. S. 4: 131-140.
Dahl ÅE. 1989. Taxonomic and morphological studies in Hypecoum sect. Hypecoum (Papaveraceae). – Plant Syst. Evol. 163: 227-280.
Dahl ÅE. 1990. Infrageneric division of Hypecoum (Papaveraceae). – Nord. J. Bot. 10: 129-140.
Dahl ÅE. 1992. Artificial crossing experiments within Hypecoum sect. Hypecoum (Papaveraceae). – Nord. J. Bot. 12: 13-29.
Dahl ÅE, Wassgren A-B, Bergström G. 1990. Floral scents in Hypecoum Sect. Hypecoum (Papaveraceae): chemical composition an relevance to taxonomy and mating system. – Biochem. Syst. Ecol. 18: 157-168.
Dahlgren G. 1991. Karyological investigations in Ranunculus subg. Batrachium on the Aegean islands. – Plant Syst. Evol. 177: 193-211.
Dahlgren G. 1995. Differentiation patterns in Ranunculus subgenus Batrachium (Ranunculaceae). – Plant Syst. Evol. [Suppl.] 9: 305-317.
Damerval C, Nadot S. 2007. Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. – Ann. Bot. 100: 631-640.
Damerval C, Le Guilloux M, Jager M, Charon C. 2007. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. – Plant Physiol. 143: 759-772.
Damerval C, Citerne H, Le Guilloux M, Domenichini S, Dutheil J, Ronse de Craene L, Nadot S. 2013. Asymmetric morphogenetic cues along the transverse plane: shift from dissymmetry to zygomorphy in the flower of Fumarioideae. – Amer. J. Bot. 100: 391-402.
Daumann E. 1969. Blütenmorphologie und Bestäubungsökologie einiger Ranunculaceen (Cimicifuga L., Actaea L., Thalictrum L.). – Preslia 41: 213-219.
Davis KC. 1900. Native and cultivated Ranunculi of North America and segregated genera. – Minn. Bot. Stud. 2: 459-507.
Davis PH. 1961. Materials for a flora of Turkey IV. Ranunculaceae II. Ranunculus L. – Notes Roy. Bot. Gard. Edinb. 23: 103-161.
Debnath HS, Nayar MP. 1989. A new species of Meconopsis Vig. (Papaveraceae) from Nepal. – J. Jap. Bot. 64: 157-159.
Décamps O. 1974. Types stomatiques chez les Renonculacées. – Compt. Rend. Acad. Sci. Paris 279 D: 1527-1529.
Dekker AJFM. 1983. A revision of the genera Penianthus Miers and Sphenocentrum Pierre (Menispermaceae) of West and Central Africa. – Bull. Jard. Bot. Natl. Belg. 53: 17-66.
Delpino F. 1899. Rapporti tra la evoluzione e la distribuzione geographica delle Ranunculaceae. – Mem. Reale Accad. Sci. Inst. Bologna 8: 17-66.
De Maggio AE, Wilson CL. 1986. Floral structure and organogenesis in Podophyllum peltatum L. (Berberidaceae). – Amer. J. Bot. 73: 21-32.
Dermen H. 1931. A study of chromosome number in two genera of Berberidaceae: Mahonia and Berberis. – J. Arnold Arbor. 12: 281-287.
Derviz-Sokolova TG, Elenevskij AG, Bulanyj JI. 1986. Revizija ljutikov (Ranunculus L., Ranunculaceae) gruppy Ranunculus dissectus Bieb. s.l. – Bjull. Moskovsk. Obšč. Isp. Prir., Otd. Biol. 91: 101-108.
Despres L, Gielly L, Redoutet B, Taberlet P. 2003. Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability. – Mol. Phylogen. Evol. 27: 185-196.
Devar KV, Boraiah G, Khaleel TF. 1979. Cytology of Clematis gouriana and Naravelia zeylanica. – Bot. Not. 132: 310.
De Wet H, Wyk B-E van. 2008. An ethnobotanical survey of southern African Menispermaceae. – South Afr. J. Bot. 74: 2-9.
Dickson J. 1935. Studies in floral anatomy II. The floral anatomy of Glaucium flavum with reference to other members of the Papaveraceae. – Bot. J. Linn. Soc. 50: 175-224.
Diels L. 1915. Neue Menispermaceae von Papuasien. – Engl. Bot. Jahrb. Syst. 52: 187-190.
Diels L. 1921. Menispermaceae madagascarienses novae. – Feddes Repert. 17: 312-313.
Diels L. 1931. Aufklärung der Gattung Leichhardtia F. v. M. – Notizbl. Bot. Gart. Berlin-Dahlem 11: 308-310.
Diels L. 1932. Circaeaster: eine hochgradig reduzierte Ranunculaceae. – Beih. Bot. Centralbl. 49: 55-60.
Diosdado JC, Pastor JE. 1991. Estudios cariosistemàticos del género Ranunculus sect. Ranunculastrum DC. en la peninsula Ibérica. – Lgascalia 16: 269-290.
Diosdado JC, Pastor JE. 1991. Estudio citotaxonómico del género Ranunculus L. sect. Flammula (Webb ex Spach) Freyn en la Península Ibérica. – Candollea 46: 303.
Diosdado JC, Pastor JE. 1996. Consideraciones citotaxonómicas del género Ranunculus L. (Ranunculaceae) en la Península Ibérica. – An. Jard. Bot. Madrid 54: 166-178.
Donmez A, Mutlu B. 2004. A new species of Nigella (Ranunculaceae) from Turkey. – Bot. J. Linn. Soc. 146: 251-255.
Doria G, Jaramillo CA, Herrera F. 2008. Menispermaceae from the Cerrejón Formation, middle to late Paleocene, Colombia. – Amer. J. Bot. 95: 954-973.
Doroszewska A. 1974. The genus Trollius L.: a taxonomical study. – Monogr. Bot. 41: 1-167.
D’Ovidio R, Marchi P. 1990. DNA content, karyotype structure analysis and karyotype symmetry in Ranunculus L. (Ranunculaceae). Italian species belonging to sections Flammula (Webb) Benson and Micranthus (Ovcz.) Nyarady. – Caryologia 43: 99-115.
Drummond JR, Hutchinson J. 1920. A revision of Isopyrum (Ranunculaceae) and its nearer allies. – Kew Bull. 1920: 145-169.
Duncan T. 1980. A cladistic analysis of the Ranunculus hispidus complex. – Taxon 29: 441-454.
Duncan T, Keener CS. 1991. A classification of the Ranunculaceae with special reference to the Western Hemisphere. – Phytologia 70: 24-27.
Duncan T, Perez T. 1979. Chromosomes of Oreithales (Ranunculaceae). – Amer. J. Bot. 66: 989-990.
Echlin P, Godwin H. 1968a. The ultrastructure and ontogeny of pollen in Helleborus foetidus L. II. Pollen grain development through the callose special wall stage. – J. Cell Sci. 3: 175-186.
Echlin P, Godwin H. 1968b. The ultrastructure and ontogeny of pollen in Helleborus foetidus L. III. The formation of the pollen grain wall. – J. Cell Sci. 5: 459-477.
Ehdaie M, Russell SD. 1984. Megagametophyte development of Nandina domestica and its taxonomic implications. – Phytomorphology 34: 221-225.
Ehrendorfer F, Samuel R. 2001. Contributions to a molecular phylogeny and systematics of Anemone and related genera (Ranunculaceae – Anemoninae). – Acta Phytotaxon. Sin. 39: 293-307.
Ehrendorfer F, Ziman SN, König C, Keener CS, Dutton BE, Tsarenko ON, Bulakh EV, Boscaiu M, Médail F, Kästner A. 2009. Taxonomic revision, phylogenetics and transcontinental distribution of Anemone section Anemone (Ranunculaceae). – Bot. J. Linn. Soc. 160: 312-354.
Eichler H. 1958. Revision der Ranunculaceen Malesiens. – Bibl. Bot. 124: 1-110.
Elenevskij AG, Derviz-Sokolova TG. 1989. Ljutiki (Ranunculus L., Ranunculaceae) Kavkaza. – Bjull. Moskovsk. Obšč. Isp. Prir., Otd. Biol. 94: 112-123.
Emadzade K, Hörandl E. 2011. Northern hemisphere origin, transoceanic dispersal, and diversification of Ranunculeae DC. (Ranunculaceae) in the Cenozoic. – J. Biogeogr. 38: 517-530.
Emadzade K, Lehnebach C, Lockhart P, Hörandl E. 2010. A molecular phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae). – Taxon 59: 809-828.
Emadzade K, Gehrke B, Linder HP, Hörandl E. 2011. The biogeographical history of the cosmopolitan genus Ranunculus L. (Ranunculaceae) in the temperate to meridional zones. – Mol. Phylogen. Evol. 58: 4-21.
Emura K. 1972. Cytotaxonomic studies on the genus Thalictrum in Eurasia with special reference to Japanese species. – J. Fac. Univ. Tokyo, Sect. III, Bot. 9: 93-135.
Endress PK. 1969. Gesichtspunkte zur systematischen Stellung der Eupteleaceen (Magnoliales). Untersuchungen über Bau und Entwicklung der generativen Region bei Euptelea polyandra Sieb. & Zucc. – Ber. Schweiz. Bot. Ges. 79: 229-278.
Endress PK. 1989. Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). – Bot. Acta 102: 159-163.
Endress PK. 1993. Eupteleaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 299-301.
Endress PK. 1995. Floral structure and evolution in Ranunculanae. – Plant Syst. Evol. [Suppl.] 9: 47-61.
Engell K. 1995. Embryo morphology of the Ranunculaceae. – Plant Syst. Evol. [Suppl. 9]: 207-216.
Engler A. 1897a. Ranunculaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(2), W. Engelmann, Leipzig, pp. 167-170.
Engler A. 1897b. Menispermaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(2), W. Engelmann, Leipzig, pp. 170-172.
Erbar C. 1998. Coenocarpie ohne und mit Compitum: ein Vergleich der Gynoeceen von Nigella (Ranunculaceae) und Geranium (Geraniaceae). – Beitr. Biol. Pflanzen 71: 13-39.
Erbar C, Kusma S, Leins P. 1999. Development and interpretation of nectary organs in Ranunculaceae. – Flora 194: 317-332.
Erickson RO 1943. Taxonomy of Clematis section Viorna. – Ann. Missouri Bot. Gard. 30: 1-62.
Ernst WR. 1962. A comparative morphology of the Papaveraceae. – Ph.D. diss., Stanford University, California.
Ernst WR. 1967. Floral morphology and systematics of Platystemon and its allies Hesperomecon and Meconella (Papaveraceae: Platystemonoideae). – Univ. Kansas Sci. Bull. 47: 25-70.
Exell AW. 1960. 11. Papaveraceae; 12. Fumariaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 180-181.
Exell AW, Milne-Redhead E. 1960. 4. Ranunculaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 89-102.
Eymé J. 1963. Observations cytologiques sur les nectaires de trios Renonculacées (Helleborus foetidus L., H. niger L., Nigella damascena L.). – Le Botaniste 46: 137-179.
Eymé J, Le Blanc M. 1963. Contribution à l’étude inframicroscopique d’inclusions cytoplasmiques présentes dans les ovules de Ficaria et dans les nectaries d’Helleborus. – Compt. Rend. Acad. Sci. Paris 256: 4958-4959.
Ezelarab GE, Dormer KJ. 1963. The organization of the primary vascular system in Ranunculaceae. – Ann. Bot. N. S., 27: 23-38.
Ezelarab GE, Dormer KJ. 1966. The organization of the primary vascular system in the Rhoeadales. – Ann. Bot. N. S., 30: 123-132.
Fabergé AC. 1942. Genetics of the Scapiflora section of Papaver I. The garden Icelandic poppy. – J. Genet. 44.
Fahselt D. 1972. The use of flavonoid components in the characterization of the genus Corydalis (Fumariaceae). – Can J. Bot. 50: 1605-1611.
Fairbairn JW, Williamson EM. 1978. Meconic acid as a chemotaxonomic marker in the Papaveraceae. – Phytochemistry 17: 2087-2089.
Fay HAC. 1996. Evolutionary and taxonomic relationships between fruit-piercing moths and the Menispermaceae. – Aust. Syst. Bot. 9: 227-233.
Fedde F. 1905. Die geographische Verbreitung der Papaveraceae. – Engl. Bot. Jahrb. Syst. 36, Beiblatt 81: 28-43.
Fedde F. 1936. Papaveraceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 5-145.
Ferguson IK. 1975. Pollen morphology of the tribe Triclisieae of the Menispermaceae in relation to its taxonomy. – Kew Bull. 30: 49-75.
Ferguson IK. 1978. Pollen morphology of the tribe Coscinieae of the Menispermaceae in relation to its taxonomy. – Kew Bull. 32: 339-346.
Fernandez I. 1986. Contribucion al conocimiento palinologico de la familia Ranunculaceae en Andalucia: 1. Subf. Helleboroideae. – Lagascalia 14: 13-23.
Fisher FJF. 1965. The alpine Ranunculi of New Zealand. – New Zealand Dept. Sci. Ind. Res. Bull. 165: 1-192.
Floden AJ, Schilling EE. 2018. Trautvetteria fonticalcarea (Ranunculaceae: Ranunculeae), a new tassel rue species endemic to calcareous seepage habitats in Tennessee, USA. – Nord. J. Bot. 36: e01738
Flovik K. 1936. The somatic chromosomes of certain arctic species of the genus Ranunculus. – Soc. Sci. Fenn. Comm. Biol. 5: 1-17.
Folkestad K, Høiland K, Paulsen BS, Malterud KE. 1988. Alkaloid chemotaxonomy of Nordic Papaver sect. Scapiflora (Papaveraceae). – Nord. J. Bot. 8: 139-146.
Forgacs P, Buffard G, Jehanno A, Provost J, Tiberghien R, Touche A. 1982. Composition chimique des Fumariacées. Alcaloïdes de quatorce espèces de Fumaria. – Plant Med. Phytother. 16: 99-115.
Forman LL. 1956. The Menispermaceae of Malaysia I. – Kew Bull. 1956: 41-69.
Forman LL. 1968. The Menispermaceae of Malesia V. Tribe Cocculeae Hook. f. and Thomson. – Kew Bull. 22: 349-374.
Forman LL. 1974. The endocarps of Cocculus (Menispermaceae). – Kew Bull. 29: 477-481.
Forman LL. 1975. The tribe Triclisieae Diels in Asia, the Pacific and Australia. – Kew Bull. 30: 77-100.
Forman LL. 1981. The Menispermaceae of Malesia and adjacent areas X. A revision of Tinospora (Menispermaceae) in Asia to Australia and the Pacific. – Kew Bull. 36: 375-421.
Forman LL. 1982a. The correct names for the tribes of Menispermaceae. – Kew Bull. 37: 367-368.
Forman LL. 1982b. New Australian Menispermaceae. – Kew Bull. 37: 369-373.
Forman LL. 1984. The Menispermaceae of Malesia and adjacent areas XII. A revision of tribe Tinosporeae (Menispermaceae) in Asia, Australia and the Pacific. – Kew Bull. 39: 99-116.
Forman LL. 1985. The Menispermaceae of Malesia and adjacent areas XIII. A revision of tribe Fibraureae (Menispermaceae) in Asia. – Kew Bull. 40: 539-551.
Forman LL. 1986. Menispermaceae. – In: Steenis CGGJ van, Wilde WJJO de (eds), Flora malesiana I, 10(2), Martinus Nijhoff, The Hague, Boston, London, pp. 157-253.
Forman LL. 1988. A synopsis of Thai Menispermaceae. – Kew Bull. 43: 369-407.
Forman LL. 1997. A synopsis of Hypserpa Miers (Menispermaceae). – Kew Bull. 52: 981-987.
Förster P. 1997. Die Keimpflanzen der Tribus Ranunculeae DC. und der Tribus Adonideae Kunth (Ranunculaceae). – Flora 192: 133-142.
Foster AS. 1959. The morphological and taxonomic significance of dichotomous venation in Kingdonia uniflora Balfour f. et W. W. Smith. – Notes Roy. Bot. Gard. Edinb. 23: 1-12.
Foster AS. 1961. The floral morphology and relationships of Kingdonia uniflora. – J. Arnold Arbor. 41: 397-410.
Foster AS. 1963. The morphology and relationships of Circaeaster. – J. Arnold Arbor. 44: 299-327.
Foster AS. 1968. Further morphological studies on anastomoses in the dichotomous venation of Circaeaster. – J. Arnold Arbor. 49: 52-67.
Foster AS. 1970. Types of blind vein-endings in the dichotomous venation of Circaeaster. – J. Arnold Arbor. 51: 70-80.
Foster AS. 1971. Additional studies on the morphology of blind vein-endings in the leaf of Circaeaster agrestis. – Amer. J. Bot. 58: 263-272.
Foster AS, Arnott HJ. 1960. Morphology and dichotomous vasculature of the leaf of Kingdonia uniflora. – Amer. J. Bot. 47: 684-698.
Francini E. 1931. Lo sviluppo del sistema conduttore in plantule di Hydrastis canadensis L. – Nuovo Giorn. Bot. Ital. 38: 336-357.
Friedel J. 1938a. Note sur la structure anatomique du Pteridophyllum racemosum Sieb. et Zucc. – Bull. Soc. Bot. France 85: 406-408.
Friedel J. 1938b. Anatomie comparée du Pteridophyllum racemosum Sieb. et Zucc. et du Platystemon californicum Benth. – Bull. Soc. Bot. France 85: 482-486.
Friis EM, Pedersen KR, Crane PR. 1995. Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. – Amer. J. Bot. 82: 933-943.
Fu D-Z. 1988. A study on Dichocarpum (Ranunculaceae). – Acta Phytotaxon. Sin. 26: 249-264.
Fu D-Z. 1990. Phylogenetic considerations on the subfamily Thalictroideae (Ranunculaceae). – Cathaya 2: 181-190.
Fukuhara T. 1992. Seed coat anatomy of Japanese species of Corydalis and Dicentra (Papaveraceae: Fumarioideae). – Bot. Mag. (Tokyo) 105: 303-321.
Fukuhara T. 1995. Vascular pattern in the fruit of Trigonocapnos and Discocapnos (Papaveraceae; Fumarioideae). – Intern. J. Plant Sci. 156: 547-554.
Fukuhara T. 1999. Seed and funicle morphology of Fumariaceae-Fumarioideae: systematic implications and evolutionary patterns. – Intern. J. Plant Sci. 160: 151-180.
Fukuhara T, Lidén M. 1995a. Pericarp anatomy in Fumariaceae-Fumarioideae. – Bot. Jahrb. Syst. 117: 499-530.
Fukuhara T, Lidén M. 1995b. Seed-coat anatomy in Fumariaceae-Fumarioideae. – Bot. J. Linn. Soc. 119: 323-365.
Furness CA. 2008. Successive microsporogenesis in eudicots, with particular reference to Berberidaceae (Ranunculales). – Plant Syst. Evol. 273: 211-223.
Gajewski W. 1946. Cytotaxonomic investigations on Anemone L. I. Anemone janczewskii, a new amphidiploid species of hybrid origin. – Acta Soc. Bot. Pol. 17: 129-194.
Garnock-Jones PJ. 1984. Ceratocephalus pungens (Ranunculaceae): a new species from New Zealand. – New Zealand J. Bot. 22: 135-137.
