CARYOPHYLLIDAE Takht.

Takhtajan, Sist Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 144. 4 Feb 1967


[Berberidopsidales+Caryophyllales]


CARYOPHYLLALES Juss. ex Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 239. Jan-Apr 1820 [‘Caryophyllaceae’]

Caryophyllanae Takht., Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 144. 4 Feb 1967

Fossils There are relatively few unambiguous fossils of Caryophyllales. Fossil flowers (e.g. Caryophylloflora paleogenica) with pantoporate pollen grains and campylotropous ovules, but with segmented ovary, have been found in Late Cretaceous (Turonian) and Eocene layers.

Habit Usually bisexual (sometimes monoecious, andromonoecious, gynomonoecious, polygamomonoecious, dioecious, androdioecious, or gynodioecious), usually perennial, biennial or annual herbs (sometimes evergreen or deciduous trees, shrubs, suffrutices or lianas). Often leaf or stem succulents. Often halophytes. Often with spines. C4 or CAM (crassulacean acid metabolism) physiologies often present as well as Kranz’ anatomy. Often mucilaginous. Sometimes carnivorous.

Vegetative anatomy Mycorrhiza absent in most groups (present in, i.a., Amaranthaceae and Nyctaginaceae). Root hair cells arranged in vertical rows. Phellogen epidermal, subepidermal, outer-cortical or pericyclic, or absent. Stem cortex often with two zones, outer with thick-walled fibrous cells, inner with thin-walled cells. Secondary lateral growth normal or anomalous (from concentric/successive cambia or from inner whorl of vascular bundles), or absent. Vessel elements with simple perforation plates; lateral pits usually alternate (sometimes opposite or pseudoscalariform), usually simple (sometimes bordered) pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres (sometimes tracheids) with usually simple (sometimes bordered) pits, septate or non-septate (sometimes also vasicentric tracheids). Vestured pits sometimes present. Wood rays uniseriate or multiseriate, homocellular or heterocellular, or absent. Axial parenchyma apotracheal, diffuse (sometimes diffuse-in-aggregates), or paratracheal, scanty vasicentric, aliform, winged-aliform, confluent, unilateral, or banded, or absent. Intraxylary phloem rarely present. Sieve tube plastids S0, Ss, Pcs, P3c, P3cf, P3c’f, P3f, P3c’’f, P3cfs, or P3c’’fs type. Nodes usually 1:1, 1:3 or 3:3, unilacunar or with one or three leaf traces, or trilacunar with three traces (sometimes 5–9:5–9, multilacunar with five to nine traces). Parenchyma often with mucilaginous cells, often with sclereids. Wood with idioblasts containing sphaerites. Tanniniferous cells sometimes present. Silica bodies sometimes present in parenchyma cells. Calciumoxalate often present as druses, sphaerites, styloids, raphides, prismatic or acicular crystals, or crystal sand.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched (two-branched, T-shaped, dendritic, candelabra-shaped, stellate, fasciculate, lepidote, rosulate, barbed or vesicular), or absent; glandular hairs often frequent, multicellular, stalked or sessile (occasionally peltate-lepidote; sometimes secreting viscous mucilage).

Leaves Alternate (usually spiral, rarely distichous) or opposite (rarely verticillate), simple, usually entire (rarely lobed), often succulent, with conduplicate, supervolute, flat, involute or circinate ptyxis (sometimes scale-like or absent). Stipules usually absent (sometimes intrapetiolar); leaf sheath usually absent (leaf bases sometimes sheathingly connate). Petiole vascular bundle transection arcuate or annular, with peripheral ring of fibres. Venation pinnate or palmate, brochidodromous or parallelodromous (sometimes indistinct; leaves sometimes one-veined). Stomata usually paracytic, diacytic or anomocytic (sometimes anisocytic, cyclocytic, tetracytic or actinocytic, rarely brachyparacytic). Cuticular wax crystalloids as rodlets, threads or platelets, or absent. Leaf margin usually entire (rarely dentate, sinuate, serrate or glandular-serrate). Salt-secreting glands sometimes present.

Inflorescence Terminal or axillary, cymose combinations of dichasia and cincinni, thyrsoid, fasciculate, panicle, raceme-, spike- or head-like (flowers sometimes single). Floral prophylls (bracteoles) sometimes numerous, sometimes absent.

Flowers Usually actinomorphic (rarely zygomorphic). Hypanthium sometimes present. Usually hypogyny (rarely half epigyny). Sepals (one to) five (to 23), usually with imbricate (sometimes valvate, induplicate-valvate or open, rarely valvate-decussate, plicate or descending-cochlear) aestivation, free or more or less connate. Petals alt. petaloid staminodia (four or) five, with contorted or imbricate aestivation, free, or absent. Nectaries/nectariferous disc present at staminal bases or in tube formed by filament bases and petal bases or on inner side of receptacle, or nectary and disc absent.

Androecium Stamens (one to) five to more than 4.000 (staminal primordia usually five), in one or more whorls or in several groups (outer stamens often initiated in pairs), antetepalous when stamens isomerous relative to tepals; staminal development usually centrifugal. Filaments free or more or less connate, sometimes adnate to sepals or petals. Anthers basifixed or dorsifixed (sometimes latrorse), versatile or non-versatile, usually tetrasporangiate (rarely disporangiate), usually introrse (sometimes extrorse), usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pores or pore-like slits); outer parietal cells developing directly into endothecium. Tapetum usually secretory (rarely amoeboid-periplasmodial). Female flowers often with staminodia (staminodia sometimes numerous in bisexual flowers). ‘Petaloids’ possibly in reality petaloid staminodia, developing simultaneously as or after androecium (not prior to); petaloid staminodia (’petals’) and ’antepetalous’ stamens possibly forming a developmental unit.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (rarely di- or tricolporate, or di- or tricolporoidate) or tetra-, hexa- or polypantoporate (sometimes tri- or hexarugate, rarely 4–12-colpate, spiraperturate, triporate, etc.), shed as monads, usually tricellular rarely bicellular) at dispersal. Exine tectate or semitectate (rarely intectate), with columellate infratectum, perforate, microperforate, punctate, punctitegillate or reticulate, scabrate, or spinulate.

Gynoecium Pistil composed of (one or) two to five (to numerous) free or connate carpels; closure of carpels sometimes delayed in at least Polygonaceae and in “the betalain clade” (Caryophyllales s.str.). Ovary superior, semi-inferior or inferior, unilocular to multilocular; ovary sometimes with subepidermal cell layer containing large amounts of calciumoxalate. Stylodia two to five, free or more or less connate, or style single, simple; style sometimes unifacial. Stigmas two to five, or stigma one, capitate or lobate, papillate, Dry type. Pistillodium usually absent (male flowers often with pistillodium).

Ovules Placentation axile, basal, basal-parietal, basal-lateral or free central (sometimes parietal-laminar, rarely apical or basal-laminar). Ovules one to numerous per carpel, campylotropous, hemianatropous or anacampylotropous (rarely anatropous, circinotropous or amphitropous), ascending, erect, horizontal or pendulous, apotropous or epitropous, usually bitegmic (rarely unitegmic), crassinucellar (rarely tenuinucellar). Placental or funicular obturator sometimes present. Micropyle usually endostomal (rarely bistomal). Funicle often with short hairs directed against micropyle. Megasporangium usually thin. Archespore unicellular to tricellular, only one developing further. Nucellar cap or nucellar beak often present. Apical cells of megasporangium often radially elongate, forming nucellar pad. Megagametophyte usually monosporous, Polygonum type (rarely disporous or tetrasporous, Allium, Adoxa,Endymion, Penaea, Drusa, Fritillaria, Chrysanthemum, Plumbago, or Plumbagella type). Synergids sometimes with a filiform apparatus. Antipodal cells three, ephemeral, sometimes with early degenerating nuclei. Chalazal caecum developed. Endosperm development ab initio usually nuclear (sometimes cellular). Endosperm haustoria chalazal or absent. Embryogenesis caryophyllad, chenopodiad or solanad (sometimes onagrad or asterad).

Fruit Usually a loculicidal and/or septicidal (rarely denticidal, circumscissile or valvate) capsule (sometimes a nut or an irregularly dehiscing capsule; rarely a berry, a berry-like fruit, a drupe, a schizocarp or a syncarp), sometimes with persistent calyx. Bracts and floral prophylls often partitioning in formation of dispersal unit.

Seeds Aril usually absent. Seed coat usually exotestal and/or endotegmic. Exotesta often tanniniferous; outer exotestal wall sometimes with stalactite-like processes. Endotesta sometimes thickened, often crystalliferous. Exotegmen? Endotegmen sometimes with rod-shaped thickenings in cell walls, often tanniniferous. Perisperm copious, starchy (with starch grains), surrounded by embryo, or not developed. Endosperm copious, sparse or absent. Embryo usually lateral-peripheral, curved around perisperm or straight (rarely cochleate or annular), with or without chlorophyll. Cotyledons usually two (rarely one or three). Germination phanerocotylar.

Cytology x = (4–)5–19

DNA Three large deletions present in plastid ORF2280. Intron absent from plastid gene rpl2. The plastid gene rpl23 is a pseudogene at least in the Caryophyllales analysed. I copy of nuclear gene RPB2 lost. Mitochondrial intron coxII.i3 sometimes lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), flavonol sulphates, flavone-C-glycosides (vitexin, isovitexin), flavones (e.g. luteolin), isoflavones, glycoflavones, cyanidin, delphinidin, catechines, anthocyanins or betalains (betacyanins, e.g. amaranthin, celosianin, betamin, phyllocactin, and betaxanthins), oleanolic acid derivatives, sterols, methylated and non-methylated ellagic acids, gallic acid, tannins, proanthocyanidins (prodelphinidins), mesembrine, tyramine alkaloids, phenethylamines, peyote alkaloids, indole alkaloids, tetrahydroisoquinoline alkaloids, acetogenic benzylisoquinoline alkaloids, naphthyl-isoquinoline alkaloids (e.g., ancistrocline, dioncophylline, michellamines), cyanogenic compounds (e.g. cyclopentenoid cyanogenic glycosides), betaine, triterpene saponins, anthraquinones, acetophenones, naphthoquinones and naphthoquinone derivatives (plumbagin, droserone, 5-O-methyl droserone, 7-methyljuglone, hydroxyserone; toxic naphthoquinones and their derivatives act as antimicrobial protectors and at least plumbagin as an insect ecdysis inhibitor e.g. in the pitchers of Nepenthes), simmondsin, fagopyrine, protofagopyrine, syringaresinol, oxalic acid, phytoferritin, phytoecdysones, cyclopeptides, and pinitol present. Ferulic acid often present in non-lignified cell walls. Inulin rarely present. Sulphated betalains present in the clade [Phytolaccaceae+ Petiveriaceae+Agdestis]. Benzylisoquinoline alkaloids and betalains both derived via shikimic acid (especially phenylalanine) pathway.

Systematics Caryophyllales are sister-group to Berberidopsidales.

Two strongly supported main clades can be discerned. One large monophyletic group comprises “the carnivorous clade” plus [[Tamaricaceae+Frankeniaceae]+[Polygonaceae+Plumbaginaceae]]. The second main clade includes [Rhabdodendraceae+[Simmondsiaceae+[Asteropeiaceae+Physenaceae]]] plus the core Caryophyllales in the strict sense.

Potential synapomorphies of the first main clade are according to Stevens (2001 onwards): presence of pit glands; endosperm starchy; and presence of acetogenic naphthoquinones. The first of the two subclades, “the carnivorous clade”, has the topology [[Droseraceae+Nepenthaceae]+[Drosophyllaceae+[Ancistrocladaceae+Dioncophyllaceae]]] and is characterized by the following potential synapomorphies: presence of vascularized multicellular glands; cymose inflorescence; corolla with contorted aestivation; extrorse anthers; unilocular ovary; and presence of plumbagin present. A clade identified in some analyses has the topology [Nepenthaceae+[Drosophyllaceae+[Ancistrocladaceae+Dioncophyllaceae]]] and the synapomorphies: presence of fibriform vessel elements; wood rays one or two cells wide; leaf vernation abaxially circinate; petiole vascular bundles surrounded by massive sclerenchymatous cylinder with embedded bundles; presence of wing bundles; and basifixed anthers. Ancistrocladaceae and Dioncophyllaceae share the following characters: climbing woody habit; phellogen deeply seated; absence of cortical vascular bundles; petiole with inverted vascular bundles in sclerenchyma cylinder; actinocyclocytic stomata; introrse anthers; and acetogenic naphthyl isoquinoline alkaloids biosynthesized from polyketides (not from aromatic amino acids).

The clade [[Frankeniaceae+Tamaricaceae]+[Plumbaginaceae+Polygonaceae]] is sometimes discerned and has the potential synapomorphies (Stevens 2001 onwards): vessel elements with minute lateral wall pits; outer and inner integuments two or three cell layers thick; exotestal seed coat; and presence of sulphated flavonols and ellagic acid. Frankeniaceae and Tamaricaceae share the characters: wood storied; halophytic habit with small leaves covered by salt-excreting glands; flowers small, tetra- to hexamerous; petals with basal adaxial appendages; exine not spinulate; median carpel abaxial; placentation usually parietal; loculicidal capsule; exotestal cells bulging or as hairs; presence of endosperm; presence of bisulphated flavonols; and absence of myricetin. Plumbaginaceae and Polygonaceae share the synapomorphies: wood storied; absence of successive cambia; presence of cortical and/or medullary vascular bundles; nodes 3:3; wide leaf bases; pollen grains usually starchy; median carpel adaxial; ovary unilocular; placentation basal; ovule one per carpel; fruit an anthocarp surrounded by accrescent calyx forming part of dispersal unit; seed coat indistinguished except persistent exotesta; loss of mitochondrial intron coxII.i3; and presence of O-methylflavonols, myricetin and quinones.

The second main clade has the topology [Rhabdodendraceae+[Simmondsiaceae+[[Asteropeiaceae+Physenaceae]+[Macarthuriaceae+[Microteaceae+[[Caryophyllaceae+[Achatocarpaceae+Amaranthaceae]]+[Stegnospermataceae to Cactaceae]]]]]]] and the potential synapomorphies (Stevens 2001 onwards): filament much shorter than anther; stylodia stigmatic (receptive) their entire length; ovules one or two per carpel; fruit single-seeded; and endosperm sparse. This clade minus Rhabdodendron is characterized by nodes 1:1 and absence of petals. Asteropeia and Physena lack successive cambia; have a vascular cylinder in the young stem; fibre tracheids; vasicentric tracheids; wood rays one or two cells wide; aliform-confluent axial parenchyma; latrorse anthers; and one-seeded fruit.

The core Caryophyllales – “the betalain clade” – comprise [Macarthuriaceae+[Microteaceae+[[Caryophyllaceae+[Achatocarpaceae+Amaranthaceae]]+[Stegnospermataceae to Cactaceae]]]]. Hence, they include the caryophyllids in the traditional strict sense. It is a group with very high bootstrap support and characterized by a large number of potential synapomorphies (Stevens 2001 onwards): herbaceous habit; absence of normal secondary lateral growth; CAM photosynthesis and C4 photosynthesis frequently present; sieve tube plastids P-type, with a central angular protein crystal surrounded by a ring of protein filaments; absence of pericyclic fibres; cymose inflorescence; presence of adaxial nectaries on stamen bases; pollen grains tricellular at dispersal; exine with thin foot layer; median carpel adaxial; ovary unilocular; stigmas papillate; placentation free central or basal; ovules campylotropous; thickened exotestal and endotegmic cells; endotegmic cells with bar-like thickenings; perisperm well developed; absence of endosperm; starch grains clustered; embryo curved and periferal; cotyledons incumbent; absence of mitochondrial gene rps10; absence of plastid gene rpl2 intron; ferulic acid ester-linked to unlignified primary cell walls; presence of flavonols and O-methylated flavonols, quinones, usually betalains (chromoalkaloids) instead of anthocyanins, triterpenoid saponins and phytoferritin; and absence of tannins and myricetin. Usually phenylalanine-derived shikimic acid biosynthesis as starting point for synthesis of benzylisoquinoline alkaloids and betalains. An undifferentiated perianth evolved after the separation of the Rhabdodendron lineage, and a differentiated perianth may have originated at least nine times (Brockington & al. 2009): Asteropeia, Caryophyllaceae, Stegnosperma, species of Limeum, Corbichonia, Mesembryanthemoideae and Ruschioideae in Aizoaceae, Mirabilis in Nyctaginaceae, Glinus in Molluginaceae, Portulaca, Didiereaceae, Basellaceae, and Cactaceae.

The clade [Caryophyllaceae+[Achatocarpaceae+Amaranthaceae]] has the potential synapomorphies: stamens as many as tepals, antetepalous; a single ovule; parietal tissue approx. four cell layers thick; nucellar cap two to four cell layers thick; especially outer exotestal cell walls thick, with stalactite-like processes; mitochondrial genes rps1 and rps19 absent (lost); and often presence of phytoecdysteroids.

The lineages “above” Stegnosperma are characterized by apotropous ovules. “The globular inclusion clade” comprises Lophiocarpaceae to Cactaceae and posesses sieve tube plastids with globular crystalloids. The clade comprising Sarcobataceae, Nyctaginaceae, Agdestidaceae, Phytolaccaceae and Petiveriaceae often forms an unresolved polytomy (sometimes also including Gisekiaceae). It is characterized by a single usually basal ovule per carpel; similarities in ORF2280 sequence; and a 210 bp deletion in the plastid genome. They have usually (Sarcobatus?) a subepidermal phellogen; also paracytic stomata; and protein bodies in the nucleus. This clade minus Nyctaginaceae has racemose inflorescence and a baccate fruit.

The second large clade of “the globular inclusion lineage” comprises Molluginaceae to Cactaceae. The clade with the topology (Brockington & al. 2013) [[[Montiaceae+Halophytaceae]+[Didieraceae+Basellaceae]]+[Talinaceae+[Portulacaceae+[Anacampserotaceae+Cactaceae]]]] (Portulacineae, of Nyffeler & Eggli 2010; Cactineae of Ocamp & Columbus 2010) has the following potential synapomorphies, according to Stevens (2001 onwards): succulent leaves and/or stem; normal secondary lateral growth; phloem parenchyma cells with phytoferritin; stem epidermis with calciumoxalate crystals; presence of mucilage cells; leaves amphistomatic; median inner pair of floral prophylls enclosing flower; hypogyny; petaloid tepals; median tepal abaxial (opposite outer median floral prophyll); pollen grains pantocolpate; absence of funicular obturator; and a six bp deletion in plastid gene ndhF. The clade [Talinaceae+[Portulacaceae+[Anacampserotaceae+Cactaceae]]] is further characterized by columellae narrowed towards middle or expanded towards base, sometimes fused; pollen grains with granular internal surfaces; perforated foot layer; and very thin non-apertural endexine (Nowicke 1996). Halophytaceae, Basellaceae and Didiereaceae sometimes form a monophyletic group, with Halophytum sister to the remainder. Potential synapomorphies are ovary with a single basal ovule; and a single-seeded indehiscent fruit. Basellaceae may be sister-group to Didiereaceae or even nested within that clade (Didiereaceae and Basellaceae have often paracytic stomata). In this case, Halophytum may be sister to Didiereaceae including Basellaceae.

The monophyletic group [Talinaceae+[Portulacaceae+[Anacampserotaceae+Cactaceae]]] is supported by the potential synapomorphies (Stevens 2001 onwards): presence of mucilaginous cells; absence of pericyclic fibres; leaves with axillary uniseriate, biseriate or multiseriate hairs, bristles or scales; stomata parallelocytic (stoma with a lateral series of at least three alternating subsidiary cells increasing in size away from guard cells; also present in Montiaceae); pericarp two-layered; fruit covered by dry tepals; exocarp completely or almost caducous. Portulacaceae and Cactaceae may be sister-groups, according to Ocampo & Columbus (2010), using data mainly from non-coding plastid DNA. Portulaca and at least Pereskia share, e.g., a c. 500 bp deletion in rbcL, and non-lignified parenchyma cells are sometimes present in the wood in Portulaca and Cactaceae. On the other hand, Nyffeler & Eggli (2010), using sequence data from matK and ndhF, identified Anacampserotaceae and Cactaceae as sister-groups (they share among morphological features the character of numerous stamens). A special arrangement of testa cells along the dorsal juncture, presence of a dry aril and a central field type of cuticular ornamentation are characteristic features in several clades of Caryophyllales such as Cactaceae and Portulacaceae (Barthlott 1984).

A characteristic feature of the “ACPT clade” (Talinaceae, Portulaca, Anacampserotaceae and Cactaceae) are the non-vascularized hair-, bristle- or scale-like trichomes present at the nodes in the leaf axils (sometimes on internodes or on the lamina) (Ogburn & Edwards 2009). They arise from the epidermis and are persistent. The hair-like trichomes are either uniseriate or multiseriate (three or more cells in width). The bristle-like trichomes are wide, flat and multiseriate (up to more than 20 cells in width). The species in Anacampseros sect. Avonia possess wide scale-like trichomes which entirely surround the leaf distal to the subtending leaf; these scales are apically lignified. Bristle-like trichomes have been reported from species in Anacampserotaceae, whereas hair-like trichomes are present in Portulaca, Anacampserotaceae and Cactaceae. Membranous, often paired, scale-like trichomes are present in Talinum (Talinaceae). They have often been interpreted as homologous with the axillary trichomes, although they seem to be apices of vascularized prophylls subsequently often developing into leaves (Ogburn & Edwards 2009).

Problems concering homologies of the perianth parts are notorious in Caryophyllales. A uniseriate perianth is most probably plesiomorphic in Caryophyllales, and the uniseriate floral organs may be homologous (Brockington & al. 2009). A perianth may have originated by formation of homologous organs (perhaps in most lineages of Caryophyllales), or by differentiation of structures derived either from the androecium (in Corbichonia in Lophiocarpaceae, in the [Mesembryanthemoideae+Ruschioideae] clade of Aizoaceae, and in Molluginaceae) or from bracts (in Nyctaginaceae and in the “ACPT” clade), whereas ‘petaloid staminodia’ refer to floral parts that are anambiguously derived from the androecium. The terms ‘sepaloid tepals’ and ‘petaloid tepals’ are applied to floral organs (with quincuncial-imbricate aestivation) present in the core clade of Caryophyllales (Brockington & al. 2009). ‘Petaloid tepals’ in Caryophyllaceae, Stegnosperma, and Limeaceae have often been interpreted as modified stamens (e.g. Ronse De Craene 2007, 2008, etc.).

Phylogeny of Caryophyllales based on DNA sequence data (“core Caryophyllales” – Caryophyllineae: Brockington & al. 2013; “basal Caryophyllales” – Polygonineae: Brockington & al. 2009). ‘Hypertelis’ on this tree (according to Brockington & al. 2013) is now synonymous with Kewaceae, whereas the monospecific Hypertelis s. str. (H. spergulacea) is nested inside Molluginaceae> (Christenhusz & al. 2014).

ACHATOCARPACEAE Heimerl

( Back to Caryophyllales )

Heimerl in Engler et Prantl, Nat. Pflanzenfam., ed. 2, 16c: 174. Jan-Apr 1934, nom. cons.

Genera/species 2/c 11

Distribution California, Texas, Mexico to Paraguay and Argentina.

Fossils Unknown.

Habit Dioecious, evergreen trees or shrubs. Apices of short shoots often modified into spines.

Vegetative anatomy Phellogen ab initio superficial. Phelloderm with thick-walled sclereid cells. Secondary lateral growth normal (successive cambia absent). Vessel elements with simple perforation plates; lateral pits opposite or alternate, simple pits. Imperforate tracheary xylem elements libriform fibres with simple pits. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma (paratracheal) scanty vasicentric. Wood non-storied. Pericycle with sclerenchyma and stone cells. Phloem fibres present (scattered in older secondary phloem). Sieve tube plastids P3c’f type, with a single polygonal central protein crystal and a subperipheral dense ring of protein fibrils. Nodes? Tanniniferous cells often present. Calciumoxalate druses, sphaerites and prismatic crystals present (raphides and styloids absent).

Trichomes Hairs absent on older individuals; younger individuals with short hairs.

Leaves Alternate (spiral), simple, entire, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids as lobed platelets (often arranged in groups). Leaf margin entire.

Inflorescence Axillary, raceme-like, fasciculate or panicle. Foliar prophylls (bracteoles) absent in Achatocarpus.

Flowers Actinomorphic, small. Hypogyny. Tepals five (Achatocarpus) or usually four (rarely five; Phaulothamnus), with imbricate quincuncial (Achatocarpus) or decussate (Phaulothamnus) aestivation, sepaloid, free. Nectary absent. Disc absent.

Androecium Stamens ten to 20 (Achatocarpus) or twelve to 14 (Phaulothamnus). Filaments thin, free or connate at base. Anthers basifixed, non-versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tetraporate to hexaporate or apertures more or less irregular and often little delimited, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, microperforate, scabrate (beset with microspinules) or coarsely granulate.

Gynoecium Pistil composed of two usually free carpels (sometimes slightly connate at base), collateral or superposed. Ovary superior, unilocular. Stylodia two, long, hairy and papillate, free or connate at base. Stigmas two, acute, hairy and papillate, type? Pistillodium absent.

Ovules Placentation basal. Ovule usually one (rarely two) per ovary, campylotropous, ascending, bitegmic, crassinucellar. Funicle present. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A usually one-seeded (occasionally two-seeded) berry.

Seeds Aril tiny (present at hilum). Testa? Outer exotestal wall with stalactite-shaped outgrowths? Tegmen? Perisperm copious, mealy. Endosperm rudimentary or absent. Embryo annular, peripheral, enclosing perisperm, chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Flavone-C-glycosides (vitexin, isovitexin) and tannins present. Anthocyanin and betalains? Ferulic acid in non-lignified cell-walls? Ellagic acid not found.

Use Medicinal plants.

Systematics Achatocarpus (c 10; southern Mexico to Paraguay and Argentina), Phaulothamnus (1; P. spinescens; California, Texas, northern Mexico, Tres Marias Islands).

AGDESTIDACEAE (Baill.) Nakai

( Back to Caryophyllales )

Nakai in J. Jap. Bot. 18: 104. 10 Mar 1942

Genera/species 1/1

Distribution Southern United States to Nicaragua.

Fossils Unknown.

Habit Bisexual, evergreen, more or less lignified liana. Roots often napiform.

Vegetative anatomy Phellogen ab initio subepidermal. Secondary lateral growth anomalous (via concentric/successive cambia). Vascular bundles present as concentric cylinders in inner pericycle. Vessel elements with simple perforation plates; lateral pits alternate, simple pits. Imperforate tracheary xylem elements libriform fibres and tracheids with simple pits, septate or non-septate (also vasicentric tracheids). Wood rays absent. Axial parenchyma apotracheal, diffuse, or paratracheal. Wood non-storied. Tyloses sometimes present in vessels. Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by a ring of protein filaments. Nodes? Parenchyma with idioblasts containing calciumoxalate as coarse raphide-like crystals.

Trichomes Hairs?

Leaves Alternate (spiral), simple, entire, with conduplicate ptyxis. Stipules and leaf sheath absent. Petiole twisted at base. Petiole vascular bundles? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids as rounded platelets. Idioblasts with calciumoxalate as coarse raphide-like crystals. Leaf margin entire.

Inflorescence Axillary, thyrsoid or panicle. Foliar prophylls (bracteoles) present.

Flowers Actinomorphic, small. Half epigyny. Tepals usually four (in terminal flowers sometimes five), with imbricate? aestivation, sepaloid, persistent, usually free (sometimes connate at base). Nectariferous disc narrow.

Androecium Stamens (twelve to) 15 to c. 30, in alternitepalous fascicles. Filaments filiform, usually connate at base (sometimes free), free from tepals, inserted at nectariferous disc. Anthers dorsifixed, versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, punctate or perforate, scabrate, spinulate or smooth.

Gynoecium Pistil composed of (three or) four connate carpels. Ovary semi-inferior, ab initio (trilocular or) quadrilocular, later usually unilocular by degeneration of remaining locules. Style single, simple, short, cylindrical. Stigma (trilobate or) quadrilobate, recurved, papillate on ventral side, type? Pistillodium absent.

Ovules Placentation basal to axile. Ovule one per carpel, hemianatropous (or campylotropous?), bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue approx. two cell layers thick. Hypostase present. Nucellar cap massive. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A one-seeded unilocular achene with wings formed by persistent and accrescent dry tepals. Pericarp coriaceous, with reticulate pattern, adnate to seed coat.

Seeds Aril absent. Testa? Tegmen? Perisperm probably copious and nutritious. Endosperm poorly developed or absent. Embryo peripheral, curved around perisperm, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = 9 – Cell nuclei with protein bodies?

DNA 210 bp deletion present in plastid DNA?

Phytochemistry Betacyanins and betaxanthins present. Proanthocyanidins and alkaloids not found. Triterpenoid saponins? Free oxalates accumulated?

Use Medicinal plant, ornamental plant.

Systematics Agdestis (1; A. clematidea; southern United States, Mexico, Central America southwards to Nicaragua, probably introduced in the West Indies and Brazil).

Agdestis is sister to Sarcobatus, according to Brockington & al. (2013).

AIZOACEAE Martinov

( Back to Caryophyllales )

Martinov, Tekhno-Bot. Slovar: 15. 3 Aug 1820 [’Aizoonides’], nom. cons.

Mesembryanthemaceae Philib., Intr. Bot., ed. 2, 3: 268. 20 Dec 1801, [‘Mesembraceae’], nom. rejic.; Galeniaceae Raf. in Amer. J. Sci. 1: 376. Mai-Dec 1819; Mesembryaceae Dumort., Anal. Fam. Plant.: 37, 41. 1829 [‘Mesembryneae’]; Mesembryanthemales Link, Handbuch 2: 12. 4-11 Jul 1829 [‘Mesembrinae’]; Sesuviaceae Horan., Prim. Lin. Syst. Nat.: 83. 2 Nov 1834 [‘Sesuviaceae (Ficoideae)’]; Tetragoniaceae Lindl., Intr. Nat. Syst. Bot., ed. 2: 209. 13 Jun 1836, nom. cons.; Aizoales Boerl., Handl. Fl. Nederl. Ind. 1: li. 2 Aug 1890; Aizoineae Doweld, Tent. Syst. Plant. Vasc.: xli. 23 Dec 2001

Genera/species 124/1.675–1.695

Distribution Arid tropical and subtropical regions including western and southern Australia, with their highest diversity in southern and southwestern Africa. Mesembryanthemoideae and, above all, Ruschioideae dominate much of the succulent vegetation in the Karroo areas of South Africa, where they constitute more than half the number of species and more than 90% of the biomass.

Fossils Unknown.

Habit Usually bisexual (rarely monoecious or dioecious), perennial or annual herbs (rarely climbing), suffrutices or shrubs. Usually leaf succulents (sometimes stem succulents, rarely root succulents; some species are almost entirely subterranean). Almost all representatives are xerophytes; some species are halophytes. C4 or CAM (rarely C3) physiology present. Kranz’ anatomy present in some species. Usually mucilaginous.

Vegetative anatomy Mycorrhiza usually absent. Kranz’ anatomy present in some species. Phellogen ab initio inner-cortical or endodermal, or absent. Primary medullary strands wide. Medullary wide-band tracheid cells frequent, also present in foliar tissue other than mid-vein; bands narrow yet very tall, cell lumen in places very narrow. Endodermis significant. Secondary lateral growth normal or sometimes anomalous (via concentric/successive cambia) or absent. Vessel elements usually with simple perforation plates; lateral pits alternate? Imperforate tracheary xylem elements libriform fibres with bordered pits? (in at least one species of Ruschia also vasicentric tracheids). Wood rays usually absent (present in Tetragonia). Axial parenchyma paratracheal? (in Tetragonia also vasicentric). Wood elements often partially storied. Sieve element plastids P3cf type, with a central globular protein crystal surrounded by protein filaments. Nodes 1:1, unilacunar with one leaf trace, or 3:3, trilacunar with three traces. Tanniniferous idioblasts often present in water-storing tissue. Epidermis in many species with densely spaced water-storing vesicular idioblasts with wide base. Calciumoxalate crystals often present.

Trichomes Hairs usually unicellular or multicellular and uniseriate (rarely stipitate, two-branched or stellate), often vesicular, or absent.

Leaves Usually opposite (often pairwise fused; sometimes alternate), simple, entire, often cuboidal, conical, cylindrical or prismatic, with usually curved or flat ptyxis. Stipules usually absent (petiole base in Sesuvioideae with stipule-like appendages); leaf bases often membranous and sheathingly connate around stem (sometimes entirely connate). Petiole vascular bundles forming cortical reticulum. Venation pinnate or palmate, usually indistinct, with sunken main veins. Stomata anomocytic, paracytic or anisocytic. Cuticular wax crystalloids as rodlets (often terete), threads or platelets. Mesophyll sometimes with idioblasts containing calciumoxalate raphides. Epidermis of upper side of lamina often with numerous water-storing wide-based vesicular idioblasts. Outer epidermal cell walls often with calciumoxalate crystals. Leaf margin entire, dentate or serrate.

Inflorescence Terminal (often seemingly axillary), cymose (sometimes capitate), or flowers usually solitary terminal. Floral prophylls (bracteoles) usually large, often foliaceous.

Flowers Actinomorphic, often large. Hypanthium usually present. Hypogyny, half epigyny or epigyny. Tepals (three to) five (to eight), in one whorl, with usually imbricate quincuncial (rarely valvate) aestivation, usually sepaloid (adaxial tepals sometimes petaloid), persistent, connate at base, often with subapical abaxial appendage. Nectary usually continuous, annular on adaxial side of perianth-stamen tube (nectaries in Mesembryanthemoideae partially tubular). Disc present or absent.

Androecium Stamens usually numerous (to more than 2.000; sometimes four, five, eight, or ten), in one or more whorls or in three to nine groups; staminal primordia five, alternitepalous, or as annular meristem. Outer whorls usually consisting of petaloid staminodia, inner whorls consisting of fertile stamens, median whorls often intermediary. Filaments free or connate (all or in three to nine groups), free from tepals. Anthers dorsifixed, often versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with usually trinucleate (rarely septanucleate) cells. Staminodia petaloid, extrastaminal, usually numerous (absent in some genera).

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (rarely tetracolpate or tricolporoidate), shed as monads, tricellular at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate, punctate or anulopunctate, spinulate (rarely reticulate or rugate).

Gynoecium Pistil composed of (one or) two to five (to numerous) connate carpels. Ovary superior to inferior, (unilocular or) bilocular to quinquelocular (to multilocular), usually entirely septate (septa in Acrosanthes incomplete). Stylodia usually free (rarely connate). Stigmatic areas adaxial, papillate, Dry or Wet type. Pistillodium absent.

Ovules Placentation usually axile (in early stage, primary; rarely basal or apical) to parietal (in later stage, secondary). Ovules one to numerous per carpel (in Acrosanthes a single basal ovule per carpel), campylotropous (hemianatropous?) to anacampylotropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument two or three cell layers thick. Inner integument two cell layers thick. Obturator placental. Parietal tissue approx. three cell layer thick. Nucellar cap micropylar. Apical cells of megasporangium often radially elongate. Megagametophyte usually monosporous, Polygonum type (rarely Endymion, Penaea, Drusa, or Adoxa type). Endosperm development ab initio nuclear. Endosperm haustoria chalazal? Embryogenesis caryophyllad or solanad.

Fruit Usually a loculicidal capsule (sometimes a nut, rarely a pyxidium, a berry or a schizocarp; in Gunniopsis a septicidal capsule), usually hydrochastic, dehiscing in moist weather, when septa and other tissues swell (septal keels, reaching from central axis to valve apices).

Seeds Aril sometimes present (surrounding seed in Sesuvioideae). Exotesta palisade or tangentially elongate. Endotesta and tegmen usually crushed. Perisperm copious, starchy. Endosperm sparse or absent. Suspensor massive, usually biseriate to multiseriate. Embryo peripheral, curved around perisperm, without chlorophyll. Cotyledons two. Radicula dorsal. Germination phanerocotylar.

Cytology x = 8 (Sesuvioideae, Aizooideae); x = 9 (Mesembryanthemoideae, Ruschioideae) – Polyploidy frequently occurring.

DNA Intron absent from plastid gene rpoC1 (at least in Delospera and Faucaria). Plastid gene infA transferred to nucleus (Mesembryanthemum; pseudogene present in plastid genome).

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, condensed tannins, betacyanins, betaxanthins, mesembrine alkaloids (Phyllobolus etc.), and ferulic acid (in non-lignified cell walls) present. C-glycosylflavonoids, ellagic acid and saponins not found. Some species oxidize free oxalates.

Use Ornamental plants, vegetables (Tetragonia tetragonioides), fruits (Carpobrotus edulis), stabilization of soil (Carpobrotus etc.).

Systematics Aizoaceae are possibly sister to a clade comprising Gisekia, Phytolaccaceae, Sarcobatus, Agdestis, Nyctaginaceae, and Petiveriaceae.

There is strong bootstrap-support for the following topology within Aizoaceae:

[Sesuvioideae+[Aizooideae+[Acrosanthoideae+[Mesembryanthemoideae+Ruschioideae]]]]

Sesuvioideae Lindl., Veg. Kingd.: 527. Jan-Mai 1846 [‘Sesuveae’]

6/63. Anisostigmateae Klak in Taxon 66(5): 1167. 24 Oct 2017 Anisostigma (1; A. schenckii; Namibia), Tribulocarpus (3; ‘T. dimorphanthus’ [non-monophyletic]: Somalia, Namibia; T. retusus: Somalia); Sesuvieae Fenzl in Ann. Wiener Mus. Naturgesch. 2: 289. 1839. Cypselea (3; C. humifusa, C. meziana, C. rubriflora; southern Florida, the West Indies, Venezuela), Sesuvium (22; tropical and subtropical coastal areas), Trianthema (27; Africa, tropical and subtropical Asia, Australia, T. portulacastrum also in northern South America), Zaleya (7; Z. camillei, Z. decandra, Z. galericulata, Z. govindia, Z. pentandra, Z. redimita, Z. sennii; northeastern and eastern Africa, Madagascar, India, Sri Lanka, the Lesser Sunda Islands, northern Australia). – Tropical and subtropical regions. C4 photosynthesis and Kranz’ anatomy present. Nodes 1:1 or 3:3. Stipules petiolar. Inflorescence distinct from vegetative parts of plant. Prophylls often prominent. Inflorescence bracteates, usually separated from vegetative parts. Hypanthium often present. Nectary annular (holonectary). Stamens one to five. Androecial primordia often antetepalous. Carpels (one or) two (to five), alternitepalous. Ovules two to numerous per carpel. Fruit usually a pyxidium (not a hygrochastic capsule). Seed glossy black, usually arillate.

Tribulocarpus, with a syncarpous fruit fused with spiny bracts, and with non-arillate seeds, is sister to the remaining Sesuvioideae.

[Aizooideae+[Acrosanthoideae+[Mesembryanthemoideae+Ruschioideae]]]

Inflorescence usually indistinct. Floral prophylls foliaceous. Androecial primordia usually alternitepalous. Carpels antetepalous. Fruit a hygrochastic capsule.

Aizooideae Spreng. ex Arn., Botany: 112. 9 Mar 1832 [‘Aizoideae’]

5/c 100. Aizoanthemopsis (1; A. hispanicum; the Mediterranean, northern Africa, the Middle East to Iran), Gunniopsis (14; Australia except northern and eastern parts), Tetragonia (c 50; southern Africa, Namibia, Morocco, Australia, New Zealand, islands in the Pacific, temperate and subtropical South America, one species, T. tetragonioides, worldwide), Aizoanthemum (4; A. dinteri, A. galenioides, A. mossamedense, A. rehmannii; southern Angola, northern Namibia), Aizoon (c 30; southern Angola to South Africa, one species, A. canariense, in Macaronesia, the Mediterranean, Zimbabwe, northern Kenya and Socotra to India). – Drier parts of South Africa, South America, Australia (Gunniopsis), a few species in North Africa, Southwest and East Asia. Vesicular hairs with large vesicular terminal cell and multicellular stalk. Accessory lateral branches often present. Inflorescence with leaves. Hypanthium present. Hypogyny to epigyny. Nectary annular, continuous (holonectary), present on apex of hypanthium. Stamens four to ten. Pistil composed of two to ten connate carpels. Ovary superior to inferior. Ovule one per carpel, apical, apotropous; or basal, several to numerous per carpel. Capsule usually a loculicidal (in Gunniopsis a septicidal) capsule (in Tetragonia a nutlet). Testal cell walls usually thickened (sometimes only little thickened). Tetragonia has a single pendulous ovule, megasporangium with druses, inner layer of the inner integument well developed, and an indehiscent fruit. – Aizoanthemopsis hispanicum is sister to the rest (Klak & al. 2017).

[Acrosanthoideae+[Mesembryanthemoideae+Ruschioideae]]

Leaves strongly succulent. Epigyny to half epigyny. Nectary disrupted (meronectary). Stamens and petaloid staminodia numerous. x = 9. – The androecial development is centrifugal. Basipetal members become progressively more sterile and petaloid, and intermediates link the outermost petals to the inner fertile stamens (Brockington & al. 2009). Correspondingly, the outer pentamerous uniseriate perianth loses its petaloid features and appears like a calyx.

Acrosanthoideae Klak in Taxon 66(5): 1161. 24 Oct 2017

1/6. Ovules basal, shortly stipitate. Capsule xerochastic, parchment-like. Acrosanthes (6; A. anceps, A. angustifolia, A. humifusa, A. microphylla, A. parviflora, A. teretifolia; Western Cape). – Acrosanthes is sister-group to [Mesembryanthemoideae+Ruschioideae], according to Klak & al. (2017).

Mesembryanthemoideae Burnett, Outlines Bot.: 736, 1092, 1131. Feb 1835 [‘Mesembryanthidae’]

6/c 95. Aspazoma (1; A. amplectens; Namaqualand and Richtersveld in Northern and Western Cape), Brownanthus (10; southern Angola, Namibia, Northern and Western Cape), Caulipsolon (1; C. rapaceum; Namaqualand in Northern Cape), Mesembryanthemum (c 70; southern Angola, Namibia, western and central South Africa to Eastern Cape), Psilocaulon (13; southern Angola, western Namibia, western, southern and central South Africa), Synaptophyllum (1; S. juttae; near Lüderitz in southwestern Namibia). – Southern Africa. CAM photosynthesis present. Cortical vascular bundles present. Stem sometimes with succulent persistent green cortex. Wide-band tracheids absent. Stomata usually transversely orientated. Inflorescence indistinct. Flowers tetra- or pentamerous. Half epigyny. Tepals, petaloid staminodia and stamens often more or less united at base into a tube. Nectaries usually hollow or koilomorphic (shell-shaped), discontinuous (meronectary). Pistil composed of (three or) four or five (or six) connate carpels. Placentation axile. Expanding fruit keels entirely septal. Alkaloids usually present.

Ruschioideae Schwantes in Ihlenfeldt, Schwantes et Straka in Taxon 11: 54. 28 Feb 1962

106/1.410–1.430. Apatesieae Schwantes in H. D. Ihlenfeldt, G. Schwantes et H. Straka in Taxon 11: 55. 28 Feb 1962. Apatesia (4; A. helianthoides, A. mughani, A. pillansii, A. sabulosa; Vanrhynsdorp to Cape Town in Western Cape), Carpanthea (1; C. pomeridiana; southwesternmost Western Cape), Conicosia (3; C. bijlii, C. elongata, C. pugioniformis; southern Namibia, Northern and Western Cape), Hymenogyne (3; H. conica, H. glabra, H. stephensiae; Cape Peninsula to Clanwilliam in western Western Cape), Skiatophytum (1; S. tripolium; southwestern Western Cape). – Dorotheantheae Chesselet, G. F. Sm. et A. E. van Wyk in Taxon 51: 306. 12 Jun 2002. Cleretum (14; Northern and Western Cape). – Delospermeae Chesselet, G. F. Sm. et A. E. van Wyk in Taxon 51: 306. 12 Jun 2002. Dicrocaulon (7–9; Namaqualand in southern Northern Cape and northern Western Cape), Diplosoma (2; D. luckhoffii, D. retroversum; northwestern Western Cape), Jacobsenia (3; J. halii, J. kolbei, J. vaginata; Vanrhynsdorp and Vredendal in Northern and Western Cape), Meyerophytum (1; M. meyeri; Richtersveld to southern Namaqualand in Northern Cape), Mitrophyllum (7; M. abbreviatum, M. clivorum, M. dissitum, M. grande, M. margaretae, M. mitratum, M. roseum; Richtersveld in Northern Cape), Monilaria (5; M. chrysoleuca, M. moniliformis, M. obconica, M. pisiformis, M. scutata; Namaqualand in Northern and Western Cape), Oophytum (2; O. nanum, O. oviforme; Knersvlakte north of Vanrhynsdorp in Western Cape), Disphyma (6; D. australe, D. blackii, D. clavellatum, D. crassifolium, D. dunsdonii, D. pupillatum; Western and Eastern Cape, southern Australia, Tasmania, New Zealand), Glottiphyllum (16; Western and Eastern Cape); Corpuscularia (2; C. lehmannii, C. taylorii; Port Elizabeth to Grahamstown in Eastern Cape), Delosperma (c 160; South Africa to eastern Africa and Arabian Peninsula, Madagascar, Réunion), Drosanthemum (c 110; southern Namibia, western, central and southern South Africa), Knersia (1; K. diversifolia; western Western Cape), Malephora (c 17; southern Namibia, Northern, Western and Eastern Cape), Mestoklema (7; M. albanicum, M. arboriforme, M. copiosum, M. elatum, M. illepidum, M. macrorhizum, M. tuberosum; Namibia, western parts of South Africa), Trichodiadema (34; southern Namibia, western and southern parts of South Africa),’Lampranthus’ (c 95; southern Namibia, Northern, Western and Eastern Cape, KwaZulu-Natal; polyphyletic), Oscularia (c 10; southern Northern Cape, Western Cape), Gibbaeum (c 18; Little Karoo in Western Cape and southernmost Northern Cape), Muiria (1; M. hortenseae; northern side of Langeberg in Western Cape); Frithia (2; F. humilis, F. pulchra; northeastern South Africa), Chasmatophyllum (6; C. braunsii, C. maninum, C. musculinum, C. nelii, C. stanleyi, C. willowmorense; Namibia, South Africa), Hammeria (3; H. cedarbergensis, H. gracilis, H. meleagris; Tanqua Karoo and Ceres Karoo in Northern and Western Cape), Rabiea (6; R. albinota, R. albipuncta, R. comptonii, R. difformis, R. jamesii, R. lesliei; eastern Northern Cape, Eastern Cape, Free State), Rhinephyllum (c 10; Northern, Western and Eastern Cape), Stomatium (40; western and southern parts of South Africa), Mossia (1; M. intervallaris; Eastern Cape to eastern Free State and northwestern Lesotho, Mpumalanga, Gauteng), Neohenricia (2; N. sibbettii, N. spiculata; Northern Cape to Free State, Eastern Cape), Faucaria (6–8; F. bosscheana, F. britteniae, F. felina, F. gratiae, F. nemorosa, F. subintegra, F. tigrina, F. tuberculosa; Eastern Cape, eastern Western Cape), Orthopterum (2; O. coeganum, O. waltoniae; Eastern Cape). – Ruschieae Schwantes in H. D. Ihlenfeldt, G. Schwantes et H. Straka in Taxon 11: 54. 28 Feb 1962. Aloinopsis (c 8; Western, Eastern and Northern Cape), Deilanthe (3; D. hilmarii, D. peersii, D. thudichumii; Western Cape and adjacent areas of Northern and Eastern Cape, Free State), Ihlenfeldtia (2; I. excavata, I. vanzyhlii; Northern Cape), Nananthus (5; N. aloides, N. margaritiferus, N. pallens, N. pole-evansii, N. vittatus; Namibia, Northern and Eastern Cape, Free State, North-West, Gauteng), Titanopsis (3; T. calcarea, T. hugo-schlechteri, T. schwantesii; southern Namibia, central South Africa), Vanheerdia (2; V. primosii, V. roodiae; Bushmanland in eastern Northern Cape), Didymaotus (1; D. lapidiformis; Tanqua Karoo in Western Cape), Tanquana (3; T. archeri, T. hilmarii, T. prismatica; Tanqua Karoo, southwestern Great Karoo and Little Karoo to south of Laingsburg in Western Cape), Dinteranthus (6; D. inexpectatus, D. microspermus, D. pole-evansii, D. vallis-mariae, D. vanzylii, D. wilmotianus; southeastern Namibia, northwestern Northern Cape), Lapidaria (1; L. margaretae; southern Namibia, northern Northern Cape), Lithops (36; Namibia, South Africa, Botswana), Schwantesia (11; southern Namibia, Northern Cape); Dracophilus (4; D. dealbatus, D. delaetianus, D. montis-draconis, D. proximus; Lüderitz in southwestern Namibia to northern Richtersveld in Northern Cape), Hartmanthus (2; H. hallii, H. pergamentaceus; Sperrgebiet in southern Namibia, northern Richtersveld in Northern Cape), Jensenobotrya (1; J. lossowiana; Dolphin Head in Spencer Bay in coastal Namibia), Juttadinteria (5; J. albata, J. attenuata, J. ausensis, J. deserticola, J. simpsonii; Lüderitz to Aus in Namibia, northern Richtersveld in Northern Cape), Namibia (3; N. cinerea, N. pomonae, N. ponderosa; around Lüderitz and east of Prince of Wales Bay in Namibia), Nelia (4; N. meyeri, N. pillasii, N. robusta, N. schlechteri; Richtersveld to Namaqualand in Northern Cape), Psammophora (4; P. longifolia, P. modesta, P. nissenii, P. saxicola; Lüderitz in western Namibia to Richtersveld in Northern Cape), Ruschianthus (1; R. falcatus; edge of the Namib desert in southern Namibia), Conophytum (85–90; Northern and Western Cape to western Eastern Cape); Bergeranthus (7–10; B. albomarginatus, B. concavus, B. longisepalus, B. multiceps, B. nanus, B. scapiger, B. vespertinus; Eastern Cape), Machairophyllum (4; M. albidum, M. bijlii, M. brevifolium, M. stayneri; Barrydale to Willowmore in Western Cape, Zuurberg in Eastern Cape), Carruanthus (2; C. peersii, C. ringens; around Willowmore in easternmost Western Cape and westernmost Eastern Cape), Hereroa (c 30; southern Namibia, South Africa), Bijlia (2; B. dilatata, B. tugwelliae; near Prince Albert in Western Cape), Cerochlamys (3; C. gemina, C. pachyphylla, C. trigona; Little and Great Karoo in Western Cape); Antegibbaeum (1; A. fissoides; Little Karoo in Western Cape), Braunsia (7; B. apiculata, B. bina, B. edentula, B. geminata, B. maximiliani, B. stayneri, B. vanrensburgii; southwestern South Africa), Carpobrotus (13; southern Africa, Australia, South America), Circandra (1; C. serrata; at Ceres, Tulbagh and Villiersdorp in Western Cape), Enarganthe (1; E. octonaria; Richtersveld in Northern Cape), Erepsia (c 30; Western Cape, western Eastern Cape), Esterhuysenia (5; E. alpina, E. drepanophylla, E. inclaudens, E. mucronata, E. stokoei; at Caledon, Ceres, Robertson and Worcester in Western Cape), Namaquanthus (1; N. vanheerdii; northwest of Springbok in Northern Cape), Scopelogena (2; S. bruynsii, S. verruculata; near Cape Town and near Riversdale in Western Cape), Smicrostigma (1; S. viride; north of Langeberg and Outeniqua Mountains in Western Cape), Vlokia (2; V. ater, V. montana; near Montagu in western Little Karoo in Western Cape), Wooleya (1; W. farinosa; coastal parts of Namaqualand in Northern Cape), Zeuktophyllum (2; Z. calycinum, Z. suppositum; at Ladismith and Laingsburg in Western Cape), Octopoma (9–10; Little Karoo in Western Cape); Acrodon (6; A. bellidiflorus, A. deminutus, A. parvifolius, A. purpureostylus, A. quarcicola, A. subulatus; coastal Little Karoo in Western Cape to southwestern Eastern Cape), Arenifera (4; A. pillansii, A. pungens, A. spinescens, A. stylosa; Northern and Western Cape), Astridia (11; southern Namibia, northern Northern Cape), Brianhuntleya (1; B. intrusa; Worcester-Robertson Karroo in Western Cape), Ebracteola (6; E. candida, E. derenbergiana, E. fulleri, E. montis-moltkei, E. vallis-pacis, E. wilmaniae; central Namibia, Northern Cape to central South Africa, North-West, Free State and Gauteng), Khadia (6–8; K. acutipetala, K. alticola, K. beswickii, K. borealis, K. carolinensis, K. media; North-West, Gauteng, Mpumalanga and KwaZulu-Natal in South Africa), Marlothistella (1; M. stenophylla; Little Karoo in Western Cape), Polymita (2; northern Namaqualand in Northern Cape), ‘Ruschia’ (220–225; Namibia, South Africa, Lesotho; non-monophyletic), Stayneria (1; S. neilii; Breede River Valley in Western Cape); Antimima (c 100; coastal parts of Namibia to Eastern Cape), Argyroderma (11–12; Knersvlakte in southern Namaqualand in northwestern Western Cape), Cephalophyllum (c 30; Namibia, Northern and Western Cape), Cheiridopsis (23; Namibia, southwards to northern Western Cape), Cylindrophyllum (5; C. calamiforme, C. comptonii, C. hallii, C. obsubulatum, C. tugwelliae; Northern, Western and Eastern Cape), Fenestraria (1; F. rhopalophylla; coastal parts of Namibia to Richtersveld in Northern Cape), Hallianthus (1; H. planus; Namaqualand in Northern Cape to Tanqua Karoo in Western Cape), Jordaaniella (7; J. anemoniflora, J. clavifolia, J. cuprea, J. dubia, J. maritima, J. spongiosa, J. uniflora; southern Namibia, Northern and Western Cape), Leipoldtia (8; Namibia, Northern, Western and Eastern Cape), Octopoma (8; northern Namaqualand in Northern Cape, Little Karoo in Western Cape), Odontophorus (4; O. angustifolius, O. marlothii, O. nanus, O. pusillus; at Steinkopf in Richtersveld in Northern Cape), Ottosonderia (1; O. monticola; Namaqualand in southern Northern Cape and northern Western Cape), Pleiospilos (4–5; P. bolusii, P. compactus, P. leipoldtii, P. nelii, P. simulans; Little Karoo in northern Western to Great Karoo in western Eastern Cape), Schlechteranthus (15; northern Namaqualand, especially Richtersveld, in Northern Cape), Vanzijlia (1; V. annulata; coastal areas of Northern and Western Cape, Knersvlakte in Namaqualand); Amphibolia (5; A. laevis, A. obscura, A. rupis-arcuatae, A. saginata, A. succulenta; coastal parts of Namibia south to southwestern Western Cape), Eberlanzia (8; southern Namib Desert in southwestern Namibia, western Namaqualand in Northern Cape), Ruschianthemum (1; R. gigas; lower Orange River Valley in Namibia and Northern Cape), Stoeberia (5; S. arborea, S. beetzii, S. carpii, S. frutescens, S. utilis; Namaqualand in Namibia and Northern Cape), Ectotropis (1; E. alpina; at Hogsback in the Amatola Mountains and Katberg in Eastern Cape; in Delosperma?), Rhombophyllum (5; R. albanense, R. dolabriforme, R. dyeri, R. nelii, R. rhomboideum; around Uitenhage and Port Elizabeth to Graaff-Reinet in Eastern Cape, southeastern Northern Cape). – Southern Africa, with their largest diversity in the western coastal part of the succulent karoo (Northern and Western Cape, Kalahari Desert etc.), few species in eastern Africa, the Arabian Peninsula, Madagascar, Réunion and Australia. CAM photosynthesis present. Wide-band tracheids usually frequent (absent in basal taxa). Vesicular hairs usually absent. Leaves usually opposite (sometimes spiral), succulent, of other form than flat (often terete or trigonous). Inflorescence often distinct. Hypanthium usually present. Epigyny. Tepal bases free. Nectary a koilomorphic meronectary, a wide and flat annular holonectary, a lophomorphic (crested or lobed) holonectary, or nectary inconspicuous or absent. Filaments usually free (sometimes connate at base), papillate or hairy at base. Pistil composed of (three to) five to 15 (to 25) connate carpels. Ovary inferior. Placentation basal or parietal. Fruit a hygrochastic capsule, liberating a few seeds at a time. Expanding fruit keels usually only on valves.

Apatesieae are sister-group to the clade [Dorotheantheae+[Delospermeae+Ruschieae]] and possess an annular holonectary. The capsule often lack hygrochastic properties and has very reduced expanding keels. The clade [Dorotheantheae+[Delospermeae+Ruschieae]] has a covering membrane. Dorotheantheae are annual herbs with semi-succulent leaves. The nectar is a wide and flat meronectary. The [Delospermeae+Ruschieae] clade has a lophomorphic nectary and a hygrochastic capsule. Moreover, the intron of the plastid gene rpoC1 is absent (lost). Delospermeae have a lophomorphic meronectary. Ruschieae have a lophomorphic holonectary and the nuclear gene ARP (a leaf developmental gene) is often duplicated (absent in some species). Fruit characters are highly homoplasious. Apatesieae are confined to the Cape Floristic Region.

Cladogram (simplified) of Aizoaceae based on morphology and DNA sequence data (Chesselet & al. 2002, etc.).

AMARANTHACEAE Juss.

( Back to Caryophyllales )

de Jussieu, Gen. Plant.: 87. 4 Aug 1789 [’Amaranthi’], nom. cons.

Atriplicaceae Juss., Gen. Plant.: 83. 4 Aug 1789 [’Atriplices’]; Chenopodiaceae Vent., Tabl. Règne Vég. 2: 253. 5 Mai 1799 [’Chenopodae’], nom. cons.; Amaranthales R. Br. ex Bercht. et J. Presl, Přir. Rostlin: 240. Jan-Apr 1820 [‘Amaranthaceae’]; Celosiaceae Martinov, Tekhno-Bot. Slovar: 117. 3 Aug 1820 [’Celosiae’]; Chenopodiales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 240. Jan-Apr 1820 [‘Chenopodeae’]; Salicorniaceae Martinov, Tekhno-Bot. Slovar: 558. 3 Aug 1820 [’Salicorniae’]; Amaranthopsida Horan., Prim. Lin. Syst. Nat.: 58. 2 Nov 1834 [’Amaranthoideae’]; Betaceae Burnett, Outl. Bot.: 591, 1091, 1142. Feb 1835; Achyranthaceae Raf., Fl. Tellur. 3: 35. Nov-Dec 1837 [’Achyranthidia’]; Gomphrenaceae Raf., Fl. Tellur. 3: 38. Nov-Dec 1837 [’Gomphrenidia’]; Polycnemaceae Menge, Cat. Plat. Grudent. Gedan.: 161. 1839 [’Polycneminae’]; Salsolaceae Menge, Cat. Plant. Grudent. Gedan.: 165. 1839 [’Salsolinae’]; Spinaciaceae Menge, Cat. Plant. Grudent. Gedan.: 166. 1839 [’Spinacinae’]; Chenopodiineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 1272, 1274. 1846; Atriplicales Horan., Char. Ess. Fam.: 63. 30 Jun 1847 [‘Atriplicastra s. Curvembryae’]; Deeringiaceae J. Agardh, Theoria Syst. Plant.: 369. Apr-Sep 1858 [’Deeringieae’]; Blitaceae Post et Kuntze, Lex. Gen. Phan.: 637, 710. 20-30 Nov 1903; Dysphaniaceae (Pax) Pax in Bot. Jahrb. Syst. 61: 230. 15 Jun 1927, nom. cons.

Genera/species 176/2.000–2.075

Distribution Cosmopolitan except polar areas, with their highest diversity in saline, arid and semiarid areas.

Fossils Fossil pollen (e.g. Chenopodipollis) are known from Late Cretaceous (Maastrichtian), Paleocene and Late Eocene layers in North America.

Habit Usually bisexual (sometimes monoecious, andromonoecious, gynomonoecious, dioecious, androdioecious, rarely polygamomonoecious), perennial, biennial or annual herbs, evergreen or deciduous suffrutices or shrubs (rarely trees or lianas), sometimes with spines. Often leaf or stem succulents. C4 plants with c. 17 different types of foliar anatomy. Many species are halophytes or xerophytes.

Vegetative anatomy Mycorrhiza usually absent (sometimes with vesicular-arbuscular mycorrhiza). Kranz’ anatomy present in numerous species. Phellogen usually superficial or pericyclic. Stem collenchyma well developed. Cortical and/or medullary bundles usually present. Primary medullary strands usually wide. Endodermis usually significant. Secondary lateral growth usually anomalous (polycyclic, anomalous secondary vascular bundles from concentric cambia; not in Polycnemoideae) or absent. Pericyclic fibres few or absent. Vessel elements with simple perforation plates; lateral pits usually alternate (sometimes opposite), simple or bordered pits. Imperforate tracheary xylem elements libriform fibres (with cell nuclei) with simple or (reduced) bordered pits, non-septate (also vasicentric tracheids). Wood rays usually absent (sometimes uniseriate or multiseriate, homocellular or heterocellular). Axial parenchyma paratracheal scanty, aliform, winged-aliform, confluent, vasicentric, or banded. Vessel elements, fibres and/or parenchyma sometimes partially or entirely storied. Intraxylary (concentric or diffuse) phloem present. Sieve tube plastids P3cf type, without a central protein crystal, with circular peripheral protein fibrils (sometimes with starch grains). Nodes 1:1 or 1:3, unilacunar with one or three leaf traces (sometimes 1:5, unilacunar with five traces), often swollen. Heartwood sometimes with gum-like substances. Calciumoxalate usually as crystal sand, druses or prismatic crystals (raphides and styloids absent).

Trichomes Hair types unicellular to multicellular, uniseriate, T-shaped or many-armed (also malpighiaceous hairs), dendritic, stellate, candelabra-shaped, fasciculate, lepidote, capitate and/or vesicular, often with salt-storing apical cell; glandular hairs often present.

Leaves Alternate (spiral) or opposite, simple, usually entire (sometimes lobed; in some stem succulents reduced), with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate or annular. Venation pinnate; leaves sometimes one-veined. Stomata usually anomocytic (sometimes paracytic, diacytic or anisocytic). Cuticular wax crystalloids as platelets (Chenopodioideae, Salsoloideae etc.) or without platelets (Amaranthoideae etc.; cuticular wax crystalloids absent in Dysphania). Domatia present in many species. Hydathodes sometimes present. Leaf margin serrate, sinuate, crenate or entire.

Inflorescence Terminal or axillary, cymose, head-, raceme- or spike-like, thyrsoid, fasciculate or panicle (flowers sometimes solitary, axillary). Lateral flowers of dichasial partial inflorescences sometimes sterile and modified into scales, spines, bristles or hairs. Bracts often membranous or coloured. Floral prophylls (bracteoles) often petaloid (sometimes membranous). Extrafloral nectaries rarely present (Iresine).

Flowers Actinomorphic, small. Usually hypogyny (rarely half epigyny). Tepals (one or) three to five (to eight), with usually imbricate (rarely valvate) aestivation, sepaloid, often fleshy, often with tuberculate, spinulose or wing-like outgrowths, persistent, free or connate at base, or rudimentary or absent. Nectary absent. Disc (sometimes lobate) present in some species.

Androecium Stamens (one or) three to five (to nine), usually as many as tepals, antetepalous, or absent. Filaments free or connate in lower part (sometimes entirely) into a tube, often adnate to tepals (epitepalous); tuberculate, scale-like or fringed staminodium-like lobes, pseudostaminodia, often present between stamens and usually fused with filaments. Anthers usually dorsifixed, often versatile, usually tetrasporangiate (sometimes disporangiate), usually introrse (rarely extrorse), longicidal (dehiscing by longitudinal slits); connective sometimes with apical appendage (sometimes vesicular and coloured); anther wall development monocotyledonous. Tapetum usually secretory, with binucleate or multinucleate cells (sometimes amoeboid-periplasmodial). Staminodia one to five, often petaloid, or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains polypantoporate, shed as monads, usually tricellular (rarely bicellular) at dispersal. Pollen grains often with starch. Exine tectate or semitectate, with columellate infratectum, microperforate, punctate or reticulate (in Gomphrenoideae metareticulate), spinulate or tubuliferous.

Gynoecium Pistil composed of (one or) two or three (to six) connate carpels (median carpel sometimes abaxial); when two carpels then usually transverse. Ovary usually superior (rarely semi-inferior), unilocular. Style single, simple, or stylodia two or three, long or short, more or less connate. Stigma one, capitate (simple or penicillate), or stigmas two or three (to six), narrowly elongate, papillate, Dry type, often persistent. Pistillodium usually absent (male flowers sometimes with pistillodium).

Ovules Placentation usually basal (sometimes free central or apical). Ovule usually one (ovules sometimes few or many) per ovary, campylotropous, anacampylotropous or circinotropous (rarely amphitropous), erect to pendulous, bitegmic, crassinucellar. Micropyle usually endostomal (rarely bistomal). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Nucellar beak present. Apical cells of megasporangium often radially elongate. Megagametophyte usually monosporous, Polygonum type (sometimes disporous, Allium type). Synergids sometimes with a filiform apparatus. Antipodal cells usually persistent. Chalazal caecum developed. Endosperm development ab initio nuclear. Endosperm haustorium chalazal or absent. Embryogenesis chenopodiad or solanad.

Fruit Usually a nut (often a utriculus or an achene) or an irregularly dehiscent capsule (often a pyxidium, rarely a berry, a baccaceous fruit or a drupe; adjacent ovaries sometimes fusing and forming a syncarp), often surrounded by more or less fleshy perianth forming an anthocarp; persistent and often accrescent bracts and floral prophylls sometimes forming parts of dispersal unit.

Seeds Aril usually absent. Seed coat usually exotestal-endotegmic. Outer exotestal cell walls with stalactite-shaped appendages. Outer exotegmic cell walls often tanniniferous. Endotegmen often thickened and lignified, tanniniferous. Perisperm usually copious and starchy (rarely absent), usually surrounded by embryo. Endosperm sparse or absent. Embryo curved or annular around perisperm (rarely straight; in Salsoloideae spirally twisted), well differentiated, with or without chlorophyll. Cotyledons usually two (rarely three). Radicula dorsal. Germination phanerocotylar.

Cytology n = 6–36 – Polyploidy frequently occurring.

DNA Intron absent from plastid gene rpl2. Deletion of 300 bp in plastid IR in many clades. Plastid genome in at least Chenopodium and Atriplex with 6 kb inversion.

Phytochemistry Flavonols (kaempferol, quercetin), 6-7-methylene-dioxyflavonols, isoflavones, flavonol sulphates, betacyanins (e.g. amaranthin, celosianin and betamin or phyllocactin), betaxanthins, isoquinoline alkaloids and other alkaloids (particularly in Salsoleae), triterpene saponins, cyanogenic compounds, betaine, anthraquinones, and sterols present. Ferulic acid present in non-lignified cell walls. Ellagic acid and proanthocyanidins not found. Nitrate or free oxalates accumulated in many species.

Use Ornamental plants, vegetables (Beta vulgaris, Spinacia oleracea, Chenopodium quinoa, Atriplex hortensis, etc.), sugar (Beta vulgaris var. altissima), forage-plants (Beta vulgaris, Atriplex, Chenopodium, Rhagodia, Cornulaca), glass production (Salicornia, Salsola, etc.), timber, wood carving, medicinal plants (Dysphania etc.).

Systematics Amaranthaceae are sister-group to Achatocarpaceae or to the clade [Caryophyllaceae+Achatocarpaceae].

A plausible topology is, according to Kadereit & al. (2006) and Kadereit & Freitag (2011): [Polycnemoideae+[[Amaranthoideae+[Betoideae+[Corispermoideae+Chenopodioideae]]]+[[Suaedoideae+Salicornioideae]+[‘Hammadatamariscifolia+[Salsoloideae+Camphorosmoideae]]]]].

Polycnemoideae Raf., Fl. Tellur. 3: 44. Nov-Dec 1837 [‘Polycnemides’]

4/14. Hemichroa (1; H. pentandra; Australia, Tasmania), Surreya (2; S. diandra, S. mesembryanthema; Australia), Nitrophila (5; N. atacamensis, N. australis, N. mexicana, N. mohavensis, N. occidentalis; western United States, northwestern Mexico, Chile, Argentina), Polycnemum (6; P. arvense, P. fontanesii, P. heuffelii, P. majus, P. perenne, P. verrucosum; central, southern and eastern Europe, the Mediterranean, northewesternmost Africa, Central Asia). – Europe, the Mediterranean, Central Asia, Australia, western United States, northwestern Mexico. Normal secondary lateral growth present. Flowers unisexual. Filaments connate at base. Anthers in Polycnemum monothecal (disporangiate). Pollen grains smooth or spinulose. – Polycnemoideae were sister to all other Amaranthaceae in one matK/trnK analysis (Müller & Borsch 2005), but nested deeply within Amaranthaceae in analyses by Kadereit & Freitag (2011). Polycnemum is sister to the clade [Nitrophila+[Hemichroa+Surreya]] (Masson & Kadereit 2013).

[[Amaranthoideae+[Betoideae+[Corispermoideae+Chenopodioideae]]]+[[Suaedoideae+Salicornioideae]+[‘Hammadatamariscifolia+[Salsoloideae+Camphorosmoideae]]]]

[Amaranthoideae+[Betoideae+[Corispermoideae+Chenopodioideae]]]

Amaranthoideae Burnett, Outlines Bot.: 591, 593, 1091, 1142. Feb 1835 [‘Amarantidae’] (under construction)

76/800–830. Bosea (3; B. yervamora: the Canary Islands; B. cypria: Cyprus; B. amherstiana: western Himalayas); Charpentiera (6; C. densiflora, C. elliptica, C. obovata, C. ovata, C. tomentosa: the Hawaiian Islands; C. australis: Tubuai in the Austral Islands). – Amarantheae Rchb., Fl. Germ. Excurs. 2(2): 575, 583. 1832. Amaranthus (c 50; cosmopolitan), Chamissoa (2; C. acuminata, C. altissima; warmer regions in North to South America). – Celosieae Fenzl in S. F. L. Endlicher, Gen. Plant.: 303. Oct 1837. Celosia (c 50; warmer regions in North to South America), Deeringia (12; tropical and subtropical regions in the Old World), Henonia (1; H. scoparia; Madagascar), Hermbstaedtia (c 15; tropical and southern Africa except the Cape provinces), Pleuropetalum (3; P. pleiogynum, P. sprucei: Mexico to Peru; P. darwinii: the Galápagos Islands). – Pleuropetalum has racemose inflorescence, five tepals, eight stamens developed in pairs, filaments connate at base, pistil composed of five or six connate carpels, basal placenta with several ovules, fruit ab initio fleshy, and n = 8 or 9. – Aerveae Fenzl in S. F. L. Endlicher, Gen. Plant.: 302. Oct 1837. Aerva (c 20; tropical and subtropical regions in the Old World), Nothosaerva (1; N. brachiata; tropical Africa from Senegal to Ethiopia and northern Somalia, south to southern Africa, Mauritius, Pakistan, India, Sri Lanka, Burma, Mauritius), Ptilotus (100–110; drier regions in Australia, one species, P. conicus, also on Flores and Timor). – Gomphreneae Fenzl in S. F. L. Endlicher, Gen. Plant.: 301. Oct 1837. Irenella (1; I. chrysotricha; Ecuador), Iresine (35–40; tropical West Africa, southern Japan, tropical and subtropical America), Woehleria (1; W. serpyllifolia; Cuba); Alternanthera (130–140; tropical and subtropical regions on both hemispheres, with their largest diversity in tropical America), Pedersenia (9–10; tropical America), Tidestromia (6; T. carnosa, T. lanuginosa, T. rhizomatosa, T. suffruticosa, T. tenella, T. valdesiana; southwestern United States, Mexico); Blutaparon (4; B. portulacoides, B. rigidum [extinct], B. vermiculare, B. wrightii; tropical West Africa, Ryukyu Islands, tropical and subtropical America), Froelichia (15; tropical and subtropical America, the Galápagos Islands), Froelichiella (1; F. grisea; Brazil), ‘Gomphrena’ (130–135; tropical and subtropical regions in North to South America; polyphyletic), Gossypianthus (2; G. lanuginosus, G. tenuiflorus; United States, Mexico, Central America), Guilleminea (8; Central America), Hebanthodes (1; H. peruviana; Peru), Lecosia (2; L. formicarum, L. oppositifolia; southeastern Brazil), Lithophila (2; L. radicata, L. subscaposa; the Galápagos Islands), Pfaffia (c 30; tropical South America), Pseudogomphrena (1; P. scandens; Brazil), Pseudoplantago (2; P. bisteriliflora, P. friesii; Venezuela, Argentina), Quaternella (3; Q. confusa, Q. ephedroides, Q. glabratoides, Brazil), Xerosiphon (2; X. angustiflorus, X. aphyllus; tropical South America). – Pseudoplantago has cuboid or prismatic pollen grains. – Achyrantheae Fenzl in S. F. L. Endlicher, Gen. Plant.: 302. Oct 1837. Achyranthes (12; tropical and subtropical regions in the Old World; incl. Nototrichum), Nototrichium (3; N. divaricatum, N. humile, N. sandwicense; the Hawaiian Islands; in Achyranthes), Calicorema (2; C. capitata, C. squarrosa; tropical Africa and southwards to Namibia and Northern Cape), Cyathula (c 30; tropical regions in Africa, Asia, America and the Pacific), Pandiaka (13; tropical and southern Africa), Psilotrichum (16; tropical regions in the Old World), Pupalia (4; P. grandiflora, P. lappacea, P. micrantha, P. robbechii; tropical regions in the Old World), Sericostachys (1; S. scandens; tropical Africa). – Unplaced Amaranthoideae Achyropsis (6; A. avicularis, A. filifolia, A. fruticulosa, A. gracilis, A. laniceps, A. leptostachya; tropical and southern Africa), Allmania (1; A. nodiflora; tropical Asia), Allmaniopsis (1; A. fruticulosa; eastern Kenya), Arthraerua (1; A. leubnitziae; coast of Namibia), Centema (2; C. angolensis, C. subfusca; southern tropical Africa to South Africa), Centemopsis (13; tropical Africa), Centrostachys (1; C. aquatica; northern Africa, India, Java), Chionothrix (2; C. latifolia, C. somalensis; Somalia), Dasysphaera (4; D. alternifolia, D. hyposericea, D. robecchii, D. tomentosa; East Africa), Digera (1; D. muricata; tropical regions in the Old World), Eriostylos (1; E. stefaninii; Somalia), Herbstia (1; H. brasiliana; Brazil), Indobanalia (1; I. thyrsiflora; southwestern India), Kyphocarpa (3; K. angustifolia, K. cruciata, K. trichinoides; southern tropical and southern Africa), Lagrezia (9; Madagascar, Indian Ocean islands), Lecosia (2; L. formicarum, L. oppositifolia; southeastern Brazil), Leucosphaera (1; L. bainesii; Angola, Namibia, Botswana, northwestern Northern Cape), Lopriorea (1; L. ruspolii; East Africa), Marcelliopsis (3; M. denudata, M. splendens, M. welwitschii; Namibia), Mechowia (1; M. grandiflora; southern tropical Africa), Nelsia (3; N. angolensis, N. quadrangula, N. tropidogyna; Angola, southern Africa), Neocentema (2; N. alternifolia: Tanzania; N. robecchii: Somalia), Nyssanthes (2; N. diffusa, N. erecta; eastern Queensland, eastern New South Wales), Omegandra (1; O. kanisii; northern Australia), Pleuropterantha (3; P. revoilii, P. thulinii, P. undulatifolia; northeastern tropical Africa), Polyrhabda (1; P. atriplicifolia; Somalia), Pseudosericocoma (1; P. pungens; southwestern and southern Africa), Psilotrichopsis (1; P. curtisii; Thailand, the Malay Peninsula), Rosifax (1; R. sabuletorum; Somalia), Saltia (1; S. papposa; southern Arabian Peninsula), Sericocoma (3; S. avolans, S. heterochiton, S. pungens; tropical Africa to Namibia, Northern, Western and Eastern Cape), Sericocomopsis (2; S. hildebrandtii, S. pallida; tropical East Africa), Sericorema (2; S. remotiflora, S. sericea; southern Africa), Stilbanthus (1; S. scandens; the Himalayas), Trichuriella (1; T. monsoniae; southern and southeastern Asia), Volkensinia (1; V. prostrata; East Africa). – Subcosmopolitan with their largest diversity in tropical and subtropical America and Africa. – Bosea and Charpentiera are successive sisters to the remaining Amaranthoideae. Gomphreneae, with bilocular anthers and metareticulate exine, are sister-group to Achyrantheae.

[Betoideae+[Corispermoideae+Chenopodioideae]]

Betoideae Ulbr. in Engler et Prantl, Nat. Pflanzenfam., ed. 2, 16c: 455. 28 Apr 1934

6/17. Acroglochin (2; A. obtusifolia, A. persicarioides; Central and East Asia, the Himalayas); Beta (9; Europe, the Mediterranean, temperate Asia), Aphanisma (1; A. blitoides; California, northwestern Mexico), Hablitzia (1; H. tamnoides; the Caucasus), Oreobliton (1; O. thesioides; Algeria, Tunisia), Patellifolia (3; P. patellaris, P. procumbens, P. webbiana; Macaronesia). – Europe, Macaronesia, the Mediterranean region, North Africa, southwestern Asia, southwestern North America (Aphanisma). Annual to perennial herbs (in Hablitzia twining) or suffrutices. Tepals usually five (in Aphanisma three). Fruit a pyxidium. – Betoideae are sister-group to the clade [Corispermoideae+Chenopodioideae]. Acroglochin is sister to the remaining Betoideae.

[Corispermoideae+Chenopodioideae]

Corispermoideae Raf., Fl. Tellur. 3: 45. Nov-Dec 1837 [‘Corispermides’]

3/c 80. Agriophyllum (6; A. lateriflorum, A. latifolium, A. minus, A. montasirii, A. paletzkianum, A. squarrosum; Europe, western Asia to Central Asia), Anthochlamys (5; A. afghanica, A. multinervis, A. polygaloides, A. tjanschanica, A. turcomanica; southwestern and Central Asia), Corispermum (c 70; temperate regions of Europe and Asia). – Eurasia. Annual herbs. C3 metabolism and corispermoid non-Kranz’ leaf anatomy present. Hairs on young shoots usually dendritic (not in Anthochlamys). Floral prophylls (bracteoles) absent. Tepals one to five, membranous, caducous (sometimes absent). Perisperm copious. Embryo erect. – Corispermoideae are sister-group to Chenopodioideae.

Chenopodioideae Burnett, Outlines Bot.: 591, 1091, 1142. Feb 1835 [‘Chenopodidae’]

23/460–470. Dysphanieae Pax in H. G. A. Engler et K. A. E. Prantl, Nat. Pflanzenfam. III, 1b: 69, 92. Mai 1889. Cycloloma (1; C. atriplicifolium; western and central North America), Dysphania (>40; warmer regions on both hemispheres), Suckleya (1; S. suckleyana; Rocky Mountains), Teloxys (1; T. vagans; Mongolia). – Axyrideae G. Kadereit et Sukhor. in Amer. J. Bot. 97: 1682. Oct 2010. Axyris (6; A. amaranthoides, A. caucasica, A. hybrida, A. koreana, A. prostrata, A. sphaerosperma; Central Asia to the Korean Peninsula), Ceratocarpus (1; C. arenarius; eastern Europe, southwestern to Central Asia), Krascheninnikovia (3; K. ceratoides, K. ewersmanniana, K. fruticulosa; the Mediterranean, temperate Asia, western North America). – Anserineae Dumort., Fl. Belg.: 20. 1827. Blitum (12; Europe, northern and eastern Asia, Australia, Canada, United States, temperate South America), Spinacia (3; S. oleracea, S. tetrandra, S. turkestanica; southwestern Asia, North Africa). – Atripliceae Duby, Bot. Gall. 1: 394. 12-14 Apr 1828. Lipandra (1; L. polysperma; Europe, the Mediterranean), Oxybasis (5; O. chenopodioides, O. glauca, O. macrosperma, O. rubra, O. urbica; temperate regions in Europe and Asia, the Mediterranean), Chenopodiastrum (5; C. badachschanicum, C. coronopus, C. hybridum, C. murale, C. simplex; temperate regions on the Northern Hemisphere), Atriplex (250–260; cosmopolitan), Microgynoecium (1; M. tibeticum; Tibet), Archiatriplex (1; A. nanpinensis; Sichuan), Exomis (1; E. microphylla; Namibia, Northern, Western and Eastern Cape, Free State), Extriplex (2; E. californica, E. joaquinana; California), Grayia (3; G. arizonica, G. plummeri, G. spinosa; western United States), Holmbergia (1; H. tweedii; Uruguay, Paraguay, Argentina), Manochlamys (1; M. albicans; Namibia, Northern and Western Cape), Proatriplex (1; P. pleiantha; the Navajo Basin in southwestern United States), Stutzia (2; S. covillei, S. dioica; western United States), Chenopodium (c 115; cosmopolitan). – Chenopodioideae are sister-group to Corispermoideae. The Atriplex clade is sister-group to Chenopodium with high support.

[[Suaedoideae+Salicornioideae]+[‘Hammadatamariscifolia+[Salsoloideae+Camphorosmoideae]]]

[Suaedoideae+Salicornioideae]

Suaedioideae Ulbr. in Engler et Prantl, Nat. Pflanzenfam., ed. 2, 16c: 445, 554. 28 Apr 1934

2/75–80. Bienertia (3; B. cycloptera, B. kossinskyi, B. sinuspersici; southeastern European Russia and Kazakhstan to western Central Asia), Suaeda (70–75; cosmopolitan). – Subcosmopolitan. Annual or perennial herbs or shrubs. Leaf-succulents, halophytes. C3 or C4 metabolism with or without Kranz’ anatomy. Flowers in axillary cymes. Tepals five, connate at base. Perisperm usually absent. Embryo spiral. – Suaedioideae are sister-group to Salicornioideae.

Salicornioideae Luerss., Hand. Syst. Bot. 2: 547. Nov 1880

12/105–110. Heterostachys (2; H. olivascens: Argentina; H. ritteriana: Central America, Hispaniola, South America), Allenrolfea (3; A. occidentalis: southwestern United States, Mexico; A. patagonica, A. vaginata: Argentina), Halopeplis (3; H. amplexicaulis: the Mediterranean, North Africa; H. perfoliata: northeastern Africa, the Arabian Peninsula to Pakistan; H. pygmaea: the Caucasus and Iraq to Central Asia and Xinjiang), Halostachys (1; H. belangeriana; southeastern Russia to Central Asia), Halocnemum (2; H. strobilaceum, H. yurdakulolii; central Mediterranean to Central Asia), Kalidium (6; K. capsicum, K. cuspidatum, K. foliatum, K. gracile, K. schrenkianum, K. sinicum; the Mediterranean to Central Asia), Microcnemum (1; M. coralloides; the Mediterranean to the Caucasus), Arthrocaulon (2; A. franzii, A. macrostachyum; the Mediterranean, Macaronesia, northwestern and northeastern Africa, southwestern Asia), Arthroceras (1; A. subterminale; California, northern Mexico), Tecticornia (44; Australia, one species, T. indica, along coasts of eastern Africa, southern Asia and northern Australia), Mangleticornia (1; M. ecuadorensis; coasts of southern Ecuador and northern Peru), Salicornia (40–45; Europe, the Mediterranean, Africa, Asia, Australia, America). – Subcosmopolitan. Annual or perennial herbs or shrubs. Stem-succulents, halophytes. Usually with C3 metabolism (one species of Tecticornia with C4 metabolism). Flowers in spike-like thyrse. Embryo spiral. – Salicornioideae are sister to Suaedioideae.

[‘Hammadatamariscifolia+[Salsoloideae+Camphorosmoideae]]

Salsoloideae Raf., Fl. Tellur. 3: 45. Nov-Dec 1837 [‘Salsoloides’]

c 35–37/c 370. Salsoleae Dumort., Fl. Belg.: 22. 1827. Sympegma (1; S. regelii; Central Asia), Kali (13; Europe, the Mediterranean, temperate Asia), Traganum (2; T. moquinii, T. nudatum; the Canary Islands, eastern Mediterranean, North Africa), Xylosalsola (4; X. arbuscula, X. chiwensis, X. paletzkiana, X. richteri; Central Asia), Turania (4; T. androssowii, T. aperta, T. deserticola, T. sogdiana; Iran, Afghanistan, Central Asia, northwestern China), Halothamnus (c 20; the Middle East to Afghanistan, Somalia, Central Asia, northwestern China), Noaea (5; N. cadmea, N. major, N. minuta, N. mucronata, N. regelii; arid and semi-arid regions in eastern Europe to Central Asia), Oreosalsola (9; Iran, Afghanistan, Central Asia), ‘Salsolaarbusculiformis (Iran, Central Asia, Xinjiang), ‘Salsola’ (c 50; Europe, Macaronesia, the Mediterranean, North Africa, southwestern and Central Asia; polyphyletic), Salsola divaricata (the Canary Islands), Haloxylon (2; H. ammodendron, H. persicum; the Mediterranean, North Africa, southwestern and Central Asia, Mongolia, western and northwestern China), Cornulaca (7; C. alaschanica, C. amblyacantha, C. aucheri, C. ehrenbergii, C. korshinskyi, C. monacantha, C. setifera; Egypt to Central Asia), Horaninovia (2; H. minor, H. ulicina; southwestern and Central Asia), Hammada (3; H. griffithii, H. leptoclada, H. wakhanica; southwestern and Central Asia), Halogeton (4; H. arachnoideus, H. glomeratus, H. sativus, H. tibeticus; the Mediterranean to Central Asia), Girgensohnia (5; G. bungeana, G. diptera, G. imbricata, G. minima, G. oppositiflora; southeastern European Russia to Iran and Central Asia; incl. Cyathobasis and Arthrophytum?), Cyathobasis (1; C. fruticulosa; Turkey; in Girgensohnia?), Arthrophytum (8; western and Central Asia; in Girgensohnia?), Anabasis (c 30; the Mediterranean to Central Asia); unplaced Salsoleae: Iljinia (1; I. regelii; Central Asia), Lagenantha (3; L. cycloptera, L. gillettii, L. nogalensis; northeastern Africa), Nucularia (1; N. perrinii; Algeria, Sahara), Traganopsis (1; T. glomerata; Morocco). – Caroxyloneae Akhani et Roalson in H. Akhani, G. Edwards et E. H. Roalson in Intern. J. Plant Sci. 168: 947. Jul-Aug 2007. Caroxylon (20–25; Macaronesia, the Mediterranean, northern, eastern and southern Africa, Madagascar, the Arabian Peninsula, southwestern and Central Asia, northwestern China, Xinjiang), Nanophyton (c 10; southeastern European Russia to Central Asia), Halocharis (4–7; H. clavata, H. hispida, H. sulphurea, H. violacea; southwestern and Central Asia), Kaviria (10; western Asia to Iran and Central Asia), Ofaiston (1; O. monandrum; southeastern European Russia to western Asia), Petrosimonia (9; southeastern Europe to Central Asia), Pyankovia (1; P. brachiata; southeastern Europe, Crimea and the Caucasus to Central Asia and western Siberia), Halimocnemis (6; H. karelinii, H. longifolia, H. macrantha, H. occulta, H. sclerosperma, H. villosa; southeastern European Russia to Central Asia), Piptoptera (1; P. turkestana; Central Asia), Climacoptera (40–45; southwestern Asia, Iran, Afghanistan, Central Asia); unplaced Caroxyloneae: Halarchon (1; H. vesiculosus; Afghanistan), Physandra (1; P. halimocnemis; Central Asia). – Europe, Macaronesia, the Mediterranean, Africa, southwestern and central Asia, with their highest diversity in central and southwestern Asia. Annual or perennial herbs, shrubs or trees. Leaf-succulents, halophytes. Usually C4 metabolism (in Salsoleae usually NADP-malic enzyme subtype; in Caroxyloneae NAD-malic enzyme subtype), although in a number of clades C3 metabolism (in S. arbusculiformis an intermediate between C3 and C4 metabolism). Foliar prophylls (bracteoles) present. Perianth usually with membranous wings in fruit. Perisperm poorly developed or absent. Embryo spiral. – Hammada tamariscifolia (L.) Iljin (= Salsola genistoides Juss. ex Poiret in Lam.; southern Spain) is sister to the clade [Salsoloideae+Camphorosmoideae].

Camphorosmoideae Luerss., Handb. Syst. Bot. 2: 546. Nov 1880 [‘Camphorosmeae’]

16/170–180. Chenolea (2; C. convallis, C. diffusa; Namibia, Northern, Western and Eastern Cape, KwaZulu-Natal), Spirobassia (1; S. hirsuta; Atlantic coasts of Europe to central Mediterranean, coasts of the Black Sea and the Caspian Sea), Neokochia (2; N. americana, N. californica; southwestern North America), Eokochia (1; E. saxicola; islands of Ischia, Capri and Stromboli in Italy); Grubovia (7; G. brevidentata, G. dasyphylla, G. eriophora, G. krylovii, G. melanoptera, G. mucronata, G. sedoides; Central Asia, Mongolia), ‘Maireana’ (57–60; continental and southern Australia; non-monophyletic), Dissocarpus (4; D. biflorus, D. fontinalis, D. latifolius, D. paradoxus; continental Australia), Eriochiton (1; E. sclerolaenoides; southern parts of Australia), Sclerolaena (60–65; Australia), Didymanthus (1; D. roei; southwestern Western Australia), Roycea (3; R. divaricata, R. pycnophylloides, R. spinescens; southwestern Western Australia), Eremophea (2; E. aggregata, E. spinosa; arid regions of Australia), Malacocera (4; M. albolanata, M. biflora, M. gracilis, M. tricornis; arid regions of Australia); Bassia (c 20; western Mediterranean to eastern Asia), Sedobassia (1; S. sedoides; eastern Europe to Siberia), Camphorosma (6; C. annua, C. monandra, C. monspeliaca, C. persepolitana, C. polygama, C. songorica; the Mediterranean to Central Asia). – Temperate and subtropical Eurasia, northern and southern Africa, Australia, with their highest diversity in Australia, few species in South Africa or North America. C3 or C4 metabolism (one species intermediate between C3 and C4 metabolism). Camphorosmoideae are similar to Salsoloideae, but differ through absence of floral prophylls (bracteoles), stigmas filiform and with stigmatic papillae on their entire surface, annular or folded embryo surrounding perisperm, wider pollen grains (>15 µm) with larger number of pores (usually >70) with smaller diameter (usually <2000 nm), and exine with smaller number of spinulae per operculum (>15). – Camphorosmoideae are sister to Salsoloideae.

Simplified tree of Amaranthaceae based on DNA sequence data (from numerous sources). The sister-group relationship between Polycnemoideae and the remaining Amaranthaceae is not very strong.

Maximum-likelihood tree (simplified) of Amaranthaceae based on DNA sequence data (Kadereit & al. 2006; Kadereit & Freitag 2011). [Dysphania+Teloxys] is sister-group to the Axyrideae clade in Fuentes-Bazan & al. (2012).

ANACAMPSEROTACEAE Nyffeler et Eggli

( Back to Caryophyllales )

Nyffeler et Eggli in Taxon 59: 232. Feb 2010

Genera/species 3/c 32

Distribution Southern and southeastern Africa, Somalia, southwestern Arabian Peninsula, southwestern United States, Mexico, Bolivia, Argentina, with their largest diversity in South Africa.

Fossils Unknown.

Habit Bisexual, small shrubs or suffrutices to thick-stemmed perennial herbs. Sometimes with a basal fleshy caudex or tuberous main-root. Often stem succulents. Usually mucilaginous.

Vegetative anatomy Plants with facultative CAM (or C4?) photosynthesis; leaves with Kranz’ anatomy. Stem epidermis usually without stomata (sometimes parallelocytic). Phellogen ab initio usually epidermal (sometimes outer-cortical). Precocious initiation of stem periderm. Phellem with lignified bands consisting of thin-walled flattened cells. Medulla often with wide-band tracheids. Cortical fibres absent. Fibre caps to stem vascular tissue absent. Secondary lateral growth normal or absent. Vessel elements with simple perforation plates; lateral pits with wide annular or helical secondary wall thickening. Imperforate tracheary xylem elements usually absent (libriform fibres present in stems of Grahamia bracteata and Talinopsis frutescens lacking wide-band tracheids). Wood rays multiseriate or absent, often with wide-band tracheids. Axial parenchyma paratracheal scanty vasicentric (in stems of Talinopsis). Thick-walled pericyclic extraxylary phloem fibre caps usually absent. Sieve tube plastids P3cf type? Nodes 1:1? Mucilaginous tracheoidal idioblasts usually frequent in wood rays (not in Grahamia). Sclereides (thick-walled) often present. Tanniniferous cells absent. Phloem parenchyma cells with phytoferritin? Parenchyma and epidermis often with numerous calciumoxalate crystals or druses.

Trichomes Hairs unicellular or multicellular, uniseriate, or absent.

Leaves Usually alternate (spiral; in Talinopsis opposite), simple, entire, often more or less succulent (especially in Grahamia), usually globose to terete (rarely flattened), with supervolute ptyxis? Stipules and leaf sheath absent. Leaves with axillary biseriate or oligoseriate hairs, bristles or a pergamentaceous scale enclosing diminutive leaves (in Anacampseros sect. Avonia). Petiole vascular bundle transection arcuate? Venation pinnate, ?-dromous. Stomata parallelocytic, usually transversely orientated. Cuticular wax crystalloids usually absent (rarely as relatively irregular platelets?). Mesophyll with mucilage idioblasts. Leaf margin entire.

Inflorescence Terminal or axillary, few-flowered thyrsoid, sometimes compact (with short internodes) or with scorpioid partial inflorescences. Involucre consisting of bracts often present. Transverse floral prophylls (bracteoles) subtending axillary flowers; median floral prophylls (in the same plane as bud-subtending prophylls) without flowers; sepaloid floral prophylls two, persistent and dry in fruit.

Flowers Actinomorphic, small to medium-sized. Hypanthium present. Hypogyny. Tepals five, with imbricate aestivation, petaloid, free or slightly connate at base (rarely absent). Nectary absent? Disc absent.

Androecium Stamens five to 15 (to c. 25). Annular androecial primordium often present in Anacampseros. Filaments free from each other and from tepals. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with multinucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually polypantocolpate, polyrugate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, perforate, spinulate.

Gynoecium Pistil composed of three connate carpels. Ovary superior, ab initio multilocular, later unilocular. Stylodia (four or) five (or six). Stigmas receptive on both surfaces, papillate, Dry type. Pistillodium absent.

Ovules Placentation usually free central (rarely basal). Ovules numerous per ovary, anatropous?, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Apical cells of megasporangium radially elongate. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus? Antipodal cells two?, ephemeral. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis caryophyllad?

Fruit A loculicidal and/or septicidal capsule dehiscing from apex into three or six valves, with caducous exocarp usually separating from endocarp (not in Grahamia). Perianth remnants and stamens persistent and forming a dry calyptra (Grahamia, Talinopsis) or caducous (Anacampseros). Endocarp valves forming small basket.

Seeds Aril absent. Testa two-layered, sometimes winged. Exotesta in Talinaria and Anacampseros thick, with dry cells with thin unlignified walls; exotesta usually partially or entirely separating periclinally from endotesta. Endotesta? Tegmen? Perisperm starchy, usually poorly developed. Endosperm sparse or absent. Embryo usually only slightly curved, not surrounding perisperm, parallel to perisperm, well differentiated, without chlorophyll. Cotyledons two. Radicula dorsal. Germination phanerocotylar?

Cytology x = 9

DNA Intron absent from plastid gene rpl2? 6 bp deletion in plastid gene ndhF? C. 500 bp deletion in plastid gene rbcL?

Phytochemistry Betalains present. Ellagic acid and cyanogenic compounds not found.

Use Ornamental plants.

Systematics Talinopsis (1; T. frutescens; southern United States, Mexico), Grahamia (1; G. bracteata; Bolivia, northern and central Argentina), Anacampseros (c 30; southeastern and southern Africa, Somalia, southwestern Arabian Peninsula).

Anacampserotaceae are sister-group to Cactaceae, according to Brockington & al. (2013).

The axillary appendages may by remnants of highly condensated axillary short shoots and thus homologous to the areoles in the Cactaceae (Nyffeler & Eggli 2010).

Six species of ‘Grahamia’ form a basal pectination in the analysis by Nyffeler (1997). These are now included in Anacampseros. Grahamia bracteata is sister to Anacampseros (Nyffeler & Eggli 2010).

Cladogram (simplified) of Anacampserotaceae based on DNA sequence data (Nyffeler & Eggli 2010).

ANCISTROCLADACEAE Planch. ex Walp.

( Back to Caryophyllales )

Walpers in Ann. Bot. Syst. 2: 175. 15-16 Dec 1851 [‘Ancistrocladeae’], nom. cons.

Ancistrocladales Takht. ex Reveal in Novon 2: 238. 13 Oct 1992

Genera/species 1/c 20

Distribution Tropical Africa, India, Sri Lanka, eastern Himalayas to southeastern China, Southeast Asia and West Malesia.

Fossils Unknown.

Habit Bisexual, evergreen lianas with distinctly sympodial growth. Some lateral branches with circinately branched, often leaf opposite, barbs (hooks, grapnels) in one plane.

Vegetative anatomy Phellogen ab initio median-cortical. Primary cortex with thick-walled secretory cells. Cortical vascular bundles absent? Vessel elements with simple perforation plates; lateral pits alternate? Imperforate tracheary xylem elements fibre tracheids with bordered pits, non-septate? (also vasicentric tracheids). Wood rays uniseriate, homocellular. Axial parenchyma apotracheal, usually in tangential bands, with fibriform vessels and spiral cells, without crystals. Wood often fluorescent. Tyloses absent. Sieve tube plastids Ss type. Nodes 3:3, trilacunar with three leaf traces. Cortical cells with pitted elongate sclereids. Wood ray parenchyma cells with silica bodies (at least in African species). Calciumoxalate crystals?

Trichomes Glandular hairs multicellular, peltate-lepidote. Vascularized glands absent.

Leaves Alternate (spiral), simple, entire, with supervolute ptyxis. Stipules very small, early caducous; leaf sheath absent. Petiole articulated. Petiole vascular bundle transection annular and with peripheral cylinder of small bundles. Venation pinnate. Stomata actinocyclocytic (surrounded by delimited subsidiary cells). Cuticular wax crystalloids as platelets. Abaxial side of lamina with small lepidote, multicellular wax glands in small pocket-like domatia. Leaf margin entire.

Inflorescence Terminal or axillary, panicle, raceme- or spike-like, racemes or spikes.

Flowers Actinomorphic to zygomorphic, small. Pedicel articulated. Half epigyny. Sepals five, with imbricate quincuncial aestivation, unequal, persistent, connate, sometimes with abaxial glands. Petals five, with contorted or imbricate aestivation, fleshy, free or connate at base. Nectaries? Disc absent.

Androecium Stamens usually ten (rarely five or 15), in one whorl (staminal primordia five?); antepetalous stamens larger. Filaments short, fleshy, connate at base, adnate to petal bases (epipetalous). Anthers basifixed, non-versatile, tetrasporangiate, introrse or latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains 3(–4)-colp(or)ate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, spinulate.

Gynoecium Pistil composed of usually four (sometimes three) connate carpels. Ovary semi-inferior, unilocular. Stylodia usually four (sometimes three), free or connate at base, articulated, slightly widened in upper part. Stigmas (three or) four, crescent-shaped or pinnatifid, Dry? type. Pistillodium absent.

Ovules Placentation basal-lateral. Ovule one per ovary, hemianatropous, bitegmic, crassinucellar. Micropyle ?-stomal Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type? Endosperm development cellular. Endosperm haustoria? Embryogenesis?

Fruit A nut surrounded by hypanthium and with persistent strongly enlarged wing-like calyx lobes.

Seeds Aril absent. Seed coat exotestal? Testa membranous. Exotesta? Endotesta? Tegmen? Perisperm not developed. Endosperm hard, starchy, ruminate. Embryo small, straight, chlorophyll? Cotyledons two, strongly plicate. Germination phanerocotylar.

Cytology n = ?

DNA Intron present in plastid gene rpl2.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, delphinidin, betulinic acid, polyketide-derived naphthyl isoquinoline alkaloids (e.g., ancistrocline, dioncophylline, michellamines), and naphthoquinones (plumbagin, droserone) present. Ellagic acid?

Use Michellamines (dimerous naphthyl isoquinoline alkaloids) in Ancistrocladus korupensis are anti-HIV active substances.

Systematics Ancistrocladus (c 20; tropical Africa, India, Sri Lanka, eastern Himalayas to southeastern China, Burma, Southeast Asia, the Andaman Islands and West Malesia to Borneo).

Ancistrocladus is sister to Dioncophyllaceae.

The non-carnivorous habit in Ancistrocladus is obviously secondary.

ASTEROPEIACEAE (Szyszył.) Takht. ex Reveal et Hoogl.

( Back to Caryophyllales )

Reveal et Hoogland in Bull. Mus. Natl. Hist. Nat. Paris, sér. 4, sect. B, Adansonia, 12: 205. 24 Nov 1990

Genera/species 1/8

Distribution Madagascar.

Fossils Unknown.

Habit Bisexual, evergreen trees or climbing to creeping shrubs.

Vegetative anatomy Ectomycorrhiza present. Phellogen ab initio subepidermal. Pericyclic fibres present. Primary medullary rays narrow. Continuous sclerenchyma cylinder surrounding vascular cylinder in young stems. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres (tracheids absent) with small bordered pits, non-septate. Wood rays usually uniseriate (rarely biseriate), homocellular (consisting of exclusively procumbent cells). Axial parenchyma apotracheal diffuse, or paratracheal aliform, winged-aliform, confluent or unilateral. Wood diffuse to diffuse porose, non-storied. Sieve tube plastids Ss type. Nodes 1:1, unilacunar with one leaf trace. Medullary parenchyma with sclereids. Secretory cavities? Calciumoxalate crystals and silica bodies absent.

Trichomes Hairs absent?

Leaves Alternate (spiral), simple, entire, with ? ptyxis. Stipules and leaf sheath absent. Petiole articulated. Petiole vascular bundle transection annular. Venation pinnate, brochidodromous, indistinct. Stomata paracytic? Cuticular waxes absent. Mesophyll with sclerenchymatous idioblasts containing brachysclereids. Leaf margin entire.

Inflorescence Terminal or axillary, thyrso-paniculate. Floral prophylls (bracteoles) numerous.

Flowers Actinomorphic, small. Hypogyny. Sepals five, with imbricate aestivation, connate at base, persistent and accrescent. Petals five, with imbricate aestivation, early caducous, free, adnate to sepals. Nectary absent. Disc absent.

Androecium Stamens usually 5+5, diplostemonous (sometimes 3+3+3 or 5+5+5, triplostemonous). Filaments widened at base and connate into a ring, free from tepals. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains usually tri- or hexacolp(oroid)ate (sometimes hexarugate, rarely dicolp[oroid]ate), shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, echinate to spinulate.

Gynoecium Pistil composed of (two or) three connate carpels. Ovary superior, usually trilocular (sometimes bilocular), with usually incomplete septa. Stylodia (two or) three, free or more or less connate. Stigmas (two or) three, punctuate, type? Pistillodium absent.

Ovules Placentation axile(-apical). Ovules usually two (sometimes four or five, rarely more than five) per carpel, anatropous, pendulous, epitropous, bitegmic, tenuinucellar? Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Nucellar cap absent. Megagametophyte monosporous, Polygonum type? Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit A usually one-seeded (sometimes many-seeded) thick-walled nut, with persistent staminal filaments and strongly accrescent winged and leathery to membranous calyx, or an irregularly dehiscing capsule with weak septa.

Seeds Aril absent. Testa? Tegmen? Perisperm not developed. Endosperm almost absent. Embryo curved, well differentiated?, chlorophyll? Cotyledons two, large, spirally twisted. Germination?

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Ellagic acid? Alkaloids?

Use Locally used for timber.

Systematics Asteropeia (8; A. amblyocarpa, A. densiflora, A. labatii, A. matrambody, A. mcphersonii, A. micraster, A. multiflora, A. rhopaloides; Madagascar).

The sister-group of Asteropeia is Physena (Physenaceae).

BARBEUIACEAE (H. Walter) Nakai

( Back to Caryophyllales )

Nakai in J. Jap. Bot. 18: 105. 10 Mar 1942

Genera/species 1/1

Distribution Madagascar.

Fossils Unknown.

Habit Bisexual, evergreen liana. Blackening when drying.

Vegetative anatomy Phellogen superficial. Cortical fibres present. Secondary lateral growth anomalous (as concentric cylinders of vascular bundles in inner pericycle from successive cambia). Vessel elements with simple perforation plates; lateral pits alternate. Imperforate tracheary xylem elements tracheids (and libriform fibres?) with simple pits, non-septate? Wood rays multiseriate, homocellular. Axial parenchyma paratracheal vasicentric, scanty (sometimes apotracheal, diffuse). Intraxylary phloem present. Sieve tube plastids P3cf type, with a polygonal protein crystal surrounded by a ring of protein filaments. Nodes 1:1, unilacunar with one leaf trace. Sclereids present in primary cortex. Calciumoxalate sphaeroits, rhomboidal crystals or druses present.

Trichomes Hairs absent?

Leaves Alternate (spiral), simple, entire, with ? ptyxis. Stipules and leaf sheath absent. Petiole articulated at base. Petiole vascular bundles? Venation pinnate. Stomata anomocytic. Cuticular waxes? Leaf margin entire.

Inflorescence Axillary, racemes.

Flowers Actinomorphic. Hypogyny. Tepals five, with imbricate quincuncial aestivation, sepaloid, persistent, free. Nectariferous disc annular.

Androecium Stamens c. 20–25, in several (four or five?) whorls. Filaments short, free from each other and from tepals, inserted at annular disc. Anthers subbasifixed, non-versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–6)-colporoidate or 3(–6)-rugate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, undulate to verrucate.

Gynoecium Pistil composed of two connate carpels. Ovary superior, bilocular. Stylodia two, linear, slightly flattened, directed outwards to upright, somewhat connate at base. Stigmas two, flattened, papillate adaxially and along margins, type? Pistillodium absent.

Ovules Placentation basal. Ovule one per carpel, campylotropous, ascending, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A one- or two-seeded lignified loculicidal capsule.

Seeds Aril partially enclosing seed. Seed coat testal? Testal cells elongate, with sinuate anticlinal walls. Exotesta? Endotesta? Tegmen? Perisperm copious and nutritious. Endosperm sparse. Embryo peripheral, curved around perisperm, well differentiated. Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Betalains? Triterpenoid saponins?

Use Unknown.

Systematics Barbeuia (1; B. madagascariensis; Madagascar).

Barbeuia is probably sister to the “globular inclusion clade” minus Lophiocarpaceae and Hypertelis.

BASELLACEAE Raf.

( Back to Caryophyllales )

Rafinesque, Fl. Tellur. 3: 44. Nov-Dec 1837 [‘Basellides’], nom. cons.

Anrederaceae J. Agardh, Theoria Syst. Plant.: 357. Apr-Sep 1858 [’Anredereae’]; Basellineae Nakai in J. Jap. Bot. 18: 108. 10 Mar 1942 [‘Baselliineae’]; Ullucaceae Nakai in J. Jap. Bot. 18: 109. 10 Mar 1942

Genera/species 4/19

Distribution Tropical East and southeastern Africa, Madagascar, Indian Ocean islands, tropical Asia to New Guinea and islands in the Pacific, southeastern United States to tropical South America.

Fossils Unknown.

Habit Usually bisexual (rarely monoecious; in Anredera vesicaria functionally unisexual), winding or climbing perennial herbs or lianas, slightly to distinctly fleshy. Stem bases and rhizome usually swollen and tuberous; roots sometimes tuberous.

Vegetative anatomy CAM photosynthesis? Phellogen ab initio outer-cortical. Primary vascular tissue a single cylinder of vascular strands with intraxylary phloem in larger bundles, bicollateral (at least in larger bundles); vessels only present in central portions of fascicular areas. Anomalous secondary lateral growth from concentric/successive cambia sometimes present. Vessel elements with simple perforation plates; lateral pits alternate? Imperforate tracheary xylem elements? Wood rays? Axial parenchyma often ray-adjacent. Intraxylary phloem present. Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by a ring of protein filaments. Nodes? Pericycle sclerenchymatous. Parenchyma with mucilaginous cells. Phloem parenchyma cells with phytoferritin? Stem epidermis with numerous calciumoxalate druses (sometimes also prismatic and octaedric crystals).

Trichomes Hairs absent.

Leaves Alternate (spiral) or nearly opposite (at stem base), simple, usually entire (rarely lobed), often somewhat fleshy, in Anredera with conduplicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate or palmate. Stomata paracytic or anomocytic. Cuticular wax crystalloids absent. Mesophyll with mucilaginous idioblasts. Leaf margin usually entire (in Tournonia glandular-serrate).

Inflorescence Terminal or axillary, spike, raceme, panicle or dichasium (in Tournonia). Floral prophylls (bracteoles) 2+2, inner pair median. Sepaloid floral prophylls two, opposite, persistent, free or partially connate at base.

Flowers Actinomorphic, small. Hypanthium present. Usually hypogyny (rarely half epigyny). Tepals (four or) five (to 13), with imbricate quincuncial aestivation, petaloid, persistent, connate at base to more than half-way up. Nectariferous disc annular, extrastaminal or intrastaminal.

Androecium Stamens (four or) five (to nine), often as many as tepals, antetepalous. Filaments widened and connate at base, in lower part adnate to tepals (epitepalous). Anthers basifixed to dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits) or poricidal (dehiscing by apical pores or pore-like slits). Tapetum secretory, with multinucleate cells. Female flowers with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains polypantocolpate or polypantoporate (often hexacolpate), sometimes cuboid, shed as monads, tricellular at dispersal. Exine tectate or semitectate, with columellate infratectum, punctate or reticulate, spinulate.

Gynoecium Pistil composed of (two or) three connate carpels. Ovary usually superior (rarely semi-inferior), unilocular (sometimes trilocular at base; in young stages trilocular). Stylodia usually three, free or connate in lower part (style sometimes single, shortly lobate). Stigmas usually three, capitate or clavate (sometimes one, trilobate), type? Male flowers with pistillodium.

Ovules Placentation basal. Ovule one per ovary or carpel, campylotropous to orthoamphitropous (anatropous?), ascending, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Nucellar cap/beak present. Megagametophyte monosporous, Polygonum type. Synergids without filiform apparatus. Antipodal cells three or more. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis chenopodiad.

Fruit A thin-walled achene (utriculus), often sunken into pergamentaceous or carnose persistent perianth or surrounded by persistent winged remnants of floral prophylls.

Seeds Aril absent. Seed coat testal-tegmic? Testa membranous. Exotesta and endotesta more or less thickened. Exotegmen? Endotegmen thickened. Perisperm scarce, surrounded by embryo. Endosperm usually copious (absent?), with clusters of starch grains. Embryo annular to cochlear, well differentiated, with chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology n = 12, 18, 22, 24

DNA 6 bp deletion in plastid gene ndhF.

Phytochemistry Flavonol (quercetin), flavone-C-glycosides, betacyanins, and triterpene saponins present. Ellagic acid, proanthocyanidins and cyanogenic compounds not found.

Use Ornamental plants, vegetables, dyeing of food.

Systematics Anredera (12; Texas, southern Florida, Central America, the West Indies, tropical South America to Argentina), Basella (5; B. paniculata: tropical East and southeastern Africa; B. excavata, B. leandriana, B. madagascariensis: Madagascar; B. alba: tropical Asia from India to New Guinea, possibly introduced in Africa, tropical America and on oceanic islands), Tournonia (1; T. hookeriana; Colombia), Ullucus (1; U. tuberosus; the Andes).

Basellaceae may be sister-group to Didiereaceae (Ocampo & Columbus 2010; Brockington & al. 2013) or even to the Portulacaria-Ceraria clade in Didiereaceae (Arakaki & al. 2011).

Cladogram (simplified) of Basellaceae based on morphology (Eriksson 2007).

CACTACEAE Juss.

( Back to Caryophyllales )

de Jussieu, Gen. Plant.: 310. 4 Aug 1789 [’Cacti’], nom. cons.

Opuntiaceae Desv. in S. Gérardin de Mirecourt et N. A. Desvaux, Dict. Rais. Bot.: 52, 385. 12-19 Apr 1817; Cactales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 238. Jan-Apr 1820 [‘Cacteae’]; Cereaceae Spreng. ex DC. et Spreng., Elem. Philos. Bot.: 142. Jul 1821 [‘Cereae’]; Opuntiopsida Endl., Gen. Plant.: 942. Nov 1839 [’Opuntiae’]; Cactopsida Brongn., Enum. Plant Mus. Paris: xxviii, 105. 12 Aug 1843 [’Cactoideae’]; Opuntiales Endl. ex Willk., Anleit. Stud. Bot. 2: 295. 19-20 Jan 1854 [‘Opuntieae’]; Nopaleaceae Schmid et Curtman, Pflanzenr. 2: 135. 10-11 Jun 1856 [‘Nopaleae’]; Cactineae Bessey in C. K. Adams, Johnson’s Universal Cyclop. 8: 462. 15 Nov 1895 [‘Cactales’]

Genera/species 131/1.720–1.815

Distribution Mainly arid and semiarid regions of North and South America (British Columbia and Alberta south to Patagonia); also epiphytes and lianas in rain forests and other moist forests (Rhipsalis also in tropical Africa, Madagascar, the Seychelles, the Mascarenes and Sri Lanka, possibly introduced?).

Fossils Proposed fossils of Cactaceae are ambiguous.

Habit Usually bisexual (at least in Mammillaria dioica and Selenicereus innesii functionally dioecious), usually perennial herbs (sometimes climbing or epiphytic; rarely deciduous shrubs or small trees [Rhodocactus, Pereskia]). Usually xerophytic. Almost all species are stem succulents with elongate and branched or unbranched, or almost globular pachycaul photosynthesizing stem; some genera with flattened almost foliaceous stem segments, phylloclades. Stem and branch surfaces usually with areolae – modified axillary short shoots, brachyblasts – with numerous spines – modified leaves or foliar lobes.

Vegetative anatomy CAM physiology dominating (also C4 physiology present). Roots usually fibrous or tuberous (Peniocereus and Pterocactus with napiform nutritious roots). Stem epidermis with thick cuticle and thick cell walls, usually with parallelocytic stomata. Apical meristem very wide (often c. 0,5–1,5 mm). Phellogen ab initio usually in epidermis (rarely outer-cortical). Precocious or delayed initiation of stem periderm. Hypodermis present. Cortex and medulla with or without vascular bundles and usually modified into water-storing tissue with vacuolized parenchyma cells. Apical meristem 400–1.500 μm wide. Wide-band tracheid cells usually present in xylem strands and medulla in particular. Primary vascular tissue a cylinder of vascular bundles. Secondary lateral growth normal (inner phloem absent; secondary lateral growth absent in some groups). Vessel elements usually with simple (rarely reticulate) perforation plates; lateral pits alternate or pseudoscalariform. Imperforate tracheary xylem elements libriform fibres with simple pits (also vasicentric tracheids). Wood rays multiseriate?, wide and tall, starchy. Axial parenchyma usually paratracheal scanty. Thick-walled pericyclic extraxylary phloem fibre caps present. Sieve tube plastids P3cf type, with a central globular protein crystalloid and a subspherical ring of protein filaments, without starch. Nodes 1–?:1–>5, at least unilacunar with one to many leaf traces (trace often with two or several branches). Cortex (sometimes also medulla) with mucilaginous idioblasts and often sclereids. Laticifers in Mammillaria with white latex containing mucilaginous polysaccharides. Tanniniferous cells absent. Phloem parenchyma cells with phytoferritin? Idioblasts with crystals. Calciumoxalate (often very frequent) usually as prismatic crystals or druses (sometimes crystal sand, rarely raphides). Calciumoxalate as whewellite (CaC2O4.H2O) or weddellite (CaC2O4.2H2O). Cuticular wax crystalloids as platelets or rodlets.

Trichomes Hairs multicellular, uniseriate, or absent.

Leaves Usually almost absent (present as microscopical vestiges); in Rhodocactus and Pereskia usually alternate (spiral); leaves when present simple, entire and flat (in Rhodocactus and Pereskia) or terete (in Maihuenia and young plantlets of Opuntioideae); in Maihuenia and Opuntioideae succulent; in Pereskia with supervolute ptyxis. Stipules and leaf sheath absent. Leaves with axillary hairs (in Pereskia, Pereskiopsis and Quiabentia usually uniseriate) and sometimes multiseriate bristles or scales (hairs in Cactaceae s. str. sometimes in areolae). Petiole vascular bundles? Venation pinnate (rarely palmate) or indistinct. Stomata in Cactaceae parallelocytic, often opuntioid (subsidiary cells overlapping ends of guard cells). Cuticular wax crystalloids usually as platelets or rodlets (in Cereus clade as spiral rodlets) or as continuous crust. Mesophyll with mucilaginous idioblasts. Leaf margin entire. Extrafloral nectaries frequent at or near areolae in several genera.

Inflorescence Flowers usually solitary (rarely two or more) on lateral or subapical areolae (rarely terminal; in Pereskia cymose or racemose, panicle). Median floral prophylls absent.

Flowers Usually actinomorphic (rarely zygomorphic, e.g. Schlumbergera, Zygocactus), often large. Usually epigyny (rarely half epigyny or hypogyny). Hypanthium present or absent. Tepals few to many, spiral, with imbricate aestivation (Rhodocactus, Pereskia), usually petaloid, free or connate into perianth tube, downwards grading via sepaloid tepals and tepaloid bracts into scale-like bracts. Nectariferous disc (in, e.g., Pereskia and Rhipsalis) or nectaries at base of hypanthium and androecium (in some species of Opuntia on annular or cupular outgrowth at stylar base).

Androecium Stamens c. 20 to more than 4.000, usually at least initially spiral, later often in one or two whorls, or more than perianth tube length (staminal primordia initiated in fascicles and often continuing tepal spiral phyllotaxis). Androecial ring primordium sometimes present. Filaments free, usually adnate to perianth tube. Anthers basifixed or dorsifixed, sometimes versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia present in some genera.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate, hexacolpate or polypantocolpate (in most Opuntioideae porate), usually shed as monads (rarely tetrads), tricellular at dispersal. Exine tectate or semitectate, with columellate infratectum, perforate or reticulate, spinulate (rarely verrucate or psilate).

Gynoecium: Pistil composed of three to more than 20 connate carpels. Ovary usually inferior (in Pereskia superior or semi-inferior), usually unilocular (sometimes partially multilocular due to secondary septa). Style usually single, simple, long. Stigma trilobate to more than 20-lobate, non-papillate, Wet type. Pistillodium usually absent.

Ovules Placentation usually parietal-laminar (in Rhodocactus and Pereskia basal-laminar). Ovules numerous per ovary, usually campylotropous or circinotropous (rarely anatropous), bitegmic, crassinucellar. Micropyle endostomal. Outer integument usually approx. two (in Cereus three or four) cell layers thick. Inner integument two (or three) cell layers thick. Parietal tissue approx. one cell layer thick. Apical cells of megasporangium often radially elongate. Lateral epidermal cells anticlinally divided. Nucellar cap present. Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis? Polyembryony known from several genera.

Fruit Usually a berry, often dehiscent (sometimes a nut; in Copiapoa a capsule; sometimes with persistent areola, hypanthium and/or remnants of tepals). Pericarp not two-layered.

Seeds Aril (funicular) present or absent, in Opuntioideae bony. Funicle fleshy, with short apical hairs. Hilum and micropyle with various shapes (in many Cactoideae with spongy hilum/micropyle region). Testa sometimes winged. Operculum present in some representatives. Endotegmic cell walls often thickened. Perisperm copious and nutritious or almost absent. Endosperm sparse or absent. Embryo peripheral, usually strongly curved over perisperm (sometimes nearly straight or spirally twisted), well differentiated to rudimentary, without chlorophyll. Cotyledons two, usually more or less reduced. Radicula sometimes aborted. Germination phanerocotylar.

Cytology x = (9) 11 (12) – Polyploidy frequently occurring in Opuntioideae and Cactoideae. Adventitious embryony present at least in Opuntioideae.

DNA Plastid genome in at least Pereskia with inversion of 6 kb in LSC region, and c. 500 bp deletion in rbcL (cf. Portulaca!). Plastid gene infA lost/defunct (Notocactus). Intron absent from Cactoideae plastid gene rpoC1. 6 bp deletion in plastid gene ndhF.

Phytochemistry Flavonols (kaempferol, quercetin, isorhamnetin, apigenin, etc.), flavones, flavanones, dihydroflavonol glycosides, cyanidin, delphinidin, sterols, betacyanins, betaxanthins, tyramine alkaloids, phenylethylamines, pilocereine, peyote alkaloids (e.g. mescaline), and tetrahydroisoquinoline alkaloids (e.g. anhalamine, anhalidine, pellotine and anhalonidine), saponins, sapogenins and other triterpenes, and phytoferritin (in phloem parenchyma cells) present. Ellagic acid and cyanogenic compounds not found.

Use Ornamental plants, fruits (Opuntia, Selenicereus megalanthus, Hylocereus, Stenocereus, etc.), narcotics (Lophophora williamsii), fences and hedges (e.g. Opuntia), carpentries.

Systematics Cactaceae are sister-group to Anacampserotaceae, according to Brockingty & al. (2013).

The generic and specific delimitations are notorious in Cactaceae. Hence, the species numbers within the genera are often highly provisional.

Cactaceae have undergone a tremendous increase in number of perianth parts as compared to their closest relatives (Anacampserotaceae, Portulacaceae, Talinaceae, Basellaceae, Didiereaceae and Halophytaceae). The spirally arranged perianth parts in Cactaceae may be bracteal rather than staminodial in their homology (Ronse De Craene 2007, 2008, etc.). The perianth may have evolved through differentiation and inclusion of supernumerary bracts (Ronse De Craene 2008) or through development of additional bracts. Brockington & al. (2009) suggest that this increase in perianth parts may be partially the result of a corresponding increase in meristem size and merosity of reproductive organs.

The subdivision of Opuntioideae and Cactoideae are according to Nyffeler & Eggli (2010c).

Cladogram (simplified) of Cactaceae based on DNA sequence data (Nyffeler 2007; Ogburn & Edwards 2009; Nyffeler & Eggli 2010). The clade [Opuntioideae+Maihuenioideae] collapsed in the Nyffeler & Eggli analysis.

Rhodocactus

1/5. Rhodocactus (5; R. bahiensis, R. grandifolia, R. nemorosa, R. sacharosa, R. stenantha; Mexico, the Antilles, northwestern South America, southeastern Brazil). – Phellogen outer-cortical. Precocious initiation of stem periderm. Stem epidermis without stomata or with parallel-orientated parallelocytic stomata, opuntioid except innermost cell pair, with subsidiary cells randomly arranged; leaf stomata randomly orientated; stomata opening only during rains and at night. Concentric (stratified) layers of sclereids (often thick-walled) usually present in phellem of periderm. Wide-band tracheids absent. Hypogyny or half epigyny. Pollen grains colpate. Placentation basal-laminar.

[Pereskia+[Opuntioideae+[Maihuenia+[Blossfeldia+Cactoideae]]]

Stem cuticle often thick. Epidermis persistent. Phellogen usually epidermal. Usually delayed initiation of stem periderm (not in Pereskia aculeata). Stomata usually present in stem epidermis (absent in P. nemorosa). Stem mucilage cells present. Cortical sclereids absent.

Pereskioideae Engelm. in W. H. Brewer et al., Bot. California 1: 243. 1876 [‘Peirescieae’]

1/4. Pereskia (4; P. aculeata, P. diaz-romeroana, P. horrida, P. weberiana; the Andes, Central America, northern and central South America). – Roots sometimes tuberous. Stem stomata parallel-orientated, opuntioid. Concentric (stratified) layers of sclereids (often thick-walled) usually present in phellem of periderm. Wide-band tracheids absent. Sclereids (often thick-walled) present in phloem. Lamina with supervolute ptyxis. Stomata randomly orientated, opening only during rains and at night. Hypogyny, half epigyny or epigyny. Stamens with centrifugal development from five primordia. Pollen grains polycolpate. Placentation basal-laminar.

[Opuntioideae+[Maihuenia+[Blossfeldia+Cactoideae]]]

Stem succulents with very short internodes. CAM or facultative CAM photosynthesis present. Hypodermis collenchymatous. Cortical chlorenchyma forming mesophyllar tissue with intercellular spaces. Wide-band tracheids in secondary xylem at least of seedlings with annular thickenings. Flowers solitary, axillary. Hypanthium present. Epigyny. Stamens developing from annular primordium. Placentation parietal-laminar.

Opuntioideae Burnett, Outlines Bot.: 742, 1130. Feb 1835 [’Opuntidae’]

18/170–200. Cylindropuntieae Doweld in Sukkulenty 1(2): 25. 25 Jul 1999. Austrocylindropuntia (8–10; tropical northern South America), Cumulopuntia (19–20; the Andes), Punotia (1; P. lagopus; Peru, Bolivia?), Maihueniopsis (1; M. glomerata; Peru, Bolivia, Chile, Argentina), Quiabentia (2; Q. verticillata, Q. zehntneri; eastern Brazil, Paraguay, Bolivia, Argentina), Pereskiopsis (2; P. aquosa, P. porteri; Mexico, Central America), Micropuntia (1; M. pulchella; the Mojave Desert in southwestern United States), 'Corynopuntia' (16; southwestern United States, Mexico; polyphyletic), ‘Cylindropuntia’ (20–25; southwestern United States, Mexico, Central America; non-monophyletic), Grusonia (1; G. bradtiana; southwestern United States, northwestern Mexico); Tephrocactus (13; Argentina). – Opuntieae DC., Prodr. 3: 458. Mar (med.) 1828. Miqueliopuntia (1; M. miquelii; coast of Chile), Tunilla (12; Peru, Bolivia, Chile, Argentina), Brasiliopuntia (2; B. brasiliensis, B. schickendantzii; Peru, Brazil, Paraguay, eastern Bolivia, northern Argentina), Tacinga (9; Venezuela, northeastern Brazil), ‘Opuntia’ (45–65; southwestern Canada to South America, the Galápagos Islands; non-monophyletic), Consolea (10; C. corallicola, C. moniliformis, C. spinosissima; Florida Keys, the West Indies). – Unplaced Opuntioideae Pterocactus (9; Patagonia in southern and western Argentina). – Southwestern Canada to southern Patagonia. Roots often tuberous. Stem terete, usually articulated, often flattened. Stem stomata parallel-orientated, opuntioid. Calciumoxalate as whewellite (CaC2O4.H2O). Leaves usually small, terete, succulent, caducous, present only on young stems (in Pereskiopsis large, persistent, bifacial, with lamina and petiole; in Quiabentia terete, persistent, unifacial). Areolae with glochidia (minute acicular spines with retrorse barbs). Leaf stomata parallel-oriented. Subsidiary cells of stomata not or only slightly overlapping ends of guard cells. Short hypanthium sometimes present. Pollen grains usually polyporate. Seeds covered by bony funicular aril. Outer exotestal cells with little thickened periclinal walls. Cotyledons sometimes nutrient storing organs. Deletion of plastid gene accD. – Cumulopuntia is nested in Maihueniopsis and Puna sister to this clade in the analyses by Griffith & Porter (2009).

[Maihuenia+[Blossfeldia+Cactoideae]]

Testa with interstitial craters or pits. Outer exotestal cells with strongly thickened periclinal walls.

Maihuenioideae P. Fearn, Rev. Orig. Cactus Fam.: unpaged. [53]. 10 Mar 1996

1/2. Maihuenia (2; M. patagonica, M. poeppigii; the Patagonian Andes Patagonia in southern Chile and southern Argentina). Caespitose shrubs. Phellogen epidermal. Phellogen and cork formation not delayed. epidermis persistent. Stem usually without stomata. Photosynthetic parenchyma present at base of areolar crypts. Stomata sometimes present in areolar crypts, parallelocytic. Medulla and cortex with large mucilage reservoirs. Leaves terete, succulent, persistent. Leaf with cylindrical reticulum of vascular bundles; external xylem surrounding central mucilage reservoir. Leaf stomata transversely orientated. Pollen grains tricolpate. Funicles in fruit long, mucilaginous.

[Blossfeldia+Cactoideae]

Stem stomata parallelocytic, usually unoriented (in epiphytes transverse). Leaves minute or absent. Pollen grains tricolpate to polycolpate (sometimes porate). Seeds with conspicuous spongy hilum-miropyle region. Intron absent from plastid gene rpoC1.

Blossfeldioideae Crozier in Phytologia 86: 55. 24 Sep 2004

1/1. Blossfeldia (1; B. liliputana; the eastern Andes in Bolivia and Argentina). Spines absent. Stem cuticle and epidermal wall thin, early replaced by phellogen. Photosynthetic parenchyma present at base of areolar crypts. Stem stomata few, present at base of areolar crypts. Hypodermis absent. Vascular bundles without cap of phloem fibres. Leaf stomata absent. Seeds round, with strophiolate funicular aril. Testa with a single short narrow hair per cell. – Blossfeldia is sister to Cactoideae.

Cactoideae Eaton, Bot. Dict., ed. 4: 43. Apr-Mai 1836 [‘Cacteae’]

109/1.560–1.625. Southern Canada to the southwestern United States and southwards (a few species of Rhipsalis possibly introduced by man into Africa and Madagascar). Some species are epiphytic. Primary root at least in some Cactoideae with limited growth. Stem usually ribbed (sometimes tuberculate). Stomata usually unoriented. Wide-band tracheids sometimes absent. Cortex wide, succulent. Cortical vascular bundles usually present. Cuticular wax crystalloids in Cereae as spiral-shaped rodlets. Calciumoxalate often as weddellite (CaC2O4.2H2O). Leaves absent. Flowers usually actinomorphic (sometimes zygomorphic). Hypanthium usually present. Pollen grains tricolpate to polycolpate (sometimes porate). Seeds usually non-arillate. Testa with interstitial craters or pits. Outer exotestal cells with strongly thickened periclinal walls. Hypocotyl sometimes nutrient storing organ. Intron absent from plastid gene rpoC1. Alkaloids sometimes present.

Nyffeler & Eggli (2009) found the following topology in Cactoideae: [Cacteae+[Phyllocacteae+[Rhipsalideae+[Notocacteae+Cereeae]]]].

Cacteae Rchb., Fl. Germ. Excurs. 2(2): 561. 1832

26/430–440. Geohintonia (1; G. mexicana; Nuevo Léon in northeastern Mexico; in Aztekium?), Aztekium (3; A. hintonii, A. ritteri, A. valdesii; Nuevo Léon in northeastern Mexico, incl. Geohintonia?), Echinocactus (15; southwestern United States, Mexico), Astrophytum (6; A. asterias, A. capricorne, A. caput-medusae, A. coahuilense, A. myristigma, A. ornatum; the Chihuahuan desert in southern Texas and northern Mexico); Sclerocactus (15–19; southwestern United States), Pediocactus (9; western United States), Echinomastus (6–9; E. erectocentrus, E. intertextus, E. johnsonii, E. mariosensis, E. unguispinus, E. warnockii; southwestern United States, northern Mexico); ‘Ferocactus’ (23; southwestern United States, Mexico; paraphyletic), Leuchtenbergia (1; L. principis; the Chihuahuan desert in northern Mexico; in Ferocactus?), Stenocactus (10; the Chihuahuan desert in Mexico; in Ferocactus?), Thelocactus (11; Texas, northern and central Mexico; in Ferocactus?); Epithelantha (2; E. bokei, E. micromeris; the Chihuahuan desert in southern Texas, southern Arizona and northern Mexico); Strombocactus (1; S. disciformis; eastern central Mexico), Ariocarpus (6; A. agavoides, A. bravoanus, A. fissuratus, A. kotschoubeyanus, A. retusus, A. scaphirostris; the Chihuahuan desert in southern Texas and northern Mexico), ‘Turbinicarpus’ (c 17; northern central Mexico; paraphyletic); Obregonia (1; O. denegrii; northestern Mexico), Lophophora (8; southern Texas, northern and eastern Mexico), Acharagma (3; A. aguirreanum, A. huasteca, A. roseanum; Coahuila and Nuevo Léon in northern Mexico), Rapicactus (6; Mexico); Neolloydia (5; N. conoidea, N. mandragora, N. matehualensis, N. subterranea, N. texensis; the Chihuahuan desert in Texas and northern Mexico), Cumarinia (1; C. odorata; Mexico), ‘Escobaria’ (23; southwestern Canada to Mexico, Cuba; diphyletic), Pelecyphora (2; P. aselliformis, P. strobiliformis; northern central to northeastern Mexico), Ortegocactus (1; O. macdougallii; Oaxaca province in southeastern Mexico), ‘Coryphantha’ (c 55; southwestern and southern United States, Mexico, with their highest diversity in southern United States and northern Mexico; polyphyletic), Mammillaria (>200; southwestern United States and Mexico to Colombia and Venezuela, the West Indies, with their highest diversity in Mexico). – North America incl. Mexico, with their highest diversity in the Chihuahuan desert in southern Texas and northern Mexico.

[Lymanbensonieae+[Frailea+[Phyllocacteae+[Rhipsalideae+[Notocacteae+Cereeae]]]]]

Lymanbensonieae N. Korotkova et Barthlott in Willdenowia 40: 166. 9 Dec 2010

3/c 30. Copiapoa (c 25; coastal deserts in northern Chile), Calymmanthium (1; C. substerile; Cajamarca in northern Peru), Lymanbensonia (3; L. brevispina, L. incachacana, L. micrantha; southern Ecuador, Peru, Bolivia). – Southern Ecuador to Bolivia and northern Chile. – Lymanbensonieae are sister-group to the clade [Frailea+[Phyllocacteae+[Rhipsalideae+[Notocacteae+Cereeae]]]], according to Korotkova & al. (2010).

[Frailea+[Phyllocacteae+[Rhipsalideae+[Notocacteae+Cereeae]]]]

Frailea (26; central South America).

[Phyllocacteae+[Rhipsalideae+[Notocacteae+Cereeae]]]

Phyllocacteae (Salm-Dyck) Rchb., Deutsch. Bot. Herb.-Buch: 161. Jul 1841

32/335–355. ‘Eulychnia’ (5; E. acida, E. breviflora, E. castanea, E. iquiquensis, E. procumbens; coastal deserts in Peru and northern Chile; paraphyletic), Austrocactus (5; A. bertinii, A. coxii, A. patagonicus, A. philippii, A. spiniflorus; Chile, southern Argentina), Corryocactus (c 35; southern Peru, Bolivia, northern Chile), Castellanosia (1; C. caineana; northeastern Paraguay, Cochabamba and Santa Cruz in Bolivia), Armatocereus (6; A. cartwrightianus, A. godingianus, A. laetus, A. matucanensis, A. procerus, A. rauhii; Colombia, Ecuador, Peru), Leptocereus (15; Cuba, Hispaniola, Puerto Rico), Neoraimondia (4; N. arequipensis, N. herzogiana, N. gigantea, N. macrostibas; Peru, Bolivia, northern Chile), Acanthocereus (6; A. basaniensis, A. colombianus, A. horridus, A. occidentalis, A. subinermis, A. tetragonus; Florida, southern Mexico, Central America to Colombia and Venezuela, the West Indies), Lemaireocereus (35–40; Mexico to northern South America), Bergerocactus (1; B. emoryi; coastal areas of San Diego in California and Baja California), Myrtillocactus (4; M. cochai, M. eichlamii, M. geometrizans, M. schenckii; Mexico, Guatemala), Carnegiea (1; C. gigantea; Sonoran desert in southern Arizona, southeasternmost California and northern Mexico), Pachycereus (9–13; southwestern United States, Mexico, northern Central America), Cephalocereus (14; eastern and southern Mexico), Peniocereus (19; southwestern North America, Mexico, Central America), Morangaya (1; M. pensilis; southern Baja California Peninsula in northwestern Mexico), Escontria (1; E. chiotilla; southern Mexico), Stenocereus (24; southern United States, Mexico, Central America, the West Indies, northern South America), Polaskia (2; P. chende, P. chichipe; southern Mexico), Echinocereus (55–60; South Dakota to Mexico). – Unplaced Phyllocacteae Brachycereus (1; B. nesioticus; the Galápagos Islands), Carnegiea (1; C. gigantea; Sonoran desert in southern Arizona, southeasternmost California and northern Mexico), Dendrocereus (2; Cuba: D. nudiflorus; Hispaniola: D. undulosus), Isolatocereus (1; I. dumortieri; central to southwestern Mexico), Jasminocereus (1; J. thouarsii; the Galápagos Islands), Pseudoacanthocereus (2; P. brasiliensis: Minas Gerais in Brazil; P. sicariguensis: Lara in Venezuela).– Hylocereeae Buxb. in Madroño 14: 179. 2 Mai 1958 [‘Hylocereae’]. Epiphyllum (15–20; Mexico, Central America, the West Indies, northern South America), Pseudorhipsalis (8; Central America, northern South America), Disocactus (13; southern Mexico, Central America, the West Indies, Colombia, Venezuela), Hylocereus (11–13; southern Mexico, Central America, northern tropical South America), Selenicereus (28; southern United States and Mexico, Central America, the West Indies, tropical South America), Strophocactus (3; S. chontalensis, S. testudo, S. wittii; tropical America; in Selenicereus?), Weberocereus (9; southern Mexico, Central America to Ecuador). – Southern United States to southern South America, the West Indies, the Galápagos Islands.

[Rhipsalideae+[Notocacteae+Cereeae]]

Rhipsalideae DC., Prodr. 3: 475. Mar (med.) 1828

4/c 70. Schlumbergera (9; mountains in southeastern Brazil), Lepismium (16–17; L. cruciforme, L. houlletianum, L. lorentzianum, L. lumbricoides, L. warmingianum; eastern Bolivia, southwestern Brazil, northwestern Argentina), Hatiora (7; H. cylindrica, H. epiphylloides, H. gaertneri, H. herminiae, H. pentaptera, H. rosea, H. salicornioides; eastern and southeastern Brazil), Rhipsalis (c 40; Central America, the West Indies, tropical and subtropical South America, especially Brazil, one species also in Africa, Madagascar and Sri Lanka). – Central and South America, Africa to Sri Lanka.

[Notocacteae+Cereeae]

Notocacteae Buxb. in Madroño 14: 191. 2 Mai 1958

4/125–130. Eriosyce (42; Peru, Chile), Neowerdermannia (2; N. chilensis, N. vorwerkii; Peru, Bolivia, Chile, Argentina), Parodia (80–85; eastern South America), Yavia (1; Y. cryptocarpa; Jujuy in Argentina). – South America.

Cereeae Salm-Dyck in Allg. Gartenzeitung 8: 58. 22 Feb 1840 [‘Cereastrae’]

39/545–575. Coleocephalocereus (9; eastern and southeastern Brazil), Browningia (13; the Andes in Peru, Bolivia and northern Chile), Stetsonia (1; S. coryne; Paraguay, Bolivia, Argentina), Uebelmannia (5; U. buiningi, U. gummifera, U. horrida, U. meninensis, U. pectinifera; mountains in eastern Brazil), Cereus (21; the West Indies, eastern South America), Micranthocereus (11; central and eastern Brazil), Cleistocactus (c 40; central Peru to Bolivia and northern Argentina, Paraguay, Uruguay), Yungasocereus (1; Y. inquisivensis; La Paz in Bolivia), Samaipaticereus (1; S. corroanus; Santa Cruz in Bolivia), Matucana (15; Peru), Haageocereus (c 30; deserts in Peru and northern Chile), ‘Echinopsis’ (c 130; South America; polyphyletic), Acanthocalycium (5; A. ferrarii, A. glaucum, A. klimpelianum, A. spiniflorum, A. thionanthum; Argentina; in Echinopsis?), Gymnocalycium (c 60; southeastern South America), Harrisia (18; Florida, the West Indies, northern and eastern South America to Argentina), Oreocereus (6; O. celsianus, O. doelzianus, O. hempelianus, O. pseudofossulatus, O. leucotrichus, O. trollii; Peru, Bolivia, Chile, Argentina), Rauhocereus (1; R. riosaniensis; northern Peru). – Unplaced Cereeae Arrojadoa (5; A. dinae, A. heimenii, A. marylaniae, A. penicillata, A. rhodantha; Bahia, Minas Gerais and Piaui in eastern Brazil), Arthrocereus (4; A. glaziovii, A. melanurus, A. rondonianus, A. spinosissimus; Minas Gerais and Mato Grosso in Brazil), Brasilicereus (2; B. markgrafii, B. phaeacanthus; Bahia and Minas Gerais in eastern Brazil), Cipocereus (6; C. bradei, C. crassisepalus, C. laniflorus, C. minensis, C. pleurocarpus, C. pusilliflorus; Minas Gerais in Brazil), Denmoza (1; D. rhodacantha; western and northwestern Argentina), Discocactus (11; Brazil, Bolivia), Espostoa (12; Ecuador, Peru, Bolivia), Espostoopsis (1; E. dybowskii; northern Bahia in eastern Brazil), Facheiroa (4; F. cephaliomelana, F. pubiflora, F. squamosa, F. ulei; Bahia in northeastern Brazil), Lasiocereus (2; L. fulvus, L. rupicola; Peru)?, Leocereus (1; L. bahiensis; Bahia and Minas Gerais in Brazil), Melocactus (c 35; western Mexico, Central America, the West Indies, tropical South America to southern Peru and eastern Brazil), Mila (3; M. caespitosa, M. colorea, M. nealeana; central Peru), Oroya (7; O. baumannii, O. borchersii, O. gibbosa, O. laxiareolata, O. neoperuviana, O. peruviana, O. subocculta; Peru), Pierrebraunia (2; P. bahiensis, P. brauniorum; Minas Gerais in eastern Brazil; intergeneric hybrid incl. Pilosocereus?)?, Pilosocereus (c 55; southern United States and Mexico, Central America, the West Indies, tropical South America), Praecereus (2; P. euchlorus, P. saxicola; the West Indies, South America), Pygmaeocereus (3; P. bieblii, P. bylesianus, P. familiaris; Peru), Rebutia (12–41; southern Bolivia, northwestern Argentina), Cintia (1; C. knizei; Bolivia; in Rebutia?), Stephanocereus (2; S. leucostele, S. luetzelburgii; Bahia in eastern Brazil), Weberbauerocereus (9; Peru, northern Chile). – Florida and Mexico to South America.

Phylogeny of Cactaceae based on DNA sequence data (Nyffeler 2002).

CARYOPHYLLACEAE Juss.

( Back to Caryophyllales )

de Jussieu, Gen. Plant.: 299. 4 Aug 1789 [’Caryophylleae’], nom. cons.

Illecebraceae R. Br., Prodr. Fl. Nov.-Holl.: 413. 27 Mar 1810 [’Illecebrearum’ (Illecebreae)], nom. cons.; Paronychiaceae Juss. in Mém. Mus. Natl. Hist. Nat. 2: 386. 1815 [’Paronychieae’]; Cerastiaceae Vest, Anleit. Stud. Bot.: 271, 292. 1818 [’Cerastoideae’]; Dianthaceae Vest, Anleit. Stud. Bot.: 271, 293. 1818 [’Dianthoideae’]; Herniariaceae Martinov, Tekhno-Bot. Slovar: 307. 3 Aug 1820 [’Herniariae’]; Illecebrales R. Br. ex Bercht. et J. Presl, Přir. Rostlin: 239. Jan-Apr 1820 [‘Illecebreae’]; Ortegaceae Martinov, Tekhno-Bot. Slovar: 443. 3 Aug 1820 [’Ortegiae’]; Saginaceae Bercht. et J. Presl, Přir. Rostlin: 239. Jan-Apr 1820 [’Sagineae’]; Scleranthales Bercht. et J. Presl, Přir. Rostlin: 240. Jan-Apr 1820 [‘Sclerantheae’]; Stellariaceae Bercht. et J. Presl, Přir. Rostlin: 239. Jan-Apr 1820 [’Stellariae’]; Stellariales Bercht. et J. Presl, Přir. Rostlin: 239. Jan-Apr 1820 [‘Stellariae’]; Telephiaceae Martinov, Tekhno-Bot. Slovar: 633. 3 Aug 1820 [’Thelephides ili Telephides’]; Scleranthaceae J. Presl et C. Presl, Delic. Prag.: 66. Jul 1822 [’Sclerantheae’]; Alsinaceae Bartl. in F. G. Bartling et H. L. Wendland, Beitr. Bot. 2: 159. Dec 1825 [’Alsineae’], nom. cons.; Caryophyllopsida Bartl. in Bartl. et Wendl. in Beitr. Bot.: 137. Dec 1825 [’Caryophyllinae’]; Silenaceae (DC.) Bartl. in F. G. Bartling et H. L. Wendland, Beitr. Bot. 2: 160. Dec 1825 [’Sileneae’]; Spergulaceae Bartl. in F. G. Bartling et H. L. Wendland, Beitr. Bot. 2: 158. Dec 1825 [’Sperguleae’]; Corrigiolaceae (Dumort.) Dumort., Anal. Fam. Plant.: 44, 49. 1829; Paronychiales Link, Handbuch 2: 420. 4-11 Jul 1829 [‘Paronychiaceae’]; Telephiales Link, Handbuch 2: 45. 4-11 Jul 1829 [‘Telephiaceae’]; Silenales Lindl., Nix. Plant.: 14. 17 Sep 1833; Dianthales Burnett, Outl. Bot.: 1117. Jun 1835 [‘Dianthinae’], nom. illeg.; Minuartiaceae Mart., Consp. Regn. Veg.: 49. Sep-Oct 1835 [’Minuartieae’]; Polycarpaeaceae Mart., Consp. Regn. Veg.: 49. Sep-Oct 1835 [’Polycarpaeae’]; Lychnidaceae Döll, Rhein. Fl.: 638. 24-27 Mai 1843 [’Lychnideae’]; Sabulinaceae Döll, Rhein. Fl.: 623. 24-27 Mai 1843 [’Sabulineae’]; Caryophyllineae Bessey in C. K. Adams, Johnson’s Universal Cyclop. 8: 461. 15 Nov 1895 [‘Caryophyllales‘]

Genera/species 82–84/2.515–2.660

Images Caryophyllaceae

Distribution Cosmopolitan although mainly temperate regions in the Northern Hemisphere, the Arctic, temperate parts of the Southern Hemisphere (including the Antarctic continent), tropical mountains, with their largest diversity in the Mediterranean and West and Central Asia.

Fossils The fossilized inflorescence of Caryophylloflora paleogenica from Tasmania has been assigned to Caryophyllaceae. Fossil pollen grains, Caryophyllidites polyoratus, are described from the Oligocene of New Zealand, and similar pollen fossils have been found in the Miocene onwards of Europe.

Habit Usually bisexual (rarely monoecious, andromonoecious, dioecious or gynodioecious), usually perennial, biennial or annual herbs (sometimes suffrutices; rarely shrubs, small trees or lianas).

Vegetative anatomy Mycorrhiza usually absent. Phellogen usually pericyclic (rarely subepidermal or in outer cortex). Pericyclic fibres present. Secondary lateral growth usually anomalous (also in roots; sometimes from concentric/successive cambia or from an inner cylidner of vascular bundles) or absent (sometimes from normal cambium). Vessel elements with simple perforation plates; lateral pits alternate or pseudoscalariform. Imperforate tracheary xylem elements usually fibre tracheids or libriform fibres (in Gymnocarpos tracheids) with usually simple (in Gymnocarpos bordered) pits. Wood rays usually absent (sometimes uniseriate or multiseriate, homocellular). Axial parenchyma usually absent (sometimes as marginal bands). Wood occasionally storied. Wood with idioblasts containing sphaerites. Intraxylary phloem present in some species. Sieve tube plastids P3c’f type, with a single polygonal central protein crystal and a subperipheral dense ring of protein filaments. Endodermis often significant. Nodes usually 1:1, unilacunar with one leaf trace, often swollen (with geotropic adjustment). Calciumoxalate as druses or crystal sand.

Trichomes Hairs unicellular or multicellular, usually uniseriate (rarely branched, dendritic); glandular hairs present or absent.

Leaves Usually opposite (rarely verticillate or alternate), simple, entire, sometimes succulent, with conduplicate or flat ptyxis. Stipules usually absent (sometimes small, membranous); leaf sheath absent. Leaf bases often connate around stem. Petiole vascular bundle transection annular, arcuate etc. Venation pinnate. Stomata usually diacytic or anomocytic (rarely anisocytic). Cuticular wax crystalloids as rodlets or platelets or as tubuli dominated by β-diketones. Leaf margin entire. Extrafloral nectaries present or absent.

Inflorescence Usually terminal or axillary, cymose combinations of dichasia and cincinni, thyrsoid (sometimes paniculate or capitate; flowers sometimes single).

Flowers Actinomorphic. Epicalyx consisting of one or more pairs of floral prophylls (bracteoles) sometimes present. Anthophore (prolonged internode between sepal and ovary, and between petals and stamens) sometimes present. Usually hypogyny (rarely perigyny). Sepals (three to) five (to 23), usually with imbricate (rarely valvate) aestivation, free or more or less connate. Petals (petaloid staminodia?) usually five (sometimes four), with usually contorted (rarely imbricate) aestivation, free, often bifid and/or clawed (sometimes fimbriate), often with a scale-like appendage, ‘corona’, in transition zone between claw and limb (‘petals’ sometimes absent); ‘corona’(in, e.g., Silene) arising from two bulges on adaxial side of ’petals’ (possibly former staminal thecae). Nectariferous disc at staminal bases or in tube formed by filament bases and petal bases or on inner side of a cupular receptacle (and sometimes nectar glands on abaxial side of base of episepalous stamens).

Androecium Stamens usually five or 5+5 (rarely one to five or more than ten), in one or two whorls, usually haplostemonous or diplostemonous (rarely 15, obdiplostemonous), usually antesepalous (rarely alternisepalous). Filaments connate at base or free from each other, often adnate to tepals (epitepalous). Anthers usually dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Outer secondary parietal cell dividing. Tapetum secretory, with binucleate or multinucleate cells. Female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate (rarely tricolporate) or hexa- to polypantoporate (rarely 4–12-colpate, spiraperturate or triporate), shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, usually punctitegillate (sometimes anulopunctate, rarely reticulate), spinulate.

Gynoecium Pistil usually composed of two to five (to ten) connate antepetalous or antesepalous carpels, sometimes with gynophores; when three carpels then odd carpel adaxial. Ovary usually superior (rarely semi-inferior), unilocular (below and/or as young sometimes bi- to quinquelocular). Stylodia two to five, usually filiform, usually free (sometimes connate in lower part). Stigmatic area along entire or part of adaxial side of style or only at apex, papillate, Dry type. Male flowers often with pistillodium.

Ovules Placentation usually free central (as young often basally axile; rarely basal or on free septa in upper part; Uebelinia has a basal placenta with nearly circinotropous ovule). Ovules usually numerous (sometimes one or few) per carpel, hemianatropous to campylotropous, ascending, bitegmic, tenuinucellar or crassinucellar. Micropyle endostomal. Outer integument two (to five) cell layers thick. Inner integument usually two cell layers thick. Archespore unicellular to tricellular, only one cell developing. Parietal tissue sometimes three or four cell layers thick. Nucellar cap/beak present. Megagametophyte usually monosporous, Polygonum type (rarely Allium or Adoxa type). Synergids sometimes with a filiform apparatus. Antipodal cells three, ephemeral; antipodal nuclei sometimes early degenerating. Chalazal caecum developed. Endosperm development ab initio nuclear. Endosperm haustoria chalazal or absent. Embryogenesis caryophyllad or solanad.

Fruit Usually a septicidal and/or loculicidal (denticidal) capsule or opening by valves (rarely a pyxidium, irregularly dehiscing capsule, a nut or a berry), sometimes with persistent calyx.

Seeds Aril usually absent (funicular aril present in Moehringia and Petrocoptis). Operculum absent. Seed coat exotestal. Exotesta usually hard and thick, often tanniniferous; outer exotestal cell walls with stalactite-shaped processes. Endotesta sometimes thickened. Exotegmen? Endotegmen usually without rod-shaped cell wall thickenings, often tanniniferous. Perisperm copious and with starch grains, surrounded by embryo. Endosperm sparse or absent. Embryo lateral-peripheral, curved around perisperm (sometimes straight, rarely spirally twisted), well differentiated, without chlorophyll. Cotyledons two. Radicula usually dorsal. Germination phanerocotylar.

Cytology x = 5–19 – Polyploidy often occurring. Protein bodies present in nucleus. Some species of Silene have a sex determination system with X and Y chromosomes.

DNA Plastid gene infA lost/defunct (Dianthus, Stellaria). Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin), flavone-C-glycosides, anthocyanins, triterpene saponins, alkaloids, pinitol, anthraquinones, phytoferritin, sterols, phytoecdysones, and cyclopeptides present. Ferulic acid present in non-lignified cell walls. Cyanidin rare. Ellagic acid, betalains and cyanogenic compounds not found.

Use Ornamental plants, detergents for washing clothes (Acanthophyllum, Saponaria).

Systematics Caryophyllaceae are sister-group to Achatocarpaceae or to the clade [Achatocarpaceae+ Amaranthaceae].

The petals have possibly androecial origin (see, e.g., Ronse De Craene & al. 1998, Ronse De Craene 2007 and 2008). However, it is ambiguous whether the absence of petals is ancestral or whether loss of petals have occurred several times in Caryophyllaceae.

The subdivision below follows Harbaugh & al. (2010) and Greenberg & Donoghue (2011), although it is still under construction (many generic names unplaced). The descriptions of the clades are mainly according to Stephens and Harbaugh & al. (2010).

Telephioideae Beilschm. in Flora 16(Beibl. 7): 92, 111. 14 Jun 1833 [‘Telephieae’]

2/16. Corrigiola (12; nearly cosmopolitan, especially Europe, Africa and Chile), Telephium (4; T. eriglaucum, T. imperati, T. oligospermum, T. sphaerospermum; the Mediterranean, northern Africa). – Subcosmopolitan. Leaves alternate (spiral). Stipules auriculate. Sepal margins membranous. Ovary with incomplete septa. Embryogenesis solanad. Corrigiola with thick-walled triangular nutlets. Telephium with irregularly three-valved and fairly thin-walled capsules. Endotegmic cells without bar-shaped thickenings. – Telephioideae are sister-group to the remaining Caryophyllaceae.

Caryophylloideae Arn., Botany: 99. 9 Mar 1832 [‘Caryophylleae’]

Leaves opposite.

Paronychieae Dumort., Fl. Belg.: 86. 1827

6/110–160. Herniaria (30–40; Europe, the Canary Islands, the Mediterranean, North Africa, Somalia, southern Africa, southwestern Asia to India, Bolivia, northern Argentina), ‘Paronychia’ (70–>110; nearly cosmopolitan, especially the Mediterranean, Turkey, southeastern United States and the central Andes in Peru to Bolivia; paraphyletic), Chaetonychia (1; C. cymosa; western Mediterranean; in Paronychia?), ‘Polycarpaeacorymbosa (tropical and subtropical weed), Gymnocarpos (10; the Canary Islands to East Asia, northeastern Africa), Cometes (2; C. abyssinica, C. surattensis; northeastern Africa and Ethiopia to northwestern India)? Subcosmopolitan. Stipules paired, subadaxial to petiole; paired, connate, adaxial; single, concave, adaxial or interpetiolar. Tepals hooded, with subapical abaxial awn, sometimes with membranous margins. Petals usually absent (sometimes filiform). Staminodia usually absent. Embryogenesis solanad. Fruit a nutlet. – Paronychieae are sister-group to the remaining Caryophylloideae.

[Polycarpaeae+[Sperguleae+[Rhodalsine+[[Sclerantheae+Sagineae]+[[Arenarieae+Alsineae]+[Caryophylleae+[Sileneae+Eremogoneae]]]]]]]

Corolla present.

Polycarpaeae DC., Prodr. 3: 373. Mar (med.) 1828

20/155–165. Cardionema (6; C. andina, C. burkartii, C. camphorosmoides, C. congesta, C. kurtzii, C. ramosissimum; southwestern Canada and western United States to Chile), Dicheranthus (1; D. plocamoides; the Canary Islands), Pteranthus (1; P. dichotomus; North Africa and Cyprus to Iran), Illecebrum (1; I. verticillatum; Europe, the Canary Islands, the Mediterranean), Loeflingia (4; L. baetica: southern Iberian Peninsula; L. hispanica: western Mediterranean; L. tavaresiana: southern Portugal; L. squarrosa: United States, Mexico), ’Polycarpon’ (9; warmer regions of both hemispheres; polyphyletic), ‘Polycarpaea’ (40–50; warmer regions of both hemispheres; polyphyletic),‘Scopulophila’ (2; S. parryi: Mexico; S. rixfordii: California, Nevada; diphyletic), Sphaerocoma (1; S. hookeri; northeastern Sudan, southern Arabian Peninsula, Iran), Pollichia (1; P. campestris; northern Arabian Peninsula, Ethiopia, tropical East to southern Africa), Achyronychia (1; A. cooperi; southwestern United States, Mexico), ‘Drymaria’ (c 55; western United States to Patagonia; the Galapagos Islands, one species, D. cordata, pantropical; polyphyletic; incl. Cerdia, Ortegia and Pycnophyllum?), Cerdia (1; C. virescens; Mexico; in Drymaria?), Ortegia (1; O. hispanica; the Iberian Peninsula; in Drymaria?), Pycnophyllum (c 25; the Andes; in Drymaria?), Krauseola (2; K. gillettii: northern Kenya, southern Ethiopia; K. mosambicina: Mozambique)?, Microphyes (2; M. litoralis, M. minima; Chile)?, Pirinia (1; P. koenigii; southwestern Bulgaria)?, Polytepalum (1; P. angolense; Angola)?, Stipulicida (1; S. setacea; southeastern United States, Cuba)? – Subcosmopolitan, with their highest diversity in drier subtropical regions. Stipules interpetiolar, fimbriate, from common primordium. Sepals usually hooded, awned, sometimes with membranous margins. Corolla usually absent (sometimes present, deeply lobate to entire). Stylodia connate at base. Embryogenesis solanad. Fruit usually a nutlet (sometimes a capsule). – Polycarpaeae are sister to Caryophylloideae minus Paronychieae.

[Sperguleae+[Rhodalsine+[[Sclerantheae+Sagineae]+[[Arenarieae+Alsineae]+[Caryophylleae+[Sileneae+Eremogoneae]]]]]]

Wood rays absent. Hypanthium absent. Stamens ten or more. Nectary position. Placentation sometimes axile at least basally when ovary young. Fruit usually a septicidal and loculicidal capsule (sometimes a nutlet). Fruit with two or more seeds.

Sperguleae Dumort., Anal. Fam. Plant.: 49. 1829

3/c 65. Spergula (13; temperate regions in Europe Asia, the Mediterranean, northern Patagonia), Thylacospermum (1; T. caespitosum; Central Asia, the Himalayas, western China), Spergularia (c 50; cosmopolitan). – Cosmopolitan. Stipules single, interpetiolar, connate and encircling stem below leaves. Sepals with membranous margin. Embryogenesis solanad. – Thylacospermum caespitosum is sister to Spergula (Greenberg & Donoghue 2011; Dillenberger & Kadereit 2014). Spergularia manicata (San Ambrosio Island off Chile) is a small tree.

[Rhodalsine+[[Sclerantheae+Sagineae]+[[Arenarieae+Alsineae]+[Caryophylleae+[Sileneae+Eremogoneae]]]]]

Wood rays absent. Stipules absent. Hypanthium absent. Stamens ten or more. Nectary position. Placentation sometimes axile at least basally when ovary young. Fruit usually a septicidal and loculicidal capsule (sometimes a nutlet). Fruit with two or more seeds.

Rhodalsine clade

1/1. Rhodalsine (1; R. geniculata; the Mediterranean, the Canary Islands, Morocco to northern Egypt, northern Somalia). – Rhodalsine, lacking stipules, is sister to the remaining Caryophyllaceae (Dillenberger & Kadereit 2014). Rhodalsine is sister-group to [Spergula+Spergularia], according to Kool & Thulin (2017). Thylacospermum caespitosum was not included in their analysis.

[[[Sclerantheae+Sagineae]+[[Arenarieae+Alsineae]+[Caryophylleae+[Sileneae+Eremogoneae]]]]

Sclerantheae Link ex DC., Prodr. 3: 377. Mar (med.) 1828

9–10/85–100. Pseudocherleria (12; the Caucasus and adjacent regions, arctic Asia to Japan, western North America), Triplateia (1; T. moehringioides; central Mexico), ‘Stellaria’ pro parte, Wilhelmsia (1; W. physodes; arctic regions in northeastern Asia and northwestern North America), Honckenya (1; H. peploides; coasts of temperate regions on the Northern Hemisphere, southern Patagonia), Schiedea (26; the Hawaiian Islands), Mononeuria (10; eastern North America, southwestern Greenland), Scleranthus (13; temperate regions in Europe and Asia, the Mediterranean, Ethiopia, New Guinea, Australia), Cherleria (18; central and southeastern Europe, the Mediterranean, Arctic Eurasia, the Caucasus, Central Asia, western and Arctic North America), Pentastemonodiscus (1; P. monochlamydeus; Afghanistan)? – The Northern Hemisphere, Ethiopia, New Guinea, Australia, Patagonia. Hypanthium present or absent. Sepals usually without membranous margins. Petals entire or absent. Stamens one to ten. Staminodia sometimes five. Embryogenesis solanad. Fruit a capsule dehiscing by as many valves as stylodia, or a single-seeded nutlet. – Sclerantheae are sister to Sagineae.

Sagineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 1609, 1621. 1846 [‘Sagusariae’]

10/210–215. Drypis (1; D. spinosa; the Mediterranean to Lebanon); Bufonia (34; the Canary Islands, the Mediterranean, the Middle East), Mcneillia (5; M. graminifolia, M. moraldoi, M. pseudosaxifraga, M. saxifraga, M. stellata; southern and southeastern Europe, northwestern Anatolia in Turkey), Minuartia (c 55; Europe, North Africa, southwestern Asia, the Caucasus, northern India), Habrosia (1; H. spinuliflora; Syria, Iraq, western Iran), Minuartiella (4; M. acuminata, M. dianthifolia, M. elmalia, M. pestalozzae; mountain regions from Anatolia in Turkey to Nakhichivan in Azerbaijan and northern Iran), Colobanthus (c 25; mountains of southeastern Australia and Tasmania, New Zealand and adjacent islands, temperate South America and the southern Andes, the Falkland Islands, the Antarctic Peninsula and adjacent islands, South Georgia, New Amsterdam, Kerguélen, one species, C. quitensis, also in tropical South America to Mexico), Sagina (21; arctic, temperate and alpine regions on the Northern Hemisphere, mountains in East Africa and New Guinea, the Himalayas, the Andes), Facchinia (7; F. cerastiifolia, F. cherlerioides, F. grignensis, F. herniarioides, F. lanceolata, F. rupestris, F. valentina; alpine areas in Central Europe), Sabulina (c 60; southern and Central Europe, the Mediterranean, Anatolia, the Caucasus, southwestern and Central Asia, North America, Chile, Argentina). – Temperate, arctic and alpine regions on both hemispheres. Hypanthium present or absent. Sepals sometimes awned, sometimes with membranous margins (in Drypis hooded). Petals usually entire (in Drypis bifid; petals rarely absent). Stamens sometimes as many as petals. Embryogenesis solanad. Fruit usually a capsule dehiscing by as many valves as stylodia (in Drypis a single-seeded nutlet). – Sagineae are sister to Sclerantheae. Drypis may be sister to the remaining Sagineae, although it is morphologically aberrant.

[[Arenarieae+Alsineae]+[Caryophylleae+[Sileneae+Eremogoneae]]]

Hypanthium absent. Sepals connate. Petals clawed, with closed venation and adaxial ligulae. Capsule often denticidal, with twice as many teeth as stylodia. Embryogenesis usually caryophyllad.

Arenarieae Kitt., Taschenb. Fl. Deutschl., ed. 2, 2: 981. 1844

2/200–>210. Moehringia (c 30; temperate Europe, Asia and North America), Arenaria (170–>180; temperate regions in Europe and Asia, mountains in East Africa, North America, Mexico, Central America). – The Northern Hemisphere, Central and western South America. Petals entire (rarely absent). Fruit a valvicidal capsule, dehiscing by twice as many valves as stylodia. Oily funicular aril present in Moehringia. Cotyledons incumbent. – Arenarieae are sister-group to Alsineae.

Alsineae Lam. et DC., Syn. Plant. Fl. Gall.: 392. 30 Jun 1806

12/400–410? Lepyrodiclis (3; L. holosteoides, L. stellarioides, L. tenera; Turkey to the Himalayas), Pseudostellaria (17; Europe, Afghanistan, Central Asia and western China to the Korean Peninsula and Japan, Canada, United States), Odontostemma (c 65; China, Tibet, Sikkim), Shivparvatia (7; S. ciliolata, S. forrestii, S. glanduligera, S. ludlowii, S. ramellata, S. rhodantha, S. stracheyi; northern India, the Himalayas, southwestern China), Holosteum (5; H. glutinosum, H. kobresietorum, H. marginatum, H. polygamum, H. umbellatum; temperate regions in Europe and Asia, Ethiopia), Moenchia (4; M. coerulea, M. erecta, M. graeca, M. mantica; West and Central Europe, the Mediterranean), Cerastium (180–190?; nearly cosmopolitan), Stellaria (c 120; Europe, the Mediterranean, mountains in Africa, Asia, few species cosmopolitan), Brachystemma (1; B. calycinum; the Himalayas, China, Indochina)?, Pseudocerastium (1; P. stellarioides; Anhui in eastern China)?, Pycnophyllopsis (4; P. cryptantha, P. keraiopetala, P. muscosa, P. tetrasticha; the Andes in Bolivia and Patagonia)?, Thurya (1; T. capitata; southwestern Asia)? – Subcosmopolitan, with their largest diversity in Europe to East Asia. Hypanthium usually absent. Sepals sometimes with membranous margins. Petals usually retuse to deeply bifid (rarely absent). Fruit usually a denticidal capsule (rarely a single-seeded nutlet). – Alsineae are sister to Arenarieae.

[Caryophylleae+[Sileneae+Eremogoneae]]

Veins at leaf apex intramarginal. Sepals connate. Anthophore (prolongation between sepals and remaining floral parts) sometimes present. Petals with contorted aestivation, clawed, often with retuse apex, with closed venation. Coronal scale present or absent. Nectary usually adaxial on stamens. – The sister-group relationships among Caryophylleae, Eremogoneae and Sileneae are not clarified.

Caryophylleae Lam. et DC., Syn. Plant. Fl. Gall.: 386. 30 Jun 1806

13/665–685. Psammosilene (1; P. tunicoides; Yunnan); Gypsophila (c 150; temperate regions of Eurasia, eastern Mediterranean, the Middle East, Egypt, Somalia, the Arabian Peninsula, one species, G. australis, in Australia and New Zealand; polyphyletic), Saponaria (c 30; temperate regions of Eurasia, with the highest diversity in the Mediterranean and the Middle East), Acanthophyllum (90–100; southwestern, southern and Central Asia, Siberia), Heterochroa (6; H. antoninae, H. desertorum, H. microphylla, H. petraea, H. turkestanica, H. violacea; Kazakhstan, western Siberia, Altai, the Russian Far East, the Kamchatka Peninsula, Mongolia, northern China), Cyathophylla (2; C. chlorifolia: mountains in Greece and Turkey; C. viscosa: Azerbaijan), Petroana (2; P. montserratii: the Iberian Peninsula; P. montana: Somalia, Yemen, Socotra, Oman), Bolanthus (c 10; southern Bulgaria, Greece, southern and central Turkey, Syria, Lebanon, Palestine), Psammophiliella (5; P. filipes, P. floribunda, P. kermanensis, P. muralis, P. picta; Europe to Central Asia), Balkana (1; B. spergulifolia; western and central Balkan Peninsula), Graecobolanthus (8; G. chelmicus, G. creutzburgii, G. fruticulosus, G. graecus, G. intermedius, G. laconicus, G. thessalus, G. thymifolius; Greece, Crete), Petrorhagia (c 30; Europe, the Canary Islands, the Mediterranean, southwestern and Central Asia to Kashmir), Dianthus (330–340; temperate regions in Europe and Asia, the Mediterranean, mountains in East Africa, one species, D. repens, also in northwestern North America). – Eurasia, Africa, one species in North America and one species in Australia and New Zealand. “Epicalyx” (consisting of floral prophylls) sometimes present. Calyx tubular. Sepals without commissural veins. Petals with usually dextrorse-contorted (sometimes imbricate) aestivation. Pistil composed of two (or three) connate carpels. n = 12–15, 16. – Psammosilene is sister to the remaining Caryophylleae (Madhani & al. 2018). Caryophylleae are possibly sister-group to [Sileneae+Eremogoneae]. On the other hand, Sadeghian & al. (2015) recovered Caryophylleae as sister to either Eremogoneae or Sileneae, although with low support.

[Sileneae+Eremogoneae]

Sileneae DC., Prodr. 1: 351. Jan (med.) 1824

2/520–530. Agrostemma (3; A. brachylobum, A. githago, A. gracile; temperate regions of Europe and Asia, the Mediterranean), Silene (520–530; Europe, Macaronesia, the Mediterranean, Africa, Asia, North America, the Hawaiian Islands). – North temperate to subtropical regions, montane regions in Africa. Calyx tubular. Sepals with commissural veins. Petals with usually contorted (sometimes imbricate) aestivation. Placentation sometimes axile at base. – Sileneae are sister-group to Eremogoneae. – Evolution of protease gene clpP often accelerated.

Eremogoneae Rabeler et W. L. Wagner in D. T. Harbaugh et al., Intern. J. Plant Sci. 171: 196. 14 Jan 2010

1–3/90–100. Eremogone (90–95; temperate regions on the Northern Hemisphere). – Western North America, Eurasia, the Middle East. Usually perennial herbs. Leaves filiform to subulate. Hypanthium usually poorly developed. Sepals free (calyx not tubular), with membranous margins. Ovary usually poorly semi-inferior. Cotyledons accumbent. – Eremogoneae are sister-group to Sileneae. Phlebanthia (here included in Eremogone) is sister to Eremogone, according to Harbaugh & al. (2010). – Dolophragma (5–7; D. globiflorum, D. juniperinum, D. oreophilum, D. polytrichoides, D. przewalskii, D. smithianum; the Himalayas, western China) may be sister to Eremogone, according to Sadeghian & al. (2015).

Unplaced Caryophyllaceae

Kabulia (1; K. akhtarii; Afghanistan).

Phylogeny of Caryophyllaceae based on DNA sequence data (Harbaugh & al. 2010; Greenberg & Donoghue 2011).

Phylogeny of Caryophyllaceae based on Dillenberger & Kadereit (2014).

Cladogram (simplified) of Caryophyllaceae based on DNA sequence data (Fior & al. 2006).

DIDIEREACEAE Radlk.

( Back to Caryophyllales )

Radlkofer in Engler et Prantl, Nat. Pflanzenfam., III, 5: 462. 23 Apr 1896 [‘Didiereae’], nom. cons.

Portulacariaceae (Fenzl) Doweld, Tent. Syst. Plant. Vasc.: xlii. 23 Dec 2001

Genera/species 6/20

Distribution Southwestern Madagascar, southern and eastern Africa.

Fossils Unknown.

Habit Bisexual (Calyptrotheca, Portulacaria) or dioecious (in Ceraria and Decaryia rarely gynodioecious), evergreen or deciduous trees or shrubs (rarely climbing). Many species are cactus-like xerophytic stem succulents, often with short shoots (brachyblasts) modified into a small and definite number of spines.

Vegetative anatomy CAM or facultative CAM photosynthesis present. Stem epidermis with or without parallelocytic stomata. Phellogen ab initio superficial? Precocious initiation of periderm. Phellem in at least Ceraria and Portulacaria with lignified bands consisting of thin-walled flattened cells. Primary medullary strands wide. Secondary lateral growth normal. Vessel elements with simple perforation plates; lateral pits alternate to pseudoscalariform or scalariform, simple pits. Imperforate tracheary xylem elements libriform fibres with simple pits, non-septate (also vasicentric tracheids). Wide-band tracheids sometimes present. Wood rays multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal vasicentric or banded. Thick-walled pericyclic extraxylary phloem fibre caps present. Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by a ring of protein filaments. Intraxylary phloem absent. Nodes 1:1? Cortex and medulla often with tanniniferous cells (not in Calyptrotheca), mucilage cells and secretory mucilage ducts. Sclereids (often thin-walled, elongated with lignified walls) often present. Mucilaginous idioblasts and tanniniferous cells abundant. Phloem parenchyma cells with phytoferritin? Parenchyma and epidermis often with numerous prismatic crystals or druses of calciumoxalate.

Trichomes Stem epidermis often with papillae or multicellular, uniseriate hairs. Spines without trichomes.

Leaves Alternate (spiral) or opposite, simple, entire (caducous in some species; in Calyptrotheca succulent), with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation usually pinnate (in Ceraria and Portulacaria palmate). Stomata parallelocytic (transversely orientated). Cuticular wax crystalloids as cross-bars or rodlets. Mesophyll with mucilaginous idioblasts. Leaf margin entire.

Inflorescence Terminal or axillary, dichasium, capitate, fasciculate, panicle etc., or flowers solitary axillary. Floral prophylls (bracteoles) 2+2, with inner pair (subtending flower) median. Some genera with two free, sepaloid (sometimes coloured, petaloid), often persistent floral prophylls subtending flower. Transverse floral prophylls absent. Sepaloid floral prophylls with imbricate aestivation.

Flowers Actinomorphic. Usually hypogyny (rarely half epigyny). Tepals four or five, with imbricate or decussate aestivation, petaloid, usually free (in Portulacaria connate into a tube), or absent. Nectariferous disc intrastaminal, annular.

Androecium Stamens four or five, in one whorl, alternitepalous, or seven to numerous (in Calyptrotheca up to c. 60), in several whorls; developed from annular primordium. Filaments free or connate at base into ring of adaxial nectaries, usually free from tepals (in Portulacaria adnate to sepals, episepalous). Anthers dorsifixed, often versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Female flowers sometimes with staminodia.

Pollen grains Microsporogenesis simultaneous? Pollen grains usually polypantoporate or tetra- to heptazonocolpate (in Ceraria and Portulacaria tricolpate; in Calyptrotheca polypantoporate), shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum (due to fusions?), microperforate, spinulate and globulate.

Gynoecium Pistil composed of (two or) three (or four) connate carpels (in Ceraria and Portulacaria a single carpel). Ovary usually superior (rarely semi-inferior), usually ab initio trilocular (sometimes bilocular or quadrilocular), later secondarily unilocular (median/adaxial locule) due to degeneration of remaining locules. Style single, usually simple (in Portulacaria trifid). Stigmas more or less peltate, fimbriate (bifid or) trifid (or quadrifid), type? Male flowers sometimes with pistillodium.

Ovules Placentation basal. Ovules one to six (Calyptrotheca) per ovary (when carpel adaxial) or one per carpel, campylotropous to hemicampylotropous, ascending, apotropous, bitegmic, crassinucellar. Micropyle endostomal?, directed downwardly. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis chenopodiad.

Fruit Usually a one-seeded achene (in some groups enclosed inside two dry sepaloid bracteoles; in Ceraria a samara; dehiscence in Calyptrotheca circumscissile at base and splitting upwards into valves in upper part, with strongly accrescent calyx).

Seeds Seeds with funicular strophiole or (in, e.g., Calyptrotheca) aril. Testa? Tegmen? Perisperm sparse or absent. Endosperm entirely or almost entirely absent. Embryo large, curved around perisperm, well differentiated, chlorophyll? Cotyledons two, often fleshy. Germination phanerocotylar.

Cytology n = 8–12(–17), 22, 24, 86, 120 – Polyploidy frequently occurring.

DNA 6 bp deletion in plastid gene ndhF.

Phytochemistry C-methylated flavonoids, cyanidin, delphinidin, betacyanins, betaxanthins, and phytoferritin present. Triterpene saponins? Cyanogenic compounds not found.

Use Ornamental plants.

Systematics Portulacaria (7; P. afra, P. armiana, P. carrissoana, P. fruticulosa, P. longipedunculata, P. namaquensis, P. pygmaea; tropical and southern Africa); Calyptrotheca (2; C. somalensis, C. taitensis; northeastern tropical Africa); Alluaudiopsis (2; A. fiherensis, A. marnieriana; southern and southwestern Madagascar), Alluaudia (6; A. ascendens, A. comosa, A. dumosa, A. humbertii, A. montagnacii, A. procera; southern and southwestern Madagascar), Decarya (1; D. madagascariensis; southwestern Madagascar), Didierea (2; D. madagascariensis, D. trollii; southern and southwestern Madagascar).

Didiereaceae may be sister-group to Basellaceae (Ocampo & Columbus 2010; Brockington & al. 2013). However, some analyses (e.g. Arakaki & al. 2011) include Basellaceae in Didiereaceae.

DNA analyses give the topology [Portulacaria+[Calyptrotheca+[Alluaudia+Alluaudiopsis+Decarya+Didierea]]].

Lignified bands consisting of thin-walled flattened cells are present in the phellem in Ceraria fruticulosa and Portulacaria afra (Ogburn & Edwards 2009).

The axillary appendages may be remnants of highly condensed axillary short shoots and homologous to the areolae in Cactaceae (Nyffeler & Eggli 2010).

Cladogram of Didiereaceae based on DNA sequence data (Applequist & Wallace 2000; Nyffeler & Eggli 2010).

DIONCOPHYLLACEAE (Gilg) Airy Shaw

( Back to Caryophyllales )

Airy Shaw in Kew Bull. 6(1951): 333. 26 Jan 1952, nom. cons.

Dioncophyllales Takht. ex Reveal in Phytologia 74: 174. 25 Mar 1993

Genera/species 3/3

Distribution Tropical West and Central Africa.

Fossils Unknown.

Habit Bisexual, evergreen lianas or climbing and scrambling shrubs (climbing up to c. 70 m high). Carnivorous (at least Triphyophyllum).

Vegetative anatomy Phellogen? Cortex with vascular bundles and massive fibrous bands. Secondary lateral growth in Dioncophyllum anomalous (from concentric/successive cambia). Vessel elements with simple perforation plates; lateral pits alternate. Imperforate tracheary xylem elements tracheids and fibre tracheids with bordered pits (also vasicentric tracheids). Wood rays usually uniseriate, homocellular. Axial parenchyma apotracheal, diffuse, or paratracheal, scanty vasicentric. Intraxylary phloem present. Sieve tube plastids S type. Nodes? Crystals?

Trichomes Glandular hairs multicellular, insensitive, stalked or sessile, secreting a viscous mucilage with and without proteolytic enzymes, respectively. Glandular heads in Triphyophyllum consisting of two layers of secretory cells and inside these layers an endodermis; glandular stalk usually vascularized (xylem and phloem).

Leaves Alternate (spiral), simple, entire, often coriaceous, ’midrib’ leaves in Triphyophyllum with circinate ptyxis. Stipules and leaf sheath absent. Rosette leaves long, densely parallelodromous; higher leaves with short lamina and, in Triphyophyllum, stalked and sessile multicellular vascularized glandular hairs (with proteolytic enzymes in secretory drips) on prolonged mid-vein on abaxial side of lamina; terminal leaves (on climbing parts of shoots) with paired recurved apical barbs (hooks, grapnels). Dioncophyllum and Habropetalum with simple leaves and barbed leaves. Triphyophyllum with barbed leaves on older shoots, simple leaves on short shoots, and abaxially circinate filiform densely glandular leaves on young short shoots. Petiole vascular bundle transection crescent-arcuate. Venation usually pinnate (on some leaves of Triphyophyllum parallelodromous); mid-vein usually prolonged and dichotomizing in two recurved barb- or hook-shaped tendrils. Stomata actinocyclocytic or cyclocytic. Cuticular wax crystalloids as platelets. Leaf margin entire or crenulate.

Inflorescence Axillary or supra-axillary, cymose, of various shape.

Flowers Actinomorphic, small. Hypogyny. Sepals five, with open or valvate aestivation, persistent, free or connate at base into a tube. Petals five, with contorted aestivation, caducous, free. Nectary absent. Disc absent.

Androecium Stamens ten or 25 to 30 (in Dioncophyllum sometimes five antepetalous). Filaments free or slightly connate at base, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective somewhat prolonged. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3- or 4-colp(or)ate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, spinulate or scabrate.

Gynoecium Pistil composed of two (Triphyophyllum) or five connate carpels; carpels sometimes opening as seed develops. Ovary superior, unilocular. Stylodia two (Triphyophyllum) or five, filiform, short, free or slightly connate at base, or absent. Stigmas two capitate (Triphyophyllum), or five punctate, capitate or plumose (Triphyophyllum), non-papillate, Dry type. Pistillodium absent.

Ovules Placentation parietal. Ovules c. 30 to more than 100 per ovary, anatropous, bitegmic, crassinucellar. Micropyle exostomal? Outer integument ? cell layers thick, forming an envelope. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type. Endosperm development nuclear? Megagametophyte and endosperm transversely elongate. Endosperm haustoria? Embryogenesis?