Gáyer G. 1909a. Vorarbeiten zu einer Monographie der europäischen Aconitum-Arten. – Magyar Bot. Lapok 8: 114-206.
Gáyer G. 1909b. Die Aconitum-Arten der Karpathen. – Allg. Bot. Zeit. 15: 109-112, 133-135.
Gáyer G. 1909c. Vorarbeiten zu einer Monographie der europäischen Aconitum-Arten 5: Sectio Lycoctonum. – Magyar Bot. Lapok 8: 310-327.
Gehrke B, Linder HP. 2009. The scramble for Africa: pan-temperate elements on the African high mountains. – Proc. Roy. Soc., Ser. B, 276: 2657-2665.
Ghimire B, Shin D-Y, Heo K. 2010. Embryology of Gymnospermium microrrhynchum (Berberidaceae). – Korean J. Plant Taxon. 40: 226-233.
Gilli A. 1954. Neue Ranunculaceae und Papaveraceae aus Afghanistan. – Feddes Repert. 69: 155-175.
Gleissberg S, Kadereit JW. 1999. Evolution of leaf morphogenesis: evidence from developmental and phylogenetic data in Papaveraceae. – Intern. J. Plant Sci. 160: 787-794.
Goepfert D. 1974. Karyotypes and DNA content in species of Ranunculus L. and related genera. – Bot. Not. 127: 464-489.
Goepfert D. 1976. Phylogenetic studies on Ranunclus cortusifolius Willd. (Ranunculaceae), a Macaronesian endemic species. – Bot. J. Linn. Soc. 72: 161-170.
Gomez B, Coiffard C, Sender LM, Luis M, Martín-Closas C, Villanueva-Amado U, Ferrer J. 2009. Klitzschophyllites, aquatic basal eudicots (Ranunculales?) from the Upper Albian (Lower Cretaceous) of northeastern Spain. – Intern. J. Plant Sci. 170: 1075-1085.
Gonnermann C. 1980. Beiträge zur Kenntnis der Gynoeceumsstruktur der Papaveraceae Juss. s. str. – Feddes Repert. 91: 593-613.
Gonnermann C. 1982. Überblick über die Testa-Morphologie der Papaveraceae Juss. s. str. – Gleditschia 9: 17-25.
Gorysina TK. 1965. Anatomical structure of leaves of prevernal nemoral ephemeroids. – Vestn. Leningr. Univ. 20, no. 3 (ser. Biol. no 1): 45-51. [In Russian with English summary]
Götz E. 1967. Die Aconitum variegatum-Gruppe und ihre Bastarde in Europa. – Feddes Repert. 76: 1-62.
Grant V. 1976. Isolation between Aquilegia formosa and A. pubescens: a reply and reconsideration. – Evolution 30: 625-628.
Gray A. 1886. Contribution to American botany 1. A revision of the North American Ranunculi. – Proc. Amer. Acad. Sci. Arts 21: 363-378.
Gregory WC. 1941. Phylogenetic and cytological studies in the Ranunculaceae Juss. – Trans. Amer. Philos. Soc., N. S., 31: 443-521.
Gregson N. 1965. Chromosome morphology and cytogenetics in the genus Ranunculus L. – Ph.D. diss., University of Liverpool, England.
Grey-Wilson C. 1989. Clematis orientalis (Ranunculaceae) and its allies. – Kew Bull. 44: 33-60.
Grey-Wilson C. 2000. Poppies: a guide to the poppy family in the wild and in cultivateion. – Timber Press, Portland, Oregon.
Grey-Wilson C. 2012. Proposal to conserve the name Meconopsis (Papaveraceae) with a conserved type. – Taxon 61: 473-474.
Grey-Wilson C. 2014. The genus Meconopsis blue poppies and their relatives. – Royal Botanical Garden, Kew, United Kingdom.
Griffin SR, Mavraganis K, Eckert CG. 2000. Experimental analysis of protogyny in Aquilegia canadensis (Ranunculaceae). – Amer. J. Bot. 87: 1246-1256.
Guédès M. 1977. Le gynécée de Podophyllum (Berbéridacées): monomérie vraie et placentation suturale de la portion congénitalement close du carpelle. – Compt. Rend. Acad. Sci. Paris 285D: 755-758.
Guerrant EO. 1982. Neotenic evolution of Delphinium nudicaule (Ranunculaceae): a hummingbird-pollinated species. – Evolution 36: 699-712.
Guinochet M. 1935. Contribution à l’étude génétique et cytologique du genre Anemone. – Rev. Cytol. Cytophysiol. Vég. 1: 131-145.
Gunn CR. 1980. Seeds and fruits of Papaveraceae and Fumariaceae. – Seed Sci. Technol. 8: 3-58.
Gunn CR, Seldin MJ. 1976. Seeds and fruits of North American Papaveraceae. – United States Department of Agriculture, Agricultural Research Service, Techn. Bull. 1517: 1-96.
Günther K-F. 1975a. Beiträge zur Morphologie und Verbreitung der Papaveraceae 1: Infloreszenzmorphologie der Papaveraceae; Wuchsformen der Chelidonieae. – Flora 164: 185-234.
Günther K-F. 1975b. Beiträge zur Morphologie und Verbreitung der Papaveraceae 2: die Wuchsformen der Papaveraceae, Eschscholzieae, und Platystemonoideae. – Flora 164: 393-436.
Haccius B, Fischer E. 1959. Embryologische und histogenetische Studien an ”monokotylen Dikotylen” III. Anemone appenina L. – Österr. Bot. Zeitschr. 106: 373-389.
Hammond HD. 1955. Systematic serological studies in Ranunculaceae. – Bull. Serol. Mus. 14: 1-3.
Han M, Manchester SR, Fu Q-Y, Jin J-H, Quan C. 2018. Paleogene fossil fruits of Stephania (Menispermaceae) from North America and East Asia. – J. Syst. Evol. 56: 81-91.
Hance HF. 1884. Eomecon: genus novum, e familia Papaveracearum. – J. Bot. 22: 346.
Hand R. 1998. On the identity of the enigmatic Thalictrum morisonii (Ranunculaceae). – Taxon 47: 717-720.
Hand R. 2001. Revision der in Europa vorkommenden Arten von Thalictrum subsection Thalictrum (Ranunculaceae). – Bot. Naturschutz Hessen 9.
Hand R. 2005. Remarks on the taxonomy of Thalictrum petaloideum L., Th. podolicum Lecoy. and Th. uncinatum Rehmann (Ranunculaceae). – Candollea 60: 79-86.
Hanelt P. 1969. Revision der mongolischen Taxa von Papaver L. sect. Scapiflora Rchb. sowie Studien zur Systematik und Evolution dieser Sektion. – Habilitationsschrift, Martin-Luther-Universität, Halle-Wittenberg, Germany.
Hang S, McLewin W, Fay MF. 2001. Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian-Mediterranean disjunction. – Taxon 50: 1001-1018.
Hannan LG. 1980. Heteromericarpy and dual seed germination modes in Platystemon californicus (Papaveraceae). – Madroño 27: 163-170.
Hara H, Kurosawa S. 1956. Cytotaxonomic notes on the Ranunculus acris group in Japan. – Bot. Mag. (Tokyo) 69: 345-352.
Harley MM. 1985. Pollen morphology and taxonomy of the tribe Fibraureae (Menispermaceae). – Kew Bull. 40: 553-565.
Harley MM, Ferguson IK. 1982. Pollen morphology and taxonomy of the tribe Menispermeae (Menispermaceae). – Kew Bull. 37: 353-366.
Harms H. 1897. Circaeaster Maxim. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien. Nachtrag und Register zu Teil II-IV, W. Engelmann, Leipzig, pp. 332-333.
Harvey-Gibson RJ, Horsman E. 1919. The anatomy of the stem of the Berberidaceae. – Trans. Roy. Soc. Edinb. 52: 501-515.
Hasegawa I. 1993. Molecular systematics of the tribe Cimicifugeae and allied genera in the Ranunculaceae. – Ph.D. diss., City University of New York.
Hegnauer R. 1961. Die Gliederung der Rhoeadales sensu Wettstein im Lichte der Inhaltsstoffe. – Planta Medica 9: 37-46.
Heimburger M. 1959. Cytotaxonomic studies of the genus Anemone. – Can. J. Bot. 37: 587-612.
Heimburger M. 1961. A karyotype study of Anemone drummondii and its hybrid with A. multifida. – Can. J. Bot. 39: 497-502.
Heimburger M, Boraiah G. 1964. Genome relationships of Anemone multifida. – Can. J. Gen. Cytol. 6: 529-539.
Heiss AG, Kropf M, Sontag S, Weber A. 2011. Seed morphology of Nigella s.l. (Ranunculaceae): identification, diagnostic traits, and their potential phylogenetic relevance. – Intern. J. Plant Sci. 172: 267-284.
Henderson DM. 1965. The pollen morphology of Meconopsis. – Grana Palynol. 6: 191-209.
Henderson EM. 1924. The stem structure of Sargentodoxa cuneata Rehd. et Wils. – Trans. Proc. Bot. Soc. Edinb. 29: 57-62.
Herrera CM. 2005. Post-floral perianth functionality: contribution of persistent sepals to seed development in Helleborus foetidus (Ranunculaceae). – Amer. J. Bot. 92: 1486-1491.
Herrera F, Manchester SR, Hoot SB, Wefferling KM, Carvalho MR, Jaramillo C. 2011. Phytogeographic implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. – Amer. J. Bot. 98: 2004-2017.
Hess H. 1954. Systematische und zytologische Untersuchungen an einigen Ranunculus-Arten aus der Nemorosus-Gruppe. – Ber. Schweiz. Bot. Ges. 65: 272-301.
Hidalgo O, Gleissberg S. 2010. Evolution of reproductive morphology in the Papaveraceae s.l. (Papaveraceae and Fumariaceae, Ranunculales). – Intern. J. Plant Devel. Biol. 4: 76-85.
Hidalgo O, Bartholmes C, Gleissberg S. 2012. Virus-induced gene silencing (VIGS) in Cysticapnos vesicaria, a zygomorphic-flowered Papaveraceae (Ranunculales, basal eudicots). – Ann. Bot. 109: 911-920.
Hiepko P. 1965. Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae I-II. – Bot. Jahrb. Syst. 84: 359-426, 427-508.
Hiepko P (ed). 1995. Die natürlichen Pflanzenfamilien. 2. Aufl. Band 17a, IV, Angiospermae: Ordnung Ranunculales Fam. Ranunculaceae. – Duncker & Humblot, Berlin.
Hiepko P, Tamura M. 1996. Proposal to conserve the name Isopyrum L. (Ranunculaceae) with a conserved type. – Taxon 45: 327-328.
Hill AW. 1918. The genus Caltha in the southern hemisphere. – Ann. Bot. 32: 421-435.
Hill RS. 1989. Early Tertiary leaves of the Menispermaceae from Nerriga, New South Wales. – Alcheringa 13: 37-44.
Himmelbaur W. 1913. Die Berberidaceen und ihre Stellung im System. – Denkschr. Kaiserl. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 89: 733-796.
Hind N. 2008. An introduction to the climbing dicentras – the genus Dactylicapnos in cultivation. – Curtis’s Bot. Mag. 25: 194-206.
Hodges SA. 1997. Rapid radiation due to a key innovation in columbines (Ranunculaceae: Aquilegia). – In: Givnish TJ, Sytsma KJ (eds), Molecular evolution and adaptive radiation, Cambridge University Pres, New York, pp. 391-405.
Hodges SA, Arnold ML. 1994. Columbines: a geographically wide-spread species flock. – Proc. Natl. Acad. Sci. U.S.A. 91: 5129-5132.
Hoe K, Suh Y. 2008. Taxonomic implications of seed coat in the subtribe Calthinae (Ranunculaceae). – Korean J. Plant Taxon. 38: 1-16.
Hoffmann MH, Hagen KB von, Hörandl E, Röser M, Tkach NV. 2010. Sources of the arctic flora: origins of arctic species in Ranunculus and related genera. – Intern. J. Plant Sci. 171: 90-106.
Holm T. 1899. Podophyllum peltatum, a morphological study. – Bot. Gaz. (Crawfordsville) 27: 419-433.
Holm T. 1913. Medical plants of North America 75. Hydrastis canadensis. – Merck’s Rep. 22: 202-204.
Hong Y-P, Chen Z-D, Lu A-M. 2001. Phylogeny of the tribe Menispermeae (Menispermaceae) reconstructed by ITS sequence data. – Acta Phytotaxon. Sin. 32: 97-104. [In Chinese with English summary]
Hong Y-P, Pan K-Y, Chen Z-D, Lu A-M. 2001. Characters of leaf epidermis and their systematic significance in Menispermaceae. – Acta Bot. Sin. 43: 615-623. [In Chinese with English summary]
Hoot SB. 1991. Phylogeny of the Ranunculaceae based on epidermal microcharacters and macromorphology. – Syst. Bot. 16: 741-755.
Hoot SB. 1995. Phylogeny of the Ranunculaceae based on preliminary atpB, rbcL and 18S nuclear ribosomal DNA sequence data. – Plant Syst. Evol. [Suppl.] 9: 241-251.
Hoot SB, Crane PR. 1995. Interfamilial relationships in the Ranunculidae based on molecular systematics. – Plant Syst. Evol. [Suppl.] 9: 119-131.
Hoot SB, Palmer JD. 1994. Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. – J. Mol. Evol. 38: 274-281.
Hoot SB, Reznicek AA, Palmer JD. 1994. Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA. – Syst. Bot. 19: 169-200.
Hoot SB, Culham A, Crane PR. 1995a. The utility of atpB gene sequences in resolving phylogenetic relationships: comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. – Ann. Missouri Bot. Gard. 82: 194-207.
Hoot SB, Culham A, Crane PR. 1995b. Phylogenetic relationships of the Lardizabalaceae and Sargentodoxaceae: chloroplast and nuclear DNA sequence evidence. – Plant Syst. Evol. [Suppl.] 9: 195-199.
Hoot SB, Kadereit JW, Blattner FR, Jork KB, Schwarzbach AE, Crane PR. 1997. Data congruence and phylogeny of the Papaveraceae s.l. based on four data sets: atpB and rbcL sequences, trnK restriction sites, and morphological characters. – Syst. Bot. 22: 575-590.
Hoot SB, Kramer J, Arroyo MTK. 2008. Phylogenetic position of the South American dioecious genus Hamadryas and related Ranunculeae (Ranunculaceae). – Intern. J. Plant Sci. 169: 433-443.
Hoot SB, Zautke H, Harris DJ, Crane PR, Neves SS. 2009. Phylogenetic patterns in Menispermaceae based on multiple chloroplast sequence data. – Syst. Bot. 34: 44-56.
Hoot SB, Meyer KM, Manning JC. 2012. Phylogeny and reclassification of Anemone (Ranunculaceae), with an emphasis on Austral species. – Syst. Bot. 37: 139-152.
Hoot SB, Wefferling KM, Wulff JA. 2015. Phylogeny and character evolution of Papaveraceae s. l. (Ranunculales). – Syst. Bot. 40: 474-488.
Hörandl E. 2002. Morphological differentiation within the Ranunculus cassubicus group compared to variation of isozymes, ploidy levels, and reproductive systems: implications for taxonomy. – Plant Syst. Evol. 233: 65-78.
Hörandl E. 2004. Comparative analysis of genetic divergence among sexual ancestors of apomictic complexes using isozyme data. – Intern. J. Plant Sci. 165: 615-622.
Hörandl E. 2014. Nothing in taxonomy makes
sense except in the light of evolution: examples from the classification of
Ranunculus. – Ann. Missouri Bot. Gard. 100: 14-31.
Hörandl E, Emadzade K. 2011. The evolution and biogeography of alpine species in Ranunculus (Ranunculaceae): a global comparison. – Taxon 60: 415-426.
Hörandl E, Jakubowsky G, Dobes C. 2001. Isozyme and morphological diversity within apomictic and sexual taxa of the Ranunculus auricomus complex. – Plant Syst. Evol. 226: 165-185.
Hörandl E, Paun O, Johansson JT, Lehnebach C, Armstrong T, Chen L, Lockhart P. 2005. Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. – Mol. Phylogen. Evol. 36: 305-327.
Hörandl E, Greilhuber J, Klímová K, Paun O, Temsch E, Emadzade K, Hodálová I. 2009. Reticulate evolution and taxonomic concepts in the Ranunculus auricomus complex (Ranunculaceae): insights from analysis of morphological, karyological and molecular data. – Taxon 58: 1194-1215.
Horovitz A. 1976. Edaphic factors and flower-colour distribution in the Anemoneae (Ranunculaceae). – Plant Syst. Evol. 126: 239-242.
Hsiao P-K, Wag W-T. 1964. A new genus of Ranunculaceae – Dichocarpum W. T. Wang et Hsiao. – Acta Phytotaxon. Sin. 9: 315-333. [In Chinese]
Hu A. 1987. Studies on the morphology of Kingdonia uniflora Balf. f. et W. W. Sm. and Circaeaster agrestis Maxim. – Intern. Bot. Cong., Berlin, 5-162b-3.
Hu J, Zhang J, Shan H, Chen Z. 2012. Expression of floral MADS-box genes in Sinofranchetia chinensis (Lardizabalaceae): implications for the nature of the nectar leaves. – Ann. Bot. 110: 57-69.
Hu Z-H, Yang J. 1987. Morphological studies of Circaeaster agrestis Maxim. I. Process of embryological development. – Acta Phytotaxon. Sin. 25: 350-356. [In Chinese]
Hu Z-H, Lang J, Jing R-Q, Dong Z-M. 1990. Morphological studies on Circaeaster agrestis II. Morphology and anatomy of flower, fruit, and seed. – Cathaya 2: 77-88.
Huang H-Y, Long H, Li L. 2010. Genesis of microspore, megaspore and the development of male and female gametophyte in Diphylleia sinensis. – Guihaia 30: 36-44. [In Chinese]
Huber W. 1989. Ranunculus kuepferi Greuter & Burdet in Korsica (Gruppe R. pyrenaeus L.). – Candollea 44: 630-637.
Hus H. 1907. The germination of Hydrastis canadensis. – Ann. Rep. Missouri Bot. Gard. 18: 85-94.
Hutchinson J. 1920a. Bocconia and Macleaya. – Kew Bull. 1920: 275-282.
Hutchinson J. 1920b. Clematopsis, a primitive genus of Clematideae. – Kew Bull. 2: 12-22.
Hutchinson J. 1921. The genera of Fumariaceae and their distribution. – Kew Bull. 3: 97-115.
Huth E. 1892. Revision der kleineren Ranunculaceen-Gattungen Myosurus, Trautvetteria, Hamadryas, Glaucidium, Hydrastis, Eranthis, Coptis, Anemonopsis, Actaea, Cimicifuga und Xanthorrhiza. – Engl. Bot. Jahrb. Syst. 16: 278-324.
Huynh KL. 1970a. Le pollen du genre Anemone et du genre Hepatica (Ranunculaceae) et leur taxonomie. – Pollen Spores 12: 329-364.
Huynh KL. 1970b. Le pollen et la systématique du genre Pulsatilla. – Bot. Jahrb. Syst. 88: 204-268.
Huynh KL. 1970c. Pollen and the origin of the Australasian anemones (Ranunculaceae). – Bot. J. Linn. Soc. 63: 91-93.
Ichinoe Y, Tamura M. 1977. The characteristic components and phylogenetic relationships of genus Aconitum and its allies. – Bull. Dept. Gen. Educ., Coll. Sci. Tech., Nihon Univ. 22:71-8, 23: 27-36.
Il’Ina GM. 1968. K morfologii gineceja ploskotycinocnika kalifornskojo (Platystemon californicus Benth.). – Morfologiya vyssich rastenij 1968: 142-156.
Irie H, Uyeo S, Yamamoto K, Kinoshta K. 1967. The structure of glaupalol, a novel furanocoumarin from Glaucidium palmatum Sieb. et Zucc. – Chem. Commun. 1967. 547-548.
Iriki Y, Minamisawa H. 1983. D-galactose and a ribitol-like substance in Hydrastis canadensis L. – Nippon Nogeikagaku Kaishi 57: 319-321.
Iwashina T, Kitajima J. 2009. Flavonol glycosides from the monotypic genus Ranzania endemic to Japan. – Biochem. Syst. Ecol. 37: 122-123.
Iwashina T, Ootani S. 1990. Three flavonol allosides from Glaucidium palmatum. – Phytochemistry 29: 3639-3641.
Iwatsuki K. 2006. Glaucidiaceae. – In: Iwatsuki K, Boufford DE, Ohba H (eds), Flora of Japan IIa, Kodansha Ltd., Tokyo, p. 390.
Jabbour F, Renner SS. 2011a. Consolida and Aconitella are an annual clade of Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano-Turanian region. – Taxon 60: 1029-1040.
Jabbour F, Renner SS. 2011b. Resurrection of the genus Staphisagria J. Hill, sister to all the other Delphinieae (Ranunculaceae). – PhytoKeys 7: 21-26.
Jabbour F, Renner SS. 2012. A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. – Mol. Phylogen. Evol. 62: 928-942.
Jabbour F, Ronse De Craene LP, Nadot S, Damerval C. 2009. Establishment of zygomorphy on an ontogenetic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). – Ann. Bot. 104: 809-822.
Jacques FMB. 2006. Histoire Evolutive des Menispermaceae. – Thèse, Botanique Systématique, Museum National d’Histoire Naturelle, Paris.
Jacques FMB. 2009a. Survey of the Menispermaceae endocarps. – Adansonia, sér. III, 31: 47-87.
Jacques FMB. 2009b. Fossil history of the Menispermaceae (Ranunculales). – Ann. Paléont. 95: 53-69.
Jacques FMB, Bertolino P. 2008. Molecular and morphological phylogeny of Menispermaceae (Ranunculales). – Plant Syst. Evol. 274: 83-97.
Jacques FMB, De Franceschi D. 2005. Endocarps of Menispermaceae from Le Quesnoy outcrop (Sparnacian facies, Lower Eocene, Paris Basin). – Rev. Palaeobot. Palynol. 135: 61-70.
Jacques FMB, De Franceschi D. 2007. Menispermaceae wood anatomy and cambial variants. – IAWA J. 28: 139-172.
Jacques FMB, Zhou Z. 2010. Geometric morphometrics: a powerful tool for the study of shape evolution in Menispermaceae endocarps. – Taxon 59: 881-895.
Jacques FMB, Gallut C, Vignes-Lebbe R, Zaragüeta i Bagils R. 2007. Resolving phylogenetic reconstruction in Menispermaceae (Ranunculales) using fossils and a novel statistical test. – Taxon 56: 379-392.
Jacques FMB, Wang W, Ortiz R del C, Li H-L, Zhou Z-K, Chen Z-D. 2011. Integrating fossils in a molecular-based phylogeny and testing them as calibration points for divergence time estimates in Menispermaceae. – J. Syst. Evol. 49: 25-49.
Jalan S. 1963. Studies in the family Ranunculaceae IV. The embryology of Actaea spicata Linn. – Phytomorphology 13: 338-347.
Jalan S. 1977. Morphogenesis of the stomata of Holboellia latifolia Wall. with remarks on the taxonomy of the aforementioned genus. – Geophytology 7: 61-64.
Janchen E. 1949. Die systematische Gliederung der Ranunculaceen und Berberidaceen. – Österr. Akad. Wiss., Math.-Naturwiss. Kl., Denkschr. 108, 4. Abh.: 1-82.
Janczewski ME de. 1892. Études morphologiques sur le genre Anemone L. – Rev. Gén. Bot. 4: 241-258.
Janish JR. 1977. Nevada’s vanishing bear-poppies. – Mentzelia 3: 2-10.
Jensen U. 1967 [1968]. Serologische Beiträge zur Frage der Verwandtschaft zwischen Ranunculaceen und Papaveraceen. – Ber. Deutsch. Bot. Ges. 80: 621-624.
Jensen U. 1968. Serologische Beiträge zur Systematik der Ranunculaceae. – Bot. Jahrb. Syst. 88: 204-268, 269-310.
Jensen U. 1971. Zur systematischen Stellung der Helleborinae (Ranunculaceae). – Taxon 20: 747-758.
Jensen U. 1984. Legumin-like and vicilin-like storage poteins in Nigella damascena (Ranunculaceae) and six other dicotyledonous species. – J. Plant Physiol. 115: 161-170.
Jensen U. 1995a. Secondary compounds of the Ranunculiflorae. – Plant Syst. Evol. [Suppl.] 9: 85-97.
Jensen U. 1995b. Serological legumin data and the phylogeny of the Ranunculaceae. – Plant Syst. Evol. [Suppl.] 9: 217-227.
Jensen U, Hoot SB, Johansson JT, Kosuge K. 1995. Systematics and phylogeny of the Ranunculaceae – a revised family concept on the basis of molecular data. – Plant Syst. Evol. [Suppl.] 9: 273-280.
Jetter R, Riederer M, Seyer A, Mioskowski C. 1996. Homologous long-chain alkanediols from Papaver leaf cuticular waxes. – Phytochemistry 42: 1617-1620.
Johansson JT. 1995. A revised chloroplast DNA phylogeny of the Ranunculaceae. – Plant Syst. Evol. [Suppl.] 9: 253-261.
Johansson JT. 1998. Chloroplast DNA restriction site mapping and the phylogeny of Ranunculus (Ranunculaceae). – Plant Syst. Evol. 213: 1-19.
Johansson JT, Jansen RK. 1993. Chloroplast DNA variation and phylogeny of the Ranunculaceae. – Plant Syst. Evol. 187: 29-49.
Johnston MC. 1976. A new species of prickly poppy from Mexico. – Wrightia 5: 259-260.
Jork KB, Kadereit JW. 1995. Molecular phylogeny of the Old World representatives of Papaveraceae subfamily Papaveroideae with special emphasis on the genus Meconopsis. – Plant Syst. Evol. [Suppl.] 9: 171-180.
Jork-Plessing K. 1989. Vergleichende phytochemische Untersuchungen der Blüten ausgewählter Vertreter der Gattung Papaver L. – Diplomarbeit, Universität Heidelberg, Germany.
Joseph C, Heimburger M. 1966. Cytotaxonomic studies on New World species of Anemone (section Eriocephalus) with tuberous rootstocks. – Can. J. Bot. 44: 899-928.
Joshi AC. 1937. Contribution to the embryology of the Menispermaceae 1. Cocculus villosus DC. – Proc. Indian Acad. Sci., Sect. B, 5: 57-63.
Joshi AC. 1939. Morphology of Tinospora cordifolia, with some observations on the origin of the single integument, nature of synergidae, and affinities of the Menispermaceae. – Amer. J. Bot. 26: 433-439.
Junell S. 1931. Die Entwicklungsgeschichte von Circaeaster agrestis. – Svensk Bot. Tidskr. 25: 238-270.
Kaden NN. 1951. Fruits and seeds of Middle Russian Nymphaeaceae and Berberidaceae. – Bull. Moscow Soc. Natur., Biol. Ser. 56: 81-90.
Kadereit JW. 1986a. A revision of Papaver L. sect. Papaver (Papaveraceae). – Bot. Jahrb. Syst. 108: 1-16.
Kadereit JW. 1986b. A revision of Papaver Section Argemonidium. – Notes Roy. Bot. Gard. Edinb. 44: 25-43.
Kadereit JW. 1987a. The taxonomy, distribution and variability of the genus Roemeria Medic. (Papaveraceae). – Flora 179: 135-153.
Kadereit JW. 1987b. A revision of Papaver sect. Carinatae (Papaveraceae). – Nord. J. Bot. 7: 501-504.
Kadereit JW. 1988a. Sectional affinities and geographical distribution in the genus Papaver L. (Papaveraceae). – Beitr. Biol. Pflanzen 63: 139-156.
Kadereit JW. 1988b. Papaver L. sect. Californicum Kadereit, a new section of the genus. – Rhodora 90: 7-13.
Kadereit JW. 1989. A revision of Papaver Section Rhoeadium Spach. – Notes Roy. Bot. Gard. Edinb. 45: 225-286.
Kadereit JW. 1993. Papaveraceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 494-506.
Kadereit JW, Erbar C. 2011. Evolution of gynoecium morphology in Old World Papaveroideae: a combined phylogenetic/ontogenetic approach. – Amer. J. Bot. 98: 1243-1251.
Kadereit JW, Leins P. 1988. A wind tunnel experiment on seed dispersal in Papaver L. sect. Argemonidium Spach and Rhoeadium Spach (Papaveraceae). – Flora 181: 189-203.
Kadereit JW, Sytsma KJ. 1992. Disassembling Papaver: a restriction site analysis of chloroplast DNA. – Nord. J. Bot. 12: 205-217.
Kadereit JW, Blattner FR, Jork KB, Schwarzbach A. 1994. Phylogenetic analysis of the Papaveraceae s.l. (incl. Fumariaceae, Hypecoaceae, and Pteridophyllum) based on morphological characters. – Bot. Jahrb. Syst. 116: 361-390.
Kadereit JW, Blattner FR, Jork KB, Schwarzbach A. 1995. The phylogeny of the Papaveraceae sensu lato: morphological, geographical and ecological implications. – Plant Syst. Evol. [Suppl.] 9: 133-145.
Kadereit JW, Schwarzbach A, Jork KB. 1997. The phylogeny of Papaver s.l. (Papaveraceae): polyphyly or monophyly? – Plant Syst. Evol. 204: 75-98.
Kadereit JW, Preston CD, Valtueña FJ. 2011. Is Welsh poppy, Meconopsis cambrica (L.) Vig. (Papaveraceae), truly a Meconopsis? – New J. Bot. 1: 80-88.
Kadota Y. 1991. Taxonomic notes on some alpine species of Ranunculus (Ranunculaceae) in the Himalaya. – In: Ohba H, Malla SB (eds), The Himalayan plants 2, University of Tokyo Press, Tokyo, pp. 95-115.
Kalis AJ. 1979. Papaveraceae. The Northwest European pollen flora 20. – Rev. Palaeobot. Palynol. 28: 209-260.
Kang Y, Jabbour F, Cao S, Wang Y, Guo J, Huang J. 2017. Leaf epidermal features of Chinese Stephania Lour. (Menispermaceae) and their systematic significance. – Kew Bull. 72: 26 DOI 10.1007/S12225-017-9697-2
Kapil RN, Jalan S. 1962. Studies in the family Ranunculaceae I. The embryology of Caltha palustris Linn. – In: Plant embryology – a symposium, Council of Scientific & Industrial Research, New Delhi, pp. 205-214.
Kaplan SM, Mulcahy DL. 1971. Mode of pollination and floral sexuality in Thalictrum. – Evolution 25: 659-668.
Kapoor BM. 1966. Contribution to the cytology of endosperm in some angiosperms X. Nigella damascena and N. sativa. – Caryologia 19: 73-83.
Kapoor BM, Löve Á. 1970. Chromosomes of Rocky Mountain Ranunculus. – Caryologia 23: 575-594.
Karrer AB. 1991. Blütenentwicklung und systematische Stellung der Papaveraceae und Capparaceae. – Ph.D. diss., Universität Zürich, Switzerland.
Kashyap M. 1979. Nodal organisation in some species of Ranunculaceae. – J. Indian Bot. Soc. 58: 148-153.
Kaul MLH. 1972. Studies on Argemone mexicana Linn. VI. Pollen morphology, floral biology, and pollination mechanism. – Proc. Indian Acad. Sci., Sect. B, 35: 86-93.
Kaute U. 1963. Beiträge zur Morphologie des Gynoeceums der Berberidaceen mit einem Anhang über die Rhizomknospe von Plagiorhegma dubium. – Ph.D. diss., Universität Berlin, Germany.
Kawano S, Ihara M. 1967 Chromosome morphology of Caulophyllum robustum (Podophyllaceae) and its systematic implications. – J. Jap. Bot. 42: 129-135.
Keener CS. 1967. A biosystematic study of Clematis subsection Integrifoliae (Ranunculaceae). – J. Elisha Mitchell Sci. Soc. 83: 1-41.
Keener CS. 1993. A review of the classification of the genus Hydrastis (Ranunculaceae). – Aliso 13: 551-558.
Keener CS, Dennis WM. 1982. The subgeneric classification of Clematis (Ranunculaceae) in temperate North America north of Mexico. – Taxon 31: 37-44.
Keener CS, Reveal JL, Dutton BE, Ziman S. 1999. A list of suprageneric names in Ranunculaceae (Magnoliophyta). – Taxon 48: 497-506.
Kessler PJA. 1993. Menispermaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 402-418.
Khan HA. 1991 [1992]. Palynotaxonomy and phylogeny of Ranunculaceae. – Geophytology 21: 207-210.
Kidwai P. 1972. Development of stomata in some Papaveraceae and Fumaria. – Ann. Bot., N. S., 36: 1011-1018.
Killick DJB. 1977. The correct name for Anemone capensis (Ranunculaceae). – Bothalia 12: 258.
Kim Y-D, Jansen RK. 1994. Characterization and phylogenetic distribution of a chloroplast DNA rearrangement in the Berberidaceae. – Plant Syst. Evol. 193: 107-114.
Kim Y-D, Jansen RK. 1995. Phylogenetic implications of chloroplast DNA variation in the Berberidaceae. – Plant Syst. Evol. [Suppl.] 9: 341-349.
Kim Y-D, Jansen RK. 1996. Phylogenetic implications of rbcL and ITS sequence variation in the Berberidaceae. – Syst. Bot. 21: 381-396.
Kim Y-D, Jansen RK. 1998. Chloroplast DNA restriction site variation and phylogeny of the Berberidaceae. – Amer. J. Bot. 85: 1766-1778.
Kim Y-D, Kim S-H, Landrum LR. 2004. Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). – J. Plant Res. 117: 175-182.
Kim Y-D, Kim S-H, Kim CH, Jansen RK. 2004. Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF. – Biochem. Syst. Ecol. 32: 291-301.
Kim YK, Park CW, Kim KJ. 2009. Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications. – Molecules Cells 27: 365-381.
Kindler T. 1914. Gametophyt und Fruchtansatz bei Ficaria ranunculoides. – Österr. Bot. Zeitschr. 64: 73-85.
Kingdon-Ward F. 1926. Notes on the genus Meconopsis, with some additional species from Tibet. – Ann. Bot. (Oxford) 40: 535-546.
Kita Y, Ito M. 2000. Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. – Plant Syst. Evol. 225: 1-13.
Kita Y, Ueda K, Kadota Y. 1995. Molecular phylogeny and evaluation of the Asian Aconitum subgenus Aconitum (Ranunculaceae). – J. Plant Res. 108: 429-442.
Kloimwieder R. 1929. Beiträge zur Kenntnis der Schlauchzellen der Fumariaceae, spez. die Gattung Dicentra s.l. SB. – Akad. Wiss. Wien, Math.-Nat. Kl. 138(1): 517-550.
Knaben G. 1959a. On the evolution of the radicatum-group of the Scapiflora papavers as studied in 70 and 56 chromosome species A. Cytotaxonomical aspects. – Opera Bot. 2(3): 1-74.
Knaben G. 1959b. On the evolution of the radicatum-group of the Scapiflora papavers as studied in 70 and 56 chromosome species B. Experimental studies. – Opera Bot. 3(3): 1-96.
Knaben G. 1979. Additional experimental studies in the Papaver radicatum group. – Bot. Not. 132: 483-490.
Kölsch A, Gleissberg S. 2006. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae. – Plant Biol. 8: 680-687.
Koontz JA, Soltis PS, Soltis DE. 2004. Using phylogeny reconstruction to test hypotheses of hybrid origin in Delphinium section Diedropetala (Ranunculaceae). – Syst. Bot. 29: 345-357.
Kootin-Sanwu M. 1964. Cytology and distribution of Caltha. – Proc. Bot. Soc. Brit. Isles 5: 377-378.
Kordjum EL. 1959. Comparative embryological investigation of the family Ranunculaceae DC. – Ukr. Bot. Žurn. 16: 32-43. [In Russian]
Kosenko VN. 1980. Comparative palynomorphological study of the family Berberidaceae: 2. Morphology of the pollen grains of the genera Gymnospermium, Leontice, Caulophyllum, Bongardia, Epimedium, Vancouveria, Achlys, and Jeffersonia. – Bot. Žurn. 65: 1412-1423. [In Russian]
Kosuge K. 1995. Petal evolution in Ranunculaceae. – Plant Syst. Evol. [Suppl.] 9: 185-191.
Kosuge K, Okada H. 1989. Cytotaxonomical studies on Dichocarpum (Ranunculaceae) in Japan. – J. Jap. Bot. 64: 1-7.
Kosuge K, Tamura M. 1986. Isozymic variation of glutamate dehydrogenase in the Ranunculaceae. – Acta Phytotaxon. Geobot. 37: 167-179.
Kosuge K, Tamura M. 1988a. Morphology of the petal in Aconitum. – Bot. Mag. (Tokyo) 101: 223-237.
Kosuge K, Tamura M. 1988b. Notes on Dichocarpum Sect. Hutchinsonia. – Acta Phytotaxon. Geobot. 63: 37-46.
Kosuge K, Tamura M. 1989. Ontogenetic studies on petals of the Ranunculaceae. – J. Jap. Bot. 64: 65-74.
Kosuge K, Pu F-D, Tamura M. 1989. Floral morphology and relationships of Kingdonia. – Acta Phytotaxon. Geobot. 40: 61-67.
Kosuge K, Sawada K, Denda T, Adachi J, Watanabe K. 1995. Phylogenetic relationships of some genera in the Ranunculaceae based on alcohol dehydrogenase genes. – Plant Syst. Evol. [Suppl.] 9: 263-271.
Krahulcová A. 1982. Cytotaxonomic study of Chelidonium majus L. s.l. – Folia Geobot. Phytotaxon. 17: 237-268.
Kramer EM, Hodges SA. 2010. Aquilegia as a model system for the evolution and ecology of petals. – Phil. Trans. Roy. Soc., Ser. B, 365: 477-490.
Kramer EM, Di Stilio VS, Schluter P. 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. – Intern. J. Plant Sci. 164: 1-11.
Krassilov VA, Volynets Y. 2008. Weedy Albian angiosperms. – Acta Palaeobot. 48: 151-169.
Kratochwil A. 1988. Zur Bestäubungsstrategie von Pulsatilla vulgaris. – Flora 181: 262-324.
Krukoff BA, Moldenke HN. 1938. Studies of American Menispermaceae, with special reference to species used in preparation of arrow-poisons. – Brittonia 3: 1-74.