Fruit A loculicidal capsule, dehiscing before maturation with two (Triphyophyllum) or five valves exposing unripe seeds.

Seeds Seeds flattened, on elongated stiff funicles, often broadly winged. Aril absent? Seed coat thick. Testa? Tegmen? Perisperm not developed. Endosperm copious, starchy, surrounding larger part of embryo. Embryo large, straight, well differentiated, chlorophyll? Cotyledons two, semicircular. Germination cryptocotylar.

Cytology n = 12, 18? (Triphyophyllum peltatum)

DNA Intron present in plastid gene rpl2.

Phytochemistry Betulinic acid, polyketide-derived naphthyl isoquinoline alkaloids (e.g. ancistrocladine, dioncophylline, habropetaline and habropetaloic acid), cyclopentenoid cyanogenic glycosides, naphthoquinones (plumbagin), cis- and trans-isoshinanolone, and habropetalal present. Ellagic acid?

Use Medicinal plants.

Systematics Dioncophyllum (1; D. thollonii; Congo, Gabon), Triphyophyllum (1; T. peltatum; Sierra Leone, Liberia, Ivory Coast), Habropetalum (1; H. dawei; Sierra Leone).

Dioncophyllaceae are sister-group to Ancistrocladus (Ancistrocladaceae).

The young leaves in Triphyophyllum resemble those in Drosophyllum: circinate and insectivorous. The carnivorous habit is lost in Dioncophyllum and Habropetalum, or in their common ancestor. A cladistic treatment of Dioncophyllaceae is needed in order to answer this question.

DROSERACEAE Salisb.

( Back to Caryophyllales )

Salisbury, Parad. Lond. 2: ad t. 95. 1 Feb 1808 [‘Drosereae’], nom. cons.

Droserales Bercht. et J. Presl, Přir. Rostlin: 217. Jan-Apr 1820 [‘Drosereae’]; Dionaeaceae Raf., Fl. Tellur. 3: 35. Nov-Dec 1837 [‘Dionidia’]; Aldrovandaceae Nakai in J. Jap. Bot. 24: 10. Dec 1949

Genera/species 3/probably >200

Distribution Cosmopolitan except polar and arid regions, with their largest species diversity in Australia and New Zealand.

Fossils Seeds assigned to Aldrovanda (c. fossil 20 species described) have been found in the Oligocene and the Miocene of Siberia and the Eocene of Europe. Some cenozoic pollen grains assigned to Droseraceae have been described under the name of Saxonipollis. Fossil pollen of Drosera have been reported from the Miocene of New Zealand and Europe.

Habit Bisexual, perennial or annual herbs (in Drosera sometimes climbing). Corm or tuberous rhizome present in some species of Drosera. Most species are hygrophytes; Aldrovanda is aquatic with submersed leaves. Carnivorous; Aldrovanda: ‘snaptraps’ with c. 20 trigger hairs per foliar lobe; Dionaea: ‘snaptraps’ with three trigger hairs per foliar lobe; Drosera: ‘flypaper traps’.

Vegetative anatomy Mycorrhiza absent. Main root usually ephemeral and replaced by adventitious roots (roots absent in mature plants of Aldrovanda). Phellogen? Young stem with separate vascular bundles in one or two cylinders. Medullary vascular bundles present in some species of Drosera; medullary rays wide. Cambium and secondary lateral growth absent. Vessel elements with simple perforation plates; lateral pits? Imperforate tracheary xylem elements? Wood rays absent. Axial parenchyma? Sieve tube elements S type. Nodes 1:1, unilacunar with one leaf trace. Crystals?

Trichomes Eglandular hairs present as multicellular uniseriate trigger hairs in Aldrovanda, Dionaea and Drosera glanduligera. Characteristic multicellular glandular hairs and sessile glands. Glands in Aldrovanda sessile, non-vascular, quadrifid, adaxial; in Dionaea sessile, non-vascular, adaxial and stellate, abaxial; and in Drosera stalked, vascular (with xylem, without phloem), adaxial. Tip of ‘catching glands’ in Drosera consisting of two layers with endodermis inside.

Leaves Usually alternate (usually in a basal rosette; in Aldrovanda verticillate), simple, usually entire (in Drosera sometimes once or several times dichotomously lobed), often incurved and with adaxially circinate ptyxis; leaves in Aldrovanda and some species of Drosera bifid, articulated along mid-vein. Stipules intrapetiolar or absent; leaf sheath absent. Petiole in Dionaea and some species of Drosera horizontally widened. Petiole vascular bundle transection annular, arcuate etc. Venation? Stomata usually anomocytic (sometimes tetracytic or actinocytic) or absent. Cuticular wax crystalloids as threads (round in cross-section) forming felt-like covering. Leaf margin usually entire (in Dionaea coarsely serrate). Lamina in Aldrovanda and Dionaea modified into a ’snaptrap’ with foldable laminal halves provided with sensitive trigger hairs, or margins and adaxial side of lamina provided with sensitive viscid long-stalked glandular hairs and sessile glands, secreting proteolytic enzymes; leaf margins in Drosera bending inwards when touched.

Inflorescence Usually terminal, thyrsopaniculate, scorpioid or cincinnus (flowers in Aldrovanda solitary). Bracts and floral prophylls (bracteoles) sometimes absent.

Flowers Actinomorphic. Hypogyny. Sepals (four or) five (to eight), with imbricate aestivation, marcescent, usually connate at base. Petals (four or) five (to eight), with convolute (imbricate or contorted?) aestivation, short-stalked, marcescent, free. Nectaries absent? Disc absent.

Androecium Stamens as many as sepals, antesepalous, (four or) five (Drosera, Aldrovanda) or ten to 15 (to 20) (Dionaea). Filaments usually free (in Dionaea connate at base), free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, usually extrorse (rarely introrse), longicidal (dehiscing by longitudinal slits); connective sometimes expanded. Tapetum usually secretory (sometimes amoeboid-periplasmodial). Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains triporate (Aldrovanda) or 10–30-porate (Dionaea, Drosera), shed as tetrads (in Drosera usually with radial discs), usually bicellular (sometimes tricellular) at dispersal. Exine usually tectate (sometimes intectate), with columellate infratectum, usually spinulate (not in Dionaea), in Drosera often operculate.

Gynoecium Pistil composed of three (to five) paracarpous and connate carpels; median carpel abaxial. Ovary superior, unilocular. Stylodia three (to five), free, in Aldrovanda and Drosera simple or more or less bilobate (style in Dionaea single, usually simple). Stigmas three (to five), expanded, capitate, papillate, Dry type. Pistillodium absent.

Ovules Placentation usually parietal (in Dionaea basal). Ovules one to numerous per carpel, anatropous, ascending, bitegmic, usually crassinucellar (in some species of Drosera tenuinucellar). Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megasporangial epidermal cells enlarged. Parietal tissue often absent. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Megagametophyte haustorium present. Endosperm development nuclear. Endosperm haustoria? Embryogenesis caryophyllad to solanad or onagrad to asterad.

Fruit Usually a loculicidal capsule (in Aldrovanda a nutlet).

Seeds Aril absent. Seed coat testal (Aldrovanda), exotestal (Dionaea) or endotestal (Drosera). Exotesta thick (Aldrovanda, Dionaea) or thin (Drosera), often palisade. Endotestal cell walls occasionally with U-shaped thickenings. Exotegmen crushed. Endotegmic cells small, tanniniferous, sclerotized or mucilaginous. Megasporangium in Drosera strongly prolonged during seed development. Perisperm not developed. Endosperm copious, oily (and starchy?). Embryo straight, well differentiated, sometimes short, chlorophyll? Cotyledons two; their tips with haustorial function. Germination phanerocotylar or cryptocotylar. Radicula usually ephemeral.

Cytology n = 5 or more (Drosera), n = 16 (Dionaea), n = 24 (Aldrovanda) – Polyploid and aneuploid series frequent in Drosera (n = 5–8, 10–12, 14–19); chromosomes less than 1,5 µm long (in Dionaea up to 6 µm long). Drosera and Aldrovanda (not Dionaea) have diffuse centromeres.

DNA Plastid gene infA lost/defunct (Dionaea). Intron in plastid gene rpl2 rarely lost. Mitochondrial coxI intron present (Dionaea).

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), hyperoside (quercetin 3-O-galactoside), cyanidin, ellagic acid, gallic acid, proanthocyanidins (prodelphinidins), cyanogenic compounds, and naphthoquinones (plumbagin, droserone and 7-methyljuglone) present. Alkaloids and saponins not found.

Use Ornamental plants, medicinal plants.

Systematics Drosera (probably >200; cosmopolitan, especially Australia), Dionaea (1; D. muscipula; North and South Carolina), Aldrovanda (1; A. vesiculosa; central and eastern Europe, Africa, Asia to Queensland).

Droseraceae may be sister to Nepenthes (Nepenthaceae) or, possibly, to the clade [Nepenthaceae+[Drosophyllaceae+[Ancistrocladaceae+Dioncophyllaceae]]].

Dionaea is sister to Aldrovanda. The two clades share the synapomorphies leaves with ’snaptraps’, sensitive multicellular trigger hairs, sessile non-vascularized glands, and large smooth seeds with a thick exotesta. Dionaea differs from Aldrovanda by presence of stellate glands, 15 stamens, multiaperturate non-spinulate pollen grains with alternate pores at tetrad insertion, connate stylodia and basal placentation.

Cladogram of Droseraceae based on DNA sequence data (Cameron & al. 2002).

DROSOPHYLLACEAE Chrtek, Slavíková et Studnička

( Back to Caryophyllales )

Chrtek, Slavíková et Studnička in Preslia 61: 122. 10 Apr 1989

Genera/species 1/1

Distribution Portugal, southern Spain, northern Morocco.

Fossils Unknown.

Habit Bisexual, suffrutex with long-lived taproot (sometimes a biennial herb). Carnivorous. Leaves with sweet scent.

Vegetative anatomy Mycorrhiza probably absent. Phellogen ab initio superficial. Cortical vascular bundles inverted. Secondary lateral growth normal. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements tracheids with bordered pits. Wood rays uniseriate or biseriate (consisting of mostly upright elements), usually homocellular. Axial parenchyma apotracheal diffuse (sometimes diffuse-in-aggregates), or paratracheal scanty vasicentric. Sieve tube plastids S type? Nodes? Crystals?

Trichomes Eglandular hairs absent. Stem and leaves covered with rows of stalked mucilage tentacles (mucilage hygroscopic) and irregularly distributed sessile digesting glands, otherwise glabrous. Glandular head composed of two layers of secretory cells and inside these endodermis; glandular stalk vascularized (with xylem and phloem).

Leaves Alternate (spiral), simple, entire, linear, with abaxially circinate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate. Venation? Stomata? Cuticular wax crystalloids? Lamina immobile, on margins and abaxial side with sessile glands, and longitudinal rows of stalked viscid non-sensitive glandular hairs secreting proteolytic enzymes, and immobile sensitive hairs for capturing insects. Leaf margin entire?

Inflorescence Terminal, few-flowered, thyrso-paniculate.

Flowers Actinomorphic, often large. Hypogyny. Sepals five, with imbricate aestivation, glandular, connate at base. Petals five, with contorted aestivation, marcescent, free. Nectaries? Disc absent.

Androecium Stamens 5+5, antesepalous longer than antepetalous. Filaments free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains polypantoporate with c. 40 pores, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, microperforate, spinulate.

Gynoecium Pistil composed of five paracarp and connate antesepalous carpels. Ovary superior, unilocular. Stylodia five, free. Stigmas capitate, papillate, Dry type? Pistillodium absent.

Ovules Placentation basal. Ovules numerous per ovary, anatropous, bitegmic, crassinucellar, with long funicle. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type? Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit Septicidal and in upper part loculicidal capsule, with antesepalous valves.

Seeds Aril absent. Seeds operculate. Seed coat testal-tegmic. Testa thick. Exotesta non-palisade. Endotestal cells with crystals and U-shaped wall thickenings. Exotegmen thick-walled. Endotegmen partially sclerotized. Perisperm not developed. Endosperm copious, fleshy, starchy. Embryo small, cordate, well differentiated, chlorophyll? Cotyledons two; cotyledon tips with haustorial function. Germination cryptocotylar.

Cytology n = 6 – Chromosomes more than 15 µm long (much larger than in Droseraceae). Centromere localized.

DNA Intron present in plastid gene rpl2.

Phytochemistry Flavones (e.g. luteolin), proanthocyanidins, naphthoquinones (plumbagin etc.), and inulin present.

Use Ornamental plant.

Systematics Drosophyllum (1; D. lusitanicum; Portugal, southern Spain, northern Morocco).

Drosophyllum is sister to [Ancistrocladaceae+Dioncophyllaceae].

The tectum of the exine in Drosophyllum lusitanicum is similar to that in the betalain clade of Caryophyllales.

FRANKENIACEAE A. St.-Hil. ex Desv.

( Back to Caryophyllales )

Desvaux in S. Gérardin de Mirecourt et N. A. Desvaux, Dict. Rais. Bot.: 188. 12-19 Apr 1817 [’Frankeniae’], nom. cons.

Frankeniales Link, Handbuch 2: 229. 4-11 Jul 1829 [‘Frankeniaceae’]

Genera/species 1/70–80

Distribution Subtropical and warm-temperate dry regions.

Fossils Unknown.

Habit Usually bisexual (sometimes polygamomonoecious), evergreen shrubs, suffrutices or perennial (sometimes annual) herbs. Usually halophytic or xerophytic, sometimes gypsophilous or calciphilous.

Vegetative anatomy Mycorrhiza usually absent. Phellogen subepidermal or pericyclic (intraxylary cork-tissue present in some species). Secondary lateral growth in some species of Frankenia anomalous (from concentric/successive cambia). Fibriform vessel elements present. Vessel elements with simple perforation plates; lateral pits alternate, simple pits? Imperforate tracheary xylem elements libriform fibres usually with simple pits (fibres in some species replaced by axial parenchyma; also vasicentric tracheids). Wood rays absent. Axial parenchyma? Wood elements partly storied. Sieve tube plastids S type. Nodes? Crystals?

Trichomes Hairs usually unicellular, uniseriate, sometimes stellate as tufts; salt glands present.

Leaves Opposite, simple, entire, linear, often ericoid, with ? ptyxis. Stipules absent; leaves in each pair fused by a common sheath. Petiole vascular bundles? Leaf single-veined. Stomata usually anomocytic (sometimes paracytic). Cuticular wax crystalloids absent. Mesophyll often with sclerenchymatous idioblasts in association with vascular strands. Epidermis often with salt-secreting glands (consisting of six crescent cells in two layers of three). Leaf margin entire, usually reflexed.

Inflorescence Terminal or axillary, cymose of various shapes, or flowers solitary axillary.

Flowers Actinomorphic, small. Hypogyny. Sepals usually five (sometimes four, six or seven), with induplicate-valvate aestivation, persistent, usually connate into a tube (calyx in Frankenia triandra campanulate or urceolate). Petals usually five (sometimes four, six or seven), with imbricate aestivation, clawed, usually with adaxial scale-like appendage, ligule, with nectary on stipe, free. Disc absent.

Androecium Stamens (three to) 3+3 (to 24). Filaments free or slightly connate at base, free from tepals. Anthers basifixed, versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Inner staminal whorl rarely staminodial.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–4)-colpate, shed as monads, tricellular at dispersal. Exine semitectate, with columellate infratectum, finely reticulate.

Gynoecium Pistil composed of (one to) three (or four) connate paracarpous carpels; median/odd carpel adaxial (abaxial?). Ovary superior, unilocular. Style single, elongate, narrow, usually branched. Stigmas (one to) three (or four), papillate, Dry type. Pistillodium absent.

Ovules Placentation parietal or basal-parietal (rarely basal). Ovules (one or) two to six (to numerous) per ovary, anatropous, ascending, bitegmic, tenuinucellar (pseudocrassinucellar). Micropyle endostomal. Outer integument two or three cell layers thick. Inner integument two or three cell layers thick. Parietal tissue absent. Nucellar cap present. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustorium bicellular or quadricellular, coenocytic, micropylar. Embryogenesis solanad. Polyembryony sometimes present.

Fruit A loculicidal apicidal capsule with persistent calyx.

Seeds Aril usually present. Seed coat exotestal? Exotestal cells large; cell wall papillae with terminal nail-like thickenings. Endotestal cells thin-walled. Exotegmen? Endotegmen with thick cuticle, tanniniferous. Perisperm not developed? Endosperm copious, starchy. Embryo large, straight, chlorophyll? Suspensor absent. Cotyledons two. Germination phanerocotylar.

Cytology n = 5, 10, 15

DNA Intron present in plastid gene rpl2.

Phytochemistry Flavonol bisulphates (kaempferol, quercetin), cyanidin, tannins, proanthocyanidins (prodelphinidins), and pinitol present. Cyanogenic compounds, alkaloids, saponins and myricetin not found. Sulphated compounds frequently present. Ellagic acid?

Use Ornamental plants, fish poison.

Systematics Frankenia (70–80; subtropical and warm-temperate dry regions, especially on sea-shores, in southern Europe, northernmost and southernmost Africa, Macaronesia, the Mediterranean, southwestern Asia and Australia, St. Helena, southwestern United States, southwestern South America, with their largest diversity in Australia).

Frankenia is sister to Tamaricaceae.

Frankenia margaritae has a single carpel with one ovule.

GISEKIACEAE (Endl.) Nakai

( Back to Caryophyllales )

Nakai in J. Jap. Bot. 18: 102. 10 Mar 1942

Genera/species 1/7

Distribution Tropical and subtropical regions in the Old World.

Fossils Unknown.

Habit Usually bisexual (rarely unisexual), usually annual (sometimes perennial) herbs.

Vegetative anatomy Phellogen absent? C4 photosynthesis present. Kranz anatomy atriplicoid. Secondary lateral growth absent. Vessel elements? Imperforate tracheary xylem elements? Wood rays absent. Axial parenchyma? Sieve tube plastids P3cf type? Nodes unilacunar? with ? leaf traces. Calciumoxalate raphides present.

Trichomes Hairs?

Leaves Usually opposite (rarely almost verticillate), simple, entire, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate. Stomata? Cuticular waxes? Leaf margin entire. Epidermis with calciumoxalate raphides.

Inflorescence Axillary or terminal, leaf-opposed panicle (sometimes umbel-like cyme) with dichasial partial inflorescences.

Flowers Actinomorphic, small. Hypogyny. Tepals five, with imbricate-quincuncial aestivation, sepaloid, free. Nectariferous disc flattened.

Androecium Stamens usually five or ten to 15 (rarely eight, sometimes 20 or more, in fascicles of three), alternitepalous. Filaments widened at base, free. Anthers basifixed, non-versatile, tetrasporangiate, introrse?, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate to polypantoporate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, punctate or perforate, scabrate, spinulate or smooth.

Gynoecium Pistil composed of (three to) five (to ten) carpels, whorled, antetepalous, seemingly free (pseudapocarpy). Partial ovaries superior, unilocular. Stylodia short, ventral. Stigmas? Male flowers with pistillodium.

Ovules Placentation basal. Ovule one per carpel, anatropous (campylotropous?), bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument three cell layers thick. Inner integument ? cell layers thick. Parietal tissue approx. two cell layers thick. Nucellar cap approx. three cell layers thick. Megasporangial cells radially expanded. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit An achene with membranous epicarp covered by warts or prickles (sometimes with wing-like lateral processes).

Seeds Aril absent. Exotestal cells tangentially elongate. Endotesta? Exotegmic cells thickened. Endotegmen? Perisperm copious and nutritious. Endosperm poorly developed or absent. Embryo peripheral, curved around perisperm, well differentiated?, chlorophyll? Suspensor apically curved. Cotyledons two. Germination phanerocotylar?

Cytology x = 9

DNA

Phytochemistry Very insufficiently known. Betacyanins and betaxanthins present. Anthocyanins? Triterpene saponins?

Use Unknown.

Systematics Gisekia (7; G. africana, G. diffusa, G. haudica, G. paniculata, G. pharnaceoides, G. polylopha, G. scabridula; tropical and subtropical regions in Africa, Madagascar, the Mascarene Islands, southern Asia to southeastern China and Indochina, with their highest diversity in East Africa).

Gisekia may be closely allied to Petiveriaceae, but its position is uncertain. It may be part of a Gisekia-Sarcobatus-Phytolaccaceae-Petiveriaceae-Agdestis-Nyctaginaceae clade.

HALOPHYTACEAE A. Soriano

( Back to Caryophyllales )

Soriano in Bol. Soc. Argent. Bot. 23: 161. 29 Aug 1984

Genera/species 1/1

Distribution Argentina.

Fossils Unknown.

Habit Monoecious, annual herb. Leaf succulent.

Vegetative anatomy Phellogen? Cortex succulent. Secondary lateral growth anomalous (from concentric/successive cambia). Vessel elements? Imperforate tracheary xylem element libriform fibres with bordered pits? Extraxylary fibres present. Wood rays absent from secondary xylem. Axial parenchyma? Sieve tube plastids P3cf type, with a globular central protein crystal surrounded by a subperipheral dense ring of protein filaments. Nodes 1:1? Phloem parenchyma cells with phytoferritin? Calciumoxalate druses present.

Trichomes Hairs absent.

Leaves Alternate (spiral), simple, usually entire (sometimes absent), succulent, subterete, flattened on adaxial side, convex on abaxial side, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Leaf single-veined. Stomata paracytic or anomocytic? Cuticular waxes? Leaf margin entire. Young buds surrounded by two opposite scale-like leaves (prophylls?).

Inflorescence Male flowers numerous in a terminal, dense, spike-like, bracteate inflorescence. Female flowers four or five together in axillary fascicles (or female flowers in reality solitary axillary?) in uppermost four or five leaf axils. Male flowers with two bracts or floral prophylls (bracteoles; transverse floral prophylls absent). Each female flower sunken into cortex and enclosed by one (or two?) small bracts and two very unequally sized median? floral prophylls.

Flowers Actinomorphic, small. Hypogyny? Tepals four in male flowers, with valvate-decussate aestivation, somewhat petaloid, membranous, whorled, free or connate at base. Female flowers without tepals.

Androecium Stamens four, alternitepalous. Filaments filiform, free from each other and from tepals. Anthers dorsifixed to subbasifixed, protruding, versatile, tetrasporangiate, extrorse, poricidal (dehiscing by pores due to contraction of connective). Endothecial anticlinal cell walls with frame-like thickening. Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains hexaporate, cuboid (with one pore on each side), shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum (fusions?), punctate, microspinulate.

Gynoecium Pistil composed of three connate carpels; median adaxial carpel fertile. Ovary superior, unilocular. Style single, simple. Stigmas three, finally protruding, papillate, type? Pistillodium absent.

Ovules Placentation basal. Ovule one per ovary, anatropous (campylotropous?), bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit Thin-walled and nutlike. Hardening inflorescence axis enclosing several nutlets aggregated into a dry syncarp.

Seeds Aril absent. Testa? Tegmen? Perisperm well developed and nutritious (with polygonal and unusually large starch grains when compared to other Caryophyllales), surrounded by embryo. Endosperm almost absent. Embryo annular, chlorophyll? Cotyledons two. Germination phanerocotylar?

Cytology n = 12

DNA

Phytochemistry Very insufficiently known. Betanin (a tyrosine-derived glucose glycoside of betanidin) present. Proanthocyanidins not found.

Use Unknown.

Systematics Halophytum (1; H. ameghinoi; subarid parts of Catamarca, Chubut, La Rioja and Mendoza in southern Argentina).

Halophytum may be sister to Montiaceae (Brockington & al. 2013) or, possibly, to the clade [Talinaceae+[Portulacaceae+[Anacampserotaceae+Cactaceae]]] (Ocampo & Columbus 2010) or to [Didiereaceae+Basellaceae] (Arakaki & al 2011).

KEWACEAE Christenh.

( Back to Caryophyllales )

Christenhusz in Phytotaxa 181: 240. 8 Oct 2014

Genera/species 1/8

Distribution Eastern and southern Africa, Madagascar, St. Helena.

Fossils Unknown.

Habit Bisexual herbs or suffrutices.

Vegetative anatomy Phellogen? Secondary lateral growth? Vessel elements? Imperforate tracheary xylem elements? Wood rays? Axial parenchyma? Sieve tube plastids P3cf type, with central globular protein crystal surrounded by ring of protein filaments. Nodes? Calciumoxalate crystals as clusters and crystal sand.

Trichomes Hairs absent.

Leaves Alternate (spiral, often pseudoverticillate), simple, entire, linear, terete, with ? ptyxis. Stipules membranous, adnate to dilated leaf base forming a sheath; leaf sheath absent. Petiole vascular bundles? Leaf one-veined. Stomata? Cuticular wax crystalloids as rodlets. Leaf margin entire.

Inflorescence Terminal (often seemingly axillary), umbel-like thyrse.

Flowers Actinomorphic. Hypogyny. Tepals five, with imbricate aestivation, often petaloid, persistent, free. Nectaries present on adaxial side of inner staminal filaments. Disc absent.

Androecium Stamens (three to) five to 15 (to c. 30), diplostemonous. Filaments connate at base, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolpate?, shed as monads, ?-cellular at dispersal. Exine tectate?, with columellate? infratectum, sculpturing?

Gynoecium Pistil composed of three to five connate antesepalous carpels. Ovary superior, trilocular to quinquelocular. Style absent. Stigmas three to five, papillate?, type? Pistillodium absent.

Ovules Placentation axile. Ovules numerous per carpel, ?-tropous, bitegmic?, crassinucellar? Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator? Parietal tissue? Megagametophyte monosporous, Polygonum type? Endosperm development ab initio nuclear, finally cellular. Endosperm haustoria? Embryogenesis solanad.

Fruit A loculicidal membranous capsule or a schizocarp with nutlike mericarps.

Seeds Aril absent. Operculum present. Seed coat? Exotesta? Endotesta? Exotegmen? Endotegmic cell walls with rod-shaped thickenings? Perisperm copious, hard, starchy. Endosperm sparse or absent? Embryo peripheral?, curved around perisperm?, well differentiated?, without chlorophyll? Cotyledons two. Radicula dorsal? Germination?

Cytology n = 8

DNA

Phytochemistry Virtually unknown. Anthocyanins present. Betalains absent?

Use Unknown.

Systematics Kewa (8; K. angrae-pequenae, K. arenicola, K. bowkeriana, K. caespitosa, K. salsoloides: eastern and southern Africa; K. suffruticosa: Madagascar; K. acida: St. Helena).

According to Brockington & al. (2013), Kewa (‘Hypertelis’ in their paper) belongs in a clade also comprising Lophiocarpaceae, Barbeuiaceae, Aizoaceae, Gisekia, Sarcobatus, Agdestis, Phytolaccaceae, Nyctaginaceae, and Petiveriaceae. Kewa is here successive sister to the remaining “globular inclusion clade” minus Lophiocarpaceae.

The genus comprises all the former species of Hypertelis except the type Hypertelis spergulacea and some recently recombined speciespreviously included inMollugo; (Christin & al. 2011, Christenhusz & al. 2014, Thulin & al. 2016).

LIMEACEAE (Fenzl) Shipunov

( Back to Caryophyllales )

Shipunov ex Reveal in Bot. Rev. (Lancaster) 71: 128. 20 Mai 2005

Genera/species 1/c 25

Distribution Sub-Saharan Africa, the Arabian Peninsula, southern Asia east to India.

Fossils Unknown.

Habit Bisexual, perennial herbs or suffrutices with lignified basal parts and often green photosynthesizing branches.

Vegetative anatomy Phellogen? Secondary lateral growth usually anomalous (from meristematic rings of concentric cambia in phloem or pericycle; rarely normal). Vessel elements with simple? perforation plates; lateral pits alternate? Imperforate tracheary xylem elements? Wood rays absent? Axial parenchyma? Sieve tube plastids P3c’’f type, with a central cuboidal protein crystal surrounded by a ring of protein filaments. Nodes? Calciumoxalate usually as druses.

Trichomes Hairs usually absent; glandular hairs present in some species.

Leaves Alternate (spiral), simple, entire, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation? Stomata? Cuticular waxes? Leaf margin entire.

Inflorescence Terminal, raceme-like to capitate, cymose.

Flowers Actinomorphic. Hypogyny. Sepals five, free. Petals usually five (absent in some species), free. Nectary absent? Disc absent.

Androecium Stamens (five to) seven (to ten). Filaments connate at base, adnate to tepals (epitepalous). Anthers dorsifixed, versatile?, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains 3(–4)-colpate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, punctate, smooth or spinulate.

Gynoecium Pistil composed of two to seven connate antesepalous carpels. Ovary superior, pseudomonomerous, two carpels being initiated: adaxial carpel sterile and much smaller than abaxial carpel, in which two ovules are developed and separated by secondary septum. Stylodia two or three or absent. Stigmas two or three, filiform, type? Pistillodium absent.

Ovules Placentation axile. Ovules one to three per carpel, anatropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator placental. Parietal tissue? Megagametophyte monosporous, Polygonum type. Antipodal cells often persistent. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis caryophyllad.

Fruit A membranous capsule or a dimerous schizocarp with nutlike (sometimes winged) mericarps.

Seeds Dry aril/elaiosome (funicular) present or absent. Seed coat? Testa with cells in rows along dorsal suture. Tegmen? Perisperm copious, starchy. Endosperm almost absent. Embryo peripheral, curved around perisperm?, chlorophyll? Cotyledons two. Germination?

Cytology n = 9 (Limeum indicum)

DNA

Phytochemistry Virtually unknown. Anthocyanin present.

Use Unknown.

Systematics Limeum (c 25; Africa South of Sahara, southern Arabian Peninsula to eastern and southern India).

According to Brockington & al. (2013), Limeaceae are sister to the remaining core Caryophyllales “above” Stegnospermataceae.

LOPHIOCARPACEAE Doweld et Reveal

( Back to Caryophyllales )

Doweld et Reveal, New Syllabus Pl. Fam.: 795. Jan 2007

Corbichoniaceae Thulin in Taxon 65(4): 790. Aug 2016

Genera/species 2/6

Distribution Sub-Saharan Africa, southern Asia.

Fossils Unknown.

Habit Bisexual, suffrutices or perennial herbs (in Corbichonia often with procumbent stems).

Vegetative anatomy Phellogen? Secondary lateral growth usually normal (sometimes anomalous from concentric meristematic rings in phloem or pericycle). Vessel elements with simple? perforation plates; lateral pits alternate? Imperforate tracheary xylem elements? Wood rays absent? Axial parenchyma? Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by a ring of protein filaments. Nodes 1:1, unilacunar with one leaf trace. Calciumoxalates as druses or sphaeroites.

Trichomes Hairs?

Leaves Alternate (spiral), simple, entire, somewhat fleshy, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate? Stomata? Cuticular wax crystalloids as platelets. Leaf margin entire.

Inflorescence Terminal or seemingly leaf-opposite, cymose (Corbichonia), or raceme or spike arranged in groups of usually three (sometimes two) partial inflorescences (Lophiocarpus).

Flowers Actinomorphic. Hypogyny. Sepals (four or) five, with usually quincuncial aestivation, back and front sepals covering remaining ones (Corbichonia), free. Petals 15 to numerous, with valvate aestivation, free (Corbichonia), or absent (Lophiocarpus). Nectariferous disc present.

Androecium Stamens four (Lophiocarpus; occasionally seemingly three) or ten to c. 30 (Corbichonia). Filaments free from each other and from tepals. Anthers basifixed, elongate (Lophiocarpus), non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory (bicellular or tricellular). Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, perforate to finely punctate, spinulate.

Gynoecium Pistil composed of two (Lophiocarpus) or five (Corbichonia) connate antesepalous carpels. Ovary superior, unilocular (Lophiocarpus) or quinquelocular (Corbichonia). Style single, simple, very short (Corbichonia), or absent (Lophiocarpus). Stigmas four (Lophiocarpus), type? Pistillodium absent.

Ovules Placentation axile (Corbichonia) or basal (Lophiocarpus). Ovule one per ovary (Lophiocarpus) or numerous per carpel (Corbichonia), campylotropous (Lophiocarpus), bitegmic, thinly crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator placental. Parietal tissue two or three cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad (Corbichonia) or caryophyllad (Lophiocarpus).

Fruit An achene or one-seeded drupe (Lophiocarpus) or a loculicidal capsule (Corbichonia).

Seeds Funicular aril present (Corbichonia) or absent. Seeds with small strophiole (Corbichonia). Seed coat? Exotestal cells radially elongate. Endotesta? Tegmen? Perisperm copious and nutritious. Endosperm almost absent. Embryo peripheral, curved around perisperm, chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Very insufficiently known. Anthocyanins and saponins present in Corbichonia. Betalains absent.

Use Unknown.

Systematics Corbichonia (2; C. decumbens, C. rubriviolacea; tropical and southwestern Africa, southwestern and southern Asia), Lophiocarpus (4; L. dinteri, L. latifolius, L. polystachyus, L. tenuissimus; Namibia, South Africa, Botswana).

Lophiocarpaceae are sister to the remaining members of the “globular inclusion clade” also comprising Hypertelis, Barbeuiaceae, Aizoaceae, Gisekia, Sarcobatus, Agdestis, Phytolaccaceae, Nyctaginaceae, and Petiveriaceae.

The sieve tube plastids in Lophiocarpus are similar to those of Phytolaccaceae. The ovary organization resembles that in Amaranthaceae.

MACARTHURIACEAE Christenh.

( Back to Caryophyllales )

Christenhusz in Phytotaxa 181: 240. 8 Oct 2014

Genera/species 1/9

Distribution Australia.

Fossils Unknown.

Habit Bisexual, shrubs or suffrutices with lignified basal parts and often green photosynthesizing branches.

Vegetative anatomyPhellogen? Secondary lateral growth anomalous (from meristematic cylinders of concentric cambia in phloem or pericycle). Vessel elements with simple? perforation plates; lateral pits alternate? Imperforate tracheary xylem elements? Wood rays absent? Axial parenchyma? Sieve tube plastids P3c’’fs type. Nodes 1:1? Calciumoxalate usually as druses.

Trichomes Hairs usually absent.

Leaves Alternate (spiral), simple, entire, often reduced and scale-like, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation? Stomata? Cuticular waxes? Leaf margin entire.

Inflorescence Terminal, raceme-like to capitate, cymose.

Flowers Actinomorphic, often small. Hypogyny. Sepals five, free. Petals five, free, or absent. Nectary absent? Disc absent.

Androecium Stamens 4+4. Filaments connate at base, adnate to tepals (epitepalous). Anthers dorsifixed, versatile?, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains 3(–4)-colpate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, punctate, smooth or spinulate.

Gynoecium Pistil composed of three to seven connate antesepalous carpels. Ovary superior, with two carpels initiated: adaxial carpel sterile and much smaller than abaxial carpel, in which two ovules develop and are separated by secondary septum. Stylodia two or three or absent. Stigmas two or three, filiform, type? Pistillodium absent.

Ovules Placentation basal-axile. Ovules one to three per carpel, anatropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator placental. Parietal tissue? Megagametophyte monosporous, Polygonum type. Antipodal cells usually ephemeral. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A membranous loculicidal capsule.

Seeds Dry aril/elaiosome (funicular) present. Testa with cells in rows along dorsal suture. Tegmen? Perisperm copious, starchy. Endosperm almost absent. Embryo peripheral, curved around perisperm?, chlorophyll? Cotyledons two. Germination?

Cytologyn = ?

DNA

Phytochemistry Very insufficiently known. O-glycosylflavonoids and anthocyanins present. Betalains not found.

Use Unknown.

Systematics Macarthuria (9; M. apetala, M. australis, M. complanata, M. ephedroides, M. georgeana, M. intricata, M. keigheryi, M. neocambrica, M. vertex; southwestern, northern and eastern Australia).

Macarthuria is sister to the core Caryophyllales (“beyond” the [Asteropeia+Physena] clade) (Brockington & al. 2013).

MICROTEACEAE Schäferhoff et Borsch

( Back to Caryophyllales )

Schäferhoff et Borsch in Willdenowia 39: 223. Dec 2009

Genera/species 1/9

Distribution Mexico, Central America, the West Indies.

Fossils Unknown.

Habit Bisexual, usually annual herbs (occasionally perennial and somewhat lignified at base).

Vegetative anatomy Phellogen? Secondary lateral growth usually normal (sometimes anomalous from concentric meristematic cylinders in phloem or pericycle). Vessel elements with simple? perforation plates; lateral pits alternate? Imperforate tracheary xylem elements? Wood rays absent? Axial parenchyma? Sieve tube plastids P3f type without central protein crystal and with central starch grain. Nodes 1:1, unilacunar with one leaf trace. Calciumoxalates as druses or sphaeroites or absent?

Trichomes Hairs absent.

Leaves Alternate (spiral), simple, entire, somewhat fleshy, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate? Stomata? Cuticular wax crystalloids as platelets. Leaf margin entire.

Inflorescence Terminal or seemingly leaf-opposite, thyrsoid, with racemes or spikes arranged in groups of usually three (sometimes two) partial inflorescences. Floral prophylls (bracteoles two or absent).

Flowers Actinomorphic. Hypogyny. Tepals (four or) five, with quincuncial aestivation, free. Nectariferous disc present.

Androecium Stamens (two to) five to eight (or nine), alternitepalous. Filaments free from each other and from tepals. Anthers basifixed to dorsifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by apical slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains 9–29-polypantoporate, shed as monads, tricellular? at dispersal. Exine tectate, with columellate infratectum, perforate to finely punctate, microspinulate.

Gynoecium Pistil composed of two to five connate carpels (with various orientation). Ovary superior, unilocular (without traces of a suture). Stylodia two to five. Stigmas two to five, papillate, type? Pistillodium absent.

Ovules Placentation free central. Ovule one per ovary, basal, campylotropous, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator placental. Parietal tissue? Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A muricate to spiny achene.

Seeds Funicular aril present. Testa crustaceous. Tegmen? Perisperm copious and nutritious. Endosperm almost absent. Embryo peripheral, curved around perisperm, chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Anthocyanins? Betalains?

Use Medicinal plants.

Systematics Microtea (9; M. debilis, M. glochidiata, M. longebracteata, M. maypurensis, M. paniculata, M. portoricensis, M. scabrida, M. sulcicaulis, M. tenuifolia; Baja California to Central America, the West Indies)

Microtea is sister to the remaining core Caryophyllales “above” Macarthuriaceae, according to Brockington & al. (2013).

The sieve tube plastids resemble those in Amaranthaceae.

MOLLUGINACEAE Bartl.

( Back to Caryophyllales )

Bartling in F. G. Bartling et H. L. Wendland, Beitr. Bot. 2: 158. Dec 1825 [’Mollugineae’], nom. cons.

Pharnaceaceae Martinov, Tekhno-Bot. Slovar: 477. 3 Aug 1820 [’Pharnaceae’]; Glinaceae Mart., Consp. Regn. Veg.: 64. Sep-Oct 1835 [’Glinoideae’]; Adenogrammaceae (Fenzl) Nakai in J. Jap. Bot. 18: 101. 10 Mar 1942; Polpodaceae (Fenzl) Nakai in J. Jap. Bot. 18: 109. 10 Mar 1942

Genera/species 11/c 90

Distribution Mainly tropical and subtropical regions, with their highest diversity i southern Africa, some species in warm-temperate areas.

Fossils Unknown.

Habit Usually bisexual (in Mollugo ulei dioecious), usually annual or perennial herbs (sometimes suffrutices). Often somewhat succulent.

Vegetative anatomy C4 photosynthesis (‘Hypertelis’) or intermediates between C3 and C4 photosynthesis sometimes present. Phellogen? Secondary lateral growth usually anomalous (from concentric cambia as successive meristematic cylinders in phloem or pericycle) or absent. Pericyclic fibres present. Vessel elements with simple perforation plates; lateral pits alternate?, bordered pits. Imperforate tracheary xylem elements? Wood rays usually absent. Axial parenchyma? Sieve tube plastids P3cf type, with a central globoid protein crystal surrounded by a ring of protein filaments (in Glinus P3cfs type, with starch grains). Nodes 1:1, unilacunar with one leaf trace. Calciumoxalate usually as single crystals, lumps or druses (rarely as crystal sand, rhomboidal crystals or raphides).

Trichomes Hairs usually absent (in Glinus stellate hairs; in Mollugo ulei glandular hairs).

Leaves Usually alternate (spiral), often as a basal rosette or pseudoverticillate (sometimes opposite), simple, entire, often somewhat succulent or ericoid, with ? ptyxis. Stipules large, membranous and sometimes lobed, small or absent; leaf sheath absent. Petiole vascular bundles? Venation pinnate. Stomata usually anomocytic (sometimes paracytic, diacytic or anisocytic?). Cuticular wax crystalloids in as platelets or rodlets. Leaf margin entire.

Inflorescence Usually terminal or seemingly axillary, cymose of various shape (in Polpoda axillary, few-flowered, cymose, or flowers solitary). Prophylls often prominent.

Flowers Actinomorphic, small. Usually hypogyny (in Coelanthum half epigyny). Tepals usually five (in Polpoda four), with imbricate aestivation, usually sepaloid (sometimes petaloid), persistent, usually free (in Coelanthum connate at base). Petaloid staminodia five to c. 20 or absent. Nectaries usually on adaxial side of inner staminal filaments (absent in Polpoda). Nectariferous disc annular or absent.

Androecium Stamens (two to) four to ten (to c. 30, in fascicles), haplostemonous or diplostemonous, usually antetepalous (in Polpoda alternitepalous) or – when more than five – in alternitepalous and epitepalous whorls. Filaments widened at base and usually connate into a tube, free from tepals. Anthers basifixed or dorsifixed, often versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia petaloid or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (sometimes tetracolpate; in Mollugo sometimes polypantocolpate or polypantoporate), shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, tubuliferopunctate, scabrate-punctate or spinulate.

Gynoecium Pistil composed of usually two (in, e.g., Polpoda) to five (rarely more than five) connate carpels (in Adenogramma a single carpel); carpels antetepalous or median carpel adaxial. Ovary usually superior (rarely semi-inferior), usually bilocular to quinquelocular (in Adenogramma unilocular, monomerous). Style single, simple, or stylodia two to five, short, usually free (in Polpoda connate at base), or absent. Stigma single, bilobate to quinquelobate, or stigmas two to five, adaxially papillate, type? Pistillodium absent?

Ovules Placentation axile. Ovule one seemingly basal (in Adenogramma, Polpoda and Psammotropha) to numerous per carpel or ovary, (hemi)anatropous to (ana)campylotropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument two cell layers thick. Inner integument two cell layers thick. Obturator funicular. Parietal tissue? Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear, finally cellular. Endosperm haustoria? Embryogenesis solanad.

Fruit A loculicidal capsule or dehiscing by transverse slits (in Adenogramma a nutlet).

Seeds Aril present or absent. Funicle short. Operculum sometimes present. Seed coat exotestal-endotegmic. Exotestal cells indistinguished in shape. Endotesta and exotegmen crushed. Endotegmic cell walls with rod-shaped thickenings. Perisperm copious, hard, starchy. Endosperm sparse or absent. Embryo peripheral, curved around perisperm, well differentiated, without chlorophyll. Cotyledons two. Radicula dorsal. Germination?

Cytology n = 9, 18 (Glinus) – Polyploidy occurring in Mollugo s.lat. (n = 18, 27, 32, 36).

DNA

Phytochemistry Insufficiently known. Flavonols (kaempferol?, quercetin?), C-glycosyl-flavonoids, proanthocyanidins, anthocyanins, hopane saponins, and cyanogenic compounds present. Betalains not found in investigated species.

Use Medicinal plants, vegetables.

Systematics Trigastrotheca (3; T. molluginea, T. pentaphylla, T. stricta; tropical and subtropical Asia and Australia), Mollugo (c 15; tropical to warmtemperate regions in North to South America, one species, M. disticha, in India and Sri Lanka), Glinus (c 10; tropical to warmtemperate regions on both hemispheres), Paramollugo (6; P. nudicaulis: tropical Africa, Madagascar, Yemen, Socotra, tropical Asia; P. angustifolia: Somalia; P. decandra, P. elliotii, P. simulans: Madagascar; P. digyna: New Caledonia), Hypertelis (5; H. cerviana, H. fragilis, H. spergulacea, H. umbellata, H. walteri; southwestern and southeastern Europe, tropical and subtropical regions, South Africa), Polpoda (2; P. capensis, P. stipulacea; Western Cape), Psammotropha (11; tropical and southern Africa), Adenogramma (10–11; Northern and Western Cape), Suessenguthiella (1; S. scleranthoides; Namibia, Northern and Western Cape), Coelanthum (3; C. grandiflorum, C. semiquinquefidum, C. verticillatum; southern Namibia, Northern and Western Cape), Pharnaceum (c 28; southern Africa).

Molluginaceae are sister-group to the clade [[[Montiaceae+Halophytaceae]+[Didiereaceae+Basellaceae]]+[Talinaceae+[Portulacaceae+[Anacampserotaceae+Cactaceae]]]] (Brockington & al. 2013).

Mollugo’ is highly polyphyletic, as shown by Christin & al. (2011). It should perhaps be split into at least eight different taxa.

Phylogeny (simplified) of Molluginaceae based on DNA sequence data (Christin & al. 2010).

Phylogeny (simplified) of Molluginaceae based on DNA sequence data (Thulin & al. 2016).

MONTIACEAE Raf.

( Back to Caryophyllales )

Rafinesque in Ann. Gén. Sci. Phys. Bruxelles 5: 349. Jul-Sep 1820 [’Montidia’]

Hectorellaceae Philipson et Skipworth in Trans. Roy. Soc. New Zealand Bot. 1: 31. 20 Sep 1961

Genera/species c 10/285–290

Distribution Cosmopolitan except polar areas (mainly temperate regions on the Northern Hemisphere), Australia, Tasmania, New Zealand, Kerguélen, North and South America, with their largest diversity in western North America, western South America and southern Australia.

Fossils Unknown.

Habit Usually bisexual (rarely unisexual), perennial or annual herbs (rarely suffrutices), often succulent. Roots sometimes tuberous. Certain species? of Lewisia (’Erocallis’) with corm. Stem frequently absent. Some species are xerophytic.

Vegetative anatomy Mycorrhiza absent. At least some genera with CAM photosynthesis. At least some species with stomata present in stem epidermis. Phellogen ab initio superficial, present near stem apex. Precocious or delayed initiation of stem periderm; periderm usually absent. Endodermis sometimes prominent, with casparian dots (Montia). Primary vascular tissue usually a cylinder of bundles. Cortical and medullary parenchyma early degenerating. Secondary lateral growth normal, poor (without concentric cambia or inner phloem), or absent. Vessel elements with simple perforation plates; lateral pits alternate, pseudoscalariform, or intermediate between pseudoscalariform and helical thickenings. Imperforate tracheary xylem elements libriform fibres; non-septate. Wood rays multiseriate or absent. Axial parenchyma? Thick-walled pericyclic extraxylary phloem fibre caps absent. Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by a ring of protein filaments. Nodes 1:1, unilacunar with one leaf trace. Sclereids absent. Stem usually without mucilaginous idioblasts. Tanniniferous cells absent. Phloem parenchyma cells with phytoferritin? Crystal sand or druses of calciumoxalate often present; stem epidermis often with calciumoxalate crystals. At least some genera with CAM photosynthesis.

Trichomes Hairs unicellular or multicellular, uniseriate (sometimes glandular), or absent.

Leaves Alternate (spiral) or opposite, simple, entire, often perfoliate, often fleshy, with ? ptyxis. Stipules and leaf sheath absent. Leaves without paired axillary hairs, bristles or scales. Petiole vascular bundles? Venation pinnate? Stomata brachyparacytic (longitudinally orientated, with two subsidiary cells surrounding but not completely enclosing guard cells; sometimes parallelocytic or anomocytic). Cuticular wax crystalloids as procumbent platelets. Mesophyll usually with mucilaginous idioblasts (absent in Claytonia and Parakeelya). Sclereids absent. Crystals abundant. Leaf margin entire.

Inflorescence Terminal or axillary, dichasia and/or monochasia (sometimes head-, spike or raceme-like), often scorpioid, or flowers solitary axillary. Floral prophylls (bracteoles) usually two or 2+2 (inner pair median; rarely three, up to nine [Lewisia] or absent), with imbricate aestivation, lateral, apical or basal, at equal or different heights, usually persistent and dry in fruit, free or connate at base (transverse floral prophylls sometimes absent). Montiopsis sometimes with trilobate involucral bracts.

Flowers Usually actinomorphic (rarely zygomorphic). Hypogyny. Tepals (two or) three to five (to seven; in Lewisia up to 19), in one or two whorls, with imbricate aestivation, petaloid, persistent or caducous, usually free (rarely connate at base), or absent. Nectariferous disc present.

Androecium Stamens usually three to five (rarely six, seven or up to c. 100; in Lewisia up to 19; in Calandrinia/Monocosmia and Calyptridium one), in one whorl, usually antetepalous (in Lyallia alternitepalous). Filaments free or connate (all together or in fascicles), free from tepals or adnate at base. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with multinucleate cells. Staminodia usually absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tri- to polyzonacolpate, tri- to polyzonacolporate, tri- to polyzonaporate, polypantoporate, -rugate or -foraminate (in ’Montiastrum’ tholate, polypantocolpate; centres of mesocolpi vaulted forming spiniferous upraised tholi), shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, punctate, spinulate.

Gynoecium Pistil composed of two to four (to nine) connate carpels. Ovary superior, unilocular. Style single, simple, or stylodia two to four (to nine), free or connate. Stigmas capitate or lobate, papillate, Dry type. Pistillodium usually absent.

Ovules Placentation basal to free central. Ovules two to more than 100 per ovary, anatropous to amphitropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Antipodal cells three, ephemeral. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis caryophyllad or solanad.

Fruit Usually a two- or three-valved capsule and/or circumscissile at base (Lewisia, Lewisiopsis; elastically or passively dehiscent; rarely poricidal; sometimes irregularly dehiscent; sometimes a one-seeded capsular utriculus, in Lenzia indehiscent or tardily dehiscent, in Philippiamra irregularly dehiscent or indehiscent; in Lyallia one- or two-seeded successively disintegrating indehiscent capsules). Fruit sometimes with deciduous calyptra formed by dry perianth and staminal remnants.

Seeds Aril usually absent (in Phemeranthus carnose or chartaceous). Seed coat testal. Strophiole or elaiosome present or absent. Outer exotestal cell walls thickened, with stalactite-shaped processes. Endotesta? Tegmen? Perisperm copious, starchy. Endosperm sparse or absent. Embryo peripheral, curved and surrounding perisperm, well differentiated, without chlorophyll. Cotyledons usually two (rarely three or four). Radicula dorsal. Germination phanerocotylar.

Cytology n = 6–13 or more – Claytonia virginiana shows extreme variation in chromosome number with n = 6 to c. 95; Lyallia: n = 48.

DNA 6 bp deletion in plastid gene ndhF.

Phytochemistry Flavonols (kaempferol), cyanidins, betalains (betacyanins, betaxanthins), alkaloids, and triterpene saponins present. Ellagic acid and cyanogenic compounds not found. Free oxalates often accumulated.

Use Ornamental plants, vegetables (Claytonia perfoliata).

Systematics Phemeranthus (18–20; southern Canada, United States, Mexico; incl. ’Talinum’ pro parte); Cistanthe (c 40; America; incl. Lenzia? and Montiopsis?), Lenzia (1; L. chamaepitys; Chile; in Cistanthe?), Montiopsis (18; western South America, with the highest diversity in Chile; in Cistanthe?), ’Calandrinia’ (>150; Australia, western North America, western South America, especially Chile; non-monophyletic), Schreiteria (1; S. macrocarpa; Argentina; in Calandrinia?), Parakeelya (2; P. nana, P. spergularina; arid regions in Australia; in Calandrinia?), Lyallia (3; L. andicola: Atacama in northern Chile, L. kerguelensis: Kerguélen Islands; L. caespitosa: South Island of New Zealand), Lewisia (20; western North America), Claytonia (24; East Asia, North America), Montia (11–12; temperate regions on both hemispheres).

Montiaceae may be sister-group to Halophytaceae.

Phemeranthus is sister (with high support) to the remaining genera in the ndhF analysis by Applequist & Wallace (2001). Claytonia has tricolpate pollen grains, whereas its sister-group Montia has pantocolpate pollen.

Phylogeny (simplified) of Montiaceae based on DNA sequence data (Applequist & Wallace 2001). Baitaria, Lyallia, Parakeelya, and Philippiamra were not included in the study. Lyallia is sister to the [Lewisia+[Montia+Claytonia]] clade in analyses by Ogburn & Edwards (2009).

NEPENTHACEAE Dumort.

( Back to Caryophyllales )

Dumortier, Anal. Fam. Plant.: 14, 16. 1829 [‘Nepenthideae’], nom. cons.

Nepenthales Bercht. et J. Presl, Přir. Rostlin: 267. Jan-Apr 1820 [‘Nepenthaceae’]; Nepenthineae Link, Handbuch 1: 369. 4-11 Jul 1829; Nepenthanae Takht. ex Reveal in Phytologia 79: 71. 29 Apr 1996

Genera/species 1/170

Distribution Madagascar, the Seychelles, Sri Lanka, Assam, Southeast Asia, southeastern China, Malesia to northeastern Australia, New Caledonia.

Fossils Fossil pollen grains, which may be assigned to Nepenthes, have been found in Late Cretaceous layers in South America and Africa, and in the Eocene and the Miocene of Europe.

Habit Dioecious, usually scrambling and climbing (sometimes epiphytic) perennial herbs (rarely lignified). Carnivorous (largely utilizing excrements and other detrimental waste products from animals living in the water solution of the pitcher and feeding on prey falling into the pitcher). Often hygrophytes.

Vegetative anatomy Mycorrhiza absent. Phellogen ab initio pericyclic. Primary vascular tissue a cylinder of bundles. Medullary vascular bundles may be present; young stems with cortical bundles. Medulla, pericycle and bark tissues with large idioblasts having spiral thickenings and cap-like apices. Pith and cortex with idioblastic helical-banded fibre-sclereids. A certain amount of lateral growth may occur. Vessel elements dimorphic, with simple (sometimes vestigial scalariform) perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements tracheids with bordered pits, usually non-septate (occasionally septate). Wood rays usually uniseriate or biseriate (rarely multiseriate), homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal banded. Sieve tube plastids S type. Nodes 5–9:5–9, multilacunar with five to nine leaf traces. Older parts of secondary xylem with gum-like deposits. Silica bodies present. Crystals?

Trichomes Hairs usually multicellular (rarely unicellular), filiform, fasciculate, rosulate, dendroid, or absent. Nectariferous glands and peltate hydathodes abundant on stems, leaves and other organs. Vascularized glands absent.

Leaves Alternate (spiral), simple, entire, with abaxially circinate, involute ptyxis. Stipules absent; leaf base sheathing, wide, gradually expanding into an even broader photosynthesizing discoid part, phyllodium, distally narrowing into a partially spirally twisted climbing organ, cirrhus, probably corresponding to petiole. This part grading into a pendant pitcher- or urn-shaped, often many-coloured organ, ascidium, catching insects. Ascidium probably corresponding to lamina and provided with lid, operculum, above mouth. Below lid, outside pitcher a spur, which may correspond to leaf apex. Pitcher differentiated into a recurved border zone, peristome, with numerous nectar-secreting glands (extrafloral nectaries) and, below these on inner side, a wax-secreting slippery zone, and at base a digesting glandular zone with proteolytic enzymes and absorbing cells partially or entirely covered by epidermis. Petiole vascular bundle transection arcuate. Chlorophyllous cells at pitcher margin oxygenating solution. On ventral side of pitcher two elongate narrowly dentate wings, corresponding to leaf margins. Venation parallelodromous to palmate. Stomata anomocytic. Cuticular waxes absent? Adaxial hypodermis present. Leaf margin entire. Water-absorbing peltate glandular hairs, hydathodes, sunken into depressions on foliar surface.

Inflorescence Terminal, raceme-like or paniculate thyrse or botryoid. Bracts and floralp prophylls (bracteoles) absent.

Flowers Actinomorphic, small. Hypogyny. Tepals (sepals?) (three or) four, with imbricate decussate aestivation, with large flat adaxial nectariferous glands, usually free (sometimes connate at base). Petals? absent. Tepal nectaries present. Disc absent.

Androecium Stamens (four to) eight to 24. Filaments connate into a central column, free from tepals. Anthers basifixed to subbasifixed?, connivent into a tube, non-versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains inaperturate or with indistinct apertures, shed as tetrads, tricellular at dispersal. Exine tectate, with columellate infratectum, spinulate or psilate.

Gynoecium Pistil composed of (three or) four (to six) connate antesepalous carpels. Ovary superior, usually quadrilocular (rarely trilocular, quinquelocular or sexalocular). Style single, simple, very short or absent. Stigma single, capitate to discoid, papillate, Dry type. Pistillodium absent.

Ovules Placentation axile (to laminar). Ovules c. 10 to more than 50 per carpel, anatropous, bitegmic, crassinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue one cell layer thick. Megagametophyte monosporous, Polygonum type. Chalazal projection present. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A coriaceous loculicidal capsule.

Seeds Seeds very small, numerous, fusiform, usually winged. Aril absent. Seed coat exotestal. Exotesta with strongly thickened inner cell walls. Chalaza with hairpin-shaped vascular bundle. Outer integument strongly elongating after fertilization and forming exostome. Parietal cell of ovule not further dividing. Tegmen? Perisperm not developed. Endosperm abundant, starchy, oily and proteinaceous. Embryo small, straight, well differentiated, chlorophyll? Cotyledons two; apices with haustorial function? Germination phanerocotylar.

Cytology n = 40 – Paleopolyploidy probable.

DNA Intron present in plastid gene rpl2.

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, tannins, and naphthoquinones (plumbagin, droserone, hydroxyserone) present. Ellagic acid and cyanogenic compounds not found.

Use Ornamental plants.

Systematics Nepenthes (c 170; Madagascar, the Seychelles, Sri Lanka, Assam, southeastern China, Southeast Asia, Malesia to New Guinea, Queensland, New Caledonia, with their largest diversity in West Malesia and the Philippines).

Nepenthes is sister to Droseraceae.

The pollen grains in Nepenthes are very similar to those in Droseraceae.

NYCTAGINACEAE Juss.

( Back to Caryophyllales )

de Jussieu, Gen. Plant.: 90. 4 Aug 1789 [’Nyctagines’], nom. cons.

Jalapaceae Batsch, Tab. Affin. Regn. Veg.: 224. 2 Mai 1802 [’Jalapinae’], nom. illeg.; Nyctaginales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 241. Jan-Apr 1820 [’Nyctagineae’]; Allioniaceae Horan., Prim. Lin. Syst. Nat.: 68. 2 Nov 1834 [’Allioniaceae [Nyctagineae]’]; Bougainvilleaceae J. Agardh, Theoria Syst. Plant.: 364. Apr-Sep 1858 [’Bugainvilleae’]; Pisoniaceae J. Agardh, Theoria Syst. Plant.: 363. Apr-Sep 1858 [’Pisonieae’]; Mirabilidaceae W. R. B. Oliver in Trans. Roy. Soc. New Zealand 66: 294. 1936; Nyctaginineae Nakai in J. Jap. Bot. 18: 98. 10 Mar 1942

Genera/species 31/430–470

Distribution Tropical, subtropical and warm-temperate regions in the Northern and Southern Hemispheres, with their largest diversity in North and South America; Phaeoptilum in southwestern Africa.

Fossils Pollen grains assigned to Nyctaginaceae have been found in Eocene layers in Argentina, and the Late Campanian Retitricolpites multibaculates from the island of Sakhalin in Russia also resemble nyctaginaceous pollen.

Habit Usually bisexual (rarely monoecious, andromonoecious, gynomonoecious or dioecious), evergreen or deciduous trees (Leucastereae), shrubs or lianas, perennial or annual herbs. Roots sometimes fleshy or tuberous. Band-shaped sticky secretions present on internodes in Anulocaulis, Cyphomeris, and some species of Boerhavia.

Vegetative anatomy Mycorrhiza usually absent (Pisonieae may form ectomycorrhiza together with a diverse array of basidiomycetes). Many species with C4 physiology. Phellogen usually superficial (sometimes cortical). Lateral meristem in parenchyma producing secondary cortex outwards and wood rays inwards, conjunctive tissue and a series of cambia from which isolated areas of vascular tissue (not rays) develop. Secondary lateral growth usually anomalous (usually from concentric/successive cambia). Vessel elements usually with simple (sometimes reticulate) perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres with simple or reduced bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, usually heterocellular (sometimes homocellular), or absent. Axial parenchyma apotracheal diffuse, or paratracheal vasicentric or banded (usually very scarce). Wood elements often partially storied. Phloem often intraxylary (as islands or concentric cylinders, sometimes diffuse). Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by ring of protein filaments. Endodermis in Boerhaavia with thick cell walls. Nodes 1:1?, unilacunar with one? leaf trace, often swollen. Epidermis sometimes with tanniniferous idioblasts. Heartwood often with resins etc. Calciumoxalate raphides abundant (absent in Leucastereae); styloids and/or prismatic or elongate crystals present; crystal sand present or absent.

Trichomes Hairs usually multicellular, uniseriate, or absent (sometimes dendritic or stellate; in Boldoa barbed hairs; Leucastereae with stellate or lepidote hairs); usually uniseriate glandular hairs (rarely branched) present in some species.

Leaves Usually opposite (sometimes alternate, spiral, rarely verticillate), simple, entire or lobed, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation indistinct. Stomata usually anomocytic or paracytic (rarely actinocytic). Cuticular wax crystalloids usually absent (in some species as platelets or granules). Mesophyll usually with calciumoxalate raphides. Leaf margin usually entire (rarely serrate).

Inflorescence Terminal or axillary, panicle, spike- or umbel-like etc., or flowers solitary axillary. Partial inflorescences or single flowers often in pseudanthia, surrounded by free or connate sepaloid or petaloid bracts forming an involucre.

Flowers Usually actinomorphic (in species of Colignonia and Allionia zygomorphic). Hypogyny. Tepals (three or) four or five (to seven), in a single whorl, with induplicate-valvate or contorted (plicate?) aestivation, usually petaloid, with lower part usually carnose or coriaceous, connate into a tube or infundibuliform to campanulate, with upper part usually early caducous and lower part usually persistent around fruit. Nectary usually absent (sometimes present on receptacle). Disc present (often annular and enclosing ovary) or absent.

Androecium Stamens one to ten (to c. 40), in one or sometimes two whorls, usually alternisepalous. Filaments usually connate at base (in Leucastereae free), usually free from tepals. Anthers basifixed to dorsifixed, often versatile, tetrasporangiate, latrorse or partially introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells. Female flowers in Pisonieae with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–4)-colpate (Leucastereae), 6–18-pantocolpate (Belemia, Phaeoptilum) or polypantoporate (some species with twelve to numerous pores), shed as monads, tricellular at dispersal. Some species (e.g. in Mirabilis) with pollen grains having a diameter of at least 200 μm (some of the largest among angiosperms). Exine tectate or semitectate, with columellate infratectum, reticulate or punctate to anulopunctate, spinulate, echinate or tegillate.

Gynoecium Pistil composed of a single carpel. Ovary superior, unilocular (monomerous), sometimes stipitate, often with subepidermal cell layer containing numerous calciumoxalate raphides. Style usually single, simple, apical or lateral (rarely absent). Stigma linear, capitate, lobate, fimbriate, penicillate etc., papillate, Dry type. Pistillodium?

Ovules Placentation basal. Ovule one per ovary, hemianatropous or (following fertilization) anacampylotropous, ascending, usually bitegmic (in Abronia and Boerhavia unitegmic), crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte usually monosporous, Polygonum type (in species of Mirabilis Tridax type: nuclei arranged according to the principle 1:2:1). Antipodal cells usually ephemeral (often persistent, long-lived and somewhat proliferating). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad. Polyembryony present in Boerhavia.

Fruit A thin-coated nutlet or achene (often drupaceous), usually surrounded by accrescent basal part of calyx forming carnose, coriaceous or lignified diclesium ’anthocarp’ (sometimes covered with viscid secretion from glandular hairs; sometimes with prickles, warts, ridges, wings, or other supraepidermal processes, in Allionia boat-shaped with two rows of inwardly directed teeth; perianth in Leucastereae and Boldoeae persistent but not accrescent and ’anthocarp’ usually absent; fruits rarely free). Pericarp weakly developed. ’Okenia’ (nested in Boerhavia) with geocarpy.

Seeds Aril absent. Seed coat testal. Testa in Pisonia multiplicative (on raphe side), unstructured. Exotesta up to seven cell layers thick. Endotesta rarely (in Mirabilis) thickened. Tegmen? Perisperm usually abundant, usually mealy (rarely gelatinous). Endosperm sparse, dome-shaped above radicula, or absent. Embryo straight or curved around perisperm, well differentiated, with chlorophyll. Cotyledons usually two (in Abronia one), sometimes (e.g. Pisonia) unequally sized. Germination phanerocotylar.

Cytology n = 8, 10, 11, 13–17, 20, 21, 26, 27, 29, 33, 40, 42, 44, 46, 47, 56, 58, 68 – Polyploidy and aneuploidy frequently occurring. Nuclei with protein bodies?

DNA Intron absent (lost) from plastid gene rpl2. 210 bp deletion in plastid genome.

Phytochemistry Flavonols (kaempferol, quercetin), flavone-C-glycosides, cyanidin, alkaloids, triterpene saponins, and betalains (betacyanins, betaxanthins) present. Ellagic acid and cyanogenic compounds not found. Free oxalates often accumulated.

Use Ornamental plants, vegetables (Pisonia), medicinal plants, bird lime (Pisonia).

Systematics Nyctaginaceae may be sister-group to Petiveriaceae (Brockington & al. 2013). In some other analyses they are part of an unresolved clade also comprising Sarcobatus (Sarcobataceae), Phytolaccaceae, Petiveriaceae, Agdestis (Agdestidaceae) and Gisekia (Gisekiaceae).

A plausible topology of Nyctaginaceae is [Leucasteroideae+[Boldooideae+Nyctaginoideae]]. The following subdivision principally follows Douglas & Spellenberg (2010).

Leucasteroideae Heimerl, Beitr. Syst. Nyctag.: 15. Mai-Jul 1897 [‘Leucastereae’]

4/5. Reichenbachia (2; R. colombiana, R. hirsuta; tropical southeastern South America), Andradea (1; A. floribunda; southeastern Brazil), Leucaster (1; L. caniflorus; southeastern Brazil), Ramisia (1; R. brasiliensis; southeastern Brazil). – Southeastern South America, with their highest diversity in southeastern Brazil. Raphides absent. Leaves alternate (spiral). Hairs stellate or lepidote. Perianth contracted in middle ot entirely tubular, accrescent. Stamens usually two or three (sometimes twelve to 20). Filaments connate at base. Pollen grains tricolpate (or tetracolpate). Style linare, thick or absent. Stigma lateral, crested, or sulcate. Anthocarp usually absent (sometimes twelve-ribbed). Tepals in Ramisia accrescent in fruit. Embryo hooked. – Leucastereae are sister-group to the remaining Nyctaginaceae.

[Boldooideae+Nyctaginoideae]

Style long and filiform.

Boldooideae Heimerl, Beitr. Syst. Nyctag.: 16. Mai-Jul 1897 [‘Boldoeae’]

3/3. Boldoa (1; B. purpurascens; Central America), Cryptocarpus (1; C. pyriformis; western South America, the Galápagos Islands), Salpianthus (1; S. arenarius; Mexico, Central America). – Mexico, Central America to Bolivia and northwestern and northern South America, the West Indies. Leaves alternate (spiral). Hairs straight or hooked. Bracts and floral prophylls (bracteoles) absent. Perianth tri- to quinquelobate, tubular to campanulate, not contracted above ovary. Stamens three to five. Filaments free. Pollen grains tricolpate. Style short, linear to filiform (sometimes absent). Stigma inconspicuous (sometimes fimbriate). Anthocarp coriaceous. Embryo curved. – Boldooideae are sister-group to Nyctaginoideae.

Nyctaginoideae Eaton, Bot. Dict., ed. 4: 31. Apr-Mai 1836 [‘Nyctagineae’]

23/420–460. Distribution as for Nyctaginaceae. Leaves usually opposite (in Bougainvilleeae alternate, spiral). Tepals one to numerous. Sepals bifid. Perianth tube stout; perianth rim thin. Pollen grains usually pantoporate (sometimes tricolpate, etc.). Stigma capitate or crested. Fruit with accrescent base of perianth tube. Cotyledons sometimes unevenly long. – Nyctaginoideae may have the topology [Colignonieae+Nyctagineae+[Bougainvilleae+Pisonieae]].

Colignonieae Heimerl, Beitr. Syst. Nyctag.: 15. Mai-Jul 1897 [‘Coligoniinae’].

1/6. Colignonia (6; C. glomerata, C. ovalifolia, C. parviflora, C. pentoptera, C. rufopilosa, C. scandens; the Andes in Colombia to Argentina). – Lianas or scandent shrubs. Leaves opposite or verticillate. Hairs tricellular or quadricellular. Bracts usually showy, often foliaceous. Tepals trilobite to quinquelobate, connate only at base. Stamens five, epitepalous. Filaments connate at base. Filaments flat, nectariferous. Pollen grains 12-pantoporate. Ovary stipitate. Style clavate. Stigma penicillate. Anthocarp winged or angular. Embryo curved.

Nyctagineae Horan., Char. Ess. Fam.: 106. 17 Jun 1847.

12/240–260.Acleisanthes (16; Sonoran and Chihuahuan deserts in southwestern United States and northern Mexico, one species, A. somalensis, in Somalia); Abronia (20–25; southwestern United States, northern Mexico), Tripterocalyx (4; T. carneus, T. crux-maltae, T. micranthus, T. wootonii; southwestern Canada, western United States; in Abronia?); Mirabilis (c 60; tropical and subtropical regions in America, with their highest diversity in southwestern United States and Mexico, one species in the Himalayas), Commicarpus (30–35; tropical and subtropical regions on both hemispheres), Allionia (2; A. choisyi, A. incarnata; central and western United States, Mexico, Central America, the West Indies, South America to Chile and Argentina), Cyphomeris (2; C. crassifolia, C. gypsophiloides; New Mexico, Texas, northern Mexico), Anulocaulis (5; A. annulatus, A. eriosolenus, A. gypsogenus, A. leiosolenus, A. reflexus; southwestern United States, northern Mexico; incl. Nyctaginia?), Nyctaginia (1; N. capitata; New Mexico, Texas, northern Mexico; in Anulocaulis?), Boerhavia (100–110; tropical and subtropical regions on both hemispheres), Okenia (1–2; O. hypogaea; southeastern Florida, Mexico, Nicaragua; in Boerhavia?), Cuscatlania (1; C. vulcanicola; El Salvador)? – Distribution as for Nyctaginaceae. Suffrutices or annual or perennial herbs, sometimes scandent, sometimes with with viscid exudates on internodes. C4 photosynthesis sometimes present. Leaves opposite (often anisophyllous), often glandular. Involucres of three to 20 connate or free bracts, or one or two caducous or persistent foliaceous or membranous bracts subtending each flower or terminal cyme. Flowers actinomorphic or zygomorphic. Perianth campanulate, tubular or hypocraterimorphic, (quadrilobate or) quinquelobate, constricted above ovary. Stamens (one or) two to five (to 18). Filaments connate at base, sometimes adnate to perianth tube. Pollen grains tricolpate or pantoporate. Style filiform. Stigma linear, capitates or peltate. Outer integument in Mirabilis five to seven cell layers thick. Anthocarp globose, turbinate, clavate, obpyramidal, fusiform etc., usually coriaceous, often glandular or with membranous wings. Endotesta in Mirabilis thickened. Embryo hooked.

[Bougainvilleeae+Pisonieae]

Bougainvilleeae Choisy in A. P. de Candolle et A. L. P. P. de Candolle, Prodr. 13(2): 427, 436. 5 Mai 1849 [‘Bougainvilleae’].

3/12–20. Bougainvillea (10–18; Central America, the West Indies, tropical South America), Belemia (1; B. fucsioides; Brazil), Phaeoptilum (1; P. spinosum; Namibia, northern South Africa, Botswana). – Central and northern South America, southwestern Africa. Trees or shrubs, sometimes scandent. Leaves alternate (spiral) or opposite. Bracts three (often showy) or absent. Flowers often inserted on bracts. Perianth often tubular or hypocraterimorphic. Stamens five to twelve. Filaments often connate at base. Pollen grains tricolpate or pantocolpate. Style short, filiform or stout. Stigma linear to penicillate or multifid. Outer integument four to six cell layers thick (when a single integument then three to six cell layers thick). Parietal tissue approx. four cell layers thick. Anthocarp fusiform and five-ribbed or with four membranous wings. Embryo curved.

Pisonieae Meisn., Plant. Vasc. Gen.: Tab. Diagn. 318, Comm. 230. 18-24 Jul 1841.

7/160–170. Pisoniella (1; P. arborescens; tropical and subtropical regions in America), Pisonia (22; tropical and subtropical regions on both hemispheres, especially America), Neea (70–80; southern Mexico, Central America, the West Indies, tropical South America; in Guapira?), Guapira (c 70; southern Mexico, Central America, the West Indies, tropical South America; incl. Neea?), Cephalotomandra (2; C. fragrans, C. panamensis; Central America)?, Grajalesia (1; G. fasciculata; Mexico)?, Neeopsis (1; N. flavifolia; Guatemala)? – Distribution as for Nyctaginaceae. Trees or (often scandent) shrubs. Leaves alternate (spiral), opposite or verticillate (sometimes anisophyllous), often glandular. Bracts two or three subtending each flower, caducous or persistent. Flowers sometimes zygomorphic. Perianth campanulate, urceolate, hypocraterimorphic or tubular, quinquelobate. Stamens (two to) five to ten (to numerous). Filaments connate at base, often adnate to pistil base. Pollen grains usually tricolpate. Stigma penicillate or papillate. Anthocarp oblong, clavate or ellipsoid, five-ribbed, coriaceous and glandular-viscid, or globose, carnose, glabrous. Testa in Pisonia multiplicative, unstructured. Embryo straight.

Unplaced Nyctaginaceae

Caribea (1; C. litoralis; Cuba).

Caribea was assigned to Caribeeae Douglas et Spellenb. in Taxon 59: 909. Jun 2010 by Douglas & Spellenberg (2010). Tufted perennial herb. Leaves opposite. Leaf base sheathing, stipule-like. Flower subtended by an involucres consisting of three to five free bracts. Perianth quinquelobate, constricted above ovary. Stamens two. Filaments adnate to perianth base. Style filiform. Stigma capitates. Anthocarp subglobose, smooth. Embryo unknown.

Cladogram of Nyctaginaceae based on DNA sequence data (Douglas & Manos 2007; Douglas & Spellenberg 2010).

PETIVERIACEAE C. Agardh

( Back to Caryophyllales )

Agardh, Aphor. Bot.: 221. 13 Jun 1824 [’Petivereae’]

Rivinaceae C. Agardh, Aphor. Bot.: 218. 13 Jun 1824 [’Rivineae’]; Petiveriales Link, Handbuch 1: 392. 4-11 Jul 1829 [‘Petiveriaceae’]; Riviniales C. Agardh in C. F. P. von Martius, Consp. Regn. Veg.: 16. Sep-Oct 1835 [‘Riviaceae’]; Hilleriaceae Nakai in J. Jap. Bot. 18: 99. 10 Mar 1942; Rivinineae Nakai in J. Jap. Bot. 18: 99. 10 Mar 1942; Seguieriaceae Nakai in J. Jap. Bot. 18: 99. 10 Mar 1942

Genera/species 9/24

Distribution Southern United States to tropical South America, the West Indies, easternmost Australia, Melanesia.

Fossils Unknown.

Habit Usually bisexual (in Ledenbergia and Monococcus dioecious), evergreen trees (in Seguieria with spines), shrubs or lianas, perennial herbs (sometimes with lignified base).

Vegetative anatomy Phellogen ab initio subepidermal. Medulla with or without diaphragms. Secondary lateral growth at least sometimes anomalous (from concentric/successive cambia). Vessel elements with simple perforation plates; lateral pits alternate, simple and/or bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple pits, usually non-septate (in Rivina?) (also vasicentric fibres). Wood rays usually multiseriate, heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal vasicentric scanty or banded. Intraxylary (concentric) phloem present. Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by a ring of protein filaments. Nodes 1:1, unilacunar with one leaf trace. Calciumoxalate as prismatic crystals, styloids and elongate crystals (in Gallesia and Seguieria hexagonal crystals).

Trichomes Hairs usually unicellular or multicellular, uniseriate.

Leaves Alternate (spiral), simple, entire, with conduplicate ptyxis. Stipules present (rarely as tubercles or prickles) or absent; leaf sheath absent. Petiole vascular bundles? Venation pinnate. Stomata usually anomocytic (sometimes paracytic). Cuticular wax crystalloids as platelets. Abaxial domatia as hair tufts (in Gallesia). Epidermis often with mucilaginous idioblasts. Leaf margin entire. Extrafloral nectaries sometimes (Petiveria) present in leaf axils.

Inflorescence Terminal or axillary, raceme och spike, or cymose (in Seguieria panicle or raceme-like; in Gallesia spicate raceme or compound spike). Floral prophylls (bracteoles) usually lateral (sometimes slightly adaxial or abaxial). Extrafloral nectaries sometimes (Petiveria) present.

Flowers Usually actinomorphic (in Hilleria somewhat zygomorphic), small. Usually hypogyny (rarely epigyny or half epigyny). Tepals in various numbers, usually four (in Monococcus and Petiveria four diagonal, in Seguieria five orthogonal), with imbricate aestivation, sepaloid or petaloid, whorled, usually persistent, usually free (in Hilleria three tepals somewhat connate). Nectary absent. Disc absent.

Androecium Stamens four to c. 65 (in Rivina four, in Hilleria four to 13, in Seguieria up to c. 65), in one or two whorls. Filaments free or somewhat connate at base, free from tepals. Anthers dorsifixed, sometimes versatile, tetrasporangiate, introrse or extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers in Ledenbergia with four to six staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate (Gallesia, Seguieria) to 7–17-polypantoporate (Monococcus, Petiveria, Schindleria), shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, punctate or perforate, scabrate, spinulate or smooth.

Gynoecium Carpel usually one (rarely several, secondarily free or connate). Ovary usually superior (rarely inferior or semi-inferior), usually unilocular (apocarpy, monomerous). Style single, simple, in Seguieria and Galleria flattened and wing-like, in Rivina and Monococcus short, in Trichostigma, Schindleria, Ledenbergia and Petiveria short or absent. Stigmas one to four, plumose, penicillate (Trichostigma) or capitate (Rivina), in Seguieria and Gallesia laterally decurrent, type? Pistillodium?

Ovules Placentation basal. Ovule one per carpel, campylotropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue two to 18 cell layers thick. Hypostase present. Nucellar cap approx. two cell layers thick. Nucellar beak present in Petiveria. Apical cells of megasporangium often radially elongate. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A one-seeded berry (Rivina, Trichostigma), a nutlet (in Petiveria with bristle-like processes) or a samara (in Seguieria and Gallesia with enlarged persistent lignified sepals; in Schindleria, Ledenbergia and Hilleria a utriculus; in Ledenbergia with wing-like sepals). Pericarp usually adnate to seed.

Seeds Aril absent. Seed coat exotestal, sometimes thin. Endotesta and tegmen usually collapsed. Perisperm copious and nutritious (nutrient tissue absent in mature seed in, e.g., Gallesia and Seguieria). Endosperm almost absent. Embryo peripheral, curved around perisperm, well differentiated, without chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology n = 18 (Hilleria, Petiveria), 36 (Petiveria, Trichostigma), 54 (Rivina) – Nuclei with protein bodies?

DNA 210 bp deletion present in plastid genome.

Phytochemistry Very insufficiently known. Flavone-C-glycosides (Trichostigma), betalains (betacyanin, betaxanthin) and sterols present. Flavonols? Alkaloids? Triterpene saponins? Ellagic acid, proanthocyanidins and cyanogenic compounds not found. Gallesia with a garlic-like smell. Free oxalates accumulated?

Use Ornamental plants, medicinal plants.

Systematics Gallesia (1; G. integrifolia; Peru, Brazil), Hilleria (4; H. latifolia, H. longifolia, H. secunda, H. subcordata; tropical South America, one species, H. latifolia, also in tropical Africa, Madagascar and the Mascarene Islands), Ledenbergia (3; L. macrantha, L. peruviana, L. seguierioides; Mexico, Central America to Colombia and Venezuela), Monococcus (1; M. echinophorus, southeastern Queensland, northeastern New South Wales, New Caledonia, Vanuatu), Petiveria (1; P. alliacea; Florida, southern Texas, Mexico, Central America, the West Indies, tropical South America), Rivina (1; R. humilis; southern United States, Mexico, Central America, the West Indies, tropical South America), Schindleria (3; S. densiflora, S. racemosa, S. rosea-aenia; Peru, Bolivia), Seguieria (6; S. americana, S. brevithyrsa, S. langsdorfii, S. macrophylla, S. paraguayensis, S. parvifolia; tropical South America), Trichostigma (4; T. octandrum, T. peruvianum, T. polyandrum, T. rivinoides; Central America, the West Indies, tropical South America).

Petiveriaceae are sister to Nyctaginaceae, according to Brockington & al. (2013).

Petiveriaceae have generally been included in Phytolaccaceae, but differ from the latter clade by usually having a single carpel and by the shape of its calciumoxalate crystals, and possibly by a number of chemical features, although the phytochemistry of this group is poorly known.

Cladogram of Petiveriaceae based on DNA sequence data (Brockington & al. 2013).

PHYSENACEAE Takht.

( Back to Caryophyllales )

Takhtajan in Bot. Žurn. 70: 1692. 13 Dec 1985

Physenales Takht., Divers. Classif. Fl. Pl.: 168. 24 Apr 1997

Genera/species 1/2

Distribution Madagascar.

Fossils Unknown.

Habit Dioecious, evergreen shrubs or small to medium-sized trees.

Vegetative anatomy Phellogen ab initio subepidermal. Primary vascular tissue a cylinder, without separate vascular bundles. Continuous sclerenchyma cylinder surrounding vascular cylinder in young stems. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with small simple pits or reduced bordered pits, non-septate (also vasicentric tracheids). Wood rays uniseriate, homocellular or heterocellular (consisting of erect or square cells). Axial parenchyma apotracheal diffuse, paratracheal aliform, confluent, or unilateral. Sieve tube plastids? Nodes 1:1, unilacunar with one leaf trace. Pericyclic sclereids present. Secondary phloem with brachysclereids. Medullary parenchyma with sclereids. Crystals usually absent (rarely a single crystal per cell); silica grains absent. Prismatic crystals sometimes present in wood ray cells.

Trichomes Hairs absent.

Leaves Alternate (distichous), simple, entire, coriaceous, with ? ptyxis. Stipules and leaf sheath absent. Petiole articulated? Petiole vascular bundles arcuate. Venation pinnate, brochidodromous. Stomata anomocytic. Cuticular waxes? Mesophyll cells with calciumoxalate druses. Leaf margin entire.

Inflorescence Axillary, few-flowered raceme, or flowers solitary axillary.

Flowers Actinomorphic, small. Hypogyny. Tepals five to nine, with somewhat imbricate aestivation, sepaloid, persistent, with multicellular simple hairs inside, free or somewhat connate at base. Nectary absent. Disc absent.

Androecium Stamens (eight to) ten to 14 (to 25), in one whorl. Filaments filiform, free or partially connate at base, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, latrorse, longicidal (dehiscing by longitudinal slits). Tapetum? Staminodia absent.

Pollen grains Microsporogenesis? Pollen grains 3(–5)-colpate, shed as monads, ?-cellular at dispersal. Exine tectate, with columellate infratectum, echinate or spinulate, traversed by numerous microchannels.

Gynoecium Pistil composed of two connate carpels. Ovary superior, bilocular (with incomplete septum) at base and apex, unilocular in middle. Stylodia two, long, filiform, usually connate at base. Stigmatic surface papillate, decurrent almost the entire length of stylodia, type? Male flowers with rudimentary pistillodium.

Ovules Placentation (sub)basal to axile; placental vascular bundles inverted. Ovules two per carpel, campylotropous, ascending, bitegmic, weakly crassinucellar. Micropyle endostomal. Outer integument? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum-type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A dry one-seeded, somewhat inflated, capsular nutlike (almost drupaceous) fruit with persistent calyx.

Seeds Seed large. Aril absent. Seed coat vascularized, 16 to 20 cell layers thick, with insignificantly thickened cell walls. Exotesta? Endotesta? Tegmen? Perisperm not developed. Endosperm absent. Embryo straight, chlorophyll? Cotyledons two, unequally sized. Germination?

Cytology n = ?

DNA

Phytochemistry Virtually unknown. Cytotoxic 16-β-[(D-xylopyranosyl)oxy]oxohexadecanyl triterpene glycosides and oxohexadecanoic acid present. Ellagic acid? Alkaloids?

Use Unknown.

Systematics Physena (2; P. madagascariensis: Andohahela PN to Montagne d’Ambre PN; P. sessiliflora: Ampanihy to Antsiranana).

Physena is sister to Asteropeia (Asteropeiaceae).

PHYTOLACCACEAE R. Br.

( Back to Caryophyllales )

Brown in J. H. Tuckey, Narr. Exped. Zaire: 454. 5 Mar 1818 [’Phytolaceae’], nom. cons.

Phytolaccales Link, Handbuch 1: 390. 4-11 Jul 1829 [‘Phytolacceae’]; Sarcocaceae Raf., Fl. Tellur. 3: 55. Nov-Dec 1837 [’Sarcocidia’]; Phytolaccineae Engl., Syllabus, ed. 2: 112. Mai 1898

Genera/species 3–4/30–35

Distribution Tropical and subtropical regions, with their largest diversity in South America.

Fossils Unknown.

Habit Usually bisexual (rarely dioecious), evergreen trees, shrubs or lianas (Ercilla), perennial or annual herbs (Anisomeria is a succulent). Anisomeria and some species of Phytolacca with napiform roots.

Vegetative anatomy Mycorrhiza usually absent. Phellogen ab initio subepidermal. Medulla in Phytolacca sometimes septated by diaphragms. Secondary lateral growth normal or anomalous (from concentric/successive inner-cortical cambia). Vessel elements with simple perforation plates; lateral pits alternate, non-bordered pits. Vestured pits present. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple or reduced bordered pits, septate (also vasicentric fibres). Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma apotracheal diffuse. Intraxylary phloem present in Phytolacca dioica. Sieve tube plastids P3cf type, with a central globular protein crystal surrounded by a ring of protein filaments. Nodes 1:1, unilacunar with one leaf trace. Calciumoxalate styloids and raphides present.

Trichomes Hairs usually unicellular or multicellular, uniseriate.

Leaves Alternate (spiral), simple, entire, with conduplicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate; finer veins indistinct. Stomata anomocytic or paracytic. Cuticular wax crystalloids as platelets. Epidermis often with mucilaginous idioblasts. Leaf margin entire.

Inflorescence Terminal or axillary, or leaf-opposite, raceme or spike.

Flowers Usually actinomorphic (in some species of Anisomeria zygomorphic), small. Hypogyny. Tepals (four or) five, in, e.g., Phytolacca spiral, usually with quincuncial (in Anisomeria descending-cochlear) aestivation, sepaloid, fleshy, usually persistent, free. Nectariferous disc absent in Anisomeria.

Androecium Stamens five to c. 30. Filaments usually connate at base (sometimes free), free from tepals. Anthers dorsifixed, versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers sometimes with staminodia?

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, punctate or perforate, scabrate, spinulate or smooth.

Gynoecium Carpels three to 16, seemingly or secondarily free or connate below and with free stylodia (carpels in Nowickea on gynophore), initiated in a ring around receptacular apex, alternitepalous or antetepalous. Ovary single, superior, unilocular (pseudapocarpy). Stylodia three to 16, free or connate, more or less gynobasic. Stigmas free, type? Male flowers sometimes with pistillodium.

Ovules Placentation basal or subbasal. Ovule one per carpel, campylotropous (amphitropous?), apotropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator present. Hypostase present. Parietal tissue approx. two cell layers thick. Nucellar cap massive. Apical cells of megasporangium radially elongate. Megagametophyte monosporous, Polygonum type. Antipodal cells sometimes slightly proliferating. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad, caryophyllad or chenopodiad.

Fruit An assemblage of one-seeded berries or a berry-like syncarpous fruit.

Seeds Aril absent. Seed coat exotestal. Exotestal cells thick-walled? Endotesta and tegmen largely collapsed. Perisperm copious and nutritious. Endosperm poorly developed or absent. Embryo peripheral, curved around perisperm, well differentiated, without chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology n = 9, 18, 36 (Phytolacca) – Nuclei with protein bodies?

DNA 210 bp deletion present in plastid genome.

Phytochemistry Flavonols (kaempferol), betalains (betacyanins, betaxanthins), alkaloids, triterpene saponins, sterols, and pinitol present. Ellagic acid, proanthocyanidins and cyanogenic compounds not found. Free oxalates accumulated.

Use Ornamental plants, dyeing sources (Phytolacca), medicinal plants.

Systematics Anisomeria (3; A. bistrata, A. coriacea, A. littoralis; central and southern Chile, Tierra del Fuego), Ercilla (2; E. spicata, E. syncarpellata; Chile), Nowickea (2; Nowickea glabra, N. xolocotzii; central Mexico; ‘monstruous forms of Phytolacca?’; probably in Phytolacca), Phytolacca (25–30; tropical and subtropical regions on both hemispheres; probably incl. Nowickea).

Phytolaccaceae are possibly sister-group to [Agdestidaceae+Sarcobataceae].

PLUMBAGINACEAE Juss.

( Back to Caryophyllales )

de Jussieu, Gen. Plant.: 92. 4 Aug 1789 [’Plumbagines’], nom. cons.

Staticaceae Cassel, Lehrb. Nat. Pflanzenordn.: 215. Apr-Mai 1817 [’Staticeae’]; Plumbaginales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 241. Jan-Apr 1820 [‘Plumbagineae’]; Staticales Link, Handbuch 2: 262. 4-11 Jul 1829 [‘Staticinae’]; Armeriaceae Horan., Prim. Lin. Syst. Nat.: 68. 2 Nov 1834; Plumbaginopsida Endl., Gen. Plant.: 346. Dec 1837 [’Plumbagines’]; Plumbaginineae J. Presl in Nowočeská Bibl. [Wšobecdný Rostl.] 7: 1238. 1846[‘Plumbagines‘]; Limoniaceae Ser., Fl. Pharm.: 456. 1851, nom. cons.; Aegialitidaceae Lincz. in Novosti Sist. Vyssik Rast. [Nov. Syst. Plant. Vasc.] 1968: 173. 18 Dec 1968; Plumbaginanae Takht. ex Reveal in Novon 2: 236. 13 Oct 1992; Plumbaginidae C. Y. Wu in Acta Phytotaxon. Sin. 40: 291. 2002

Genera/species 28/625–835

Distribution Cosmopolitan except Antarctica, with their largest diversity in arid and saline environments in the Mediterranean and Southwest to Central Asia.