Krukoff BA, Smith AC. 1937. Notes on the botanical components of curare. – Bull. Torrey Bot. Club 64: 401-409.
Krukoff BA, Smith AC. 1939. Notes on the botanical components of curare-II. – Bull. Torrey Bot. Club 66: 305-314.
Kubitzki K. 1995. Ranunculiflorae – delimitation, phylogeny, diversification. – Plant Syst. Evol. [Suppl.] 9: 1-10.
Kubitzki K, Reznik H. 1966. Flavonoid-Muster der Polycarpicae als systematisches Merkmal I. Übersicht über die Familien. – Beitr. Biol. Pflanzen 42: 445-470.
Kumar S, Jeelani SM, Rani S, Gupta RC, Kumari S. 2013. Cytology of five species of subfamily Papaveroideae from the Western Himalayas. – Protoplasma 250: 307-316.
Kumazawa M. 1930a. Morphology and biology of Glaucidium palmatum Sieb. et Zucc. with notes of affinities to the allied genera Hydrastis, Podophyllum, and Diphylleia. – J. Fac. Sci. Univ. Tokyo, Sect. III, Bot. 2: 345-380.
Kumazawa M. 1930b. Structure and affinities of Glaucidium and its allied genera. – Bot. Mag. (Tokyo) 44: 479-490. [In Japanese]
Kumazawa M. 1930c. Studies on the structure of Japanese species of Ranunculus. – J. Fac. Sci. Univ. Tokyo, Sect. III (Bot.), 2: 297-343.
Kumazawa M. 1932. The medullary bundle system in the Ranunculaceae and allied plants. – Bot. Mag. (Tokyo) 46: 327-332. [In Japanese with English summary]
Kumazawa M. 1936a. Podophyllum pleianthum Hance: a morphological study with supplementary notes on allied plants. – Bot. Mag. (Tokyo) 50: 268-276. [In Japanese]
Kumazawa M. 1936b [1937]. Pollen grain morphology in Ranunculaceae, Lardizabalaceae, and Berberidaceae. – Jap. J. Bot. 8: 19-46.
Kumazawa M. 1937a. Ranzania japonica (Berberidac.). Its morphology, biology, and systematic affinities. – Jap. J. Bot. 9: 55-70.
Kumazawa M. 1937b. Comparative studies on the vernation in the Ranunculaceae and Berberidaceae. – J. Jap. Bot. 14: 573-586, 659-669, 713-726. [In Japanese with English summary]
Kumazawa M. 1938a. On the ovular structure in the Ranunculaceae and Berberidaceae. – J. Jap. Bot. 14: 10-25.
Kumazawa M. 1938b. Systematic and phylogenetic consideration of the Ranunculaceae and Berberidaceae. – Bot. Mag. (Tokyo) 52: 9-15. [In Japanese]
Kundu BC, Guha S. 1976. New species of Stephania and Rhaptonema (Menispermaceae). – Bot. Not. 129: 257-265.
Kundu BC, Guha S. 1977. The genus Perichasma (Menispermaceae). – Adansonia, n.s., 17: 221-234.
Kuntze O. 1885. Monographie der Gattung Clematis. – Verh. Bot. Ver. Brandenburg 26: 83-202.
Kürbs S. 1973. Vergleichend-entwicklungsgeschichtliche Studien an Ranunculaceen-Fiederblättern. – Bot. Jahrb. Syst. 93: 130-167.
Kurita M. 1956a. Karyotype studies in Berberidaceae I. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 2: 247-252.
Kurita M. 1956b. Cytological studies in Ranunculaceae XI. The karyotypes of Nigella damascena and some other species. – Jap. J. Genet. 31: 330-333.
Kurita M. 1957a. Chromosome studies in Ranunculaceae III. Karyotypes of the subtribe Ranunculinae. – Rep. Biol. Inst. Ehime Univ. 1: 1-18.
Kurita M. 1957b. Chromosome studies in Ranunculaceae VII. Karyotypes of Eranthis and some other genera. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 2: 235-334.
Kurita M. 1958a. Chromosome studies in Ranunculaceae VIII. Karyotype and phylogeny. – Rep. Biol. Inst. Ehime Univ. 5: 1-14.
Kurita M. 1958b. Chromosome studies in Ranunculaceae IX. Comparison of chromosome volume between a 14- and a 16-chromosome species in Anemone and in Ranunculus. – Rep. Biol. Inst. Ehime Univ. 6: 1-7.
Kurita M. 1958c. Chromosome studies in Ranunculaceae X. Karyotypes and chromosome numbers of some genera. – Rep. Biol. Inst. Ehime Univ. 6: 9-16.
Kurita M. 1959a. Chromosome studies in Ranunculaceae XII. Karyotype of Nigella and kinetochore-structure of its metaphase chromosomes. – Rep. Biol. Inst. Ehime Univ. 8: 1-5.
Kurita M. 1959b. Chromosome studies in Ranunculaceae XIV. Karyotypes of several genera. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 3: 200-206.
Kurita M. 1960a. Chromosome studies in Ranunculaceae XVI. Comparison of an aspect of nucleus and chromosome between several genera. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 4: 53-58.
Kurita M. 1960b. Chromosome studies in Ranunculaceae XVII. Karyotypes of some species. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 4: 59-66.
Kurita M. 1961a. Chromosome studies in Ranunculaceae XVIII. Karyotypes of several species. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 4: 252-261.
Kurita M. 1961b. Chromosome studies in Ranunculaceae XIX. Chromosome size in Ranunculus species in the eight chromosome series. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 4: 263-268.
Kurita M. 1963. Chromosome studies in Ranunculaceae XXI. Karyotypes of Myosurus and Adonis. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 4: 487-492.
Kurita M. 1966. Chromosome studies in Ranunculaceae XXIV. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 5: 31-36.
Kurita M. 1967. Chromosome studies in Ranunculaceae XXV. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 5: 165-169.
Kuroki Y. 1965. Chromosome study in three species of Berberidaceae. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 5: 19-24.
Kuroki Y. 1967. Chromosome study in seven species of Berberidaceae. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 5: 175-181.
Kuroki Y. 1968. Chromosome study in five species of Berberidaceae. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 6: 11-16.
Kuroki Y. 1970a. Chromosome study in five species of Berberidaceae. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 6: 63-69.
Kuroki Y. 1970b. Chromosome study in four species of Berberidaceae. – Mem. Ehime Univ., Sect. II (Sci.), Ser. B (Biol.), 6: 215-221.
Lafferriere JE. 1997. Transfer of specific and infraspecific taxa from Mahonia to Berberis (Berberidaceae). – Bot. Žurn. 82: 95-99.
Landolt E. 1954. Die Artengruppe des Ranunculus montanus Willd. in den Alpen und im Jura (zytologisch-systematische Untersuchungen). – Ber. Schweiz. Bot. Gesellsch. 64: 9-83.
Landolt E. 1956. Die Artengruppe des Ranunculus montanus Willd. in den Pyrenäen und anderen europäischen Gebirgen westlich der Alpen. – Ber. Schweiz. Bot. Gesellsch. 66: 92-117.
Lane AK, Augustin MM, Ayyampalayam S, Plant A, Gleissberg S, Stilio VS di, Depamphilis CW, Wong GK-S, Kutchan TM, Leebens-Mack JH. 2018. Phylogenomic analysis of Ranunculales resolves branching events across the order. – Bot. J. Linn. Soc. 187: 157-166.
Langlet O. 1927. Beiträge zur Zytologie der Ranunculaceen. – Svensk Bot. Tidskr. 21: 1-17.
Langlet O. 1928. Einige Beobachtungen über die Zytologie der Berberidaceen. – Svensk Bot. Tidskr. 22: 169-184.
Langlet O. 1932. Über Chromosomenverhältnisse und Systematik der Ranunculaceae. – Svensk Bot. Tidskr. 26: 381-400.
Langlet O. 1936. Några bidrag till kännedomen om kromosomtalen inom Nymphaeaceae, Ranunculaceae, Polemoniaceae, och Compositae. – Svensk Bot. Tidskr. 30: 288-294.
Larter LNH. 1932. Chromosome variation and behaviour in Ranunculus L. – J. Genet. 26: 255-283.
Lauener LA, Tamura M. 1979. A synopsis of Aconitum subgenus Paraconitum I. – Notes Roy. Bot. Gard. Edinb. 37: 113-124.
La Valva V, Sabato S, Gigliano GS. 1985. Morphology and alkaloid chemistry of Papaver setigerum DC. (Papaveraceae). – Taxon 34: 191-196.
Lawrence MJ. 1975. The genetics of self-incompatibility in Papaver rhoeas. – Proc. Roy. Soc. Lond., Sect. B, 188: 275-285.
Layka S. 1975. Les caractères d l’endexine chez les Papavéracées. – Bull. Soc. Bot. Franç., Coll. Morphol. Pollin. 122: 103-107.
Layka S. 1976a. Le polymorphisme pollinique dans le genre Argemone (Papaveraceae). – Pollen Spores 18:351-375.
Layka S. 1976b. Les méthodes modernes de la palynologie appliqués à l’étude des Papaverales. – Ph.D. diss., l’Université de Montpellier, C.N.R.S.A.O. 12.535.
Layka S. 1977. Les caractères de l’endexine chez les Papaveracées. – Bull. Soc. Bot. Franco 122: 103-107.
Lecoyer J-C. 1885. Monographie du genre Thalictrum. – Bull. Soc. Roy. Bot. Belge 24: 78-325.
Lee C-H, Lee S-T, Suh Y-B, Yeau S-H, Lee N-S. 2004. A palynotaxonomic study of Korean Adonis (Ranunculaceae). – J. Plant Biol. 47: 383-390.
Lee H-W, Park C-W. 1998. A karyotypic study on Korean taxa of Cimicifuga (Ranunculaceae). – Korean J. Plant Taxon. 28: 385-398.
Lee N-S, Yeau S-H, Kim J-H, Kim M-J. 1998. Taxonomic position and affinities of Isopyrum manshuricum within Korean Isopyroideae (Ranunculaceae) based on molecular data. – Korean J. Biol. Sci. 2: 133-141.
Lee S. 1989. Palynological evidence for the relationships between Megaleranthis saniculifolia and Trollius species. – Pollen Spores 31: 173-185.
Lee S. 1990. On the taxonomic position of Megaleranthis saniculifolia Ohwi (Ranunculaceae). – Korean J. Plant Taxon. 21: 1-8.
Lee S. 1992. Palynological relationships among Calathodes and its related genera. – Korean J. Plant Taxon. 22: 23-31.
Lee S, Blackmore S. 1992. A palynotaxonomic study of the genus Trollius (Ranunculaceae). – Grana 31: 81-100.
Lee Y-N. 1973. Taxonomic study on genus Hylomecon. – J. Korean Res. Inst. Better Living 11: 127-136.
Lee Y-N, Yeau S-H. 1985. Taxonomic characters of Megaleranthis saniculifolia Ohwi (Ranunculaceae). – Korean J. Plant Taxon. 15: 127-131.
Léger LJ. 1894. Recherches sur l’appareil végétatif des Papavéracées (Papavéracées et Fumariacées DC.). – Mém. Soc. Linn. Normandie 18: 195-623.
Lehminger R. 1985. Entwicklungsgeschichtliche Untersuchungen an Fumariaceen-Blüten. – Diplomarbeit Universität Bonn, Germany.
Lehnebach CA. 2008. Phylogenetic affinities, species delimitation and adaptive radiation of New Zealand Ranunculus. – Ph.D. diss., Massey University, Palmerston North, New Zealand.
Lehnebach CA, Cano A, Monsalve C, McLenachan P, Hörandl E, Lockhart P. 2007. Phylogenetic relationships of the monotypic Peruvian genus Laccopetalum (Ranunculaceae). – Plant Syst. Evol. 264: 109-116.
Lehtonen S, Christenhusz MJM, Falck D. 2016. Sensitive phylogenetics of Clematis and its position in Ranunculaceae. – Bot. J. Linn. Soc. 182: 825-867.
Leinfellner W. 1957. Zur Morphologie des Gynözeums von Berberis. – Österr. Bot. Zeitschr. 103: 600-612.
Leinfellner W. 1958. Beiträge zur Kronblattmorphologie VIII. Der peltate Bau der Nektarblätter von Ranunculus, dargelegt an Hand jener von Ranunculus pallasii Schlecht. – Österr. Bot. Zeitschr. 105: 184-192.
Leinfellner W. 1959. Über die röhrenförmige Nectarschuppe an den Nectar-blättern verschiedener Ranunculus und Batrachium-Arten. – Österr. Bot. Zeitschr. 106: 88.
Leinfellner W. 1969. Über die Karpelle verschiedener Magnoliales VII. Euptelea (Eupteleaceae). – Österr. Bot. Zeitschr. 116: 159-166.
Lemèsle R. 1943. Les trachéides à punctuations aréolées de Sargentodoxa cuneata Rehd. et Wils. et leur importance dans la phylogénie des Sargentodoxacées. – Bull. Soc. Bot. France 90: 104-107.
Lemèsle R. 1948. Position phylogénétique de l’Hydrastis canadensis L. et du Crossosoma californicum Nutt., d’après les particularités histologiques du xylème. – Compt. Rend. Acad. Sci. Paris 227: 221-223.
Lemèsle R. 1950. L’Hydrastis canadensis L. et ses principales falsifications. – Rev. Gén. Bot. 57: 5-23.
Lemèsle R. 1955. Contribution à l’étude de quelques famille de dicotylédones considérées comme primitives. – Phytomorphology 5: 11-45.
Leppik EE. 1964. Floral evolution in the Ranunculaceae. – Iowa State Coll. J. Sci. 39: 1-101.
Lewitsky GA. 1931. The karyotype in systematics, on the base of karyology of the subfamily Helleboreae. – Tr. Prikl. Bot. 27: 187-240.
Li H-F, Ren Y. 2005. The variation of perforation plates of vessels in the secondary xylem of Euptelea pleiosperma (Eupteleaceae). – Acta Phytotaxon. Sin. 43: 1-11. [In Chinese]
Li L-Q, Zhang W-X. 1989. Studies on pollen morphology of Adonis L. – Bull. Bot. Res. Harbin 9: 123-137. [In Chinese]
Li Y-L, Kvacek Z, Ferguson DK, Wang Y-F, Li C-S, Yang J, Ying T-S, Ablaev AG, Liu H-M. 2010. The fossil record of Berberis (Berberidaceae) from the Palaeocene of NE China and interpretations of the evolution and phytogeography of the genus. – Rev. Palaeot. Palynol. 160: 10-31.
Liao L, Xu L, Zhang, D, Fang L, Deng H, Shi J, Li T. 2008. Multiple hybridization origin of Ranunculus cantoniensis (4x): evidence from trnL-F and ITS sequences and fluorescent in situ hybridization (FISH). – Plant Syst. Evol. 276: 31-37.
Lidén M. 1986. Synopsis of Fumarioideae (Fumariaceae) with a monograph of the tribe Fumarieae. – Opera Bot. 88: 1-133.
Lidén M. 1988. Tuberous Corydalis in the Mediterranean checklist area. – Notes Roy. Bot. Gard. Edinb. 45: 349-363.
Lidén M. 1989. Corydalis (Papaveraceae: Fumarioideae) in Nepal. – Bull. Brit. Mus. Nat. Hist. (Bot.) 18: 479-538.
Lidén M. 1991. New tuberous species of Corydalis (Papaveraceae). – Willdenowia 21: 175-179.
Lidén M. 1993a. Fumariaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 310-318.
Lidén M. 1993b. Pteridophyllaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 556-557.
Lidén M. 1995. 69. Papaveraceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 52, Nord. J. Bot., Copenhagen, pp. 1-13.
Lidén M. 1996. New taxa of tuberous Corydalis (Fumariaceae). – Willdenowia 26: 23-35.
Lidén M. 2000. Notes on Dionysia, Corydalis and Fumaria in Iran. – Iranian J. Bot. 8: 303-308.
Lidén M. 2007. New species, combinations and records of Hypecoum, Dactylicapnos and Corydalis (Fumariaceae) in China. – Nord. J. Bot. 25: 33-37.
Lidén M, Pathak MK. 2014. Studies in
Dactylicapnos (Papaveraceae-Fumarioideae) part II.
Revision of Dactylicapnos sect. Pogonosperma sect. nov., with
D. arunachalensis sp. nov. – Nord. J. Bot. 32: 176-184.
Lidén M, Fukuhara T, Axberg T. 1995. Phylogeny of Corydalis, ITS and morphology. – Plant Syst. Evol. [Suppl.] 9: 183-188.
Lidén M, Fukuhara T, Rylander J, Oxelman B. 1997. Phylogeny and classification of Fumariaceae, with emphasis on Dicentra s.l., based on the plastid gene rps16 intron. – Plant Syst. Evol. 206: 411-420.
Liu J-Q, Chen Z-D, Lu A-M. 2002. Molecular evidence for the sister relationship of the eastern Asia-North American intercontinental species pair in the Podophyllum group (Berberidaceae). – Bot. Bull. Acad. Sin. 43: 147-154.
Liu S, Liu L, Huang X, Zhu Y, Xu Y. 2017. A taxonomic revision of three Chinese spurless species of genus Epimedium L. (Berberidaceae). – PhytoKeys 78: 23-36.
Liu Y, Liu Y, Yang F, Wang X. 2014. Molecular phylogeny of Asian Meconopsis based on nuclear ribosomal and chloroplast DNA sequence data. – PloS One 9: e104823.
Lockhart P, McLenachan PA, Havell D, Glenny D, Huson D, Jensen U. 2001. Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular evidence under split decomposition. – Ann. Missouri Bot. Gard. 88: 458-477.
Loconte H. 1993. Berberidaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 147-152.
Loconte H, Blackwell WH. 1985. Intrageneric taxonomy of Caulophyllum (Berberidaceae). – Rhodora 87: 463-469.
Loconte H, Estes JR. 1989a. Genetic relationships within Leonticeae (Berberidaceae). – Can. J. Bot. 67: 2310-2316.
Loconte H, Estes JR. 1989b. Phylogenetic systematics of Berberidaceae and Ranunculales (Magnoliidae). – Syst. Bot. 14: 565-579.
Loconte H, Campbell LM, Stevenson DW. 1995. Ordinal and familial relationships of Ranunculid genera. – Plant Syst. Evol. [Suppl.] 9: 99-118.
Lonay H. 1901. Contribution à l’anatomie des renonculées. Structure des péricarpes et des spermodermes. – Arch. Inst. Bot. Univ. Liège 3: 1-164.
Lourteig A. 1952. Ranunculáceas de Sudamérica templada. – Darwiniana 9: 397-608.
Lourteig A. 1956. Ranunculáceas de Sudamérica tropical. – Mem. Soc. Ci. Nat. ‘La Salle’ 16: 19-228.
Löve Á. 1955. Cytotaxonomical remarks on the Icelandic Papaver. – Nytt Mag. Bot. 4: 5-18.
Lubbers AE. 1982. Spatial and temporal variation in the reproductive characteristics of Thalictrum thalictroides (L.) Eames and Bivin, a forest herbaceous perennial. – Ph.D. diss., Duke University, North Carolina.
Lucas GL. 1962a. Fumariaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Aministrations, London, pp. 1-6.
Lucas GL. 1962b. Papaveraceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Aministrations, London, pp. 1-3.