Fossils Uncertain.

Habit Bisexual, usually perennial herbs or shrubs (sometimes annual herbs, rarely lianas). Many species are xerophytes or halophytes.

Vegetative anatomy Phellogen ab initio subepidermal, later cortical. Cortical and medullary bundles often present. Secondary lateral growth in Acantholimon, Aegialitis and Limoniastrum anomalous (often from successive/concentric cambia). Vessel elements with simple perforation plates; lateral pits alternate, simple pits? Imperforate tracheary xylem elements libriform fibres with simple pits, non-septate? (also vasicentric tracheids). Wood rays multiseriate, homocellular or absent. Axial parenchyma paratracheal scanty. Wood elements sometimes storied. Intraxylary phloem present in some species. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Silica bodies often abundant. Crystals?

Trichomes Hairs unicellular or multicellular, uniseriate; glands stalked or unstalked (sometimes shaggy). Vascularized mucilage glands present.

Leaves Alternate (spiral), simple, entire or pinnately lobed, usually herbaceous (rarely scale-like; in Aegialitis coriaceous), with convolute, involute or flat ptyxis. Petiole vascular bundle transection arcuate. Stipules usually absent (rarely well developed); leaf sheath usually absent (present in Aegialitis?). Venation usually pinnate (sometimes palmate; in Aegialitis parallelodromous). Stomata anomocytic, anisocytic or paracytic (Ranunculaceae or Rubiaceae type). Cuticular wax crystalloids usually absent (sometimes as irregular platelets). Epidermis often with chalk glands secreting water and calcium salts; epidermal salt-excreting glands present in halophytes. Extrafloral nectaries sometimes present on abaxial side of midvein in Plumbaginoideae. Mesophyll often with secretory glands; abaxial vein axils often with upraised vascularized mucilage glands; in Staticoideae with sclerenchymatous idioblasts (with branched sclereids; sclerenchyma in Limonium with asterosclereids, osteosclereids, filiform sclereids, etc.). Leaf margin sinuate, crenate or entire.

Inflorescence Terminal, racemose (Plumbaginoideae) or cymose (Staticoideae), simple or compound; capitate inflorescence in Armeria composed of glomera/drepania consisting of cincinni; floral bracts aborting; glomeral bracts forming involucrum around capitulum; lower parts growing downwards forming sheath around uppermost part of peduncle. Bracts often sheathing, dry and membranous. Floral prophylls (bracteoles) in Plumbaginoideae often with extrafloral nectaries.

Flowers Actinomorphic. Hypogyny. Sepals five, with valvate or plicate aestivation, persistent, often membranous or petaloid, with five or ten ridges, usually connate into a tube (rarely free). Petals five, with usually contorted (sometimes imbricate) aestivation, often persistent, connate usually only at base (sometimes entirely), in Aegialitis coriaceous; petal and staminal primordia common. Nectaries often present (sometimes as five glands alternating with stamens). Disc absent.

Androecium Stamens five, alternisepalous, antepetalous. Filaments free or connate, free from petals (Plumbaginoideae) or adnate at base to petals (Staticoideae); adaxial side often with basal nectary. Anthers usually dorsifixed (in Aegialitis basifixed), sometimes versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory or amoeboid-periplasmodial. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually 3(–5)-colpate (rarely pantocolpate), tetra- or hexarugate or irregular, shed as monads, usually tricellular (sometimes bicellular) at dispersal. Exine tectate or semitectate, with columellate infratectum, in Plumbaginoideae tectate and verrucate, in Staticoideae reticulate. Pollen grains in Plumbaginoideae Plumbago type (columellae very irregular, tectum continuous), in Staticoideae Armeria type (columellae straight and irregular, tectum discontinuous, reticulate). Pollen grains in Staticoideae often dimorphic.

Gynoecium Pistil composed of five connate eusyncarpous carpels. Ovary superior, unilocular. Style single, lobate at apex (Plumbaginoideae), or stylodia five, free or connate below (Staticoideae). Stigmas five, capitate to cylindrical, papillate (sometimes with multicellular papillae), Dry type. Pistillodium absent. Heterostyly frequent in Plumbaginoideae.

Ovules Placentation basal. Ovule one per ovary, anatropous or circinotropous, pendulous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Funicle long and curled. Obturator usually present between ovary apex and micropyle. Parietal tissue two or three cell layers thick. Nucellar cap in Plumbagella approx. two cell layers thick. Megagametophyte tetrasporous, 4- or 8?-nucleate, Plumbago type (Ceratostigma, Plumbago, Dyerophytum), Plumbagella type (Plumbagella), Fritillaria type (Limonium, Armeria), Adoxa type?, or Penaea type? Proendosperm nucleus triploid or tetraploid. Endosperm development ab initio nuclear. Endosperm haustorium chalazal. Embryogenesis solanad.

Fruit Usually a membranous nutlet (sometimes a capsule [denticidal?] or a pyxidium), entirely or partially enclosed by persistent calyx.

Seeds Aril absent. Seed coat exotestal-endotegmic, winged. Exotesta? Endotesta? Exotegmen? Endotegmen persistent. Perisperm not developed. Endosperm usually copious (sometimes sparse or absent), with simple starch grains and proteins, tetraploid or pentaploid. Embryo large, straight, well differentiated, with chlorophyll. Cotyledons two, flat. Germination phanerocotylar.

Cytology n = 6, 7 (Plumbaginoideae) or x = 8, 9 (Staticoideae) – Polyploidy and aneuploidy frequent (especially in Staticoideae). Agamospermy present in Limonium etc.

DNA Intron present in plastid gene rpl2. Intron in plastid gene rpl16 absent (lost) in Staticeae (e.g. Limonium gmelinii). Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), flavonol sulphates (cholin-O-sulphate), and gallic acid present. Hydrolyzable tannins based on ellagic acid and condensed tannins based on leucodelphinidin present in Staticoideae. Naphthoquinone (plumbagin) present in all investigated Plumbaginoideae (not found in Staticoideae). Cyanidin and prodelphinidins present in Plumbaginoideae. Alkaloids and cyanogenic compounds present in Plumbago. Ellagic acid present in Aegialitis. Glycine betaines (quaternary ammonium compounds) present in some species of Plumbago and Limonium. Saponins not found. Oxalate sometimes accumulated.

Use Ornamental plants, medicinal plants.

Systematics Plumbaginaceae are sister-group to Polygonaceae.

Plumbaginoideae Burnett, Outlines Bot.: 1028, 1095, 1101. Feb 1835 [‘Plumbaginidae’]

4/34–36. Ceratostigma (8; northeastern tropical Africa, Tibet, China, Southeast Asia), Dyerophytum (3; D. africanum, D. pendulum, D. socotranum; Namibia, Northern and Western Cape, Socotra, the Arabian Peninsula to India), Plumbagella (1; P. micrantha; Central Asia), Plumbago (22–24; tropical to warm-temperate regions on both hemispheres, the Mediterranean). – Tropical to warm-temperate regions in the Northern and Southern Hemispheres, the Mediterranean. Shrubs or perennial herbs. Vegetative and reproductive shoots similar. Stem angular, striated. Continuous cylinder of sclerenchyma present outside phloem. Leaves usually entire (rarely deeply lobed). Cauline stipules present in Plumbago. Inflorescence racemose. Calyx herbaceous, glandular. Corolla lobes truncate-emarginate, later apiculate. Pollen receptive surfaces in fascicles along branch. Style single, with stigmatic areas as groups along branches. Fruit a pyxidium, dehiscing at base, with persistent herbaceous calyx. n = 6, 7. Plumbagin, 5-O-methylated flavonols present; glycine betaines present in some species of Plumbago.

Staticoideae Burnett, Outlines Bot.: 1028, 1095, 1101. Feb 1835 [’Staticidae’]

Mainly coastal areas and arid regions in Northern and Southern Hemispheres. Vegetative and reproductive shoots usually dissimilar. Separate vascular bundles (fascicles) present. Leaves usually cartilaginous or coriaceous, with five to ten rows of whitish cells along margins. Petals connate. Filaments adnate to corolla. Stylodia usually separate or connate below. Stigmas usually capitate (sometimes filiform). Fruit an achene or a pyxidium. x = 8, 9. Deletion present in intron of plastid gene rpl16. β-alanine betaines (quaternary ammonium compounds included in salt excretion) present; glycine betaines present in some species of Limonium. Plumbagin not found.

Aegialitideae (Lincz.) T. H. Peng, Fl. Reipubl. Popularis Sion. 60(1): 1. 1987

1/2. Aegialitis (2; A. rotundifolia: coasts along eastern India to Burma, the Andaman Islands; A. annulata: coasts along northern Australia and southern New Guinea). – Mangrove shrubs. Successive cambia present. Cortical vascular bundles present. Branched sclereids present. Leaves with involute ptyxis and with sheathing base. n = ? Ellagic acid present. Glycine betaine not found.

Staticeae Bartl., Ord. Nat. Plant.: 127. Sep 1830 [‘Staticea’]

23/590–800. Acantholimon (290–300; eastern Mediterranean to Central Asia), Armeria (c 95; temperate regions on the Northern Hemisphere, the Andes south to Tierra del Fuego), Bakerolimon (2; B. peruvianum, B. plumosum; Peru, northern Chile), Bamiania (1; B. pachycormum; Afghanistan), Bukiniczia (1; B. cabulica; Afghanistan, Pakistan), Cephalorhizum (6; C. coelicolor, C. micranthum, C. oopodum, C. pachycormum, C. popovii, C. turcomanicum; Central Asia), Ceratolimon (3; C. feei, C. migiurtinum, C. weygandiorum; the Mediterranean), Chaetolimon (3; C. limbatum, C. setiferum, C. sogdianum; Central Asia), Dictyolimon (2; D. griffithii, D. macrorrhabdos; Afghanistan to India), Ghaznianthus (1; G. rechingeri; Afghanistan), Gladiolimon (1; G. speciosissimum; Afghanistan), Goniolimon (c 20; Russia and the Balkan Peninsula to Mongolia), Ikonnikovia (1; I. kaufmanniana; Central Asia, northwestern China), Limoniastrum (1; L. monopetalum; the Mediterranean), Limoniopsis (2; L. davisii, L. owerinii; Turkey to the Caucasus), Limonium (150–350; cosmopolitan, with their highest diversity in maritime and arid habitats on the Northern Hemisphere), Muellerolimon (1; M. salicorniaceum; Western Australia), Myriolimon (2; M. diffusum, M. ferulaceum; western and central Mediterranean), Neogontscharovia (2; N. mira, N. miranda; Afghanistan, Central Asia), Popoviolimon (1; P. turcomanicum; Central Asia), Psylliostachys (c 7; P. afghanicus, P. anceps, P. beludshistanica, P. leptostachya, P. spicata, P. suworowii, P. volkii; eastern Mediterranean to the Caucasus and Central Asia), Saharanthus (1; S. ifniensis; southern Morocco, northern Sahara), Vassilczenkoa (1; V. sogdiana; Afghanistan, Central Asia). – Mainly irano-turanian and mediterranean, also in southern Africa, southern South America and Western Australia. Shrubs or perennial herbs. Leaves in basal rosette. Leaf margin usually entire. Inflorescence cymose (capitate or branched), with channeled axis. Inflorescence leaves reduced or absent. Calyx membranous (sometimes petaloid). Pollen grains often dimorphic. Exine with regular columellae and incomplete tectum, reticulate. Heterostyly frequent. Fruit an achene or a pyxidium, often with calyx as part of dispersal unit. Deletion of intron in plastid gene rpl16. β-alanine betaines present; glycine betaines present in some species of Limonium. – The generic delimitations are very uncertain and a comprehensive phylogenetic analysis of Staticeae is needed.

One of three most-parsimonious cladograms from successive weighting of Plumbaginaceae based on DNA sequence data (Lledó & al. 1998).

POLYGONACEAE Juss.

( Back to Caryophyllales )

de Jussieu, Gen. Plant.: 82. 4 Aug 1789 [’Polygoneae’], nom. cons.

Persicariaceae Martinov, Tekhno-Bot. Slovar: 473. 3 Aug 1820 [’Persicariae’]; Polygonales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 240. Jan-Apr 1820 [‘Polygoneae’]; Rumicaceae Martinov, Tekhno-Bot. Slovar: 554. 3 Aug 1820 [’Rumoides’]; Rumicales Burnett, Outl. Bot.: 1141. Jun 1835 [‘Rumicinae’], nom. illeg.; Eriogonaceae (Dumort.) G. Don in R. Sweet, Hort. Brit., ed. 3: 580. 23 Oct 1839 [’Eriogoneae’]; Polygonopsida Brongn., Enum. Plant. Mus. Paris: xxvii, 100. 12 Aug 1843 [’Polygonoideae’]; Atraphaxidineae H. Gross in Bot. Jahrb. Syst. 49: 250. 1913; Calligonaceae Khalk. in Dokl. Akad. Nauk. Uzbeksk. SSR 1985(11): 45. Nov 1985; Polygonanae Takht. ex Reveal in Novon 2: 236. 13 Oct 1992; Polygonidae C. Y. Wu in Acta Phytotaxon. Sin. 40: 294. 2002

Genera/species 42/1.480–1.530

Distribution Cosmopolitan except Antarctica, with their largest diversity in tempererate regions on the Northern Hemisphere.

Fossils Numerous fossilized fruits have been found in Late Cretaceous (Maastrichtian) and Paleocene later layers in North America, but also from Cenozoic strata in Asia and Europe. Lower Paleocene leaf fossils, Paranymphaea crassfolia, from North America were assigned to Polygonaceae (McIver & Basinger 1993).

Habit Usually bisexual (sometimes monoecious, polygamomonoecious or dioecious), usually perennial or annual herbs (often climbing or twining) or shrubs (rarely trees or lianas). Stem and branches often sulcate, geniculate, striate and/or hollow, often with swollen nodes (branches in Muehlenbeckia and Calligonum photosynthesizing phyllocladia).

Vegetative anatomy Mycorrhiza usually absent (endomycorrhiza present in Eriogonum; ectomycorrhiza present in Coccoloba). Phellogen ab initio usually subepidermal (sometimes pericyclic). Subepidermal collenchyma or sclerenchyma strands frequently present in stem. Endodermis often significant. Lignified species with normal or anomalous secondary lateral growth (in Antigonon from successive/concentric cambia). Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Vestured pits sometimes present (Muehlenbeckia). Imperforate tracheary xylem elements tracheids or ? with simple or bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays usually uniseriate (sometimes multiseriate), homocellular or heterocellular (with dark-stained inclusions). Axial parenchyma apotracheal diffuse, or paratracheal scanty, vasicentric, confluent, or banded. Wood elements sometimes partially storied. Intraxylary phloem present or absent. Sieve tube plastids usually S type (sieve tube plastids with protein fibrils present in Triplarieae). Nodes 3:3, trilacunar with three leaf traces, or ≥5:≥5, multilacunar with five or more traces. Mucilage cells abundant. Calciumoxalate as prismatic crystals, crystal sand and druses often present.

Trichomes Hairs unicellular or multicellular, usually uniseriate (sometimes stellate or glandular, also peltate-lepidote).

Leaves Usually alternate (spiral; rarely opposite or verticillate), usually simple (rarely pinnately compound), entire or lobate, sometimes fleshy or coriaceous (in Muehlenbeckia and Calligonum rudimentary), usually with revolute (in Muehlenbeckia convolute) ptyxis. Stipules usually enclosing stem as a caducous or persistent, membranous, often lobate or fimbriate tubular ocrea (usually absent in the Eriogonum clade; rudimentary in some species of Chorizanthe). Colleters present in association with leaves. Foliar tendrils present in Antigonon. Petiole vascular bundle transection usually annular (sometimes D-shaped; bundles scattered in some species of Coccoloba). Extrafloral nectaries present in some species on abaxial side of petiolar pulvinus. Venation pinnate or palmate. Stomata usually anomocytic (rarely diacytic, anisocytic, helicocytic, or paracytic). Cuticular wax crystalloids as platelets or rodlets. Lamina sometimes gland-dotted. Epidermis often with mucilage cells. Leaf margin usually entire (sometimes crenate or lobed).

Inflorescence Usually terminal or axillary, simple or compound panicle, thyrsoid, or spike-, head- or raceme-like (flowers rarely single axillary). Each flower usually subtended by a persistent membranous, tubular ocreola consisting of two connate floral prophylls (bracteoles). Partial inflorescence in the Eriogonum clade surrounded by and partially enclosed by involucrum.

Flowers Actinomorphic, small. Pedicel articulated. Hypanthium present or absent. Hypogyny. Tepals usually five or 3+3 (rarely 2+2 or 3+6), with imbricate quincuncial aestivation, sepaloid or petaloid, spiral, usually persistent, connate at base. Nectariferous disc annular, inserted around ovary base, or single nectaries present between staminal bases (sometimes absent).

Androecium Stamens usually 3+3 (sometimes two, three, 2+2, five, 4+4, or 3+6), alternisepalous or antesepalous. Filaments filiform, free or connate at base, often adnate to tepal bases forming a ring. Anthers basifixed or dorsifixed, often versatile, tetrasporangiate, usually introrse (sometimes latrorse or extrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate, tricolporate or pantoporate, shed as monads, usually tricellular (rarely bicellular) at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate, punctate eller striate, often spinulate or echinulate.

Gynoecium Pistil composed of (two or) three (or four) connate eusyncarpous carpels; median carpel adaxial; when tepals 3+3, then carpels antesepalous. Ovary superior, unilocular (sometimes seemingly multilocular by secondary septa). Style single, simple, or stylodia (two or) three (or four), usually long (rarely short), separate or connate below. Stigma one or stigmas several, entire or lobate, filiform, penicillate, peltate, or capitate, papillate or non-papillate, Dry type. Pistillodium? Heterstyly occur in some genera.

Ovules Placentation basal and free central. Ovule one per ovary, usually orthotropous (occasionally campylotropous to anatropous), ascending, usually bitegmic (rarely unitegmic), crassinucellar. Funicle present (representing a reduced free central placenta?), or absent. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Nucellar beak present. Hypostase present or absent. Archespore usually unicellular (rarely multicellular). Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Antipodal cells usually uninucleate (in Rumex multinucleate). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad.

Fruit A usually triangular (rarely lenticulate) achene, sometimes winged or with bristles (rarely a berry), often surrounded by persistent and sometimes accrescent tepals (in Emex and Oxygonum surrounded by receptacle/hypanthium).

Seeds Aril absent. Seed coat testal. Exotesta? Endotesta? Tegmen? Perisperm entirely or almost absent. Endosperm copious, mealy or horny (in Coccolobeae and Triplareae ruminate), with simple starch grains, oil and proteins. Embryo usually straight to curved (rarely plicate), usually lateral to peripheral (rarely central), without chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology x = (4–)7–13(–17) – Polyploidy and aneuploidy frequently occurring. Dioecious species of Rumex with a sex-determining X-autosome balance system.

DNA Intron present in the plastid gene rpl2. Mitochondrial intron coxII.i3 lost. Plastid IR expanded.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), hyperoside (quercetin 3-O-galactoside), flavonol sulphates, flavone-C-glycosides, catechins, O-methylated flavonoids, hexaoxygenated flavonoids, condensed and hydrolyzable tannins, proanthocyanidins (prodelphinidins), methylated and non-methylated ellagic acids, gallic acid, caffeic acid, indole alkaloids and other alkaloids, saponins, sesquiterpene lactones?, free soluble oxalic acid, oleanolic acid derivatives, pinitol, fagopyrine and protofagopyrine, polyacetate derived anthraquinones (oxymethyl anthraquinone etc.), and naphthoquinones and acetophenones present. Cyanogenic compounds not found.

Use Ornamental plants, vegetables (Rheum, Rumex etc.), fruits (Coccoloba uvifera), starch sources (Fagopyrum).

Systematics Polygonaceae are sister-group to Plumbaginaceae.

Symmeria and Afrobrunnichia are successive sister-groups to the remaining analysed genera of Polygonaceae, which are subdivided into a mostly ligneous clade (with, e.g., the Eriogonum group) and a mainly herbaceous clade.

Symmerioideae Meisn. in DC., Prodr. 14: 4, 185. mid Oct 1856

1/1. Symmeria (1; S. paniculata; tropical West and Central Africa, northern South America). – Dioecious. Petiole bases expanded and winged, enclosing developing shoot meristem, not forming closed tube, hence ocrea (sheathing stipule) absent. Tepals 3+3. Stamens 40–50. Ovary trilocular, with basal partitions. Achene pyramidal, with three tepals adnate to pericarp. n = ?

[Afrobrunnichia+[Polygonoideae+Eriogonoideae]]

Closed tubular stipule (ocrea) usually present, ensheathing stem, or reduced to circular scar. Stamens 3–15. Achene lenticular, triquetrous or trigonous.

Afrobrunnichia

Afrobrunnichia (2; A. africana, A. erecta; tropical West Africa). – Lianas. Tendrils axillary, bifid. Pedicel winged on both sides. Tepals five, connate at base. Fruit drupaceous. Seed deeply longitudinally trisulcate, irregularly ruminate. n = ?

[Polygonoideae+Eriogonoideae]

Polygonoideae Eaton, Bot. Dict., ed. 4: 30. Apr-Mai 1836 [‘Polygoneae’]

17/880–900. Oxygoneae T. M. Schust. et Reveal in Taxon 64: 1199. 2015. Oxygonum (c 30; tropical and southern Africa, Madagascar). – Persicarieae Dumort., Fl. Belg.: 17. 1827. Koenigia (24–26; arctic and temperate regions in Asia and North America, South and East Asia to Pakistan, the Himalayas and Japan, one species, K. islandica, almost cosmopolitan), Rubrivena (1; R. polystachya; Afghanistan?, southern Himalayas, Xizang, northern Burma, western China), Bistorta (40–45; temperate and arctic regions in Europe, Asia and North America), Persicaria (120–125; almost cosmopolitan). – Fagopyreae Yonek. in I. Kunio, D. E. Boufford et H. Ohba, Fl. Jap. 2a: 132. 24 Feb 2006. Fagopyrum (15–16; East Africa, Asia; incl. Eskemukerjea?), Eskemukerjea (1; E. megacarpum; the Himalayas; in Fagopyrum?). – Rumiceae Dumort., Fl. Belg.: 17. 1827. Rumex (c 200; temperate regions on both hemispheres, especially the Northern Hemisphere), Oxyria (2–3; O. caucasica, O. digyna, O. sinensis; arctic and alpine regions, circumboreal south to California), Rheum (55–60; Europe, temperate and subtropical regions in Asia). – Calligoneae C. A. Mey. in Mém. Acad. Imp. Sci. Saint-Pétersbourg, sér. 6, Sci. Math., Sec. Pt. Sci. Nat. 6(2): 142. 25 Oct 1840. Calligonum (80–85; the Mediterranean to India; incl. Pteroxygonum?). – Polygoneae Rchb., Fl. Germ. Excurs. 2(2): 563, 568. 1832. Oxygonum (22; tropical and southern Africa, Madagascar); Knorringia (1; K. sibirica; Siberia, Afghanistan, Pakistan, Central Asia, the Himalayas, western China); Muehlenbeckia (c 30; New Guinea, Solomon Islands, Australia, Tasmania, New Zealand, the Chatham Islands, Honduras, Chile), Fallopia (c 20; temperate regions on the Northern Hemisphere); Fallopia denticulata (southern China), F. cilinodis (North America); Atraphaxis (40–45; southeastern Europe, northern Africa, western Asia to the Himalayas and eastern Siberia), Duma (3; D. coccoloboides, D. florulenta, D. horrida; Australia), Polygonum (210–220; temperate regions on the Northern Hemisphere, one species, P. maritimum, also in southern South America). – Cosmopolitan, with their largest diversity in temperate regions. Shrubs, lianas or perennial or annual herbs, often climbing and twining (with axillary tendrils). Stipule membranous. Stamens sometimes nine. n = 7 or more. – Oxygonum, consisting of polygamous heterostylous annual or perennial herbs or shrubs, is sister to the remaining Polygoneae in the combined molecular analysis by Schuster & al. (2011) and Knorringia is successive sister to the rest. The inclusion of Pteroxygonum in Calligonum is provisional (Sanchez & al. 2011).

Eriogonoideae Arn., Botany: 126. 9 Mar 1832 [’Eriogoneae’]

23/600–630. Brunnichieae C. A. Mey. in Mém. Acad. Imp. Sci. Saint-Petersbourg, sér. 6, Sci. Math., Sec. Pt. Sci. Nat. 6(2): 150. 25 Oct 1840 [‘Brunnichiaceae’]. Antigonon (3; A. flavescens, A. guatemalense, A. leptopus; Mexico, Central America), Brunnichia (5; B. africana, B. chirrhosa, B. congoensis, B. erecta, B. ovata; southeastern United States). – Coccolobeae Dumort., Anal. Fam. Plant.: 18. 1829. Podopterus (3; P. cordifolius, P. mexicanus, P. paniculatus; Mexico, Guatemala), Coccoloba (120–130; tropical and subtropical regions from Mexico to tropical South America), Neomillspaughia (2; N. emarginata, N. paniculata; Central America). – Leptogoneae Jan. M. Burke et Adr. Sanchez in Brittonia 63(4): 517. 1 Dec 2011. Leptogonum (1; L. domingense; Hispaniola). – Triplarideae C. A. Mey. In Mém. Acad. Imp. Sci. Saint-Pétersbourg, sér. 6, Sci. Math., Seconde Pt. Sci. Nat. 6(2): 147. 1840. Salta (1; S. triflora; Bolivia, Paraguay, northern Argentina); 'Ruprechtia' (c 35; tropical America; non-monophyletic), Magoniella (1; M. obidensis; Venezuela, Brazil, Bolivia), Triplaris (15–20; southern Mexico, Central America, the West Indies, tropical South America). – Gymnopodieae Jan. M. Burke et Adr. Sanchez in Brittonia 63(4): 518. 1 Dec 2011. Gymnopodium (2; G. floribundum, G. ovatifolium; southern Mexico, Guatemala). – Eriogoneae Dumort., Anal. Fam. Plant.: 17. 1829. Harfordia (1; H. macroptera; Baja California, Mexico), Pterostegia (1; P. drymarioides; western and southwestern United States), Gilmania (1; G. luteola; Death Valley in southeastern California), Dedeckera (1; D. eurekensis; California), Stenogonum (2; S. flexum, S. salsuginosum; western United States), Sidotheca (3; S. caryophylloides, S. emarginata, S. trilobata; California, northwestern Mexico), Lastarriaea (2; L. chilensis: northern and central Chile; L. coriacea: California), Oxytheca (7; O. dendroidea, O. emarginata, O. insignis, O. parishii, O. perfoliata, O. trilobata, O. watsonii; western United States, northwestern Mexico, Chile, Argentina), Goodmania (1; G. luteola; California, Nevada), Eriogonum (340–350; western North America, Mexico, western South America), Chorizanthe (60–65; southwestern Canada, western Unites States, northwestern Mexico, southern Peru, Chile, western Argentina), Hollisteria (1; H. lanata; central California). – Mainly tropical and subtropical (especially western North America to South America; Eriogoneae especially in western North America). Usually bisexual (sometimes dioecious) shrubs or lianas, usually with branch tendrils (in Antigonon foliar tendrils) (rarely trees or herbs). Sheathing stipule (ocrea) absent in Eriogoneae. Inflorescence usually racemose (in Eriogoneae cymose with involucrum). n = 9, 11–12, 14, 16–22, 40–44. – Harfordia and Pterostegia form a monophyletic clade (Pterostegieae Torr. et A. Gray in Proc. Amer. Acad. Arts 8: 146. 26 Jan 1870) sister to Eriogoneae in the analyses by Kempton (2012). On the other hand, they are nested inside Eriogoneae in the study by Sanchez & al. (2009). – Several species of Chorizanthe (C. interposita, C. rigida, C. watsonii of the subgenus Amphietes) do not fit into the Eriogonoideae sensu stricto clade in the analyses by Kempton (2012); possibly, they form a new genus.

Cladogram of Polygonaceae based on DNA sequence data (ITS; Sanchez & al. 2009; Burke & al. 2010; Sanchez & al. 2011; Schuster & al. 2011).

Cladogram (Bayesian inference) of Eriogoneae based on DNA sequence data (Kempton 2012).

PORTULACACEAE Juss.

( Back to Caryophyllales )

de Jussieu, Gen. Plant.: 312. 4 Aug 1789 [’Portulaceae’], nom. cons.

Portulacales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 238. Jan-Apr 1820 [‘Portulaceae’]; Portulacineae Engl., Syllabus, ed. 2: 113. Mai 1898

Genera/species 1/100–115

Distribution Cosmopolitan except polar areas, with their largest diversity in tropical and subtropical parts of North and South America.

Fossils Unknown.

Habit Bisexual, perennial or annual herbs (in Portulaca suffrutescens somewhat lignified at stem base). Roots often tuberous. Usually leaf succulents.

Vegetative anatomy Mycorrhiza usually absent. C4 photosynthesis alternating with CAM photosynthesis; leaves with Kranz’ anatomy. Root cortex often with subelliptic thin-walled brachysclereids. Stem epidermis with or without parallelocytic stomata. Phellogen ab initio epidermal. Delayed initiation of stem periderm. Medulla sometimes with wide-band tracheids. Cortical fibres absent. Secondary lateral growth normal or absent. Vessel elements with simple perforation plates; lateral pits alternate. Imperforate tracheary xylem elements libriform fibres with simple pits; non-septate. Wood rays multiseriate or absent. Axial parenchyma? Thick-walled pericyclic extraxylary phloem fibre caps absent. Sieve tube plastids P3cf type? Nodes 1:1, unilacunar with one leaf trace? Sclereids often present. Mucilaginous idioblasts abundant. Tanniniferous cells absent. Phloem parenchyma cells with phytoferritin? Parenchyma and epidermis often with numerous calciumoxalate crystals or druses.

Trichomes Hairs unicellular or multicellular, uniseriate; stem epidermis sometimes with papillae or multicellular hairs.

Leaves Usually alternate (rarely opposite), simple, entire, usually succulent, flat to terete, with various ptyxis? Stipules and leaf sheath absent. Leaves with or without few to numerous axillary biseriate or oligoseriate hairs or bristles (in Portulaca somalica and P. wightiana multiseriate, scale-like). Petiole vascular bundle transection arcuate? Venation pinnate. Stomata parallelocytic, usually transversely orientated. Cuticular wax crystalloids usually absent (rarely as relatively irregular platelets?). Mesophyll with mucilaginous idioblasts. Leaf margin entire.

Inflorescence Terminal, few-flowered, capitate, cymose, often surrounded by involucral bracts. Floral prophylls (bracteoles) 2+2, inner pair median. Two large floral prophylls (bracteoles) sometimes subtending flower and four smaller prophylls in a whorl separated from first pair by short internode. Transverse floral prophylls with axillary flowers, or absent; median prophylls without flowers. Sepaloid floral prophylls two.

Flowers Actinomorphic, small. Hypanthium present. Epigyny to half epigyny. Tepals (three to) five (to eight), with imbricate aestivation, petaloid, free or slightly connate at base (rarely absent). Nectary absent? Disc absent.

Androecium Stamens four to numerous. Androecial ring primordium present. Filaments free from each other and from tepals. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with multinucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually polypantocolpate (polyrugate), shed as monads, tricellular? at dispersal. Exine tectate, with columellate infratectum, spinulate or echinate.

Gynoecium Pistil composed of (four or) five (to eight) connate carpels. Ovary inferior or semi-inferior, ab initio multilocular, later unilocular. Stylodia (four or) five (or six). Stigmas papillate, Dry type. Pistillodium absent.

Ovules Placentation usually free central (rarely basal). Ovules numerous per ovary, anatropous?, bitegmic, crassinucellar. Micropyle endostomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Apical cells of megasporangium often radially elongate. Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus? Antipodal cells two?, ephemeral. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis caryophyllad.

Fruit A pyxidium with apical operculum, dehiscing together with perianth remnants, stamens and style as a dry calyptra. Pericarp undifferentiated.

Seeds Aril hilar, spongy. Seed coat? Anticlinal testal cell walls sinuous. Tegmen? Perisperm copious, starchy. Endosperm sparse or absent. Embryo curved, well differentiated, without chlorophyll. Cotyledons two. Radicula dorsal. Germination phanerocotylar?

Cytology n = (8–)10

DNA Intron absent from plastid gene rpl2. 6 bp deletion in plastid gene ndhF. C. 500 bp deletion in plastid gene rbcL.

Phytochemistry Insufficiently known. Betalains (betacyanins, betaxanthins) and sterols present. Ellagic acid and cyanogenic compounds not found.

Use Ornamental plants, vegetables, medicinal plants.

Systematics Portulaca (100–115; cosmopolitan except polar areas, with their largest diversity in tropical and subtropical parts of North and South America; rare as indigenous in temperate regions).

Portulaca is sister to Cactaceae in some analyses (e.g. Ocampo & Columbus 2010) or to the clade [Anacampserotaceae+Cactaceae] (e.g. Brockington & al. 2013).

The axillary appendages may by remnants of highly condensated axillary short shoots and hence homologous to the areoles in Cactaceae (Nyffeler & Eggli 2010).

RHABDODENDRACEAE (Huber) Prance

( Back to Caryophyllales )

Prance in Bull. Jard. Bot. État 38: 141. 30 Jun 1968

Rhabdodendrales Doweld, Tent. Syst. Plant. Vasc.: xli. 23 Dec 2001; Rhabdodendranae Doweld, Tent. Syst. Plant. Vasc.: xli. 23 Dec 2001

Genera/species 1/3

Distribution Tropical South America.

Fossils Unknown.

Habit Usually bisexual (rarely androdioecious), evergreen trees or shrubs.

Vegetative anatomy Phellogen? Cortical vascular bundles sometimes present. Anomalous secondary lateral growth from successive cambia present in two species (not in Rhabdodendron macrophyllum). Vessel elements with simple perforation plates; lateral pits scalariform or alternate, bordered pits. Imperforate tracheary xylem elements tracheids (libriform fibres absent) with simple or bordered pits, non-septate. Vestured pits present. Wood rays uniseriate or multiseriate, usually heterocellular (sometimes homocellular). Axial parenchyma abaxial, apotracheal sparsely diffuse, or paratracheal scanty, vasicentric, or banded. Intraxylary (concentric) phloem present. Sieve tube plastids Pcs type, with one peripheral polygonal protein crystalloid and multiple starch grains. Nodes ?:?, multilacunar with ? leaf traces. Parenchyma with resinous secretory cavities. Dark-staining substances present especially in wood rays. Sclereids present. Silica bodies sometimes present in wood. Acicular or elongate crystals, styloids, crystal sand and other types of crystals and crystal complexes (e.g. sphaerocrystals) abundant.

Trichomes Hairs multicellular, fimbriate, short-stalked, peltate.

Leaves Alternate (spiral), simple, entire, coriaceous, with revolute ptyxis. Stipules small, caducous or absent; leaf sheath absent. Petiole vascular bundles transection annular, with often separate bundles; wing bundles present; medullary bundles sometimes present. Leaf base usually widened. Venation pinnate. Stomata anomocytic, without subsidiary cells. Cuticular waxes? Lamina revolute, gland-dotted, lysigenic secretory cavities with resins, scattered lipid bodies and on abaxial side small short-stalked peltate hairs with silica inclusions. Mesophyll with sclerenchymatous idioblasts, traversed by fibre-like simple or branched sclereids representing elongations of vein endings; many mesophyll cells with silica bodies and silicified walls. Leaf margin entire.

Inflorescence Axillary or supra-axillary, simple or compound, raceme-like or racemose.

Flowers Actinomorphic. Hypanthium present. Hypogyny. Sepals five, with imbricate quincuncial aestivation, partially or entirely connate. Petals (four or) five, with cochleate, quincuncial or valvate (imbricate below) aestivation, sepaloid, gland-dotted, caducous, free. Nectary absent. Disc absent.

Androecium Stamens 27 to 53, in three whorls. Filaments flattened, very short, persistent, free from each other and from petals. Anthers basifixed, non-versatile, tetrasporangiate, introrse?, longicidal (dehiscing by longitudinal slits), with monocotyledonous wall development. Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolp(or)ate (rarely tetracolp[or]ate), shed as monads, bicellular (or tricellular?) at dispersal. Exine tectate or semitectate, with columellate infratectum, punctate to finely reticulate.

Gynoecium Pistil composed of a single carpel. Ovary superior, unilocular. Stylodium gynobasic, thick. Stigmatic surfaces usually reaching from base or centre of abaxial side to apex (unilateral, dorsal stigma), type? Pistillodium absent?

Ovules Placentation basal. Ovules ab initio usually two, later one (one ovule degenerating) per ovary, (hemi)campylotropous, epitropous, bitegmic in micropylar end (unitegmic elsewhere), crassinucellar. Micropyle ?-stomal. Outer integument four or five cell layers thick. Inner integument two to five cell layers thick. Parietal tissue ten or more cell layers thick. Nucellar cap absent. Archespore multicellular. Megagametophyte monosporous, aberrant Polygonum type (unique variation). Endothelium not formed. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A small short-stalked dry one-seeded drupe, surrounded at base by persistent calyx/hypanthium and with swollen lignified distal part of pedicel.

Seeds Aril absent. Seed coat testal. Testa thin. Exotestal cells tangentially elongate. Endotestal cells shortly tracheidal. Tegmen? Perisperm poorly developed. Endosperm poorly developed. Embryo curved, well differentiated, with chlorophyll. Radicula curved inwards against hilum. Cotyledons two, large, fleshy. Germination cryptocotylar.

Cytology n = 10

DNA

Phytochemistry Triterpenoids, methylated and non-methylated ellagic acid, O-alkylated ellagic acid derivatives, prodelphinidin, oleanolic acid derivatives, and cyanogenic compounds present. Alkaloids not found.

Use Timber.

Systematics Rhabdodendron (3; R. amazonicum, R. gardnerianum, R. macrophyllum; tropical South America, especially the Amazon Basin).

Rhabdodendron is sister to all other core Caryophyllales “above” the tamaricoid, polygonoid and droseroid lineages.

SARCOBATACEAE Behnke

( Back to Caryophyllales )

Behnke in Taxon 46: 503. 15 Aug 1997

Genera/species 1/1–2

Distribution Arid regions in southwestern North America.

Fossils Unknown.

Habit Monoecious (sometimes dioecious?), evergreen? shrubs with spines. Xeromorphic halophytes.

Vegetative anatomy Phellogen? Secondary lateral growth anomalous (from concentric/successive cambia). Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Non-vestured pits present. Imperforate tracheary xylem elements libriform fibres with simple or (reduced) bordered pits, non-septate (also vasicentric tracheids). Wood rays absent. Axial parenchyma paratracheal vasicentric. Intraxylary (concentric or diffuse) phloem present. Vessel and phloem elements and/or parenchyma storied. Sieve tube plastids P3cf type, with a globular central protein crystal and a subperipheral dense ring of protein filaments. Nodes? Heartwood with gums etc. Parenchyma often with idioblasts containing elongate and rhomboidal crystals or solitary styloids.

Trichomes Hairs ’sub-bladder trichomes’ (Carolin 1983).

Leaves Alternate (spiral), simple, entire, fleshy, linear, terete, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation? Stomata? Cuticular waxes? Raphides? Leaf margin entire.

Inflorescence Male inflorescence terminal, spike- or catkin-like. Female flowers axillary, solitary or pairwise. Floral prophylls (bracteoles) absent at least in male inflorescences (in female flowers sometimes present, bilobate, pairwise connate into a tube).

Flowers Actinomorphic, small. Probably half epigyny. Tepaloid structures (bracts or sepaloid tepals?) in female flowers two, scale-like, fleshy, persistent, connivent into a tube, tepals adnate to ovary. Male flowers inserted inside stalked peltate scales, without tepals. Nectary absent. Disc absent.

Androecium Stamens usually one to three (to four), inserted below a stalked peltate scale. Filaments short, free. Anthers basifixed, non-versatile, tetrasporangiate, latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains pantoporate, foraminate, with raised pore margins, shed as monads, tricellular? at dispersal. Exine tectate, with columellate infratectum, sculpturing?

Gynoecium Pistil composed of two connate carpels. Ovary inferior?, unilocular. Style single, simple, short, or absent. Stigmas two, horizontally expanded, papillate, type? Pistillodium absent.

Ovules Placentation basal. Ovule one per ovary, campylotropous?, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Megagametophyte monosporous, Polygonum type? Endosperm development? Endosperm haustoria? Embryogenesis?

Fruit A nutlet surrounded by persistent and accrescent fleshy tepals, horizontally winged at apex.

Seeds Seed vertical. Aril absent. Testa membranous. Exotesta? Endotesta? Tegmen? Perisperm copious?, nutritious. Endosperm absent. Embryo peripheral, spirally twisted around perisperm, with chlorophyll. Cotyledons two. Germination?

Cytology n = 9

DNA Deletion of 210 bp in plastid genome?

Phytochemistry Insufficiently known. Betalains (betacyanins and betaxanthins) present. Oxalic acid often accumulated. Triterpene saponins? Anthocyanins not found.

Use Tools.

Systematics Sarcobatus (2; S. baileyi: Nevada; S. vermiculatus: southwestern Canada, western United States, northern Mexico).

Sarcobatus is sister to Agdestis (e.g. Brockington 2013) or to Nyctaginaceae (with weak support in matK analyses).

SIMMONDSIACEAE (Müll.-Arg.) Tiegh.

( Back to Caryophyllales )

van Tieghem in Bot. Jahresber. (Just) 25(2): 422. 19 Jan 1900 [emend. Tiegh. ex Reveal et Hoogland, Bull. Mus. Natl. Hist. Nat. (Paris), ser. 4, B Adansonia 12: 206. 24 Nov 1990]

Simmondsiales Reveal in Novon 2: 239. 13 Oct 1992; Simmondsianae Doweld, Tent. Syst. Plant. Vasc.: xliii. 23 Dec 2001; Simmondsiineae Reveal in Kew Bull. 66: 48. Mar 2011

Genera/species 1/1

Distribution Southwestern United States, northwestern Mexico.

Fossils Unknown.

Habit Dioecious, evergreen shrubs. Xerophytes.

Vegetative anatomy Phellogen ab initio usually pericyclic. Secondary lateral growth anomalous (from concentric/successive cambia). Vessel elements with simple perforation plates; lateral pits alternate or opposite, bordered pits. Imperforate tracheary xylem elements tracheids with large bordered pits, non-septate. Wood rays rare, uniseriate or multiseriate, heterocellular. Axial parenchyma rare, apotracheal diffuse, or paratracheal scanty, or absent. Intraxylary phloem present. Sieve tube plastids Ss type, with few small starch grains. Nodes 1:1, unilocular with one leaf trace. Calciumoxalate as druses and prismatic crystals.

Trichomes Hairs short, unicellular or multicellular, uniseriate.

Leaves Opposite, simple, entire, coriaceous, articulated near leaf insertion, with flat ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate? Venation pinnate, brochidodromous. Stomata cyclocytic or laterocytic (or anomocytic?), sunken. Cuticular waxes? (organ specific). Mesophyll with calciumoxalate as druses and single prismatic crystals. Leaf margin entire.

Inflorescence Male inflorescence terminal or axillary, cymose, head-like. Female flowers usually solitary axillary (rarely fascicular in axillary racemes).

Flowers Actinomorphic, small. Hypogyny. Tepals (four or) five (or six), with imbricate aestivation, sepaloid, in male flowers fimbriate, in female flowers foliaceous, persistent. Petals absent. Nectary absent. Disc absent.

Androecium Stamens (4+4 or) 5+5 (to 8+8), diplostemonous. Filaments short, stout, free from each other and from tepals. Anthers longer than connectives, basifixed or subbasifixed, non-versatile, tetrasporangiate, extrorse (or latrorse?), longicidal (dehiscing by longitudinal slits). Tapetum secretory, in later stages with a tendency to disintegration of membranes. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolpate to indistinctly triporate (aperture with operculoid central part), shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, punctate-scabrate, beset with small dots of tiny spinules.

Gynoecium Pistil composed of three (or four) connate carpels. Ovary superior, usually trilocular (sometimes quadrilocular). Stylodia three (or four), free, long protruding, subulate, recurved, papillate and hairy, caducous, with stylar canal. Stigmas little differentiated, papillate, type? Pistillodium absent.

Ovules Placentation apical to subapical-axile. Ovule one (or two) per carpel, anatropous, pendulous, apotropous, bitegmic, tenuinucellar (crassinucellar?). Micropyle endostomal. Outer integument six to ten cell layers thick. Inner integument three to five cell layers thick. Obturator absent. Parietal tissue (two to) five cell layers thick. Nucellar cap present (sometimes poorly developed). Megagametophyte monosporous, Polygonum type. Synergids with a filiform apparatus. Endosperm development ab initio nuclear (heavily reduced). Endosperm haustoria? Embryogenesis?

Fruit A usually one-seeded (rarely two- och three-seeded) loculicidal capsule, with strongly accrescent calyx and persistent columella.

Seeds Aril absent. Seed coat testal. Testa multiplicative, vascularized (prominent postchalazal vascular bundles reaching to micropyle). Exotestal cells palisade, with thickened walls. Mesotesta aerenchymatous. Endotesta mainly collapsed. Tegmen collapsed. Perisperm not developed. Endosperm sparse or absent. Embryo large, straight, well differentiated, chlorophyll? Cotyledons two, thick, fleshy, with simmondsin (a nitrile glycoside), aleurone grains and a liquid wax. Germination phanerocotylar?

Cytology n = 13

DNA Intron present in the plastid gene rpl2.

Phytochemistry Foliar flavonoids, condensed tannins, proanthocyanidins, anthocyanin, pinitol and simmondsinoid compounds present (simmondsin in jojoba-meal from ground seeds). Waxes consisting of high-molecular esters (C36 to C46 long straight-chain wax esters) of monoethylenic acids. Ellagic acid and alkaloids not found.

Use Oils and waxes (jojoba), medicinal plant.

Systematics Simmondsia (1; S. chinensis; southern California, western Arizona, northwestern Mexico).

Simmondsia is sister to the core Caryophyllales minus Rhabdodendron (Rhabdodendraceae).

STEGNOSPERMATACEAE (A. Rich.) Nakai

( Back to Caryophyllales )

Nakai in J. Jap. Bot. 18: 108. 10 Mar 1942

Stegnospermatineae Nakai in J. Jap. Bot. 18: 108. 10 Mar 1942

Genera/species 1/4

Distribution Coastal areas in northwestern and western Mexico and Central America, the West Indies.

Fossils Unknown.

Habit Bisexual, evergreen shrubs or small trees, more or less climbing.

Vegetative anatomy Phellogen in periderm. Secondary lateral growth anomalous (from concentric/successive cambia). Vessel elements with simple perforation plates; lateral pits alternate. Imperforate tracheary xylem elements tracheids with bordered pits. Wood rays usually multiseriate (sometimes uniseriate), homocellular or heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty, or absent. Tyloses sometimes abundant. Phloem fibres absent. Sieve tube plastids P3c’f type, with a central polygonal protein crystal and a subperipheral dense ring of protein filaments. Nodes? Parenchyma, cortex and medulla with idioblasts containing sphaerite crystals.

Trichomes Hairs absent.

Leaves Alternate (spiral), simple, entire, fleshy, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundles? Venation pinnate, brochidodromous. Stomata anomocytic. Cuticular waxes? Lamina with idioblasts containing sphaerite crystals. Leaf margin entire, transparent.

Inflorescence Terminal or axillary, thyrsoid, raceme- or umbel-like.

Flowers Actinomorphic. Hypogyny. Tepals five, with quincuncial aestivation, sepaloid, persistent, free. ‘Petals’ (two to) five, with imbricate aestivation, probably staminodial in origin, free. Nectaries present in depressions at carpel bases. Disc absent.

Androecium Stamens five or eight to ten, in one whorl. Filaments connate at base, antepetalous stamens adnate to ‘petals’ (epipetalous). Anthers basifixed to subbasifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia probably present, petaloid.

Pollen grains Microsporogenesis simultaneous? Pollen grains tricolpate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, punctate, spinulate. Endexine massive.

Gynoecium Pistil composed of two to five connate alternisepalous (alternitepalous) carpels. Ovary superior, ab initio bilocular to quinquelocular, later unilocular. Style single, simple, short, or absent. Stigmas two to five, subulate, recurved, ventrally papillate, type? Pistillodium absent.

Ovules Placentation basal, gradually free central. Ovule one per carpel, amphitropous, erect, epitropous, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Obturator placental. Parietal tissue. Nucellar cap absent. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A coriaceous capsule, dehiscing by three to five valves.

Seeds Aril present, covering larger part of seed. Seed coat exotestal-endotegmic? Exotesta palisade, with non-lignified cell walls. Endotesta? Exotegmen? Endotegmen enlarged, persistent. Perisperm copious, nutritious. Endosperm almost absent. Embryo curved, chlorophyll? Cotyledons two. Germination?

Cytology n = 36

DNA

Phytochemistry Very insufficiently known. Betalains (betacyanins, betaxanthins) present. Triterpene saponins probably abundant. Alkaloids? Pinitol? Proanthocyanidins not found.

Use Soap.

Systematics Stegnosperma (4; S. cubense, S. halimifolium, S. sanchezii, S. watsonii; coastal areas in Baja California, the Sonoran Desert in Mexico, Central America, the Greater Antilles).

Stegnosperma is sister to the remaining “betalain clade” above the Achatocarpaceae-Amaranthaceae-Caryophyllaceae clade.

The sieve tube plastids resemble those in Caryophyllaceae and Achatocarpaceae.

TALINACEAE (Fenzl) Doweld

( Back to Caryophyllales )

Doweld, Tent. Syst. Plant. Vasc.: xlii. 23 Dec 2001

Genera/species 2/c 15

Distribution Africa, Madagascar, western North America to South America, the West Indies, with their largest diversity in Mexico.

Fossils Unknown.

Habit Bisexual, usually small shrubs (sometimes perennial herbs, suffrutices or small trees?; ‘Talinella’ lianoid shrubs) with somewhat succulent leaves. Subterraneous organs often tuberous. Aerial parts often ephemeral.

Vegetative anatomy C3 photosynthesis alternating with CAM photosynthesis. Stem epidermis usually with parallelocytic stomata, parallel to stem axis. Phellogen ab initio usually epidermal (rarely outer-cortical). Precocious or delayed initiation of stem periderm. Vessel elements with simple perforation plates; lateral pits alternate to pseudoscalariform or scalariform. Imperforate tracheary xylem elements usually libriform fibres (occasionally fibre-tracheids) with simple pits, septate. Wood rays multiseriate or absent. Axial parenchyma scanty vasicentric. Tyloses sometimes present. Thick-walled pericyclic extraxylary phloem fibre caps present. Sieve tube plastids P3cf type? Nodes 1:1, unilacunar with one leaf trace? Sclereids (thin-walled, elongated with lignified walls) often present. Mucilage idioblasts and tanniniferous cells abundant. Phloem parenchyma cells with phytoferritin? Epidermis and parenchyma often with numerous crystals or druses of calciumoxalate.

Trichomes Hairs multicellular, uniseriate, or absent; stem epidermis often with papillae or multicellular hairs.

Leaves Alternate (spiral), simple, entire, succulent, with ? ptyxis. Stipules and leaf sheath absent. Leaves usually with single or paired axillary scale-like vascularized prophylls representing rudimentary axillary short shoots (sometimes with tannins). Petiole vascular bundle transection arcuate; wing bundles present. Venation pinnate, brochidodromous? Stomata parallelocytic, transversely orientated. Cuticular wax crystalloids? Mesophyll with mucilaginous idioblasts. Leaf margin entire.

Inflorescence Terminal, thyrsoid paniculate cymose (sometimes raceme-like; in ‘Talinella’ congested heads), or flowers solitary axillary. Sepaloid floral prophylls (bracteoles) two, deciduous or persistent, often scale-like.

Flowers Actinomorphic. Hypogyny. Tepals (two to) five, with quincuncial imbricate aestivation, petaloid, caducous, free or connate at base. Nectaries extrastaminal, inserted at tepal bases. Disc absent.

Androecium Stamens c. 15 to c. 35. Filaments free from each other, free or adnate at base to tepals. Anthers dorsifixed, versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains polyforate or polyrugate, shed as monads, tricellular? at dispersal. Exine tectate, with columellate infratectum, spinulate.

Gynoecium Pistil composed of three (to five) connate carpels. Ovary superior, usually unilocular (in ‘Talinella’ multilocular). Style single, thin. Stigma bilobate or trilobate, type? Pistillodium absent.

Ovules Placentation free central. Ovaries numerous per ovary, anatropous?, bitegmic, crassinucellar. Micropyle ?-stomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Parietal tissue? Apical cells of megasporangium radially elongate? Megagametophyte monosporous, Polygonum type? Endosperm development nuclear? Endosperm haustoria? Embryogenesis?

Fruit Usually a loculicidal valvicidal capsule (dehiscent from apex and/or base), often with caducous exocarp separating from fibrous persistent endocarp (capsule in ‘Talinella’ berry-like, juicy and mucilaginous; capsule in Amphipetalum a pyxidium, opening by a circumscissile operculum). Pericarp epidermis papillate. Capsule covered by dry remnants of perianth, stamens and style, these shed together as a calyptra.

Seeds Testa with strophiole near base. Seed coat? Exotesta? Endotesta? Tegmen? Perisperm copious, starchy? Endosperm absent? Embryo curved and sourrounding perisperm. Cotyledons two. Germination phanerocotylar?

Cytology n = 8 eller 12?

DNA 6 bp deletion in plastid gene ndhF.

Phytochemistry Virtually unknown. Betalains present.

Use Ornamental plants.

Systematics Talinum (c 14; southern Africa, Madagascar, Mexico, Central and South America, the West Indies), Amphipetalum (1; A. paraguayense; Bolivia, Paraguay).

Talinaceae may be sister-group to a clade comprising Portulacaceae, Anacampserotaceae and Cactaceae (e.g. Brockington & al. 2013).

The axillary scale-like prophylls are probably remnants of highly condensed axillary short shoots and homologous to the areoles in the Cactaceae (Nyffeler & Eggli 2010).

TAMARICACEAE Link

( Back to Caryophyllales )

Link, Enum. Hort. Berol. Alt. 1: 291. 16 Mar-30 Jun 1821, nom. cons.

Tamaricales Bercht. et J. Presl, Přir. Rostlin: 233. Jan-Apr 1820 [‘Tamariscinae’]; Reaumuriaceae Ehrenb. ex Lindl., Intr. Nat. Syst. Bot.: 48. 27 Sep 1830 [‘Reaumurieae’]; Reaumuriales Lindl. in C. F. P. von Martius, Consp. Regn. Veg.: 61. Sep-Oct 1835 [‘Reaumurieae’]; Tamaricineae Engl., Syllabus, ed. 2: 151. Mai 1898

Genera/species 3–4/75–90

Distribution Mostly drier regions of northern, northeastern and southwestern Africa, and Eurasia eastwards to East Asia, with their largest diversity in the Mediterranean and the irano-turanian areas; naturalized in North America.

Fossils Fossil wood of Tamarix has been found in Pleistocene (possibly also Pliocene) layers in North Africa.

Habit Usually bisexual (in Tamarix rarely dioecious), evergreen trees, shrubs or suffrutices. Xerophytes, rheophytes or halophytes.

Vegetative anatomy Phellogen ab initio usually superficially (rarely deeply) sited. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements usually libriform fibres (sometimes tracheids) with simple or (reduced) bordered pits, non-septate. Wood rays uniseriate or multiseriate, heterocellular. Axial parenchyma paratracheal scanty, confluent, vasicentric, or banded. Vessel elements and/or parenchyma partially storied. Sieve tube plastids S type. Nodes? Heartwood often with resins etc. Calciumsulphate crystals sometimes present. Prismatic calciumoxalate crystals often abundant.

Trichomes Hairs unicellular or multicellular, uniseriate; salt glands common.

Leaves Alternate (spiral), simple, entire, usually small and scale-like or subulate (in Reaumuria coriaceous or fleshy, not scale-like), with ? ptyxis. Stipules and leaf sheath absent. Venation? (often single-veined). Stomata usually anomocytic (sometimes paracytic), often on adaxial side only, often deeply sunken. Cuticular wax crystalloids as tubuli or curled rodlets. Epidermis often with sunken, multicellular, salt-excreting glands. Leaf margin entire.

Inflorescence Usually terminal, simple or branched, catkin-, spike- or raceme-like, botryoid to paniculate (flowers in Reaumuria solitary terminal). Floral prophylls (bracteoles) absent.

Flowers Actinomorphic, usually small. Hypogyny. Sepals four or five (or six), with imbricate aestivation, persistent, usually free (in Reaumuria connate below). Petals four or five (or six), with usually imbricate (in Reaumuria contorted) aestivation, persistent or caducous, usually without scale-like appendage (in Reaumuria two adaxial scale-like appendages at petal base, without nectary), free or slightly connate at base, usually inserted at fleshy nectariferous disc. Nectariferous disc usually present below petals and stamens, often annular (rarely intrastaminal and/or extrastaminal, in Reaumuria absent).

Androecium Stamens in Myricaria 5+5 (antesepalous longer than antepetalous), in Tamarix and Myrtama four or five (to 14), in Reaumuria five to more than twelve (from ten primordia). Filaments usually connate at base, usually in a single group (in Reaumuria often five antepetalous groups), sometimes free, usually inserted on fleshy nectariferous disc, free from tepals. Anthers dorsifixed, versatile?, tetrasporangiate, introrse, latrorse or extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tri- or tetracolpate, shed as monads or tetrads, bicellular (Tamarix) or tricellular (Myricaria germanica) at dispersal. Exine semitectate, with columellate infratectum, reticulate or microreticulate.

Gynoecium Pistil composed of (two or) three or four (or five) antepetalous connate paracarpous carpels; median carpel abaxial? Ovary superior, unilocular (sometimes seemingly bilocular to quinquelocular due to intrusive placentae). Stylodia (two or) three or four (or five), free or partially connate (absent in Myricaria). Stigmas with usually widened lobes, non-papillate, Wet type. Pistillodium absent?

Ovules Placentation parietal, basal or basal-parietal. Ovules two to numerous per carpel, anatropous, ascending, bitegmic, weakly crassinucellar. Micropyle endostomal. Outer integument two or three cell layers thick. Inner integument two or three cell layers thick. Megasporangium very thin. Parietal tissue approx. one cell layer thick (parietal cell often not dividing). Megagametophyte tetrasporous, Fritillaria, Adoxa, Drusa or Chrysanthemum type (also within the same species of Tamarix), sometimes 16-nucleate, bipolar. Synergids occasionally with a filiform apparatus. Endosperm development ab initio nuclear or cellular. Endosperm haustoria absent. Embryogenesis solanad. Polyembryony frequent.

Fruit A loculicidal capsule.

Seeds Seeds with long unicellular hairs (Reaumuria) or a chalazal coma of long hairs (Myricaria, Tamarix, Myrtama). Aril absent. Seed coat exotestal. Exotestal cells periclinally elongate, thick-walled. Endotestal cells thin-walled, with crystals. Tegmen entirely or largely absent. Perisperm often copious, thin. Endosperm usually absent (occasionally sparse then usually oily and proteinaceous; in Reaumuria sparse, starchy). Embryo large, straight, well differentiated, chlorophyll? Suspensor massive. Cotyledons two. Germination phanerocotylar.

Cytology n = (10) 12 (18, 24, 36) (Tamarix); n = 12 (Myricaria); n = 11 (Reaumuria)

DNA Intron present in plastid gene rpl2?

Phytochemistry Flavonol sulphates and bisulphates (kaempferol, quercetin or tamarixin), cyanidin, methylated and non-methylated ellagic acids, gallic acid, gallic and ellagic tannins, alkaloids, pinitol, and syringaresinol present. Myricetin, saponins and cyanogenic compounds not found.

Use Ornamental plants, medicinal plants, dyeing substances, tanning.

Systematics Reaumuria (c 12; eastern Mediterranean to Pakistan and Central Asia); Tamarix (50–60; southern Europe, the Mediterranean to eastern and southern Asia, Africa), Myricaria (10–15; temperate regions of Europe to Central Asia; incl. Myrtama?), Myrtama (1; M. elegans; Pakistan, Kashmir, Tibet; in Myricaria?).

Tamaricaceae are sister-group to Frankenia (Frankeniaceae).

Myrtama is morphologically intermediate between Myricaria and Tamarix. The clade [Hololachna+Reaumuria] is sister to the remaining Tamaricaceae (Gaskin & al. 2004).

Cladogram of Tamaricaceae based on DNA sequence data (Gaskin & al. 2004).


Literature

Abdel Bari E. 1973. Cytological studies in the genus Silene L. – New Phytol. 72: 833-838.

Acosta JM, Perreta M, Amsler A, Vegetti AC. 2009. The flowering unit in the synflorescences of Amaranthaceae. – Bot. Rev. 75: 363-376.

Adamec L. 1995. Ecological requirements and recent European distribution of the aquatic carnivorous plant Aldrovanda vesiculosa L.: a review. – Folia Geobot. Phytotaxon. 30: 53-61.

Adamec L. 2009. Ecophysiological investigation on Drosophyllum lusitanicum: why doesn’t the plant dry out? – Carniv. Plant Newsl. 38: 71-74.

Adamec L, Kohout P, Benes K. 2006. Root anatomy of three carnivorous plant species. – Carniv. Plant Newsl. 35: 19-22.

Adams LG, West JG, Cowley KJ. 2008. Revision of Spergularia (Caryophyllaceae) in Australia. – Aust. Syst. Bot. 21: 251-270.

Adamson RS. 1955a. The South African species of Aizoaceae I. Adenogramma and Polpoda. – J. South Afr. Bot. 21: 83-95.

Adamson RS. 1955b. The South African species of Aizoaceae II. Tetragonia. – J. South Afr. Bot. 21: 109-154.

Adamson RS. 1956. The South African species of Aizoaceae III. Galenia. – J. South Afr. Bot. 22:87-127.

Adamson RS. 1958. The South African species of Aizoaceae IV. Mollugo, Pharnaceum, Coelanthum, and Hypertelis. – J. South Afr. Bot. 24: 11-66.

Adamson RS. 1959a. The South African species of Aizoaceae VI. Acrosanthes. – J. South Afr. Bot. 25: 23-28.

Adamson RS. 1959b. The South African species of Aizoaceae VII. Aizoon. – J. South Afr. Bot. 25: 29-51.

Adamson RS. 1959c. The South African species of Aizoaceae VIII. Psammotropha. – J. South Afr. Bot. 25: 51-68.

Adamson RS. 1960. The phytogeography of Molluginaceae with reference to southern Africa. – J. South Afr. Bot. 26: 17-35.

Adamson RS. 1961a. The South African species of Aizoaceae X. Gisekia. – J. South Afr. Bot. 27: 131-137.

Adamson RS. 1961b. The South African species of Aizoaceae XI. Plinthus. – J. South Afr. Bot. 27: 147-151.

Adlassnig W, Peroutka M, Lendl T. 2011. Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities. – Ann. Bot. 107: 181-194.

Aellen P. 1929. Beitrag zur Systematik der Chenopodium-Arten Amerikas, vorwiegend auf Grund der Sammlung des United States National Museum in Washington, D.C. I. – Feddes Repert. 26: 31-64.

Aellen P. 1930. Die Wolladventiven Chenopodien Europas. – Verh. Naturf. Ges. Basel 41: 77-104.

Aellen P. 1937-1938. Revision der australischen und neuseeländischen Chenopodiaceae I: Theleophyton, Atriplex, Morrisiella, Blackiella, Senniella, Pachypharynx. – Bot. Jahrb. Syst. 68: 345-434.

Aellen P. 1938a. Halimione Aellen, eine rehabilitierte Chenopodiaceen-Gattung. – Verh. Naturforsch. Ges. Basel 49: 118-130.

Aellen P. 1938b. Die orientalischen Obione-Arten. – Verh. Naturforsch. Ges. Basel 49: 131-137.

Aellen P. 1939a. Die Atriplex-Arten des Orients. – Bot. Jahrb. Syst. 70: 1-66.

Aellen P. 1939b. Exomis und Manochlamys in Südafrika. – Bot. Jahrb. Syst. 70: 373-381.

Aellen P, Just T. 1943. Key and synopsis of the American species of the genus Chenopodium L. – Amer. Midl. Natur. 30: 47-76.

Aellen P. 1967. New Chenopodiaceae from Turkey. – Notes Roy. Bot. Gard. Edinb. 28: 29-34.

Aellen P, Just T. 1934. Key and synopsis of the American species of the genus Chenopodium L. – Amer. Midl. Natur. 30: 47-76.

Aellen P, Townsend C. 1972. Fadenia – a new genus of Chenopodiaceae from tropical Africa. – Kew Bull. 27: 501.

Ahmed M, Khaleduzzaman M, Rashid MA. 1988. Chalcone derivatives from Polygonum lapathifolium. – Phytochemistry 27: 2359-2360.

Ahmed M, Khaleduzzaman M, Islam MS. 1990. Isoflavan-4-ol, dihydrochalcone and chalcone derivatives from Polygonum lapathifolium. – Phytochemistry 29: 2009-2011.

Airy Shaw HK. 1952. On the Dioncophyllaceae, a remarkable new family of flowering plants. – Kew Bull. 1951: 327-347.

Akhani H. 2008. Taxonomic revision of the genus Salicornia L. (Chenopodiaceae) in central and southern Iran. – Pakistan J. Bot. 40: 1635-1655.

Akhani H, Trimborn P, Ziegler H. 1997. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. – Plant Syst. Evol. 206: 187-221.

Akhani H, Ghobadnejhad M, Hashemi SMH. 2003. Ecology, biogeography and pollen morphology of Bienertia cycloptera Bunge ex Boiss. (Chenopodiaceae), an enigmatic C4 plant without Kranz anatomy. – Plant Biol. 5: 167-178.

Akhani H, Barroca J, Koteeva N, Voznesenskaya E, Franceschi V, Edwards G, Ghaffari SM, Ziegler H. 2005. Bienertia sinuspersici (Chenopodiaceae): a new species from Southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. – Syst. Bot. 30: 290-301.

Akhani H, Edwards G, Roalson EH. 2007. Diversification of the Old World Salsoleae s.l. (Chenopodiaceae): molecular phylogenetic analysis of nuclear and chloroplast data sets and a revised classification. – Intern. J. Plant Sci. 168: 931-956.

Akhani H, Chatrenoor T, Dehghani M, Khoshravesh R, Mahdavi P, Matinzadeh Z. 2012. A new species of Bienertia (Chenopodiaceae) from Iranian salt deserts: a third species of the genus and discovery of a fourth terrestrial C4 plant without Kranz anatomy. – Plant Biosyst. 16: 550-559.

Akhani H, Malekmohammadi M, Hahdavi P, Gharibiyan A, Chase MW. 2013. Phylogenetics of the Irano-Turanian taxa of Limonium (Plumbaginaceae) based on ITS nrDNA sequences and leaf anatomy provides evidence for species delimitation and relationships of lineages. – Bot. J. Linn. Soc. 171: 519-550.

Akhani H, Greuter W, Roalson EH. 2014. Notes on the typification and nomenclature of Salsola and Kali (Chenopodiaceae). – Taxon 63: 647-650.

Akhani H, Khoshravesh R, Malekmohammadi M. 2016. Taxonomic novelties from Irano-Turanian region and NE Iran: Oreosalsola, a new segregate from Salsola s.l., two new species in Anabasis and Salvia, and two new combinations in Caroxylon and Seseli. – Phytotaxa 249(1). DOI: http://dx.doi.org/10.11646/phytotaxa.249.1.7

Aksoy A, Hamzaoglu E, Kilic S. 2009. A new species of Silene L. (Caryophyllaceae) from Turkey. – Bot. J. Linn. Soc. 158: 730-733.

Alain H. 1960. Novedades en la flora cubana XIII. – Candollea 17: 113-121.

Albert VA, Williams SE, Chase MW. 1992. Carnivorous plants: phylogeny and structural evolution. – Science 257: 1491-1495.

Al-Eisawi D. 1989. Pollen morphology of Caryophyllaceae in Jordan. – Mitt. Bot. Staatssamml. München 28: 599-614.

Alioshina LA. 1963. Morphology of pollen grains in the genus Claytonia Gronov. and allied genera. – Bot. Žurn. 48: 1191-1196.

Almaraz-Abarca N, Campos MG, Delgado-Alvarado EA, Ávila-Reyes JA, Herrera-Corral J, González-Valdez LS, Naranjo-Jiménez N, Frigerio C, Tomatas AF, Almeida AJ, Vieira A, Uribe-Soto JN. 2008. Pollen flavonoid/phenolic acid composition of four species of Cactaceae and its taxonomic significance. – Amer. J. Agric. Biol. Sci. 3: 534-543.

Altesor A, Silva C, Ezcurra E. 1994. Allometric neoteny and the evolution of succulence in cacti. – Bot. J. Linn. Soc. 114: 282-292.

Altesor A, Silva C, Ezcurra E. 1994. Allometric neoteny and the evolution of succulence in cacti. – Bot. J. Linn. Soc. 114: 282-292.

Al-Turki TA. 1992. Systematic and ecological studies of Suaeda and Salicornia from Saudi Arabia and Britain. – Ph.D. diss., University of East Anglia, Norwich, England.

Al-Turki TA, Omer S, Ghafoor A. 2000. A synopsis of the genus Atriplex L. (Chenopodiaceae) in Saudi Arabia. – Feddes Repert. 111: 261-293.

Al-Turki TA, Swarupanadan K, Wilson PG. 2003. Primary vasculature in Chenopodiaceae: a re-interpretation and implications for systematics and evolution. – Bot. J. Linn. Soc. 143: 337-374.

Amini E, Zarre SH, Asadi M. 2011. Seed micromorphology and its systematic significance in Gypsophila (Caryophyllaceae) and allied genera. – Nord. J. Bot. 29: 660-669.

Amiri N, Sharifnia F. 2007. Taxonomic revision of Polygonum sections in Iran by palynological characters. – Rostaniha 8: 85-93. [In Iranian]

Anderson EF. 1960. A revision of Ariocarpus (Cactaceae) I. The status of the proposed genus Roseocactus. – Amer. J. Bot. 47: 582-589.

Anderson EF. 1962. A revision of Ariocarpus (Cactaceae) II. The status of the proposed genus Neogomesia. – Amer. J. Bot. 49: 615-622.

Anderson EF. 1967. A study of the proposed genus Obregonia (Cactaceae). – Amer. J. Bot. 54: 897-903.

Anderson EF. 1979. Peyote, the divine cactus. – University of Arizona Press, Tucson, Arizona.

Anderson EF. 1986. A revision of the genus Neolloydia B. & R. (Cactaceae). – Bradleya 4: 1-28.

Anderson EF. 1987. A revision of the genus Thelocactus B. & R. (Cactaceae). – Bradleya 5: 49-76.

Anderson EF. 1996. The genus Opuntia in the Galápagos Islands. – Cact. Succ. J. (US) 68: 298-305.

Anderson EF. 1999. Some nomenclatural changes in the Cactaceae, subfamily Opuntioideae. – Cact. Succ. J. (Los Angeles) 71: 324-325.

Anderson EF. 2001. The cactus family. – Timber Press, Portland, Oregon.

Anderson EF. 2005. Das grosse Kakteen-Lexikon. – Ulmer, Stuttgart.

Anderson EF, Boke NH. 1969. The genus Pelecyphora (Cactaceae): resolution of a controversy. – Amer. J. bot. 56: 314-326.

Anderson EF, Fitz Maurice WA. 1998. Ariocarpus revisited. – Haseltonia 5: 1-20.

Anderson EF, Ralston ME. 1978. A study of Thelocactus (Cactaceae) I. The status of the proposed genus Gymnocactus. – Cact. Succ. J. (U.S.) 50: 216-224.

Anderson EF, Skillman SM. 1984. A comparison of Aztekium and Strombocactus (Cactaceae). – Syst. Bot. 9: 42-49.

Anton MA, Hernández-Hernández T, De-Nova A, Sosa V. 2014. Evaluating the phylogenetic position of the monotypic family Halophytaceae (Portulacineae, Caryophyllales) based on plastid and nuclear molecular data sets. – Bot. Sci. 92: 351-361.

Applequist WL. 2005. A revision of the Malagasy endemic Talinella (Portulacaceae). – Adansonia, sér. III, 27: 47-80.

Applequist WL, Pratt DB. 2005. The Malagasy endemic Dendroportulaca (Portulacaceae) is referable to Deeringia (Amaranthaceae): molecular and morphological evidence. – Taxon 54: 681-687.

Applequist WL, Wallace RS. 2000. Phylogeny of the Madagascan endemic family Didiereaceae. – Plant Syst. Evol. 221: 157-166.

Applequist WL, Wallace RS. 2001. Phylogeny of the portulacaceous cohort based on ndhF sequence data. – Syst. Bot. 26: 406-419.

Applequist WL, Wallace RS. 2002. Deletions in the plastid trnT-trnL intergenic spacer define clades within Cactaceae subfamily Cactoideae. – Plant Syst. Evol. 231: 153-162.

Applequist WL, Wallace RS. 2003. Expanded circumscription of Didiereaceae and its division into three subfamilies. – Adansonia, sér. III, 25: 13-16.

Applequist WL, Wagner WL, Zimmer EA, Nepokroeff M. 2006. Molecular evidence resolving the systematic position of Hectorella (Portulacaceae). – Syst. Bot. 31: 310-319.

Arakaki M. 2003. Relaciones taxonómicas en el género Weberbauerocereus Backeberg. – Quepo 17: 62-72.

Arakaki M, Soltis DE, Speranza P. 2007. New chromosome counts and evidence of polyploidy in Haageocereus and related genera in tribe Trichocereeae and other tribes of Cactaceae. – Brittonia 59: 290-297.

Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world’s major succulent lineages. – Proc. Natl. Acad. Sci. U.S.A. 108: 8379-8384.

Arber A. 1910. The Cactaceae and the study of seedlings. – New Phytol. 9: 333-337.

Arber A. 1939. Studies in flower structure V. On the interpretation of the petal and ‘corona’ in Lychnis. – Ann. Bot., N. S., 3: 337-346.

Arber A. 1941. On the morphology of the pitcher-leaves in Heliamphora, Sarracenia, Darlingtonia, Cephalotus, and Nepenthes. – Ann. Bot., N. S., 5: 563-578.

Archibald EEA. 1939. The development of the ovule and seed of jointed cactus (Opuntia aurantiaca Lindley). – South Afr. J. Sci. 36: 195-211.

Areces-Mallea AE. 2001. A new opuntioid cactus from the Cayman Islands, B.W.I., with a discussion and key to the genus Consolea Lemaire. – Brittonia 53: 96-107.

Arias S, Sánchez E. 2010. Una especie nueva de Strombocactus (Cactaceae) del Rio Moctezuma, Querétaro, México. – Rev. Mexicana Biodivers. 81: 619-624.

Arias S, Terrazas T. 2006. Análisis cladístico del género Pachycereus (Cactaceae) con caracteres morfológicos. – Brittonia 58: 197-216.

Arias S, Terrazas T. 2009. Taxonomic revision of Pachycereus (Cactaceae). – Syst. Bot. 34: 68-83.

Arias S, Terrazas T, Cameron K. 2003. Phylogenetic analysis of Pachycereus (Cactaceae, Pachycereeae) based on chloroplast and nuclear DNA sequences. – Syst. Bot. 28: 547-557.

Arias S, Terrazas T, Arreola-Nava HJ, Vázquez-Sánchez M, Cameron KM. 2005. Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. – J. Plant Res. 118: 317-328.

Arreola-Nava HJ, Terrazas T. 2003. Especies de Stenocereus con aréolas morenas: clave y descripciones. – Acta Bot. Mex. 64: 1-18.

Arreola-Nava HJ, Terrazas T. 2004. Stenocereus zopilotensis Arreola-Nava and Terrazas (Cactaceae), a new species from Mexico. – Brittonia 56: 96-100.

Arrigoni PV, Diana S. 1993. Contribution à la connaissance du genre Limonium en Corse. – Candollea 48: 631-677.

Arrigoni PV, Diana S. 1999. Karyology, chorology and bioecology of the genus Limonium (Plumbaginaceae) in Sardinia. – Plant Biosyst. 133: 63-71.

Arroyo-Cosultchi G, Terrazas T, Arias S, Arreola-Nava HJ. 2006. The systematic significance of seed morphology in Stenocereus (Cactaceae). – Taxon 55: 983-992.

Arruda E, Melo-de-Pinna GF. 2010. Wide-band tracheids (WBTs) of photosynthetic and non-photosynthetic stems in species of Cactaceae. – J. Torrey Bot. Club 137: 16-29.

Artelari R. 1989a. Limonium creticum (Plumbaginaceae), a new species from Kriti island (Aegean Sea) Greece. – Candollea 44: 415-421.

Artelari R. 1989b. Biosystematic study of the genus Limonium (Plumbaginaceae) in the Aegean area (Greece) I. Some Limonium species from the Kikladhes islands. – Willdenowia 18: 399-408.

Artelari R. 1989c. Biosystematic study of the genus Limonium (Plumbaginaceae) in the Aegean area (Greece) II. Limonium hierapetrae Rech. fil. from Kriti island. – Webbia 43: 33-40.

Artelari R, Erben M. 1986. Limonium brevipetiolatum – eine neue hexaploide Sippe aus Süd-Griechenland. – Mitt. Bot. Stattssamml. München 22: 507-511.

Artelari R, Georgiou O. 1999. Two new species of Limonium (Plumbaginaceae) from the island of Kithira (Greece). – Bot. J. Linn. Soc. 131: 399-415.

Artelari R, Georgiou O. 2002. Biosystematic study of the genus Limonium (Plumbaginaceae) in the Aegean area (Greece) III. Limonium on the islands Kithira and Antikithira and the surrounding islets. – Nord. J. Bot. 22: 483-501.

Artelari R, Kamari G. 1986. A karyological study of ten Limonium species (Plumbaginaceae) endemic in the Ionian area. – Willdenowia 15: 497-513.

Artelari R, Kamari G. 1995. Limonium kardamylii (Plumbaginaceae), a new species from S Peloponnisos (Greece). – Phyton 35: 131-137.

Artelari R, Kamari G. 2000. Limonium messeniacum (Plumbgainaceae), a new species from S Peloponnisos (Greece). – Bot. Chron. 13: 45-49.

Aryavand A, Favarger C. 1980. Contribution à l’étude cytotaxonomique des Caryophyllacées de l’Iran. – Biol. & Écol. Médit. 7: 15-26.

Augustin K, Hentzschel G. 2002. Die Gattung Weingartia Werdermann. Teil 1: Besprechung und Neuordnung. – Gymnocalycium 15: 453-472.

Augustin K, Gertel W, Hentzschel G. 2000. Sulcorebutia. Kakteenzwerge der bolivianischen Anden. – E. Ulmer, Stuttgart.

Aydin Z, Ertekin AS, Långström E, Oxelman B. 2014. A new section of Silene (Caryophyllaceae) including a new species from south Anatolia, Turkey. – Phytotaxa 178: 98-112.

Ayodele AE, Olowokudejo JD. 2006. The family Polygonaceae in West Africa: taxonomic significance of leaf epidermal characters. – South Afr. J. Bot. 72: 442-459.

Aytaç Z, Duman H. 2004. Six new taxa (Caryophyllaceae) from Turkey. – Ann. Bot. Fenn. 41: 213-221.

Backeberg C. 1936. Über die Abgrenzung der Gattungen Trichocereus, Echinopsis, u.s.w. – Blätt. Kakteenf. 1936(12), Nachtrag 13.

Backeberg C. 1937. Neolloydia Br. & R. – Bl. Kakteenforsch. 3.

Backeberg C. 1938. Cactaceae Lindley, Neubearbeitung der systematischen Übersicht. New systematic synopsis. – Blätt. Kakt.-forsch. 6: 1-24.

Backeberg C. 1942. Zur Geschichte der Kakteen im Verlauf der Entwicklung des amerikanischen Kontinentalbildes. – Cactaceae. Jahrb. Deutsch. Kakteen-Ges. 1942: 4-72.

Backeberg C. 1958-1962. Die Cactaceae 1-6. – Gustav Fischer, Jena.

Backeberg C. 1966. Das Kakteenlexikon. – Gustav Fischer, Jena.

Backeberg C. 1977. Cactus lexicon. English ed., transl. L. Glass. – Blandford Press, Poole.

Backeberg C, Knuth FM. 1936. Kaktus-ABC. En haandbog for fagfolk og amatører. – Nordisk Forlag, København.

Backer CA. 1949a. Amaranthaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(2), Noordhoff-Kolff N. V., Batavia, pp. 69-98.

Backer CA. 1949b. Chenopodiaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(2), Noordhoff-Kolff N. V., Batavia, pp. 99-106.

Bagci Y, Uysal T, Ertugrul K, Demirelma H. 2007. Silene kucukodukii sp. nov. (Caryophyllaceae) from south Anatolia, Turkey. – Nord. J. Bot. 25: 306-310.

Bailey DC. 1980. Anomalous growth and vegetative anatomy of Simmondsia chinensis. – Amer. J. Bot. 67: 147-161.

Bailey IW. 1964. Comparative anatomy of the leaf-bearing Cactaceae XI: the xylem of Pereskiopsis and Quiabentia. – J. Arnold Arbor. 45: 140-157.

Bailey IW. 1966. The significance of reduction of vessels in the Cactaceae. – J. Arnold Arbor. 47: 288-292.

Bailey JP, Stace CA. 1992. Chromosome number, morphology, pairing, and DNA values of species and hybrids in the genus Fallopia (Polygonaceae). – Plant Syst. Evol. 180: 29-52.

Baird WV, Blackwell WH. 1980. Secondary growth in the axis of Halogeton glomeratus (Bieb.) Meyer (Chenopodiaceae). – Bot. Gaz. 141: 269-276.

Baker HG. 1948a. Relationships in the Plumbaginaceae. – Nature 161: 400.

Baker HG. 1948b. Dimorphism and monomorphism in the Plumbaginaceae I. A survey of the family. – Ann. Bot., N. S., 12: 207-219.

Baker HG. 1953a. Dimorphism and monomorphism in the Plumbaginaceae II. Pollen and stigmata in the genus Limonium. – Ann. Bot., N. S., 17: 433-445.

Baker HG. 1953b. Dimorphism and monomorphism in the Plumbaginaceae III. Correlation of geographical distribution patterns with dimorphism and monomorphism in Limonium. – Ann. Bot., N. S., 17: 615-627.

Baker HG. 1964. Variation in style length in relation to outbreeding in Mirabilis. – Evolution 18: 507-509.

Baker HG. 1966. The evolution, functioning and breakdown of heteromorphic incompatibility systems I. The Plumbaginaceae. – Evolution 20: 349-368.

Baker M. 2006. A new florally dimorphic hexaploid, Echinocereus yavapaiensis sp. nov. (section Triglochidiatus, Cactaceae) from central Arizona. – Plant Syst. Evol. 258: 63-83.

Balfour E. 1965. Anomalous secondary thickening in Chenopodiaceae, Nyctaginaceae, and Amaranthaceae. – Phytomorphology 15: 111-122.

Ball PW. 1964. A taxonomic review of Salicornia in Europe. – Feddes Repert. Spec. Nov. Regni Veg. 69: 1-8.

Ball PW, Heywood VH. 1964. A revision of the genus Petrorhagia. – Bull. Brit. Mus. (Nat. Hist.) Bot. 3: 119-172.

Ball PW, Cornejo X, Kadereit G. 2017. Mangleticornia (Amaranthaceae: Salicornioideae) – a new sister for Salicornia from the Pacific coast of South America. – Willdenowia 47: 145-153.

Bao BJ, Li AR. 1993. A study of the genus Atraphaxis in China and the system of Atraphaxideae (Polygonaceae). – Acta Phytotaxon. Sin. 31: 127-139.

Baquar SR, Olusi OO. 1988. Cytomorphological and phylogenetic studies of the genus Amaranthus from Nigeria. – Kromosomo 51-52: 1665-1674.

Baranova MA. 1980. Comparative stomatographic studies in the families Buxaceae and Simmondsiaceae. – In: Žilin SG (ed), Systematics and evolution of higher plants, Nauka, Leningrad, pp. 68-75. [In Russian]

Bárcenas RT. 2016. A molecular phylogenetic approach to the systematics of Cylindropuntieae (Opuntioideae, Cactaceae). – Cladistics 32: 351-359.

Bárcenas RT, Yesson C, Hawkins JA. 2011. Molecular systematics of the Cactaceae. – Cladistics 27: 470-489.

Barkoudah YI. 1962. A revision of Gypsophila, Bolanthus, Ankyropetalum and Phryna. – Wentia 9: 1-203.

Barnley B. 1982. Frankeniaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 112-146.

Barthlott W. 1977. Cacti. Botanical aspects. Descriptions and cultivation. – Stanley Thornes Ltd., Cheltenham, England.

Barthlott W. 1983. Biogeography and evolution in neo- and palaeotropical Rhipsalinae. – In: Kubitzki K (ed), Dispersal and distribution, Sonderbd. Naturbd. Naturwiss. Ver. Hamburg 7, P. Parey, Hamburg, pp. 241-248.

Barthlott W. 1987. New names in Rhipsalidinae (Cactaceae). – Bradleya 5: 97-100.

Barthlott W. 1988. Über die systematischen Gliederungen der Cactaceae. – Beitr. Biol. Pflanzen 63: 17-40.

Barthlott W. 1994. Epicuticular wax ultrastructure and systematics. – In: Behnke H-D, Mabry TJ (eds) Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, pp. 75-86.

Barthlott W, Hunt DR. 1993. Cactaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 161-197.

Barthlott W, Hunt DR. 2000. Seed-diversity in the Cactaceae, subfamily Cactoideae. – Succ. Plant Res. 5: 1-176.

Barthlott W, Porembski S. 1996. Ecology and morphology of Blossfeldia liliputana (Cactaceae): a poikilohydric and almost astomate succulent. – Bot. Acta 109: 161-166.

Barthlott W, Taylor NP. 1995. Notes towards a monograph of Rhipsalideae (Cactaceae). – Bradleya 13: 43-79.

Barthlott W, Voit G. 1979. Mikromorphologie der Samenschalen und Taxonomie der Cactaceae: ein raster-elektronenmikroskopischer Überblick. – Plant Syst. Evol. 132: 205-229.

Barthlott W, Porembski S, Kluge M, Hopke J, Schmidt L. 1997. Selenicereus wittii (Cactaceae): an epiphyte adapted to Amazonian Igapó inundation forests. – Plant Syst. Evol. 206: 175-185.

Basak RK, Subramanyan K. 1966. Pollen grains of some species of Nepenthes. – Phytomorphology 16: 334-338.

Bassett IJ, Crompton CW. 1982. The genus Chenopodium in Canada. – Can. J. Bot. 60: 586-610.

Batalin A. 1877. Mechanik der Bewegungen der insektenfressenden Pflanzen. – Flora 35: 54-58; 60: 33-39, 54-58, 65-73, 105-111, 129-154.

Bateman AJ. 1968. The role of heterostyly in Narcissus and Mirabilis. – Evolution 22: 645-646.

Batenburg LH, Moeliono BM. 1982. Oligomery and vasculature in the androecium of Mollugo nudicaulis Lam. (Molluginaceae). – Acta Bot. Neerl. 31: 215-220.

Batenburg LH, Geluk PCW, Moeliono BM. 1984. Morphology and vascular system of the inflorescences of Mollugo nudicaulis Lam. and Hypertelis bowkeriana Sond. (Molluginaceae). – Acta Bot. Neerl. 33: 101-110.

Báthori M, Méthé I Jr, Solymosi P, Szendrei K. 1987. Phytoecdysteroids in some species of Caryophyllaceae and Chenopodiaceae. – Acta Bot. Hung. 33: 377-385.

Bauer R. 1922. Entwickelungsgeschichtliche Untersuchungen an Polygonaceenblüthen. – Flora 115: 273-292.

Bauer R. 2003a. A synopsis of the tribe Hylocereeae F. Buxb. – Cact. Syst. Init. No. 17: 1-63.

Bauer R. 2003b. The genus Pseudorhipsalis Britton & Rose. – Haseltonia 9: 94-120.

Bauer U, Bohn HF, Federle W. 2008. Harmless nectar source or deadly trap: Nepenthes pitchers are activated by rain, condensation and nectar. – Proc. Roy. Soc. London, Sect. B, 275: 259-265.

Baum BR. 1964. On the vernales-aestivales character in Tamarix and its diagnostic value. – Israel J. Bot. 13: 30-35.

Baum BR. 1966. Monographic revision of the genus Tamarix. – Final Res. Rep. U. S. Dept. Agric., pp. 141-142.

Baum BR. 1978. The genus Tamarix. – Israel Academy of Sciences and Humanities, Jerusalem.

Baum BR, Bassett IJ, Crompton CW. 1971. Pollen morphology of Tamarix species and its relationship to the taxonomy of the genus. – Pollen Spores 13: 495-521.

Bayón ND. 2015. Revisión taxonómica de las especies monoicas de Amaranthus (Amaranthaceae): Amaranthus subg. Amaranthus y Amaranthus subg. Albersia. – Ann. Missouri Bot. Gard. 101: 261-383.

Bean AR. 2008. A synopsis of Ptilotus (Amaranthaceae) in eastern Australia. – Telopea 12: 227-250.

Beard EC. 1937. Some chromosome complements in the Cactaceae and a study of meiosis in Echinocereus papillosus. – Bot. Gaz. 99: 1-21.

Beck E, Merxmüller H, Wagner H. 1962. Anthocyane bei Plumbaginaceen, Alsinoideen, und Molluginaceen. – Planta 58: 220-224.

Becker H. 1913. Über die Keimung verschiedenartiger Früchte und Samen bei derselben Spezies III. Chenopodiaceae. – Beih. Bot. Centralbl. 29: 122-132.

Beckstrom-Sternberg S. M. 1989. Two-dimensional gel electrophoresis as a taxonomic tool: evidence from Centrospermae. – Biochem. Syst. Ecol. 17: 573-582.

Bedell HG. 1980. A taxonomic and morphological re-evaluation of Stegnospermaceae (Caryophyllales). – Syst. Bot. 5: 419-431.