Luo Y, Zhang F-M, Yang Q-E. 2005. Phylogeny of Aconitum subgenus Aconitum (Ranunculaceae) inferred from ITS sequences. – Plant Syst. Evol. 252: 11-25.
Ma J, Yang BX, Zhu W, Sun LL, tian JK, Wang X. 2013. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. – Gene 528: 120-131.
McCain JW, Hennen JF. 1982. Is the taxonomy of Berberis and Mahonia (Berberidaceae) supported by their rust pathogens Cumminsiella santa sp. nov. and other Cumminsiella species (Uredinales)? – Syst. Bot. 7: 48-59.
McDonald A. 1991. Plantae alpinae novae mexicanae: Argemone subalpina (Papaveraceae). – Brittonia 43: 120-122.
McFadden SE. 1950. A series of related cytological and biochemical studies of the Berberidaceae and its alliance with Ranunculaceae. – Ph.D. diss., University of Virginia, Charlottesville, Virginia.
McLewin W. 1999. Fundamental taxonomic problems in and arising from the genus Helleborus. – In: Andrews S, Leslie AC, Alexander C (eds), Taxonomy of cultivated plants, Kew, pp. 297-304.
McLewin W, Mathew B. 1995. Hellebores. – New Plantsman 2: 112-122.
Madahar C. 1967. Mediterranean and Asian taxa of Anemone (section Eriocephalus) with tuberous rootstocks. – Can. J. Bot. 45: 725-735.
Maheu J. 1905. Sur l’existence de lactifères à caoutchouc dans un genre de Ménispermacées: Tinomiscium. – Compt. Rend. Scient. Séanc. Paris 141: 958.
Maheu J. 1906. Les organs sécréteures des Ménispermacées. – Bull. Soc. Bot. France 53: 651.
Maia N, Venard P. 1976. Contribution à l’étude cytotaxonomique d’espèces Mediterranéennes d’Anemone et de leurs hybrides. – Can. J. Gen. Cytol. 18: 151-168.
Malyutin NI. 1987. The system of the genus Delphinium L. based on the morphological features of seeds. – Bot. Žurn. 72: 683-693.
Manning JC, Goldblatt P, Forest F. 2009. A revision of Fumariaceae (Fumarioideae) in southern Africa, including naturalized taxa. – Bothalia 39: 47-65.
Manning JC, Goldblatt P, Hoot SB. 2009. Ranunculaceae: the genus Knowltonia subsumed within Anemone. – Bothalia 39: 217-240.
Marié P. 1885. Recherches sur la structure des Renonculacées. – Ann. Sci. Nat. Bot. 20: 5-180.
Marks GE, Schweizer D. 1974. Giemsa banding: karyotype differences in some species of Anemone and in Hepatica nobilis. – Chromosoma 44: 405-416.
Martin PG, Dowd JM. 1984. The study of plant phylogeny using amino acid sequences of ribulose-1,5-bisphosphate carboxylase III. Addition of Malvaceae and Ranunculaceae to the phylogenetic tree. – Aust. J. Bot. 32: 283-290.
Mathew B. 1989. Helleborus. – Alpine Garden Society, Woking.
Mathias ME, Theobald WL. 1981. A revision of the genus Hyperbaena (Menispermaceae). – Brittonia 33: 81-104.
Maue G. 1926. Zur Pharmakognosie der Ranunculaceen und Berberidaceen. Anatomie des Laubblattes. – Ph.D. diss., Universität Basel, Switzerland.
Mauritzon J. 1936. Zur Embryologie der Berberidaceen. – Acta Horti Gothob. 11: 1-18.
Meacham CA. 1980. Phylogeny of the Berberidaceae with an evaluation of classification. – Syst. Bot. 5: 149-172.
Meacham CA. 1981. The estimation of evolutionary history with reference to the Berberidaceae. – Ph.D. diss., University of Michigan, Ann Arbor, Michigan.
Melville R. 1983. The affinity of Paeonia and a second genus of Paeoniaceae. – Kew Bull. 38: 87-105.
Menadue Y, Crowden RK. 1985. Three new species of Ranunculus (Ranunculaceae) from Tasmania. – Brunonia 8: 373-380.
Mendes MM, Grimm GW, Pais J, Friis EM. 2014.
Fossil Kajanthus lusitanicus gen. et sp. nov. from Portugal: floral
evidence for Early Cretaceous Lardizabalaceae (Ranunculales, basal eudicot). –
Grana 53: 283-301.
Meng A, Zhang Z, Li J, De Craene LR, Wang H. 2012. Floral development of Stephania (Menispermaceae): impact of organ reduction on symmetry. – Intern. J. Plant Sci. 173: 861-874.
Mennega AMW. 1982. Stem structure of the New World Menispermaceae. – J. Arnold Arbor. 63: 145-171.
Meyer KM, Hoot SB, Arroyo MTK. 2010. Phylogenetic affinities of South American Anemone (Ranunculaceae), including the endemic segregate genera, Barneoudia and Oreithales. – Intern. J. Plant Sci. 171: 323-331.
Meyer NR, Iljina GM. 1986. Palynomorphological data on the system of family Papaveraceae. – Vestnik Moscow Univ. 16, Biol. 1: 16-21.
Miers J. 1871. A complete monograph of the Menispermaceae. – Contr. Bot. 3: 1-402, Williams & Norgate, London.
Miikeda O, Kita K, Handa T, Yukawa T. 2006. Phylogenetic relationships of Clematis (Ranunculaceae) based on chloroplast and nuclear DNA sequences. – Bot. J. Linn. Soc. 152: 153-168.
Milne-Redhead E, Turrill WB. 1952. Ranunculaceae. – In: Turrill WB, Milne-Redhead E (eds), Flora of tropical East Africa, The Crown Agents for the Colonies, London, pp. 1-23.
Min F, Lu A-M. 1998. Floral organogenesis and its systematic significance of the genus Nandina (Berberidaceae). – Acta Bot. Sin. 40: 102-108.
Miyaji Y. 1927. Über die somatischen Chromosome einiger Ranunculaceen. – Bot. Mag. (Tokyo) 41: 568-569. [In Japanese]
Miyaji Y. 1930. Beiträge zur Chromosomenphylogenie der Berberidaceen. – Planta 11: 650-659.
Moffet AA. 1932. Chromosome studies in Anemone I. A new type of chiasma behaviour. – Cytologia 4: 26-37.
Mohana Rao PR. 1981. Seed and fruit anatomy of Cocculus hirsutus (Menispermaceae). – Plant Syst. Evol. 139: 95-102.
Moore RJ. 1963. Karyotype evolution in Caulophyllum. – Can. J. Gen. Cytol. 5: 384-388.
Mory B. 1979a. Beiträge zur Kenntnis der Sippenstruktur der Gattung Glaucium Miller. – Feddes Repert. 89: 499-594.
Mory B. 1979b. Ergebnisse einer Revision und Bestimmungsschlüssel der Gattung Glaucium Miller (Papaveraceae). – Gleditschia 7: 117-126.
Mu X-J. 1984. Early development of the endosperm of Kingdonia uniflora. – Acta Bot. Sin. 26: 668-671.
Mucher W. 1993. Systematics and chorology of Aconitum ser. Toxicum (Ranunculaceae) in Europe. – Phyton (Horn) 33: 51-76.
Müller M, Baltisberger M. 1984. Cytotaxonomische Untersuchungen in der Artengruppe des Ranunculus alpestris (Ranunculaceae). – Plant Syst. Evol. 145: 269-289.
Murakami T, Mikami Y, Itokawa H. 1967. Die Struktur des neu isolierten Glykosids aus den Rhizomen von Glaucidium palmatum. – Chem. Pharm. Bull. 15: 1817-1818.
Murbeck S. 1912. Untersuchungen über den Blütenbau der Papaveraceen. – Kungl. Sv. Vetensk.-Akad. Handl. 5(1): 1-168.
Nast CG, Bailey IW. 1946. Morphology of Euptelea and comparison with Trochodendron. – J. Arnold Arbor. 27: 186-192.
Nelson DR, Harper KT. 1991. Site characteristics and habitat requirements of the endangered dwarf bear-claw poppy (Arctomecon humilis Coville, Papaveraceae). – Great Basin Natur. 51: 167-175.
Nelson DR, Welsh SL. 1993. Taxonomic revision of Arctomecon Torr. & Frém. – Rhodora 95: 197-213.
Nesom GL. 1992. A second species of Hunnemannia (Papaveraceae) and synopsis of the genus. – Phytologia 73: 330-337.
Neves J de Barros. 1942. Sobre a cariología de Ranunculus Ficaria L. – Bol. Soc. Brot. 16: 169-181.
Nickol MG. 1995. Phylogeny and inflorescence of Berberidaceae – a morphological survey. – Plant Syst. Evol. [Suppl.] 9: 327-340.
Nikolic T. 1995. Numerical taxonomy of the family Ranunculaceae. – Acta Bot. Hung. 39: 251-270.
Norris T. 1941. Torus anatomy and nectary characteristics as phylogenetic criteria in the Rhoeadales. – Amer. J. Bot. 28: 101-113.
Novák J, Preininger V. 1980. Sect. Glauca – nová sekce rodu Papaver. – Preslia 52: 97-101.
Nowicke JW, Skvarla JJ. 1981. Pollen morphology and phylogenetic relationships of the Berberidaceae. – Smithsonian Contr. Bot. 50: 1-83.
Nowicke JW, Skvarla JJ. 1982. Pollen morphology and the relationships of Circaeaster, of Kingdonia, and of Sargentodoxa to the Ranunculales. – Amer. J. Bot. 69: 990-998.
Nowicke JW, Skvarla JJ. 1983. A palynological study of the genus Helleborus (Ranunculaceae). – Grana 22: 129-140.
Nowicke JW, Skvarla JJ. 1995. Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae. I. General part. Pollen morphology. – In: Hiepko P (ed), Natürliche Pflanzenfamilien, 2. Aufl., 17aIV, Duncker & Humblot, Berlin, pp. 129-159.
Oganezowa GG. 1975. On the evolution of life forms in the family Berberidaceae s.l. – Bot. Žurn. 60: 1665-1675. [In Russian]
Oh BU. 1988. The taxonomic characters of Korean Corydalis (Fumariaceae) and their significance in phylogenetic consideration. – Korean J. Plant Taxon. 18: 33-51.
Ohta T. 1949. Alkaloids of Nandina domestica. – J. Pharm. Soc. Japan 69: 22-23.
Ohwi J. 1935. Megaleranthis, genus novum ranunculacearum. – Acta Phytotaxon. Geobot. 4: 130-131.
Okada H, Tamura M. 1979. Karyomorphology and relationship in the Ranunculaceae. – J. Jap. Bot. 54: 65-77.
Oliver D. 1895. Circaeaster agrestis Maxim. – Hooker’s Icones Plantarum IV, 4: pl. 2366.
Ortiz-Gentry R del C. 2010. Phylogeny, classification, and morphological diversification in Menispermaceae (moonseed family). – Ph.D. diss., University of Missouri-St. Louis, St. Louis, Missouri.
Ortiz-Gentry R del C. 2011. The identity of Synandropus and a new combination in Neotropical Menispermaceae. – Novon 21: 357-361.
Ortiz-Gentry R del C. 2012. Seed diversity in Menispermaceae: developmental anatomy and insights into the origin of the condyle. – Intern. J. Plant Sci. 173: 344-364.
Ortiz-Gentry R del C, Kellogg EA, Werff H van der. 2007. Molecular phylogeny of the moonseed family (Menispermaceae): implications for morphological diversification. – Amer. J. Bot. 94: 1425-1438.
Ortiz R del C, Wang W, Jacques FMB, Chen Z. 2016. Phylogeny and a revised tribal classification of Menispermaceae (moonseed family) based on molecular and morphological data. – Taxon 65: 1288-1312.
Ott C. 1997. 54. Menispermaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 58, Nord. J. Bot., Copenhagen, pp. 1-79.
Ownbey GB. 1958. Monograph of the genus Argemone in North America and the West Indies. – Mem. Torrey Bot. Club 21: 1-159.
Ownbey GB. 1961. The genus Argemone in South America and Hawaii. – Brittonia 13: 91-109.
Oxelman B, Lidén M. 1995. The position of Circaeaster – evidence from nuclear ribosomal DNA. – Plant Syst. Evol. [Suppl.] 9: 189-193.
Pabón-Mora N, Hidalgo O, Gleissber G, Litt A. 2013. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. – Frontiers Plant Sci. 4: 358.
Panov PP, Mollov MM, Panova LN. 1971. Alkaloids from plants of the Berberidaceae family. – Comp. Rend. Acad. Bulgare Sci. 24: 675-677.
Parkin J, Sledge WA. 1933. An Anemone from New Zealand; a plant hitherto regarded as a species of Ranunculus. – J. Linn. Soc., Bot. 49: 645-651.
Paun O, Lehnebach C, Johansson JT, Lockhart P, Hörandl E. 2005. Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and the European alpine system. – Taxon 54: 911-930.
Pawłowski B. 1963. Dispositio systematica specierum europaearum generis Delphinium L. – Fragm. Flor. Geobot. 9: 429-450.
Payne WW, Seago JL. 1968. The open conduplicate carpel of Akebia quinata (Berberidales: Lardizabalaceae). – Amer. J. Bot. 55: 575-581.
Pellmyr O. 1984. Yellow jackets disperse Vancouveria seeds. – Madroño 32: 56.
Pellmyr O. 1992. The phylogeny of a mutualism: evolution and coadaptation between Trollius and its seed-parasitic pollinators. – Biol. J. Linn. Soc. 47: 337-365.
Pellmyr O, Bergström G, Groth I. 1987. Floral fragrances in Actaea using differential chromatograms to discern between floral and vegetative volatiles. – Phytochemistry 26: 1603-1606.
Peng Y, Chen S-B, Liu Y, Chen S-L, Xiao P-G. 2006. A pharmacophylogenetic study of the Berberidaceae (s.l.). – Acta Phytotaxon. Sin. 44: 241-257.
Pereira A de L. 1942. Contribuïção ao conhecimento cariológico do género Nigella L. – Bol. Soc. Brot., Ser. II, 16: 5-40.
Pérez-Gutiérrez MA. 2014. Systematics and evolution of the subfamily Fumarioideae. – Ph.D. thesis, Universidad de Granada, Spain.
Pérez-Gutiérrez MA, Romero-García AT, Salinas MJ, Blanca G, Fernández MC, Suárez-Santiago VN. 2012. Phylogeny of the tribe Fumarieae (Papaveraceae s.l.) based on chloroplast and nuclear DNA sequences: evolutionary and biogeographic implications. – Amer. J. Bot. 99: 517-528.
Pérez-Gutiérrez MA, Romero-García AT, Fernández MC, Blanca G, Salinas-Bonillo MJ, Suárez-Santiago VN. 2015. Evolutionary history of fumitories (subfamily Fumarioideae, Papaveraceae): an old story shaped by the main geological and climatic events in the Northern Hemisphere. – Mol. Phylogen. Evol. 88: 75-92.
Peterson RL, Scott MG, Miller SL. 1979. Some aspects of carpel structure in Caltha palustris L. (Ranunculaceae). – Amer. J. Bot. 66: 334-342.
Pfeifer S, Banerjee SK. 1964. Über Rotfärbungsalkaloide der Gattung Papaver. – Pharmazie 19: 286-289.
Pfenninger A, Moser DM. 2002. Eine neue Aquilegia-Art aus den Judikarischen Alpen (Valvestino, Prov. di Brescia, Italien): Aquilegia vestinae Pfenningen & D. M. Moser. – Candollea 57: 317-327.
Picci V. 1969. Embryological research on the genus Thalictrum II. – Giorn. Bot. Ital. 103: 475-483.
Pigg KB, DeVore ML. 2005. Paleoactaea gen. nov. (Ranunculaceae) fruits from the Paleogene of North Dakota and the London Clay. – Amer. J. Bot. 92: 1650-1659.
Pohl J. 1894. Botanische Mitteilung über Hydrastis canadensis. – Bibl. Bot. 29: 1-12.
Polhill RM. 1966. Berberidaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-4.
Popova M. 1973. Cytotaxonomic investigation in genus Ranunculus L. – Izv. Bot. Inst. (Sofia) 24: 233-239.
Powell AM. 1972. A new species of Argemone (Papaveraceae) from Mexico. – Southw. Natur. 17: 106-107.
Praglowski J. 1974. Pollen morphology of the Trochodendraceae, Tetracentraceae, Cercidiphyllaceae, and Eupteleaceae with reference to taxonomy. – Pollen Spores 16: 449-467.
Prain D. 1895. Some additional Papaveraceae. – J. Asiat. Soc. Bengal 2, Nat. Hist. 64: 303-327.
Prain D. 1906. A review of the genera Meconopsis and Cathcartia. – Ann. Bot. (Oxford) 20: 323-370.
Prain D. 1915. Some additional species of Meconopsis. – Bull. Misc. Inform. Roy. Gard. Kew 1915: 129-177.
Pramanik A, Thothathri K. 1987. Miscellaneous notes on two Indian moonseeds (Menispermaceae). – Kew Bull. 42: 705-706.
Prantl K. 1888. Beiträge zur Morphologie und Systematik der Ranunculaceen. – Engl. Bot. Jahrb. Syst. 9: 225-273.
Prantl K. 1891a. Trochodendraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 21-23.
Prantl K. 1891b. Ranunculaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 43-66.
Prantl K. 1891c. Lardizabalaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 67-70.
Prantl K. 1891d. Berberidaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 70-77.
Prantl K. 1891e. Menispermaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 78-91.
Prantl K, Kündig J. 1891. Papaveraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 130-145.
Preininger V. 1986. Chemotaxonomy of Papaveraceae and Fumariaceae. – In: Manske RHF (ed), The alkaloids, Vol. 29, Academic Press, London, New York, pp. 1-98.
Price M, Waser N. 1979. Pollen dispersal and optimal outcrossing in Delphinium nelsoni. – Nature 277: 294-296.
Qin H-N. 1989. An investigation on carpels of Lardizabalaceae in relation to taxonomy and phylogeny. – Cathaya 1: 61-82.
Qin H-N. 1997. A taxonomic revision of the Lardizabalaceae. – Cathaya 8-9: 1-214.
Rachele LD. 1974. Pollen morphology of the Papaveraceae of the northeastern United States and Canada. – Bull. Torrey Bot. Club 101: 152-159.
Ramirez JL, Cevallos-Ferriz SRS. 2000. Leaves of Berberidaceae (Berberis and Mahonia) from Oligocene sediments, near Tepexi de Rodriguez, Puebla. – Rev. Palaeobot. Palynol. 110: 247-257.
Ramsey GW. 1965. A biosystematic study of the genus Cimicifuga (Ranunculaceae). – Ph.D. diss., University of Tennessee, Nashville, Tennessee.
Ramstadt E. 1953. Über das Vorkommen und die Verbreitung von Chelidonsäure in einigen Pflanzenfamilien. – Pharm. Acta Helv. 28: 45-57.
Rändel U. 1974. Beiträge zur Kenntnis der Sippenstruktur der Gattung Papaver L. sectio Scapiflora (Reichenb. (Papaveraceae). – Feddes Repert. 84: 655-732.
Rasmussen DA, Kramer EM, Zimmer EA. 2009. One size fits all? Molecular evidence for a common inherited petal identity program in Ranunculales. – Amer. J. Bot. 96: 96-109.