Beer SS, Beer AS, Sokoloff DD. 2010. Flower and inflorescence development in Salicornia (Chenopodiaceae). – Feddes Repert. 121: 229-247.

Behnke H-D. 1969. Über Siebröhren-Plastiden und Plastidenfilamente der Caryophyllales. Untersuchungen zum Feinbau und zur Verbreitung eines weiteren spezifischen Plastidentyps. – Planta 89: 275-283.

Behnke H-D. 1974. Elektronenmikroskopische Untersuchungen an Siebröhren-Plastiden und ihre Aussage über die systematische Stellung von Lophiocarpus. – Bot. Jahrb. Syst. 94: 114-119.

Behnke H-D. 1975. Hectorella caespitosa: ultrastructural evidence against its inclusion into Caryophyllaceae. – Plant Syst. Evol. 124: 31-34.

Behnke H-D. 1976a. A tabulated survey of some characters of systematic importance in centrospermous families. – Plant Syst. Evol. 125: 95-98.

Behnke H-D. 1976b. Delimitation and classification of the order Caryophyllales (Centrospermae) according to ultrastructure data from sieve-element plastids: a survey based on 146 species. – Plant Syst. Evol. 126: 31-54.

Behnke H-D. 1976c. Die Siebelement-Plastiden der Caryophyllaceae, eine weitere spezifische Form der P-Typ-Plastiden bei Centrospermen. – Bot. Jahrb. Syst. 95: 327-333.

Behnke H-D. 1976d. Sieve-element plastids of Fouquieria, Frankenia (Tamaricales), and Rhabdodendron (Rutaceae), taxa sometimes allied with Centrospermae (Caryophyllales). – Taxon 25: 265-268.

Behnke H-D. 1977a. Regular occurring massive deposits of phytoferritin in the phloem of succulent Centrospermae. – Zeitschr. Pflanzenphysiol. 85: 89-92.

Behnke H-D. 1977b. Zur Skulptur der Pollen-Exine bei drei Centrospermen (Gisekia, Limeum, Hectorella) bei Gyrostemaceen und Rhabdodendraceen. – Plant Syst. Evol. 128: 227-235.

Behnke H-D. 1977c. Transmission electron microscopy and systematics of flowering plants. – Plant Syst. Evol. [Suppl.] 1: 155-178.

Behnke H-D. 1978. Elektronenoptische Untersuchungen am Phloem sukkulenter Centrospermen (incl. Didiereaceen). – Bot. Jahrb. Syst. 99: 341-352.

Behnke H-D. 1981. Sieve-element characters. – Nord. J. Bot. 1: 381-400.

Behnke H-D. 1982a. Geocarpon minimum: sieve-element plastids as additional evidence for its inclusion in the Caryophyllaceae. – Taxon 31: 45-47.

Behnke H-D. 1982b. Sieve-element plastids, exine sculpturing, and the systematic affinities of the Buxaceae. – Plant Syst. Evol. 139: 257-266.

Behnke H-D. 1993. Further studies of the sieve-element plastids of the Caryophyllales including Barbeuia, Corrigiola, Lyallia, Microtea, Sarcobatus, and Telephium. – Plant Syst. Evol. 186: 231-243.

Behnke H-D. 1994. Sieve-element plastids: their significance for the evolution and systematics of the order. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 87-121.

Behnke H-D. 1997. Sarcobataceae – a new family of Caryophyllales. – Taxon 46: 495-507.

Behnke H-D. 1999. P-type sieve-element plastids present in members of the tribes Triplareae and Coccolobeae (Polygonaceae) renew the links between the Polygonales and the Caryophyllales. – Plant Syst. Evol. 214: 15-27.

Behnke H-D, Barthlott W. 1983. New evidence from ultrastructural and micromorphological fields in angiosperm classification. – Nord. J. Bot. 3: 43-66.

Behnke H-D, Mabry TJ (eds). 1994. Caryophyllales: systematics and evolution. – Springer, Berlin, Heidelberg, New York.

Behnke H-D, Turner BL. 1971. On specific sieve-tube plastids in Caryophyllales. Further investigations with special reference to the Bataceae. – Taxon 20: 731-737.

Behnke H-D, Chang C, Eifert IJ, Mabry TJ. 1974. Betalains and P-type sieve-tube plastids in Petiveria and Agdestis (Phytolaccaceae). – Taxon 23: 541-542.

Behnke H-D, Mabry TJ, Eifert IJ, Pop L. 1975. P-type sieve-element plastids and betalains in Portulacaceae (including Ceraria, Portulacaria, Talinella). – Can. J. Bot. 53: 2103-2109.

Behnke H-D, Mabry TJ, Neumann P, Barthlott W. 1983. Ultrastructural, micromorphological and phytochemical evidence for a ”central position” of Macarthuria (Molluginaceae) within the Caryophyllales. – Plant Syst. Evol. 143: 151-161.

Behnke H-D, Pop L, Sivarajan VV. 1983. Sieve-element plastids of Caryophyllales: additional investigations with special reference to the Caryophyllaceae and Molluginaceae. – Plant Syst. Evol. 142: 109-115.

Behre K. 1929. Physiologische und zytologische Untersuchungen über Drosera. – Planta 7: 208-306.

Bennett ST, Cheek M. 1990. The cytology and morphology of Drosera slackii and its relatives in South Africa. – Kew Bull. 45: 375-381.

Benson L. 1982. The cacti of the United States and Canada. – Stanford University Press, Stanford, California.

Berger A. 1926. Die Entwicklungslinien der Kakteen. – Gustav Fischer, Jena.

Berger A. 1929. Kakteen. – Verlagsbuchhandlung von Eugen Ulmer, Stuttgart.

Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF, Filatov D, Giraud T, Hood ME, Marais GA, McCauley D, Pannell JR, Shykoff JA, Vyskot B, Wolfe LM, Widmer A. 2009. Silene as a model system in ecology and evolution. – Heredity 103: 5-14.

Bhambie S, Joshi MC, Gupta ML. 1977. Anatomical studies on certain members of Aizoaceae. – Proc. Indian Acad. Sci. 85: 399-406.

Bidwell GL, Wooton EO. 1925. Saltbushes and their allies in the United States. – U.S.D.A. Dept. Bull. 1345: 1-39.

Bisalputra T. 1960. Anatomical and morphological studies in the Chenopodiaceae I. Inflorescence of Atriplex and Bassia. – Aust. J. Bot. 8: 226-242.

Bisalputra T. 1961. Anatomical and morphological studies in the Chenopodiaceae II. Vascularization of the seedlings. – Aust. J. Bot. 9: 1-19.

Bisalputra T. 1962. Anatomical and morphological studies in the Chenopodiaceae III. The primary vascular system and nodal anatomy. – Aust. J. Bot. 10: 13-24.

Bissinger K, Khoshravesh R, Kotrade JP, Oakley J, Sage TL, Sage RF, Hartmann HEK, Kadereit G. 2014. Gisekia (Gisekiaceae): phylogenetic relationships, biogeography, and ecophysiology of a poorly known C4 lineage in the Caryophyllales. – Amer. J. Bot. 101: 499-509.

Bittrich V. 1986 [1987]. Untersuchungen zu Merkmalbestand, Gliederung und Abgrenzung der Unterfamilie Mesembryanthemoideae (Mesembryanthemaceae Fenzl). – Mitt. Inst. Allg. Bot. Hamburg 21: 5-116.

Bittrich V 1990. Systematic studies in Aizoaceae. – Mitt. Inst. Allg. Bot. Hamburg 23b: 491-507.

Bittrich V. 1993a. Introduction to Centrospermae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin etc, pp. 13-19.

Bittrich V. 1993b. Achatocarpaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 35-36.

Bittrich V. 1993c. Caryophyllaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 206-236.

Bittrich V. 1993d. Halophytaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 320-321.

Bittrich V, Amaral MC. 1991. Proanthocyanidins in the testa of centrospermous seeds. – Biochem. Syst. Evol. 19: 319-321.

Bittrich V, Hartmann HEK. 1988. The Aizoaceae – a new approach. – Bot. J. Linn. Soc. 97: 239-254.

Bittrich V, Ihlenfeldt H-D. 1984. Morphologie früher Keimungstadien bei Mesembryanthemaceae: eine Anpassung an aride Umweltbedingungen. – Mitt. Inst. Allg. Bot. Hamburg 19: 123-139.

Bittrich V, Kühn U. 1993. Nyctaginaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 473-486.

Bittrich V, Struck M. 1989. What is primitive in the Mesembryanthemaceae? An analysis of evolutionary polarity of character states – South Afr. J. Bot. 55: 321-331

Black RF. 1954. The leaf anatomy of Australian members of the genus Atriplex. – Aust. J. Bot. 2: 269-286.

Blackburn KB, Morton JK. 1957. The incidence of polyploidy in the Caryophyllaceae of Britain and of Portugal. – New Phytol. 56: 344-351.

Blackwell WH Jr. 1977. The subfamilies of the Chenopodiaceae. – Taxon 26: 395-397.

Blackwell WH Jr, Powell MJ. 1981. A preliminary note on pollination in the Chenopodiaceae. – Ann. Missouri Bot. Gard. 68: 524-526.

Blackwell WH Jr, Baechle MD, Williamson G. 1978. Synopsis of Kochia (Chenopodiaceae) in North America. – Sida 7: 248-254.

Blake SF. 1921. Neomillspaughia, a new genus of Polygonaceae, with remarks on related genera. – Bull. Torrey Bot. Club 48: 77-89.

Blanche C, Molero J. 1987. The genus Halopeplis Ung.-Sternb. (Salicorniaceae) in the Iberian peninsula. – Coll. Bot. (Barcelona) 17: 67-77.

Blum W, Lange M, Rischer W, Rutow J. 1998. Echinocereus. Monographie. – Bietigheim & al. (publ. by the authers).

Blum W, Felix D, Waldeis D. 2008. Echinocereus. Die Sektion Wilcoxia. – Arbeitsgruppe Echinocereus der Deutschen Kakteen-Gesellschaft e. V., Rhauderfehn.

Blunden G, Yang M-H, Janicsák G, Málthé L, Carabot-Cuervo A. 1999. Betaine distribution in the Amaranthaceae. – Biochem. Syst. Ecol. 27: 87-92.

Bobrov EG. 1966. A review of the genus Reaumuria L. in connection with the problem of the origin of the Afro-Asiatic desert flora. – Bot. Žurn. 51: 1057-1072.

Bocquet G. 1959 [1960]. The structure of the placental column in the genus Melandrium (Caryophyllaceae). – Phytomorphology 9: 217-221.

Boedeker F. 1930. Eine neue, eigenartige Coryphantha. – Monatsschr. Deutsch. Kakteen-Ges. 2: 168-170.

Boesewinkel FD. 1989. Ovule and seed development in Droseraceae. – Acta Bot. Neerl. 38: 295-311.

Bogle AL, Swain T, Thomas RD, Kohn ED. 1971. Geocarpon: Aizoaceae or Caryophyllaceae? – Taxon 20: 473-477.

Bohley K, Joos O, Hartmann H, Sage R, Liede-Schumann S, Kadereit G. 2015. Phylogeny of Sesuvioideae (Aizoaceae) – biogeography, leaf anatomy and the evolution of C4 photosynthesis. – Persp. Plant Ecol. Evol. Syst. 17: 116-130.

Bohley K, Winter PJD, Kadereit G. 2017. A revision of Sesuvium (Aizoaceae, Sesuvioideae). – Syst. Bot. 42: 124-147.

Bohlin J-E. 1988. A monograph of the genus Colignonia (Nyctaginaceae). – Nord. J. Bot. 8: 231-252.

Bohn HF, Federle W. 2004. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. – Proc. Natl. Acad. Sci. U.S.A. 101: 14138-14143.

Bohrer VL. 1975. Recognition and interpretation of prehistoric remains of Mirabilis multiflora in the Sacramento Mountains of New Mexico. – Bull. Torrey Bot. Club 102: 21-25.

Boke NH. 1941. Zonation in the shoot apices of Trichocereus spachianus and Opuntia cylindrica. – Amer. J. Bot. 28: 656-664.

Boke NH. 1944. Histogenesis of the leaf and areole in Opuntia cylindrica. – Amer. J. Bot. 31: 299-316.

Boke NH. 1963. Anatomy and development of the flower and fruit of Pereskia pititache. – Amer. J. Bot. 50: 843-858.

Boke NH. 1964. The cactus gynoecium: a new interpretation. – Amer. J. Bot. 51: 598-610.

Boke NH. 1966. Ontogeny and structure of the flower and fruit of Pereskia aculeata. – Amer. J. Bot. 53: 534-542.

Boke NH. 1980. Developmental morphology and anatomy in Cactaceae. – Bioscience 30: 605-610.

Bokhari MH. 1970. Morphology and taxonomic significance of foliar sclereids in Limonium. – Notes Roy. Bot. Gard. Edinb. 30: 43-53.

Bokhari MH. 1972a. A brief synopsis of stigma and pollen types in Acantholimon and Limonium. – Notes Roy. Bot. Gard. Edinb. 32: 79-84.

Bokhari MH. 1972b. Anatomical characters and their taxonomic importance in Acantholimon. – Notes Roy. Bot.Gard. Edinb. 32: 85-92.

Bokhari MH, Wendelbo P. 1978. On anatomy, adaptation to xerophytism and taxonomy of Anabasis inclusive Esfandiaria. – Bot. Not. 131: 279-292.

Bolus HML. 1928. Notes on Mesembryanthemum and some allied genera 1. – University of Cape Town, Cape Town.

Bolus HML. 1928-1935. Notes on Mesembryanthemum and allied genera 2. – University of Cape Town, Cape Town.

Bolus HML. 1936-1958. Notes on Mesembryanthemum and allied genera 3. – University of Cape Town, Cape Town.

Borkowski B, Drost K. 1965. Alkaloide aus Salicornia herbacea L. – Pharmazie 20: 390-393.

Borsch T. 1998. Pollen types in the Amaranthaceae. Morphology and evolutionary significance. – Grana 37: 129-142.

Borsch T, Pedersen TM. 1997. Restoring the generic rank of Hebanthe Martius (Amaranthaceae). – Sendtnera 4: 13-31.

Borsch T, Ortuño T, Nee MH. 2011. Phylogenetics of the neotropical liana genus Pedersenia (Amaranthaceae: Gomphrenoideae) and discovery of a new species from Bolivia based on molecules and morphology. – Willdenowia 41: 5-14.

Borsch T, Hernández-Ledesma P, Berendsohn WG, Flores-Olvera H, Ochoterena H, Zuloaga FO, von Mering S, Kilian N. 2015. An integrative and dynamic approach for monographing species-rich plant groups – building the global synthesis of the angiosperm order Caryophyllales. – Persp. Plant Ecol. Evol. Syst. 17: 284-300.

Borsch T, Flores-Olvera H, Zumaya S, Müller K. 2018. Pollen characters and DNA sequence data converge on a monophyletic genus Iresine (Amaranthaceae, Caryophyllales) and help to elucidate its species diversity. – Taxon 67: 944-976.

Bortenschlager S. 1973. Morphologie pollinique des Phytolaccaceae. – Pollen Spores 15: 227-253.

Bortenschlager S, Auimger A, Blaha J, Simonsburger P. 1972. Pollen morphology of Achatocarpaceae (Centrospermae). – Bot. Naturwiss.-Med. Vereins Innsbruck 59: 7-13.

Borzova LM. 1968. The pollen of some species of the genus Polygonum L. 2 species of the section Knorringia Czuk. – Vestnik. Moskov. Univ. ser. 6, Biol. 5: 108-110. [In Russian]

Borzova LM. 1973. Pollen morphology of the genus Polygonum L. s. lat. In Tadzhikistan. – In: Pollen and spore morphology of the recent plants, Nauka, Leningrad, pp. 78-82. [In Russian]

Borzova LM, Sladkov AN. 1969. Pollen morphology within the representatives of Polygonum L. s. lat. in Tadzhikistan, SSR. – Vestn. Mosk. Univ. 4: 47-54. [In Russian]

Botschantzev VP. 1967. Sevadinae Botsch., a new subtribe of the family Chenopodiaceae. – Bot. Žurn. 52: 800-810. [In Russian]

Botschantzev VP. 1975. Species of the subtribe Sevadinae (Chenopodiaceae). – Kew Bull. 30: 367-370.

Botschantzev VP. 1976. New genus Chenoleoides (Ulbrich) Botsch. – Bot. Žurn. 61: 1408-1409. [In Russian]

Botschantzev VP. 1977. The genus Agathophora (Fenzl) Bunge. – Bot. Žurn. 62: 1447-1452. [In Russian]

Boulos L. 1991a. Studies in the Chenopodiaceae of Arabia 2. Notes on Suaeda Forssk. ex Scop. – Kew Bull. 46: 291-296.

Boulos L. 1991b. Studies in the Chenopodiaceae of Arabia 4. A synopsis of Chenopodium L. – Kew Bull. 46: 301-305.

Boulos L. 1992. Studies in the Chenopodiaceae of Arabia 5. Notes on Agathophora (Fenzl) Bunge and Cornulaca Del. – Kew Bull. 47: 283-287.

Boulos L, Friis I, Gilbert MG. 1991. Notes on the Chenopodiaceae of Ethiopia, Somalia and southern Arabia. – Nord. J. Bot. 11: 309-316.

Boyd MR, Hallock YF, Cardellina JH, Manfredi KP, Blunt JW, McMahon JB, Buckheit RW Jr, Bringmann G, Schäffer M, Cragg GM, Thomas DW, Jato JG. 1994. Anti-HIV michellamines from Ancistrocladus korpuensis. – J. Med. Chem. 37: 1740-1745.

Boyes JW, Bataglia E. 1951. Embryo sac development in the Plumbaginaceae. – Caryologia 3: 305-310.

Brandbyge J. 1984. Three new species of the genus Triplaris (Polygonaceae). – Nord. J. Bot. 4: 761-764.

Brandbyge J. 1986. A revision of the genus Triplaris (Polygonaceae). – Nord. J. Bot. 6: 545-570.

Brandbyge J. 1989a. 34. Polygonaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 38, Nord. J. Bot., Copenhagen, pp. 1-61.

Brandbyge J. 1989b. Two new species of the genus Coccoloba (Polygonaceae). – Nord. J. Bot. 9: 205-208.

Brandbyge J. 1990a. The diversity of micromorphological features in the genus Coccoloba (Polygonaceae). – Nord. J. Bot. 10: 25-44.

Brandbyge J. 1990b. Woody Polygonaceae from Brazil: new species and a new interpretation. – Nord. J. Bot. 10: 155-160.

Brandbyge J. 1990c. The genus Leptogonum (Polygonaceae). – Nord. J. Bot. 10: 487-492.

Brandbyge J. 1992. The genus Muehlenbeckia (Polygonaceae) in South and Central America. – Bot. Jahrb. Syst. 114: 349-416.

Brandbyge J. 1993. Polygonaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 531-544.

Brandbyge J, Øllgaard B. 1984. Inflorescence structure and generic delimitation of Triplaris and Ruprechtia (Polygonaceae). – Nord. J. Bot. 4: 765-769.

Brandegee K. 1894. Studies in Portulacaceae. – Proc. Calif. Acad. Sci., Ser. II, 4: 86-91.

Brandt R, Lomonosova M, Weising K, Wagner N, Freitag H. 2015. Phylogeny and biogeography of Suaeda subg. Brazia (Chenopodiaceae/Amaranthaceae) in the Americas. – Plant Syst. Evol. 301: 2351-2375.

Brantjes NBM, Leemans JAAM. 1976. Silene otites (Caryophyllaceae) pollinated by nocturnal Lepidoptera and mosquitoes. – Acta Bot. Neerl. 25: 281-295.

Braun PJ, Esteves Pereira E. 2007. Beautiful and bizarre Arrojadoa. The taxonomy of subgenus Albertbuiningia. – Cact. Succ. J. (US) 79: 254-263.

Braun PJ, Esteves Pereira E. 2008. Siccobaccatus insigniflorus. A new status for a marvellous columnar cactus from Brazil. – Cact. Succ. J. (US) 80: 36-41.

Bravo-Hollis H. 1953. Un nuevo género de la familia de las cactáceas, Backebergia. – An. Inst. Biol. Univ. Nac. México 24: 215-232.

Bravo-Hollis H. 1978. Las Cactáceas de México, 2nd ed. – Universidad Nactional Autónoma de México, México.

Bravo-Hollis H, Sánchez-Mejorada H. 1978-1991. Las Cactáceas de Mexico. 2nd ed. I-III. – Universidad Nacional Autonoma de Mexico, Mexico City.

Breckenridge III FG, Miller JM. 1982. Pollination biology, distribution, and chemotaxonomy of the Echinocereus enneacanthus complex (Cactaceae). – Syst. Bot. 7: 365-378.

Bregman R. 1992. Seed studies in the subtribe Borziacactinae Buxbaum (Cactaceae); morphology, taxonomy, phylogeny and biogeography. – Bot. Jahrb. Syst. 114: 201-250.

Bregman R. 1996. The genus Matucana. Biology and systematics of fascinating Peruvian cacti. – A. A. Balkema, Rotterdam & Brookfield.

Bregman R, Bouman F. 1983. Seed germination in Cactaceae. – Bot. J. Linn. Soc. 86: 357-374.

Brenan JPM. 1953. Tropical African plants XXIV. Chenopodiaceae. – Kew Bull. 8: 432-434.

Brenan JPM. 1954. Chenopodiaceae. – Turrill WB, Milne-Redhead E. (2010), Flora of Tropical east Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-26.

Brett OE. 1952. Basic chromosome numbers in the genus Cerastium. – Nature 170: 251-252.

Brett OE. 1954. Cyto-taxonomy of the genus Cerastium I. Cytology. – New Phytol. 54: 138-148.

Brightmore D. 1979. Biological flora of the British Isles 146. Frankenia laevis L. – J. Ecol. 67: 1097-1107.

Brignone NF, Denham SS, Pozner R. 2016. Synopsis of the genus Atriplex (Amaranthaceae, Chenopodioideae) for South America. – Aust. Syst. Bot. 29: 324-357.

Bringmann G, Pokorny F, Reuscher H, Lisch D, Aké Assi L. 1990. Novel Ancistrocladaceae and Dioncophyllaceae type naphthylisoquinoline alkaloids from Ancistrocladus abbreviatus: a phylogenetic link between the two families? – Planta Med. 56: 496-497.

Bringmann G, Lisch D, Reuscher H, Assi LA, Günther K. 1991. Atrop-diastereomer separation by racemate resolution techniques: N-methyl-dioncophylline A and its 7-epimer from Ancistrocladus abbreviatus. – Phytochemistry 30: 1307-1310.

Bringmann G, Rübenacker M, Vogt P, Busse H, Assi LA, Peters K, Shering HG von. 1991. Dioncopeltine A and dioncolactone A: alkaloids from Triphyophyllum peltatum. – Phytochemistry 30: 1691-1696.

Bringmann G, François G, Ake Assi L, Schlauer J. 1998. The alkaloids of Triphyophyllum peltatum (Dioncophyllaceae). – Chimia 52: 18-28.

Bringmann G, Saeb W, God R, Schäffer M, François G, Peters K, Peters E, Proksch P, Hostettmann K, Assi LA. 1998. 5’-O-Demethyldioncophylline A, a new antimalarial alkaloid from Triphyophyllum peltatum. – Phytochemistry 49: 1667-1673.

Bringmann G, Wenzel M, Bringmann HP, Schlauer J. 2001. Uptake of the amino acid alanine by digestive leaves: proof of carnivory in the tropical liana Triphyophyllum peltatum (Dioncophyllaceae). – Carniv. Plants Newsl. 30: 15-21.

Bringmann G, Rüdenauer S, Irmer A, Bruhn T, Brun R, Heimberger T, Stühmer T, Bargou R, Chatterjee M. 2008. Antitumoral and antileishmanial dioncoquinones and ancistroquinones from cell cultures of Triphyophyllum peltatum (Dioncophyllaceae) and Ancistrocladus abbreviatus (Ancistrocladaceae). – Phytochemistry 69: 2501-2509.

Britton NL, Rose JN. 1909. The genus Cereus and its allies in North America. – Contr. U.S. Natl. Herb. 12: 413-437.

Britton NL, Rose JN. 1919-1923. The Cactaceae. Descriptions and illustrations of plants of the cactus family, 1-4. – The Carnegie Institution, Publ. 248, Washington, D.C.

Brochmann C, Lobin W, Sunding P, Stabbetorp O. 1995. Parallel ecoclinal evolution and taxonomy of Frankenia (Frankeniaceae) in the Cape Verde Islands, W Africa. – Nord. J. Bot. 15: 603-623.

Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. – Intern. J. Plant Sci. 170: 627-643.

Brockington SF, Walker RH, Glover BJ, Soltis PS, Soltis DE. 2011. Complex pigment evolution in the Caryophyllales. – New Phytol. 190: 854-864.

Brockington SF, Rudall PJ, Frohlich MW, Oppenheimer DG, Soltis PS, Soltis DE. 2011. ‘Living stones’ reveal alternative petal identity programs within the core eudicots. – The Plant J. 69: 193-203.

Brockington SF, Dos Santos P, Glover B, Ronse De Craene L. 2013. Androecial evolution in Caryophyllales in light of a paraphyletic Molluginaceae. – Amer. J. Bot. 100: 1757-1778.

Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GKS, Moore MJ, Smith SA. 2015. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. – New Phytol. 207: 1170-1180.

Brown GK, Varadarajan GS. 1985. Studies in Caryophyllales I: re-evaluation of classification of Phytolaccaceae s.l. – Syst. Bot. 10: 49-63.

Brown NE. 1925. Mesembryanthemum and some new genera separated from it. – Gard. Chron. 78: 272-273, 412.

Brullo S. 1980. Taxonomic and nomenclatural notes on the genus Limonium in Sicily. – Bot. Not. 133: 281-293.

Brullo S. 1982. Notes on the genus Salsola (Chenopodiaceae) I. The Salsola oppositifolia and S. longifolia groups. – Willdenowia 12: 241-247.

Brullo S. 1984. Taxonomic consideration on the genus Darniella (Chenopodiaceae). – Webbia 38: 301-328.

Brullo S, Pavone P. 1981. Chromosome numbers in the Sicilian species of Limonium Miller (Plumbaginaceae). – An. Jard. Bot. Madrid 37: 535-555.

Brullo S, Pavone P. 1987. Cremnophyton lanfrancoi: a new genus and species of Chenopodiaceae from Malta. – Candollea 42: 621-625.

Brummer-Dinger CH. 1955. Notes on Guiana Droseraceae. – Acta Bot. Neerl. 4: 136-138.

Bruyns PV, Oliveira-Neto M, Melo-de-Pinna GF, Klak C. 2014. Phylogenetic relationships in the Didiereaceae with special reference to subfamily Portulacarioideae. – Taxon 63: 1053-1064.

Brysting AK, Elven R. 2000. The Cerastium alpinum-C. arcticum complex (Caryophyllaceae): numerical analyses of morphological variation and a taxonomic revision of C. arcticum Lange s.l. – Taxon 49: 189-216.

Buchinger M. 1957. Notas sobre la subdivisión de la familia de las Polygonáceas. – Bol. Soc. Argent. Bot. 7: 42-43.

Buchmann SL. 1987. Floral biology of jojoba (Simmondsia chinensis), an anemophilous plant. – Desert Plants 8: 111-124.

Buining AFH. 1980. Die Gattung Discocactus Pfeiffer. Eine Revision bekannter und Diagnosen neuer Arten. – Succulenta, Venlo.

Burke JM, Sanchez A. 2011. Revised subfamily classification for Polygonaceae, with a tribal classification for Eriogonoideae. – Brittonia 63: 510-520.

Burke JM, Sanchez A, Kron K, Luckow M. 2010. Placing the woody tropical genera of Polygonaceae: a hypothesis of character evolution and phylogeny. – Amer. J. Bot. 97: 1377-1390.

Burret F, Rabesa Z, Zandonella P, Voirin B. 1981. Contribution biochimique à la systématique de l’ordre des Centrospermales. – Biochem. Syst. Ecol. 9: 257-262.

Burret F, Lebreton P, Voirin B. 1982. Les aglycones flavoniques de Cactées: distribution, signification. – J. Nat. Prod. 45: 687-693.

Buschi CA, Pomilio AB, Gros EG. 1979. A new flavone from Gomphrena martiana. – Phytochemistry 18: 1249-1250.

Buschi CA, Pomilio AB, Gros EG. 1980. New methylated flavones from Gomphrena martiana. – Phytochemistry 19: 903-904.

Buschi CA, Pomilio AB, Gros EG. 1981. 5,6,7-Trisubstituted flavones from Gomphrena martiana. – Phytochemistry 20: 1178-1179.

Buschmann A. 1938. Über einige ausdauernde Cerastium-Arten aus der Verwandtschaft des C. tomentosum Linn. – Feddes Repert. 43: 118-143.

Butnik AA. 1981. The carpological characteristics of the Chenopodiaceae. – Bot. Žurn. 66: 1433-1443. [in Russian]

Butterworth CA. 2006a. Resolving “Nyffeler’s Puzzle” – the intriguing taxonomic position of Blossfeldia. – Haseltonia 12: 3-10.

Butterworth CA. 2006b. Molecular phylogenetics of Cactaceae Jussieu – a review. – In: Sharma AK, Sharma A (eds), Plant genome biodiversity and evolution 1 C. Phanerogams (Angiosperm-Dicotyledons), Science Publ., Enfield, New Hampshire, pp. 489-524.

Butterworth CA, Edwards EJ. 2008. Investigating Pereskia and the earliest divergences in Cactaceae. – Haseltonia 14: 46-53.

Butterworth CA, Wallace RS. 2004. Phylogenetic studies of Mammillaria (Cactaceae) – insights from chloroplast sequence variation and hypothesis testing using the parametric bootstrap. – Amer. J. Bot. 91: 1086-1098.

Butterworth CA, Wallace RS. 2005. Molecular phylogenetics of the leafy cactus genus Pereskia (Cactaceae). – Syst. Bot. 30: 800-808.

Butterworth CA, Cota-Sanchez JH, Wallace RS. 2002. Molecular systematics of tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation. – Syst. Bot. 27: 257-270.

Butterworth CA, Butterworth KM, Fitz Maurice WA, Fitz Maurice B. 2007. A localized loss of the chloroplast rpl16 intron in Mammillaria series Stylothelae (Cactaceae) delineates members of the M. crinita group. – Bradleya 25: 187-192.

Buttler KP. 1977. Revision von Beta section Corollinae (Chenopodiaceae) I. Selbststerile Basisarten. – Mitt. Bot. Staatssamml. Münchn 13: 255-336.

Buxbaum F. 1942. Rapicactus Buxb. et Oehme, Gen. nov. – Cactaceae. Jahrb. Deutsch. Kakteen-Ges. 1: 1-24.

Buxbaum F. 1944. Untersuchungen zur Morphologie der Kakteenblüte I. Das Gynoeceum. – Bot. Arch. 45: 190-247.

Buxbaum F. 1948. Zur Klärung der phylogenetischen Stellung der Aizoaceae und Cactaceae im Pflanzenreich. – Jahrb. Schweiz. Kakt. Ges. 2: 3-16.

Buxbaum F. 1949. Vorläufer des Kakteen-Habitus bei den Phytolaccaceen. – Österr. Bot. Zeitschr. 96: 5-14.

Buxbaum F. 1950-1954. The morphology of cacti I-III. – Abbey Garden Press, Pasadena, California.

Buxbaum F. 1951a. Stages and lines of evolution of the tribe Euechinocactineae. – Cact. Succ. J. (US) 23: 193-197.

Buxbaum F. 1951b. Die phylogenie der nordamerikanischen Echinocacteen. Trib. Euechinocactineae F. Buxb. – Österr. Bot. Zeitschr. 98: 44-104.

Buxbaum F. 1953. Vorarbeiten zu einem phylogenetischen System der Cactaceae. – Kakt. Sukk. 4: 2-7.

Buxbaum F. 1956. Das Gesetz der Verkürzung der vegetativen Phase in der Familie der Cactaceae. – Österr. Bot. Zeitschr. 103: 354-362.

Buxbaum F. 1957-1960. Morphologie der Kakteen. – In: Krainz H (ed), Die Kakteen, Franckh, Stuttgart.

Buxbaum F. 1958. The phylogenetic division of the subfamily Cereoideae, Cactaceae. – Madroño 14: 177-216.

Buxbaum F. 1961a. Vorläufige Untersuchungen über Umfang, systematische Stellung und Gliederung der Caryophyllales (Centrospermae). – Beitr. Biol. Pflanzen 36: 3-56.

Buxbaum F. 1961b. Die Entwicklungslinien der Tribus Pachycereae F. Buxb. – Bot. Studien 12: 1-107.

Buxbaum F. 1962. Stellung der Kakteen im Pflanzenreich. – Kakt. Sukk. 13: 194-197.

Buxbaum F. 1967. Der gegenwärtige Stand der stammesgeschichtlichen Erforschung der Kakteen. – Kakt. Sukk. 18: 3-9, 22-27.

Buxbaum F. 1969. Die Entwicklungswege der Kakteen in Südamerika. – In: Fittkau EJ, Illies J, Klinge H, Schwabe GH, Sioli H (eds), Biogeography and ecology in South America, W. Junk, The Hague, pp. 583-623.

Buxbaum F. 1980. Kakteenleben. Eine biologische Plauderei für jeden Naturfreund. – Albert Philler Verlag, Minden, Germany.

Cabrera J. 2007. Phylogeny and historical biogeography of the Australian Camphorosmeae (Chenopodiaceae). – Ph.D. diss., Universität Mainz, Germany.

Cabrera JF, Jacobs SWL, Kadereit G. 2009. Phylogeny of the Australian Camphorosmeae (Chenopodiaceae) and the taxonomic significance of the fruiting perianth. – Intern. J. Plant Sci. 170: 505-521.

Cabrera JF, Jacobs SWL, Kadereit G. 2011. Biogeography of Camphorosmeae (Chenopodiaceae): tracking the Tertiary history of Australian aridification. – Telopea 13: 313-326.

Caccavari de Filice MA. 1979. Granos de polen de Nyctagináceas Argentinas. – Rev. Mus. Argent. Ci. Nat. Bernardino Rivadavia 5: 211-227.

Calderón N, Zappi DC, Taylor NP, Ceroni A. 2007. Taxonomy and conservation of Haageocereus Backeb. (Cactaceae) in Peru. – Bradleya 25: 45-124.

Calvente A. 2012. A new subgeneric classification of Rhipsalis (Cactoideae, Cactaceae). – Syst. Bot. 37: 983-988.

Calvente A, Andreata RHP, Vieira RC. 2008. Stem anatomy of Rhipsalis (Cactaceae) and its relevance for taxonomy. – Plant Syst. Evol. 276: 1-7.

Calvente A, Zappi DC, Forest F, Lohmann LG. 2011a. Molecular phylogeny, evolution, and biogeography of South American epiphytic cacti. – Intern. J. Plant Sci. 172: 902-914.

Calvente A, Zappi DC, Forest F, Lohmann LG. 2011b. Molecular phylogeny of the tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora. – Mol. Phylogen. Evol. 58: 456-468.

Calvente A, Moraes EM, Lavor P, Bonatelli IAS, Nacaguma P, Versieux LM, Taylor NP, Zappi DC. 2017. Phylogenetic analyses of Pilosocereus (Cactaceae) inferred from plastid and nuclear sequences. – Bot. J. Linn. Soc. 183: 25-38.

Cameron KM, Wurdack KJ, Jobson RW. 2002. Molecular evidence for the common origin of snaptraps among carnivorous plants. – Amer. J. Bot. 89: 1503-1509.

Campagna ML, Downie SR. 1998. The intron in chloroplast gene rpl16 is missing from the flowering plant families Geraniaceae, Goodeniaceae and Plumbaginaceae. – Trans. Illinois State Acad. Sci. 9: 1-11.

Campbell N, Thomson WW. 1976. The ultrastructure of Frankenia salt glands. – Ann. Bot., N. S., 40: 681-686.

Candau P. 1978a. Palinologia de Caryophyllaceae del sur de España I. Subfamilia Paronychioideae. – Lagascalia 7: 143-157.

Candau P. 1978b. Palinologia en Caryophyllaceae del sur de Espagna II. Subfamilia Alsinoideae. – Lagascalia 8: 39-51.

Capuron R. 1968. Sur le genre Physena Noronh. ex Thouars. – Adansonia, sér. II, 8: 355-357.

Capuron R. 1974. Une variété nouvelle d’Asteropeia amblyocarpa Tul., Théacée de Madagascar. – Adansonia, sér. II, 14: 291-292.

Carlquist SJ. 1981. Wood anatomy of Nepenthaceae. – Bull. Torrey Bot. Club 108: 324-330.

Carlquist SJ. 1982. Wood anatomy of Buxaceae: correlations with ecology and phylogeny. – Flora 172: 463-491.

Carlquist SJ. 1995. Wood anatomy of Caryophyllaceae: ecological, habital, systematic, and phylogenetic implications. – Aliso 14: 1-17.

Carlquist SJ. 1998a. Wood anatomy of Portulacaceae and Hectorellaceae: ecological, habital, and systematic implications. – Aliso 16: 137-153.

Carlquist SJ. 1998b. Wood and stem anatomy of Petiveria and Rivina (Caryophyllales): systematic implications. – IAWA J. 19: 383-391.

Carlquist SJ. 1999a. Wood, stem and root anatomy of Basellaceae with relation to habit, systematics, and cambial variants. – Flora 194: 1-12.

Carlquist SJ. 1999b. Wood anatomy of Agdestis (Caryophyllales): systematic position and nature of the successive cambia. – Aliso 18: 35-43.

Carlquist SJ. 1999c. Wood and stem anatomy of Stegnosperma (Caryophyllales); phylogenetic relationships; nature of lateral meristems and successive cambial activity. – IAWA J. 20: 149-163.

Carlquist SJ. 1999d. Wood anatomy, stem anatomy, and cambial activity of Barbeuia (Caryophyllales). – IAWA J. 20: 431-440.

Carlquist SJ. 2000a. Wood and stem anatomy of phytolaccoid and rivinoid Phytolaccaceae (Caryophyllales): ecology, systematics, nature of successive cambia. – Aliso 19: 13-29.

Carlquist SJ. 2000b. Wood and stem anatomy of Sarcobatus (Caryophyllales): systematic and ecological implications. – Taxon 49: 27-34.

Carlquist SJ. 2000c. Wood and bark anatomy of Achatocarpaceae. – Sida 19: 71-78.

Carlquist SJ. 2001. Wood and stem anatomy of Rhabdodendraceae is consistent with placement in Caryophyllales sensu lato. – IAWA J. 22: 171-181.

Carlquist SJ. 2002. Wood anatomy and successive cambia in Simmondsia (Simmondsiaceae): evidence for inclusion in Caryophyllales s.l. – Madroño 49: 158-164.

Carlquist SJ. 2003a. Wood anatomy of Polygonaceae: analysis of a family with exceptional wood diversity. – Bot. J. Linn. Soc. 141: 25-51.

Carlquist SJ. 2003b. Wood and stem anatomy of woody Amaranthaceae s.s.: ecology, systematics, and the problem of defining rays in dicotyledons. – Bot. J. Linn. Soc. 143: 1-19.

Carlquist SJ. 2004. Lateral meristems, successive cambia and their products: a reinterpretation based on roots and stems of Nyctaginaceae. – Bot. J. Linn. Soc. 146: 129-143.

Carlquist SJ. 2006. Asteropeia and Physena (Caryophyllales): a case study in comparative wood anatomy. – Brittonia 58: 301-313.

Carlquist SJ. 2007. Successive cambia in Aizoaceae: products and process. – Bot. J. Linn. Soc. 153: 141-155.

Carlquist S. 2010. Caryophyllales: a key group for understanding wood anatomy character states and their evolution. – Bot. J. Linn. Soc. 164: 342-393.

Carlquist SJ, Boggs CJ. 1996. Wood anatomy of Plumbaginaceae. – Bull. Torrey Bot. Club 123: 135-147.

Carlquist SJ, Lowrie A. 1990. A new species of tuberous Drosera from Western Australia. – Phytologia 69: 160-162.

Carlquist SJ, Lowrie A. 1992. Eight new taxa of Drosera from Australia. – Phytologia 73: 98-116.

Carlquist SJ, Wilson EJ. 1995. Wood anatomy of Drosophyllum (Droseraceae): ecological and phylogenetic considerations. – Bull. Torrey Bot. Club 122: 185-189.

Carolin RC. 1983. The trichomes of the Chenopodiaceae and Amaranthaceae. – Bot. Jahrb. Syst. 103: 451-466.

Carolin RC. 1987. A review of the family Portulacaceae. – Aust. J. Bot. 35: 383-412.

Carolin RC. 1993. Portulacaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 544-555.

Carolin RC, Jacobs SWL, Vesk M. 1975. Leaf structure in Chenopodiaceae. – Bot. Jahrb. Syst. 95: 226-255.

Carolin RC, Jacobs SWL, Vesk M. 1978. Kranz cells and mesophyll in the Chenopodiales. – Aust. J. Bot. 26: 683-698.

Castro M, Rossello JA. 2007. Karyology of Limonium (Plumbaginaceae) species from the Balearic Islands and the western Iberian Peninsula. – Bot. J. Linn. Soc. 155: 257-272.

Castroviejo S, Lago E. 1992a. Nuevos datos cariológicos de Chenopodiaceae Ibéricas. – Nova Acta Ci. Comp. Biol. 3: 201-203.

Castroviejo S, Lago E. 1992b. Datos acerca de la hibridación en el género Sarcocornia (Chenopodiaceae). – An. Jard. Bot. Madrid 50: 163-170.

Cavaco A. 1962. Les Amaranthaceae de l’Afrique au sud du Tropique du Cancer et de Madagascar. – Mém. Mus. Natl. Hist. Nat. Paris, sér. B, 13: 1-254.

Cave RL, Birch CJ, Hammer GL, Erwin JE, Johnston ME. 2010. Floral ontogeny in Brunonia australis (Goodeniaceae) and Calandrinia speciosa (Portulacaceae). – Aust. J. Bot. 58: 61-69.

Çelebioğlu T, Favarger C, Huynh KL. 1983. Contribution à la micromorphologie de la testa des graines du genre Minuartia (Caryophyllaceae I. sect. Minuartia. – Adansonia 4: 415-435.

Cevallos-Ferriz SRS, Estrada-Ruiz E, Pérez-Hernández BR. 2008. Phytolaccaceae infructescences from Cerro del Pueblo formation, upper Cretaceous (late Campanian), Coahuila, Mexico. – Amer. J. Bot. 95: 77-83.

Chamberland M. 1997. Systematics of the Echinocactus polycephalus complex (Cactaceae). – Syst. Bot. 22: 303-313.

Chan KF, Sun M. 1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. – Theor. Appl. Gen. 95: 865-873.

Chanda S. 1965. The pollen morphology of Droseraceae with special reference to taxonomy. – Pollen Spores 7: 509-528.

Chaney RW. 1944. A fossil cactus from the Eocene of Utah. – Amer. J. Bot. 31: 507-528.

Chang C, Mabry TJ. 1974. The constitution of the order Centrospermae: RNA-DNA hybridization studies among betalain- and anthocyanin-producing families. – Biochem. Syst. 1: 185-190.

Charles G. 1998. Copiapoa. – Cirio Publ. Services Ltd., Holbury.

Charles G. 1999. The genus Espostoa Br. & R. – Brit. Cact. Succ. J. 17: 68-79.

Charles G. 2008. Notes on Maihueniopsis Spegazzini (Cactaceae). – Bradleya 26: 63-74.

Chaturvedi SK. 1989. A new device of self-pollination in Boerhaavia diffusa L. (Nyctaginaceae). – Beitr. Biol. Pflanzen 64: 55-58.

Chaudhri MN. 1968. A revision of the Paronychiinae. – Meded. Bot. Mus. Herb. Rijksuniv. Utrecht 258: 1-440.

Chavez RP, Nava RF, Grafström E, Pfaler M von, Nilsson S. 1998. On the pollen of Salpianthus (Nyctaginaceae) – a morphological and image analysis approach. – Grana 37: 352-357.

Cheek MR. 2000. A synoptic revision of Ancistrocladus (Ancistrocladaceae) in Africa, with a new species from Western Cameroon. – Kew Bull. 55: 871-882.

Cheek MR, Jebb M. 1998. Two new Philippine Nepenthes. – Kew Bull. 53: 966.

Cheek MR, Jebb M. 1999. Nepenthes (Nepenthaceae) in Palawan, Philippines. – Kew Bull. 54: 887-895.

Cheek MR, Jebb M. 2001. Nepenthaceae. – In: Nooteboom HP (ed), Flora Malesiana 1, 15, Foundation Flora Malesiana, Nationaal Herbarium Nederland, Leiden; pp. 1-161.

Cheek MR, Jebb M, Murphy B, Mambor F. 2018. Nepenthes section Insignes in Indonesia, with two new species. – Blumea 62: 174-178.

Chen D, Wang Q-F. 2004. Pentamerous flowers in the genus Phytolacca have been derived from trimerous flowers – new evidence from the floral organogenesis of Phytolacca dodecandra. – Acta Phytotaxon. Sin. 42: 345-351.

Chen L, James SH, Stace HM. 1997. Self incompatibility, seed abortion and clonality in the breeding system of several western Australian Drosera species (Droseraceae). – Aust. J. Bot. 45: 191-201.

Cheng Z-M, Pan H-X, Yin L-K. 2000. Study on the phytochemistry taxonomy of Tamarix L. and Myricaria Desv. – Acta Bot. Boreal.-Occid. Sin. 20: 275-282.

Chesselet P, Van Wyk AE. 2002. Mesembs with nutlike schizocarpic fruit and Ruschianthemum Friedrich sunk under Stoeberia Dinter & Schwantes. – Bothalia 32: 187-190.

Chesselet P, Mössmer M, Smith GF. 1995. Research priorities in the succulent plant family Mesembryanthemaceae Fenzl. – South Afr. J. Sci. 91: 197-209.

Chesselet P, Smith GF, Wyk AE van. 2000. Systematic and evolutionary significance of morphology in the Mesembryanthemaceae: interactive database and illustrated atlas for identification. – Aloe 37: 46-51.

Chesselet P, Smith GF, Wyk AE van. 2001. A new tribal classification for the Mesembryanthemaceae Fenzl based on characters of the floral nectary. – Aloe 38: 25-28.

Chesselet P, Smith GF, Wyk AE van. 2002. A new tribal classification of Mesembryanthemaceae: evidence from floral nectaries. – Taxon 51: 295-308.

Chesselet P, Hammer S, Oliver I. 2003. Brianhuntleya, a new genus endemic to the Worcester-Robertson Karoo, South Africa. – Bothalia 30: 160-164.

Chesselet P, Wyk AE van, Smith GF. 2004. Mesembryanthemaceae: a new tribe and adjustments to infrafamilial classification. – Bothalia 34: 47-51.

Chin L, Moran JA, Clarke C. 2010. Trap geometry in three giant montane pitcher plant species from Borneo is a function of tree shrew body size. – New Phytol. 186: 461-470.

Chinnappa CC, Morton JK. 1984. Studies on the Stellaria longipes complex (Caryophyllaceae) – biosystematics. – Syst. Bot. 9: 60-73.

Chinnock RJ. 1983. The Australian genus Gunniopsis Pax (Aizoaceae). – J. Adelaide Bot. Gard. 6: 133-179.

Chinnock RJ. 2010. Some observations on Salsola L. (Chenopodiaceae) in Australia. – J. Adelaide Bot. Gard. 24: 75-79.

Chopin J, Besson E, Dellamonica G, Nair AGR. 1982. Structure of a 6,8-di-C-pentosylapigenin from Mollugo pentaphylla. – Phytochemistry 21: 2367-2369.

Chopra RN. 1957. The mode of embryo sac development in Opuntia aurantiaca Lindl. – a reinvestigation. – Phytomorphology 7: 403-406.

Chorinsky F. 1931. Vergleichend-anatomische Untersuchung der Haar-gebilde bei Portulacaceen und Cactaceen. – Österr. Bot. Zeitschr. 80: 308-327.

Choudhuri HC. 1942. Chromosome studies in some British species of Limonium. – Ann. Bot., N. S., 6: 183-217.

Choux P. 1934. Les Didiéréacées: xérophytes de Madagascar. – Mém. Acad. Malgache 18: 1-69.

Chowdhuri PK. 1957. Studies in the genus Silene. – Notes Roy. Bot. Gard. Edinb. 22: 221-278.

Christenhusz MJM, Brockington SF, Christin PA, Sage RF. 2014. On the disintegration of Molluginaceae: a new genus and family – Kewa, Kewaceae – segregated from Hypertelis, and placement of Macarthuria in Macarthuriaceae. – Phytotaxa 181: 238-242.

Christin P-A, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF. 2011. Complex evolutionary transitions and the significance of C3-C4 intermediate forms of photosynthesis in Molluginaceae. – Evolution 65: 643-660.

Chrtek J, Křisa B. 1999. A revision of Asian species of the genus Bufonia L. – Acta Univ. Carol., Biol. 43: 77-118.

Chrtek J, Slavíková Z. 1987. Leitbündelanordnung in den Kronblättern von ausgewählten Arten der Familie Stellariaceae. – Preslia 60: 11-21.

Chrtek J, Slaviková Z. 1996. Comments on the families Drosophyllaceae and Droseraceae. – Casopis Národního Rada Prirovedna 165: 139-141.

Chrtek J, Slaviková Z. 1999. Genera and families of the Droserales order. – Novit. Bot. Univ. Carol. Praha 13: 39-46.

Chrtek J, Slaviková Z, Studnička M. 1989. Beitrag zur Leitbündelanordnung in den Kronblättern ausgewählter Arten der fleischfressenden Pflanzen. – Preslia 61: 107-124.

Chu G-L. 1987. Archiatriplex, a new Chenopodiaceous genus from China. – J. Arnold Arbor. 68: 461-469.

Chu G-L, Sanderson SC. 2008. The genus Kochia (Chenopodiaceae) in North America. – Madroño 55. 251-256.

Chu GL, Stutz HC, Sanderson SC. 1991. Morphology and taxonomic position of Suckleya suckleyana (Chenopodiaceae). – Amer. J. Bot. 78: 63-68.

Chuong SDX, Franceschi VR, Edwards GE. 2006. The cytoskeleton maintains organelle partitioning required for single cell C4 photosynthesis in Chenopodiaceae species. – Plant Cell 18: 2207-2223.

Cires E, Prieto JA. 2015. Phylogenetic relationships of Petrocoptis A. Braun ex Endl. (Caryophyllaceae), a discussed genus from the Iberian Peninsula. – J. Plant Res. 128: 223-238.

Cisneros A, Garcia RB, Tel-Zur N. 2011. Ovule morphology, embryogenesis and seed development in three Hylocereus species (Cactaceae). – Flora 206: 1076-1084.

Clement J-S, Mabry TJ. 1996. Pigment evolution in the Caryophyllales: a systematic overview. – Bot. Acta 109: 360-367.

Clement J-S, Mabry TJ, Wyler H, Dreiding AS. 1994. Chemical review and evolutionary significance of betalains. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 247-261.

Clinckemaillie D, Smets EF. 1992. Floral similarities between Plumbaginaceae and Primulaceae: systematic significance. – Belg. J. Bot. 125: 151-153.

Cocucci AE. 1957. El género Ruprechtia (Polygonaceae) en Argentina, Paraguay y Uruguay. – Rev. Fac. Ci. Exact. Fis. Nat. Cordoba 19: 559-618.

Cocucci AE. 1961a. Embriología de Trianthema argentina (Aizoaceae). – Kurtziana 1: 105-122.

Cocucci AE. 1961b. Revisión del género Ruprechtia (Polygonaceae). – Kurtziana 1: 217-269.

Cohn FM. 1913. Beiträge zur Kenntnis der Chenopodiaceen. – Flora 106: 51-89.

Cole DT, Cole NA. 2005. Lithops: Flowering stones. 2nd ed. – Cactus & Co.

Conn BJ. 1980. A review of Drosera in Papuasia. – Brunonia 3: 209-216.

Connor HE. 1984. Gynodioecism in Sarcocornia quinqueflora (Salicornieae) in New Zealand. – New Zealand J. Bot. 22: 433-439.

Conran JG, Jaudzems VG, Hallam ND. 1997. Droseraceae germination patterns and their taxonomic significance. – Bot. J. Linn. Soc. 123: 211-223.

Conran JG, Jaudzems G, Hallam ND. 2007. Droseraceae gland and germination patterns revisited: support for recent molecular phylogenetic studies. – Carniv. Plants Newsl. 36: 14-20.

Consaul LL, Warwick SI, McNeill J. 1991. Allozyme variation in the Polygonum lapathifolium complex. – Can. J. Bot. 69: 2261-2270.

Contandriopoulos J, Favarger C. 1983. Sur quelques espèces de Turquie du genre Arenaria L. (étude cytotaxonomique). – Candollea 38: 733-743.

Conti F. 2003. Minuartia graminifolia (Caryophyllaceae), a south-east European species. – Bot. J. Linn. Soc. 143: 419-432.

Coons MP. 1975. The genus Amaranthus in Ecuador. – Ph.D. diss., University of Michigan, Ann Arbor, Michigan.

Coons MP. 1977. The status of Amaranthus hybridus L. in South America. – Ci. Naturaleza Ci. Nat. 18: 80-87.

Coons MP. 1978. The status of Amaranthus hybridus L. in South America 2: the taxonomic problem. – Ci. Naturaleza Ci. Nat. 19: 66-71.

Coons MP. 1982. Relationships of Amaranthus caudatus. – Econ. Bot. 36: 129-146.

Cornejo DO, Simpson BB. 1997. Analysis of form and function in North American columnar cacti (tribe Pachycereeae). – Amer. J. Bot. 84: 1482-1501.

Correa AMD, Silva TR dos S. 2005. Flora Neotropica Monograph 96. Drosera (Droseraceae). – New York Botanical Garden, Bronx, New York.

Correa MN. 1966. Las Frankeniaceae Argentinas. – Darwiniana 14: 68-94.

Correa MD, Dos Santos Silva TR, Stefano RD de. 2005. 68. Droseraceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 75, Botanical Institute, Göteborg University, pp. 11-16.

Correia E, Freitas H. 2002. Drosophyllum lusitanicum, an endangered west Mediterranean endemic carnivorous plant: threats and its ability to control available resources. – Bot. J. Linn. Soc. 140: 383-390.

Costea M, DeMason DA. 2001. Stem in Amaranthus L. – Taxonomic significance. – Bull. Torrey Bot. Club 128: 254-281.

Costea M, Tardif FJ. 2003. The bracteoles in Amaranthus (Amaranthaceae): their morphology, structure, function, and taxonomic significance. – Sida 20: 969-985.

Costea M, Tardif FJ. 2005. Taxonomy of the Polygonum douglasii (Polygonaceae) complex with a new species from Oregon. – Brittonia 57: 1-27.

Costea M, Sanders A, Waines G. 2001. Preliminary results toward a revision of the Amaranthus hybridus species complex (Amaranthaceae). – Sida 19: 931-974.

Costea M, Waines G, Sanders A. 2001 [2003]. Structure of the pericarp in some Amaranthus L. (Amaranthaceae) species and its taxonomic significance. – Aliso 20: 51-60.

Costea M, Weaver E, Tardif FJ. 2004. The biology of Canadian weeds 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. – Can. J. Plant Sci. 84: 631-668.

Cota JH. 1997. A phylogenetic study of Ferocactus Britton and Rose (Cactaceae: Cactoideae). – Ph.D. diss., Iowa State University, Ames, Iowa.

Cota JH, Wallace RS. 1995. Karyotypic studies in the genus Echinocereus (Cactaceae) and their taxonomic significance. – Caryologia 48: 105-122.

Cota JH, Wallace RS. 1997. Chloroplast DNA evidence for divergence in Ferocactus and its relationships to North American columnar cacti (Cactaceae: Cactoideae). – Syst. Bot. 22: 529-542.

Cota JH, Rebman JP, Wallace RS. 1996. Chromosome numbers in Ferocactus (Cactaceae: Cactoideae). – Cytologia 61: 431-437.

Cota-Sánchez JH, Reyes-Olivas Á, Sánchez-Soto B. 2007. Vivipary in coastal cacti: a potential reproductive strategy in halophytic environments. – Amer. J. Bot. 94: 1577-1581.

Coulter JM. 1896. Preliminary revision of the North American species of Echinocactus, Cereus, and Opuntia. – Contr. U.S. Natl. Herb. 3: 406.

Covas G. 1939. Los géneros de Amarantáceas Argentinas. – Rev. Argent. Agron. 6: 282-303.

Covas G. 1941. Las Amarantáceas Bonarienses. – Darwiniana 5: 329-368.

Cranwell LM. 1961. Subantarctic pollen and spores I. Lyallia of Kerguelen. – Pollen Spores 3: 11-20.

Cranwell LM. 1963. The Hectorellaceae: pollen type and taxonomic speculation. – Grana Palynol. 4: 195-202.

Crawford DJ, Evans K. 1978. The affinities of Chenopodium flabellifolium: evidence from seed coat surface and flavonoid chemistry. – Brittonia 30: 313-318.

Crawley SS, Hilu KW. 2012a. Impact of missing data, gene choice, and taxon sampling on phylogenetic reconstruction: the Caryophyllales (angiosperms). – Plant Syst. Evol. 298: 297-312.

Crawley SS, Hilu KW. 2012b. Caryophyllales: evaluating phylogenetic signal in trnK intron versus matK. – J. Syst. Evol. 50: 387-410.

Crespo MB, Lledó MD. 2000. Two new North African genera related to Limoniastrum (Plumbaginaceae). – Bot. J. Linn. Soc. 132: 165-174.

Cronquist A, Thorne RF. 1994. Nomenclatural and taxonomic history. – In: Behnke H-D, Mabry TJ (eds) Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 87-121.

Crow GE. 1978. A taxonomic revision of Sagina (Caryophyllaceae) in North America. – Rhodora 80: 1-91.

Crow GE. 1979. The systematic significance of seed morphology in Sagina (Caryophyllaceae) under scanning electron microscopy. – Brittonia 31: 52-63.

Crozier BS. 2004. Subfamilies of Cactaceae Juss., including Blossfeldioideae subfam. nov. – Phytologia 86: 52-64.

Crozier BS. 2005. Systematics of Cactaceae Juss.: phylogeny, cpDNA evolution, and classification, with emphasis on the genus Mammillaria Haw. – Ph.D. diss., University of Texas, Austin, Texas.

Cruden RW. 1970. Hawkmoth pollination of Mirabilis. – Bull. Torrey Bot. Club 97: 89-91.

Cruden RW. 1973. Reproductive biology of weedy and cultivated Mirabilis. – Amer. J. Bot. 60: 802-809.

Cruz MÁ, Arias S, Terrazas T. 2016. Molecular phylogeny and taxonomy of the genus Disocactus (Cactaceae), based on the DNA sequences of six chloroplast markers. – Willdenowia 46: 145-164.

Cuadrado GA, Garralla SS. 2009. Palinología de los géneros de Cactaceae Maihuenia (Maihuenioideae) y Pereskia (Pereskioideae) de Argentina. – Bonplandia 18: 5-12.

Cuénoud P. 2006. Phylogeny, evolution and diversification of Caryophyllales. – In: Sharma AK, Sharma A (eds), Plant genome biodiversity and evolution 1 C, Phanerogams (Angiosperms-Dicotyledons), Science Publ., Enfield, New Hampshire, pp. 187-218.

Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. – Amer. J. Bot. 89: 132-144.

Cufodontis G. 1953. Caryophyllaceae. Enumeratio plantarum Aethiopiae. – Bull. Jard. Bot. Bruxelles 23: 97-98.

Cui D-F, Liao W-B, Zhang B. 2000. Determination of flavonoid compounds of Reaumuria L. (Tamaricaceae) and their taxonomical significance. – Acta Bot. Boreal.-Occid. Sin. 20: 283-287.

Culham A, Gornall RJ. 1994. The taxonomic significance of naphthoquinones in the Droseraceae. – Biochem. Syst. Ecol. 22: 507-515.

Cullen DC, Suárez A de. 1953. Las espécies argentinas del género Calandrinia (Portulacaceae). – Bol. Soc. Argent. Bot. 5: 1-112.

Curran MK. 1885. Classification of the Eriogoneae as affected by some connecting forms. – Bull. Calif. Acad. Sci. 1: 272-275.

Curtis GJ. 1968. Observations on fruit shape and other characters in the species of the section Patellares, genus Beta. – Euphytica 17: 485-491.

Czukavina A. 1966. Knorringia, a new section in Polygonum L. – Novit. Syst. Plant. Vasc. 1966: 92-93. [In Russian]

Dahlgren KVO. 1916. Zytologische und embryologische Studien über die reihen Primulales und Plumbaginales. – Kungl. Sv. Vetensk.-Akad. Handl. 56(4): 1-80.

Dahlgren RMT, Van Wyk AE. 1988. Structures and relationships of families endemic to or centered in southern Africa. – In: Goldblatt P, Lowry PP II (eds), Modern systematic studies in African botany, Monographs in Systematic Botany 25, Missouri Botanical Garden, St. Louis, Missouri, pp. 1-95.

Dajoz I, Till-Bottraud I, Gouyon P-H. 1991. Evolution of pollen morphology. – Science 253: 66-68.

Dalby DH. 1962. Chromosome number, morphology and breeding behaviour in the British Salicornieae. – Watsonia 5: 150-162.

Dalby DH. 1963. Seed dispersal in Salicornia pusilla. – Nature 199: 197-198.

Damboldt J, Phitos D. 1966. Ein Beitrag zur Zytotaxonomie der Gattung Silene L. in Griechenland. – Österr. Bot. Zeitschr. 113: 169-175.

Dammer U. 1893a. Polygonaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1a), W. Engelmann, Leipzig, pp. 1-36.

Dammer U. 1893b. Die Verbreitungsausrüstungen der Polygonaceen. – Engl. Bot. Jahrb. Syst. 15: 260-285.

Danin A. 2001. A new species of Bufonia (Caryophyllaceae) from Israel: B. ramonensis. – Willdenowia 31: 95-100.

Danin A, Baker I, Baker HG. 1978. Cytogeography and taxonomy of the Portulaca oleracea L. polyploid complex. – Israel J. Bot. 27: 177-211.

Danser BH. 1927. Die Polygonaceen Niederländisch-Ostindiens. – Bull. Jard. Bot. Buitenzorg, sér. III, 8: 117-261.

Danser BH. 1928. The Nepenthaceae of the Netherlands Indies. – Bull. Jard. Bot. Buitenzorg, sér. III, 9: 249-438.

Daston JS. 1946. Three noteworthy cacti of southwestern Utah. – Amer. Midl. Natur. 36: 661-662.

Datson B. 2002. Samphires in Western Australia: a field guide to Chenopodiaceae tribe Salicornieae. – Department of Conservation and Land Management, Perth, Western Australia.

Daumann E. 1930. Das Blütennektarium von Nepenthes. – Beih. Bot. Centralbl. 47: 1-14.

Davidson BL. 2000. Lewisias. – Timber Press, Portland, Oregon.

Davis RJ. 1966. The North American perennial species of Claytonia. – Brittonia 18: 285-303.

Daxenbichler M, Spencer GF, Carlson DG, Rose GB, Brinker AM, Powell RG. 1991. Glucosinolate composition of seeds from 297 species of wild plants. – Phytochemistry 30: 2623-2638.

DeBuhr LE. 1977. Sectional reclassification of Drosera subgenus Ergaleium (Droseraceae). – Aust. J. Bot. 25: 209-218.

DeFraine E. 1912. The anatomy of the genus Salicornia. – Bot. J. Linn. Soc. 41: 317-348.

DeFraine E. 1916. The morphology and anatomy of the genus Statice as represented at Blakeney Point. – Ann. Bot. 30: 240-280.

Degraeve N. 1980. Étude de diverses particularités caryotypiques des genres Silene, Lychnis et Melandrium. – Bol. Soc. Brot., ser. II, 53: 595-643.

Dehghani M, Akhani H. 2009. Pollen morphological studies in subfamily Suaedoideae (Chenopodiaceae). – Grana 48: 79-101.

Dehmer KJ. 2003. Molecular diversity in the genus Amaranthus. – In: Knüpffer H, Ochsmann J (eds), Schriften zu Genetischen Resourcen 22, Rudolf Mansfeld and Plant Genetic Resources, ZADI, Bonn, pp. 208-215.

Dehn M. 1992. Untersuchungen zum Verwandtschaftskreis der Ruschiinae (Mesembryanthemaceae). – Mitt. Inst. Allg. Bot. Hamburg 24: 91-198.

De Laet J, Clinckemaille J, Jansen S, Smets E. 1995. Floral ontogeny of the Plumbaginaceae. – J. Plant Res. 108: 289-304.

de la Fuente V, Oggerin M, Rufo L, Rodríguez N, Ortuñez E, Sánchez-Mata D, Amils R. 2013. A micromorphological and phylogenetic study of Sarcocornia A. J. Scott (Chenopodiaceae) on the Iberian Peninsula. – Plant Biosyst. 147: 158-173.

Demaio PH, Barfuss MHJ, Till W, Chiapella J. 2010. Entwicklungsgeschichte und infragenerische Klassifikation der Gattung Gymnocalycium: Erkenntnisse aus molekularen Daten. Phylogenetic relationships and infrageneric classification of the genus Gymnocalycium: insights from molecular data. – Gymnocalycium 23(Sonderausgabe): 925-946.

Demaio PH, Barfuss MHJ, Kiesling R, Till W, Chiapella JO. 2011. Molecular phylogeny of Gymnocalycium (Cactaceae): assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. – Amer. J. Bot. 98: 1841-1854.

Desfeux C, Lejeune B. 1996. Systematics of Euromediterranean Silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequences. – Compt. Rend. Acad. Sci. Paris, sciences de la vie 319: 351-358.

Desfeux C, Maurice S, Henry J-P, Lejeune B, Gouyon P-H. 1996. Evolution of reproductive systems in the genus Silene. – Proc. Biol. Sci., Roy. Soc. 263: 409-414.

Devi HM, Rao MSR. 1976. Embryology of Suaeda maritima (L.) Dumort. – Curr. Sci. 45: 383-385.

Dicht RF, Lüthy AD. 2003. Coryphantha. Kakteen aus Nordamerika. – E. Ulmer, Stuttgart.

Dickie SL. 1996. Phylogeny and evolution in the subfamily Opuntioideae (Cactaceae): insights from rpl16 intron sequence evolution. – M.Sc. thesis, Iowa State University, Ames, Iowa.

Dickison WC. 2002. Physenaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 332-333.

Dickison WC, Miller RB. 1993. Morphology and anatomy of the Malagasy genus Physena (Physenaceae), with a discussion on the relationships of the genus. – Bull. Mus. Natl. Hist. Nat. (Paris), sér. IV, sect. B, Adansonia 15: 85-106.

Diels L. 1936. Droseraceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 766-784.

Di Fulvio TE. 1975. Estomatogenesis en Halophytum ameghinoi (Halophytaceae). – Kurtziana 8: 17-29.

Dillenberger MS, Kadereit JW. 2014. Maximum polyphyly: multiple origins and delimitation with plesiomorphic characters require a new circumscription of Minuartia (Caryophyllaceae). – Taxon 63: 64-88.

Dillenberger MS, Kadereit JW. 2015. A revision of Facchinia (Minuartia s.l., Caryophyllaceae). – Edinburgh J. Bot. 72: 353-389.

Dinan L, Whiting P, Scott AJ. 1998. Taxonomic distribution of phytoecdysteroids in seeds of members of Chenopodiaceae. – Biochem. Syst. Ecol. 26: 553-576.

Di Tomaso JM. 1998. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. – Weed Technol. 12: 326-336.

Di Vincenzo V, Gruenstaeudl M, Nauheimer L, Wondafrash M, Kamau P, Demissew S, Borsch T. 2018. Evolutionary diversification of the African achyranthoid clade (Amaranthaceae) in the context of sterile flower evolution and epizoochory. – Ann. Bot. 122: 69-85.

Dixon KW, Pate SJ. 1978. Phenology, morphology and reproductive biology of the tuberous sundew, Drosera erythrorhiza Lindl. – Aust. J. Bot. 26: 441-454.

Dnyansagar VR, Malkhede SR. 1963. Development of the seed of Trianthema portulacastrum Linn. – Proc. Indian Acad. Sci., Sect. B, 57: 343-355.

Doğan M, Akaydin GP. 2002a. A new species of Acantholimon Boiss. (Plumbaginaceae) from Turkey. – Bot. J. Linn. Soc. 138: 365-368. – Erratum: 139: 223.

Doğan M, Akaydin GP. 2002b. A new species of Acantholimon Boiss. (Plumbaginaceae) from Ankara, Turkey. – Bot. J. Linn. Soc. 140: 443-448.

Doğan M, Akaydin G. 2007. Synopsis of Turkish Acantholimon Boiss. (Plumbaginaceae). – Bot. J. Linn. Soc. 154: 397-419.

Doida Y. 1960. Cytological studies in Polygonum and related genera I. – Bot. Mag. (Tokyo) 37: 337-340.

Dolcher T, Pignatti S. 1971. Un’ ipotesi sull evoluzione dei Limonium del bacino del Mediterraneo. – Giorn. Bot. Ital. 105: 95-107.

Donald J, Rowley GD. 1966. Reunion of the genus Neoporteria. – Cact. Succ. J. Gr. Brit. 28: 54-58.

Donati D, Zanovello C. 2011. Epithelantha. – Associazione Cactus Trentino Südtirol, Villazzano.

Douglas NA, Manos PS. 2007. Molecular phylogeny of Nyctaginaceae: taxonomy, biogeography, and characters associated with radiation of xerophytic genera in North America. – Amer. J. Bot. 94: 856-872.

Douglas N, Spellenberg R. 2010. A new tribal classification of Nyctaginaceae. – Taxon 59: 905-910.

Doweld AB. 1999. Tribal taxonomy of Pereskioideae and Opuntioideae (Cactaceae). – Sukkulenty I: 25-26.

Doweld AB. 2000a. Proposal to conserve the name Brasilicactus against Acanthocephala (Cactaceae). – Taxon 49: 564-565.

Doweld AB. 2000b. Proposal to conserve the name Eriocactus against Eriocephala (Cactaceae). – Taxon 49: 566-568.

Downie SR, Palmer JD. 1994a. A chloroplast DNA phylogeny of the Caryophyllales based on structural and inverted repeat restriction site variation. – Syst. Bot. 19: 236-252. – Erratum: Syst. Bot. 19: 487.

Downie SR, Palmer JD. 1994b. Phylogenetic relationships using restriction site variation of the chloroplast DNA inverted repeat. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 223-233.

Downie SR, Katz-Downie DS, Cho K-J. 1997. Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. – Amer. J. Bot. 84: 253-273.

Doyle JJ. 1983. Flavonoid races of Claytonia virginica (Portulacaceae). – Amer. J. Bot. 70: 1085-1092.

Drude O. 1891. Droseraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 261-272.

Ducousso M, Ramanankierana H, Duponnois R, Rabévohitra R, Randrihasipara L, Vincelett M, Dreyfus B, Prin Y. 2008. Mycorrhizal status of native trees and shrubs from eastern Madagascar littoral forests with special emphasis on one new ectomycorrhizal endemic family, the Asteropeiaceae. – New Phytol. 178: 233-238.

Dugand A. 1952. Notas sobre algunas Triplaris (Polygonaceae) de Venezuela y la costa caribe de Colombia. – Mutisia 10: 1-6.

Duke JA. 1960. Polygonaceae in Flora of Panama. – Ann. Missouri Bot. Gard. 47: 323-359.

Duke JA. 1961. Preliminary revision of the genus Drymaria. – Ann. Missouri Bot. Gard. 48: 173-268.

Dulberger R. 1975. Intermorph structural differences between stigmatic papillae and pollen grains in relation to incompatibility in Plumbaginaceae. – Proc. Roy. Soc. London, Biol. 188: 2578-274.

Dunbar A. 1967. Wachs im Sporoderm von Plumbago capensis Thunb. – Grana Palynol. 7: 10-15.

Dupont S. 1968. Épidermes et plantules des mesembryanthemacées. Systématique, évolution. – Bull. Soc. Hist. Nat. Toulouse 104: 7-64.

Dupont S. 1977. Notes on the pollen of the Mesembryanthemaceae. Principal types, variation and problems requiring study. – Cact. Succ. J. Great Britain 39: 57-63.

Duran A, Menemen Y. 2003. A new species of Silene (Caryophyllaceae) from South Anatolia, Turkey. – Bot. J. Linn. Soc. 143: 109-113.

Durand R, Zenk MH. 1974. The homogenisate ring-cleavage pathway in the biosynthesis of acetate-derived naphthoquinones of the Droseraceae. – Phytochemistry 13: 1483-1492.

Durović S, Schönswetter P, Niketić M, Tomović G. Frajman B. 2017. Disentangling relationships among the members of the Silene saxifraga alliance (Caryophyllaceae): phylogenetic structure is geographically rather than taxonomically segregated. – Taxon 66: 343-364.

Ebrahimzadeh H, Ataei-Azimi A, Akhani H, Noori-Daloii MR. 1994. Studies on the caryology of some species of the genus Suaeda (Chenopodiaceae) in Iran. – J. Sci. Islamic Rep. Iran 5: 81-88.

Eckardt T. 1954. Morphologische und systematische Auswertung der Placentation von Phytolaccaceen. – Ber. Deutsch. Bot. Ges. 67: 113-129.

Eckardt T. 1955. Nachweis der Blattbürtigkeit (‘Phyllosporie’) grundständiger Samenanlagen bei Centrospermen. – Ber. Deutsch. Bot. Ges. 68: 167-182.

Eckardt T. 1967a. Vergleich von Dysphania mit Chenopodium und mit Illecebraceae. – Bauhinia 3: 327-344.

Eckardt T. 1967b. Blütenbau und Blütenentwicklung von Dysphania myriocephala Benth. – Bot. Jahrb. Syst. 86: 20-37.

Eckardt T. 1967c. Blütenmorphologie von Dysphania plantaginella F. v. M. – Phytomorphology 17: 165-172.

Eckardt T. 1974. Vom Blütenbau der Centrospermen-Gattung Lophiocarpus Turcz. – Phyton (Horn) 16: 13-27.

Eckardt T. 1976. Classical morphological features of centrospermous families. – Plant Syst. Evol. 126: 5-25.

Edman G. 1929. Zur Entwicklungsgeschichte der Gattung Oxyria Hill, nebst zytologischen, embryologischen, und systematischen Bemerkungen über einige andere Polygonaceen. – Acta Horti Berg. 9: 165-291.

Edwards EJ. 2006. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae). – New Phytol. 172: 479-789.

Edwards EJ, Diaz M. 2006. Ecological physiology of Pereskia guamacho, a cactus with leaves. – Plant Cell Envir. 29: 247-256.

Edwards EJ, Donoghue MJ. 2006. Pereskia and the origin of the cactus life form. – Amer. Natur. 167: 777-793.

Edwards EJ, Nyffeler R, Donoghue MJ. 2005. Basal cactus phylogeny: implications of Pereskia paraphyly for the transition to the cactus life form. – Amer. J. Bot. 92: 1177-1188.

Eggens F, Popp M, Nepokroeff M, Wagner WL, Oxelman B. 2007. The origin and number of introductions of the Hawaiian endemic Silene species (Caryophyllaceae). – Amer. J. Bot. 94: 210-218.

Eggli U. 1984. Stomatal types of Cactaceae. – Plant Syst. Evol. 146: 197-214.

Eggli U. 1997. A synopsis of woody Portulacaceae in Madagascar. – Adansonia, sér. III, 19: 45-59.

Eggli U (ed). 2002. Illustrated handbook of succulent plants. Dicotyledons. – Springer, Berlin, Heidelberg, New York.

Eggli U, Nyffeler R. 1998. Proposal to conserve Parodia against Frailea. – Taxon 47: 475-476.

Eggli U, Taylor NP. 1991. Index of names of Cactaceae published 1950-1990. – Royal Botanic Gardens, Kew.

Eggli U, Muñoz Schick M, Leuenberger BE. 1995 [1996]. Cactaceae of South America: the Ritter collections. – Englera 16.

Ehler N, Barthlott W. 1978. Die epicuticulare Skulptur der Testa-Zellwände einiger Mesembryanthemaceae. – Bot. Jahrb. Syst. 99: 329-340.

Ehrendorfer F. 1976a. Chromosome numbers and differentiation of centrospermous families. – Plant Syst. Evol. 126: 27-30.

Ehrendorfer F. 1976b. Closing remarks: systematics and evolution of centrospermous families. – Plant Syst. Evol. 126: 99-105.

Elghamry MI, Grunert E, Aehnelt E. 1971. An active principle responsible for estrogenicity in the leaves of Beta vulgaris. – Plant Med. 19: 208-214.

Eliasson UH. 1987. 44. Amaranthaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 28, Swedish Natural Science Research Council, Stockholm, pp. 1-137.

Eliasson UH. 1988. Floral morphology and taxonomic relations among the genera of Amaranthaceae in the New World and the Hawaiian Islands. – Bot. J. Linn. Soc. 96: 235-283.

Eliasson UH. 1993. 35A. Phytolaccaceae, 35B. Achatocarpaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 46, Nord. J. Bot., Copenhagen, pp. 1-51.

Eliassson UH. 1996. 37. Molluginaceae, 38. Aizoaceae, 39. Portulacaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 55, Nord. J. Bot., Copenhagen, pp. 1-53.

Ellis AG, Weis AE. 2006. Coexistence and differentiation of ‘flowering stones’: the role of local adaptation to soil microenvironment. – J. Ecol. 94: 322-335.

Ellis AG, Weis AE, Gaut BS. 2006. Evolutionary radiation of “stone plants” in the genus Argyroderma (Aizoaceae): unravelling the effects of landscape, habitat, and flowering time. – Evolution 60: 39-55.

Ellis JR, Janick J. 1960. The chromosomes of Spinacia oleracea. – Amer. J. Bot. 47: 210-214.

Emberger L. 1939. La structure de la fleur des Polygonacées. – Compt. Rend. Acad. Sci. Paris 208: 370-372.

Endler J, Buxbaum F. 1973. Die Pflanzenfamilie der Kakteen. Ein systematischer Wegweiser für Liebhaber und Erwerbszüchter mit einer kompletten Liste der Gattungssynonyme. Dritte Auflage. – Verlag A. Philler, Minden, Germany.

Endress ME, Bittrich V. 1993. Molluginaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 419-426.

Engel T, Barthlott W. 1988. Micromorphology of epicuticular waxes in centrosperms. – Plant Syst. Evol. 161: 71-85.

Engleman EM. 1960. Ovule and seed development in certain cacti. – Amer. J. Bot. 47: 460-467.

Engler A. 1912. Caryophyllaceae africanae. – Engl. Bot. Jahrb. Syst. 48: 380-384.

Engler A. 1925. Reihe Opuntiales. Historische Entwicklung der Ansichten über die systematische Stellung der Reihe. – In: Engler A (ed), Die Natürlichen Pflanzenfamilien. 2. Aufl. 21: 592-594.

Engler A (†). 1931. Rutaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 187-359.

Erbar C, Leins P. 2006. Floral ontogeny and systematic position of the Didiereaceae. – Plant Syst. Evol. 261: 165-185.

Erben M. 1978. Die Gattung Limonium im südwestmediterranen Raum. – Mitt. Bot. Staatssamml. München 14: 361-631.

Erben M. 1979. Karyotype differentiation and its consequences in Mediterranean Limonium. – Webbia 34: 409-417.

Erben M. 1986. Bemerkungen zur Taxonomie der Gattung Limonium III. – Mitt. Bot. Staatssamml. München 22: 203-220.

Erben M. 1988. Bemerkungen zur Taxonomie der Gattung Limonium IV. – Mitt. Bot. Staatssamml. München 27: 281-406.

Erben M. 1991. Bemerkungen zur Taxonomie der Gattung Limonium VI. – Mitt. Bot. Staatssamml. München 30: 459-478.

Erben M, Crespo MB. 2003. Myriolepis, a new genus segregated from Limonium (Plumbaginaceae). – Taxon 52: 67-73.

Erdtman G. 1948. Pollen morphology and plant taxonomy VIII. Didiereaceae. – Bull. Mus. Natl. Hist. Nat. Paris, sér. II, 20: 387-394.

Erdtman G. 1958. A note on the pollen morphology in the Ancistrocladaceae and Dioncophyllaceae. – Veröff. Geobot. Inst. Rübel Zürich 33: 47-49.

Erdtman G. 1968. On the exine in Stellaria crassipes Hult. – Grana Palynol. 8: 271-276.

Erdtman G, Dunbar A. 1966. Notes on electron micrographs illustrating the pollen morphology in Armeria maritima and A. sibirica. – Grana Palynol. 6: 435-475.

Eriksson R. 1996. 40. Basellaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 55, Nord. J. Bot., Copenhagen, pp. 53-86.

Eriksson R. 2007. A synopsis of Basellaceae. – Kew Bull. 62: 297-320.

Erixon P, Oxelman B. 2008. Reticulate or tree-like chloroplast DNA evolution in Sileneae (Caryophyllaceae)? – Mol. Phylogen. Evol. 48: 313-325.

Eröz Poyraz İ, Ataşlar E. 2010. Pollen and seed morphology of Velezia L. (Caryophyllaceae) genus in Turkey. – Turkish J. Bot. 34: 179-190.

Ertter B. 1980. A revision of the genus Oxytheca (Polygonaceae). – Brittonia 32: 70-102.

Ertter B. 1981. Notes on Goodmania and Oxytheca (Polygonaceae: Eriogonoideae). – Brittonia 33: 37-38.

Esau K. 1934. Ontogeny of phloem in the sugar beet (Beta vulgaris L.). – Amer. J. Bot. 21: 632-644.

Esau K, Cheadle VJ. 1969. Secondary growth in Bougainvillea. – Ann. Bot., N. S., 33: 807-819.

Eyma PJ. 1934. Polygonaceae. – In: Pulle A (ed), Flora of Suriname, Vereeniging Kolonial Institute te Amsterdam, Meded. no. xxx. Afd. Handelsmuseum no. 11, pp. 49-71.

Fagerlind F. 1937. Der Embryosack von Plumbagella und Plumbago. – Ark. f. Bot. 29B(1): 1-8.

Fahn A. 1958. Xylem structure and annual rhythm of development in trees and shrubs of the desert 1. Tamarix aphylla, T. jordanis var. negevensis, T. gallica var. marismortui. – Trop. Woods 109: 81-94.

Fahn A. 1963. The fleshy cortex of articulated Chenopodiaceae. – J. Indian Bot. Soc. 42A: 39-45.

Fahn A, Arzee T. 1959. Vascularization of articulated Chenopodiaceae and the nature of their fleshy cortex. – Amer. J. Bot. 46: 330-338.

Fahn A, Dembo N. 1964. Structure and development of the epidermis in articulated Chenopodiaceae. – Israel J. Bot. 13: 177-192.

Fahn A, Shchori Y. 1967. The organization of the secondary conducting tissues in some species of the Chenopodiaceae. – Phytomorphology 17: 147-154.

Falatoury AN, Assadi M, Ghahremaninejad F. 2016. New species and new synonymy in the genus Gypsophila L. subgenus Pseudosaponaria Williams (Caryophyllaceae). – Adansonia 38: 257-265.

Falkovich MI, Kovalev OV. 2007. An overview of classification of the higher taxa of the Chenopodiaceae and the family origin. – In: Kovalev OV, Zhilin SG (eds), Phase transitions in biological systems and the evolution of biodiversity, PIYaF RAN, St. Petersburg, Russia, pp. 80-115. [in Russian with English summary]

Favarger C. 1962. Contribution à l’étude cytologique des genres Minuartia et Arenaria. – Bull. Soc. Neuchâtel. Sci. Nat. 85: 53-81.

Favarger C. 1965. A striking polyploid complex in the alpine flora: Arenaria ciliata L. – Bot. Not. 118: 273-280.

Favarger C. 1967. Nombres chromosomiques de quelques taxa principalement balkaniques du genre Minuartia (L.) Hiern. – Bot. Jahrb. Syst. 86: 282.

Favarger C. 1972. Sur quelques Arenaria d’Europe et d’Asie occidentale. – Bot. Not. 125: 465-476.

Fawzi NM, Fawzi AM, Mohamed AA. 2010. Seed morphological studies on some species of Silene L. (Caryophyllaceae). – Intern. J. Bot. 6: 287-292.

Fay MF, Cameron KM, Prance GT, Lledó MD, Chase MW. 1997. Familial relationships of Rhabdodendron (Rhabdodendraceae): plastid rbcL sequences indicate a caryophyllid placement. – Kew Bull. 52: 923-932.

Fearn PJ. 1996. A review of the origins of the cactus family and the search for a system of classification. – Wimborne, United Kingdom. [Publ. by the author]

Fellows CE. 1976. Chromosome counts and new combinations in Claytonia sect. Limnia (Portulacaceae). – Madroño 23: 296-297.

Feodorova TA. 2011. Phylogenetic relations of the south African species of Caroxylon sect. Caroxylon and Tetragonae (Chenopodiaceae) based on the morphology and nrITS sequences. – Turczaninowia 14: 69-76.

Ferguson DJ. 1991. In defense of the genus Glandulicactus Backeb. – Cactus Succ. J. (U.S.) 63: 87-91.

Ferguson DJ. 1992. The genus Echinocactus Link & Otto, subgenus Homalocephala (Br. & R.) stat. nov. – Cactus Succ. J. (U.S.) 64: 169-172.

Ferguson DJ. 2001. Phemeranthus and Talinum (Portulacaceae) in New Mexico. – New Mexico Botanist 20: 1-7.

Ferguson DJ, Kiesling R. 1997. Puna bonnieae (Cactaceae), a new species from Argentina. – Cactus Succ. J. 69: 287-293.

Fernald ML. 1919. The unity of the genus Arenaria. – Rhodora 21: 1-22.

Fernandes A, Leitao MT. 1971. Contribution à la connaissance cytotaxonomique des Spermatophyta du Portugal III. Caryophyllaceae. – Bol. Soc. Broteriana, sér. II, 45: 143-176.

Fiedler H. 1910. Beiträge zur Kenntnis der Nyctaginaceae. – Engl. Bot. Jahrb. Syst. 44: 572-605.

Fior S, Karis PO. 2007. Phylogeny, evolution and systematics of Moehringia (Caryophyllaceae) as inferred from molecular and morphological data: a case for homology reassessment. – Cladistics 23: 362-372.

Fior S, Karis PO, Casazza G, Minuto L, Sala F. 2006. Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA ITS sequences. – Amer. J. Bot. 93: 399-411.

Flores-Olvera H, Davis JI. 2001. A cladistics analysis of Atripliceae (Chenopodiaceae) based on morphological data. – J. Torrey Bot. Soc. 128: 297-319.

Flores-Olvera H, Vrijdaghs A, Ochoterena H, Smets E. 2011. The need to re-investigate the nature of homoplastic characters: an ontogenetic case study of the ‘bracteoles’ in Atripliceae (Chenopodiaceae). – Ann. Bot. 108: 847-865.

Flowers TJ, Galal HK, Bromham L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plants. – Funct. Plant Biol. 37: 604-612.

Ford DI. 1992. Systematics and evolution of Montiopsis subgenus Montiopsis. – Ph.D. diss., Washington University, St. Louis, Missouri.

Ford DI. 1993. New combinations in Montiopsis Kuntze (Portulacaceae). – Phytologia 74: 273-278.

Ford-Lloyd BV, Williams JT. 1975. A revision of Beta section Vulgares (Chenopodiaceae), with new light on the origin of cultivated beets. – Bot. J. Linn. Soc. 71: 89-102.

Forterre Y, Skotheim JM, Dumais J, Mahadevan L. 2005. How the Venus flytrap snaps. – Nature 433: 421-425.

Fosberg FR. 1978. Studies in the genus Boerhavia L. (Nyctaginaceae) 1-5. – Smithsonian Contr. Bot. 39: 1-20.

Foster PF, Sork VL. 1997. Population and genetic structure of the West African rain forest liana Ancistrocladus korupensis (Ancistrocladaceae). – Amer. J. Bot. 84: 1078-1091.

Fowler BA, Turner BL. 1977. Taxonomy of Selinocarpus and Ammocodon (Nyctaginaceae). – Phytologia 37: 177-208.

Fraine E de. 2013. The anatomy of the genus Salicornia. – Bot. J. Linn. Soc. 41: 317-348.

Fraine E de, Salisbury ES. 1916. The morphology and anatomy of the genus Statice as represented at Blakeney Point I. Statice binervosa G. E. Sm. and S. bellidifolia D. C. – Ann. Bot. 30: 239-282.

Frajman B, Oxelman B. 2007. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. – Mol. Phylogen. Evol. 43: 140-155.

Frajman B, Eggfens F, Oxelman B. 2009. Hybrid origins and homoploid reticulate evolution within Heliosperma (Sileneae, Caryophyllaceae): a multigene phylogenetic approach with relative dating. – Syst. Biol. 58: 328-345.

Frajman B, Heidari N, Oxelman B. 2009. Phylogenetic relationships of Atocion and Viscaria (Sileneae, Caryophyllaceae) inferred from chloroplast, nuclear ribosomal, and low-copy gene DNA sequences. – Taxon 58: 811-824.

Frajman B, Thollesson M, Oxelman B. 2013. Taxonomic revision of Atocion and Viscaria (Sileneae, Caryophyllaceae). – Bot. J. Linn. Soc. 173: 194-210.

Franchet AR. 1895. Sur quelques Rheum nouveaux du Thibet oriental et du Yunnan. – Bull Mus. Natl. Hist. Nat. Paris 1: 211-213.

Franck AR. 2012. Synopsis of Harrisia including a newly described species, several typifications, new synonyms, and a key to species. – Haseltonia 18: 95-104.

Franck AR, Cochrane BJ, Garey JR. 2013a. Relationships and dispersal of the Caribbean species of Harrisia (sect. Harrisia; Cactaceae) using AFLPs and seven DNA regions. – Taxon 62: 486-497.

Franck AR, Cochrane BJ, Garey JR. 2013b. Phylogeny, biogeography, and infrageneric classification of Harrisia (Cactaceae). – Syst. Bot. 38: 210-223.

Franco FF, Rodrigues Silva GA, Moraes EM, Taylor N, Zappi DC, Jojima CL, Machado MC. 2017. Plio-Pleistocene diversification of Cereus (Cactaceae, Cereeae) and closely allied genera. – Bot. J. Linn. Soc. 183: 199-210.

François G, Bringmann G, Phillipson JD, Aké Assi L, Dochez C, Rübenacker M, Schneider C, Warhurst DC, Kirby GC. 1994. Activity of extracts and naphthylisoquinoline alkaloids from Triphyophyllum peltatum, Ancistrocladus abbreviatus and A. barteri against Plasmodium falciparum in vitro. – Phytochemistry 35: 1461-1464.