Rasmussen H. 1979. The genus Knowltonia (Ranunculaceae). – Opera Bot. 53: 3-44.
Rastipishe S, Pakravan M, Tavassoli A. 2011. Phylogenetic relationships in Ranunculus species (Ranunculaceae) based on nrDNA ITS and cpDNA trnL-F sequences. – Prog. Briol. Sci. 1: 41-47.
Ratter J. 1968. Cytological studies in Meconopsis. – Not. Roy. Bot. Gard. Edinb. 28: 191-200.
Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK. 2007. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. – BMC Genomics 8: 174.
Réaubourg MG. 1906. Étude organographique et anatomique de la famille des Lardizabalées. – L’Université de Paris.
Ren Y, Hu Z-H. 1995. The morphology of the vegetative organs of Circaeaster agrestis (Ranunculaceae) and its taxonomic significance. – Cathaya 7: 177-188.
Ren Y, Hu Z-H. 1998. Anatomical studies on root, node and leaf of Kingdonia uniflora. – Acta Bot. Bor.-Occid. Sin. 18: 72-77. [In Chinese]
Ren Y, Wang ML, Hu Z-H. 1998. Kingdonia, embryology and its systematic significance. – Acta Phytotaxon. Sin. 36: 423-427.
Ren Y, Li Z-J,Chang H-L, Lei Y-L, Lu A-M. 2004. Floral development of Kingdonia (Ranunculaceae s.l., Ranunculales). – Plant Syst. Evol. 247: 145-153.
Ren Y, Li H-F, Zhao L, Endress PK. 2007. Floral morphogenesis in Euptelea (Eupteleaceae, Ranunculales). – Ann. Bot. 100: 185-193.
Ren Y, Chang H-L, Tian X-H, Song P, Endress PK. 2009. Floral development in Adonideae (Ranunculaceae). – Flora 204: 506-517.
Ren Y, Chang H-L, Endress PK. 2010. Floral development in Anemoneae (Ranunculaceae). – Bot. J. Linn. Soc. 162: 77-100.
Ren Y, Gu T-Q, Chang H-L. 2011. Floral development of Dichocarpum, Thalictrum, and Aquilegia (Thalictroideae, Ranunculaceae). – Plant Syst. Evol. 292: 203-213.
Rifot M. 1973. Evolution structurale du pole chalazien du sac embryonnaire d’Aquilegia vulgaris en liaison avec son sac activité trophique. – Compt. Rend. Acad. Sci. Paris 277: 1313-1316.
Ro K-E. 1996. Outgroup relationships of the Ranunculaceae (buttercup family) inferred from rbcL gene sequences. – Korean J. Plant Taxon. 26: 51-71.
Ro K-E, Mcpheron BA. 1997. Molecular phylogeny of the Aquilegia group (Ranunculaceae) based on internal transcribed spacers and 5.8S ribosomal DNA. – Biochem. Syst. Ecol. 25: 445-461.
Ro K-E, Keener CS, McPheron BA. 1997. Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships. – Mol. Phylogen. Evol. 8: 117-127. – Erratum: Mol. Phylogen. Evol. 9: 181.
Ro K-E, Han H-Y, Lee S-T. 1999. Phylogenetic contributions of partial 26S rDNA sequences to the tribe Helleboreae (Ranunculaceae). – Korean J. Biol. Sci. 3: 9-15.
Röder L. 1958. Anatomische und fluoreszenz-optische Untersuchungen an Samen von Papaveraceae. – Österr. Bot. Zeitschr. 104: 370-381.
Rohweder O. 1967. Karpellbau und Synkarpie bei Ranunculaceen. – Ber. Schweiz. Bot. Ges. 77: 376-432.
Roland F. 1971. Characterization and extraction of the polysaccharides of the intine and of the generative cell wall in the pollen grains of some Ranunculaceae. – Grana 11: 101-106.
Roland-Heydacker F. 1974. Caractères ultrastructuraux et cytochimiques particuliers du sporoderme des polen de Berberis vulgaris L. et de Mahonia aquifolium Nutt. – Compt. Rend. Acad. Sci. Paris 278: 1475-1477.
Romero AT, Fernández M del C. 2000. Development of exine and apertures in Fumaria densiflora DC. from the tetrad stage to maturity. – In: Harley MM, Morton CM, Blackmore S (eds), Pollen and spores: morphology and biology, Royal Botanic Gardens, Kew, pp. 45-56.
Romero AT, Salinas MJ, Fernández MC. 2003. Pollen wall development in Hypecoum imberbe Sm. (Fumariaceae). – Grana 42: 91-101.
Ronse De Craene L-P, Smets E. 1990. The systematic relationship between Begoniaceae and Papaveraceae: a comparative study of their floral development. – Bull. Jard. Bot. Nat. Belg. 60: 229-272.
Ronse De Craene L-P, Smets E. 1992. An updated interpretation of the androecium of the Fumariaceae. – Can. J. Bot. 70: 1765-1776.
Ronse De Craene L-P, Smets E. 1995. Evolution of the androecium in the Ranunculiflorae. – Plant Syst. Evol. [Suppl.] 9: 63-70.
Ross CA, Auge H, Durka W. 2008. Genetic relationships among three native North-American Mahonia species, invasive Mahonia populations from Europe, and commercial cultivars. – Plant Syst. Evol. 275: 219-229.
Rothfels K, Sexsmith E, Heimburger M, Krause M. 1966. Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae). – Chromosoma 20: 54-74.
Rousi A. 1956. Cytotaxonomy and reproduction in the apomictic Ranunculus auricomus group. – Ann. Bot. Soc. Zool.-Bot. Fennica, ‘Vanamo’ 29:2.
Rozefelds AC. 1991. Mid Tertiary Sarcopetalum (Menispermaceae) from Glencoe, mid-eastern Queensland. – Alcheringa 15: 145-149.
Rudolph K. 1909. Zur Kenntnis des anatomischen Baues der Blattgelenke bei den Menispermaceen. – Ber. Deutsch. Bot. Ges. 27: 411-421.
Ruijgrok HWL. 1966. The distribution of ranunculin and cyanogenetic compounds in the Ranunculaceae. – In: Swain T (ed), Comparative phytochemistry, Academic Press, London, New York, pp. 175-186.
Ruijgrok HWL. 1967. Over de verspreiding van ranunculine en cyanogene verbindingen bij de Ranunculaceae. Een bijdrage tot de chemotaxonomie van de familie. – Ph.D. diss., Universiteit Leiden, The Netherlands.
Ruiz E, Crawford DJ, Stuessy TF, Conzález F, Samuel R, Becerra J, Silva M. 2004. Phylogenetic relationships and genetic divergence among endemic species of Berberis, Gunnera, Myrceugenia and Sophora of the Juan Fernández Islands (Chile) and their continental progenitors based on isozymes and nrITS sequences. – Taxon 53: 321-332.
Ryberg M. 1955. A taxonomical survey of the genus Corydalis Ventenat. – Acta Horti Berg. 17: 115-175.
Ryberg M. 1960. A morphological study of the Fumariaceae and the taxonomic significance of the characters examined. – Acta Horti Berg. 19: 122-248.
Sachar RC. 1955. The embryology of Argemone mexicana: a reinvestigation. – Phytomorphology 5: 200-218.
Sachar RC, Mohan Ram HY. 1958. The embryology of Eschscholzia californica Cham. – Phytomorphology 8: 114-124.
Saksena HB. 1954. Floral morphology and embryology in Fumaria parviflora Lamk. – Phytomorphology 4: 409-417.
Salinas MJ, Romero AT, Blanca G, Herrán R de la, Garrido-Ramos M, Ruiz-Rejón C, Morales C, Ruiz-Rejón M, Suárez V. 2003. Contribution to the taxonomy and phylogeny of Sarcocapnos (DC.) (Fumariaceae). – Plant Syst. Evol. 237: 153-164.
Salisbury EJ. 1919. Variation in Eranthis hyemalis, Ficaria verna, and other members of the Ranunculaceae, with special reference to trimery and the origin of the perianth. – Ann. Bot. 33: 47-79.
Salisbury EJ. 1931. On the morphology and ecology of Ranunculus parviflorus, L. – Ann. Bot. 45: 539-578.
Sands MJS. 1973. New aspects on the floral vascular anatomy in some members of the Rhoeadales sensu Hutchinson. – Kew Bull. 28: 211-256.
Santavý F. 1970. Papaveraceae alkaloids. – In: Manske RHF (ed), The alkaloids, vol. 12, Academic Press, New York, pp. 333-454.
Santavý F. 1979. Papaveraceae alkaloids II. – In: Manske RHF (ed), The alkaloids, vol. 17, Academic Press, New York, pp. 385-544.
Santisuk T. 1979. A palynological study of the tribe Ranunculeae. – Opera Bot. 48: 1-76.
Sastri RLN. 1954. Embryological studies in Menispermaceae I. Tiliacora racemosa Coleb. – Proc. Natl. Inst. Sci. India, B, 20: 294-302.
Sastri RLN. 1964. Embryological studies in the Menispermaceae II. Embryo and seed development. – Bull. Torrey Bot. Club 91: 79-85.
Sastri RLN. 1969a. Floral morphology, embryology, and relationships of the Berberidaceae. – Aust. J. Bot. 17: 69-79.
Sastri RLN. 1969b. Comparative morphology and phylogeny of the Ranales. – Biol. Rev. Cambridge Philos. Soc. 44: 291-319.
Satake Y. 1949. A note on Coptis of Japan. – J. Jap. Bot. 24: 69-74.
Sauquet H, Carrive L, Poullain N, Sannier J, Damerval C, Nadot S. 2015. Zygomorphy evolved from dissymmetry in Fumarioideae (Papaveraceae, Ranunculales): new evidence from an expanded molecular phylogenetic framework. – Ann. Bot. 115: 895-914.
Savitsky VD. 1989. Morphology of pollen and taxonomy of species of genus Helleborus L. – Ukr. Bot. Žurn. 46: 27-32. [In Ukrainian]
Schaeppi H. 1976. Über die männlichen Blüten einiger Menispermaceen. – Beitr. Biol. Pflanzen 52: 207-215.
Schaeppi H, Frank K. 1962. Vergleichend-morphologische Untersuchungen über die Karpellgestaltung, insbesondere die Plazentation bei Anemoneen. – Bot. Jahrb. Syst. 81: 337-357.
Schiffner V. 1889. Die Gattung Helleborus. – Engl. Bot. Jahrb. Syst. 11: 92-122.
Schiffner V. 1890. Monographia Hellebororum. – Nova Acta Kön. Leop.-Carol. Deutsch. Akad. Naturf. 56: 1-198.
Schmidt E. 1928. Untersuchungen über Berberidaceen. – Beih. Bot. Centralbl., Abt. 2, 45: 329-396.
Schneider EL, Nichols DM. 1984. Floral biology of Argemone aurantiaca (Papaveraceae). – Bull. Torrey Bot. Club 111: 1-7.
Schnyder N. 1982. Analyse divergenter Fruchtdifferenzierung bei einheitlichem Bauplan am Beispiel von Berberis, Vancouveria und Caulophyllum (Berberidaceae). – Unpubl. diploma thesis, University of Zürich.
Schöffel K. 1932. Untersuchungen über den Blütenbau der Ranunculaceen. – Planta 17: 315-371.
Schorn HE. 1966. Revision of the fossil species of Mahonia from North America. – M.Sc. thesis, University of California, Berkeley, California.
Schrödinger R. 1909. Der Blütenbau der zygomorphen Ranunculaceen und seine Bedeutung für die Stammesgeschichte der Helleboreen. – Abh. K. K. Zool.-Bot. Ges. Wien 4-5: 1-63.
Schrödinger R. 1914. Das Laubblatt der Ranunculaceen. Eine organogeschichtliche Studie. – Abh. K. K. Zool.-Bot. Ges. Wien 8-2: 1-71.
Schuettpelz E, Hoot SB. 2004. Phylogeny and biogeography of Caltha (Ranunculaceae) based on chloroplast and nuclear DNA sequences. – Amer. J. Bot. 91: 247-253.
Schuettpelz E, Hoot SB, Samuel R, Ehrendorfer F. 2002. Multiple origins of southern hemisphere Anemone (Ranunculaceae) based on plastid and nuclear sequence data. – Plant Syst. Evol. 231: 143-151.
Schwarzbach AE, Kadereit JW. 1995. Rapid radiation of North American desert genera of the Papaveraceae: Evidence from restriction site mapping of PCR-amplified chloroplast DNA fragments. – Plant Syst. Evol. [Suppl.] 9: 159-170.
Scott RA. 1956. Evolution of some endocarpal features in the tribe Tinosporeae (Menispermaceae). – Evolution 10: 74-81.
Seitz N. 1969. Die Taxonomie der Aconitum napellus-Gruppe in Europa. – Feddes Repert. 80: 1-76.
Selin E. 2000. Morphometric differentiation between populations of Papaver radicatum (Papaveraceae) in northern Scandinavia. – Bot. J. Linn. Soc. 133: 263-284.
Shen Y-F. 1954. Phylogeny and wood anatomy of Nandina. – Taiwania 5: 85-92.
Shneyer VS, Kutyavina NG, Morosova NS. 1995. Serotaxonomical investigation in the Papaverales. – Plant Syst. Evol. [Suppl.] 9: 181-182.
Sieber M, Kucera LJ. 1980. On the stem anatomy of Clematis vitalba L. – IAWA Bull., N. S., 1: 49-54.
Siplivinsky V. 1972. Genus Trollius in Asia boreali et orientali. – Novit. Syst. Plant. Vasc. Acad. Sci. USSR 9: 163-182. [In Russian]
Slavík J, Hanuš V, Slavíková L. 1991. Alkaloids from Stylophorum lasiocarpum (Oliv.) Fedde. – Collect. Czech. Chem. Commun. 56: 1116-1122.
Slavikovà Z. 1971. Zur Blütenmorphologie von Adonis vernalis L. – Österr. Bot. Zeitschr. 119: 447-453.
Smit PG. 1973. A revision of Caltha (Ranunculaceae). – Blumea 21: 119-130.
Smith AC. 1946. A taxonomic review of Euptelea. – J. Arnold Arbor. 27: 175-185.
Smith GH. 1926. Vascular anatomy of ranalian flowers I. Ranunculaceae. – Bot. Gaz. (Chicago) 82: 1-29.
Smith GH. 1928. Vascular anatomy of ranalian flowers II. Ranunculaceae (continued), Menispermaceae, Calycanthaceae, Annonaceae. – Bot. Gaz. (Chicago) 85: 152-177.
Smith UR. 2001. Revision of the Cretaceous fossil genus Palaeoaster (Papaveraceae) and clarification of pertinent species of Eriocaulon, Palaeoaster, and Sterculiocarpus. – Novon 11: 258-260.
Solstad H, Elven R, Nordal I. 2003. Isozyme variation among and within North Atlantic species of Papaver sect. Meconella (Papaveraceae) and taxonomic implications. – Bot. J. Linn. Soc. 143: 255-269.
Sorarú SB. 1976. Nota sobre el género Argemone (Papaveraceae) en la República Argentina. – Darwiniana 20: 445-457.
Sorokin H. 1929. Idiograms, nucleoli, and satellites of certain Ranunculaceae. – Amer. J. Bot. 16: 407-420.
Souèges R. 1941. Embryogénie des Fumariacées. L’origine des corps de l’embryon chez le Fumaria officinalis. – Compt. Rend. Acad. Sci. Paris 216: 354-356.
Souèges R. 1943a. Embryogénie des Fumariacées. L’origine et les premières divisions de la cellule embryonnaire proprement dite chez Hypecoum procumbens. – Compt. Rend. Acad. Sci. Paris 216: 310-311.
Souèges R. 1943b. Embryogénie des Fumariacées. La différentiation des regions fondamentales des corps chez Hypecoum procumbens. – Compt. Rend. Acad. Sci. Paris 216: 354-356.
Souèges R. 1946a. Embryogénie des Fumariacées. Les premiers ternes du développement de l’embryon chez le Corydalis lutea. – Compt. Rend. Acad. Sci. Paris 222: 161-163.
Souèges R. 1946b. Embryogénie des Fumariacées. La différentiation des regions fondamentales des corps chez le Corydalis lutea. – Compt. Rend. Acad. Sci. Paris 222: 253-255.
Souèges R. 1949. L’embryon chez le Corydalis cheilanthifolia et la classification embryogénique. – Ann. Sci. Nat. Bot., ser. II, 7: 1-17.
Soza VL, Brunet J, Liston A, Smith PS, Di Stilio VS. 2012. Phylogenetic insights into the correlates of dioecy in meadowrues (Thalictrum, Ranunculaceae). – Mol. Phylogen. Evol. 63: 180-192.
Sreenivasulu Y, Rana B, Chanda SK, Ahuja PS. 2010. Development of female gametophyte in Podophyllum hexandrum Royle – an important medicinal herb. – J. Biol. Life Sci. 1: 16-21.
Stapf O. 1925. Sargentodoxa cuneata. – Bot. Mag. 151: t. 9111-9112.
Starmühler W. 1998. Proposal to conserve the name Aconitum (Ranunculaceae) with A. variegatum as its type. – Taxon 47: 747-748.
Stearn WT. 1938. Epimedium and Vancouveria (Berberidaceae), a monograph. – Bot. J. Linn. Soc. 51: 409-535.
Stearn WT. 1990. Epimedium dolichostemon (Berberidaceae) and other Chinese species of Epimedium. – Kew Bull. 45: 685-692.
Stearn WT. 1993. The small-flowered Chinese species of Epimedium (Berberidaceae). – Kew Bull. 48: 807-813.
Stearn WT. 1996. Epimedium acuminatum and allied Chinese species (Berberidaceae). – Kew Bull. 51: 393-400.
Stearn WT. 1997. Four new Chinese species of Epimedium (Berberidaceae). – Kew Bull. 52: 659-671.
Stearn WT. 1998. Four more Chinese species of Epimedium (Berberidaceae). – Kew Bull. 53: 213-223.
Stearn WT. 2002. The genus Epimedium and other herbaceous Berberidaceae (including the genus Podophyllum, by Julian M. H. Shaw). – Timber Press, Portland, Oregon.
Stermitz FR, Adamovics JA. 1977. Alkaloids of Caltha leptosepala and Caltha biflora. – Phytochemistry 16: 500.
Stern KR. 1961. Revision of Dicentra. – Brittonia 13: 1-52.
Stern KR. 1962. The use of pollen morphology in the taxonomy of Dicentra. – Amer. J. Bot. 49: 362-368.
Stern KR. 1970. Pollen aperture variation and phylogeny in Dicentra. – Madroño 20: 354-359.
Still SM, Potter D. 2013. California poppy conuncrums: insights into relationships within tribe Eschscholtzieae (Papaveraceae). – Syst. Bot. 38: 1045-117.
Strid AK. 1965. Studies in the Aegean flora VII. Chromosome morphology in the Nigella arvensis complex. – Bot. Not. 118: 139-165.
Strid AK. 1969. Evolutionary trends in the breeding system of Nigella (Ranunculaceae). – Bot. Not. 122: 380-397.
Strid AK. 1970. Studies in the Aegean flora XVI. Biosystematics of the Nigella arvensis complex with special reference to the problem of non-adaptive radiation. – Opera Bot. 28: 1-169.