Franz E. 1908. Beiträge zur Kenntnis der Portulacaceen und Basellaceen. – Engl. Bot. Jahrb. Syst. (Beibl. 97) 42: 1-46.

Freitag H, Kadereit G. 2014. C3 and C4 leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). – Plant Syst. Evol. 300: 665-687.

Freitag H, Stichler W. 2002. Bienertia cycloptera Bunge ex Boiss., Chenopodiaceae, another C4 plant without Kranz tissues. – Plant Biol. 4: 121-132.

Freitag H, Vural M, Adigüzel N. 1999. A remarkable new Salsola and some new records of Chenopodiaceae from Central Anatolia, Turkey. – Willdenowia 29: 123-139.

Freson R. 1967. Note sur la distribution africaine du genre Ancistrocladus Wall. (Ancistrocladaceae). – Bull. Jard. Bot. Nat. Belg. 37: 73-76.

Friedrich H-C. 1955. Beiträge zur Kenntnis einiger Familien der Centrospermae. – Mitt. Bot. Staatssamml. München 2: 56-66.

Friedrich H-C. 1956a. Studien über die natürliche Verwandtschaft der Plumbaginales und Centrospermae. – Phyton 6: 220-263.

Friedrich H-C. 1956b. Beiträge zur Kenntnis der Molluginaceen. Revision der Gattung Limeum L. – Mitt. Bot. Staatssamml. München 2: 133-258.

Friedrich H-C. 1957. Aizoanthemum Dinter ex Friedr., eine wenig beachtete Gattung der Ficoideae aus Südwestafrika. – Mitt. Bot. Staatssamml. München 2: 339-347.

Friedrich H-C. 1959. Beiträge zur Kenntnis einiger Familien der Centrospermae. – Mitt. Bot. Staatssamm. München 12: 56-66.

Friedrich H-C. 1970. Aizoaceae. – In: Merxmüller H (ed), Prodromus einer Flora von Südwestafrika 27, J. Cramer, München, pp. 58-74.

Frye ASL, Kron KA. 2003. rbcL phylogeny and character evolution in Polygonaceae. – Syst. Bot. 28: 326-332.

Fuente V de la, Oggerin M, Rufo L, Rodrígues N, Ortuñez E, Sánchez-Mata D, Amils R. 2013. A micromorphological and phylogenetic study of Sarcocornia A. J. Scott (Chenopodiaceae) on the Iberian Peninsula. – Plant Biosyst. 147: 158-173.

Fuente V de la, Rufo L, Rodrígues N, Sánchez-Mata D, Franco A, Amils R. 2016. A study of Sarcocornia A. J. Scott (Chenopodiaceae) from Western Mediterranean Europe. – Plant Biosyst. 150: 343-356.

Fuentes-Bazán S, Mansion G, Borsch T. 2012. Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). – Mol. Phylogen. Evol. 62: 359-374.

Fuentes-Bazán S, Uotila P, Borsch T. 2012. A novel phylogeny-based generic classification for Chenopodium sensu lato, and a tribal rearrangement of Chenopodioideae (Chenopodiaceae). – Willdenowia 42: 5-24.

Fuertes-Aguilar J, Nieto Feliner G. 2003. Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). – Mol. Phylogen. Evol. 28: 430-447.

Fuertes-Aguilar J, Rossello JA, Nieto Feliner G. 1999. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). – Mol. Ecol. 8: 1341-1346.

Gadella TWJ, Kliphuis E, Naber J. 1979. Chromosome numbers in the tribe Rhipsalinae (Cactaceae). – Bot. Not. 132: 294.

Gage AT. 1903. A census of the Indian Polygonums. – Rec. Bot. Surv. India 2: 371-452.

Gagnepain F. 1918. Place de quelques genre soi-disant de la famille des Ficoîdes. – Bull. Soc. Bot. France 65: 7-10.

Gail PA. 1964. Simmondsia chinensis (Link) Schneider: anatomy and morphology of flowers. – M.A. thesis, Claremont.

Galasso G, Banfi E, Mattia F di, Grassi F, Sgorbati S, Labra M. 2009. Molecular phylogeny of Polygonum L. s.l. (Polygonoideae, Polygonaceae), focusing on European taxa: preliminary results and systematic considerations based on rbcL plastidial sequence data. – Atti Soc. Ital. Sci. Nat. Mus. Civ. Storia Nat. Milano 150: 113-148.

Galle P. 1977. Untersuchungen zur Blütenentwicklung der Polygonaceen. – Bot. Jahrb. Syst. 98: 449-489.

Galloway LA. 1975. Systematics of the North American desert species of Abronia and Tripterocalyx (Nyctaginaceae). – Brittonia 27: 328-347.

Gama-López S, Arlas S. 1998 Una nueva especie de Pachycereus (Cactaceae) del occidente de México. – Novon 8: 359-363.

Ganong WF. 1898. Contributions to a knowledge of the morphology and ecology of the Cactaceae II. The comparative morphology of the embryos and seedlings. – Ann. bot. 12: 423-474.

Gao Y, Su Y, Yan S, Wu Z, Zhang X, Wang T, Gao X. 2010. Hexaoxygenated flavonoids from Pteroxygonum giraldii. – Nat. Prod. Commun. 5: 223-226.

García C, Pastor J, Luque T. 1989. Contribucion al estudio cariologico del género Rumex (Polygonaceae). – Acta Bot. Malacit. 14: 129-140.

Garg SP, Bhushan R, Kapoor RC. 1979. Chrysin 7-galactoside: a new flavonoid from Aerva persica Burm. f. – Indian J. Chem. 17B: 416-417.

Garralla S, Cuadrado GA. 2007. Pollen morphology of Austrocylindropuntia Backeb., Maihuenopsis Speg., Opuntia Mill. and Tephrocactus Lem. (Cactaceae, Opuntioideae) of Argentina. – Rev. Palaeobot. Palynol. 146: 1-17.

Gaskin JF. 2002. Tamaricaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 363-368.

Gaskin JF, Ghahremaninejad F, Zhang D-Y, Londo JP. 2004. A systematic overview of Frankeniaceae and Tamaricaceae from nuclear rDNA and plastid sequence data. – Ann. Missouri Bot. Gard. 91: 401-409.

Geesink R. 1969. An account of the genus Portulaca in Indo-Australia and the Pacific (Portulacaceae). – Blumea 17: 275-307.

Geitler L. 1932. Zur Morphologie der Blüten von Polygonum. – Österr. Bot. Zeitschr. 78: 229-241.

Genc GE, Kandemir A, Genc I. 2007. A new species of Silene (Caryophyllaceae) from east Anatolia, Turkey. – Nord. J. Bot. 25: 58-63.

Gentry HS. 1958. The natural history of jojoba (Simmondsia chinensis) and its cultural aspects. – Econ. Bot. 12: 261-295.

Gerbaulet M. 1992a. Die Gattung Anacampseros L. (Portulacaceae) I. Untersuchungen zur Systematik. – Bot. Jahrb. Syst. 113: 477-564.

Gerbaulet M. 1992b. Die Gattung Anacampseros L. (Portulacaceae) II. Untersuchungen zur Biogeographie. – Bot. Jahrb. Syst. 113: 565-576.

Gerbaulet M. 1993. Die Gattung Anacampseros L. (Portulacaceae) III. Untersuchungen zur Standort-Ökologie der afrikanischen Arten. – Bot. Jahrb. Syst. 114: 1-28.

Gerbaulet M. 1995. Phyllobolus N. E. Br. emend. Bittrich (Aizoaceae): a reassessment of generic boundaries. – Bot. Jahrb. Syst. 117: 385-399.

Gerbaulet M. 1996a. Revision of the genus Sceletium N. E. Br. (Aizoaceae). – Bot. Jahrb. Syst. 118: 9-24.

Gerbaulet M. 1996b. Revision of the genus Prenia N. E. Br. (Aizoaceae). – Bot. Jahrb. Syst. 118: 25-40.

Gerbaulet M. 1996c. Revision of the genus Aridaria N. E. Br. (Aizoaceae). – Bot. Jahrb. Syst. 118: 41-58.

Gerbaulet M. 1997. Revision of the genus Phyllobolus N. E. Br. (Aizoaceae). – Bot. Jahrb. Syst. 119: 145-211.

Gerbaulet M. 2012. One or many genera in Mesembryanthemoideae (Aizoaceae)? Discussion of a conflict in genus perception. – Bradleya 30: 187-198.

Gerloff N, Neduchal J. 2004. Taxonomische Neubearbeitung der Gattung Notocactus Fric. – Internoto 25: 35-128.

Gerloff N, Neduchal J, Stuchlik M. 1995. Notokakteen. Gesamtdarstellung aller Notokakteen. – Kveten, Brno.

Germishuizen G. 1987. Notes on African plants: Polygonaceae: a new variety of Oxygonum alatum. – Bothalia 17: 185-187.

Germishuizen G. 1989. Polygonaceae: Oxygonum altissimum, a new species from central Somalia. – Bothalia 19: 210-211.

Ghaffari S. M. 2004. Cytotaxonomy of some species of Acanthophyllum (Caryophyllaceae) from Iran. – Biologia (Bratislava) 59: 53-60.

Giannasi DE, Zurawski G, Learn G, Clegg MT. 1992. Evolutionary relationships of the Caryophyllidae based on comparative rbcL sequences. – Syst. Bot. 17: 1-15.

Gibson AC. 1973. Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). – Biotropica 5: 29-65.

Gibson AC. 1977. Vegetative anatomy of Maihuenia (Cactaceae) with some theoretical discussions of ontogenetic changes in xylem cell types. – Bull. Torrey Bot. Club 104: 35-48.

Gibson AC. 1978. Rayless secondary xylem of Halophytum. – Bull. Torrey Bot. Club 105: 39-44.

Gibson AC. 1982. Phylogenetic relationships of Pachycereeae. – In: Barker F, Starmer WT (eds), Ecological, genetics and evolution. The cactus-yeast-Drosophila model system, Academy Press, Sydney, pp. 3-16.

Gibson AC. 1988a. The systematics and evolution of subtribe Stenocereinae 2. Polaskia. – Cact. Succ. J. (US) 60: 55-62.

Gibson AC. 1988b. The systematics and evolution of subtribe Stenocereinae 3. Myrtillocactus. – Cact. Succ. J. (US) 60: 109-116.

Gibson AC. 1988c. The systematics and evolution of subtribe Stenocereinae 4. Escontria. – Cact. Succ. J. (US) 60: 161-167.

Gibson AC. 1991. The systematics and evolution of subtribe Stenocereinae 11. Stenocereus dumortieri versus Isolatocereus dumortieri. – Cact. Succ. J. (US) 63: 184-190.

Gibson AC. 1994. Vascular tissues. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, pp. 45-74.

Gibson AC, Horak KE. 1978. Systematic anatomy and phylogeny of Mexican columnar cacti. – Ann. Missouri Bot. Gard. 65: 999-1057.

Gibson AC, Nobel PS. 1986. The cactus primer. – Harvard University Press, Cambridge, Massachusetts.

Gibson AC, Spencer KC, Bajaj R, McLaughlin JL. 1986. The ever-changing landscape of cactus systematics. – Ann. Missouri Bot. Gard. 73: 532-555.

Gibson R, Conn BJ, Bruhl JJ. 2012. Morphological evaluation of the Drosera peltata complex (Droseraceae). – Aust. Syst. Bot. 25: 49-80.

Gibson TC, Waller DM. 2009. Evolving Darwin’s ‘most wonderful’ plant: ecological steps to a snap-trap. – New Phytol. 183: 575-587.

Gilbert MG. 1987a. The taxonomic position of the genera Telephium and Corrigiola. – Taxon 36: 47-49.

Gilbert MG. 1987b. Two new species of Polycarpaea (Caryophyllaceae) from Somalia. – Kew Bull. 42: 701-704.

Gilbert MG. 1991. Notes on the Caryophyllaceae of Ethiopia and Somalia. – Nord. J. Bot. 11: 451-457.

Gilbert MG. 1993. A review of Gisekia (Gisekiaceae). – Kew Bull. 48: 343-356.

Gilbert MG. 1994. Three new species of Portulaca sect. Neossia from east and northeast Africa. – Nord. J. Bot. 14: 307-309.

Gilbert MG. 2000. A review of the opposite-leaved species of Portulaca in Africa and Arabia. – Kew Bull. 55: 769-802.

Gilbert MG, Thulin M. 1993. A new species of Mollugo (Molluginaceae) from Somalia. – Nord. J. Bot. 13: 169-170.

Gilg E. 1895. Ancistrocladaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 274-276.

Gilg E. 1897. Amarantaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(1a), pp. 151-154.

Gilg E. 1925. Ancistrocladaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 589-592.

Gilmer K, Thomas H-P. 1998. Die Gattung Tephrocactus Lemaire s. str. – Taxonomie, Ökologie und Kultur. – Schumannia 2: 85-141.

Glass C (ed). 1998. Guide to the threatened cacti of Mexico. – Cante AC., San Miguel de Allende, Guanajuato, Mexico.

Glass C, Foster R. 1972. Gymnocactus aguirreanus. A new species from southern Coahuila, Mexico. – Cactus Succ. J. (U.S.) 44: 80-81.

Glass C, Foster R. 1975. The genus Echinomastus in the Chihuahuan Desert. – Cact. Succ. J. (US) 47: 218-223.

Glass C, Foster R. 1977. A revision of the genus Turbinicarpus. – Cactus Succ. J. (U.S.) 49: 161-176.

Glass C, Foster R. 1978. A revision of the genus Epithelantha. – Cact. Succ. J. (US) 50: 184-187.

Godofredo VR, Melo-de-Pinna GF. 2008. Occurrence of wide-band tracheids in Cactaceae: wood variation during Pilosocereus aurisetus development. – J. Torrey Bot. Soc. 135: 94-102.

Gómez-Hinostrosa C, Hernández HM, Terrazas T, Correa-Cano ME. 2014. Studies on Mexican Cactaceae V. Taxonomic notes on Selenicereus tricae. – Brittonia 66: 51-59.

Gonçalves ML. 1978a. 88. Cactaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 506-508.

Gonçalves ML. 1978b. 89a. Aizoaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 508-521.

Gonçalves ML. 1978c. 89b. Molluginaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 522-548.

Gonçalves ML. 1978d. 89c. Mesembryanthemaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 548-553.

Gonçalves ML. 1978e. 89d. Tetragoniaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 553-555.

Gonella PM, Fleischmann A, Rivadavia F, Neill DA, Sano PT. 2016. A revision of Drosera (Droseraceae) from the central and northern Andes, including a new species from the Cordillera del Cóndor (Peru and Ecuador). – Plant Syst. Evol. 302: 1419-1432.

Goodman GJ. 1934. A revision of the North American species of the genus Chorizanthe. – Ann. Missouri Bot. Gard. 21: 1-102.

Gorelick R. 2002. DNA sequences and cactus classification: a short review. – Bradleya 20: 1-4.

Gorelick R. 2004. Resolving the phylogenetic placement of Blossfeldia liliputana (Cactaceae): reticulate evolution, chloroplast inheritance, and graft-chimeras. – Bradleya 22: 9-14.

Gottwald H, Parameswaran N. 1968. Das sekundäre Xylem und die systematische Stellung der Ancistrocladaceae und Dioncophyllaceae. – Bot. Jahrb. Syst. 88: 49-69.

Goyder DJ. 1988. A revision of Arenaria section Plinthine (Caryophyllaceae). – Bot. J. Linn. Soc. 97: 9-32.

Grady BR, Reveal JL. 2011. New combinations and a new species of Eriogonum (Polygonaceae: Eriogonoideae) from the Great Basin Desert, United States. – Phytotaxa 24: 33-38.

Graham RA. 1957. A revision of Oxygonum. – Kew Bull. 12: 145-172.

Graham RA. 1958. Polygonaceae. – In: Turrill WB, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-40.

Grant V, Grant KA. 1983. Hawkmoth pollination of Mirabilis longiflora (Nyctaginaceae). – Proc. Natl. Acad. Sci. U.S.A. 80: 1298-1299.

Grant WF. 1959. Cytogenetic studies in Amaranthus II. Natural interspecific hybridization between Amaranthus dubius and A. spinosus. – Can. J. Bot. 37: 1063-1070.

Green S, Green TL, Heslop-Harrison Y. 1979. Seasonal heterophylly and leaf gland features in Triphyophyllum (Dioncophyllaceae), a new carnivorous plant genus. – Bot. J. Linn. Soc. 78: 99-116.

Greenberg AK, Donoghue MJ. 2011. Molecular systematics and character evolution in Caryophyllaceae. – Taxon 60: 1637-1652.

Greene EL. 1904. Certain polygonaceous genera. – Leafl. Bot. Observ. Crit. 1: 17-50.

Grego-Valencia D, Terrazas T, Lara-Martínez R, Jiménez-García LF. 2015. La membrane de la punteadura en dos especies de Cacteae, Cactaceae. – Bot. Sci. 93: 209-219.

Greuter W. 1995a. Silene (Caryophyllaceae) in Greece: a subgeneric and sectional classification. – Taxon 44: 543-581.

Greuter W. 1995b. Studies in Greek Caryophylloideae: Agrostemma, Silene and Vaccaria. – Willdenowia 25: 105-142.

Greuter W, Böhling N, Jahn R. 2002. The Cerastium scaposum group (Caryophyllaceae): three annual taxa endemic to Crete (Greece), two of them new. – Willdenowia 32: 45-54.

Grevenstuk T, Gonçalves S, Nogueira JMF, Romano A. 2008. Plumbagin recovery from field specimens of Drosophyllum lusitanicum (L.) Link. – Phytochem. Analysis 19: 229-235.

Grey-Wilson C, Wadhwa BM. 1987. Two new species of Chenopodiaceae from the Western Himalaya. – Kew Bull. 42: 471-475.

Griffith MP. 2002. Grusonia pulchella reclassification and its impact on the genus Grusonia: morphological and molecular evidence. – Haseltonia 9: 86-93.

Griffith MP. 2003. Using molecular data to elucidate reticulate evolution in Opuntia (Cactaceae). – Madroño 50: 162-169.

Griffith MP. 2004a. What did the first cactus look like? An attempt to reconcile the morphological and molecular evidence. – Taxon 53: 493-499.

Griffith MP. 2004b. Early cactus evolution: a postmodern view. – Haseltonia 10: 3-11.

Griffith MP. 2004c. The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. – Amer. J. Bot. 91: 1915-1921.

Griffith MP. 2005. Cactus evolution and systematics: studies in the Opuntioideae. – Ph.D. diss., Claremont Graduate University, Claremont, California.

Griffith MP. 2008. Pereskia, Portulacaceae, photosynthesis and phylogenies: implications for early Cactaceae. – Haseltonia 14: 37-45.

Griffith MP. 2009. Evolution of leaf and habit characters in Opuntioideae (Cactaceae): reconstruction of ancestral form. – Bradleya 27: 49-58.

Griffith MP, Porter JM. 2009. Phylogeny of Opuntioideae (Cactaceae). – Intern. J. Plant Sci. 170: 107-116.

Grigore M-N, Ivanescu L, Toma T. 2014. Halophytes: an integrative anatomical study. – Springer-Verlag, Cham etc.

Grigorjev GS. 1933. Neue Arten der Gattung Polygonum aus der Flora Mittel-Asiens. – Acta Inst. Bot. Acad. Sci. URSS, ser. 1: 101-104.

Griss A. 1959. Neue Primulaceen und Chenopodiaceen aus Afghanistan. – Feddes Repert. 62: 22-26.

Gross MH. 1913a. Beiträge zur Kenntnis der Polygonaceen. – Engl. Bot. Jahrb. Syst. 49: 234-239.

Gross MH. 1913b. Remarques sur les Polygonées de l’Asie Orientale. – Bull. Acad. Intern. Géogr. Bot. 23: 7-32.

Guaralnick LJ, Jackson MD. 2001. The occurrence and phylogenetics of crassulacean acid metabolism in the Portulacaceae. – Intern. J. Plant Sci. 162: 257-262.

Gubellini L, Lakušić D, Conti F, Santangelo A. 2001. Alcune note su Silene sect. Saxifragoides (Caryophyllaceae) nell’Italia peninsulare. – Inform. Bot. Ital. 33: 520-523.

Güerere I, Tezara W, Herrera C, Fernández MD, Herrera A. 1996. Recycling of CO2 during induction of CAM by drought in Talinum paniculatum (Portulacaceae). – Physiol. Plant. 98: 471-476.

Guerrero PC, Arroyo MTK, Bustamante RO, Duarte M, Hagemann TK, Walter HE. 2011. Phylogenetics and predictive distribution modelling provide insights in the geographic divergence of Eriosyce subgen. Neoporteria (Cactaceae). – Plant Syst. Evol. 297: 113-128.

Guilliams CM. 2009. Phylogenetic reconstruction, character evolution, and conservation in the genus Calyptridium (Montiaceae). – M.Sc. thesis, San Diego State University, California.

Guilló A, Alonso M, Juan A. 2013. New insights into seminal and stomatal morphology and their contribution to the taxonomy of the Old World succulent perennial Salicornioideae. – Plant Syst. Evol. 299: 1185-1203.

Guilló A, Alonso MA, Lendínez ML, Salazar C, Juan A. 2014. Taxonomical identity of Sarcocornia fruticosa and S. hispanica in the Iberian Peninsula. – An. Jard. Bot. Madrid 71(2): e011.

Gundersen A. 1927. The Frankeniaceae as a link in the classification of the dicotyledons. – Torreya 27: 65-71.

Gupta AK, Murty YS. 1987. Floral anatomy in Tamaricaceae. – J. Indian Bot. Soc. 66: 275-282.

Guralnick LJ, Jackson MD. 2001. The occurrence and phylogenetics of Crassulacean acid metabolism in the Portulacaceae. – Intern. J. Plant Sci. 162: 257-262.

Guralnick LJ, Marsh C, Asp R, Karjala A. 2001. Physiological and anatomical aspects of CAM-cycling in Lewisia cotyledon var. cotyledon (Portulacaceae). – Madroño 48: 131-137.

Guralnick LJ, Edwards GE, Ku MSB, Hockema B, Franceschi V. 2002. Photosynthetic and anatomical characteristics in the C4-crassulacean acid metabolism-cycling plant Portulaca grandiflora. – Funct. Plant Biol. 29: 763-773.

Guralnick LJ, Cline A, Smith M, Sage RF. 2008. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. – J. Experim. Bot. 59: 1735-1742.

Gustafsson M. 1976. Evolutionary trends in the Atriplex prostrata group of Scandinavia. Taxonomy and morphological variation. – Opera Bot. 39: 1-64.

Gustafsson M. 1986. Taxonomic position and distribution of Atriplex lapponica (Chenopodiaceae). – Nord. J. Bot. 6: 11-13.

Gustavsson LÅ. 1976. New species of Anchusa and Arenaria from Sterea Ellas, Greece. – Bot. Not. 129: 273-278.

Gutermann W. 2011. Notulae nomenclaturales 41-45. Neue Namen bei Cruciata und Kali sowie einige kleinere Korrekturen. – Phyton 51: 95-102.

Guzmán U, Arias S, Dávila P. 2003. Catálogo de Cactáceas Mexicanas. – Universidad Nacional Autónoma de México y Comisión Nactional para el Conocimiento y Uso de la Biodiversidad, México D.F.

Haas R. 1976. Morphologische, anatomische und entwicklungsgeschichtliche Untersuchungen an Blüten und Früchten hochsukkulenter Mesembryanthemaceen-Gattungen. – Diss. Bot. 33: 1-256.

Haccius B. 1954. Embryologische und histogenetische Studien an ”monokotylen Dikotylen” I. Claytonia virginica L. – Österr. Bot. Zeitschr. 101: 285-303.

Haccius B, Troll W. 1961. Über die sogenannten Wurzelhaare an den keimpflanzen von Drosera- und Cuscuta-Arten. – Beitr. Biol. Pflanzen 36: 139-157.

Hakki MI. 2013. On flower anatomy and embryology of Lophiocarpus polystachyus (Lophiocarpaceae). – Willdenowia 43: 185-194.

Hakki MJ. 1972. Blütenmorphologische und embryologische Untersuchungen an Chenopodium capitatum und C. foliosum sowie weiteren Chenopodiaceae. – Bot. Jahrb. Syst. 92: 178-330.

Halbritter H, Hesse M, Weber M. 2012. The unique design of pollen tetrads in Dionaea and Drosera. – Grana 51: 148-157.

Halket AC. 1928. The morphology of Salicornia – an abnormal plant. – Ann. Bot. (Oxford) 42: 525-530.

Hall BA. 1949. The floral anatomy of Drosera and Begonia and its bearing on the theory of carpel polymorphism. – Amer. J. Bot. 36: 416-421.

Hall HM, Clements FC. 1923. The phylogenetic method in taxonomy. The North American species of Artemisia, Chrysothamnus, and Atriplex. – Publ. Carnegie Inst. Washington 326: 1-355.

Hallier H. 1923. Beiträge zur Kenntnis der Linaceae (DC. 1819) Dumort. – Beih. Bot. Centralbl. 39: 1-178.

Hallock YF, Manfredi KP, Dai J-R, Cardellina JH II, Gulkowski JR, McMahon JB, Schäffer M, Stahl M, Gulden K-P, Bringmann G, François G, Boyd MR. 1997. Michellamines D-F, new HIV-ionhibitory dimeric napththylisoquinoline alkaloids, and korupensamine E, a new antimalarial monomer, from Ancistrocladus korupensis. – J. Nat. Prod. 60: 677-683.

Hammer SA. 1991. The genus Conophytum: a monograph. – Succulent Plant Publ., Pretoria.

Hammer T, Davis R, Thiele K. 2015. A molecular framework phylogeny for Ptilotus (Amaranthaceae): evidence for the rapid diversification of an arid Australian genus. – Taxon 64: 272-285.

Hanelt P. 1970. Vorkommen und Vergesellschaftung von Nanophyton erinaceum (Pall.) Bunge in der Mongolischen Volksrepublik. – Arch. Naturschutz Landschaftsforsch. 10: 19-40.

Hannon DP. 1993. When to split and when to lump. – Cactus Succ. J. 65: 205.

Hänsel R, Hörhammer L. 1954. Phytochemisch-systematische Untersuchung über die Flavonglykoside einiger Polygonaceen. – Arch. Pharm. 287: 189-198.

Hanson CA. 1962. Perennial Atriplex of Utah and the northern desert. – Thesis, Brigham Young University, Provo, Utah.

Hanson AD, Rathinassabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA. 1994. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stree tolerance. – Proc. Natl. Acad. Sci. U.S.A. 91: 306-310.

Hara H. 1962. Sunania Rafin. versus Tovara Adanson. – J. Jap. Bot. 37: 326-332.

Haraldson K. 1978. Anatomy and taxonomy in Polygonaceae subfam. Polygonoideae Meissn. emend. Jaretzky. – Symb. Bot. Upsal. 22(2): 1-95.

Harbaugh DT, Nepokroeff M, Rabeler RK, McNeill J, Zimmer EA, Wagner WL. 2010. A new lineage-based tribal classification of the family Caryophyllaceae. – Intern. J. Plant Sci. 171: 185-198.

Harborne JB. 1967. Comparative biochemistry of the flavonoids IV. Correlations between chemistry, pollen morphology, and systematics in the family Plumbaginaceae. – Phytochemistry 6: 1415-1428.

Harborne JB. 1975. Flavonoid bisulphates and their co-occurrences with ellagic acid in the Bixaceae, Frankeniaceae, and related families. – Phytochemistry 14: 1331-1337.

Hardham CB. 1989. Chromosome numbers of some annual species of Chorizanthe and related genera (Polygonaceae: Eriogonoideae). – Phytologia 66: 89-94.

Harms H. 1936. Nepenthaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, W. Engelmann, Leipzig, pp. 728-765.

Harpke D, Peterson A. 2006. Non-concerted ITS evolution in Mammillaria (Cactaceae). – Mol. Phylogen. Evol. 41: 579-593.

Harpke D, Peterson A, Hoffmann MH, Röser M. 2006. Phylogenetic evaluation of chloroplast trnL-trnF DNA sequence variation in the genus Mammillaria. – Schlechtendalia 14: 7-16.

Harriman NA. 1999. Synopsis of New World Commicarpus (Nyctaginaceae). – Sida 18: 679-684.

Harris EM, Horn JW, Wagner WL. 2012. Floral development of the divergent endemic Hawaiian genus Schiedea (Caryophyllaceae), with special emphasis on the floral nectaries. – Taxon 61: 576-591.

Harris FS, Martin CE. 1991. Correlation between CAM-cycling and photosynthetic gas exchange in five species of Talinum (Portulacaceae). – Plant Physiol. 96: 1118-1124.

Hartl D, Klapper H, Barbier B, Ensikat HJ, Dronskowski R, Müller P, Ostendorp G, Tye A, Bauer R, Barthlott W. 2007. Diversity of calcium oxalate crystals in Cactaceae. – Can. J. Bot. 85: 501-517.

Hartl WP, Barbier B, Klapper H, Müller P, Barthlott W. 2003. Dimorphism of calcium oxalate crystals in stem tissues of Rhipsalideae (Cactaceae) – a contribution to the systematics and taxonomy of the tribe. – Bot. Jahrb. Syst. 124: 287-302.

Hartman RL, Rabeler RK. 2004. New combinations in North American Eremogone (Caryophyllaceae). – Sida 21: 237-247.

Hartmann HEK. 1976. Monographie der Gattung Odontophorus N. E. Br. (Mesembryanthemaceae Fenzl). – Bot. Jahrb. Syst. 97: 161-225.

Hartmann HEK. 1978. Monographie der Gattung Argyroderma N. E. Br. (Mesembryanthemaceae Fenzl). – Mitt. Inst. Allg. Bot. Hamburg 15: 121-235.

Hartmann HEK. 1979. Surface structure of leaves: their ecological and taxonomical significance in members of the subfamily Ruschioideae Schw. (Mesembryanthemaceae Fenzl). – In: Cutler DF, Hartmann HEK (eds), Scanning electron microscope studies of the leaf epidermis in some succulents, Trop. Subtrop. Pflanzenwelt 28: 31-55.

Hartmann HEK. 1983. Untersuchungen zum Merkmalsbestand und zur Taxonomie der Subtribus Leipoldtiinae (Mesembryanthemaceae). – Bibl. Bot. 136: 1-67.

Hartmann HEK. 1986. Chromosome numbers in the genus Cephalophyllum N. E. Br. (Mesembryanthemaceae). – Cact. Succ. J. (U.S.) 58: 263-266.

Hartmann HEK. 1987. Phytogeography of the subtribe Leipoldtiinae (Mesembryanthemaceae). – Bothalia 17: 205-212.

Hartmann HEK. 1988. Fruit types in Mesembryanthema. – Beitr. Biol. Pflanzen 63: 313-349.

Hartmann HEK. 1989. Monographien der Subtribus Leipoldtiinae VIII. Monographie der Gattung Cephalophyllum (Mesembryanthemaceae). – Mitt. Inst. Allg. Bot. Hamburg 22: 93-187.

Hartmann HEK. 1991. Mesembryanthema. – Contr. Bolus Herb. 13: 75-157.

Hartmann HEK. 1992. Ihlenfeldtia, a new genus in Mesembryanthema (Aizoaceae). – Bot. Jahrb. Syst. 114: 29-50.

Hartmann HEK. 1993. Aizoaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 37-69.

Hartmann HEK. 1994. On the phytogeography and evolution of Mesembryanthema (Aizoaceae). – In: Seyani JH, Chikuni AC (eds), Proceedings of the 13th Plenary Meeting AETFAT, Malawi, vol. 2, pp. 1165-1180.

Hartmann HEK. 1998. New combinations in Ruschioideae, based on studies in Ruschia (Aizoaceae). – Bradleya 16: 44-91.

Hartmann HEK (ed). 2001a. Illustrated handbook of succulent plants. Aizoaceae A-E. – Springer, Berlin.

Hartmann HEK (ed). 2001b. Illustrated handbook of succulent plants. Aizoaceae F-Z. – Springer, Berlin.

Hartmann HEK. 2004. Adaptations and phytogeography in the ice-plant family Aizoaceae – the interaction of the genetic equipment and ecological parameters I. One leaf-pair is the plant. – Bradleya 22: 21-36.

Hartmann HEK. 2006. Adaptations and phytogeography in the ice-plant family Aizoaceae – the interaction of the genetic equipment and ecological parameters II. Hide-and-seek: plants sunk in the ground. – Bradleya 24: 1-38.

Hartmann HEK. 2007. Studies in Aizoaceae: eight new subgenera in Drosanthemum Schwantes. – Bradleya 25: 145-176.

Hartmann HEK. 2008. A carnival of flowers in Drosanthemum subgenus Speciosa (Aizoaceae). – Bradleya 26: 99-120.

Hartmann HEK, Bittrich V. 1990. Nomenclature in Mesembryanthema (Aizoaceae): the generic names by Rappa & Camarrone. – Bothalia 20: 153-157.

Hartmann HEK, Bittrich V. 1991. Typification of suprageneric names – some nomenclatural changes in Aizoaceae. – South Afr. J. Bot. 57: 73-75.

Hartmann HEK, Bruckmann C. 2000. The capsules of Drosanthemum Schwantes (Ruschioideae, Aizoaceae). – Bradleya 18: 75-112.

Hartmann HEK, Dehn M. 1987. Monographien der Leipoldtiinae VII. Monographie der Gattung Cheiridopsis (Mesembryanthemaceae). – Bot. Jahrb. Syst. 108: 567-663.

Hartmann HEK, Liede S. 1986. Die Gattung Pleiospilos s. lat. (Mesembryanthemaceae). – Bot. Jahrb. Syst. 106: 433-485.

Hartmann HEK, Liede-Schumann S. 2013. Knersia gen. nov., an emigrant from Drosanthemum (Ruschieae, Ruschioideae, Aizoaceae). – Bradleya 31: 116-127.

Hartmann HEK, Niesler IM. 1991. On the identity of Trichodiadema schimperi (Engl.) Herre (Mesembryanthema). – Cactus Succ. J. (U.S.) 63: 143-149.

Hartmann HEK, Niesler IM. 2009. On the evolution of nectaries in Aizoaceae. – Bradleya 27: 69-120.

Hartmann HEK, Rust S. 1994. Monographs of Leipoldtiinae IX. Monograph of the genus Leipoldtia L. Bolus s. lat. – Verh. Naturwiss. Vereins Hamburg 34: 275-351.

Hartmann HEK, Stüber D. 1993. On spiny Mesembryanthema and the genus Eberlanzia (Aizoaceae). – Contr. Bol. Herb. 15: 1-75.

Hartmann HEK, Meve U, Liede-Schumann S. 2011. Towards a revision of Trianthema, the Cinderella of Aizoaceae. – Plant Ecol. Evol. 144: 177-213.

Hartmann S, Nason JD, Bhattacharya D. 2001. Extensive ribosomal DNA genic variation in the columnar cactus Lophocereus. – J. Mol. Evol. 53: 124-134.

Hartmann S, Nason JD, Bhattacharya D. 2002. Phylogenetic origins of Lophocereus (Cactaceae) and the senita cactus-senita moth pollination mutualism. – Amer. J. Bot. 89: 1085-1092.

Hartmeyer I, Hartmeyer SRH. 2010. Snap-tentacles and runway lights: summary of comparative examination of Drosera tentacles. – Carniv. Plants Newsl. 39: 101-113.

Hartvig P. 1979. Cerastium smolikanum Hartvig, sp. nov. and C. vourinense from N Greece. – Bot. Not. 132: 359-361.

Hassan NS, Hartmann HEK, Liede-Schumann S. 2005. Conspectus of Aizoaceae, Gisekiaceae and Molluginaceae of Egypt and Sudan. – Feddes Repert. 116: 1-42. – Nachtrag: Feddes Repert. 116 (2005): 406.

Hassan NMS, Meve U, Liede-Schumann S. 2005. Seed coat morphology of Aizoaceae-Sesuvioideae, Gisekiaceae and Molluginaceae and its systematic significance. – Bot. J. Linn. Soc. 148: 189-206.

Hassan NMS, Thiede J, Liede-Schumann S. 2005. Phylogenetic analysis of Sesuvioideae (Aizoaceae) inferred from nrDNA internal transcribed spacer (ITS) sequences and morphological data. – Plant Syst. Evol. 255: 121-143.

Hatschbach G, Guimarães O. 1973. Fitolacáceas do estado do Paraná. – Bol. Mus. Bot. Munic. Curitiba 8: 1-24.

Haug I, Weiß M, Homeier J, Oberwinkler F, Kottke I. 2005. Russulaceae and Thelephoraceae form ectomycorrhizas with members of Nyctaginaceae (Caryophyllales) in the tropical mountain rain forest of southern Ecuador. – New Phytol. 165: 923-936.

Heath PV. 1992. The restoration of Rathbunia Britton & Rose. – Calix (Brighton, Enland) 2: 102-115.

Hedberg O. 1946. Pollen morphology in the genus Polygonum L. s. lat. and its taxonomical significance. – Svensk Bot. Tidskr. 40: 371-404.

Hedberg O. 1954. Taxonomic studies in afroalpine Caryophyllaceae. – Svensk Bot. Tidskr. 48: 199-210.

Hedberg O. 1988. Koenigia delicatula (Meisn.) Hara subsp. relicta O. Hedb. n. subsp. (Polygonaceae) – a new taxon linking the genera Koenigia L. and Persicaria Mill. – J. Jap. Bot. 63: 71-77.

Hedberg O. 1995. Studies in the genus Polycarpaea (Caryophyllaceae) in Ethiopia. – Nord. J. Bot. 15: 513-517.

Hedberg O. 1997. The genus Koenigia L. emend. Hedberg (Polygonaceae). – Bot. J. Linn. Soc. 124: 295-330.

Hedlund RW, Engelhardt DW. 1970. Rugaepollis fragilis sp. nov. from the Tertiary of Kachemak Bay, Alaska. – Pollen Spores 12: 173-176.

Heek W van, Strecker W. 2007. Die Gattung Arrojadoa. – Kakt. Sukk. 58: 85-92.

Heenan PB. 1999. A taxonomic revision of Neopaxia Ö. Nilss. (Portulacaceae). – New Zealand J. Bot. 37: 213-234.

Heil KD, Porter JM. 1994. Sclerocactus (Cactaceae): a revision. – Haseltonia 2: 20-46.

Heil KD, Armstrong B, Schleser D. 1981. A review of the genus Pediocactus. – Cact. Succ. J. (US) 53: 17-39.

Heimerl A. 1886. Über die Einlagerung von Calciumoxalat in die Zellwand bei Nyctagineen. – Sitzungsber. Kais. Akad. Wiss. Wien, Math.-Nat. Kl. 93(I): 231-246.

Heimerl A. 1889a. Beiträge zur Anatomie der Nyctaginaceen-Früchte. – Sitzungsber. Kais. Akad. Wiss. Wien, Math.-Nat. Cl. 97(I): 692-703.

Heimerl A. 1889b. Phytolaccaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1b), W. Engelmann, Leipzig, pp. 1-14.

Heimerl A. 1889c. Nyctaginaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1), W. Engelmann, Leipzig, pp. 14-32; Heimerl A. 1897. Nachträge zu III(1b), pp. 154-156.

Heimerl A. 1901. Monographie der Nyctaginaceen. – Denkschr. Akad. Wissensch. 70: 132-137.

Heimerl A. 1908. Nyctaginaceae andinae. – In: Urban I (ed), Plantae novae andinae imprimis weberbauerianae IV, Engl. Bot. Jahrb. Syst. 42: 78-79.

Heimerl A. 1916. Nyctaginaceae andinae. – Bot. Jahrb. Syst. LIV. Beibl. 117: 2-4.

Heimerl A. 1934a. Nyctaginaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 86-134.

Heimerl A. 1934b. Phytolaccaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 135-164.

Heimerl A. 1934c. Achatocarpaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 174-178.

Heklau H. 2006. Proposal to conserve the name Krascheninnikovia against Ceratoides (Chenopodiaceae). – Taxon 55: 1044-1045.

Heklau H, Röser M. 2008. Delineation, taxonomy and phylogenetic relationships of the genus Krascheninnikovia (Amaranthaceae subtribe Axyridinae). – Taxon 57: 563-576.

Helsen P, Browne RA, Anderson DJ, Verdyck P, Dongen S. 2009. Galapagos’ Opuntia (prickly pear) cacti: extensive morphological diversity, low genetic variability. – Biol. J. Linn. Soc. 96: 451-461.

Henrickson J. 1987. A taxonomic reevaluation of Gossypianthus and Guilleminea (Amaranthaceae). – Sida 12: 307-337.

Henrickson J, Sundberg S. 1986. On the submersion of Dicraurus into Iresine (Amaranthaceae). – Aliso 11: 355-364.

Hentzschel G, Augustin K. 2008. Die Gattung Weingartia Werdermann. Teil 2. Weingartia, Sulcorebutia und Cintria – eine untrennbare Einheit – Merkmalsvergleiche und Neukombinationen. – Gymnocalycium 21: 767-782.

Hernándes-Lopes J, Oliveira-Neto MA, Melo-de-Pinna GFA. 2016. Different ways to build succulent leaves in Portulacineae (Caryophyllales). – Intern. J. Plant Sci. 177: 198-208.

Hernández HM. 1990. Autopolinización en Mirabilis longiflora L. (Nyctaginaceae). – Acta Bot. Mex. 12: 25-30.

Hernández HM, Bárcenas RT. 1995. Endangered cacti in the Chihuahuan desert I. Distribution patterns. – Cons. Biol. 9: 1176-1188.

Hernández-Hernández T, Hernández HM, De-Nova JA, Puente R, Eguiarte LE, Magallón S. 2011. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). – Amer. J. Bot. 98: 44-61.

Hernández-Ledesma, P, Olvera HF, Ochoterena H. 2010. Cladistic analysis and taxonomic synopsis of Anulocaulis (Nyctaginaceae) based on morphological data. – Syst. Bot. 35: 858-876.

Hernández-Ledesma P, Bárcenas RT. 2017. Phylogenetic utility of the trnH-psbA IGR and stem-loop diversity of the 3’ UTR in Cactaceae (Caryophyllales). – Plant Syst. Evol. 303: 299-315.

Hernández-Ledesma P, Berendsohn WG, Borsch T, Von Mering S, Akhani H, Arias S, Castañeda-Noa I, Eggli U, Eriksson R, Flores-Olvera H, Fuentes-Bazán S, Kadereit G, Klak C, Korotkova N, Nyffeler R, Ocampo G, Ochoterena H, Oxelman B, Rabeler RK, Sanchez A, Schlumpberger BO, Uotila P. 2015. A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. – Willdenowia 45: 281-383.

Herre H. 1971. The genera of the Mesembryanthemaceae. – Tafelberg, Cape Town.

Herre H, Volk OH. 1948. Mesembryanthemaceae Herre et Volk, familia nova. – Sukkulentenkunde 2: 38.

Herrera A, Delgado J, Paraguatey J. 1991. Occurrence of inducible crassulacean acid metabolism in leaves of Talinum triangulare (Portulacaceae). – J. Experim. Bot. 42: 493-499.

Hershkovitz MA. 1989. Phylogenetic studies in Centrospermae: a brief appraisal. – Taxon 38: 602-608.

Hershkovitz MA. 1990a. Phylogenetic and morphological studies in Portulacaceae. – Ph.D. diss., University of California, Davis, California.

Hershkovitz MA. 1990b. Nomenclatural changes in Portulacaceae. – Phytologia 68: 267-270.

Hershkovitz MA. 1991a. Phylogenetic assessment and revised circumscription of Cistanthe Spach (Portulacaceae). – Ann. Missouri Bot. Gard. 78: 1009-1021.

Hershkovitz MA. 1991b. Taxonomic notes on Cistanthe, Calandrinia, and Talinum (Portulacaceae). – Phytologia 70: 209-225.

Hershkovitz MA. 1992. Leaf morphology and taxonomic analysis of Cistanthe tweedyi (nee Lewisia tweedyi; Portulacaceae). – Syst. Bot. 17: 220-238.

Hershkovitz MA. 1993a. Revised circumscriptions and subgeneric taxonomies of Calandrinia and Montiopsis (Portulacaceae) with notes on phylogeny of the portulacaceous alliance. – Ann. Missouri Bot. Gard. 80: 333-365.

Hershkovitz MA. 1993b. Leaf morphology of Calandrinia and Montiopsis (Portulacaceae). – Ann. Missouri Bot. Gard. 80: 366-396.

Hershkovitz MA. 1998. Parakeelya: a new genus segregated from Calandrinia (Portulacaceae). – Phytologia 84: 98-106.

Hershkovitz MA. 2006. Ribosomal and chloroplast DNA evidence for diversification of Western American Portulacaceae in the Andean region. – Gayana Bot. 63: 13-74.

Hershkovitz MA, Zimmer EA. 1997. On the evolutionary origin of the cacti. – Taxon 46: 217-232.

Hershkovitz MA, Zimmer EA. 2000. Ribosomal DNA evidence and disjunctions of western American Portulacaceae. – Mol. Phylogen. Evol. 15: 419-439.

Heslop-Harrison J. 1963. An ultrastructural study of pollen wall ontogeny in Silene pendula. – Grana Palynol. 4: 7-24.

Hesse M. 1979. Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomo- und anemophilen Angiospermen: Polygonaceae. – Flora 168: 558-577.

Heubl GR, Wistuba A. 1995. A cytological study of the genus Nepenthes L. (Nepenthaceae). – Sendtnera 4: 169-174.

Heubl GR, Bringmann G, Meimberg H. 2006. Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales – revisited. – Plant Biol. 8: 821-830.

Heubl GR, Turini F, Mudogo V, Kajahn I, Bringmann G. 2010. Ancistrocladus iliboensis (D. R. Congo), a new liana with unique alkaloids. – Plant Ecol. Evol. 143: 63-69.

Hewson HJ. 1984. Phytolaccaceae. – In: George AS (ed), Flora of Australia 4, Australian Government Publ. Service, Canberra, pp. 1-5.

Hickman JC. 1971. Arenaria, section Eremogone (Caryophyllaceae) in the Pacific Northwest: a key and discussion. – Madroño 21: 201-207.

Higashi S, Nagashima A, Ozaki H, Abe M, Uchiumi T. 1993. Analysis of feeding mechanisms in a pitcher of Nepenthes hybrida. – J. Plant Res. 106: 47-54.

Hind DJN. 1988. The biology and systematics of Moehringia L. (Caryophyllaceae). – Ph.D. diss., University of Reading, England.

Hindmarsh GJ. 1966. An embryological study of five species of Bassia. – Proc. Linn. Soc. New South Wales 90: 274-289.

Hinton WF. 1975. Systematics of the Calyptridium umbellatum complex (Portulacaceae). – Brittonia 27: 197-208.

Hirrel MC, Mehravaran H, Gerdemann JW. 1978. Vesicular-arbuscular mycorrhizae in Chenopodiaceae and Cruciferae: do they occur? – Can. J. Bot. 56: 2813-2817.

Hochstätter F. 2005. The genus Sclerocactus, tribe Cacteae, family Cactaceae. – Mannheim & Hamlyn Valley (publ. by the author).

Hochstätter F. 2007. The genera Pediocactus, Navajoa, Toumeya (Cactaceae), family Cactaceae, subfamily Cactoideae, tribe Cacteae. – Sine loco (publ. by the author).

Hoffmann AE. 1989. Cactáceas en la flora silvestre de Chile. – Santiago de Chile.

Hoffmann AE, Walter H. 2005. Cactáceas en la flora Silvestre de Chile. Ed. 2. – Ediciones Fundación Claudio Gay, Santiago de Chile.

Hofmann U. 1973. Centrospermen-Studien 6. Morphologische Untersuchungen zur Umgrenzung und Gliederung der Aizoaceen. – Bot. Jahrb. Syst. 92: 247-324.

Hofmann U. 1977. Centrospermen-Studien 9. Die Stellung von Stegnosperma innerhalb der Centrospermen. – Ber. Deutsch. Bot. Ges. 90: 39-52.

Hofmann U. 1994. Flower morphology and ontogeny. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: Evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 123-166.

Hohmann S, Kadereit JW, Kadereit G. 2006. Understanding Mediterranean-Californian disjunctions: molecular evidence from Chenopodiaceae-Betoideae. – Taxon 55: 67-78.

Hollingsworth ML, Bailey JP, Hollingsworth PM, Ferris C. 1999. Chloroplast DNA variation and hybridization between invasive populations of Japanese knotweed and giant knotweed (Fallopia, Polygonaceae). – Bot. J. Linn.Soc. 129: 139-154.

Holm T. 1905. Claytonia Gronov. A morphological and anatomical study. – Mem. Natl. Acad. Sci., Washington 10: 27-37.

Holub J. 1970. Fallopia Adans. 1763 instead of Bilderdykia Dum. 1827. – Folia Geobot. Phytotaxon. 6: 171-177.

Holub J. 1998. Trommsdorffia Bernh. 1800 is a validly published generic name. – Preslia 70: 179-182.

Hong S-P. 1988. A pollenmorphological re-evaluation of Harpagocarpus and Eskemukerjea (Polygonaceae). – Grana 27: 291-295.

Hong S-P. 1989. Knorringia (= Aconogonon sect. Knorringia), a new genus in the Polygonaceae. – Nord. J. Bot. 9: 343-357.

Hong S-P. 1990. A new species of Aconogonon from Upper Burma and Yunnan. – Notes Roy. Bot. Gard. Edinb. 46: 361-363.

Hong S-P. 1991a. A revision of Aconogonon (= Polygonum sect. Aconogonon, Polygonaceae) in North America. – Rhodora 93: 322-346.

Hong S-P. 1991b. The dimorphic heterostyly in Aconogonon campanulatum (Polygonaceae). – Plant Syst. Evol. 176: 125-131.

Hong S-P. 1992. Taxonomy of the genus Aconogonon (Polygonaceae) in Himalaya and adjacent regions. – Symb. Bot. Ups. 30(2): 1-118.

Hong S-P. 1993. Reconsideration of the generic status of Rubrivena (Polygonaceae, Persicarieae). – Plant Syst. Evol. 186: 95-122.

Hong S-P. 1995. Pollen morphology of Parapteropyrum and some putatively related genera (Polygonaceae-Atraphaxideae). – Grana 134: 153-159.

Hong S-P. 1999. Pollen dimorphism in heterostylous species of Oxygonum (Polygonaceae, Polygoneae). – Syst. Geogr. Plants 68: 245-252.

Hong S-P. 2008. Knorringia (=Aconogonon sect. Knorringia), a new genus in the Polygonaceae. – Nord. J. Bot. 9: 343-357.

Hong S-P, Hedberg O. 1990. Parallel evolution of aperture numbers and arrangement in the genera Koenigia, Persicaria and Aconogonon (Polygonaceae). – Grana 29: 177-184.

Hong S-P, Lee S-T. 1983. A palynotaxonomic study of the Korean Polygonaceae. – Korean J. Plant Taxon. 13: 63-76.

Hong S-P, Ronse De Craene LP, Smets E. 1998. Systematic significance of tepal surface morphology in tribes Persicarieae and Polygoneae (Polygonaceae). – Bot. J. Linn. Soc. 127: 91-116.

Hong S-P, Oh I-C, Son S-H. 1998. Pollen morphology of the tribe Pterostegieae (Polygonaceae: Eriogonoideae). – Grana 37: 15-21.

Hong S-P, Oh I-C, Ronse De Craene LP. 2005. Pollen morphology of the genera Polygonum s. str. and Polygonella (Polygoneae: Polygonaceae). – Plant Syst. Evol. 254: 13-30.

Hood ME, Mena-Ali JI, Gibson AK, Oxelman B, Giraud T, Yockteng R, Arroyo MTK, Conti F, Petersen AB, Gladieux P, Antonovics J. 2010. Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae. – New Phytol. 187: 217-229.

Hooker JD. 1859. On the origin and development of the pitcher of Nepenthes, with an account of some new Bornean plants of the genus. – Trans. Linn. Soc. London 22: 415-424.

Horak KE. 1981a. The three-dimensional structure of vascular tissues in Stegnosperma (Phytolaccaceae). – Bot. Gaz. 142: 545-549.

Horak KE. 1981b. Anomalous secondary thickening in Stegnosperma (Phytolaccaceae). – Bull. Torrey Bot. Club 108: 189-197.

Hörhammer L, Hänsel R, Kriesmair G, Endes W. 1955. Zur Kenntnis der Polygonaceenflavone 1. – Arch. Pharm. (Weinheim) 288: 419-425.

Horton JS. 1957. Inflorescence development in Tamarix pentandra Pallas (Tamaricaceae). – Southw. Natur. 2: 135-139.

Horton J. 1963. A taxonomic revision of Polygonella (Polygonaceae). – Brittonia 15: 177-203.

Hoshi Y, Hotta K. 1998. A chromosome phylogeny of the Droseraceae by using CMA-DAPI fluorescent banding. – Cytologia 63: 329-339.

Hosseus C. 1939. Notas sobre Cactaceas Argentinas I. – Arch. Esc. Farm. Fac. Ci. Med. Córdoba 9: 106.

Howard RA. 1949. The genus Coccoloba in Cuba. – J. Arnold Arbor. 30: 388-424.

Howard RA. 1957a. Studies in the genus Coccoloba III. The Jamaican species. – J. Arnold Arbor. 38: 81-106.

Howard RA. 1957b. Studies in the genus Coccoloba IV. The species from Puerto Rico and the Virgin Islands and from the Bahama Islands. – J. Arnold Arbor. 38: 211-242.

Howard RA. 1958. Studies in the genus Coccoloba V. The genus in Haiti and the Dominican Republic. – J. Arnold Arbor. 39: 1-48.

Howard RA. 1959a. Studies in the genus Coccoloba VI. The species from the Lesser Antilles, Trinidad and Tobago. – J. Arnold Arbor. 40: 68-93.

Howard RA. 1959b. Studies in the genus Coccoloba VII. A synopsis and key to the species in Mexico and Central America. – J. Arnold Arbor. 40: 176-220.

Howard RA. 1960. Studies in the genus Coccoloba IX. A critique of the South American species. – J. Arnold Arbor. 41: 213-229, 231-258, 357-390.

Howard RA. 1961. Studies in the genus Coccoloba X. New species and a summary of distribution in South America. – J. Arnold Arbor. 42: 87-95.

Howell T. 1893. A rearrangement of American Portulacaceae. – Erythea 1: 29-41.

Huber JA. 1924. Zur Morphologie von Mesembryanthemum. – Bot. Arch. 5: 7-25.

Hunt DR. 1966. Tamaricaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-4.

Hunt DR. 1968. Cactaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-7.

Hunt DR. 1971. Schumann and Buxbaum reconciled. – Cactus Succ. J. (Great Britain) 33: 53-72.

Hunt DR. 1977. Schumann and Buxbaum recompiled 2-3. – Cactus Succ. J. (Great Britain) 39: 37-40, 71-74.

Hunt DR. 1981. Revised classified list of the genus Mammillaria. – Cactus Succ. J. (Great Britain) 43: 41-48.

Hunt DR. 1986. The genera of the Cactaceae: towards a new consensus. – Bradleya 4: 65-78.

Hunt DR. 1987. A new review of Mammillaria names. – British Cactus & Succulent Society, Oxford.

Hunt DR. 1992. CITES Cactaceae Checklist. – Royal Botanic Gardens and International Organization for Succulent Plant Study (IOS), Kew.

Hunt DR. 1999. CITES Cactaceae Checklist. 2nd ed. – Royal Botanic Gardens and International Organization for Succulent Plant Study (IOS), Kew.

Hunt DR. 2000. Notes on miscellaneous genera of Cactaceae subfam. Cactoideae. – Cact. Syst. Init. 9: 13-18.

Hunt DR. 2003. Astrophytum. – Cactaceae Systematics Initiatives 15: 5-6.

Hunt DR. 2006a. Further comments on Mammillaria gene-sequence data. – Cact. Syst. Init. 21: 21-24.

Hunt DR (ed). 2006b. The new cactus lexicon I-II. – DH Books, Milborne Port, United Kingdom.

Hunt DR. 2012a. Taxonomic implications of DNA studies relating to Cactaceae subfam. Cactoideae. – Cactaceae Syst. Init. 26: 5-11.

Hunt DR. 2012b. New cactus lexicon updates etc. – Cactaceae syst. Init. 26: 12-20.

Hunt DR. 2013. Leuenbergeria. – Cactaceae Syst. Init. 31: 16-17.

Hunt DR, Taylor N. 1986. The genera of the Cactaceae: towards a new consensus. – Bradleya 4: 65-78.

Hunt DR, Taylor N. 1990. The genera of Cactaceae: progress towards consensus. – Bradleya 8: 85-107.

Hunt DR, Taylor N. 1991. Notes on miscellaneous genera of Cactaceae. – Bradleya 9: 81-92.

Hunt DR, Taylor N. 1992. Notes on miscellaneous genera of Cactaceae 2. – Bradleya 10: 17-32.

Hunt DR, Taylor NP, Glass H. 2006. The new cactus lexicon. – Remous Ltd., Milborne Port, United Kingdom.

Hunziker JH, Behnke H-D, Eifert IJ, Mabry TJ. 1974. Halophytum ameghinoi: a betalain-containing and P-type sieve-tube plastid species. – Taxon 23: 537-539.

Hunziker JH, Pozner R, Escobar A. 2000. Chromosome number in Halophytum ameghinoi (Halophytaceae). – Plant Syst. Evol. 221: 125-127.

Husson P. 1966. Stomates et cellules annexes: types stomatiques chez les Polygonacées. – Bull. Soc. Hist. Nat. Toulouse 102: 308-318.

Iamonico D. 2016. Nomenclatural notes on four Linnaean names in Arenaria (Caryophyllaceae). – Taxon 65: 610-616.

Ihlenfeldt H-D. 1960. Entwicklungsgeschichtliche, morphologische und systematische Untersuchungen an Mesembryanthemen. – Feddes Repert. 63: 1-104.

Ihlenfeldt H-D. 1971. Zur Morphologie und Taxonomie der Mitrophyllinae Schwantes. – Ber. Deutsch. Bot. Ges. 84: 655-660.

Ihlenfeldt H-D. 1975. Some trends in the evolution of the Mesembryanthemaceae. – Boissiera 24: 249-254.

Ihlenfeldt H-D. 1978. Monographie der Mitrophyllinae Schwantes III. Morphologie und Taxonomie der Gattung Oophytum N. E. Br. (Mesembryanthemaceae). – Bot. Jahrb. Syst. 99: 303-328.

Ihlenfeldt H-D. 1980. Der Haarapparat (‘Diadem’) der Gattung Trichodiadema Schwant. (Mesembryanthemaceae). – Mitt. Inst. Allg. Bot. Hamburg 17: 145-163.

Ihlenfeldt H-D. 1983. Dispersal of Mesembryanthemaceae in arid habitats. – Sonderbd. Naturwiss. Ver. Hamburg 7: 381-390.

Ihlenfeldt H-D. 1994. Diversification in an arid world: the Mesembryanthemaceae. – Ann. Rev. Ecol. Syst. 25: 521-546.

Ihlenfeldt H-D, Gerbaulet M. 1990. Untersuchungen zum Merkmalsbestand und zur Taxonomie der Gattungen Apatesia N. E. Br., Carpanthea N. E. Br., Conicosia N. E. Br., Herrea Schwantes und Hymenogyne Haw. (Mesembryanthemaceae Fenzl). – Bot. Jahrb. Syst. 111: 457-498.

Ihlenfeldt H-D, Hartmann HEK. 1982. Leaf surfaces in Mesembryanthemaceae. – In: Cutler DF, Alvin KL, Price CE (eds), The plant cuticle, Academic Press, London, pp. 397-423.

Ihlenfeldt H-D, Straka H. 1962. Über die systematische Stellung und Gliederung der Mesembryanthemen. – Ber. Deutsch. Bot. Ges. 74: 485-492.

Ihlenfeldt H-D, Struck M. 1987. Morphologie und Taxonomie der Dorotheanthinae Schwantes (Mesembryanthemaceae). – Beitr. Biol. Pflanzen 61: 411-453.

Ihlenfeldt H-D, Schwantes G, Straka H. 1962. Die höheren Taxa der Mesembryanthemaceae. – Taxon 11: 52-56.

Ikonnikov SS. 1973. Notes on Caryophyllaceae 1. On the genus Dichodon (Bartl.) Reichb. – Nov. Sist. Vyssh. Rast. 10: 140-142. [In Russian]

Ikonnikov SS. 1976. Notes on Caryophyllaceae 3. On the genus Psammophiliella Ikonn. – Nov. Sist. Vyssh. Rast. 13: 116-117. [In Russian]

Iijima T, Sibaoka T. 1985. Membrane potentials in excitable cells of Aldrovanda vesiculosa trap-lobes. – Plant Cell Physiol. 26: 1-14.

Iliff J. 2002. The Andean opuntias: an annotated checklist of the indigenous non-platyopuntioid opuntias (Cactaceae-Opuntioideae) of South America. – Succ. plant Res. 6: 133-244.

Iljin MM. 1929. Novye vidy roda Corispermum L. – Izv. Glavn. Bot. Sada SSSR 28: 637-654.

Iljin MM. 1936. On the systematics of the genus Suaeda Forssk. and the tribe Suaedeae Rchb. – Sovetsk. Bot. 5: 39-49. [In Russian]

Iljin MM. 1937. Novye vidy sem. Chenopodiaceae iz Nahičevanskoj ASSR. – Bot. Mater. Gerb. Bot. Inst. Komarova Akad. Nauk SSSR 7: 203-218.

Iljin MM. 1946. Entomofilija u sem Chenopodiaceae, eje rasprostranenije i znacenije. – Sov. Bot. (Leningrad) 14: 247-254.

Illing N, Klak C, Johnson C, Negrao N, Baine F, Kets V van, Ramchurn KR, Seoighe C, Roden L. 2009. Duplication of the Asymmetric Leaves 1/Rough Sheath 2/Phantastica (ARP) gene precedes the explosive radiation of the Ruschioideae. – Evol. Genes Devel. 219: 331-338.

Inamdar JA. 1968. Epidermal structure and ontogeny of stomata in some Nyctaginaceae. – Flora 158: 159-166.

Inamdar JA, Gangadhara M, Morge PG, Patel RM. 1977. Epidermal structure and ontogeny of stomata in some Centrospermae. – Feddes Repert. 88: 465-475.

Inamdar JA, Gangadhara M, Avita S, Rao NV. 1980. Epidermal studies in some Indian cultivars of bougainvilleas. – Feddes Repert. 91: 259-266.

Ingrouille MJ. 1984. A taxonomic analysis of Limonium (Plumbaginaceae) in Western Europe. – Plant Syst. Evol. 147: 103-118.

Ingrouille MJ, Stace CA. 1985. Pattern of variation of agamospermous Limonium (Plumbaginaceae) in the British Isles. – Nord. J. Bot. 5: 113-125.

Ingvarsson PK, Ribstein S, Taylor DR. 2003. Molecular evolution of insertions and deletions in the chloroplast genome of Silene. – Mol. Biol. Evol. 20: 1737-1740.

Inoue M, Ohtani K, Kasai R, Okukubo M, Andriansiferana M, Yamasaki K, Koike T. 2009. Cytotoxic 16-β-[(D-xylopyranosyl)oxy]oxohexadecanyl triterpene glycosides from a Malagasy plant, Physena sessiliflora. – Phytochemistry 70: 1195-1202.

Iones K. 1964. Pollen structure and development in Drosera. – J. Linn. Soc. Bot. 59: 81-87.

Isomiddinova D, Sokolov PD. 1977. Comparative anatomic study of leaves of some Polygonum L. species. – Rast. Resur. 13: 11-24. [In Russian]

Iwarsson M. 1977. Pollen morphology of East African Caryophyllaceae. – Grana 16: 15-22.

Jacobs SWL. 1988. Notes on Aizoaceae and Chenopodiaceae. – Telopea 3: 139-143.

Jacobs SWL. 2001. Review of leaf anatomy and ultrastructure in the Chenopodiaceae (Caryophyllales). – J. Torrey Bot. Soc. 128: 236-253.

Jaeger EJ. 1992. Die Verbreitung von Frankenia in der Mongolei, in Westeurasien und im Weltmaßstab. – Flora 186: 177-186.

James LE, Kyhos DW. 1961. The nature of the fleshy shoot of Allenrolfea and allied genera. – Amer. J. Bot. 48: 101-108.

Jansen S, Ronse Decraene LP, Smets E. 2000. On the wood and stem anatomy of Monococcus echinophorus (Phytolaccaceae s.l.). – Syst. Geogr. Plants 70: 171-179.

Jaretzky R. 1925. Beiträge zur Systematik der Polygonaceen unter Berücksichtigung des Oxymethyl-Anthrachinon-Vorkommens. – Feddes Repert. 22: 49-83.

Jaretzky R. 1928. Histologische und karyologische Studien an Polygonaceen. – Jahrb. Wiss. Bot. 69: 357-490.

Jassem B. 1976. Embryology and genetics of apomixes in the section Corollinae of the genus Beta. – Acta Biol. Cracov. Bot. 19: 149-172.

Jassem B. 1980. Origin and reproduction of higher polyploids within the Corollinae section of the genus Beta. – Genet. Polon. 21: 18-27.

Jay M, Lebreton P. 1973. Recherches chimiotaxinomiques sur les plantes vasculaires XXVI. Les flavanoides des Sarracéniacées, Nepenthacées, Droséracées, et Céphalotacées; étude critique de l’ordre des Sarracéniales. – Nat. Canadien 91: 607-613.

Jeanmonod D. 1984a. Révision de la section Siphonomorpha Otth du genre Silene L. (Caryophyllaceae) en Méditerranée occidentale II: le groupe du S. mollissima. – Candollea 39: 195-259.

Jeanmonod D. 1984b. Révision de la section Siphonomorpha Otth du genre Silene L. (Caryophyllaceae) en Méditerranée occidentale III: aggrégat italica et espèces affinés. – Candollea 39: 549-639.

Jeanmonod D. 1985a. Révision de la section Siphonomorpha Otth du genre Silene L. (Caryophyllaceae) en Méditerranée occidentale IV: species caeterae. – Candollea 40: 5-34.

Jeanmonod D. 1985b. Révision de la section Siphonomorpha Otth du genre Silene L. (Caryophyllaceae) en Méditerranée occidentale V: synthèse. – Candollea 40: 35-56.

Jebb M, Cheek M. 1997. A skeletal revision of Nepenthes (Nepenthaceae). – Blumea 42: 1-106.

Jeffrey C. 1961. Aïzoaceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-37.

Jensen U. 1965. Serologische Untersuchungen zur Frage der systematischen Einordnung der Didiereaceae. – Bot. Jahrb. Syst. 84: 233-253.

Jia A-Q, Tan N-H, Yang Y-P, Wu S-G,Wang L-Q, Zhou J. 2004. Cyclopeptides from three arctic Caryophyllaceae plants, chemotaxonomy and distribution significance of Caryophyllaceae cyclopeptides. – Acta Bot. Sin. 46: 625-630.

Joesting F. 1902. Beiträge zur Anatomie der Sperguleen, Polycarpeen, Paronychieen, Sclerantheen und Pterantheen. – Beih. Bot. Centralbl. 12: 139-181.

Johri BM, Kak D. 1954. The embryology of Tamarix Linn. – Phytomorphology 4: 230-247.

Jordan GJ, Macphail MK. 2003. A Middle-Late Eocene inflorescence of Caryophyllaceae from Tasmania, Australia. – Amer. J. Bot. 90: 761-768.

Joshi AC. 1937. Some salient points in the evolution of the secondary vascular cylinder of Amaranthaceae and Chenopodiaceae. – Amer. J. Bot. 24: 3-9.

Joshi AC. 1938. The nature of the ovular stalk in Polygonaceae and some related families. – Ann. Bot., N. S., 2: 957-959.

Joshi AC, Rao VS. 1933. Floral anatomy of Rivina humilis and the theory of carpel polymorphism. – New Phytol. 32: 359-363.

Joshi AC, Rao VSR. 1934. Vascular anatomy of flowers of four Nyctaginaceae. – J. Indian Bot. Soc. 13: 169-186.

Joshi AC, Rao VSR. 1936. The embryology of Gisekia pharnaceoides L. – Proc. Indian Acad. Sci., Sect. B, 3: 71-92.

Juan R, Pastor J, Alaiz M, Vioque J. 2007. Electrophoretic characterization of Amaranthus L. seed proteins and its systematic implications. – Bot. J. Linn. Soc. 155: 57-63.

Jürgens N. 1986. Untersuchungen zur Ökologie sukkulenter Pflanzen des südlichen Afrika. – Mitt. Inst. Allg. Bot. Hamburg 21: 139-365.

Kadereit G, Freitag H. 2011. Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): implications for biogeography, evolution of C4 photosynthesis and taxonomy. – Taxon 60: 51-78.

Kadereit G, Yaprak AE. 2008. Microcnemum coralloides (Salicornioideae, Chenopodiaceae): an example of intraspecific east-west disjunction in the Mediterranean region. – An. Jard. Bot. Madrid 65: 415-426.

Kadereit G, Borsch T, Weising K, Freitag H. 2003. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. – Intern. J. Plant Sci. 164: 959-986.

Kadereit G, Gotzek D, Jacobs S, Freitag H. 2005. Origin and age of Australian Chenopodiaceae. – Organisms Divers. Evol. 5: 59-80.

Kadereit G, Mucina L, Freitag H. 2006. Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in floral morphology. – Taxon 55: 617-642.

Kadereit G, Hohmann S, Kadereit JW. 2006. A synopsis of Chenopodiaceae subfam. Betoideae and notes on the taxonomy of Beta. – Willdenowia 36 (Spec. issue): 9-19.

Kadereit G, Ball P, Beer S, Mucina L, Sokoloff D, Teege P, Yaprack AE, Freitag H. 2007. A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). –Taxon 56: 1143-1170.

Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP. 2010. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. – Amer. J. Bot. 97: 1664-1687.

Kadereit G, Piirainen M, Lambinon J, Vanderpoorten A. 2012. Cryptic taxa should have names: reflections in the glasswort genus Salicornia (Amaranthaceae). – Taxon 61: 1227-1239.

Kadereit G, Ackerly D, Pirie MD. 2012. A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). – Proc. Roy. Soc. Biol. Sci. Ser. B 279: 3304-3311.

Kadereit G, Lauterbach M, Pirie MD, Arafeh R, Freitag H. 2014. When do different C4 leaf anatomies indicate independent C4 origins? – Parallel evolution of C4 leaf types in Camphorosmeae (Chenopodiaceae). – J. Exp. Bot 65: 3499-3511.

Kajale LB. 1940a. Structure and development of the male and female gametophytes of Sesuvium portulacastrum Linn. – Proc. Indian Acad. Sci., Sect. B, 10: 82-89.

Kajale LB. 1940b. A contribution to the embryology of the Amaranthaceae. – Proc. Natl. Inst. Sci. India 6: 597-625.

Kajale LB. 1954. Contribution to the embryology of the Phytolaccaceae II. Fertilization and development of embryo, seed, and fruit in Rivina humilis Linn. and Phytolacca dioica Linn. – J. Indian Bot. Soc. 33: 206-225.

Kamari G, Constantinidis T. 1994. The Minuartia verna complex in Greece. – Bot. Chron. 11: 41-54.

Kamelina OP, Proskurina OB. 1985. On the embryology of Stegnosperma halimifolium (Stenospermataceae). Distribution of embryological features in Caryophyllales. – Bot. Žurn. 70: 721-730. [In Russian with English summary]

Kapil RN, Prakash N. 1966. Coexistence of mono-, bi- and tetrasporic embryo sacs in Delosperma cooperi (Hook. f.) L. Bol. (Aizoaceae). – Beitr. Biol. Pflanzen 42: 381-392.

Kapil RN, Prakash N. 1969. Embryology of Cereus jamacaru and Ferocactus wislizeni and comments on the systematic position of the Cactaceae. – Bot. Not. 122: 409-426.

Kaplan A, Çölgeçen H, Büyükkartal HN. 2009. Seed morphology and histology of some Paronychia taxa. – Bangladesh J. Bot. 38: 171-176.

Kapralov MV, Akhani H, Voznesenskaya EV, Edwards G, Franceschi V, Roalson EH. 2006. Phylogenetic relationships in the Salicornioideae/Suaedoideae/Salsoloideae s.l. (Chenopodiaceae) clade and a clarification of the phylogenetic position of Bienertia and Alexandra using multiple DNA sequence datasets. – Syst. Bot. 31: 571-585.

Karis PO. 2004. Taxonomy, phylogeny and biogeography of Limonium sect. Pteroclados (Plumbaginaceae), based on morphological data. – Bot. J. Linn. Soc. 144: 461-482.

Karschon R. 1973. Seedling morphology and schizocotyly in Hammada salicornia (Moq.) Iljin. – Leafl. For. Div. Agric. Res. Org. Ilanot 46.

Kato M. 1993. Floral biology of Nepenthes gracilis (Nepenthaceae) in Sumatra. – Amer. J. Bot. 80: 924-927.

Kattermann F. 1994. Eriosyce (Cactaceae). The genus revised and amplified. – Succ. Plant Res. 1: 1-176.

Kaul RB. 1933. Vergleichende entwicklungsgeschichtliche Untersuchungen an der Insectivore Nepenthes. – Beih. Bot. Centralbl. 51: 311-334.

Kaul RB. 1982. Floral and fruit morphology of Nepenthes lowii and N. villosa, montane carnivores of Borneo. – Amer. J. Bot. 69: 793-803.

Keeler KH, Fredericks MS. 1979. Nocturnal pollination of Abronia fragrans. – Southw. Natur. 24: 692-693.

Keighery GJ. 1975. Chromosome numbers in the Gyrostemonaceae Endl. and the Phytolaccaeae Lindl.: a comparison. – Aust. J. Bot. 23: 335-338.

Keighery GJ. 1982. Macarthuria intricata sp. nov. (Aizoaceae), a new species from South Western Australia. – Nord. J. Bot. 2: 5-6.

Kellner A, Ritz CM, Schlittenhardt P, Hellwig FH. 2011. Genetic differentiation of the genus Lithops L. (Ruschioideae, Aizoaceae) reveals a high level of convergent evolution and reflects geographic distribution. – Plant Biol. 13: 368-380.

Kelly WA. 1973. Pollen morphology and relationships in the genus Calandrinia H.B.K. – Ph.D. diss., California State University, Northridge, California.

Kemp MS, Burden RS, Brown C. 1979. A new naturally occurring flavanone from Tetragonia expansa. – Phytochemistry 18: 1765-1766.

Kempton EA. 2010. Systematics, character evolution and ecological diversification within Eriogonoideae s.s. – Ph.D. diss., Claremont Graduate University, Claremont, California.

Kempton EA. 2012. Systematics of Eriogonoideae s. s. (Polygonaceae). – Syst. Bot. 37: 723-737.

Kendrick RE, Hillman WS. 1971. Absence of phytochrome dark reversion in seedlings of the Centrospermae. – Amer. J. Bot. 58: 424-428.

Keng H. 1967. Observations on Ancistrocladus. – Gard. Bull. (Singapore) 22: 113-121.

Keng H. 1970. Further observations on Ancistrocladus tectorius (Ancistrocladaceae). – Gard. Bull. (Singapore) 25: 235-237.

Kennedy RA, Eastburn JL, Jensen KG. 1980. C3-C4 photosynthesis in the genus Mollugo: structure, physiology and evolution of intermediate characteristics. – Amer. J. Bot. 67: 1207-1217.

Keskin M. 2009. Polygonum istanbulicum Keskin sp. nov. (Polygonaceae) from Turkey. – Nord. J. Bot. 27: 11-15.

Kharadze AL. 1955. Ad cognitionem generum monotypicum Caryophyllacearum. – Not. Syst. Geogr. Inst. Bot. Thbilissiensis 18: 72-83.

Khatib A. 1959. Contribution à l’étude systematique, anatomique, phylogénetique et écologique des Chènopodiacées de la Syrie. – Ph.D. diss. l’Université de Montpellier, France.

Khoshoo TN, Bhatia SK. 1965. Biosystematics of Indian plants 1. Saponaria vaccaria Linn. – Bull. Nat. Bot. Gard. (Lucknow) 116: 1-54.

Khullar SP, Dutta M. 1973. Cytotaxonomic studies on the genus Portulaca from Chandigarh. – Bangladesh J. Bot. 2: 95-100.

Kiesling R. 1978. El género Trichocereus (Cactaceae) I. Las species de la Rep. Argentina. – Darwiniana 21: 263-330.

Kiesling R. 1982a. The genus Pterocactus. – Cactus Succ. J. Gr. Brit. 44: 51-56.

Kiesling R. 1982b. Problemas nomenclaturales en el género Cereus (Cactaceae). – Darwiniana 24: 443-453.

Kiesling R. 1984. Estudios en Cactaceae de Argentina: Maihueniopsis, Tephrocactus y géneros afines (Opuntioideae). – Darwiniana 25: 171-215.

Kiesling R, Piltz J. 2001. Yavia cryptocarpa R. Kiesling & Piltz, gen. & spec. nov. – Kakt. Sukk. 52: 57-63.

Kiger RW. 2001. New combinations in Phemeranthus Rafinesque (Portulacaceae). – Novon 11: 319-321.

Kihara H, Ono T. 1926. Chromosomenzahlen und systematische Gruppierung der Rumex-Arten. – Zeitschr. Zellforschung Mikroskop. Anatomie 4: 475-481.

Kilian N, Leyens T. 1994. Limonium lobinii (Plumbaginaceae), a new species from the Cape Verde Islands, W Africa. – Willdenowia 24: 59-63.

Kim I, Carr GD. 1990. Cytogenetics and hybridization of Portulaca in Hawaii. – Syst. Bot. 15: 370-377.

Kim JY, Park C-W. 2000. Morphological and chromosomal variation in Fallopia section Reynoutria (Polygonaceae) in Korea. – Brittonia 52: 34-48.

Kim S-T, Donoghue MJ. 2008a. Molecular phylogeny of Persicaria (Persicarieae, Polygonaceae). – Syst. Bot. 33: 77-86.

Kim S-T, Donoghue MJ. 2008b. Incongruence between cpDNA and nrITS trees indicates extensive hybridization within Eupersicaria (Polygonaceae). – Amer. J. Bot. 95: 1122-1135.

Kim S-T, Sultan SE, Donoghue MJ. 2008. Allopolyploid speciation in Persicaria (Polygonaceae): insights from a low-copy nuclear region. – Proc. Natl. Acad. Sci. U.S.A. 105: 12370-12375.

Kimnach M. 1960. A revision of Borzicactus. – Cact. Succ. J. (Los Angeles) 32: 8-13, 57-60.

Kimnach M. 1983. A revision of Acanthorhipsalis. – Cact. Succ. J. (US) 55: 177-182.

Kimnach M. 1984. Lymanbensonia (Cactaceae), a new genus for Acanthorhipsalis micrantha. – Cact. Succ. J. (Los Angeles) 56: 100-101.

Kimnach M. 1993. The genus Disocactus. – Haseltonia 1: 95-139.

Kircheimer F von. 1941. Über ein Vorkommen der Gattung Aldrovanda Linné im Alttertiär Thüringens. – Braunkohle 40: 308-311.

Kirchoff BK, Fahn A. 1984a. The primary vascular system and medullary bundle structure of Phytolacca dioica (Phytolaccaceae). – Can. J. Bot. 62: 2432-2440.

Kirchoff BK, Fahn A. 1984b. Initiation and structure of the secondary vascular system in Phytolacca dioica (Phytolaccaceae). – Can. J. Bot. 62: 2580-2586.

Kishima Y, Ogura K, Mizukami K, Mikami T, Adachi T. 1995. Chloroplast DNA analysis in buckwheat species: phylogenetic relationships, origin of the reproductive systems and extended inverted repeats. – Plant Sci. 108: 173-179.

Klak C. 2003. New combinations, a new genus and five new species in the Aizoaceae. – Bradleya 21: 107-120.

Klak C. 2005. Ruschiella, a new genus of Aizoaceae and new combinations in Phiambolia and Phyllobolus. – Bradleya 23: 97-104.

Klak C. 2010. Phylogeny and diversification of Aizoaceae: progress and prospects. – Schumannia 6: 87-102.

Klak C, Bruyns PV. 2012. Phylogeny of the Dorotheantheae (Aizoaceae), a tribe of succulent annuals. – Taxon 61: 293-307.

Klak C, Bruyns PV. 2013. A new infrageneric classification for Mesembryanthemum L. (Aizoaceae: Mesembryanthemoideae). – Bothalia 43: 197-206.

Klak C, Bruyns PV. 2016. Expansion of Schlechteranthus (Ruschioideae, Aizoaceae) to include Polymita, with a new species from Namaqualand, South Africa. – South Afr. J. Bot. 103: 70-77.

Klak C, Linder HP. 1998. Systematics of Psilocaulon N. E. Br. and Caulipsolon Klak gen. nov. (Mesembryanthemoideae, Aizoaceae). – Bot. Jahrb. Syst. 120: 301-375.

Klak C, Hedderson TA, Linder HP. 2003. A molecular systematic study of the Lampranthus group (Aizoaceae) based on the chloroplast trnL-trnF and nuclear ITS and 5S NTS sequence data. – Syst. Bot. 28: 70-85.

Klak C, Khunou A, Reeves G, Hedderson T. 2003. A phylogenetic hypothesis for the Aizoaceae (Caryophyllales) based on four plastid DNA regions. – Amer. J. Bot. 90: 1433-1445.

Klak C, Reeves G, Hedderson T. 2004. Unmatched tempo of evolution in southern African semidesert ice plants. – Nature 427: 63-65.

Klak C, Nowell TL, Hedderson TAJ. 2006. Phylogeny and revision of Brownanthus and its close allies Aspazoma and Dactylopsis (Aizoaceae) based on morphology and four DNA regions. – Kew Bull. 61: 353-400.

Klak C, Bruyns PV, Hedderson TAJ. 2007. A phylogeny and new classification for Mesembryanthemoideae (Aizoaceae). – Taxon 56: 737-756.

Klak C, Bruyns PV, Hanáček P. 2013. A phylogenetic hypothesis for the recently diversified Ruschieae (Aizoaceae) in southern Africa. – Mol. Phylogen. Evol. 69: 1005-1020.

Klak C, Hanáček P, Bruyns PV. 2014. Phylogeny and taxonomy for Mesembryanthemum subg. Volkeranthus (Aizoaceae-Mesembryanthemoideae). – South Afr. J. Bot. 95: 112-122.

Klak C, Hanáček P, Bruyns PV. 2015. A phylogeny and revised classification for the Apatesieae (Aizoaceae: Ruschioideae) with a comparison of centres of diversity. – Taxon 64: 507-522.

Klak C, Hanáček P, Bruyns PV. 2017a. Out of southern Africa: origin, biogeography and age of the Aizooideae (Aizoaceae). – Mol. Phylogen. Evol. 109: 203-216.

Klak C, Hanaček P, Bruyns PV. 2017b. Disentangling the Aizooideae: new generic concepts and a new subfamily in Aizoaceae. – Taxon 66: 1147-1170.

Kluge M, Ting IP. 1978. Crassulacean acid metabolism. Analysis of an ecological adaptation. – Springer-Verlag, Berlin.

Kobayashi N, Schmidt J, Mimtz M, Wray V, Schliemann W. 2000. Betalains from Christmas cactus. – Phytochemistry 54: 419-426.

Koch KE, Kennedy RA. 1980. Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. – Plant Physiol. 65: 193-197.

Koch KE, Kennedy RA. 1982. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. under natural environmental conditions. – Plant Physiol. 69: 757-761.

Köhler E. 1993. Blattnervatur-Muster der Buxaceae Dumortier und Simmondsiaceae van Tieghem. – Feddes Repert. 104: 145-167.

Köhler E. 2002. Simmondsiaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 355-358.

Köhler E, Brückner P. 1983. Zur Pollenmorphologie und systematischen Stellung der Gattung Simmondsia Nutt. – Wiss. Zeitschr. Friedrich-Schiller-Univ. Jena, Math.-Naturwiss. Reihe, 32: 945-955.

Kondo K. 1973. The chromosome numbers of Striga asiatica and Triphyophyllum peltatum. – Phyton 31: 1-2.

Kondo K. 1976. A cytotaxonomic study in some species of Drosera. – Rhodora 78: 532-541.

Kondo K, Lavarack PS. 1984. A cytotaxonomic study of some Australian species of Drosera. – Bot. J. Linn. Soc. 88: 317-333.

Kondo K, Olivier MC. 1979. Chromosome numbers of four species of Drosera (Droseraceae). – Ann. Missouri Bot. Gard. 66: 584-587.

Kondo K, Segawa M. 1988. A cytotaxonomic study in artificial hybrids between Drosera anglica Huds. and its certain closely related species in series Drosera, section Drosera, subgenus Drosera, Drosera. – La Kromosoma II-51-52: 1697-1709.

Kondo K, Segawa M, Nehira K. 1976. A cytotaxonomic study in four species of Drosera. – Mem. Fac. Integr. Arts Sci. Hiroshima Univ., Ser. IV, 2: 27-36.

Kondorskaya VR. 1984. Features of inflorescence structure in the tribe Atripliceae C. A. Mey. (Chenopodiaceae). – Bull. Mosk. Obsch. Ispyt. Prir. (Bul. MOIP), sér. Biology 89: 104-114. [In Russian]

Kool A, Thulin M. 2013. Proposal to reject the name Psammanthe (Caryophyllaceae). – Taxon 62: 833.

Kool A, Thulin M. 2017a. A giant spurrey on a tiny island: on the phylogenetic position of Sanctambrosia manicata (Caryophyllaceae) and the generic circumscriptions of Spergula, Spergularia and Rhodalsine. – Taxon 66: 615-622.

Kool A, Thulin M. 2017b. A plant that Linnaeus forgot: taxonomic revision of Rhodalsine (Caryophyllaceae). – Willdenowia 47: 317-323.

Kool A, Bengtson A, Thulin M. 2007. Polyphyly of Polycarpon (Caryophyllaceae) inferred from DNA sequence data. – Taxon 56: 775-782.

Kool A, Perrigo A, Thulin M. 2012. Bristly versus juicy: phylogenetic position and taxonomy of Sphaerocoma (Caryophyllaceae). – Taxon 61: 67-75.

Korn RW. 2011. Window patterns in Lithops. – Intern. J. Plant Sci. 172: 1101-1109.

Korotkova N, Zabel L, Quandt D, Barthlott W. 2010. A phylogenetic analysis of Pfeiffera and the reinstatement of Lymanbensonia as an independently evolved lineage of epiphytic Cactaceae with a new tribe Lymanbensonieae. – Willdenowia 40: 151-172.

Korotkova N, Borsch T, Quandt D, Taylor NP, Müller KF, Barthlott W. 2011. What does it take to resolve relationships and to identify species with molecular markers? An example from the epiphytic Rhipsalideae (Cactaceae). – Amer. J. Bot. 98: 1549-1572.

Korzshinsky S. 1886. Über die Samen der Aldrovanda vesiculosa L. – Bot. Centralbl. 27: 302-304, 334-335.

Kosová V, Chldek M, Petrik F. 1958. Ein Beitrag zur Pharmakognosie und Wertbestimmung einiger Arten der Gattung Chenopodium. – Pharmazie 13: 631-647.

Kothe-Heinrich G. 1993. Revision der Gattung Halothamnus (Chenopodiaceae). – Bibl. Bot. 143.

Kovácik J, Repcák M. 2006. Naphtoquinone content of some sundews (Drosera L.). – Carniv. Plant Newsl. 35: 49-51.

Kowal K. 1961. Studia nad morfologia i anatomia nasion Portulacaceae Reichb. – Monogr. Bot. 12: 1-48.

Kozhanchikov VI. 1967. Morphological characters of the seeds of the family Caryophyllaceae and probable ways of their evolution. – Bot. Žurn. 52: 1277-1280.

Kraft E. 1917. Experimentelle und entwicklungsgeschichtliche Untersuchungen an Caryophyllaceen-Blüten. – Flora 109: 283-362.

Krainz H (ed). 1956-1976. Die Kakteen. – Franckh., Stuttgart.

Král M. 1969. Aconogonon polystachyum comb. nov. – Preslia (Praha) 41: 258-260.

Král M. 1984. Pirinia, a new genus of the Caryophyllaceae. – Preslia (Praha) 56: 161-163.

Král M. 1985. Rubrivena, a new genus of Polygonaceae. – Preslia (Praha) 57: 65-67.

Kraybill AA, Martin CE. 1996. Crassulacean acid metabolism in three species of the C4 genus Portulaca. – Intern. J. Plant Sci. 157: 103-109.

Kress A. 1970. Zytotaxonomische Untersuchungen an einigen Insektenfängern (Droseraceae, Byblidaceae, Cephalotaceae, Roridulaceae, Sarraceniaceae). – Ber. Deutsch. Bot. Ges. 83: 55-62.

Kristen U. 1976. Die Morphologie der Schleimsekretion im Fruchtknoten von Aptenia cordifolia. – Protoplasma 89: 221-233.

Ku MSB, Shieh YJ, Reger BJ, Black CC. 1981. Photosynthetic characteristics of Portulaca grandiflora, a succulent C4 dicot. – Plant Physiol. 768: 1073-1080.

Krutzsch W. 1985. Über Nepenthes-Pollen im europäischen Tertiär. – Gleditschia 13: 89-93.

Kubitzki K. 1993a. Didiereaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 292-295.

Kubitzki K. 1993b. Plumbaginaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 523-530.

Kubitzki K. 1994. A note on the relationship of the order within the angiosperms. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 317-320.

Kubitzki K. 2002a. Asteropeiaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 28-29.

Kubitzki K. 2002b. Droseraceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 198-202.

Kubitzki K. 2002c. Drosophyllaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 203-205.

Kubitzki K. 2002d. Frankeniaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 209-212.

Kubitzki K. 2002e. Nepenthaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 320-324.

Kühl R. 1933. Vergleichende entwicklungsgeschichtliche Untersuchungen an der Insektivore Nepenthes. – Beih. Bot. Centralbl. I, 51: 311-334.

Kühn U, Bittrich V, Carolin R, Freitag H, Hedge IC, Uotila P, Wilson PG. 1993. Chenopodiaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 253-281.

Kuprianova LA. 1973. Pollen morphology within the genus Drosera. – Grana 13: 103-107.

Kurata K, Jaffré T, Setoguchi H. 2008. Genetic diversity and geographical structure of the pitcher plant Nepenthes vieillardii in New Caledonia: a chloroplast DNA haplotype analysis. – Amer. J. Bot. 95: 1632-1644.

Kurata S. 1976. Nepenthes of Mount Kinabalu. – Sabah Nat. Parks Publ. 2: 1-80.

Kuroyanagi M, Yamamoto Y, Fukushima S, Ueno A, Noro T, Miyase T. 1982. Chemical studies on the constituents of Polygonum nodosum. – Chem. Pharm. Bull. 30: 1602-1608.