Sugiura T. 1940. Chromosome studies on Papaveraceae with special reference to the phylogeny. – Cytologia 10: 558-576.
Sugiyama M. 1981. Comparative studies of vascular system of node-leaf continuum in the Ranalian complex 2. Sargentodoxa cuneata Rehd. et Wils. – Jap. J. Bot. 58: 252-258.
Sugiyama M. 1984 [1985]. Comparative studies of vascular system in node-leaf continuum in Ranalian complex 3. Lardizabalaceae. – Phytomorphology 34: 99-109.
Sugiyama M, Hara N. 1988. Comparative study of early ontogeny of compound leaves in Lardizabalaceae. –Amer. J. Bot. 75: 1598-1605.
Sun G, Dilcher DL, Wang H, Chen Z. 2011. A eudicot from the early Cretaceous of China. – Nature 471: 625-628.
Sun H, McLewin W, Fay MF. 2001. Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian-Mediterranean disjunction. – Taxon 50: 1001-1018.
Sun Y, Fung K-P, Leung P-C, Shaw PC. 2005. A phylogenetic analysis of Epimedium (Berberidaceae) based on nuclear ribosomal DNA sequences. – Mol. Phylogen. Evol. 35: 287-291.
Susplugas J, Massa V, Susplugas P, Taillade R, Susplugas C, Salabert J. 1975. Fumeterres en Languedoc Roussillon. – Anal. Inst. Bot. Cavanilles 32: 233-239.
Swamy BGL. 1953. Some observations on the embryology of Decaisnea insignis Hook. f. et Thoms. – Proc. Natl. Inst. Sci. India, Sect. B, 19: 307-310.
Tak MA, Wafai BA. 1996. Somatic chromosome structure and nucleolar organization in Anemone coronaria L., Ranunculus asiaticus L. and Eranthis hyemalis Salisb. (Ranunculaceae). – Phytomorphology 46: 377-385.
Takeda H. 1915. On the genus Achlys: a morphological study. – Bot. Mag. (Tokyo) 29: 169-185.
Tamaio N, Cardoso-Vieira R, Angyalossy V. 2009. Origin of successive cambia on stem in three species of Menispermaceae. – Rev. Brasil. Bot. 32: 839-848.
Tamaio N, Joffily A, Braga JMA, Rajput KS. 2010. Stem anatomy and pattern of secondary growth in some herbaceous vine species of Menispermaceae. – J. Torrey Bot. Club 137: 157-165.
Tamura A. 1972. Morphology and phyletic relationship of the Glaucidiaceae. – Bot. Mag. (Tokyo) 85: 29-41.
Tamura M. 1956. Notes on Clematis of Eastern Asia III. – Acta Phytotaxon. Geobot. 16: 79-83.
Tamura M. 1962a. Petiolar anatomy in the Ranunculaceae I. Structure of the proper part of petioles. – Sci. Rep. Osaka Univ. 11: 19-47.
Tamura M. 1962b. Morphology, ecology, and phylogeny of the Ranunculaceae I. – Sci. Rep. Osaka Univ. 11: 115-126.
Tamura M. 1962c. Taxonomical and phylogenetical consideration of the Ranunculaceae. – Acta Phytotaxon. Geobot. 20: 71-81. [In Japanese]
Tamura M. 1963. Morphology, ecology, and phylogeny of the Ranunculaceae II. – Sci. Rep. Osaka Univ. 12: 141-156.
Tamura M. 1964. Morphology, ecology, and phylogeny of the Ranunculaceae III. – Sci. Rep. Osaka Univ. 13: 25-35.
Tamura M. 1965. Morphology, ecology and phylogeny of the Ranunculaceae IV. Ranunculaceae of Eastern Asia: general part IV. – Sci. Rep. Osaka Univ. 14: 53-71.
Tamura M. 1966. Morphology, ecology and phylogeny of the Ranunculaceae VI. – Sci. Rep. Osaka Univ. 15: 13-35.
Tamura M. 1967. Morphology, ecology and phylogeny of the Ranunculaceae VII. – Sci. Rep. Osaka Univ. 16: 21-43.
Tamura M. 1968a. Morphology, ecology and phylogeny of the Ranunculaceae VIII. – Sci. Rep. Osaka Univ. 17: 41-56.
Tamura M. 1968b. A revision of genus Naravelia. – Acta Phytotaxon.Geobot. 37: 106-110.
Tamura M. 1972. Morphology and phyletic relationships of the Glaucidiaceae. – Bot. Mag. (Tokyo) 85: 29-41.
Tamura M. 1980. Change of phyllotaxis in Clematis lasiandra Maxim. – J. Jap. Bot. 55: 257-265.
Tamura M. 1981. Morphology of Coptis japonica and its meaning in phylogeny. – Bot. Mag. (Tokyo) 94: 165-174.
Tamura M. 1984. Phylogenetical consideration in the Ranunculaceae. – Korean J. Plant Taxon. 14: 33-42.
Tamura M. 1987. A classification of genus Clematis. – Acta Phytotaxon. Geobot. 38: 33-44.
Tamura M. 1990-1992. A new classification of the family Ranunculaceae 1-3. – Acta Phytotaxon. Geobot. 41: 93-101; 42: 177-187; 43: 53-58.
Tamura M. 1993a. New species and combinations in the Ranunculaceae. – Acta Phytotaxon. Geobot. 44: 27-28.
Tamura M. 1993b. Ranunculaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 563-583.
Tamura M. 1995a. Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae. II Systematic part. – In: Hiepko P (ed), Natürliche Pflanzenfamilien, 2. Aufl., 17aIV, Duncker & Humblot, Berlin, pp. 223-519.
Tamura M. 1995b. Phylogeny and classification of the Ranunculaceae. – Plant Syst. Evol. [Suppl.] 9: 201-206.
Tamura M, Kosuge K. 1989. Classification of the Isopyroideae (Ranunculaceae). – Acta Phytotaxon. Geobot. 40: 31-35.
Tamura M, Lauener AL. 1968a. A note on Isopyrum anemonoides Kar. & Kir. – Notes Roy. Bot. Gard. Edinb. 28: 265-266.
Tamura M, Lauener AL. 1968b. A revision of Isopyrum, Dichocarpum, and their allies. – Notes Roy. Bot. Gard. Edinb. 28: 267-273.
Tamura M, Lauener AL. 1979. A synopsis of Aconitum subgenus Lycoctonum 2. – Notes Roy. Bot. Gard. Edinb. 37: 430-466.
Tamura M, Mizumoto Y. 1972. Stages of embryo development in ripe seeds or achenes of the Ranunculaceae. – J. Jap. Bot. 47: 225-237.
Tamura M, Mizumoto Y. 1974. The cotyledon and growing point in the monocotyledonous embryos of Shibateranthis pinnatifida and Anemone flaccida. – J. Jap. Bot. 49: 123-128.
Tan K, Shuka L, Siljak-Yakovlev S, Malo S, Pustahija F. 2011. The genus Gymnospermium (Berberidaceae) in the Balkans. – Phytotaxa 25: 1-17.
Tanaka R, Takahashi C. 1981. Comparative karyotype analysis in Epimedium species by C-banding 1. E. sempervirens and E. perralderianum. – J. Jap. Bot. 56: 1-24.
Taylor BAS. 1967. Comparative morphology and phylogeny of the Lardizabalaceae. – Ph.D. diss., Indiana University, Bloomington, Indiana.
Taylor G. 1934. An account of the genus Meconopsis. – New Flora and Silva Ltd., London.
Tepfer SS. 1953. Floral anatomy and ontogeny in Aquilegia formosa v. truncata and Ranunculus repens. – Univ. Calif. Publ. Bot. 25: 513-648.
Terabayashi S. 1977. Studies in the morphology and systematics of Berberidaceae I. Floral anatomy of Ranzania japonica. – Acta Phytotaxon. Geobot. 28: 45-57.
Terabayashi S. 1978. Studies in the morphology and systematics of Berberidaceae II. Floral anatomy of Mahonia japonica (Thunb.) DC. and Berberis thunbergii DC. – Acta Phytotaxon. Geobot. 29: 106-118.
Terabayashi S. 1979. Studies in the morphology and systematics of Berberidaceae III. Floral anatomy of Epimedium grandiflorum Morr. et Decne. ssp. sempervirens (Nakai) Kitam. and Vancouveria hexandra (Hook.) Morr. et Decne. – Acta Phytotaxon. Geobot. 30: 153-168.
Terabayashi S. 1981. Studies in the morphology and systematics of Berberidaceae IV. Floral anatomy of Plagiorhegma dubia Maxim., Jeffersonia diphylla (L.) Pers., and Achlys triphylla (Smith) DC. ssp. japonica (Maxim.) Kitam. – Bot. Mag. (Tokyo) 94: 141-157.
Terabayashi S. 1983a. Studies in the morphology and systematics of Berberidaceae V. Floral anatomy of Caulophyllum Michx., Leontice L., Gymnospermium Spach, and Bongardia Mey. – Mem. Fac. Sci. Kyoto Univ., Ser. Biol., 8: 197-217.
Terabayashi S. 1983b. Studies on the morphology and systematics of Berberidaceae VI. Floral anatomy of Diphylleia Michx., Podophyllum L., and Dysosma Woodson. – Acta Phyotaxon. Geobot. 34: 27-47.
Terabayashi S. 1983c. Studies in the morphology and systematics of Berberidaceae VII. Floral anatomy of Nandina domestica Thunb. – J. Phytogeogr. Taxon. 31: 16-21.
Terabayashi S.1985a. The comparative floral anatomy and systematics of the Berberidaceae I. Morphology. – Mem. Fac. Sci. Kyoto Univ., Ser. Biol. 10: 73-90.
Terabayashi S. 1985b. The comparative floral anatomy of the Berberidaceae II. Systematic considerations. – Acta Phytotaxon. Geobot. 36: 1-13.
Terabayashi S. 1987. Seedling morphology of the Berberidaceae. – Acta Phytotaxon. Geobot. 38: 63-74.
Thanikaimoni G. 1968. Morphologie des pollens des Ménispermacées. – Inst. Franç. Pondichéry, Trav. Sect. Sci. Techn. 5: 1-57.
Thanikaimoni G. 1984. Ménispermacées: palynologie et systématique. – Inst. Franç. Pondichéry, Trav. Sect. Sci. Techn. 18: 1-135.
Thanikaimoni G. 1986. Evolution of Menispermaceae. – Can. J. Bot. 64: 3130-3133.
Thanikaimoni G, Roland F, Ferguson IK, Cerceau MT, Derouet L. 1984. Ménispermacées: palynologie et systématique. – Trav. Sect. Sci. Techn. Inst. Franç. Pondichéry 18: 1-135.
Tian X-H, Zhang L, Ren Y. 2005 [2006]. Development of flowers and inflorescences of Circaeaster (Circaeasteraceae, Ranunculales). – Plant Syst. Evol. 256: 89-96.
Tian X-H, Zhao L, Ren Y, Zhang X-H. 2007. Number of floral organs in Circaeaster agrestis (Circaeasteraceae) and possible homeosis among floral organs. – Plant Syst. Evol. 265: 259-265.
Tiffney BH. 1993. Fruits and seeds of the Tertiary Brandon Lignite VII. Sargentodoxa (Sargentodoxaceae). – Amer. J. Bot. 80: 517-523.
Tilquin P. 1981. An unusual case of a complex heterozygote presenting no taxonomical problem in Chelidonium majus L. (Papaveraceae). – Experientia 37: 341-342.
Tischler G. 1902. Die Berberidaceen und Podophyllaceen. Versuch einer morphologisch-biologischen Monographie. – Engl. Bot. Jahrb. Syst. 31: 596-727.
Tobe H. 1980. Morphological studies on the genus Clematis Linn. VI. Vascular anatomy of the androecial and gynoecial regions of the floral receptacle. – Bot. Mag. (Tokyo) 93: 125-133.
Tobe H. 1981. Embryological studies in Glaucidium palmatum Sieb. et Zucc. with a discussion on the taxonomy of the genus. – Bot. Mag. (Tokyo) 94: 207-224.
Tobe H. 2003. Hydrastidaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 405-409.
Tobe H, Keating RC. 1985. The morphology and anatomy of Hydrastis (Ranunculaceae): systematic reevaluation of the genus. – Bot. Mag. (Tokyo) 98: 291-316.
Tören J. 1950. Les caractères morphologiques, anatomiques, et cytologiques des Bongardia chrysogonum Boiss. – Rev. Fac. Sci. Univ. Istanbul, sér. B, 15: 239-263.
Tören J. 1954. Recherches sur des écotypes de Bongardia chrysogonum. – Rev. Fac. Sci. Univ. Istanbul, sér. B, 19: 83-123.
Tören J. 1961. Recherches sur les Berberidaceae de la Turquie I. Morphologie et anatomie du Leontice leontopetalum L. – Rev. Fac. Sci. Univ. Istanbul, sér. B., 26: 125-162.
Tören J. 1962. Recherches sur les Berberidaceae de la Turquie II. Caractères cytologiques du Leontice leontopetalum L. – Rev. Fac. Sci. Univ. Istanbul, sér. B., 27: 229-250.
Tören J. 1971. Investigation of the Berberidaceae of Turkey VII. Bongardia chrysogonum (L.) Boiss. – Rev. Fac. Sci. Univ. Istanbul, sér. B., 36: 81-88.
Torres N, Saez L, Rossello JA, Blanche C. 2000. A new Delphinium subsp. from Formentera (Balearic Islands). – Bot. J. Linn. Soc. 133: 371-377.
Toyokuni H, Toyokuni Y. 1964. Ein neuer Anhalt für die Teilung der Podophyllaceae in zwei Unterfamilien. – Bot. Mag. (Tokyo) 77: 197-198.
Troll W. 1933. Beiträge zur Morphologie des Gynoeceums III. Über das Gynoeceum von Nigella und einiger anderer Helleboreen. – Planta 21: 266-291.
Troupin G. 1949. Contribution à l’étude des Menispermacées africaines I. – Bull. Jard. Bot. État Bruxelles 19: 409-435.
Troupin G. 1956. Menispermaceae. – In: Turrill WB, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-32.
Troupin G. 1960. 7. Menispermaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 150-171.
Troupin G. 1962. Monographie des Menispermaceae africaines. – Mém. Acad. Roy. Sci. Outre-Mer, Cl. Sci. Nat. Méd. Coll., ser. II, 13: 1-313.
Trzaski L. 1999. Xylem distribution in the achene of some European Ranunculus species as a taxonomical criterion of Ranunculus genus. – Phytomorphology 49: 241-251.
Tschermak-Woess E. 1956. Notizen über die Riesenkerne und “Riesenchromosomen” in den Antipoden von Aconitum. – Chromosoma 8: 114-134.
Tucker SC. 1966. The gynoecial vascular supply in Caltha. – Phytomorphology 16: 339-342.
Tucker SC, Hodges SA. 2005. Floral ontogeny of Aquilegia, Semiaquilegia and Enemion (Ranunculaceae). – Intern. J. Plant Sci. 166: 557-574.
Ulbrich E. 1905-1906. Über die systematische Gliederung und geographische Verbreitung der Gattung Anemone L. – Engl. Bot. Jahrb. Syst. 37: 172-334.
Ulbrich E. 1906. Ranunculaceae. – In: Urban I (ed), Plantae novae andinae imprimis Weberbauerianae I, Engl. Bot. Jahrb. Syst. 37: 404.
Ulbrich E. 1922. Ranunculaceae novae vel criticae V. – Notizbl. Bot. Gart. Berlin-Dahlem 8: 251-272.
Ulbrich E. 1925. Ranunculaceae novae vel criticae VII. Ranunculaceae asiaticae. – Notizbl. Bot. Gart. Berlin-Dahlem 9. 209-228.
Valen F van. 1978. Contribution to the knowledge of cyanogenesis in angiosperms 9. Communication. Cyanogenesis in Papaverales. – Proc. Kon. Ned. Akad. Wet., Ser. C, 81: 492-499.
Valpuesta M, Posadas N, Ruiz I, Silva MV, Gomez AI, Suau R, Perez B, Pliego F, Cabezudo B. 1995. Alkaloids from Ceratocapnos heterocarpa plants in vitro cultures. – Phytochemistry 38: 113-118.
Valtueña FJ, Preston CD, Kadereit JW. 2012. Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. – Mol. Ecol. 21: 1426-1437.
Vent W. 1973. Beiträge zur Kenntnis der Sippenstruktur der Gattungen Bocconia L. und Macleaya R. Br. (Papaveraceae). – Acta Bot. Acad. Sci. Hung. 19: 385-391.
Vent W, Mory B. 1973. Beiträge zur Kenntnis der Sippenstruktur der Gattungen Glaucium Adans. und Dicranostigma Hooker f. et Thomson (Papaveraceae). – Gleditschia 1: 33-41.
Vesprini JL, Pacini E. 2000. Breeding systems in two species of the genus Helleborus (Ranunculaceae). – Plant Biosyst. 134: 193-197.
Vijayaraghavan MR. 1970. Ranunculaceae. – Bull. Indian Nat. Sci. Acad. 41: 45-52.
Vollesen K. 1981. Anisocycla (Menispermaceae) new to East Africa. – Kew Bull. 36: 217-218.
Waddington KD. 1981. Factors influencing pollen flow in bumblebee-pollinated Delphinium virescens. – Oikos 37: 152-159.
Walker JW. 1976. Comparative pollen morphology and phylogeny of the ranalean complex. – In: Beck CB (ed), Origin and early evolution of angiosperms, Columbia University Press, New York, pp. 241-299.
Wang F-H, Chien N-F, Zhang Y-L. 1984. A study on the pollen morphology in Trochodendron, Tetracentron, Euptelea. – Acta Phytotaxon. Sin. 22: 456-460. [In Chinese]
Wang H, Meng A, Li J, Feng M, Chen Z, Wang W. 2006. Floral organogenesis of Cocculus orbiculatus and Stephania diesliana (Menispermaceae). – Intern. J. Plant Sci. 167: 951-960.
Wang H-C, Meng A-P, Li J-Q, He Z-C. 2004. Chromosome numbers for eight species in five genera of Menispermaceae. – J. Jap. Bot. 79: 241-246.
Wang H-F, Friedman CR, Zhu Z-X, Qin H-N. 2009. Early reproductive developmental anatomy in Decaisnea (Lardizabalaceae) and its systematic implications. – Ann. Bot. 104: 1243-1253.
Wang H-F, Kirchoff BK, Qin H-N, Zhu Z-X. 2009. Reproductive morphology of Sargentodoxa cuneata (Lardizabalaceae) and its systematic implications. – Plant Syst. Evol. 280: 207-217.
Wang W, Chen Z-D. 2007. Generic level phylogeny of Thalictroideae (Ranunculaceae) – implications for the taxonomic status of Paropyrum and petal evolution. – Taxon 56: 811-821.
Wang W, Li R-Q, Chen Z-D. 2005. Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences. – Plant Syst. Evol. 255: 41-54.
Wang W, Wang H-C, Chen Z-D. 2007. Phylogeny and morphological evolution of tribe Menispermeae (Menispermaceae) inferred from chloroplast and nuclear sequences. – Persp. Plant Ecol. Syst. 8: 141-154.