Kurtz EG. 1962. Pollen morphology of the Cactaceae. – Pollen Spores 4: 359-360.

Kurzweil H. 2005. Observations on the development of the placentas and closing bodies in the fruit capsules of some Mesembryanthema (Aizoaceae). – Bot. Jahrb. Syst. 126: 385-401.

Kuz’min VI. 1971. On the sex dimorphism of Polygonum coriarium Grig. – Rast. Resur. 7: 288-291. [In Russian]

Kuz’min VI. 1989. Morphology of inflorescence and sexual dimorphism in Polygonum spp. L. from sect. Aconogonon Meisn. in connection with fruiting. – Rast. Resur. 25: 137-145. [In Russian]

Labbe A. 1962. Les Plumbaginacées: structure, développement, repartition, conséquences en systématique. – Thesis, l’Université de Grenoble, France.

LaCroix C, Sattler R. 1988. Phyllotactix theories and tepal-stamen superposition in Basella rubra. – Amer. J. Bot. 75: 906-917.

Lahondère C. 2004. Les salicornes s.l. (Salicornia L., Sarcocornia A. J. Scott et Arthrocnemum Moq.) sur le côtes françaises. – Bull. Soc. Bot. Centre-Ouest, sér. II, num. spec. 24.

Lakomski K. 2003. Haftowanie taksonomii kaktusów. – Swiat Kakt. 37: 59-73.

Lambert JG. 1985. Het argentijnse geslacht Tephrocactus. – Succulenta 64: 164-168.

Lamb-Frye AS, Kron KA. 2003. Phylogeny and character evolution in Polygonaceae. – Syst. Bot. 28: 326-332.

Landrum JV. 2001. Wide-band tracheids in leaves of genera of Aizoaceae: the systematic occurrence of a novel cell type and its implications for the monophyly of the subfamily Ruschioideae. – Plant Syst. Evol. 227: 49-61.

Landrum JV. 2002. Four succulent families and 40 million years of evolution and adaptation to xeric environments: what can stem and leaf anatomical characters tell us about their phylogeny? – Taxon 51: 463-473.

Landrum JV. 2006. Wide band tracheids in genera of Portulacaceae: novel, non-xylary tracheids possibly evolved as an adaptation to water stress. – J. Plant Res. 119: 497-504.

Lange W, Brandenburg WA, de Bock TSM. 1999. Taxonomy and cultonomy of beet (Beta vulgaris L.). – Bot. J. Linn. Soc. 130: 81-96.

Larridon I, Walter HE, Guerrero PC, Duarte M, Cisternas MA, Hernández CP, Bauters K, Asselman P, Goetghebeur P, Samain M-S. 2015. An integrative approach to understanding the evolution and diversity of Copiapoa (Cactaceae), a threatened endemic Chilean genus from the Atacama Desert. – Amer. J. Bot. 102: 1506-1520.

Larsen K. 2002. Caryophyllaceae. – In: Nooteboom HP (ed), Flora Malesiana 1, 16, Foundation Flora Malesiana, Nationaal Herbarium Nederland, Leiden; pp. 1-51.

Larsen K, Larsen SS, Pedersen TM. 1987. Siamosia thailandica, gen. et sp. nov. from Thailand (Amaranthaceae). – Nord. J. Bot. 7: 271-276.

Las Peñas ML, Bernardello G, Kiesling R. 2008. Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). – Plant Syst. Evol. 272: 211-222.

Laubengayer RA. 1937. Studies in the anatomy and morphology of the polygonaceous flower. – Amer. J. Bot. 24: 329-343.

Laundon JR. 1959. Droseraceae. – In: Hubbard CE, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-6.

Laundon JR. 1978. 68. Droseraceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 62-68.

Lawrence GHM. 1940. Armerias, native and cultivated. – Gentes Herb. 4: 391-418.

Leach GJ, Townsend CC, Harley MM. 1993. Omegandra, a new genus of Amaranthaceae from Australia. – Kew Bull. 48: 787-793.

Lebègue A. 1955. Embryogénie des Mésembryanthemacées. Développement de l’embryon chez le Mesembryanthemum canaliculatum. – Compt. Rend. Acad. Sci. Paris 240: 450-452.

Le Duc A. 1995. A revision of Mirabilis section Mirabilis (Nyctaginaceae). – Sida 16: 613-648.

Lee CW, Sherman RA. 1985. Meiosis in jojoba, Simmondsia chinensis. – Israel J. Bot. 34: 1-6.

Lee J, Kim SY, Park SH, Ali MA. 2013. Molecular phylogenetic relationships among members of the family Phytolaccacee sensu lato inferred from internal transcribed spacer sequences of nuclear ribosomal DNA. – Genet. Mol. Res. 12: 4515-4525. DOI: 10.4238/2013.February.28.15.

Lee KK, Harrison DK, Johnston ME, Williams RR. 2007. Molecular taxonomic clarification of Ptilotus exaltatus and Ptilotus nobilis (Amaranthaceae). – Aust. Syst. Bot. 20: 72-81.

Lee MAB, Brothers T. 1981. Seed dispersal in hybrid Salsola. – Great Basin Natur. 41: 367-370.

Lee ST, Kim SK, Hong S-P. 1985. A palynotaxonomic study of the Korean Rumex (Polygonaceae). – J. Sung Kyun Kwan Univ. (Nat. Sci.) 36: 39-48. [In Korean with English summary]

Lee ST, Kim JG, Hong S-P. 1985. Pollen surface pattern and its taxonomic significance of the Korean Polygonaceae pollen. – Korean J. Plant Taxon. 15: 37-48.

Legrand CD. 1949. Las especies del género Portulaca en la Argentina. – Lilloa 17: 311-376.

Legrand CD. 1953. Demarcación del género Portulaca. – Comun. Bot. Mus. Hist. Nat. Montevideo 3: 1-16.

Legrand CD. 1958. Desmembración del género Portulaca II. – Comun. Bot. Mus. Hist. Nat. Montevideo 3: 1-17.

Legrand CD. 1962. Las espécies americanas de Portulaca. – An. Mus. Hist. Nat. Montevideo 2a, 7, 3: 1-147.

Leighton Boyce G, Iliff J. 1973. The subgenus Tephrocactus. A historical survey with notes on cultivation. – Morden.

Leinfellner W. 1959. Die falschen Rollblätter der Frankeniaceen, in Vergleich gesetzt mit jenen der Ericaceen. – Österr. Bot. Zeitschr. 106: 325-351.

Leinfellner W. 1965. Über die Kronblätter der Frankeniaceen. – Österr. Bot. Zeitschr. 112: 44-55.

Leins P, Erbar C. 1994. Putative origin and relationships of the order from the viewpoint of developmental flower morphology. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, pp. 303-316.

Leins P, Schwitalla S. 1985. Studien an Cactaceen Blüten I. – Beitr. Biol. Pflanzen 60: 313-323.

Leins P, Schwitalla S. 1988. Placentation in Cactaceae. – In: Leins P, Tucker SC, Endress PK (eds), Aspects of floral development, J. Cramer, Bornträger, Berlin, pp. 57-68.

Leins P, Walter A, Erbar C. 2001. Eine morphogenetische Interpretation der Caryophyllaceen-Kronblätter. – Bot. Jahrb. Syst. 123: 355-367.

Léonard J. 1982. Ancistrocladaceae. – In: Bamps P (ed), Flore d’Afrique Centrale. – Jardin Botanique National de Belgique, Meise.

Léonard J. 1986. Ancistrocladaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-4.

Lepschi BJ. 1996. A taxonomic revision of Macarthuria (Molluginaceae) in Western Australia. – Nuytsia 11: 37-54.

Letschert JPW, Lange W, Frese L, Berg RG van den. 1994. Taxonomy of Beta Section Beta. – J. Sugar Beet Res. 31: 69-85.

Leuenberger BE. 1976a. Die Pollenmorphologie der Cactaceae und ihre Bedeutung für die Systematik. – Diss. Bot. 31, J. Cramer, A. R. Gantner, Vaduz, Liechtenstein.

Leuenberger BE. 1976b. Pollen morphology of the Cactaceae – an SEM survey of exine sculpturing and its tentative implications for taxonomy and phylogeny. – Cact. Succ. J. (Great Britain) 38: 79-94.

Leuenberger BE. 1986. Pereskia (Cactaceae). – Mem. New York Bot. Gard. 41: 1-141.

Leuenberger BE. 1993. The genus Denmoza Britton & Rose (Cactaceae): taxonomic history and typification. – Haseltonia 1: 86-94.

Leuenberger BE. 1997. Maihuenia – monograph of a Patagonian genus of Cactaceae. – Bot. Jahrb. Syst. 119: 1-92.

Leuenberger BE. 2002. The South American Opuntia ser. Armatae (= O. ser. Elatae) (Cactaceae). – Bot. Jahrb. Syst. 123: 413-439.

Leuenberger BE. 2008. Pereskia, Maihuenia, and Blossfeldia – taxonomic history, updates, and notes. – Haseltonia 14: 54-93.

Leuenberger BE, Eggli U. 1999. Notes on the genus Blossfeldia (Cactaceae) in Argentina. – Haseltonia 6: 2-13.

Leuenberger BE, Eggli U. 2000. The genus Eulychnia (Cactaceae) in Chile: notes on the taxonomy, types, and other old specimens. – Haseltonia 7: 63-76.

Levin RA. 2000. Phylogenetic relationships within Nyctaginaceae tribe Nyctagineae: evidence from nuclear and chloroplast genomes. – Syst. Bot. 25: 738-750.

Levin RA. 2002. Taxonomic status of Acleisanthes, Selinocarpus, and Ammocodon (Nyctaginaceae). – Novon 12: 58-63.

Lewis PO. 1991. Allozyme variation and evolution in Polygonella (Polygonaceae). – Ph.D. diss., Ohio State University, Columbus, Ohio.

Lewis PO, Crawford DJ. 1995. Pleistocene refugium endemics exhibit greater allozymic diversity than widespread congeners in the genus Polygonella (Polygonaceae). – Amer. J. Bot. 82: 141-149.

Lewis WH, Suda Y. 1968. Karyotypes in relation to classification and phylogeny in Claytonia. – Ann. Missouri Bot. Gard. 55: 64-67.

Li A-J. 1981. Parapteropyrum A. J. Li – unum genus novum Polygonacearum sinicum. – Acta Phytotaxon. Sin. 19: 330-332.

Li B, Fan D, Lei S, Zhang Z. 2013. New combinations in Persicaria (Polygonaceae: Persicarieae) for the Flora of China. – Phytotaxa 91: 24-26.

Li F-L, Zeller F, Huang K-F, Shi T-X, Chen Q-F. 2013. Improvement of fluorescent chromosome in situ PCR and its application in the phylogeny of the genus Fagopyrum Mill. using nuclear genes of chloroplast origin (cpDNA). – Plant Syst. Evol. 299: 1679-1691.

Li H-L. 1952. The genus Tovara (Polygonaceae). – Rhodora 54: 19-25.

Liede S. 1989. Untersuchungen zum Merkmalsbestand und zur taxonomie der ‘Erepsiinae’ (Mesembryanthemaceae). – Beitr. Biol. Pflanzen 64: 391-479.

Liede-Schumann S, Hartmann HEK. 2009. Mesembryanthemum – back to the roots? – Taxon 58: 345-346.

Linczevsky I. 1968. Tentamentum systematis ordinis Plumbaginalium Lindl. – Novit. Syst. Plant. Vasc. (Leningrad) 1968: 171-177.

Linczevsky I. 1971. Notes on Limoniaceae 3. – Bot. Žurn. 56: 1633-1635.

Lindau G. 1890. Monographia generis Coccolobae. – Engl. Bot. Jahrb. Syst. 13: 106-229.

Lindsay G. 1963. The genus Lophocereus. – Cact. Succ. J. (Los Angeles) 35: 176-192.

Liu MT. 1995. General study on Tamarix L. and its large scale generalizing and application. – Lanzhou Univ. Publ. House, Lanzhou.

Livingstone DA, Tomlinson M, Friedman G, Broome R. 1973. Stellate pore ornamentation in pollen grains of the Amaranthaceae. – Pollen Spores 15: 345-351.

Lledó MD, Crespo MB. 2000. Polyphyly of Limoniastrum (Plumbaginaceae): evidence from DNA sequences of plastid rbcL, trnL intron and trnL-F intergene spacer. – Bot. J. Linn. Soc. 132: 175-191.

Lledó MD, Crespo MB, Cameron KM, Fay MF, Chase MW. 1998. Systematics of Plumbaginaceae based upon cladistic analysis of rbcL sequence data. – Syst. Bot. 23: 21-29.

Lledó MD, Crespo MB, Cox AV, Fay MF, Chase MW. 2000. Polyphyly of Limoniastrum (Plumbaginaceae): evidence from DNA sequences of plastid rbcL, trnL intron and trnL-F intergene spacer. – Bot. J. Linn. Soc. 132: 175-191.

Lledó MD, Karis PO, Crespo MB, Fay MF, Chase MW. 2001. Phylogenetic position and taxonomic status of the genus Aegialitis and subfamilies Staticoideae and Plumbaginoideae (Plumbaginaceae): evidence from plastid DNA sequences and morphology. – Plant Syst. Evol. 229: 107-124.

Lledó MD, Erben M, Crespo MB. 2005. Myriolimon, a new name for the recently published Myriolepis (Plumbaginaceae). – Taxon 54: 811-812.

Lledó MD Crespo MB, Fay MF, Chase MW. 2005. Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications. – Amer. J. Bot. 92: 1189-1198.

Llorens L. 1985. Revisión sistemático-taximétrica del género Limonium Miller en la isla de Mallorca I. – Lazaroa 8: 11-68.

Lloyd FE. 1942. The carnivorous plants. – Chronica Botanica, Waltham, Massachusetts.

Lobin W, Leyens T, Kilian N, Erben M, Lewejohann K. 1995. The genus Limonium (Plumbaginaceae) on the Cape Verde Islands, W Africa. – Willdenowia 25: 197-214.

Logacheva MD, Samigullin TH, Dhingra A, Penin AA. 2008. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – a wild ancestor of cultivated buckwheat. – BMC Plant Biol. 8: 59.

Lomonosova MN, Freitag H. 2003. A new species of Suaeda (Chenopodiaceae) from the Altai, Central Asia. – Willdenowia 33: 139-147.

Lomonosova MN, Krasnikov AA. 1993. Chromosome numbers in some members of the Chenopodiaceae. – Bot. Žurn. 78: 158-159.

Lomonosova MN, Krasnikov AA, Krasnikova SA. 2001. Chromosome numbers of the Chenopodiaceae species from Siberia. – Bot. Žurn. 86: 145-146.

Lomonosova MN, Krasnikov AA, Krasnikova SA. 2003. Chromosome numbers of the Chenopodiaceae family members of the Kazakhstan flora. – Bot. Žurn. 88: 134-135.

Lomonosova MN, Brandt R, Freitag H. 2008. Suaeda corniculata (Chenopodiaceae) and related new taxa from Eurasia. – Willdenowia 38: 81-109.

Lonsing A. 1939. Über einjährige europäische Cerastium-Arten aus der Verwandtschaft der Gruppen ‘Ciliatopetala’ Fenzl und ’Cryptodon’ Pax. – Feddes Repert. 46: 139-165.

López HA, Vegetti AC, Anton AM. 1998. Estructura de la inflorescencia en especies de Boerhavia L. subgénero Boerhavia (Nyctaginaceae). – Kurtziana 26: 117-128.

López González G. 2010. Sobre el género Spergula L. (Caryophyllaceae) y sus especies en la Península Ibérica e Islas Baleares. – Lagascalia 30: 7-18.

Lopriore GG. 1904. Staminodi delle Amaranthacee dal punto di vista morfologico, biologico e sistematico. – In: Urban I, Graebner P (eds), Ascherson Festschrift, Berlin, pp. 413-430.

Lorz A. 1937. Cytological investigations on five chenopodiaceous genera with special emphasis on chromosome morphology and somatic doubling in Spinacia. – Cytologia 8: 241-276.

Lourteig A. 1991. El género Montia (Portulacaceae) en el Hemispherio Austral. – Rev. Acad. Colombiana Ci. Ex. Fis. Nat. Corr. Española 18: 41-48.

Lourteig A. 1994. Lyallia kerguelensis Hook. f. and its artificial propagation. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, pp. 321-327.

Löve Á. 1943. Cytogenetic studies on Rumex subgenus Acetosella. – Hereditas 30: 1-136.

Löve Á, Löve D. 1956. Chromosome number and taxonomy of eastern North American Polygonum. – Can. J. Bot. 34: 501-521.

Löve Á, Sarkar P. 1957. Heat tolerance of Koenigia islandica. – Bot. Not. 110: 478-481.

Lowrie A. 2005. A taxonomic revision of Drosera section Stolonifera (Droseraceae) from south-west Western Australia. – Nuytsia 15: 355-394.

Lowrie A, Conran JG. 2007. A revision of the Drosera omissa/D. nitidula complex (Droseraceae) from south-west Western Australia. – Taxon 56: 533-544.

Lowrie A, Conran JG. 2008. A review of Drosera whittakeri s. lat. (Droseraceae) and a description of a new species from Kangaroo Island, South Australia. – Telopea 12: 147-165.

Loza-Cornejo S, Terrazas T. 1996. Anatomía del tallo y de la raíz de dos especies de Wilcoxia Britton y rose (Cactaceae) del noreste de México. – Bol. Soc. Bot. México 59: 13-23.

Loza-Cornejo S, Terrazas T. 2011. Morfo-anatomía de plántulas en especies de Pachycereeae: Hasta cuándo son plántulas? – Bol. Soc. Bot. México 88: 1-13.

Lu DQ. 1988. Commicarpus (Nyctaginaceae) in China. – Acta Bot. Bor. Occid. Sin. 8: 125-128.

Lüders H. 1907. Systematische Untersuchungen über die Caryophyllaceen mit einfachem Diagramm. – Bot. Jahrb. Syst. 40, Beibl. 91: 1-38.

Luo Y, Bian F-H, Luo Y-B. 2012. Different patterns of floral ontogeny in dimorphic flowers of Pseudostellaria heterophylla (Caryophyllaceae). – Intern. J. Plant Sci. 173: 150-160.

Luteyn J. 1990. 151. Plumbaginaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 39, Nord. J. Bot., Copenhagen, pp. 39-47.

Lüthy JM. 1995. Taxonomische Untersuchung der Gattung Mammilaria Haw. (Cactaceae). – Arbeitskreis für Mammillarienfreunde, Frankenthal.

Lüthy JM. 2001. A revised classification of the ‘primitive’ mammillarias. – J. Mammillaria Soc. 41: 6-7.

Lüthy JM. 2002. Further comments on Turbinicarpus and a key to species. – Cact. Syst. Init. 14: 21-25.

Lüthy JM. 2003a. Rapicactus Buxbaum & Oehme. Revisione del genere – revision of the genus. – Cactus & Co. 7: 4-43.

Lüthy JM. 2003b. Revision of the genus Rapicactus Buxbaum & Oehme. – Turbi-Now 14: 3-13.

Lüthy JM. 2007. Comments on Sclerocactus. – Cact. Syst. Init. 22: 19-24.

Lüthy JM, Moser U. 2002. The cacti of CITES Appendix I. – Bundesamt für Veterinärwesen, Bern.

Lütolf GA. 1969. Beziehungen zwischen Portulacaceae und Cactaceae. – Ph.D. diss., Universität Zürich, Switzerland.

Mabry TJ. 1974. Is the order Centrospermae monophyletic? – In: Bendz G, Santesson J (eds), Chemistry in botanical classification, Proceedings of the 25th Nobel Symposium, Academic Press, New York, pp. 275-280.

Mabry TJ. 1976. Pigment dichotomy and DNA-RNA hybridization data for centrospermous families. – Plant Syst. Evol. 126: 79-94.

Mabry TJ. 1977. The order Centrospermae. – Ann. Missouri Bot. Gard. 64: 210-220.

Mabry TJ, Behnke H-D (eds). 1976. Evolution of the centrospermous families. – Plant Syst. Evol. 126: 1-106.

Mabry TJ, Taylor A, Turner BL. 1963. The betacyanins and their distribution. – Phytochemistry 2: 61-64.

Mabry TJ, Kimler L, Chang C. 1972. The betalains: structure, function, and biogenesis and the plant order Centrospermae. – In: Runeckles VC, Tso TC (eds), Recent advances in phytochemistry 4, New York, pp. 105-134.

Mabry TJ, Behnke H-D, Eifert IJ. 1976. Betalains and P-type sieve-element plastids in Gisekia L. (Centrospermae). – Taxon 25: 112-114.

Mabry TJ, Neumann P, Philipson WP. 1978. Hectorella: a member of the betalain-suborder Chenopodiineae of the order Centrospermae. – Plant Syst. Evol. 130: 163-165.

McCann C. 1953. Notes on the genus Salicornia L. – Bombay Nat. Hist. Soc. 50: 872-877.

McCauley RA. 2004. New taxa and a new combination in the North American species of Froelichia (Amaranthaceae). – Syst. Bot. 29: 64-76.

McCauley RA, Ballard HE. 2007a. Systematics of North American Froelichia (Amaranthaceae subfam. Gomphrenoideae) I: identification of consistent morphological variation and segregation of species complexes. – Brittonia 59: 255-274.

McCauley RA, Ballard HE. 2007b. Systematics of North American Froelichia (Amaranthaceae subfam. Gomphrenoideae) II: phylogeny and biogeographic speciation patterns inferred from nrITS sequence data. – Brittonia 59: 275-289.

MacDaniels LH. 1981. A study of cultivars in Bougainvillea. – Baileya 21: 77-100.

McDonald CB. 1980. A biosystematic study of the Polygonum hydropiperoides (Polygonaceae) complex. – Amer. J. Bot. 67: 664-670.

Mackenzie KK. 1914. A new genus from Missouri. – Torreya 14: 67-68.

McMillan AJS, Horobin JF. 1995. Christmas cacti. The genus Schlumbergera and its hybrids. – Succ. Plant Res. 4: 1-160.

McNeill J. 1962. Taxonomic studies on the Alsinoideae I. Generic and infra-generic groups. – Notes Roy. Bot. Gard. Edinb. 24: 79-155.

McNeill J. 1963. Taxonomic studies in the Alsinoideae II. A revision of the species in the Orient. – Notes Roy. Bot. Gard. Edinb. 24: 241-404.

McNeill J. 1972. New taxa of Claytonia section Claytonia (Portulacaceae). – Can. J. Bot. 50: 1895-1898.

McNeill J. 1973. Gypsophila and Stellaria: an unexpected problem in generic delimitation. – Notes Roy. Bot. Gard. Edinb. 32: 389-395.

McNeill J. 1974. Synopsis of a revised classification of the Portulacaceae. – Taxon 23: 725-728.

McNeill J. 1975. A generic revision of Portulacaceae tribe Montieae using techniques of numerical taxonomy. – Can. J. Bot. 53: 789-809.

McNeill J. 1978. Silene alba and Silene dioica in North America and the generic delimitation of Lychnis, Melandrium, and Silene (Caryophyllaceae). – Can. J. Bot. 56: 297-308.

McNeill J. 1980. The delimitation of Arenaria (Caryophyllaceae) and related genera in North America, with 11 combinations in Minuartia. – Rhodora 82: 495-501.

McNeill J, Bassett IJ. 1974. Pollen morphology and the infrageneric classification of Minuartia (Caryophyllaceae). – Can. J. Bot. 52: 1225-1231.

McNeill J, Crompton W. 1978. Pollen dimorphism in Silene alba (Caryophyllaceae). – Can. J. Bot. 56: 1280-1286.

McNeill J, Findlay JN. 1971. The systematic position of Claytonia bostockii. – Can. J. Bot. 49: 713-715.

McNeill J, Majumdar NC. 1980. A new species of Arenaria subgenus Odontostemma from Tibet, with a review of the status of the genus Gooringia (Caryophyllaceae). – Bot. J. Linn Soc. 80: 371-378.

McNeill J, Bassett IJ, Crompton CW, Taschereau PM. 1983. Taxonomic and nomenclatural notes on Atriplex L. (Chenopodiaceae). – Taxon 32: 549-556.

McPherson S. 2008. Pitcher plants of the Americas. – McDonald & Woodward, Granville, Ohio.

McPherson S. 2009. Pitcher plants of the Old World I-II. – Redfern Natural History Prod., Poole.

McPherson S. 2011. New Nepenthes 1. – Redfern Natural History Prod., Poole.

Machado MC. 2007. Fascinating Frailea 2. Review of the species from Rio Grande do Sul. – Cact. World 25: 65-76.

Madhani H, Rabeler R, Pirani A, Oxelman B, Heubl G, Zarre S. 2018. Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries. – Taxon 67: 83-112.

Madsen JE. 1989. 45. Cactaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 35, Nord. J. Bot., Copenhagen, pp. 1-78.

Maekawa F. 1964. On the phylogeny in the Polygonaceae. – J. Jap. Bot. 39: 14-18.

Magin N. 1984. Die “Frucht” von Pollichia campestris Aiton (Caryophyllaceae). – Bot. Jahrb. Syst. 104: 455-467.

Maguire B. 1947. Studies in the Caryophyllaceae III: a synopsis of the North American species of Arenaria, section Eremogone Fenzl. – Bull. Torrey Bot. Club 74: 38-56.

Maguire B. 1951. Studies in the Caryophyllaceae V. Arenaria in America north of Mexico: a conspectus. – Amer. Midl. Natur. 46: 493-511.

Maguire B. 1958. Arenaria rossii and some of its relatives in America. – Rhodora 60: 44-53.

Maheshwari P, Chopra RN. 1954. Polyembryony in Opuntia dillenii L. – Curr. Sci. 23: 130-131.

Maheshwari P, Chopra RN. 1955. The structure and development of the ovule and seed of Opuntia dillenii Haw. – Phytomorphology 5: 112-122.

Maheshwari Devi H, Pulliah T. 1975. Life history of Basella rubra Linn. and taxonomic status of the family Basellaceae. – J. Indian Bot. Soc. 54: 154-166.

Mahrt M, Spellenberg R. 1995. Taxonomy of Cyphomeris (Nyctaginaceae) based on multivariate analyses of geographic variation. – Sida 16: 679-697.

Maihle NJ, Blackwell WH. 1978. A synopsis of N American Corispermum (Chenopodiaceae). – Sida 7: 382-391.

Maiti GG, Dutta RM, Babu CR. 1981. Aconogonon kuttiense (Polygonaceae) – a new species from N. W. Himalaya. – J. Bombay Nat. Hist. Soc. 77: 303-305.

Maiti GG, Sikdar JL. 1985. A census to Polygonaceae of West Bengal. – Indian J. For. 8: 187-198.

Majure LC, Puente R. 2014. Phylogenetic relationships and morphological evolution in Opuntia s. str. and closely related members of tribe Opuntieae. – Succ. Plant Res. 8: 9-30.

Majure LC, Puente R, Griffith MP, Judd WS, Soltis PS, Soltis DE. 2012. Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. – Amer. J. Bot. 99: 847-864.

Majure LC, Puente R, Griffith MP, Soltis DE, Judd WS. 2013. Opuntia lilae, another Tacinga hidden in Opuntia s.l. (Cactaceae). – Syst. Bot. 38: 444-450.

Malekmohammadi M, Akhani H, Borsch T. 2017. Phylogenetic relationships of Limonium (Plumbaginaceae) inferred from multiple chloroplast and nuclear loci. – Taxon 66: 1128-1146.

Mallingson F. 1922. Serodiagnostische Untersuchungen über die Verwandtschaften innerhalb des Centrospermen-Astes des Pflanzenreiches. – Bot. Arch. 1: 2-20.

Mandák B, Bímová K, Pyšek P, Štěpánek J, Plačková I. 2005. Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. – Plant Syst. Evol. 253: 219-230.

Manfredi KP, Blunt JW, Cardellina JH, McMahon JB, Pannell LL, Cragg GM, Boyd MR. 1991. Novel alkaloids from the tropical plant Ancistrocladus abbreviatus inhibit cell killing by HIV-1 and HIV-2. – J. Med. Chem. 34: 3402-3405.

Manhart JR, Rettig JH. 1994. Gene sequence data. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 235-246.

Manning JC, Goldblatt P, Forest F. 2011. Adenogramma natans, a remarkable new aquatic species from Western Cape, South Africa. – Bothalia 41: 189-193.

Maradufu A, Ouma JH. 1978. A new chalcone as a natural molluscicide from Polygonum senegalense. – Phytochemistry 17: 823-824.

Marburger JE. 1979. Glandular leaf structure of Triphyophyllum peltatum (Dioncophyllaceae): a “fly-paper” insect trapper. – Amer. J. Bot. 66: 404-411.

Marchant NG, Lowrie A. 1992. New names and new combinations in 34 taxa of Western Australian tuberous and pygmy Drosera. – Kew Bull. 47: 315-328.

Marchant NG, Aston HI, George AS. 1982. Droseraceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 9-66.

Marek S. 1954. Morphological and anatomical features of the fruits of genera Polygonum L. and Rumex L. and keys for their determination. – Monogr. Bot. 2: 77-161. [In Polish with English summary]

Marek S. 1958. European genera of Polygonaceae in the light of anatomical and morphological investigations on their fruits and seeds. – Monogr. Bot. 6: 57-79. [In Polish with English summary]

Martin CE, Wallace RS. 2000. Photosynthetic pathway variation in leafy members of two subfamilies of the Cactaceae. – Intern. J. Plant Sci. 161: 639-650.

Martin CE, Higley M, Wang W. 1988. Ecophysiological significance of CO2-recycling via crassulacean acid metabolism in Talinum calycinum Engelm. (Portulacaceae). – Plant Physiol. 86: 562-568.

Martin PG, Dowd JM. 1984. The study of plant phylogeny using amino acid sequences of ribulose-1,5-biphosphate carboxylase V. Magnoliaceae, Polygonaceae and the concept of primitiveness. – Aust. J. Bot. 32: 301-309.

Martínez-Crovetto R. 1967. Catalogo preliminar de las Caryophyllaceae de la Argentina y del Uruguay. – Bonplandia 2: 187-264.

Martínez Del Río C, Búrquez A. 1986. Nectar production and temperature dependent pollination in Mirabilis jalapa L. – Biotropica 18: 28-31.

Martínez-García J, McDonald JA. 1989. Nowickea (Phytolaccaceae), a new genus with two new species from Mexico. – Brittonia 41: 399-403.

Martis B de, Loi MC, Polo MB. 1986. Contribution to a better understanding of the genus Tamarix in Portugal. – Candollea 41: 293-298.

Masson R, Kadereit G. 2013. Phylogeny of Polycnemoideae (Amaranthaceae): implications for biogeography, character evolution and taxonomy. – Taxon 62: 100-111.

Mata R, Navarrete A, Alvarez L, Pereda-Miranda R, Delgado G, Romo de Vivar A. 1987. Flavonoids and terpenoids of Chenopodium graveolens. – Phytochemistry 26: 191-193.

Mathew B. 1989. The genus Lewisia. – Royal Botanic Gardens, Kew.

Matta R, McLaughlin JL. 1982. Cactus alkaloids. A comprehensive tabular summary. – Rev. Latinoameric. Quím. 12: 95-117.

Mattfeld J. 1921. Enumeratio specierum generis Minuartia (L.) emend. Hier. – Engl. Bot. Jahrb. Syst. 57, Beibl. 126: 27-33.

Mattfeld J. 1922a. Beitrag zur Kenntnis der systematischen Gliederung und geographischen Verbreitung der Gattung Minuartia. – Engl. Bot. Jahrb. Syst. 57, Beibl. 127: 13-63.

Mattfeld J. 1922b. Geographisch-genetische Untersuchungen über die Gattung Minuartia (L.) Hiern. – Feddes Repert. Beih. 15: 1-228.

Mattfeld J. 1934. Nachtrag zu den Caryophyllaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 365-367.

Mattfeld J. 1938. Über eine angebliche Drymaria Australiens nebst Bemerkungen über die Staminaldrüsen und die Petalen der Caryophyllaceae. – Feddes Repert. Beih. 100: 147-164.

Matthew OR, Edwards EJ. 2009. Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. – Amer. J. Bot. 96: 391-408.

Matthews JF, Levins PA. 1986. The systematic significance of seed morphology in Portulaca (Portulacaceae) under scanning electron microscopy. – Syst. Bot. 11: 302-308.

Matthews JF, Faircloth WR, Allison JR. 1991. Portulaca biloba Urban (Portulaceae), a species new to the United States. – Syst. Bot. 16: 736-740.

Mauritzon J. 1933. Über die Embryologie der Turneraceae und Frankeniaceae. – Bot. Not. 86: 543-554.

Mauritzon J. 1934. Ein Beitrag zur Embryologie der Phytolaccaceen und Cactaceen. – Bot. Not. 1934: 111-135.

Mauseth JD. 1982-1984. Introduction to cactus anatomy 1-11. – Cact. Succ. J. (Los Angeles) 54: 263-266; 55: 18-21, 42, 84-89, 113-118, 171-175, 272-276; 56: 33-37, 131-135, 181-184, 212-216, 250-255.

Mauseth JD. 1990. Continental drift, climate, and the evolution of cacti. – Cact. Succ. J. (Los Angeles) 62: 301-308.

Mauseth JD. 1999. Anatomical adaptations to xeric conditions in Maihuenia (Cactaceae), a relictual, leaf-bearing cactus. – J. Plant Res. 112: 307-315.

Mauseth JD. 2004. Wide-band tracheids are present in almost all species of Cactaceae. – J. Plant Res. 117: 69-76.

Mauseth JD. 2005. Anatomical characters, other than wood, in subfamily Opuntioideae (Cactaceae). – Haseltonia 11: 113-125.

Mauseth JD. 2006a. Structure-function relationships in highly modified shoots of Cactaceae. – Ann. Bot. 98: 901-926.

Mauseth JD. 2006b. Blossfeldia lacks cortical bundles and persistent epidermis; is it basal within Cactoideae? – Bradleya 24: 73-82.

Mauseth JD. 2006c. Wood in the cactus subfamily Opuntioideae has extremely diverse structure. – Bradleya 24: 93-106.

Mauseth JD. 2007. Tiny but complex foliage leaves occur in many “leafless” cacti (Cactaceae). – Intern. J. Plant Sci. 168: 845-853.

Mauseth JD, Landrum JV. 1997. Relictual vegetative anatomical characters in Cactaceae: the genus Pereskia. – J. Plant Res. 110: 55-64.

Mauseth JD, Plemons BJ. 1995. Developmentally variable, polymorphic woods in cacti. – Amer. J. Bot. 82: 1199-1205.

Mauseth JD, Plemons-Rodriguez BJ. 1998. Evolution of extreme xeromorphic characters in wood: a study of nine evolutionary lines in Cactaceae. – Amer. J. Bot. 85: 209-218.

Mauseth JD, Sajeva M. 1992. Cortical bundles in the persistent, photosynthetic stems of cacti. – Ann. Bot. (Oxford), n.s. 70: 317-324.

Mauseth JD, Uozumi Y, Plemons BJ, Landrum JK. 1995. Structural and systematic study of an unusual tracheid type in cacti. – J. Plant Res. 108: 517-526.

Mauseth JD, Terrazas T, Loza-Cornejo S. 1998. Anatomy of relictual members of subfamily Cactoideae, IOS Group 1a (Cactaceae). – Bradleya 16: 31-43.

Mayer MS, Williams LM, Rebman JP. 2000. Molecular evidence for the hybrid origin of Opuntia prolifera (Cactaceae). – Madroño 47: 109-115.

Mayol M. 1999. A synopsis of Silene subgenus Petrocoptis (Caryophyllaceae). – Taxon 48: 471-482.

Mayonde SG, Cron GV, Gaskin JF, Byrne MJ. 2015. Evidence of Tamarix hybrids in South Africa, as inferred by nuclear ITS and plastid trnS-trnG DNA seuqnces. – South Afr. J. Bot. 96: 122-131.

Mears JA. 1967. Revision of Guilleminea (Bryulinea) including Gossypianthus. – Sida 3: 137-152.

Mears JA. 1982. A summary of Blutaparon Rafinesque including species earlier known as Philoxerus R. Brown (Amaranthaceae). – Taxon 31: 111-117.

Mehra PN, Malik CP. 1963. Cytology of some Indian Chenopodiaceae. – Caryologia 16: 67-84.

Meikle RD. 1978. A key to Commicarpus. – Notes Roy. Bot. Gard. Edinb. 36: 235-249.

Meikle RD. 1979. Supplementary notes on Commicarpus (Nyctaginaceae). – Kew Bull. 34: 341-343.

Meikle RD. 1983. Additional notes on Commicarpus (Nyctaginaceae). – Kew Bull. 38: 481-484.

Meikle RD, Hewson HJ. 1984. Nyctaginaceae. – In: George AS (ed), Flora of Australia 4, Australian Government Publ. Service, Canberra, pp. 5-18.

Meimberg H. 2002. Molekular-Systematische Untersuchungen an den Familien Nepenthaceae und Ancistrocladaceae sowie verwandter Taxa aus der Unterklasse Caryophyllidae s.l. – Ph.D. diss., Universität München, Germany.

Meimberg H, Heubl G. 2006. Introduction of a nuclear marker for phylogenetic analysis of Nepenthaceae. – Plant Biol. 8: 831-840.

Meimberg H, Dittrich P, Bringmann G, Schlauer J, Heubl G. 2000. Molecular phylogeny of Caryophyllales s.l. based on matK sequences with special emphasis on carnivorous taxa. – Plant Biol. 2: 218-228.

Meimberg H, Wistuba A, Dittrich P, Heubl G. 2001. Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequence data. – Plant Biol. 3: 164-175.

Melikian AP. 1968. The systematic position of the families Buxaceae and Simmondsiaceae. – Bot. Žurn. 53: 1043-1047. [In Russian with English summary]

Melo-de-Pinna GF. 2009. Non-lignified parenchyma in Cactaceae and Portulacaceae. – Bot. J. Linn. Soc. 159: 322-329.

Melo-de-Pinna GFA, Ogura AS, Arruda ECP, Klak C. 2014. Repeated evolution of endoscopic peripheral vascular bundles in succulent leaves of Aizoaceae (Caryophyllales). – Taxon 63: 1037-1052.

Melville R. 1952. Tianthema pentandra L. and some related species. – Kew Bull. 1952: 261-269.

Melzer H. 1971. Oxybaphus nyctagineus (Michx.) Sweet, eine neue Adventivpflanze in der Flora Österreichs. – Österr. Bot. Zeitschr. 119: 564-566.

Melzheimer V. 1974. Bemerkungen zur Cytologie einiger Arten der Gattung Silene L. von der Balkan-Halbinsel. – Candollea 29: 337-343.

Melzheimer V. 1975. Pollensystematische Untersuchungen in der Gattung Silene L. (Caryophyllaceae). – Bot. Jahrb. Syst. 95: 215-225.

Melzheimer V. 1977. Biosystematische Revision einiger Silene-Arten (Caryophyllaceae) der Balkanhalbinsel (Griechenland). – Bot. Jahrb. Syst. 98: 1-92.

Melzheimer V. 1980. Revision einiger balkanischer Arten von Silene Sect. Inflatae (Caryophyllaceae). – Bot. Jahrb. Syst. 101: 153-190.

Melzheimer V, Damboldt J. 1973. Zur Morphologie und cytology tetraploider Sippen von Silene vulgaris (Caryophyllaceae). – Willdenowia 7: 83-100.

Mendoza F JM, Wood JRI. 2013. Taxonomic revision of Talinum (Talinaceae) in Bolivia with a note on the occurrence of Phemeranthus (Montiaceae). – Kew Bull. 68: 233-247.

Meregalli M. 1985. Il genere Gymnocalycium Pfeiffer. – Piante Grasse 5: 5-63.

Meregalli M, Metzing D, Kiesling R, Tosatto S, Caramiello R. 2002. Systematics of the Gymnocalycium paraguayense-fleischerianum group (Cactaceae): morphological and molecular data. – Candollea 57: 299-315.

Meregalli M, Ercole E, Rodda M. 2010. Molecular phylogeny vs morphology: shedding light on the infrageneric classification of Gymnocalycium (Cactaceae). – Schumannia 6: 257-275.

Merxmüller H. 1950. Untersuchungen über eine alpine Cerastien-gruppe. – Ber. Bayrisch. Bot. Ges. 28: 219-238.

Merxmüller H, Grau J. 1967. Moehringia-Studien. – Mitt. Bot. Staatssamml. München 6: 257-273.

Metcalfe CR. 1951. The anatomical structure of the Dioncophyllaceae in relation to the taxonomic affinities of the family. – Kew Bull. 1951: 351-368.

Metzing D. 1992. Zur Benennung einiger Gymnocalycium-Untergattungen und -Sektionen. – Gymnos 9: 3-6.

Metzing D, Kiesling R. 2006. Notes on the diversity, biology, and taxonomy of Frailea (Cactaceae). – Bradleya 24: 115-128.

Metzing D, Kiesling R. 2007. Winterocereus (Cactaceae) is the correct name for Hildewintera. – Taxon 56: 226-228.

Metzing D, Kiesling R. 2008. The study of cactus evolution: the pre-DNA era. – Haseltonia 14: 6-25.

Metzing D, Thiede J. 2001. Testa sculpture in the genus Frailea (Cactaceae). – Bot. J. Linn. Soc. 137: 65-70.

Metzing D, Meregalli M, Kiesling R. 1995. An annotated checklist of the genus Gymnocalycium Pfeiffer ex Mittler (Cactaceae). – Allionia 33: 181-228.

Meulen-Bruijns C van der. 1976. The vascular pattern in the flower of some Mesembryanthemaceae: Aptenia cordifolia and Dorotheanthus bellidiformis. – Blumea 23: 189-201.

Meunier A. 1890. Les téguments séminaux des cyclospermées. – Cellule 6: 299-392.

Meyberg M, Kristen U. 1981. The nectaries of Aptenia cordifolia. Ultrastructure, translocation of 14C-labelled sugars, and a possible pathway of secretion. – Zeitschr. Pflanzenphys. 104: 139-147.

Mikesell JE. 1979. Anomalous secondary thickening in Phytolacca americana L. (Phytolaccaceae). – Amer. J. Bot. 66: 997-1005.

Milby TH. 1980. Studies in the floral anatomy of Claytonia. – Amer. J. Bot. 67: 1046-1050.

Miller JM. 1988. Floral pigments and phylogeny in Echinocereus (Cactaceae). – Syst. Bot. 13: 173-183.

Miller JM, Chambers KL. 1977. Chromosome numbers and relationships of Claytonia saxosa and C. arenicola (Portulacaceae). – Madroño 43: 62-63.

Miller JM, Chambers KL. 1993. Nomenclatural changes and new taxa in Claytonia (Portulacaceae). – Novon 3: 268-272.

Miller JM, Chambers KL. 2006. Systematics of Claytonia (Portulacaceae). – Syst. Bot. Monogr. 78: 1-236.

Miller JM, Chambers KL, Fellows CE. 1984. Cytogeographic patterns and relationships in the Claytonia sibirica complex (Portulacaceae). – Syst. Bot. 9: 266-271.

Miller RM. 1979. Some occurrences of vesicular-arbuscular mycorrhiza in natural and disturbed ecosystems of the Red Desert. – Can. J. Bot. 57: 619-623.

Miller SL. 1994. Phylogenetic analyses of selected species of the genus Silene (Caryophyllaceae) using morphological characters and nucleotide sequences of the ITS region of nuclear ribosomal DNA. – Masters thesis, Duke University, Durham, North Carolina.

Minuto L, Fior S, Roccotiello E, Casazza G. 2006. Seed morphology in Moehringia L. and its taxonomic significance in comparative studies within the Caryophyllaceae. – Plant Syst. Evol. 262: 189-208.

Minuto L, Roccotiello E, Casazza G. 2011. New seed morphological features in Moehringia L. (Caryophyllaceae) and their taxonomic and ecological significance. – Plant Biosystems 145: 60-67.

Misra AN, Tiwari HP. 1971. Constituents of roots of Boerhavia diffusa. – Phytochemistry 10: 3318-3319.

Mihöfer A. 2011. Carnivorous pitcher plants: insights in an old topic. – Phytochemistry 72: 1678-1682.

Mitra JN. 1956. On the systematic position of the family Cactaceae as based from the studies of the morphological characters of the flowers of Solenicereus grandiflorus Brit. et Rose (Cereus grandiflora) and Opuntia dillenii Haw. – Sci. Cult. 21: 460-461.

Mitroiu N. 1971. Contribution à la connaissance de la morphologie du pollen des Molluginacées. – Rev. Roum. Biol. Bot. 16: 91-96.

Moharrek F, Kasempour Osaloo S, Assadi M. 2014. Molecular phylogeny of Plumbaginaceae with emphasis on Acanthlimon Boiss. based on nuclear and plastid DNA sequences in Iran. – Biochem. Syst. Ecol. 57: 117-127.

Moharrek F, Kazempour-Osaloo S, Assadi M, Feliner GN. 2017. Molecular phylogenetic evidence for a wide circumscription of a characteristic Irano-Turanian element: Acantholimon (Plumbaginaceae: Limonioideae). – Bot. J. Linn. Soc. 184: 366-386.

Mondal MS. 1997. Pollen morphology and systematic relationship of the family Polygonaceae. – Botanical Survey of India, Calcutta, India.

Monje PV, Baran EJ. 2002. Characterization of calcium oxalates generated as biominerals in cacti. – Plant Physiol. 128: 707-713.

Monnier P. 1968. Synopsis du genre Spergularia (Pers.) Presl au Maroc. – Nat. Monspel. Ser. Bot. 19: 87-113.

Monoszon MK. 1964. Pollen of halophytes and xerophytes of the Chenopodiaceae family in the periglacial zone of the Russian plain. – Pollen Spores 6: 147-155.

Moore AJ, Dillenberger MS. 2017. A conspectus of the genus Cherleria (Minuartia s.l., Caryophyllaceae). – Willdenowia 47: 5-14.

Moore AJ, Kadereit JW. 2013. The evolution of substate differentiation in Minuartia series Laricifoliae (Caryophyllaceae) in the European Alps: in situ origin or repeated colonization? – Amer. J. Bot. 100: 2412-2425.

Moore DM, Yates B. 1974. Armeria L. in South America. – Bot. Not. 127: 183-192.

Moran J, Booth WE, Charles JK. 1999. Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: implications for prey capture. – Amer. J. Bot. 83: 521-528.

Moran R. 1965. Revisión de Bergerocactus. – Cact. Suc. Mex. 10: 51-59.

Moreno NC, Amarilla LD, Las Peñas ML, Bernardello G. 2015. Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. – Bot. J. Linn. Soc. 177: 263-277.

Morton CM, Karol KG, Chase MW. 1997. Taxonomic affinities of Physena (Physenaceae) and Asteropeia (Theaceae). – Bot. Rev. 63: 231-239.

Mosaferi S, Keshavarzi M. 2011. Micromorphological study of Polygonaceae tribes in Iran. – Phytol. Balcan. 17: 89-100.

Mosco A, Zanovello C. 2002. Thelocactus. An introduction to the genus/Un’ introduzione al genere. – Cactus & Co. 6: 144-171.

Moss CE. 1954. The species of Arthrocnemum and Salicornia in southern Africa. – J. South Afr. Bot. 20: 1-22.

Mostafavi G, Assadi M, Nejadsattari T, Sharifnia F, Mehregan I. 2013. Seed micromorphological survey of the Minuartia species (Caryophyllaceae) in Iran. – Turk. J. Bot. 37: 446-454.

Mosti S, Lewke Bandara N, Papini A. 2011. Further insights and new combinations in Aylostera (Cactaceae) based on molecular and morphological data. – Pakistan J. Bot. 43: 2769-2785.

Mosyakin SL. 1988. Krytychnyi pereglyad vydiv rodu Corispermum flory Ukayiny. – Ukrayns’k Bot. Žurn. 45: 19-23.

Mosyakin SL. 1994. New infrageneric taxa of Corispermum L. (Cenopodiaceae). – Novon 4: 153-154.

Mosyakin SL. 1995. New taxa of Corispermum L. (Chenopodiaceae), with preliminary comments on the taxonomy of the genus in N America. – Novon 5: 340-354.

Mosyakin SL. 1997. New subsections in Corispermum L. (Chenopodiaceae). – Thaiszia 7: 9-15.

Mosyakin SL. 2002. The system and phytogeography of Chenopodium subg. Blitum I. Hiitonen (Chenopodiaceae). – Ukrayins’kyi Bot. Žurn. 59: 696-701.

Mosyakin SL. 2005. On the origin of dioecious amaranths (Amaranthus L., Amaranthaceae Juss.). – Ukrayins’kyi Bot. Žurn. 62: 3-9.

Mosyakin SL. 2013. New nomenclatural combinations in Blitum, Oxybasis, Chenopodiastrum, and Lipandra (Chenopodiaceae). – Phytoneuron 2013-56: 1-8.

Mosyakin SL, Clemants SE. 1996. New infrageneric taxa and combinations in Chenopodium L. (Chenopodiaceae). – Novon 6: 398-403.

Mosyakin SL, Clemants SE. 2002. New nomenclatural combinations in Dysphania R. Br. (Chenopodiaceae): taxa occurring in North America. – Ukrayins’kyi Bot. Žurn. 59: 380-385.

Mosyakin SL, Clemants SE. 2008. Further transfers of glandular-pubescent species from Chenopodium subg. Ambrosia to Dysphania (Chenopodiaceae). – J. Bot. Res. Inst. Texas 2: 425-431.

Mosyakin SL, Robertson KR. 1996. New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). – Ann. Bot. Fenn. 33: 275-281.

Mottram R. 1990. A contribution to a new classification of the cactus family and index of suprageneric and supraspecific taxa. – Whitestone Gardens, Thirsk, England.

Mottram R. 2001. Rimacactus, a new genus of Cactaceae. – Bradleya 19: 75-82.

Mottram R. 2006. Osservazioni sulle/Observations in Borzicactinae. – Cactus & Co. 10: 183-190.

Mozaffarian V. 2012. A revision of Polygonum L. sensu lato (Polygonaceae) in Iran. – Iran. J. Bot. 18: 159-174.

Müller K. 1908. Beiträge zur Systematik der Aizoaceen. – Engl. Bot. Jahrb. 42, Beiblatt 97: 54-97.

Müller K, Borsch T. 2005a. Phylogenetics of Amaranthaceae based on matK/trnK sequence data – evidence from parsimony, likelihood, and Bayesian analysis. – Ann. Missouri Bot. Gard. 92: 66-102.

Müller K, Borsch T. 2005b. Multiple origins of a unique pollen feature: stellate pore ornamentation in Amaranthaceae. – Grana 44: 266-281.

Munshi AH, Javeid GN. 1986. Systematic studies in Polygonaceae of Kashmir Himalaya. – J. Ecol. Taxon. Bot., Add. Ser. 2(IV), Syringer.

Murakeözy EP, Aïnouche A, Meudec A, Deslandes E, Poupart N. 2007. Phylogenetic relationships and genetic diversity of the Salicornieae (Chenopodiaceae) native to the Atlantic coasts of France. – Plant Syst. Evol. 264: 217-237.

Musa DA, Akaydin GP. 2004. Three new species with two-flowered spikelets in Acantholimon (Plumbaginaceae) from East Anatolia, Turkey. – Bot. J. Linn. Soc. 144: 497-505.

Musa DA, Galíp A. 2005. A new species of Acantholimon Boiss. sect. Glumaria Boiss. (Plumbaginaceae) from Elaziğ, Turkey. – Bot. J. Linn. Soc. 149: 351-356.

Naciri Y, Pasquier P-ED, Lundberg M, Jeanmonod D, Oxelman B. 2017. A phylogenetic circumscription of Silene sect. Siphonomorpha (Caryophyllaceae) in the Mediterranean Basin. – Taxon 66: 91-108.

Nageshwar G, Radhakrishnaiah M. 1993. Affinities of Basella L. – Feddes Repert. 104: 241-244.

Nair NC, Nair VJ. 1961. Studies on the morphology of some members of the Nyctaginaceae I. Nodal anatomy of Boerhavia. – Proc. Indian Acad. Sci., Sect. B, 54: 281-294.

Nair PKK, Khan HA. 1965. Pollen grains of Indian plants 7. Nyctaginaceae. – Bull. Lucknow Natl. Bot. Gard. 111: 1-13.

Nair PKK, Rehman K, Saxena AK. 1976. Contribution to the pollen morphology of Indian Polygonaceae. – J. Palynol. 12: 1-18.

Nakai T. 1926. A new classification of Linnaean Polygonum. – Rigakkai [Sci. World] 24: 289-301. [In Japanese]

Narayana HS. 1962. Seed structure in Aizoaceae. – In: Maheshwari P, Johri BM, Vasil IK (eds), Proceedings of the summer school of botany held June 2-15, 1960, at Darjeeling, Government of India, New Delhi, pp. 220-230.

Narayana HS, Lodha BC. 1963. Embryology of Orygia decumbens Forssk. (Aizoaceae). – Phytomorphology 13: 54-59.

Narayana HS, Lodha BC. 1972. Embryology of Glinus lotoides Linn. – Proc. Indian Acad. Sci., Ser. B, 75: 77-85.

Narayana PS, Narayana LL. 1986. The embryology of Stegnospermataceae, with a discussion on its status, affinities, and systematic position. – Plant Syst. Evol. 154: 137-146.

Narayana PS, Narayana LL. 1988. Systematic position of Gisekia L.: a numerical assessment. – Feddes Repert. 99: 189-193.

Navajas-Perez R, Herrán R de la, López González G, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA. 2005. The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. – Mol. Biol. Evol. 22: 1929-1939.

Negron-Ortiz V. 2007. Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean Islands. – Amer. J. Bot. 94: 1360-1370.

Nelson B, Prance GT. 1984. Observations on the pollination of Rhabdodendron macrophyllum (Spr. ex Benth.) Huber. – Acta Amazonica 14: 411-426.

Nelson EA, Sage TL, Sage RF. 2005. Functional leaf anatomy of plants with crassulacean acid metabolism. – Funct. Plant Biol. 32: 409-419.

Nepokroeff M, Wagner WL, Zimmer EA, Weller SG, Sakai AK, Rabeler RK. 2001. Origin of the Hawaiian subfam. Alsinoideae and preliminary relationships in Caryophyllaceae inferred from matK and trnL C-F sequence data. – Botany 2001: The annual meeting of the Botanical Society of America, in Albuquerque, New Mexico, website https://urlproxy.sunet.se/canit/urlproxy.php?_q=aHR0cDovL3d3dy5ib3RhbnkyMDAxLm9yZy9zZWN0aW9uMTIvYWJzdHJhY3RzLzE5Ni5zaHRtbA%3D%3D&_s=ZGVmYXVsdA%3D%3D&_c=61d52405&_r=c3Utc2U%3D

Nepokroeff M, Wagner WL, Rabeler RK, Zimmer EA, Weller SG, Sakai AK. 2002. Relationships within Caryophyllaceae inferred from molecular sequence data. – Botany 2002: The annual meeting of the Botanical Society of America, in Madison, Wisconsin, website https://urlproxy.sunet.se/canit/urlproxy.php?_q=aHR0cDovL3d3dy5ib3RhbnkyMDAyLm9yZy9zeW1wb3MxMi9hYnN0cmFjdHMvNi5zaHRtbA%3D%3D&_s=ZGVmYXVsdA%3D%3D&_c=139adc2d&_r=c3Utc2U%3D

Neumann M. 1935. Die Entwicklung des Pollens, der Samenanlage und des Embryosackes von Pereskia amapola var. argentina. – Österr. Bot. Zeitschr. 84: 1-30.

Neumayer H. 1923. Die Frage der Gattungsabgrenzung innerhalb der Silenoideen. – Verh. Zool.-Bot. Ges. Wien 72: (53)-(59).

Ng SY, Philipson WR, Walker JRL. 1975. Hectorellaceae – member of the Centrospermae. – New Zealand J. Bot. 13: 567-570.

Nicola MV, Pozner R. 2013. A new species of Minuartia (Caryophyllaceae) restricted to the high Andes of South America. – Phytotaxa 111: 53-56.

Niedenzu F. 1895a. Frankeniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 283-289.

Niedenzu F. 1895b. Tamaricaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 289-298.

Niedenzu F. 1925a. Frankeniaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 276-281.

Niedenzu F. 1925b. Tamaricaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 282-289.

Niesler IM, Hartmann HEK. 2007. Nectaries in Aizoaceae: the case of Glottiphyllum. – Bradleya 25: 177-186.

Nieto Feliner G. 1994. Growth-form and taxonomy in Arenaria sect. Plinthine (Caryophyllaceae). – Taxon 43: 45-50.

Nieto Feliner G, Aguilar JF, Rosselloa JA. 2001. A new species of Armeria (Plumbaginaceae) from southern Spain with molecular and morphometric evidence on its origin. – Bot. J. Linn. Soc. 135: 71-84.

Nieto Feliner G, Aguilar JF, Rosselló JA. 2002. Reticulation or divergence: the origin of a rare serpentine endemic assessed with chloroplast, nuclear and RAPD markers. – Plant Syst. Evol. 231: 19-38.

Nieto Feliner G, Larena BG, Aguilar JF. 2004. Finer-scale geographical structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). – Ann. Bot., 93: 189-200.

Nijs CJM den 1984. Biosystematic studies of the Rumex acetosella complex (Polygonaceae) VIII. A taxonomic revision. – Feddes Repert. 95: 43-66.

Niketić M, Stevanovic V. 2007. A new species of Heliosperma (Caryophyllaceae) from Serbia and Montenegro. – Bot. J. Linn. Soc. 154: 55-63.

Niketić M, Siljak-Yakovlev S, Frajman B, Lazarević M, Stevanović B, Tomović G, Stevanović V. 2013. Towards resolving the systematics of Cerastium subsection Cerastium (Caryophyllaceae): a cytogenetic approach. – Bot. J. Linn. Soc. 172: 205-224.

Nilsson Ö. 1966a. Studies in Montia L., Claytonia L. and allied genera I. Two new genera, Mona and Paxia. – Bot. Not. 119: 265-285. – Corrections and additions: Bot. Not. 119: 469.

Nilsson Ö. 1966b. Studies in Montia L., Claytonia L. and allied genera II. Some chromosome numbers. – Bot. Not. 119: 464-468.

Nilsson Ö. 1967. Studies in Montia L., Claytonia L. and allied genera III. Pollen morphology. – Grana Palynol. 7: 277-363.

Nilsson Ö. 1970. Studies in Montia L., Claytonia L. and allied genera IV. The genus Crunocallis Rydb. – Bot. Not. 123: 119-148.

Nilsson Ö. 1971a. Studies in Montia L., Claytonia L. and allied genera V. The genus Montiastrum (Gray) Rydb. – Bot. Not. 124: 87-121.

Nilsson Ö. 1971b. Studies in Montia L., Claytonia L. and allied genera VI. The genera Limnalsine Rydb. and Maxia Ö. Nilss. – Bot. Not. 124: 187-207.

Nilsson Ö. 1977. Studies in Montia L., Claytonia L. and allied genera. – Ph.D. diss., University of Uppsala, Sweden.

Nishimoto Y, Ohnishi O, Hasegawa M. 2003. Topological incongruence between nuclear and chloroplast DNA trees suggesting hybridization in the urophyllum group of the genus Fagopyrum (Polygonaceae). – Genes Genet. Syst. 78: 139-153.

Nobel PS. 1982. Low-temperature tolerance and cold hardening of cacti. – Ecology 63: 1650-1656.

Nobel PS. 1988. Environmental biology of agaves and cacti. – Cambridge University Press, Cambridge.

Nobel PS (ed). 2002. Cacti: biology and uses. – University of California Press, Berkeley.

Nobel PS, Hartsock TL. 1986. Leaf and stem CO2 uptake in the three subfamilies of the Cactaceae. – Plant Physiol. 80: 913-917.

Nobs MA. 1981. Evidence for apomixis in Atriplex (Chenopodiaceae). – Carnegie Inst. Washington Year Book 81: 92.

Nowicke JW. 1968. Palynotaxonomic study of the Phytolaccaceae. – Ann. Missouri Bot. Gard. 55: 294-364.

Nowicke JW. 1970. Pollen morphology in the Nyctaginaceae I. Nyctagineae (Mirabileae). – Grana 10: 79-88.

Nowicke JW. 1975. Pollen morphology in the order Centrospermae. – Grana 15: 51-77.

Nowicke JW. 1994. Pollen morphology and exine ultrastructure. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 167-221.

Nowicke JW. 1996. Pollen morphology, exine structure and the relationships of Basellaceae and Didiereaceae to Portulacaceae. – Syst. Bot. 21: 187-208.

Nowicke JW, Luikart TJ. 1971. Pollen morphology of the Nyctaginaceae II. Colignonieae, Boldoeae, and Leucastereae. – Grana 11: 145-150.

Nowicke JW, Skvarla JJ. 1977. Pollen morphology and the relationship of the Plumbaginaceae, Polygonaceae, and Primulaceae to the order Centrospermae. – Smithsonian Contr. Bot. 37: 1-64.

Nowicke JW, Skvarla JJ. 1984. Pollen morphology and relationships of Simmondsia chinensis to the order Euphorbiales. – Amer. J. Bot. 71: 210-215.

Nñez Mariel C, Engleman EM, Márquez Guzmán J. 2001. Embriología de Pachycereus militaris (Audot) Hunt (Cactaceae). – Bol. Soc. Bot. México 68: 5-13.

Nyananyo BL. 1986a. Taxonomic significance of stomatal complex in the Portulacaceae. – Feddes Repert. 97: 763-766.

Nyananyo BL. 1986b. The systematic position of the genus Calyptrotheca Gilg (Portulacaceae). – Feddes Repert. 97: 767-770.

Nyananyo BL. 1986c. The taxonomic position of Talinella Baillon (Portulacaceae). – Feddes Repert. 97: 771-773.

Nyananyo BL. 1986d. Tribal and generic relationship and classification in the Portulacaceae (Centrospermae). – Ph.D. diss. University of Reading, England.

Nyananyo BL. 1987. Seed coat morphology in Calandrinia (Portulacaceae) and its taxonomic significance. – J. Plant Sci. Res. 3: 93-97.

Nyananyo BL. 1988a. The systematic significance of seed morphology and anatomy in the Portulacaceae (Centrospermae). – Folia Geobot. Phytotaxon. 23: 275-279.

Nyananyo BL. 1988b. Leaf anatomical studies in the Portulacaceae (Centrospermae), with regards to photosynthetic pathways. – Folia Geobot. Phytotaxon. 23: 99-101

Nyananyo BL. 1990. Tribal and generic relationship in the Portulacaceae (Centrospermae). – Feddes Repert. 101: 237-241.

Nyananyo BL. 1992. Pollen morphology in the Portulacaceae (Centrospermae). – Folia Geobot. Phytotaxon. 27: 387-400.

Nyananyo BL, Heywood VH. 1987. A new combination in Lyallia (Portulacaceae). – Taxon 36: 640-641.

Nyananyo BL, Okoli BE. 1987. Cytological and morphological studies on Nigerian species of Portulaca (Portulacaceae) in relation to their taxonomy. – Feddes Repert. 98: 583-587.

Nyffeler R. 1998. The genus Uebelmannia Buining (Cactaceae: Cactoideae). – Bot. Jahrb. Syst. 120: 145-163.

Nyffeler R. 2000. Should Pfeiffera be resurrected? – Cactaceae Syst. Init. 10: 10-11.

Nyffeler R. 2001. What about the tribe Notocacteae? – Cact. Syst. Init. 12: 25-27.

Nyffeler R. 2002. Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. – Amer. J. Bot. 89: 312-326.

Nyffeler R. 2007. The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampseroteae. – Amer. J. Bot. 94: 89-101.

Nyffeler R, Eggli U. 1997. Comparative stem anatomy and systematics of Eriosyce sensu lato (Cactaceae). – Ann. Bot. (Oxford), n.s. 80: 767-786.

Nyffeler R, Eggli U. 2010a. Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data. – Taxon 59: 227-240.

Nyffeler R, Eggli U. 2010b. An up-to-date familial and suprafamilial classification of succulent plants. – Bradleya 28: 125-144.

Nyffeler R, Eggli U. 2010c. A farewell to dated ideas and concepts – molecular phylogenetics and a revised suprageneric classification of the family Cactaceae. – Schumannia 6: 109-149.

Nyffeler R, Eggli U, Ogburn M, Edwards E. 2008. Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales). – Haseltonia 14: 26-36.

O’Callaghan M. 1992. The ecology and identification of the southern African Salicorniae (Chenopodiaceae). – South Afr. J. Bot. 58: 430-439.

Ocampo G. 2002. Transferencia de tres especies mexicanas de Talinum Adans. a Phemeranthus Raf. (Portulacaceae). – Acta Bot. Mex. 59: 75-80.

Ocampo G. 2003. Una combinación nueva en Phemeranthus (Portulacaceae). – Acta Bot. Mex. 63: 55-57.

Ocampo G. 2013. Morphological characterization of seeds in Portulacaceae. – Phytotaxa 141: 1-24.

Ocampo G. 2015. Systematic implications of seed morphological diversity in Portulacaceae (Caryophyllales). – Plant Syst. Evol. 301: 1215-1226.

Ocampo G, Columbus JT. 2010. Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosynthetic diversification and historical biogeography. – Amer. J. Bot. 97: 1827-1847.

Ocampo G, Columbus JT. 2012. Molecular phylogenetics, historical biogeography, and chromosome evolution of Portulaca (Portulacaceae). – Mol. Phylogen. Evol. 63: 97-112.

Ocampo G, Koteyeva NK, Voznesenskaya EV, Edwards GE, Sage TL, Sage RF, Columbus JT. 2013. Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae. – Amer. J. Bot. 100: 2388-2402.

Ochiauri D. 1965. Charesia E. Busch genus novum pro florae Georgia. – Not. Syst. Geogr. Inst. Bot. Thbilissiensis 24: 87-88. [In Russian]

Ogburn RM. 2007. Anatomical variation in Cactaceae sensu lato. – Master thesis, University of Missouri, St. Louis, Missouri.

Ogburn RM, Edwards EJ. 2009. Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. – Amer. J. Bot. 96: 391-408.

Ogburn RM, Edwards EJ. 2010. The ecological water use strategies of succulent plants. – Adv. Bot. Res. 55: 179-225.

Ogburn RM, Edwards EJ. 2012. Quantifying succulence: a rapid, physiologically meaningful metric of plant water storage. – Plant Cell Environm. 35: 1533-1542.

Ogburn RM, Edwards EJ. 2013. Repeated origin of three-dimensional venation releases constraints on the evolution of succulence in plants. – Curr. Biol. 23: 722-726.

Ogburn RM, Edwards EJ. 2015. Life history lability underlies rapid climate niche evolution in the angiosperm clade Montiaceae. – Mol. Phylogen. Evol. 92: 181-192.

Ogundipe OT, Chase M. 2009. Phylogenetic analyses of Amaranthaceae based on matK DNA sequence data with emphasis on West African species. – Turkish J. Bot. 33: 153-161.

Ohsako T, Ohnishi O. 2000. Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. – Amer. J. Bot. 87: 573-582.

Ohsako T, Fukuoka S, Bimb HP, Baniya BK, Yasui Y, Ohnishi O. 2001. Phylogenetic analysis of the genus Fagopyrum (Polygonaceae), including the Nepali species F. megacarpum, based on nucleotide sequence of the rbcL-accD region in chloroplast DNA. – Fagopyrum 18: 9-14.

Okabe T, Iwakiri Y, Mori H, Ogawa T, Ohyama T. 2005. An S-like ribonuclease gene is used to generate a trap-leaf enzyme in the carnivorous plant Drosera adelae. – FEBS Letters 579: 5729-5733.

Okamoto M. 1984. Centrifugal ovule inception I. Sequence of ovule inception in Silene cucubalus. – Bot. Mag. (Tokyo) 97: 345-353.

Olson ME, Gaskin JF, Ghahremani-nejad F. 2003. Stem anatomy is congruent with molecular phylogenies placing Hypericopsis persica in Frankenia (Frankeniaceae): comments on vasicentric tracheids. – Taxon 52: 525-532.

Olvera HF. 2003. Classification of the North American species of Atriplex section Obione (Chenopodiaceae) based on numerical taxonomic analysis. – Taxon 52: 247-260.

Olvera HF, Davis JI. 2001. A cladistic analysis of Atripliceae (Chenopodiaceae) based on morphological data. – J. Torrey Bot. Soc. 128: 297-319.

Olvera HF, Fuentes-Soriano S, Hernández EM. 2006. Pollen morphology and systematics of Atripliceae (Chenopodiaceae). – Grana 45: 175-194.

Olvera HF, Smets E, Vrijdaghs A. 2008. Floral and inflorescence morphology and ontogeny in Beta vulgaris, with special emphasis on the ovary position. – Ann. Bot. 102: 643-651.

Olvera HF, Vrijdaghs A, Ochoterena H, Smets E. 2011. The need to re-investigate the nature of homoplastic characters: an ontogenetic case study of the ‘bracteoles’ in Atripliceae (Chenopodiaceae). – Ann. Bot. 108: 847-865.

Opel MR. 2005. Leaf anatomy of Conophytum N. E. Br. (Aizoaceae). – Haseltonia 11: 27-52.

Opel MR. 2005. A morphological phylogeny of the genus Conophytum N. E. Br. (Aizoaceae). – Haseltonia 11: 53-77.

O’Quinn R, Hufford L. 2005. Molecular systematics of Montieae (Portulacaceae): implications for taxonomy, biogeography and ecology. – Syst. Bot. 30: 314-331.

O’Quinn R, Hufford L. 2006. Shoot morphology in the Claytonia sibirica complex (Portulacaceae). – Madroño 53: 1-10.

Ormond WT, Cortella C de, Bezerra Pinheiro AR, Rodrigues Correia MC. 1978. Contribuição ao estudo anatômico das populações diplóide e tetraplóide de Petiveria alliacea L. – Bol. Mus. Nac. Rio de Janeiro, Bot. II, 51: 1-13.

Ortega Olivencia A, Carrasco Claver JP, Devesa Alcarez JA. 1995. Floral and reproductive biology of Drosophyllum lusitanicum (L.) Link (Droseraceae). – Bot. J. Linn. Soc. 118: 331-351.

Ortiz S. 2003. Two new species of the Oxygonum stuhlmannii-atriplicifolium complex (Polygonaceae) from Somalia. – Bot. J. Linn. Soc. 142: 341-345.

Ortiz S, Paiva JAR. 1999. Taxonomic notes on Polygonaceae from southern tropical Africa. – Bot. J. Linn. Soc. 131: 167-176.

Ortiz S, Carbajal R, Serrano M. 2008. A new species of Polygonum L. (Polygonaceae) from South Africa. – Bot. J. Linn. Soc. 157: 111-114.

Osman AK, El-Garf IA. 2006. Pollen morphology of the Egyptian species of genus Limonium Mill. (Plumbaginaceae). – Feddes Repert. 117: 476-485.

Osmond CB, Björkman O, Anderson DJ. 1980. Physiological processes in plant ecology. Towards a synthesis with Atriplex. – Springer, Berlin, Heidelberg, New York.

Ostolaza C. 2006. El género Armatocereus Backeberg. – Zonas Aridas (Lima) 10: 144-154.

Ousted S. 1985. A taxonomic revision of the genus Uebelinia Hochst. (Caryophyllaceae). – Bull. Jard. Bot. Nat. Belg. 55: 421-459.

Ovczinnikov PN, Kinzikaeva GK. 1977. Myrtama Ovcz. et Kinz. gen. nov.: the new genus from the family Tamaricaceae Link. – Dokl. Akad. Nauk. Tadzhiksk. SSR 20, 7: 54-57. [In Russian]

Oxelman B. 1995. A revision of the Silene sedoides-group (Caryophyllaceae). – Willdenowia 25: 143-169.

Oxelman B, Jonsell B. 2001. Proposal to conserve the name Viscaria against Steris (Caryophyllaceae, Sileneae). – Taxon 50: 281-282.

Oxelman B, Lidén M. 1995. Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. – Taxon 44: 525-542.

Oxelman B, Jonsell B. 2001. Proposal to conserve the name Viscaria against Steris (Caryophyllaceae, Sileneae). – Taxon 50: 281-282.

Oxelman B, Lidén M, Berglund D. 1997. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). – Plant Syst. Evol. 206: 392-410.

Oxelman B, Lidén M, Rabeler RK, Popp M. 2001. A revised generic classification of the tribe Sileneae (Caryophyllaceae). – Nord. J. Bot. 20: 743-748.

Oxelman B, Ahlgren B, Thulin M. 2002. Circumscription and phylogenetic relationships of Gymnocarpos (Caryophyllaceae-Paronychioideae). – Edinburgh J. Bot. 59: 221-237.

Pal GD, Maiti GG. 1985. A new species of Aconogonum (Polygonaceae) from Eastern Himalaya. – Bull. Bot. Surv. India 26: 95-96.

Pal M, Khoshoo TN. 1965. Origin of Amaranthus dubius. – Curr. Sci. 34: 370-341.

Pal S, Murty YS. 1974. Studies on the nodal and floral anatomy of some species of Stellaria L. – J. Indian Bot. Soc. 53: 100-110.

Palacios C, Rossello JA, Gonzalez-Candelas F. 2000. Study of the evolutionary relationships among Limonium species (Plumbaginaceae) using nuclear and cytoplasmic molecular markers. – Mol. Phylogen. Evol. 14: 232-249.

Paliwal CS, Gupta BP, Malasi CB. 1930. Structure and development of stomata in Centrospermae: I. Amaranthaceae and Nyctaginaceae. – Ind. Forest J. 3: 135-139.

Paliwal GS. 1965. The development of stomata in Basella rubra Linn. – Phytomorphology 15: 50-53.

Palmer EJ, Steyermark J. 1950. Notes on Geocarpon minimum Mackenzie. – Bull. Torrey Bot. Club 77: 268-273.

Palmer J. 1998. A taxonomic revision of Gomphrena (Amaranthaceae) in Australia. – Aust. Syst. Bot. 11: 73-151.

Palomino G, Segura MD, Bye R, Mercado PR. 1990. Cytogenetic distinction between Teloxys and Chenopodium (Chenopodiaceae). – Southw. Natur. 35: 351-353.

Pancho JV, Capinpin JM. 1961-1962. Haploidy in Bougainvillea. – Philipp. Agric. 45: 88-94.

Pant DD, Bhatnagar S. 1977. Morphological studies in Nepenthes (Nepenthaceae). – Phytomorphology 27: 13-34.

Pant DD, Kidwai PF. 1968. Structure and ontogeny of stomata in some Caryophyllaceae. – Bot. J. Linn. Soc. 60: 309-314.

Pant RP. 2000. Phylogenetic relationships and character evolution in Eriogonoideae (Polygonaceae): inferred from molecular and morphological data. – Ph.D. diss., Claremont Graduate School, Claremont, California.

Papanicolaou K, Kokkini S. 1982. Armeria (Plumbaginaceae) in Greek montains. – Willdenowia 12: 213-219.

Park C-W. 1987. Flavonoid chemistry of Polygonum Sect. Echinocaulon: a systematic survey. – Syst. Bot. 12: 167-179.

Park C-W. 1988. Taxonomy of Polygonum section Echinocaulon (Polygonaceae). – Mem. New York Bot. Gard. 47: 1-82.

Parkhurst RM, Thomas DW, Skinner WA, Cary LW. 1973. Molluscicidal saponins of Phytolacca dodecandra: oleanoglycotoxin-A. – Phytochemistry 12: 1437-1442.

Parolin P. 2001. Seed expulsion in fruits of Mesembryanthema (Aizoaceae), a mechanistic approach to study the effect of fruit morphological structures on seed dispersal. – Flora 196: 313-322.

Parolin P. 2006. Ombrohydrochory: rain-operated seed dispersal in plants – with special regard to jet-action dispersal in Aizoaceae. – Flora 201: 511-518.

Patankar TBV. 1956. Further contribution to the embryology of Drosera burmannii Vahl. – Proc. Indian Acad. Sci. 43B: 161-171.

Patterson GW, Xu S. 1990. Sterol composition in five families of the order Caryophyllales. – Phytochemistry 29: 3539-3541.

Pavlovic A, Masarovicová E, Hudák J. 2007. Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. – Ann. Bot., N. S., 100: 527-536.

Pax F. 1889a. Aizoaceae (Ficoideae, Mesembrianthemaceae). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1b), W. Engelmann, Leipzig, pp. 33-51.

Pax F. 1889b. Portulacaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1), W. Engelmann, Leipzig, pp. 51-60.

Pax F. 1889c. Caryophyllaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1), W. Engelmann, Leipzig, pp. 61-94.

Pax F. 1891. Plumbaginaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(1), W. Engelmann, Leipzig, pp. 116-125.

Pax F. 1896. Buxaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 130-135.

Pax F. 1927. Zur Phylogenie der Caryophyllaceae. – Engl. Bot. Jahrb. Syst. 61: 223-241.

Pax F, Hoffmann K. 1934a. Aizoaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 179-233.

Pax F, Hoffmann K. 1934b. Portulacaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. pp. 234-262.

Pax F, Hoffmann K. 1934c. Dysphaniaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 272-274.

Pax F, Hoffmann K. 1934d. Caryophyllaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 275-364.

Payne MA. 1933. The morphology and anatomy of Mollugo verticillata L. – Univ. Kansas Sci. Bull. 21: 399-419.

Pedersen TM. 1983. Two new species of Stellaria from South America, with a description of Stellaria arvalis F. Phil. – Bonplandia 5: 203-210.

Pedersen TM. 1990. Studies in South American Amaranthaceae III. – Bull. Mus. Natl. Hist. Nat., B, Adansonia 12: 69-97.

Pedersen TM. 1997. Studies in South American Amaranthaceae IV. – Adansonia, sér. 3, 19: 217-251.

Pedersen TM. 2010. Studies in South American Amaranthaceae V. – Bonplandia 10: 83-112.

Pendry CA. 2004. Monograph of Ruprechtia (Polygonaceae). – Syst. Bot. Monogr. 67: 1-113.

Penzig O. 1877. Untersuchungen über Drosophyllum lusitanicum Link. – Inaugural Diss., Phil. Fak., Breslau Universität.

Perdrigeat M C-A. 1900. Anatomie comparée des polygonées et ses rapports avec la morphologie et la classification. – Actes Soc. Linn. Bordeaux 55: 1-91.

Perrier de la Bâthie H. 1950. Caryophyllaceae. – In: Humbert H (ed), Flore de Madagascar et des Comores, Muséum National d’Histoire Naturelle, Paris.

Perveen A, Qaiser M. 2001. Pollen flora of Pakistan XXVII. Nyctaginaceae. – Turk. J. Bot. 25: 385-388.

Petri A, Oxelman B. 2011. Phylogenetic relationships within Silene (Caryophyllaceae) section Physolychnis. – Taxon 60: 953-968.

Petrusson L, Thulin M. 1996. Taxonomy and biogeography of Gymnocarpos (Caryophyllaceae, Paronychioideae). – Edinburgh J. Bot. 53: 1-26.

Philbrick RN. 1963. Zygotic and agamospermous reproduction in Opuntia littoralis. – Amer. J. Bot. 50: 637.

Philipp M. 1974. Flower biology of Stellaria longipes. – Bot. Tidsskr. 69: 239-244.

Philips SM. 2000. Notes on Portulaca L. (Portulacaceae) in tropical East Africa. – Kew Bull. 55: 687-698.

Philipson WR. 1993. Hectorellaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 331-334.

Philipson WR, Skipworth JP. 1961. Hectorellaceae: a new family of dicotyledons. – Trans. Roy. Soc. New Zealand Bot. 1: 31.

Phillips SM. 2002. Portulacaceae. – In: Beentje HJ, Smith SAL (eds), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-40.

Phitos D. 1981. To genos Bolanthus (Caryophyllaceae) stin Ellada. – Bot. Hron. 1: 35-45.

Piatelli M, Imperato F. 1970. Betacyanins from Bougainvillea. – Phytochemistry 9: 455-458.

Piatelli M, Imperato F. 1971. Betacyanins of some Chenopodiaceae. – Phytochemistry 10: 3133-3134.

Piirainen M, Liebisch O, Kadereit G. 2017. Phylogeny, biogeography, systematics and taxonomy of Salicornioideae (Amaranthaceae/Chenopodiaceae) – a cosmopolitan, highly specialized hygrohalophyte lineage dating back to the Oligocene. – Taxon 66: 109-132.

Pilbeam J. 1985. Sulcorebutia and Weingartia. A collector’s guide. – B. T. Batsford Ltd., London.

Pilbeam J. 1995. Gymnocalycium. A collector’s guide. – A. A. Balkema, Rotterdam & Brookfield.

Pilbeam J. 1996. Thelocactus. The cactus file handbook 1. – Cirio Publ. Services, Holbury.

Pilbeam J. 1997. Rebutia. – Cirio Publ. Services, Southampton.

Pilbeam J. 1999. Mammillaria. – Cirio Publ. Services, Southampton.

Pilbeam J, Bowdery D. 2005. Ferocactus. – British Cactus & Succulent Society, Hornchurch.

Pilbeam J, Hunt DR. 2004. A Sulco gallery. Sulcorebutias in pictures. – David Hunt, Milborne Port.

Pilbeam J, Weightman B. 2006. Ariocarpus et cetera. The special, smaller genera of Mexican cacti. – British Cactus & Succulent Society, Hornchurch.

Pilz GE. 1978. Systematics of Mirabilis subgenus Quamoclidion (Nyctaginaceae). – Madroño 25: 113-132.

Pinkava DJ. 2002. On the evolution of continental North American Opuntioideae. – Succ. Plant Res. 6: 59-98.

Pinkava DJ, Baker MA, Parfitt BD, Mohlenbrock MW, Worthington RD. 1985. Chromosome numbers in some cacti of western North America V. – Syst. Bot. 10: 471-483.

Pinkava D, Parfitt B, Baker M, Worthington R. 1992. Chromosome numbers in some cacti of western North America VI, with nomenclatural changes. – Madroño 39: 98-113.

Pinkava DJ, Rebman J, Baker M. 1998. Chromosome numbers in some cacti of western North America VII. – Haseltonia 6: 32-41.

del-Pino IS, Borsch T, Motley TJ. 2009. trnL-F and rpl16 sequence data and dense taxon sampling reveal monophyly of unilocular anthered Gomphrenoideae (Amaranthaceae) and an improved picture of their internal relationships. – Syst. Bot. 34: 57-67.

Pirani A, Zarre S, Pfeil BE, Bertrand YJK, Assadi M, Oxelman B. 2014. Molecular phylogeny of Acanthophyllum (Caryophyllaceae: Caryophylleae), with emphasis on infrageneric classification. – Taxon 63: 592-607.

Pires JM. 1981. Notas de Herbário I. Belemia Pires n. gen. – Bol. Mus. Para. Emilio Goeldi 52: 1-4.

Planchuelo AM. 1974 [1975]. Estudio de los frutos y semillas del genero Chenopodium en la Argentina. – Darwiniana 19: 528-565.

Poellnitz K von. 1932. Claytonia Gronov. and Montia Mich. – Feddes Repert. 30: 279-325.

Poellnitz K von. 1933. Anacampseros L. Versuch einer Monographie. – Bot. Jahrb. Syst. 65: 382-448.

Poellnitz K von. 1934a. Monographie der Gattung Talinum Adans. – Feddes Repert. 35: 1-34.

Poellnitz K von. 1934b. Die Calandrinia-Arten Australiens. – Feddes Repert. 35: 161-173.

Poellnitz K von. 1934c. Versuch zu einer Monographie der Gattung Portulaca L. – Feddes Repert. 37: 240-320.

Poggio L, Guaglianone ER, Greizerstein EJ. 1986. Estudios cromosómicos en Phytolacca dioica, P. tetramera y P. bogotensis (Phytolaccaceae). – Darwiniana 27: 19-27.

Poindexter DB, Bennett KE, Weakley AS. 2014. A morphologically based taxonomic reevaluation of the genus Stipulicida (Caryophyllaceae), with comments on rank. – J. Bot. Res. Inst. Texas 8: 419-430.

Pole M. 1993. Early Miocene flora of the Manuherikia Group, New Zealand 5. Smilacaceae, Polygonaceae, Elaeocarpaceae. – J. Roy. Soc. New Zealand 23: 289-302.

Polhill RM. 1971. Phytolaccaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Aministrations, London, pp. 1-8.

Pope CL. 1976. A phylogenetic study of the suffrutescent shrubs in the genus Atriplex. – Ph.D. diss., Brigham Young University, Provo, Utah.

Popp M, Oxelman B. 2001. Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA seqences. – Mol. Phylogen. Evol. 20: 474-481.

Popp M, Oxelman B. 2004. Evolution of a RNA polymerase gene family in Silene (Caryophyllaceae): incomplete concerted evolution and topological congruence among paralogues. – Syst. Biol. 53: 914-932.

Popp M, Oxelman B. 2007. Origin and evolution of North American polyploid Silene (Caryophyllaceae). – Amer. J. Bot. 94: 330-349.

Popp M, Erixon P, Eggens F, Oxelman B. 2005. Origin and evolution of a circumpolar polyploid species complex in Silene (Caryophyllaceae) inferred from low copy nuclear RNA polymerase introns, rDNA, and chloroplast DNA. – Syst. Bot. 30: 302-313.

Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C. 2008. Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). – J. Biogeogr. 35: 1016-1029.

Poppendieck H-H, Ihlenfeldt H-D. 1978. Delosperma harazianum (Deflers) Poppendieck & Ihlenfeldt, eine wenig bekannte Mesembryanthemaceae aus dem Südjemen. – Mitt. Inst. Allg. Bot. Hamburg 16: 183-187.

Poppinga S, Hartmeyer SRH, Masselter T, Hartmeyer I, Speck T. 2013. Trap diversity and evolution in the family Droseraceae. – Plant Signal. & Behav. 8: 7, e24685.

Porembski S. 2002. Ancistrocladaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 25-27.

Porembski S, Barthlott W. 2002. Dioncophyllaceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 178-181.

Porsch O. 1938-1939. Das Bestäubungsleben der Kakteenblüte. – Jahrb. Deutsch. Kakteenges. 1938/1, 1939/1. Neumann, Neudamm.

Porter JM, Kinney MS, Heil KD. 2000. Relationships between Sclerocactus and Toumeya (Cactaceae) based on chloroplast trnL-trnF sequences. – Haseltonia 7: 8-23.

Powell AM, Weedin JF. 2004. Cacti of the trans-Pecos and adjacent areas. – Texas Tech University Press, Lubbock.

Powell JW, Whalley WB. 1969. Triterpenoid saponins from Phytolacca dodecandra. – Phytochemistry 8: 2105-2107.

Powell RF, Boatwright JS, Klak C, Mgee AR. 2016. Phylogenetic placement and generic re-circumscriptions of the multilocular genera Arenifera, Octopoma and Schlechteranthus (Aizoaceae: Ruschieae): evidence from anatomical, morphological and plastid DNA data. – Taxon 65: 249-261.

Pozner R, Cocucci A. 2006. Floral structure, anther development, and pollen dispersal of Halophytum ameghinoi (Halophytaceae). – Intern. J. Plant Sci. 167: 1091-1098.

Prakash N. 1966. Aizoaceae and Cactaceae. A study of their embryology and relationships. – Ph.D. diss., University of Delhi, India.

Prakash N. 1967a. Life history of Tetragonia tetragonioides (Pall.) O. Kuntze. – Aust. J. Bot. 15: 413-424.

Prakash N. 1967b. Gametogenesis and seed development in Hereroa hesperantha (Dtr.) Dtr. et Schwant. (Aizoaceae). – Aust. J. Bot. 15: 425-435.

Prakash N. 1967c. Aizoaceae – a study of its embryology and systematics. – Bot. Not. 120: 305-323.

Prance GT. 1968. The systematic position of Rhabdodendron Gilg and Pilg. – Bull. Jard. Bot. Natl. État, Bruxelles, 38: 127-146.

Prance GT. 1972. Flora Neotropica Monograph 11. Rhabdodendraceae. – Hafner, New York.

Prance GT. 2002. Rhabdodendraceae. – In: Kubitzki K, Bayer C (eds), The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales, Springer, Berlin, Heidelberg, New York, pp. 339-341.

Pratov U. 1986. Rod Climacoptera Botsch. – Tashkent.

Pratov U. 1985. Overview of the genus Nanophyton Less. (Chenopodiaceae). – Nov. Sist. Vyssh. Rast. 22: 81-88. [in Russian]

Pratov U. 1986. The genus Climacoptera Botsch. (Systematics, geography, phylogeny and conservation questions). – Izdatel’stvo Fan Uzbekskoi AN, Tashkent. [in Russian]

Pratt DB. 2003. Phylogeny and morphological evolution of the Chenopodiaceae-Amaranthaceae alliance. – Ph.D. diss., Iowa State University, Ames, Iowa.

Prentice HC, Mastenbroek O, Berendsen W, Hogeweg P. 1984. Geographic variation in the pollen of Silene latifolia (S. alba, S. pratensis): a quantitative morphological analysis of population data. – Can. J. Bot. 62: 1259-1267.

Prescott A, Venning J. 1984. Aizoaceae. – In: George AS (ed), Flora of Australia 4, Australian Government Publ. Service, Canberra, pp. 19-62.

Presting D, Straka H, Friedrich B. 1983. Palynologia Madagassica et Mascarenica, Familien 128-146 (Fam. 134: Theaceae). – Akad. Wiss. Lit. Mainz, Trop. Subtrop. Pflanzenwelt 44.

Price TM. 2012. Phylogeny and evolution of Phemeranthus (Montiaceae) in North American xeric habitats. – Electronic Theses and Dissertations. Paper 724. http://openscholarship.wustl.edu/etd/724.

Price TM, Ferguson DJ. 2012. A new combination in Phemeranthus (Montiaceae) and notes on the circumscription of Phemeranthus and Talinum (Talinaceae) from the southwestern United States and northern Mexico. – Novon 22: 67-69.

Puff CA, Weber A. 1976. Contributions to the morphology, anatomy, and caryology of Rhabdodendron, and a reconsideration of the systematic position of the Rhabdodendronaceae. – Plant Syst. Evol. 125: 195-222.

Pusalkar PK, Sing DK. 2015. Taxonomic rearrangement of Arenaria (Caryophyllaceae) in Indian Western Himalaya. – J. Jap. Bot. 90: 77-91.

P’yankov VI, Artyusheva EG, Edwards GE, Black CC, Soltis PS. 2001. Phylogenetic analysis of tribe Salsoleae (Chenopodiaceae) based on ribosomal ITS sequences: implications for the evolution of photosynthesis types. – Amer. J. Bot. 88: 1189-1198.