Wang W, Chen Z-D, Liu Y, Li R-Q, Li J-H. 2007. Phylogenetic and biogeographic diversification of Berberidaceae in the Northern Hemisphere. – Syst. Bot. 32: 731-742.
Wang W, Lu A-M, Ren Y, Endress ME, Chen Z-D. 2009. Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. – Persp. Plant Ecol. Evol. Syst. 11: 81-110.
Wang W, Hu H, Xiang X-G, Yu S-X, Chen Z-D. 2010. Phylogenetic placements of Calathodes and Megaleranthis (Ranunculaceae): evidence from molecular and morphological data. – Taxon 59: 1712-1720.
Wang W, Ortiz R del C, Jacques FMB, Xiang X-G, Li H-L, Lin L, Li R-Q, Soltis PS, Soltis DE, Chen Z-D. 2012. Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. – New Phytol. 195: 470-478.
Wang W, Liu Y, Yu S-X, Gao T-G, Chen Z-D. 2013. Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai-Tibetan Plateau. – Taxon 62: 713-722.
Wang W, Dilcher DL, Sun G, Wang H-S, Chen Z-D. 2016. Accelerated evolution of early angiosperms: evidence from ranunculalean phylogeny by integrating living and fossil data. – J. Syst. Evol. 54: 336-341.
Wang W, Lin L, Xiang XG, Ortiz RDC, Liu Y, Xiang KL, Yu SX, Xing YW, Chen ZD. 2016. The rise of angiosperm-dominated herbaceous floras: insights from Ranunculaceae. – Sci. Rep. 6: 27259.
Wang W, Ortiz R Del C, Jacques FMB, Chung S-W, Liu Y, Xiang X-G, Chen Z-D. 2017. New insights into the phylogeny of Burasaieae (Menispermaceae) with the recognition of a new genus and emphasis on the southern Taiwanese and mainland Chinese disjunction. – Mol. Phylogen. Evol. 109: 11-20.
Wang W-Q, Deng Z-R, Hong D-Y. 1998. The systematic position of Beesia: evidence from ITS (nrDNA) sequence analysis. – Acta Phytotaxon. Sin. 36: 403-410.
Wang W-T. 1974. Notulae de Ranunculaceis sinensibus III. – Acta Phytotaxon. Sin. 12: 155-180.
Wang W-T, Hsiao P-K. 1965. Notulae de Ranunculaceis sinensibus II. – Acta Phytotaxon. Sin. Add. 1: 49-103.
Wang W-T, Hong L-Q, Wang Z. 1999. Notulae de Ranunculaceis sinensibus XXIII. – Acta Phytotaxon. Sin. 37: 209-219.
Wang W-T, Wang H-C, Chen Z-D. 2007. Phylogeny and morphological evolution of tribe Menispermeae (Menispermaceae) inferred from chloroplast and nuclear sequences. – Persp. Plant Ecol. Evol. Syst. 8: 141-154.
Wang X, Gong J-Z, Zhao L, Che X-F, Li H-N, Ren Y. 2016. Flower morphology and development of the monotypic Chinese genus Anemoclema (Ranunculaceae). – Plant Syst. Evol. 302: 683-690.
Wang X-M, Zhang P, Du Q-G, He H-X, Zhao L, Ren Y, Endress PK. 2012. Heterodichogamy in Kingdonia (Circaeasteraceae, Ranunculales). – Ann. Bot. 109: 1125-1132.
Wang X-Q, Hong D-Y Li Z-Y. 1993. A study on pollen and seed coat in the tribe Cimicifugeae and some allied genera (Ranunculaceae). – Cathaya 5: 131-149. [In Chinese]
Wang X-Q, Li Z-Y, Hong D-Y. 1994. A karyomorphological study of nine species in four genera of Ranunculaceae. – Cathaya 6: 43-56. [In Chinese]
Wang Z-F, Ren Y. 2008. Ovule morphogenesis in Ranunculaceae and its systematic significance. – Ann. Bot. 101: 447-462.
Warncke K. 1964. Die europäischen Sippen der Aconitum lycoctonum-Gruppe. – Ph.D. diss., Universität München, Germany.
Warnock MJ. 1981. Biosystematics of the Delphinium carolinianum complex (Ranunculaceae). – Syst. Bot. 6: 38-54.
Webster SD. 1991. A chromatographic investigation of the flavonoids of Ranunculus L. subgenus Batrachium (DC.) A. Gray (water buttercups) and selected species in subgenus Ranunculus. – Aquatic Bot. 40: 11-26.
Wefferling KM, Hoot SB, Neves SS. 2013. Phylogeny and fruit evolution in Menispermaceae. – Amer. J. Bot. 100: 883-905.
Werner K, Ebel F. 1994. Zur Lebensgeschichte der Gattung Helleborus L. (Ranunculaceae). – Flora 189: 97-130.
Werth E. 1941. Die Blütennektarien der Ranunculaceen und ihre phylogenetische Bedeutung. – Ber. Deutsch. Bot. Ges. 59: 246-256.
West WC. 1969. Ontogeny of oil cells in the woody Ranales. – Bull. Torrey Bot. Club 96: 329-344.
Wheeler MJ, Graaf BHJ de, Hadjiosif N, Perry RM, Poulter NS, Osman K, Vatovec S, Harper A, Franklin FCH, Franklin-Tong VE. 2009. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. – Nature 459: 992-995.
Wiegleb G. 1988. Notes on Japanese Ranunculus subgenus Batrachium. – Acta Phytotaxon. Geobot. 34: 117-132.
Wild H. 1960. 8. Berberidaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 171-173.
Wilkinson HP. 1978. Leaf anatomy of the tribe Coscinieae Hook. f. & Thomson (Menispermaceae). – Kew Bull. 32: 347-360.
Wilkinson HP. 1986. Leaf anatomy of Tinomiscium and Fibraurea (Menispermaceae tribe Fibraureeae) with special reference to laticifers and astrosclereids. – Kew Bull. 41: 153-169.
Wilkinson HP. 1989. Leaf anatomy of the Menispermaceae tribe Tiliacoreae Miers. – Bot. J. Linn. Soc. 99: 125-174.
Williams LHJ. 1972. Meconopsis taylorii, a new species from Nepal. – Trans. Bot. Soc. Edinb. 41: 347-349.
Woo H-K, Kim J-H, Yeau S-H, Lee NS. 2002. Morphological and isozyme divergence in Korean Hepatica sensu stricto (Ranunculaceae). – Plant Syst. Evol. 236: 33-44.
Woodcock CL, Bell PR. 1968. Features of ultrastructure of female gametophyte of Myosurus minimus. – J. Ultrastruct. Res. 22: 546-563.
Woodson RE. 1928. Dysosma: a new genus of Berberidaceae. – Ann. Missouri Bot. Gard. 15: 335-340.
Wu C-Y, Kubitzki K. 1993a. Circaeasteraceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 288-289.
Wu C-Y, Kubitzki K. 1993b. Lardizabalaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 361-365.
Wu J-Y, Qin H-N, He S-Z. 2009. A new species of Mahonia (Berberidaceae) from China. – Bot. J. Linn. Soc. 159: 357-361.
Wu Z-Y, Chuang H. 1980. A study on the taxonomic system of the genus Meconopsis. – Acta Bot. Yunnan. 2: 371-381.
Xi Y-Z, Ning J-C. 1993. Pollen morphology and its taxonomic significance of tribe Cimicifugeae. – Yushania 10: 45-60. [In Chinese]
Xi Y-Z, Ning J-C, Fu X-P. 1993. Pollen morphology of the tribe Trollieae and its taxonomic significance. – Cathaya 5: 115-130. [In Chinese]
Xia Q, Kong J. 1990. A study on the leaf morphology and anatomy of the Lardizabalaceae, Sargentodoxaceae, and their significance in taxonomy. – Bull. Bot. Res. North-East. For. Inst. (Harbin) 10: 113-128. [In Chinese]
Xia Q, Peng Z-X. 1989a. A study of the pollen morphology of Lardizabalaceae, Sargentodoxaceae, and its significance in taxonomy. – Bull. Bot. Res. North-East. For. Inst. (Harbin) 9: 99-114. [In Chinese]
Xia Q, Peng Z-X. 1989b. A study on the seed of Lardizabalaceae and Sargentodoxaceae 1. A SEM examination of testa. – Acta Phytotaxon. Sin. 27: 273-276. [In Chinese]
Xiang K-L, Aytaç Z, Liu Y, Espinosa F, Jabbour F, Byng JW, Zhang C-F, Erst AS, Wang W. 2017. Recircumscription of Delphinium subg. Delphinium (Ranunculaceae) and implications for its biogeography. – Taxon 66: 554-566.
Xiang K-L, Zhao L, Erst AS, Yu S-X, Jabbour F, Wang W. 2017. A molecular phylogeny of Dichocarpum (Ranunculaceae): implications for eastern Asian biogeography. – Mol. Phylogen. Evol. 107: 594-604.
Xiao P. 1980. A preliminary study of the correlation between phylogeny, chemical constituents and pharmaceutical aspects in the taxa of Chinese Ranunculaceae. – Acta Phytotaxon. Sin. 18: 142-153. [In Chinese]
Xiao W. 2013. Molecular systematics of Meconopsis Vig. (Papaveraceae): taxonomy, polyploidy evolution, and historical biogeography from a phylogenetic insight. – Ph.D. diss., the University of Texas at Austin, Texas.
Xiao W, Simpson BB. 2014. The role of the triploid hybrid in the evolution of Meconopsis (Papaveraceae): a preliminary study on ancient polyploid and hybrid speciation. – Lundellia 17: 5-17.
Xiao W, Simpson BB. 2015. Phylogenetic analysis of Meconopsis (Papaveraceae) and evaluation of two controversial taxonomic species. – Lundellia 18: 14-18.
Xiao W, Simpson BB. 2017. A new infrageneric classification of Meconopsis (Papaveraceae) based on a well-supported molecular phylogeny. – Syst. Bot. 42: 226-233.
Xie D, He J, Huang J, Xie H, Wang Y, Kang Y, Jabbour F, Guo J. 2015. Molecular phylogeny of Chinese Stephania (Menispermaceae) and reassessment of the subgeneric and sectional classifications. – Aust. Syst. Bot. 28: 246-255.
Xie L, Li L-Q. 2012. Variation of pollen morphology, and its implications in the phylogeny of Clematis (Ranunculaceae). – Plant Syst. Evol. 298: 1437-1453.
Xie L, Wen J, Li L-Q. 2011. Phylogenetic analysis of Clematis (Ranunculaceae) based on sequences of nuclear ribosomal ITS and three plastid regions. – Syst. Bot. 36: 907-921.
Yang Q-E. 1995. On the chromosomes of Calathodes (Ranunculaceae) and its systematic position. – Acta Phytotaxon. Sin. 33: 453-460. [In Chinese]
Yang Q-E. 1999. Correction of karyotype of diploid Beesia and discovery of a tetraploid cytotype. – Acta Phytotaxon. Sin. 37: 1-9.
Yang Q-E. 2002a. Cytology of the tribe Trollieae and of the tribe Cimicifugeae in the Ranunculaceae: a comparative study. – Acta Phytotaxon. Sin. 40: 52-65.
Yang Q-E. 2002b. Cytology of ten species in Anemone, one in Anemoclema and six in Clematis (Trib. Anemoneae, Ranunculaceae) from China. – Acta Phytotaxon. Sin. 40: 396-405.
Yang Q-E, Gong X, Gu Z-J, Wu Q-A. 1993. A karyomorphological study of five species in the Ranunculaceae from Yunnan, with a special consideration on systematic positions of Asteropyrum and Calathodes. – Acta Bot. Yunnan. 15: 179-190. [In Chinese]
Yang Q-E, Luo Y-B, Hong D-Y. 1994. A karyotypic study of six species in the Ranunculaceae from Hunan in China. – Guihaia 14: 27-36. [In Chinese]
Yang TYA, Moore DM. 1999. A revision of the Viorna group of species (section Viorna sensu Prantl) in the genus Clematis (Ranunculaceae). – Syst. Geogr. Plants 68: 281-303.
Yang W-J, Li L-Q, Xie L. 2009. A revision of Clematis sect. Atragene (Ranunculaceae). – J. Syst. Evol. 47: 552-580.
Ying M, Xie H, Nie Z, Gu Z, Yang Y. 2006. A karyomorphological study on four species of Meconopsis Vig. (Papaveraceae) from the Hengduan Mountains, SW China. – Caryologia 59: 1-6.
Ying T-S. 1975. On the Chinese species of Epimedium. – Acta Phytotaxon. Sin. 13: 49-56. [In Chinese]
Ying T-S. 1979. On Dysosma Woodson and Sinopodophyllum Ying, gen. nov. of the Berberidaceae. – Acta Phytotaxon. Sin. 17: 15-23. [In Chinese]
Ying T-S, Terabayashi S, Boufford DE. 1984. A monograph of Diphylleia (Berberidaceae). – J. Arnold Arbor. 65: 57-94.
Yong W, Su Q. 1993. Researches of the anatomy of vegetative organs in relation to the systematic position of the Sinofranchetia Hemsl. – Act. Bot. Boreal.-Occident. Sin. 13: 57-59. [In Chinese]
Yoshida O, Michikawa A. 1973. Embryological studies of genus Akebia Decaisne. – J. Coll. Arts Chiba Univ., Sect. B, 6: 25-37.
Yu C-C, Chung K-F. 2017. Why Mahonia? Molecular recircumscription of Berberis s.l., with the description of two new genera, Alloberberis and Moranothamnus. – Taxon 66: 1371-1392.
Yuan C. 2002. The phylogeny, systematics and biogeography of Meconopsis Vig. (Papaveraceae) and Craigia W. W. Sm. & W. E. Evans (Tiliaceae). – Ph.D. diss., Zhong Shan University. Guangzhou.
Yuan Q, Yang Q-E. 2006a. Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae: evidence from cytological characters. – Bot. J. Linn. Soc. 150: 267-289.
Yuan Q, Yang Q-E. 2006b. Polyploidy in Aconitum subgenus Lycoctonum (Ranunculaceae). – Bot. J. Linn. Soc. 150: 343-353.
Yuan Q, Yang Q-E. 2006c. Cytology, palynology, and taxonomy of Asteropyrum and four other genera of Ranunculaceae. – Bot. J. Linn. Soc. 152: 15-26.
Yuan Q, Yang Q-E. 2008. Low incidence of polyploids and high uniformity of karyotypes displayed by Delphinium (Ranunculaceae) in the Hengduan Mountains region of South-West China. – Bot. J. Linn. Soc. 158: 172-188.
Yuan Y, Peng Z. 1987. The karyotype analysis of Helleborus thibetanus Franch. – Acta Bot. Bor.-Occid. Sin. 7: 133-137. [In Chinese]
Zamora PM. 1966. Studies on the primary xylem elements in the order Ranales (sensu lato): a systematic survey. – Philipp. Agr. 50: 389-623.
Zhang L-B, Rao G-X. 2009. Aporphine, protoberberine and morphine alkaloids from the tubers of Stephania yunnanensis. – Biochem. Syst. Ecol. 37: 622-625.
Zhang M-L, Uhink CH, Kadereit JW. 2007. Phylogeny and biogeography of Epimedium/Vancouveria (Berberidaceae): western North America-East Asian disjunctions, the origin of European mountain plant taxa, and East Asian species diversity. – Syst. Bot. 32: 81-92.
Zhang M-Y, Lu L, Li D-Z, Wang H. 2012. Evolution of pollen in the family Berberidaceae. – Plant Div. Res. 34: 1-12. [in Chinese]
Zhang X-H, Ren Y. 2008. Floral morphology and development in Sargentodoxa (Lardizabalaceae). – Intern. J. Plant Sci. 169: 1148-1158.
Zhang X-H, Ren Y. 2011. Comparative floral development in Lardizabalaceae (Ranunculales). – Bot. J. Linn. Soc. 166: 171-184.
Zhang X-H, Tian X-H, Pan L-Z. 2005. Anatomical studies on Sinofranchetia chinensis (Lardizabalaceae) and their systematic significance. – Bot. J. Linn. Soc. 149: 271-281.
Zhang X-H, Ren Y, Tian X-H. 2009. Floral morphogenesis in Sinofranchetia (Lardizabalaceae) and its systematic significance. – Bot. J. Linn. Soc. 160: 89-92.
Zhang Y, Hon Y, Ren C, Tang M, Hoot S, Yang
Q-E. 2015. Palynology, cytology, and molecular systematics of Anemone
section Begoniifolia (Ranunculaceae). – Plant Syst.
Evol. 301: 411-424.
Zhang Y, Kong H-H, Yang Q-E. 2015. Phylogenetic relationships and taxonomic status of the monotypic Chinese genus Anemoclema (Ranunculaceae). – Plant Syst. Evol. 301: 1335-1344.
Zhang Y-L. 1983. Pollen morphology of Kingdonia uniflora and its taxonomic significance. – Acta Phytotaxon. Sin. 21: 441-444. [In Chinese]
Zhang Z-Y. 1982. Chromosome observation of three ranunculaceous genera in relation to their systematic position. – Acta Phytotaxon. Sin. 20: 402-409. [In Chinese]
Zhao L, Liu P, Che X-F, Wang W, Ren Y. 2011. Floral organogenesis of Helleborus thibetanus and Nigella damascena (Ranunculaceae) and its systematic significance. – Bot. J. Linn. Soc. 166: 431-443.
Zhao L, Bachelier JB, Chang, H-L, Tian X-H, Ren Y. 2012. Inflorescence and floral development in Ranunculus and three allied genera in Ranunculeae (Ranunculoideae, Ranunculaceae). – Plant Syst. Evol. 198: 1057-1071.
Zhao L, Wang W, Ren Y, Bachelier JB. 2012. Floral development in Asteropyrum (Ranunculaceae): implications for its systematic position. – Ann. Bot. Fenn. 49: 31-42.
Zhou L-H. 1979. New taxa of Meconopsis fron Qinghai-Tibet Plateau. – Acta Phytotaxon. Sin. 17: 112-114. [In Chinese]
Zhou L-H. 1980. Study on the Meconopsis of Qinghai-Tibet Plateau. – Bull. Bot. Lab. N.E. Forest. Inst. 8: 91-101. [In Chinese]
Zhuang X. 1993. The taxonomy, evolution and distribution of Papaveraceae. – Acta Bot. Yunnan. 15: 137-148. [In Chinese]
Ziman SN. 1983. Evolutionary tendencies and phylogeny of the Helleborus L. genus. – Ukr. Bot. Žurn. 40: 43-46. [In Ukrainian]
Ziman SN, Keener CS. 1989. A geographical analysis of the family Ranunculaceae. – Ann. Missouri Bot. Gard. 76: 1012-1049.
Ziman SN, Keener CS, Kadota Y, Bulakh EV, Tsarenko ON. 2006. A revision of Anemone L. (Ranunculaceae) from the Southern Hemisphere. – J. Jap. Bot. 81: 193-224.
Ziman SN, Bulakh EV, Kadota Y, Keener CS. 2008. Modern view on the taxonomy of the genus Anemone L. sensu stricto (Ranunculaceae). – J. Jap. Bot. 83: 127-155.
Zonneveld BJM. 2001. Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. – Plant Syst. Evol. 229: 125-130.
Zunnunzhanov A, Iskandarov S, Yunusov SY. 1971. Darvasamine – a new alkaloid from Leontice darvasica. – Chem. Nat. Compd. 7: 838-839.