P’yankov VI, Ziegler H, Kuz’min A, Edwards G. 2001. Origin and evolution of C4 photosynthesis in the tribe Salsoleae (Chenopodiaceae) based on anatomical and biochemical types in leaves and cotyledons. – Plant Syst. Evol. 230: 43-74.

Qaiser M. 1983. The genus Tamarix (Tamaricaceae) in Pakistan. – Iran. J. Bot. 2, 1: 21-68.

Qaiser M. 1987. Studies in the seed morphology of the family Tamaricaceae from Pakistan. – Bot. J. Linn. Soc. 94: 469-484.

Qaiser M, Ali SZ. 1978. Tamaricaria, a new genus of Tamaricaceae. – Blumea 24: 151-155.

Quézel P, Sintès S. 1960. Les nyctaginacées d’Afrique du Nord et du Sahara. – Bull. Soc. Hist. Nat. Afr. Nord 50: 222-256.

Rabeler RK. 2017. New combinations and typification in Shivparvatia (Alsineae, Caryophyllaceae). – Phytotaxa 303: 293-296.

Rabeler RK, Bittrich V. 1993. Suprageneric nomenclature in the Caryophyllaceae. – Taxon 42: 857-863.

Rabeler RK, Wagner WL. 2015. Eremogone (Caryophyllaceae): new combinations for Old World taxa. – PhytoKeys 50: 35-42.

Rabeler RK, Wagner WL. 2016. New combinations in Odontostemma (Caryophyllales). – PhytoKeys 63: 77-97.

Rabesa ZA. 1982a. Definition de deux sections du genre Alluaudia (Didiereaceae). – Taxon 31: 736-737.

Rabesa ZA. 1982b. Recherches chimiosystématiques sur les flavonoides des Didiéréacées. – Trop. Subtrop. Pflanzenw. 37: 339-358.

Radlkofer L. 1896. Didierea Baill. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 461-462.

Raghavan TS, Srinivasan VK. 1940. Studies in the Indian Aizoaceae. – Ann. Bot., N. S., 4: 651-661.

Ragleti HWJ, Weintraub M, Lo E. 1972. Characteristics of Drosera tentacles I. Anatomical and cytological detail. – Can. J. Bot. 50: 159-168.

Ragonese AM. 1966. Anatomía de las Frankeniáceas Argentinas. – Darwiniana 14: 95-129.

Rahiminejad MR, Gornall RJ. 2004. Flavonoid evidence for allopolyploidy in the Chenopodium album aggregate (Amaranthaceae). – Plant Syst. Evol. 246: 77-87.

Raj G, Kurup R, Hussain AA, Baby S. 2011. Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture. – J. Exp. Bot. 62: 5429-5436.

Rajendru G, Prasad JSR, Rama Das VS. 1986. C3–C4 intermediate species in Alternanthera (Amaranthaceae). – Plant Physiol. 80: 409-414.

Rajput KS. 2002. Stem anatomy of Amaranthaceae: rayless nature of xylem. – Flora 197: 224-232.

Ramanna MS. 1976. Are there heteromorphic sex chromosomes in spinach (Spinacia oleracea L.). – Euphytica 25: 277-284.

Rao AR, Awasthi P, Khare P. 1965. Palynological studies in Indian Aizoaceae (Ficoideae, Molluginaceae). – Palynol. Bull. 1: 50-51.

Rao BSS. 1975. Embryo development in five species of Mollugo. – Curr. Sci. 44: 712-713.

Rao TA, Das GC. 1968. Foliar sclereids in some species of Limonium. – Curr. Sci. 37: 252-254.

Rao TA, Cheluviah MC, Chakraborti S. 1984. On foliar sclereids in Asteropeia Thou. – Curr. Sci. 53: 45-48.

Rao VS. 1936. A contribution to the morphology of Antigonon leptopus Hook. & Arn. – J. Indian Bot. Soc. 15: 105-114.

Rao VS. 1969. The floral anatomy of Ancistrocladus. – Proc. Indian Acad. Sci. 70B: 215-222.

Rappa F. 1912. Per una classificazione naturale dei Mesembriantemi. – Boll. Reale Orto. Bot. Giard. Colon. Palermo 11: 21-36.

Rappa F, Camarrone V. 1953. Mesembrianthemum e Mesembryanthemum. Una rivendicazione. – Lav. Ist. Bot. Giard. Colon. Palermo 14: 1-39.

Rappa F, Camarrone V. 1962. La classificazione naturale delle Mesembriantemacee. – Lav. Ist. Bot. Giard. Colon. Palermo 18: 11-32.

Ratter JA. 1964. Cytogenetic studies in Spergularia I. Cytology of some old world species. – Notes Roy. Bot. Gard. Edinb. 25: 293-302.

Ratter JA. 1976. Cytogenetic studies in Spergularia IX. Summary and conclusions. – Notes Roy. Bot. Gard. Edinb. 34: 411-428.

Rauh W. 1956. Morphologische, entwicklungsgeschichtliche, histogenetische, und anatomische Untersuchungen an den Sprossen der Didiereaceen. – Abh. Akad. Wiss. Lit., Math.-Nat. Kl., 6: 343-444.

Rauh W. 1961. Weitere untersuchungen an Didiereaceen I. Beitrag zur Kenntnis der Wuchsformen der Didiereaceen, unter besonderer Berücksichtigung neuer Arten – Sitzungsber. Heidelberger Akad. Wiss., Math.-Nat. Kl., 1960-1961(7): 185-300.

Rauh W. 1963. 121e Fam. Didiereaceae. – In: Humbert H (ed), Flore de Madagascar et des Comores, Muséum National d’Histoire Naturelle, Paris.

Rauh W. 1979. Kakteen an ihren Standorten unter besonderer Berücksichtigung ihrer Morphologie und Systematik. – P. Parey, Berlin & Hamburg.

Rauh W. 1983. The morphology and systematic position of the Didiereaceae of Madagascar. – Bothalia 14: 839-843.

Rauh W, Dittmar K. 1970. Weitere Untersuchungen an Didiereaceen 3. Vergleichend-anatomische Untersuchungen an den Sprossachsen und den Dornen der Didiereaceen. – Sitzungsber. Heidelberger Akad. Wiss., Math.-Nat. Kl., 1969/70(4): 1-88.

Rauh W, Reznik H. 1961. Zur Frage der systematischen Stellung der Didiereaceen. – Bot. Jahrb. Syst. 81: 94-105.

Rauh W, Schölch H-F. 1965. Weitere Untersuchungen an Didiereaceen 2. Infloreszenz-, blütenmorphologische und embryologische Untersuchungen mit Ausblick auf die systematische Stellung der Didiereaceen. – Sitzungsber. Heidelberger Akad. Wiss., Math.-Nat. Kl., 1965(3): 1-218, 221-434.

Rausch W. 1975-1976. Lobivia. Die tagblütige Echinopsidinae aus arealgeographischer Sicht. I-III. – R. Herzig, Wien.

Rausch W. 1987. Lobivia 85. – R. Herzig, Wien.

Rautenberg A, Filatov D, Svennblad B, Heidari N, Oxelman B. 2008. Conflicting phylogenetic signals in the SIX1/Y1 gene in Silene. – BMC Evol. Biol. 8: 299. DOI: 10.1186/1471-2148-8-299.

Rautenberg A, Sloan DB, Aldén V, Oxelman B. 2012. Phylogenetic relationships of Silene multinervia and Silene Section Conoimorpha (Caryophyllaceae). – Syst. Bot. 37: 226-237.

Ravn RL. 1987. Montiapollis n.gen., possible Portulacaceae pollen from the Cenomanian of Iowa. – Grana 26: 243-247.

Rayder L, Ting IP. 1981. Carbon metabolism in two species of Pereskia (Cactaceae). – Plant Physiol. 68: 139-142.

Rea J. 1969. Biología floral de la quinua (Ch. quinoa). – Turrialba 19: 91-96.

Realini MF, González GE, Font F, Picca PI, Poggio L, Gottlieb AM. 2015. Phylogenetic relationships in Opuntia (Cactaceae, Opuntioideae) from southern South America. – Plant Syst. Evol. 301: 1123-1134.

Rebman JP. 1995. Biosystematic study of Opuntia subgenus Cylindropuntia (Cactaceae), the chollas of Lower California, México. – Ph.D. diss., Arizona State University, Tempe, Arizona.

Rebman JP. 2002. Nomenclatural changes in Cylindropuntia, Grusonia, and Nopalea (Cactaceae). – J. Ariz. Nev. Acad. Sci. 34: 45.

Rebman JP. 2015. Seven new cacti (Cactacee: Opuntioideae) from the Baja California Region, México. – Madroño 62: 46-67.

Rechinger KH. 1933a. Vorarbeiten zu einer Monographie der Gattung Rumex II. Die Arten der Subsektion Patientiae. – Feddes Repert. 31: 226-283.

Rechinger KH. 1933b. Vorarbeiten zu einer Monographie der Gattung Rumex III. Die süd- und zentralamerikanischen Arten der Gattung Rumex. – Ark. f. Bot. 26A(3): 1-58.

Rechinger KH. 1937. Vorarbeiten zu einer Monographie der Gattung Rumex V. The North American species of Rumex. – Publ. Field Mus. Nat. Hist., Bot. Ser. 17: 1-150.

Rechinger KH. 1943. Die Rumex-Arten der Balkanhalbinsel. – Mitt. Thüring. Bot. Ver., Ser. II, 50: 193-217.

Rechinger KH. 1949. Vorarbeiten zu einer Monographie der Gattung Rumex VII. Rumices asiatici. – Candollea 12: 9-152.

Rechinger KH. 1954. Vorarbeiten zu einer Monographie der Gattung Rumex VIII. Monograph of the genus Rumex in Africa. – Bot. Not. Suppl. 3(3): 1-114.

Rechinger KH. 1984. Rumex (Polygonaceae) in Australia: a reconsideration. – Nuytsia 5: 75-122.

Record SJ. 1934. The woods of Rhabdodendron and Duckeodendron. – Trop. Woods 33: 6-10.

Remski MF. 1954. Cytological investigations in Mammillaria and some associated genera. – Bot. Gaz. 116: 163-171.

Renner T, Specht CD. 2011. A sticky situation: assessing adaptations for plant carnivory in the Caryophyllales by means of stochastic character mapping. – Intern. J. Plant Sci. 172: 889-901.

Reppenhagen W. 1991. Die Gattung Mammillaria. Monographie 1. – Steinhart, Titisee-Neustadt.

Reppenhagen W. 1992. Die Gattung Mammillaria. Monographie 2. – Steinhart, Titisee-Neustadt.

Rettig JH, Wilson HD, Manhart JR. 1992. Phylogeny of the Caryophyllales – gene sequence data. – Taxon 41: 201-209.

Reveal JL. 1968. Notes on Eriogonum IV. A revision of the Eriogonum deflexum complex. – Brittonia 20: 13-33.

Reveal JL. 1969a. A revision of the genus Eriogonum. – Ph.D. diss., Brigham Young University, Provo, Utah.

Reveal JL. 1969b. The subgeneric concept in Eriogonum (Polygonaceae). – In: Gunckel J (ed), Current topics in plant science, Academic Press, New York, pp. 229-249.

Reveal JL. 1978. Distribution and phylogeny of Eriogonoideae (Polygonaceae). – In: Harper KT, Reveal JL (eds), Intermountain biogeography: a symposium, Great Basin Natur. Mem. 2, Brigham Young University Press, Provo, Utah, pp. 169-190.

Reveal JL. 1983. The Demoulin rule and newly mandated combinations in Eriogonum (Polygonaceae). – Taxon 32: 292-295.

Reveal JL. 1989a. Remarks on the genus Pterostegia (Polygonaceae: Eriogonoideae). – Phytologia 66: 228-235.

Reveal JL. 1989b. Notes on selected genera related to Eriogonum (Polygonaceae: Eriogonoideae). – Phytologia 66: 236-245.

Reveal JL. 1989c. A checklist of the Eriogonoideae (Polygonaceae). – Phytologia 66: 266-294.

Reveal JL. 1989d. The eriogonoid flora of California (Polygonaceae: Eriogonoideae). – Phytologia 66: 295-414.

Reveal JL. 2004a. Johanneshowellia (Polygonaceae: Eriogonoideae), a new genus from the Intermountain West. – Brittonia 56: 299-306.

Reveal JL. 2004b. Nomenclatural summary of Polygonaceae subfamily Eriogonoideae. – Harvard Pap. Bot. 9: 143-230.

Reveal JL. 2004c. Proposal to conserve the name Gilmania Coville against Phyllogonum Coville (Polygonaceae: Eriogonoideae) – a case of mistaken homonymy. – Taxon 53: 573.

Reveal JL, Bjoerk CR. 2004. Eriogonum soliceps (Polygonaceae: Eriogonoideae), a new species from east-central Idaho and southwestern Montana. – Brittonia 56: 295-298.

Reveal JL, Doweld A. 2008. Proposal to conserve the name Aizoaceae against Mesembryanthemaceae, a “superconservation” proposal. – Taxon 57: 302.

Reveal JL, Ertter BJ. 1977. Goodmania (Polygonaceae), a new genus from California. – Brittonia 28: 427-429.

Reveal JL, Hardham CB. 1989a. Three new monospecific genera of Polygonaceae subfamily Eriogonoideae from California. – Phytologia 66: 83-88.

Reveal JL, Hardham CB. 1989b. A revision of the annual species of Chorizanthe (Polygonaceae: Eriogonoideae). – Phytologia 66: 98-198.

Reveal JL, Howell JT. 1976. Dedeckera (Polygonaceae), a new genus from California. – Brittonia 28: 245-251.

Reyes-Rivera J, Canché-Escamilla G, Soto-Hernández M, Terrazas T. 2015. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology. – PLoS ONE 10:e0123919.

Reyes-Salas M, Martínez-Hernández E. 1982. Palynological catalog for the flora of Veracruz, Mexico 8. Nyctaginaceae family. – Biotica (Mexico) 7: 423-456.

Reznicek T, Britton DM. 1971. Chromosome studies on the Spring Beauties, Claytonia, in Ontario. – Mich. Bot. 10: 51-62.

Reznik H. 1955. Die Pigmente der Centrospermen als systematisches Element. – Zeitschr. Bot. 43: 499-530.

Reznik H. 1957. Die Pigmente der Centrospermen als systematisches Element II. Untersuchung über das ionophoretische Verhalten. – Planta 49: 406-434.

Reznik H. 1975. Betalaine. – Ber. Deutsch. Bot. Ges. 88: 179-190.

Richardson PM. 1978. Flavonols and C-glycosylflavonoids of the Caryophyllales. – Biochem. Syst. Ecol. 6: 283-286.

Richardson PM. 1981. Flavonoids of some controversial members of the Caryophyllales (Centrospermae). – Plant Syst. Evol. 138: 227-233.

Riha J, Riha JJ. 1975. The genus Mammilloydia Buxbaum. – Cactus Succ. J. (U.S.) 47: 195-197.

Rilke S. 1999a. Species diversity and polymorphism in Salsola sect. Salsola sensu lato (Chenopodiaceae). – Syst. Geogr. Plants 68: 305-314.

Rilke S. 1999b. Revision der Sektion Salsola s.l. der Gattung Salsola (Chenopodiaceae). – Bibl. Bot. 149: 1-189.

Ritter F. 1962. Calymmanthium – eine neue Cereengattung aus Peru. – Kakt. Sukk. 13: 24-28.

Ritter F. 1979-1981. Kakteen in Südamerika. Ergebnisse meiner 20-jährigen Feldforschungen 1-4. – Selbstverlag, Spangenberg, Germany.

Ritz CM, Mecklenburg R. 2008. Die Phylogenie von Rebutia und ihren Verwandten spiegelt die geologische Geschichte Südamerikas wider. – Kakt. Sukk. 59: 157-170.

Ritz CM, Martins L, Mecklenburg R, Goremykin V, Hellwig FK. 2007. The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. – Amer. J. Bot. 94: 1321-1332.

Ritz CM, Reiker J, Charles G, Hoxey P, Hunt D, Lowry M, Stuppy W, taylor N. 2012. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae). – Mol. Phylogen. Evol. 65: 668-681.

Ritz CM, Fickenscher K, Föller J, Herrmann K, Mecklenburg R, Wahl R. 2016. Molecular phylogenetic relationships of the Andean genus Aylostera Speg. (Cactaceae, Trichocereeae), a new classification and a morphological identification key. – Plant Syst. Evol. 302: 763-780.

Rivadavia F, Kondo K, Kato M, Hasebe M. 2003. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. – Amer. J. Bot. 90: 123-130.

Rivadavia F, Miranda VFO de, Hoogenstrijd G, Pinheiro F, Heubl G, Fleischmann A. 2012. Is Drosera meristocaulis a pygmy sundew? Evidence of a long-distance dispersal between Western Australia and northern South America. – Ann. Bot. 110: 11-21.

Rivera ER, Smith BN. 1979. Crystal morphology and 13carbon/12carbon composition of solid oxalate in cacti. – Plant Physiol. 64: 966-970.

Roberts PR, Oosting HJ. 1958. Responses of Venus’ flytrap to factors involved in its endemism. – Ecol. Monogr. 28: 193-218.

Robertson JH. 1983. Greasewood (Sarcobatus vermiculatus (Hook.) Torr.). – Phytologia 54: 309-324.

Roberty G, Vautier S. 1964. Les genres des Polygonacées. – Boissiera 10: 7-128.

Robins RJ, Juniper BE. 1980a. The secretory cycle of Dionaea muscipula Ellis I. The fine structure and the effect of stimulation on the fine structure of the digestive gland cells. – New Phytol. 86: 279-296.

Robins RJ, Juniper BE. 1980b. The secretory cycle of Dionaea muscipula Ellis III. The mechanism of release of digestive secretion. – New Phytol. 85: 313-327.

Robinson AS, Fleischmann AS, McPherson SR, Heinrich VB, Gironella EP, Pena CQ. 2009. A spectacular new species of Nepenthes L. (Nepenthaceae) pitcher plant from central Palawan, Philippines. – Bot. J. Linn. Soc. 159: 195-202.

Robinson H. 1973. New combinations in the Cactaceae subfamily Opuntioideae. – Phytologia 26: 175-176.

Robinson H. 1974. Scanning electron microscope studies of the spines and glochids of the Opuntioideae (Cactaceae). – Amer. J. Bot. 61: 278-283.

Rocén T. 1927. Zur Embryologie der Centrospermen. – Ph.D. diss., University of Uppsala, Sweden.

Rodkiewicz B, Bedmara J, Kudlicka K. 1983. Egg apparatus walls and vacuoles in Stellaria media. – In: Erdelska O (ed), Fertilization and embryogenesis in ovulated plants, Veda, Bratislava, pp. 211-214.

Rodman JE. 1990. The Centrospermae revisited 1. – Taxon 39: 383-393.

Rodman JE. 1994. Cladistic and phenetic studies. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, pp. 279-301.

Rodman JE, Oliver MK, Nakamura RR, McClammer Jr JU, Bledsoe AH. 1984. A taxonomic analysis and revised classification of Centrospermae. – Syst. Bot. 9: 297-323.

Rodríguez-Rodríguez JF, Shiskova S, Napsucialy-Mendivil S, Dubrovsky JG. 2003. Apical meristem organization and lack of establishment of the quiescent center in Cactaceae roots with determinate growth. – Planta 217: 849-857.

Rohrbach P. 1868. Monographie der Gattung Silene. – Lipsiae.

Rohweder O. 1965a. Centrospermen-Studien 1. Der Blütenbau bei Uebelinia kiwuensis T. C. E. Fries (Caryophyllaceae). – Bot. Jahrb. Syst. 83: 406-418.

Rohweder O. 1965b. Centrospermen-Studien 2. Entwicklung und morphologische Deutung der Gynöciums bei Phytolacca. – Bot. Jahrb. Syst. 84: 509-526.

Rohweder O. 1967. Centrospermen-Studien 3. Blütenentwicklung und Blütenbau bei Silenoideen (Caryophyllaceae). – Bot. Jahrb. Syst. 86: 130-185.

Rohweder O. 1970. Centrospermen-Studien 4. Morphologie und Anatomie der Blüten, Früchte, und Samen bei Alsinoideen und Paronychioideen s. lat. (Caryophyllaceae). – Bot. Jahrb. Syst. 90: 201-271.

Rohweder O, Huber K. 1974. Centrospermen-Studien 7. Beobachtungen und Anmerkungen zur Morphologie und Entwicklungsgeschichte einiger Nyctaginaceen. – Bot. Jahrb. Syst. 94. 327-359.

Rohweder O, König K. 1971. Centrospermen-Studien 5. Bau der Blüten, Früchte, und Samen von Pteranthus dichotomus Forsk. (Caryophyllaceae). – Bot. Jahrb. Syst. 90: 447-468.

Rohweder O, Urmi E. 1978. Centrospermen-Studien 10. Untersuchungen über den Bau der Blüten und Früchte von Cucubalus baccifer L. und Drypis spinosa L. (Caryophyllaceae-Silenoideae). – Bot. Jahrb. Syst. 100: 1-25.

Rohweder O, Urmi-König K. 1975. Centrospermen-Studien 8. Beiträge zur Morphologie, Anatomie, und systematischen Stellung von Gymnocarpos Forsk. und Paronychia argentea Lam. (Caryophyllaceae). – Bot. Jahrb. Syst. 96: 375-409.

Rohwer JG. 1982. A taxonomic revision of the genera Seguieria Loefl. and Gallesia Casar. (Phytolaccaceae). – Mitt. Bot. Staatssamml. München 18: 231-288.

Rohwer JG. 1993a. Phytolaccaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 506-515.

Rohwer JG. 1993b. Stegnospermaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 592-594.

Roland F. 1967. Mise en évidence d’une membrane aperturale particulière dans le pollen de quelques Aizoacées. – Compt. Rend. Acad. Sci. Paris 264: 2986-2988.

Ronse De Craene L-P. 1990. Morphological studies of Tamaricales I. Floral ontogeny and anatomy of Reaumuria vermiculata L. – Beitr. Biol. Pflanzen 65: 181-203.

Ronse De Craene L-P. 2013. Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution. – Plant Syst. Evol. 299: 1599-1636.

Ronse De Craene L-P, Akeroyd JR. 1988. Generic limits in Polygonum and related genera (Polygonaceae) on the basis of floral characters. – Bot. J. Linn. Soc. 98: 321-371.

Ronse De Craene L-P, Smets EF. 1991a. The floral nectaries of Polygonum s.l. and related genera (Persicarieae and Polygoneae): position, morphological nature and semophylesis. – Flora 185: 165-185.

Ronse De Craene L-P, Smets EF. 1991b. The floral ontogeny of some members of the Phytolaccaceae (subfamily Rivinoideae) with a discussion of the evolution of the androecium in the Rivinoideae. – Biol. Jaarb. Dodonaea 59: 77-99.

Ronse De Craene L-P, Vanvinckenroye P, Smets E. 1997. A study of the floral morphological diversity in Phytolacca (Phytollacaceae) based on early floral ontogeny. – Intern. J. Plant Sci. 158: 56-72.

Ronse De Craene L-P, Smets EF, Vanvinckenroye P. 1998. Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae. – J. Plant Res. 111: 25-43.

Ronse De Craene L-P, Volgin SA, Smets EF. 1999. The floral development of Pleuropetalum darwinii, an anomalous member of Amaranthaceae. – Flora 194: 189-199.

Ronse De Craene L-P, Hong S-P, Smets E. 2000. Systematic significance of fruit morphology and anatomy in tribes Persicarieae and Polygoneae (Polygonaceae). – Bot. J. Linn. Soc. 134: 301-337.

Ronse De Craene L-P, Hong S-P, Smets E. 2004. What is the taxonomic status of Polygonella? Evidence of floral morphology. – Ann. Missouri Bot. Gard. 91: 320-345.

Rose JN, Standley PC. 1911. The genus Talinum in Mexico. – Contr. U. S. Natl. Herb. 13: 281-288.

Ross R. 1981. Chromosome counts, cytology, and reproduction in the Cactaceae. – Amer. J. Bot. 68: 463-470.

Rossbach RP. 1943. El género Spergularia (Caryophyllaceae) en Chile. – Darwiniana 6: 211-256.

Rost TL, Samper AD, Schell P, Allen S. 1977. Anatomy of jojoba (Simmondsia chinensis) seed and the utilization of liquid wax during germination. – Econ. Bot. 31: 140-147.

Roth I. 1953. Zur Entwicklungsgeschichte und Histogenese der Schlauchblätter von Nepenthes. – Planta 42: 177-208.

Roth I. 1954. Entwicklung und histogenetischer Vergleich der Nektar- und Verdauungsdrüsen von Nepenthes. – Planta 43: 361-378.

Roth I. 1962a. Histogenese und morphologische Deutung der basilären Plazenta von Armeria. – Österr. Bot. Zeitschr. 109: 19-40.

Roth I. 1962b. Histogenese und morphologische Deutung der Kronblätter von Armeria. – Port. Acta Biol., ser. A, 6: 211-230.

Roth I. 1963. Histogenese und morphologische Deutung der Zentralplacenta von Cerastium. – Bot. Jahrb. Syst. 82: 100-118.

Rousi A, Yli-Rekola M, Jokela P, Kalliola R, Pietilä L, Salo J. 1988. The fruit of Ullucus (Basellaceae), an old enigma. – Taxon 37: 71-75.

Rowley GD. 1958. Reunion of the genus Opuntia Mill. – Natl. Cact. Succ. J. 13: 3-6.

Rowley GD. 1974. The unhappy medium: Morangaya a new genus of Cactaceae. – Ashingtonia 1: 43-45.

Rowley GD. 1978. Reunion of some genera of Mesembryanthemaceae. – Cact. Succ. J. (Great Britain) 33: 6-9.

Rowley GD. 1992. Didiereaceae. ‘Cacti of the Old World’. – British Cactus and Succulent Society, Kew.

Rowley GD. 1994. Anacampseros and allied genera – a reassessment. – Bradleya 12: 105-112.

Rowley GD. 1995. Anacampseros, Avonia, Grahamia: A grower’s guide. – British Cactus and Succulent Society, Hull Road.

Rowley GD. 1997. A history of succulent plants. – Strawberry Press, Mill Valley, California.

Rowley GD. 2004a. Spontaneous bigeneric hybrids in Cactaceae. – Bradleya 12: 2-7.

Rowley GD. 2004b. Intergeneric hybrids in Cactaceae – 2004 update. – Brit. Cact. Succ. J. 22: 64-65.

Runemark H. H. 1974. Studies in the Aegean flora XXII. Goniolimon Boiss (Plumbaginaceae). – Bot. Not. 127: 540-545.

Runemark H. 1980. Studies in the Aegean flora XXIII. The Dianthus fruticosus complex (Caryophyllaceae). – Bot. Not. 133: 475-490.

Russell AD. 2003. Phylogenetic analysis and morphological study of the subfamily Eriogonoideae (Polygonaceae) with an emphasis on the genus Chorizanthe. – M.Sc. thesis, San Diego State University, San Diego, California.

Rutishauser R. 1981. Basale Blattauswüchse bei Centrospermen. – In: Cotthem W van (ed), Morphologie, Anatomie und Systematik der Pflanzen, 5. Symposium Gent 1979, Waegeman, Ninove (Belgium), pp. 21-27.

Ruxton GD, Schaefer HM. 2011. Alternative explanations for apparent mimicry. – J. Ecol. 99: 899-904.

Sadeghian S, Zarre S, Heubl G. 2014. Systematic implication of seed micromorphology in Arenaria (Caryophyllaceae) and allied genera. – Flora 209: 513-529.

Sadeghian S, Zarre S, Rabeler RK, Heubl G. 2015. Molecular phylogenetic analysis of Arenaria (Caryophyllaceae: tribe Arenarieae) and its allies inferred from nuclear DNA internal transcribed spacer and plastid DNA rps16 sequences. – Bot. J. Linn. Soc. 178: 648-669.

Sage RF, Sage TL, Pearcy RW, Borsch T. 2007. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. – Amer. J. Bot. 94: 1992-2003.

Sage RF, Christin PA, Edwards EJ. 2011. The C4 plant lineages of planet Earth. – J. Exp. Bot. 62: 3155-3169.

Sahashi N, Ikuse M. 1973. Pollen morphology of Aldrovanda vesiculosa L. – J. Jap. Bot. 48: 374-379.

Sakai AK, Weller SG, Karoly K. 1989. Inbreeding depression in Schiedea globosa and S. salicaria (Caryophyllaceae), subdioecious and gynodioecious Hawaiian species. – Amer. J. Bot. 76: 437-444.

Sakai AK, Weller SG, Wagner WL, Solis PS, Soltis DE. 1997. Phylogenetic perspectives on the evolution of dioecy: adaptive radiation in the endemic Hawaiian genera Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae). – In: Givnish TJ, Sytsma KJ (eds), Molecular evolution an adaptive radiation, Cambridge University Press, New York, pp. 455-473.

Sakai AK, Weller SG, Wagner WL, Nepokroeff M, Culley TM. 2006. Adaptive radiation and evolution of breeding systems in Schiedea (Caryophyllaceae), an endemic Hawaiian genus. – Ann. Missouri Bot. Gard. 93: 49-63.

Salgues R. 1961. Le genre Polygonum (Polygonacées). Études chimiques et toxicologiques. – Qual. Pl. Mater. Veg. 8: 367-395.

Samuelsson G. 1930. Polygonaceae. – Acta Horti Gothob. 5: 1-11.

Sanchez A, Kron KA. 2008. Phylogenetics of Polygonaceae with an emphasis on the evolution of Eriogonoideae. – Syst. Bot. 33: 87-96.

Sanchez A, Kron KA. 2009. Phylogenetic relationships of Afrobrunnichia Hutch. & Dalziel (Polygonaceae) based on three chloroplast genes and ITS. – Taxon 58: 781-792.

Sanchez A, Kron KA. 2011. Phylogenetic relationships of Triplaris and Ruprechtia: re-delimitation of the recognized genera and two new genera for tribe Triplarideae (Polygonaceae). – Syst. Bot. 36: 702-710.

Sanchez A, Schuster TM, Kron KA. 2009. A large-scale phylogeny of Polygonaceae based on molecular data. – Intern. J. Plant Sci. 170: 1044-1055.

Sanchez A, Schuster TM, Burke JM, Kron KA. 2011. Taxonomy of Polygonoideae (Polygonaceae): a new tribal classification. – Taxon 60: 151-160.

Sánchez D, Arias S, Terrazas T. 2014. Phylogenetic relationships in Echinocereus (Cactaceae, Cactoideae). – Syst. Bot. 39: 1183-1196.

Sánchez-del Pino I. 2007. Phylogeny and floral evolution of the subfamily Gomphrenoideae (Amaranthaceae). – Ph.D. diss., City University of New York.

Sánchez-del Pino I, Flores Olvera H. 2002. New taxa and a new combination in Tidestromia (Amaranthaceae) from North America. – Novon 12: 399-407.

Sánchez-del Pino I, Flores Olvera H. 2006. Phylogeny of Tidestromia (Amaranthaceae, Gomphrenoideae) based on morphology. – Syst. Bot. 31: 689-701.

Sánchez-del Pino I, Borsch T, Motley TJ. 2009. trnL-F and rpl16 sequence data and dense taxon sampling reveal monophyly of unilocular anthered Gomphrenoideae (Amaranthaceae) and an improved picture of their internal relationships. – Syst. Bot. 34: 57-67.

Sánchez-del Pino I, Motley TJ, Borsch T. 2012. Molecular phylogenetics of Alternanthera (Gomphrenoideae, Amaranthaceae): resolving a complex taxonomi chistory caused by different interpretations of morphological characters in a lineage with C4 and C3-C4 intermediate species. – Bot. J. Linn. Soc. 169: 493-517.

Sánchez-del Pino I, Espadas C, Pool R. 2013. Taxonomy and richness of nine genera of Amaranthaceae s.s. (Caryophyllales) in the Yucatan Peninsula Biotic Province. – Phytotaxa 107: 1-74.

Sánchez-Mejorda H. 1974. Revisión del género Peniocereus (Las Cactáceas). – Gobierno del Estado de México, Dirección de Agricultura y Ganaderia, Toluca, México.

Sanderson SC, Ge-Ling C, McArthur ED, Stutz HC. 1988. Evolutionary loss of flavonoids an other chemical characters in the Chenopodiaceae. – Biochem. Syst. Ecol. 16: 143-149.

Santa Anna del Conde-Juárez H, Contreras-Medina R, Luna-Vega I. 2009. Biogeographic analysis of endemic cacti of the Sierra Madre Oriental, Mexico. – Biol. J. Linn. Soc. 97: 373-389.

Santoni S, Bervillé A. 1992. Characterization of the nuclear ribosomal DNA units and phylogeny of Beta L. wild forms and cultivated beets. – Theor. Appl. Gen. 83: 533-542.

Sattler R, La Croix C. 1988. Development and evolution of basal cauline placentation: Basella rubra. – Amer. J. Bot. 75: 913-927.

Sattler R, Perlin L. 1982. Floral development of Bougainvillea spectabilis Willd., Boerhavia diffusa L. and Mirabilis jalapa L. (Nyctaginaceae). – Bot. J. Linn. Soc. 84: 161-182.

Sauer W. 1965. Die Moehringia bavarica-Gruppe. – Bot. Jahrb. Syst. 84: 257-273.

Schaeppi H. 1936. Zur Morphologie des Gynoeceums der Phytolaccaceen. – Flora 131: 41-59.

Schäferhoff B, Müller KF, Borsch T. 2009. Caryophyllales phylogenetics: disentangling Phytolaccaceae and Molluginaceae and description of Microteaceae as a new isolated family. – Willdenowia 39: 209-228.

Schatz GE, Lowry PP II, Wolf A-E. 1999. Endemic families of Madagascar IV. A synoptic revision of Asteropeia (Asteropeiaceae). – Adansonia, sér. III, 21: 255-268.

Scheen AC, Brochmann C, Brysting AK, Elven R, Morris A, Soltis DE, Soltis PS, Albert VA. 2004. Northern Hemisphere biogeography of Cerastium (Caryophyllaceae): insights from phylogenetic analysis of noncoding plastidnucleotide sequences. – Amer. J. Bot. 91: 943-952.

Schenk HJ, Ferren WR. 2001. On the sectional nomenclature of Suaeda (Chenopodiaceae). – Taxon 50: 857-873.

Schill R, Rauh W, Wieland H-P. 1974. Weitere Untersuchungen an Didiereaceen 4. Die Chromosomenzahlen der einzelnen Arten. – Akad. Wiss. Lit. Math.-Nat. Kl., Trop. Subtrop. Pflanzenwelt 11: 1-14.

Schiman-Czeika H. 1987. Notes on the capsule dehiscence in Acanthophyllum (Caryophyllaceae) and allied genera. – Plant Syst. Evol. 155: 67-69.

Schinz H. 1893. Amaranthaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1a), W. Engelmann, Leipzig, pp. 91-118.

Schinz H. 1894. Ficoideae. – Bull. Herb. Boiss. 2: 204-205.

Schinz H. 1934. Amaranthaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 7-85.

Schinz H, Autran E. 1893. Des Genres Achatocarpus Triana et Bosia Linné et de leur place dans le système naturel. – Bull. Herb. Boiss. 1: 1-14.

Schlauer J. 1996. A dichotomous key to the genus Drosera L. (Droseraceae). – Carniv. Plant Newsl. 25: 67-88.

Schlegel U. 2009. The composite structure of cactus spines. – Bradleya 27: 129-138.

Schlumpberger BO. 2009. More on the phylogeny and evolution of Echinopsis s.l. – IOS-Bull. 15: 48.

Schlumpberger BO. 2012. New combinations in the Echinopsis alliance. – Cactaceae Syst. Init. 28: 30-32.

Schlumpberger BO, Renner SS. 2012. Molecular phylogenetics of Echinopsis (Cactaceae): polyphyly at all levels and convergent evolution of pollination modes and growth forms. – Amer. J. Bot. 99: 1335-1349.

Schmalzel RJ, Nixon RT, Best AL, Tress JA. 2004. Morphometric variation in Coryphantha robustispina (Cactaceae). – Syst. Bot. 29: 553-568.

Schmid R. 1964. Die systematische Stellung der Dioncophyllaceen. – Bot. Jahrb. Syst. 83: 1-56.

Schmid R. 1978. Floral and fruit anatomy of jojoba (Simmondsia chinensis). – Mem. 2nd Intern. Conf. Jojoba y su Aprov. Ensenada, México, 1976, pp. 143-148.

Schmid W. 1925. Morphologische, anatomische und entwicklungsgeschichtliche Untersuchungen an Mesembryanthemum pseudotruncatellum Berger. – Beibl. Vierteljahrsschr. Naturforsch. Ges. Zürich 8: 1-80.

Schmid-Hollinger R. 1970. Nepenthes-Studien I. Homologien von Deckel (operculum, lid) und Spitzchen (calcar, spur). – Bot. Jahrb. Syst. 90: 275-296.

Schmid-Hollinger R. 1971. Nepenthes-Studien II. Die Haare der Nepenthaceen und ihre phylogenetische Bedeutung. – Bot. Jahrb. Syst. 91: 61-90.

Schmid-Hollinger R. 1977. Nepenthes-Studien IV. Eine neue Nepenthes-Art aus Madagascar. Nepenthes masoalensis sp. nov. – Bot. Jahrb. Syst. 97: 575-585.

Schmid-Hollinger R. 1979. Die Kannenformen der westlichen Nepenthes-Arten. – Bot. Jahrb. Syst. 100: 379-405.

Schmidt R. 1964. Die systematische Stellung der Dioncophyllaceen. – Bot. Jahrb. Syst. 83: 1-56.

Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R. 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. – Plant Mol. Biol. 45: 307-315.

Schölch H-F. 1963. Die systematische Stellung der Didiereaceen im Lichte neuer Untersuchungen über ihren Blütenbereich. – Ber. Deutsch. Bot. Ges. 76: 49-55.

Schönland S. 1903. Morphological and biological observations on the genus Anacampseros L. (Rulingia Ehrh.). – South Afr. Rep. Sci. 1: 295-301.

Schoute JC. 1935. Observations on the inflorescence in the family of the Plumbaginaceae. – Rec. Trav. Bot. Néerl. 32: 406-424.

Schulz R. 2006. Copiapoa in their environment. – Schulz Publ., Teesdale.

Schulz R, Machado M. 2000. Uebelmannia and their environment. – Schulz Publ., Teesdale.

Schulze W, Schulze ED, Pate JS, Gillison AN. 1997. The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. – Oecologia 112: 464-471.

Schumann K. 1894. Cactaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 156-205; Schumann K. 1897. Nachträge zu III(6a), pp. 258-260.

Schumann K. 1897. Neue Kakteen aus dem Andengebiet. – Monatsschr. Kakteenkunde 7: 6-9.

Schumann K. 1897-1899. Gesamtbeschreibung der Kakteen (Monographia Cactacearum). – J. Neumann, Neudamm, Germany.

Schumann K. 1899. Die Verbreitung der Cactaceae im Verhältnis zu ihrer systematischen Gliederung. – Abhandl. Königl. Akad. Wissensch. Berlin 2: 1-114.

Schumann K. 1903. Gesamtbeschreibung der Kakteen (Monographia Cactacearum). Nachträge 1898-1902. – J. Neumann, Neudamm.

Schuster TM, Reveal JL, Kron KA. 2011. Phylogeny of Polygoneae (Polygonaceae: Polygonoideae). – Taxon 60: 1653-1666.

Schuster TM, Wilson KL, Kron KA. 2011. Phylogenetic relationships of Muehlenbeckia, Fallopia, and Reynoutria (Polygonaceae) investigated with chloroplast and nuclear sequence data. – Intern. J. Plant Sci. 172: 1053-1058.

Schuster TM, Setaro SD, Kron KA. 2013. Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the Amphi-Pacific Muehlenbeckia. – PloS ONE 8:e61261

Schuster TM, Reveal JL, Bayly MJ, Kron KA. 2015. An updated molecular phylogeny of Polygonoideae (Polygonaceae): relationships of Oxygonum, Pteroxygonum, and Rumex, and a new circumscription of Koenigia. – Taxon 64: 1188-1208.

Schütte KH, Steyn R, Westhuizen M van der. 1967. Crassulacean acid metabolism in South African succulents: a preliminary investigation in its occurrence in various families. – J. South Afr. Bot. 33: 107-110.

Schütz B. 1962. K systematice rodu Gymnocalycium. – Friciana 1: 1-8.

Schütz B. 1969. Rodu Gymnocalycium. – Friciana 7: 3-23.

Schütz B. 1986. Monografie rodu Gymnocalycium. – Vydal Klub Kaktusaru Astrophytum, Brno.

Schütze PW. 2008. Molekulare Systematik der Gattung Suaeda (Chenopodiaceae) und Evolution des C4-Photosynthesesyndroms. – Ph.D. thesis, Fachbereich Naturwissenschaften der Universität Kassel.

Schütze P, Freitag H, Weising K. 2003. An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae). – Plant Syst. Evol. 239: 257-286.

Schwallier R, Gravendeel B, Boer H de, Nylinder S, Heuven BJ van, Sieder A, Sumail S, Vugt R van, Lens F. 2017. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. – Ann. Bot. 119: 1179-1193.

Schwantes G. 1927. Zur Systematik der Mesembryanthemen. – Sukkulentenkunde 3: 14-30.

Schwantes G. 1947. System der Mesembryanthemaceen. – Sukkulentenkunde 1: 34-40.

Schwantes G. 1952. Die Früchte der Mesembryanthemaceen. – Vierteljahrsschr. Naturforsch. Ges. Zürich 97, Beih. 2: 1-38.

Schwantes G. 1957a. Ficoidaceae (Juss.) em. Hutchinson. – Kakteen Sukk. 8: 167-169.

Schwantes G. 1957b. Flowering stones and mid-day flowers. – Ernest Benn Ltd., London.

Schwarz O. 2003. Atriplex micrantha C. A. Mey. in Ledeb. und andere Meldearten. Nomenklatur, Morphologie, Verbreitung, Ökologie und Taxonomie. – Jahresh. Ges. Naturk. Württemberg 159: 113-195.

Schwarzová T. 1986. Chromosome numbers of some species of the genus Chenopodium L. from localities in Czechoslovakia. – Acta Fac. Rerum Nat. Univ. Comen. 33: 37-40.

Schweingruber FH. 2007. Stem anatomy of Caryophyllaceae. – Flora 202: 281-292.

Scogin R. 1980. Serotaxonomy of Simmondsia chinensis (Simmondsiaceae). – Aliso 9: 555-559.

Scogin R, Brown S. 1979. Leaf flavonoids of Simmondsia chinensis (Simmondsiaceae). – Aliso 9: 475-477.

Scott AJ. 1977. Reinstatement and revision of Salicorniaceae J. Agardh (Caryophyllales). – Bot. J. Linn. Soc. 75: 357-374.

Scott AJ. 1978a. Rhagodiinae: a new subtribe in the Chenopodiaceae. – Feddes Repert. 89: 1-12.

Scott AJ. 1978b. A revision of the Camphorosmoideae (Chenopodiaceae). – Feddes Repert. 89: 101-119.

Scott AJ. 1978c. A review of the classification of Chenopodium L. and related genera. – Bot. Jahrb. Syst. 100: 205-220.

Scott AJ, Ford-Lloyd BV, Williams JT. 1977. Patellifolia, nomen novum (Chenopodiaceae). – Taxon 26: 284.

Seine R, Barthlott W. 1992. Ontogeny and morphological quality of the marginal bristles of Dionaea muscipula Ellis (Droseraceae). – Beitr. Biol. Pflanzen 67: 289-294.

Seine R, Barthlott W. 1993. On the morphology of trichomes and tentacles of Droseraceae Salisb. – Beitr. Biol. Pflanzen 67: 345-366.

Seine R, Barthlott W. 1994. Some proposals on the infrageneric classification of Drosera L. – Taxon 43: 583-589.

Sekar KC, Srivastava SK. 2007. Stellaria pinvalliaca (Caryophyllaceae), a new species from India. – Feddes Repert. 118: 20-23.

Sell PD, Whitehead FH. 1964. Notes on the annual species of Cerastium in Europe. – Feddes Repert. 69: 14-24.

Selvi F. 2009. Armeria saviana sp. nov. (Plumbaginaceae) from central Italy. – Nord. J. Bot. 27: 125-133.

Senda M, Mikami T, Kinoshita T, Mikami T. 1995. Mitochondrial gene variation and phylogenetic relationships in the genus Beta. – Theor. Appl. Gen. 90: 914-919.

Sharma A, Ghosh S. 1968. Cytotaxonomy of Ficoideae. – Cytologia 33: 439-452.

Sharma AK, Banik M. 1965. Cytological investigation of different genera of Amaranthaceae with a view to trace their interrelationships. – Bull. Bot. Soc. Bengal 19: 40-50.

Sharma HP. 1954. Studies in the order Centrospermales I. Vascular anatomy of the flower of certain species of the Portulacaceae. – J. Indian Bot. Soc. 47: 98-111.

Sharma HP. 1961. Contribution to the morphology and anatomy of Basella rubra Linn. – Bull. Bot. Soc. Bengal 15: 43-48.

Sharma HP. 1962a. Contributions to the morphology of the Nyctaginaceae I. Anatomy of the node and inflorescence of some species. – Proc. Indian Acad. Sci., Sect. B, 56: 35-50.

Sharma HP. 1962b. Studies in the order Centrospermales III. Vascular anatomy of the flower of some species of the family Ficoidaceae. – Proc. Indian Acad. Sci., Sect. B, 56: 269-285.

Sharma HP. 1963a. Contributions to the morphology of the Nyctaginaceae II. Floral anatomy of some species. – Proc. Indian Acad. Sci., Sect. B, 57: 149-163.

Sharma HP. 1963b. Studies in the order Centrospermales II. Vascular anatomy of the flower of certain species of the Molluginaceae, Nyctaginaceae, and Portulacaceae. – J. Indian Bot. Soc. 42: 19-32, 637-645.

Sharsmith CW. 1938. On the identity of Claytonia nevadensis Watson. – Madroño 4: 171-176.

Sheikh SA, Kondo K. 1995. Differential staining with orcein, Giemsa, CMA, and DAPI for comparative chromosome study of 12 species of Australian Drosera. – Amer. J. Bot. 82: 1278-1286.

Sheikh SA, Kondo K, Hoshi Y. 1995. Study on diffused centromeric nature of Drosera chromosomes. – Cytologia 60: 43-47.

Shen Y, Ford-Lloyd BV, Newbury HJ. 1998. Genetic relationships within the genus Beta determined using both PCR-based marker and DNA sequencing techniques. – Heredity 80: 624-632.

Shepherd KA. 2007. Three new species of Tecticornia (formerly Halosarcia) (Chenopodiaceae: Salicornioideae) from the Ememaean Botanical Province, Western Australia. – Nuytsia 17: 353-366.

Shepherd KA, Lyons MN. 2009. Three new species of Tecticornia (Chenopodiaceae, subfamily Salicornioideae) identified through Salinity Action Plan surveys of the wheatbelt region, Western Australia. – Nuytsia 19: 167-180.

Shepherd KA, Wilson PG. 2007. Incorporation of the Australian genera Halosarcia, Pachycornia, Sclerostegia and Tegicornia into Tecticornia (Salicornioideae, Chenopodiaceae). – Aust. Syst. Bot. 20: 319-331.

Shepherd KA, Yan G. 2003. Chromosome number and size variations in the Australian Salicornioideae (Chenopodiaceae) – evidence of polyploidisation. – Aust. J. Bot. 51: 441-452.

Shepherd KA, Waycott M, Calladine A. 2004. Radiation of the Australian Salicornioideae (Chenopodiaceae) – based on evidence from nuclear and chloroplast DNA sequences. – Amer. J. Bot. 91: 1387-1397.

Shepherd KA, Macfarlane TD, Waycott M. 2005. Phylogenetic analysis of the Australian Salicornioideae (Chenopodiaceae) based on morphology and nuclear DNA. – Aust. Syst. Bot. 18: 89-115.

Shepherd KA, Macfarlane TD, Colmer TD. 2005. Morphology, anatomy, and histochemistry of fruits and seeds of the Salicornioideae (Chenopodiaceae). – Ann. Bot. 95: 917-933.

Sherbrooke WC, Haase EF. 1974. Jojoba: a wax-producing shrub of the Sonoran Desert. – Arid Lands Resource Information Paper 5, University of Sonora, Office of Arid Lands Studies, Tucson, Arizona.

Sherry RA, Eckard KJ, Lord EM. 1993. Flower development in dioecious Spinacia oleracea (Chenopodiaceae). – Amer. J. Bot. 80: 283-291.

Shmida A. 1991.Tamarisks in Israel. – Israel Land Nature 16: 119-125.

Shults VA. 1989. Rod myl’nyanka (Saponaria L. s.l.) vo flore SSSR. – Zinatne, Riga

Shykoff JA. 1988. Maintenance of gynodioecy in Silene acaulis (Caryophyllaceae): stage-specific fecundity and viability selection. – Amer. J. Bot. 75: 844-850.

Silva AR Pinto da. 1956. As espécies portuguesas de Silene sect. Botryosilene Rohrb. – Agron. Lusit. 18: 24-29.

Simmler G. 1910. Monographie der Gattung Saponaria. – Denkschr. Kaiserl. Akad. Wiss., Wien. Math.-Naturwiss. Kl. 85: 433-509.

Simonds NW. 1965. The grain chenopods of the tropical American highland. – Econ. Bot. 19: 223-235.

Simonet M. 1928. Le nombre des chromosomes dans le genre Iris. – Compt. Rend. Soc. Biol. Paris 99: 1314-1316.

Simonet M. 1930. Nouvelles recherches sur le nombre des chromosomes chez les Iris et sur l’existence de mitoses didiploïdes dans ce genre. – Compt. Rend. Soc. Biol. Paris 103: 1197-1200.

Simonet M. 1932. Recherches cytologiques et génétiques chez les Iris. – Bull. Biol. France Belg. 105: 255-444.

Simonet M. 1934. Nouvelles recherches cytologiques et génétiques chez les Iris. – Ann. Sci. Nat. Bot., sér. X, 16: 229-383.

Simonet M. 1952. Nouveaux dénombrements chromosomiques chez les Iris. – Compt. Rend. Acad. Sci. Paris 235: 1244-1246.

Simpson RB. 1995. Nepenthes and conservation. – Curtis’s Bot. Mag. 12: 111-119.

Singh K, Buys MH, Liedt T. 2009. Assessing relationships between Oscularia (Aizoaceae) and possible sister taxa using pollen. – South Afr. J. Bot. 75: 440.

Sirrine E. 1895. Structure of the seed coats of Polygonaceae. – Proc. Iowa Acad. Sci. 2: 128-135.

Sivarajan VV. 1988. A preliminary taxonomic revision of Indian Molluginaceae. – J. Taiwan Mus. 41: 79-93.

Sivarajan VV, Gopinathan MC. 1985. Seedcoat micromorphology of Caryophyllales: observations on some Molluginaceae. – Proc. Indian Acad. Sci. (Plant Sci.) 94: 51-47.

Skipwort JP. 1961. The taxonomic position of Hectorella caespitose Hook. f. – Trans. Roy. Soc. New Zealand Bot. 1: 17-30.

Skipwort JP. 1962. The primary vascular system and phyllotaxis in Hectorella caespitosa Hook. f. – New Zealand J. Sci. 5: 253-258.

Skvarla JJ, Nowicke JW. 1976. Ultrastructure of pollen exine in the centrospermous families. – Plant Syst. Evol. 126: 55-78.

Skvarla JJ, Nowicke JW. 1982. Pollen fine structure and relationships of Achatocarpus Triana and Phaulothamnus A. Gray. – Taxon 31: 244-249.

Slenzka A, Mucina W, Kadereit G. 2013. Salicornia L. (Amaranthaceae) in South Africa and Namibia: rapid spread and ecological diversification of cryptic species. – Bot. J. Linn. Soc. 172: 175-186.

Slepyan EI. 1962. Galls and bud teratisms and their pathogens in Tamarix L. – Byull. Mosk. Obshch. Ispyt. Prir. 67: 61-65. [In Russian]

Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR. 2012. Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. – Genom Biol. Evol. 4: 294-306.

Sloan DB, Triant DA, Forrester NJ, Bergner LM, Wu M, Taylor DR. 2014. A recurring syndrome of accelereated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). – Mol. Phylogen. Evol. 72: 82-89.

Small JK. 1895. A monograph of the North American species of the genus Polygonum. – Mem. Dept. Bot. Columbia Coll. 1: 1-183.

Smissen RD. 1999. Systematics of Scleranthus. – Ph.D. diss., Victoria University, Wellington, New Zealand.

Smissen RD, Garnock-Jones PJ. 2002. Relationships, classification and evolution of Scleranthus (Caryophyllaceae) as inferred from analysis of morphological characters. – Bot. J. Linn. Soc. 140: 15-29.

Smissen RD, Clement JC, Garnock-Jones PJ, Chambers GK. 2002. Subfamilial relationships within Caryophyllaceae as inferred from 5’ndhF sequences. – Amer. J. Bot. 89: 1336-1341.

Smissen RD, Garnock-Jones PJ, Chambers GK. 2003. Phylogenetic analysis of ITS sequences suggests a Pliocene origin for the bipolar distribution of Scleranthus (Caryophyllaceae). – Aust. Syst. Bot. 16: 301-315.

Smith CM. 1929. Development of Dionaea muscipula I. Flowers and seed. – Bot. Gaz. 87: 507-530.

Smith GF, Chesselet P, Jaarsveld EJ van, Hartmann H, Hammer S, Wyk B-E van, Burgoyne P, Klak C, Kurzweil H. 1998. Mesembs of the world. – Briza Publ., Pretoria.

Smith JM. 1976. A taxonomic study of Acleisanthes (Nyctaginaceae). – Wrightia 5: 261-276.

Sivarajan VV, Usha T. 1983. On reinstating Mollugo stricta L. (Molluginaceae). – Taxon 32: 123-126.

Sobolevskaya KA, Vysochina GI. 1972. Ecological and geographical aspects and some problems of the chemosystematics of section Aconogonon Meisn. of genus Polygonum. – Izv. Sib. Otd. Akad. Nauk. SSSR, ser. Biol. Med. Nauk. 3: 29-39. [In Russian with English summary]

Sohmer H. 1972. Revision of the genus Charpentiera (Amaranthaceae). – Brittonia 24:283-312.

Sohmer H. 1976a. Herbstia, a new genus in the Amaranthaceae. – Brittonia 28: 448-452.

Sohmer H. 1976b. The genus Indobanalia. – Phytologia 34: 235-239.

Sohmer H. 1977. A revision of Chamissoa (Amaranthaceae). – Bull. Torr. Bot. Club 104: 111-126.

Soják J. 1974. Bemerkungen zur Gattung Truellum Houtt. (Polygonaceae). – Preslia (Praha) 46: 139-156.

Sokolov PD, Kondratenkova TD. 1983. Chromosome numbers of some species of the genus Polygonum (Polygonaceae) of the section Aconogonon. – Bot. Žurn. 68: 638-640. [In Russian]

Söllner R. 1952. Nouvelle contribution à la cytotaxinomie du genre Cerastium. – Experientia 8: 104-105.

Söllner R. 1953. Sur l’emploi des critères cytologiques dans la taxinomie du genre Cerastium. – Bull. Soc. Neuchât. Sci. Nat. 76: 121-132.

Söllner R. 1954. Recherches cytotaxinomiques sur le genre Cerastium. – Ber. Schweiz. Bot. Ges. 64: 221-354.

Soltis PS, Soltis DE, Weller SG, Sakai AK, Wagner WL. 1996. Molecular phylogenetic analysis of the Hawaiian endemics Schiedea and Alsinidendron (Caryophyllaceae). – Syst. Bot. 21: 365-379.

Solymosi P, Pusztai T. 1984. Cytological study of stable viable morphological changes appearing in Amaranthus weed populations of maize monocultures. – Acta Bot. Hung. 30: 47-52.

Soriano A. 1946. Halophytaceae, nueva familia del orden Centrospermae. – Notas Mus. La Plata 11: 161-175.

Soriano A. 1948. Los generous de Quenopodiáceas de la flora Argentina. – Rev. Argent. Agron. 15: 1-19.

Soriano A. 1984. Halophytaceae. – Bol. Soc. Argent. Bot. 23: 161-162.

Sosa V, Ochoterena H, Escamilla M. 2006. A revision of Cerdia (Caryophyllaceae). – Bot. J. Linn. Soc. 152: 1-13.

Souková M. 1978. Caryophyllaceae subfam. Dianthoideae – Begrenzung, Charakteristik und Gliederung. – Preslia 50: 139-152.

Spegazzini C. 1905. Cactearum Platensium Tentamen. – An. Mus. Nac. Buenos Aires 11: 477-521.

Spellenberg R. 1993. Taxonomy of Anulocaulis (Nyctaginaceae). – Sida 15: 373-389.

Spellenberg R, Delson RK. 1977. Aspects of reproduction in Chihuahuan Desert Nyctaginaceae. – In: Wauer RH, Riskind DH (eds), Transactions of the symposium on the biological resources of the Chihuahuan Desert region, United States and Mexico, U.S. Department of the Interior, pp. 273-287.

Spellenberg R, Poole JM. 2003. Nomenclatural adjustments and comments in Abronia and Acleisanthes (Nyctaginaceae). – Sida 20: 885-889.

Spencer JL. 1955. A cytological study of the Cactaceae of Puerto Rico. – Bot. Gaz. 117: 33-37.

Sperling CR. 1987. Systematics of the Basellaceae. – Ph.D. diss., Dept. of Organismic and Evolutionary Botany, Harvard University, Cambridge, Massachusetts.

Sperling CR, Bittrich V. 1993. Basellaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 143-147.

Sprague TA. 1920. Stellaria and Alsine. – Kew Bull. 6: 308-318.

Srivastava AK, Misra KC. 1966. Chromosome numbers in Boerhavia diffusa L. – Sci. Cult. 32: 315.

Stafford HA. 1994. Anthocyanins and betalains: evolution of the mutually exclusive pathways. – Plant Sci. 101: 91-98.

Standley PC. 1909. The Allioniaceae of the United States with notes on Mexican species. – Contr. U.S. Natl. Herb. 12: 303-389.

Standley PC. 1911. The Allioniaceae of Mexico and Central America. – Contr. U.S. Natl. Herb. 13: 377-430.

Standley PC. 1916a. Ammocodon, a new genus of Allioniaceae from the southwestern United States. – J. Washington Acad. Sci. 6: 629-631.

Standley PC. 1916b. New or notable Allioniaceae. – Contr. U. S. Natl. Herb. 18: 98-101.

Standley PC. 1931a. Studies of American plants: Nyctaginaceae. – Field Mus. Bot. Ser. 8: 304-311.

Standley PC. 1931b. The Nyctaginaceae and Chenopodiaceae of northwestern South America. – Field Mus. Bot. Ser. 11: 71-126.

Standley PC, Steyermark JA. 1946. Polygonaceae. – Fieldiana, Bot. 24: 104-137.

Stanford EE. 1925a. The inflorescence and flower-form in Polygonum, subgenus Persicaria. – Rhodora 27: 41-47.

Stanford EE. 1925b. Possibilities of hybridism as a cause of variation in Polygonum. – Rhodora 27: 81-89.

Stanley TD. 1982. Nepenthaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 7-8.

Steenis CGGJ van. 1949a. Ancistrocladaceae– In: Steenis CGGJ van (ed), Flora Malesiana I, 4(2), Noordhoff-Kolff N. V., Batavia, pp. 8-10.

Steenis CGGJ van. 1949b. Plumbaginaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(2), Noordhoff-Kolff N. V., Batavia, pp. 107-112.

Steenis CGGJ van. 1953. Droseraceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(4), Noordhoff-Kolff N. V., Batavia, pp. 377-381.

Steffen S, Mucina L, Kadereit G. 2007. Phylogeny and ecological diversification of South African Sarcocornia (Chenopodiaceae). – South Afr. J. Bot. 73: 337.

Steffen S, Mucina L, Kadereit G. 2009. Three new species of Sarcocornia (Chenopodiaceae) from South Africa. – Kew Bull. 64: 447-459.

Steffen S, Mucina L, Kadereit G. 2010. A revision of Sarcocornia in South Africa, Namibia and Mozambique. – Syst. Bot. 35: 390-408.

Steffen S, Ball P, Mucina L, Kadereit G. 2015. Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae, Amaranthaceae). – Ann. Bot. (Oxford) 115: 353-368.

Steiner E. 1944. Cytogenetic studies on Talinum and Portulaca. – Bot. Gaz. 105: 374-379.

Stemmerick JF. 1964a. Florae Malesianae Precursores 28. Notes on Pisonia L. in the Old World. – Blumea 12: 275-284.

Stemmerick JF. 1964b. Nyctaginaceae. – In: Steenis CGGJ van (ed), Flora Malesiana, I, 6, Wolters-Noordhoff, Groningen, pp. 450-468.

Stephens EL. 1926. A new sundew, Drosera regia Stephens, from the Cape Province. – Trans. Roy. Soc. South Africa 8: 309-312.

Sterk AA, Dijkhuizen L. 1972. The relation between the genetic determination and the ecological significance of the seed wing in Spergularia media and S. marina. – Acta Bot. Neerl. 21: 481-490.

Stern K. 1917. Beiträge zur Kenntnis der Nepenthaceae. – Flora 109: 213-282.

Stetter MG, Schmid KJ. 2017. Analysis of phylogenetic relationships and genome size evolution of the Amaranthus genus using GBS indicates the ancestors of an ancient crop. – Mol. Phylogen. Evol. 109: 80-92.

Steward AN. 1930. The Polygonaceae of eastern Asia. – Contr. Gray Herb. Harvard Univ. 5: 1-129.

Stewart D, Wiens D. 1971. Chromosome races in Claytonia lanceolata (Portulacaceae). – Amer. J. Bot. 58: 41-47.

Stohr G. 1982. Entfaltungszentren der Gattung Coccoloba L. (Polygonaceae) in der Neotropis. – Rev. Jard. Bot. Nac. Univ. Habana 3: 129-144.

Stokes SG. 1936. The genus Eriogonum, a preliminary study based on geographical distribution. – J. H. Neblett Press, San Francisco.

Stokes SG, Stebbins GL. 1955. Chromosome numbers in the genus Eriogonum. – Leafl. Western Bot. 7: 228-233.

Stone-Palmquist ME, Mauseth JD. 2002. The structure of enlarged storage roots in cacti. – Intern. J. Plant Sci. 163: 89-98.

Stoughton TR, Kriebel R, Jolles DD, O’Quinn RL. 2018. Next-generation lineage discovery: a case study of tuberous Claytonia L. – Amer. J. Bot. 105: 536-548.

Straka H. 1955. Anatomische und entwicklungsgeschichtliche Untersuchungen an Früchten paraspermer Mesembryanthemen. – Nova Acta Leopold. 17(118): 127-190.

Straka H. 1965. Die Pollenmorphologie der Didiereaceen. – Sitzungsber. Heidelb. Akad. Wiss., Math.-Nat. Kl., 3: 219-227.

Straka H. 1975. Palinologie et différentiation systématique d’une famille endémique de Madagascar: les Didieréacées. – Boissiera 24: 245-248.

Straka H, Friedrich B. 1983. Palynologica Madagassica et Mascarenica. Fam. 121-127. Microscopie électronique à balayage et addenda. – Pollen Spores 25: 49-73.

Straka H, Friedrich B. 1988. Fam. 73. Caryophyllaceae. – In: Palynologica Madagassica et Mascarenica, Trop. Subtrop. Pflanzenwelt 61: 29-33.

Strandmark PW. 1887. Förgreningen och bladställningen hos Montia särskildt med afseende på frågan om blommans orientering. – Bot. Not. 1887: 164-174.

Studholme WP, Philipson WR. 1966. A comparison of the cambium in two woods with included phloem: Heimerliodendron brunonianum and Avicennia resinifera. – New Zealand J. Bot. 4: 355-365.

Stuppy W. 2001. A new combination in Tephrocactus Lem. (Cactaceae). – Kew bull. 56: 1003-1005.

Stuppy W. 2002. Seed characters and the generic classification of the Opuntioideae (Cactaceae). – Succ. Plant Res. 6: 25-58.

Stutz HC, Chu G-L, Sanderson SC. 1990. Evolutionary studies of Atriplex: phylogenetic relationships of Atriplex pleiantha. – Amer. J. Bot. 77: 364-369.

Styles BT. 1962. The taxonomy of Polygonum aviculare and its allies in Britain. – Watsonia 5: 177-214.

Suárez-García C, Paz JP, Febles R, Caujapé-Castells J. 2009. Genetic diversity and floral dimorphism in Limonium dendroides (Plumbaginaceae), a woody Canarian species on the way of extinction. – Plant Syst. Evol. 280: 105-117.

Suh Y, Kim S, Park C-W. 1997. A phylogenetic study of Polygonum sect. Tovara (Polygonaceae) based on ITS sequences of nuclear ribosomal DNA. – J. Plant Biol. 40: 47-52.

Sukhorukov AP. 1999a. Eine neue asiatische Chenopodium-Art aus der Sektion Pseudoblitum Hook. f. (Chenopodiaceae). – Feddes Repert. 110: 493-497.

Sukhorukov AP. 1999b. Some general evolutionary trends in the genus Atriplex L. s.l. (Chenopodiaceae). – In: Melikyan AP, Lotova LI (eds), Tenth Moscow Meeting in Plant Phylogeny (Materials), Moscow, pp. 166-168. [in Russia]

Sukhorukov AP. 2000. Atriplex altaica Sukhor. – eine neue Art aus der Flora des Altai-Gebirges. – Feddes Repert. 111: 175-179.

Sukhorukov AP. 2005. Karpologische Untersuchung der Axyris-Arten (Chenopodiaceae) im Zusammenhang mit ihrer Diagnostik und Taxonomie. – Feddes Repert. 116: 168-176.

Sukhorukov AP. 2006. Zur Systematik und Chorologie der in Rußland und benachbarten Staaten (in den Grenzen der ehemaligen UdSSR) vorkommenden Atriplex-Arten (Chenopodiaceae). – Ann. Naturhist. Mus. Wien 108B: 307-420.

Sukhorukov AP. 2007a. Einige neue und wenig bekannte Taxa aus der Familie Chenopodiaceae in Europa und im östlichen Mittelmeergebiet. – Feddes Repert. 118: 73-83.

Sukhorukov AP. 2007b. Fruit anatomy and its taxonomic significance in Corispermum (Corispermoideae, Chenopodiaceae). – Willdenowia 37: 63-87.

Sukhorukov AP. 2007c. Notes on the taxonomy of Girgensohnia (Chenopodiaceae/Amaranthaceae). – Edinburgh J. Bot. 64: 317-330.

Sukhorukov AP. 2008. Fruit anatomy of the genus Anabasis (Salsoloideae, Chenopodiaceae). – Aust. Syst. Bot. 21: 431-442.

Sukhorukov AP. 2011. Axyris (Chenopodiaceae s.str. or Amaranthaceae s.l.) in the Himalayas and Tibet. – Willdenowia 41: 75-82.

Sukhorukov AP. 2012. Taxonomic notes on Dysphania and Atriplex (Chenopodiaceae). – Willdenowia 42: 169-180.

Sukhorukov AP, Danin A. 2009. Taxonomic notes on Atriplex sect. Teutliopsis and sect. Atriplex in Israel and Syria. – Flora Mediterranea 19: 15-23.

Sukhorukov AP, Kushunina M. 2014. Taxonomic revision of Chenopodiaceae in Nepal. – Phytotaxa 191: 10-44.

Sukhorukov AP, Kushunina M. 2015. Taxonomy and chorology of Corbichonia (Lophiocarpaceae s.l.) with further description of a new species from southern Africa. – Phytotaxa 218: 227-240.

Sukhorukov AP, Kushunina M. 2016. Taxonomic revision and distribution of herbaceous Paramollugo (Molluginaceae) in the Eastern Hemisphere. – PhytoKeys 73: 93-116.

Sukhorukov AP, Kushunina M. 2017. Taxonomic significance of seed morphology in the genus Mollugo s.l. (Molluginaceae). – Israel J. Plant Sci. 64: 31-47.

Sukhorukov AP, Nilova MV. 2016. A new species of Arthrocnemum (Salicornioideae: Chenopodiaceae-Amaranthaceae) from West Africa, with a revised characterization of the genus – Bot. Lett. 163: 237-250.

Sukhorukov AP, Uotila P, Zhang M, Zhang H-X, Speranskaya AS, Krinitsyna AA. 2013. New combinations in Asiatic Oxybasis (Amaranthaceae s.l.): evidence from morphological, carpological and molecular data. – Phytotaxa 144: 1-12.

Sukhorukov AP, Mavrodiev EV, Struwig M, Nilova MV, Dzhalilova KK, Balandin SA, Erst A, Krinitsyna AA. 2015. One-seeded fruits in the core Caryophyllales: their origin and structural diversity. – PloS ONE 10(2): e0117974. http://dx.doi.org/10.1371/journal.pone.1007974

Sukhorukov AP, Zhang M-L, Kushunina M, Nilova MV, Krinitsina A, Zaika MA, Mazei Y. 2018. Seed characters in Molluginaceae (Caryophyllales): implications for taxonomy and evolution. – Bot. J. Linn. Soc. 187: 167-208.

Sultan SE, Wilczek AM, Hann SD, Brosi BJ. 1998. Contrasting ecological breadth of co-occurring annual Polygonum species. – J. Ecol. 86: 363-383.

Summerhayes VS. 1930. A revision of the Australian species of Frankenia. – Bot. J. Linn. Soc. 48: 337-387.

Sun W, Zhou Z-Z, Liu M-Z, Wan H-W, Dong X. 2008. Reappraisal of the generic status of Pteroxygonum (Polygonaceae) on the basis of morphology, anatomy and nrDNA ITS sequence analysis. – J. Syst. Evol. 46: 73-79.

Sun Y-X, Zhang M-L. 2012. Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes. – J. Arid Land 4: 180-190.

Sun Y-X, Wang A, Wan D, Wang Q, Liu J. 2012. Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. – Mol. Phylogen. Evol. 63: 150-158.

Surgis E. 1921. Étude sur les Frankéniacées. – André Lesot, Nemours.

Swanepoel W. 2007. Ceraria kaokoensis, a new species from Namibia, with notes on gynodioecy in the genus. – Bothalia 37: 202-206.

Swanson JR. 1966. A synopsis of relationships in Montioideae (Portulacaceae). – Brittonia 18: 229-241.

Syeda ST. 1980. Three new species of Calandrinia (Portulacaceae) from inland Australia. – Telopea 2: 59-61.

Sykes WR. 1987. The parapara, Pisonia brunoniana (Nyctaginaceae). – New Zealand J. Bot. 25: 459-466.

Szyszyłowicz I von. 1895b. Theaceae (Ternstroemiaceae). – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6), W. Engelmann, Leipzig, pp. 175-192.

Takahashi H. 1988. Ontogenetic development of pollen tetrads of Drosera capensis L. – Bot. Gaz. 149: 275-282.

Takahashi H, Sohma K. 1982. Pollen morphology of the genus Drosera and its related taxa. – Sci. Rep. Tohoku Imp. Univ., Ser. IV, Biology 38: 81-156.

Talavera S, Muñoz Garmendia F. 1989. Sinopsis del género Silene L. (Caryophyllaceae) en la Península Ibérica y Baleares. – An. Jard. Bot. Madrid 45: 407-460.

Tanaka R, Tanaka A. 1980. Karyomorphological studies on halophytic plants I. Some taxa of Chenopodium. – Cytologia 45: 257-269.

Tapia HJ, Bárcenas-Argüello ML, Terrazas T, Arias S. 2017. Phylogeny and circumscription of Cephalocereus (Cactaceae) based on molecular and morphological evidence. – Syst. Bot. 42: 709-723.

Tavakkoli S, Osaloo SK, Maassoumi AA. 2010. The phylogeny of Calligonum and Pteropyrum (Polygonaceae) based on nuclear ribosomal DNA ITS and chloroplast trnL-F sequences. – Iran. J. Biotechn. 8: 7-15.

Tavakkoli S, Osaloo SK, Mozaffarian V, Maassoumi AA. 2015. Molecular phylogeny of Atraphaxis and the woody Polygonum species (Polygonaceae): taxonomic implications based on molecular and morphological evidence. – Plant Syst. Evol. 301: 1157-1170.

Taylor CM. 1994. Revision of Tetragonia (Aizoaceae) in South America. – Syst. Bot. 19: 575-589.

Taylor CM, Gereau RE, Walters GM. 2005. Revision of Ancistrocladus Wall. (Ancistrocladaceae). – Ann. Missouri Bot. Gard. 92: 360-399.

Taylor NP. 1978. Review of the genus Escobaria B. & R. – Cact. Succ. J. (Great Britain) 40: 31-37.

Taylor NP. 1979a. A commentary on the genus Echinofossulocactus Lawr. – Cact. Succ. J. (Great Britain) 41: 35-42.

Taylor NP. 1979b. Notes in Ferocactus B. & R. – Cact. Succ. J. (Great Britain) 41: 88-94.

Taylor NP. 1980. Ferocactus and Stenocactus united. – Cact. Succ. J. (Great Britain) 42: 108.

Taylor NP. 1983. Comments on proposal 673 to conserve 5408 Stenocactus (Schumann) Berger (1929) over various generic names (Cactaceae). – Taxon 32: 641-643.

Taylor NP. 1984. A review of Ferocactus Britton & Rose. – Bradleya 2: 19-38.

Taylor NP. 1985. The genus Echinocereus. – Collingridge & The Royal Botanic Gardens, Kew, London.

Taylor NP. 1986. The identification of Escobarias (Cactaceae). – Cactus Succ. J. (Great Britain) 4: 36-44.

Taylor NP. 1991. The genus Melocactus (Cactaceae) in Central and South America. – Bradleya 9: 1-80.

Taylor NP. 2005. 526. Maihuenia poeppigii. Cactaceae. – Curtis’s Bot. Mag. 22: 105-108.

Taylor NP, Zappi DC. 1989. An alternative view on generic delimitation and relationships in tribe Cereeae (Cactaceae). – Bradleya 7: 13-40.

Taylor NP, Zappi DC. 2004. Cacti of Eastern Brazil. – Royal Botanic Gardens, Kew, Richmond.

Taylor NP, Stuppy W, Barthlott W. 2002. Realignment and revision of the Opuntioideae of Eastern Brazil. – Succ. Plant Res. 6: 99-132.

Teege P, Kadereit JW, Kadereit G. 2011. Tetraploid European Salicornia species are best interpreted as ecotypes of multiple origin. – Flora 206: 910-920.

Teeri JA, Stowe LG, Murawski DA. 1978. The climatology of two succulent plant families: Cactaceae and Crassulaceae. – Can. J. Bot. 56: 1750-1758.

Teillier S, Macaya-Berti J. 2018. Cinco nuevas especies de Chorizanthe (Polygonaceae-Eriogonoideae) del Norte de Chile. – Novon 26: 37-52.

Teillier S, Taylor C. 1997. Maireana Moq. a new genus for the flora of Chile (Desventuradas Islands). – Gayana, Bot. 54: 15-17.

Telford IRH. 1984. Cactaceae. – In: George AS (ed), Flora of Australia 4, Australian Government Publ. Service, Canberra, pp. 62-80.

Terrazas T, Arlas S. 1999. Las ramas dimórficas de la tribu Pachycereeae (Cactaceae). – In: Vásquez MA (ed), Resúmenes del II congreso mexicano y I congreso Latinoamericano y del Caribe de cactáceas y otras plantas suculentas, Sociedad Mexicana de Cactología, Oaxaca, p. 71.

Terrazas T, Arias S. 2003. Comparative stem anatomy in the subfamily Cactoideae. – Bot. Rev. 68: 444-473.

Terrazas T, Loza-Cornejo S. 2002. Phylogenetic relationships of Pachycereeae: a cladistic analysis based on anatomical-morphological data. – In: Fleming TH, Vallente-Banuet A (eds), Evolution, ecology, and conservation of columnar cacti and their mutualists, Arizona University Press, Tucson, pp. 66-86.

Terrazas T, Escamilla-Molina R, Vázquez-Sánchez M. 2016. Variation in the tracheary elements in species of Coryphantha (Cacteae-Cactoideae) with contrasting morphology: the bottleneck model. – Brazil. J. Bot. 39: 669-678.

Thiede J. 2004. Phylogenetics, systematics and classification of the Aizoaceae: a reconsideration based on molecular data. – Schumannia 4: 51-58.

Thiede J, Schmidt SA, Rudolph B. 2007. Phylogenetic implication of the chloroplast rpoC1 intron loss in the Aizoaceae (Caryophyllales). – Biochem. Syst. Ecol. 35: 372-380.

Thiv M, Thulin M, Kilian N, Linder HP. 2006. Eritreo-Arabian affinities of the Socotran flora as revealed from the molecular phylogeny of Aerva (Amaranthaceae). – Syst. Bot. 31: 560-570.

Thomas SM, Murray BG. 1983. Chromosome studies in species and hybrids of Petrorhagia sect. Kohlrauschia (Caryophyllaceae). – Plant Syst. Evol. 141: 243-255.

Thomson BF. 1942. The floral morphology of the Caryophyllaceae. – Amer. J. Bot. 29: 333-349.

Thorne RF. 1985. Phylogenetic relationships of the monotypic family Simmondsiaceae. – Jojoba Happen. 13: 8.

Throughton JH, Card KA. 1974. Leaf anatomy of Atriplex buchananii. – New Zealand J. Bot. 12: 167-177.

Thulin M. 1990. Four new species of Commicarpus (Nyctaginaceae) from NE tropical Africa. – Nord. J. Bot. 10: 403-409.

Thulin M. 1993a. Notes on Tetragonia (Aizoaceae-Tetragonioideae) in Somalia. – Nord. J. Bot. 13: 165-167.

Thulin M. 1993b. Nyctaginaceae. – In: Thulin M (ed), Flora of Somalia, Royal Botanic Gardens, Kew, pp. 168-175.

Thulin M. 1996. A new species of Polycarpaea (Caryophyllaceae) from Somalia. – Nord. J. Bot. 16: 291-293.

Thulin M. 2002. Anacampseros (Portulacaceae) in the Horn of Africa region. – Kew Bull. 57: 741-745.

Thulin M, Rydberg A, Thiede J. 2010. Identity of Tetragonia pentandra and taxonomy and distribution of Patellifolia (Chenopodiaceae). – Willdenowia 40: 5-11.

Thulin M, Thiede J, Liede-Schumann S. 2012. Phylogeny and taxonomy of Tribulocarpus (Aizoaceae): a paraphyletic species and an adaptive shift from zoochorous trample burrs to anemochorous nuts. – Taxon 61: 55-66.

Thulin M, Moore AJ, El-Seedi H, Larsson A, Christin P-A, Edwards EJ. 2016. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. – Taxon 65: 775-793.

Tiaghi YD. 1954. Studies in the floral morphology of Opuntia dillenii Haworth I. Development of the ovules and the gametophytes. – Bot. Not. 107: 343-356.

Tiaghi YD. 1955. Studies in floral morphology II. Vascular anatomy of the flower of certain species of the Cactaceae. – J. Indian Bot. Soc. 34: 408-428.

Tiaghi YD. 1956. Polyembryony in Mammillaria tenuis DC. – Bull. Bot. Soc. Univ. Saugar 8: 25-27.

Tiaghi YD. 1963. Studies in floral morphology VII. A further study of the vascular anatomy of the flower of certain species of the Cactaceae. – J. Indian Bot. Soc. 42: 545-558.

Tiaghi YD. 1967. Contribution to the embryology of the genus Pereskia. – Proc. 54th Indian Sci. Congr. 3: 324-325.

Tiaghi YD. 1970. Comparative embryology of angiosperms: Cactaceae. – Bull. Natl. Sci. Acad. India 41: 25-29.

Tian X, Liu R, Tian B, Liu J. 2009. Karyological studies of Parapteropyrum and Atraphaxis (Polygonaceae). – Caryologia 62: 261-266.

Tian X, Luo J, Wang A, Mao K, Liu J. 2011. On the origin of the woody buckwheat Fagopyrum tibeticum (=Parapteropyrum tibeticum) in the Qinghai-Tibetan plateau. – Mol. Phylogen. Evol. 61: 515-520.

Tieghem P van. 1898. Sur le genre Simmondsia, considéré comme type d’une famille distincte, les Simmondsiacées. – J. Bot. (Paris) 12: 103-112.

Tieghem P van. 1903. Sur les Ancistrocladacées. – J. Bot. (Paris) 17: 151-168.

Till H, Amerhauser H, Till W. 2008. Neuordnung der Gattung Gymnocalycium II. – Gymnocalycium 21(Sonderausgabe): 815-838.

Tillett SS. 1967. The maritime species of Abronia (Nyctaginaceae). – Brittonia 19: 299-327.

Timson J. 1964. A study of hybridization in Polygonum section Persicaria. – Bot. J. Linn. Soc. 59: 155-160.

Tobe H, Raven PH. 1989. The embryology and systematic position of Rhabdodendron (Rhabdodendraceae). – In: Tan K, Mill RR, Elias TS (eds), The Davis and Hedge Festschrift: Plant taxonomy, phytogeography, and related subjects, Edinburgh University Press, Edinburgh, pp. 233-248.

Tobe H, Yasuda S, Oginuma K. 1992. Seed coat anatomy, karyomorphology, and relationships of Simmondsia (Simmondsiaceae). – Bot. Mag. (Tokyo) 105: 529-538.

Toekes ZA, Woon WC, Chambers SM. 1974. Digestive enzymes secreted by the carnivorous plant Nepenthes macfarlanei L. – Planta 119: 39-46.

Tölken HR. 1967. The species of Arthrocnemum and Salicornia (Chenopodiaceae) in southern Africa. – Bothalia 9: 255-307.

Tölken HR. 1969. The genus Talinum (Portulacaceae) in southern Africa. – Bothalia 10: 19-28.

Torrey J, Gray A. 1870. A revision of the Eriogoneae. – Proc. Amer. Acad. Arts Sci. 8: 145-200.

Townsend CC. 1974. Notes on Amaranthaceae II. – Kew Bull. 29: 461-475.

Townsend CC. 1982. Notes on Amaranthaceae XIV. A new species of African Celosia and a new conspectus of Hermbstaedtia. – Kew Bull. 37: 81-90.

Townsend CC. 1983. Notes on Amaranthaceae XV. The generic position of Chionothrix hyposericea. – Kew Bull. 38: 345-346.

Townsend CC. 1984a. Notes on Amaranthaceae XV. Two new species of Gomphrena (Amaranthaceae) from Bahia, Brazil. – Kew Bull. 39: 117-120.

Townsend CC. 1984b. Notes on Amaranthaceae XVI. A new genus and species of Amaranthaceae from Somalia. – Kew Bull. 39: 775-777.

Townsend CC. 1985. Amaranthaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-136.

Townsend CC. 1988. Notes on Amaranthaceae XVIII. Two new species of Amaranthaceae from South America. – Kew Bull. 43: 103-106.

Townsend CC. 1990. Notes on Amaranthaceae XX. Three new species of Psilotrichum from Somalia. – Kew Bull. 45: 661-665.

Townsend CC. 1991. Notes on Amaranthaceae XXII. A new genus of Amaranthaceae from Somalia. – Kew Bull. 46: 101-103.

Townsend CC. 1993. Amaranthaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 70-91.

Troll W, Weberling F. 1981. Infloreszenzstudien an Aizoaceen, Mesembryanthemaceen und Tetragoniaceen. – Trop. Subtrop. Pflanzenwelt 35: 1-99 (195)-(289).

Tsukada M. 1964. Pollen morphology and identification II. Cactaceae. – Pollen Spores 6: 45-84.

Tsymbalyuk ZM. 2008. Palynomorphological peculiarities of members of the family Chenopodiaceae. – Bot. Žurn. 93: 430-438. [In Russian]

Tugay O, Ertugrul K. 2008. A new species of Silene (Caryophyllaceae) from East Anatolia, Turkey. – Bot. J. Linn. Soc. 156: 463-466.

Turesson G. 1925. Studies in the genus Atriplex. – Lunds Univ. Årsskr., N. F., Avd. II, 21: 1-15.

Turki Z, El-Shayeb F, Shehata F. 2006. Taxonomic studies in the Camphorosmeae (Chenopodiaceae) in Egypt 1. Subtribe Kochiinae (Bassia, Kochia and Chenolea). – Flora Mediterr. 16: 275-294.

Turner BL. 1991. A new gypsophilic species of Mirabilis (Nyctaginaceae) from Nuevo León, Mexico. – Phytologia 70: 44-46.

Turner BL. 1993. A new species of Anulocaulis (Nyctaginaceae) from southern Coahuila, Mexico. – Sida 15: 613-615.

Turner BL. 1994a. Chromosome numbers and their phyletic interpretations. – In: Behnke H-D, Mabry TJ (eds), Caryophyllales: evolution and systematics, Springer, Berlin, Heidelberg, New York, pp. 27-43.

Turner BL. 1994b. Revisionary study of the genus Allionia (Nyctaginaceae). – Phytologia 77: 45-55.

Turrill WB. 1956. Caryophyllaceae. – In: Turrill WB, Milne-Redhead E (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-38.

Tzvelev NN. 1987. Notulae de Polygonaceis in flora Orientis extremi. – Nov. Syst. Plant. Vasc. 24: 72-79.

Tzvelev NN. 1993. Notes on Chenopodiaceae of eastern Europe. – Ukrains’k Bot. Žurn. 50: 78-85. [in Russian]

Tzvelev NN. 2001. De generibus tribus Sileneae DC. (Caryophyllaceae) in Europa orientali. – Nov. Syst. Plant. Vasc. 33: 90-113.

Ulbrich E. 1934a. Basellaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 263-271.

Ulbrich E. 1934b. Chenopodiaceae. – In: Engler A (†), Pax F, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16c, W. Engelmann, Leipzig, pp. 379-584.

Ungar IA. 1979. Seed dimorphism in Salicornia europaea L. – Bot. Gaz. 140: 102-108.

Unger G. 1992. Die grossen Kugelkakteen Nordamerikas. Handbuch. Vollständige Gesamtbearbeitung aller bisher bekannten Taxa und Synonyme der Gattungen Echinocactus Link et Otto und Ferocactus Britton et Rose. – Selbstverlag, Graz.

Uotila P. 1973. Chromosome counts in the genus Chenopodium L. from SE Europe and SW Asia. – Ann. Bot. Fenn. 10: 337-340.

Uotila P. 1974. Pollen morphology in European species of Chenopodium sect. Chenopodium, with special reference to C. album and C. suecicum. – Ann. Bot. Fenn. 11: 44-58.

Uotila P. 1993. Taxonomic and nomenclatural notes on Chenopodium in the Flora iranica area. – Ann. Bot. Fenn. 30: 189-194.

Uotila P. 2001. Taxonomic and nomenclatural notes on Chenopodium (Chenopodiaceae) for Flora Nordica. – Ann. Bot. Fenn. 38: 95-97.

Uotila P. 2013. Dysphania sect. Botryoides (Amaranthaceae s. lat.) in Asia. – Willdenowia 43: 65-80.

Urban I. 1885. Über den Blüthenbau der Phytolaccaceen-Gattung Microtea. – Ber. Deutsch. Bot. Ges. 3: 324-332.

Urmi-König K. 1981. Blütentragende Sproß-Systeme einiger Chenopodiaceae. – Diss. Bot. 63: 1-150.

Valcárcel V, Vargas P, Feliner GN. 2006. Phylogenetic and phylogeographic analysis of the western Mediterranean Arenaria section Plinthine (Caryophyllaceae) based on nuclear, plastid, and morphological markers. – Taxon 55: 297-312.

Valente LM, Savolainen V, Vargas P. 2010. Unparalleled rates of species diversification in Europe. – Proc. Roy. Soc., Sect. B, 277: 1489-1496.

Valente LM, Britton AW, Powell MP, Papadopulos AST, Burgoyne PM, Savolainen V. 2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). – Bot. J. Linn. Soc. 174: 110-129.

Vanvinckenroye P, Smets E. 1996. Floral ontogeny of five species of Talinum and of related taxa (Portulacaceae). – J. Plant Res. 109: 387-402.

Vanvinckenroye P, Smets E. 1999. Floral ontogeny of Anacampseros subgen. Anacampseros sect. Anacampseros (Portulacaceae). – Syst. Geogr. Plants 68: 173-194.

Vanvinckenroye P, Cresens E, Ronse De Craene LP, Smets E. 1993. A comparative floral developmental study in Pisonia, Bougainvillea and Mirabilis (Nyctaginaceae) with special emphasis on the gynoecium and floral nectaries. – Bull. Jard. Bot. Natl. Belg. 62: 69-96.

Vaupel F. 1925. Cactaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 594-651.

Vaupel F. 1925-1926. Die Kakteen. Monographie der Cactaceae. – Selbstverlag des Verfassers, Berlin.

Vautier S. 1949. La vascularisation florale chez les Polygonacées. – Candollea 12: 219-343.

Vázquez-Lobo A, Morales GA, Arias S, Golubov J, Hernández-Hernández T, Mandujano MC. 2015. Phylogeny and biogeographic history of Astrophytum (Cactaceae). – Syst. Bot. 40: 1022-1030.

Vázquez-Sánchez M, Terrazas T. 2011. Stem and wood allometric relationships in Cacteae (Cactaceae). – Trees Struct. Func. 25: 755-767.

Vázquez-Sánchez M, Terrazas T, Arias S. 2012. El hábito y la forma de crecimiento en Cacteae (Cactaceae). – Bot. Sci. 90: 97-108.

Vázquez-Sánchez M, Terrazas T, Arias S, Ochoterena H. 2013. Molecular phylogeny, origin and taxonomic implications of the tribe Cacteae (Cactaceae). – Syst. Biodiv. 11: 103-116.

Vázquez-Sánchez M, Terrazas T, Grego-Valencia D, Arias S. 2017. Growth form and wood evolution in the tribe Cacteae (Cactaceae). – Willdenowia 47: 49-67.

Vekemans X, Lefèbvre C, Belalia L, Meerts P. 1990. The evolution and breakdown of the heteromorphic incompatibility system of Armeria maritima revisited. – Evol. Trends Plants 4: 15-23.

Velazco MCG, Nevárez RM. 2002. Nuevo género de la familia Cactaceae en el estado de Nuevo León, México: Digitostigma caput-medusae Velazco et Nevárez sp. nov. – Cactaceas y Suculentas Mexicanas 47: 76-86.

Venkatasuban KR. 1950a. Studies in the Droseraceae I. The cytology of D. indica L., D. burmanni Vahl, and D. peltata Sm. with special reference to pollen mitosis. – Proc. Indian Acad. Sci., Sect. B, 31: 308-330.

Venkatasuban KR. 1950b. Studies in the Droseraceae II. A contribution to the embryology of three species of Drosera. – Proc. Indian Acad. Sci., Sect. B, 32: 23-38.

Venugopal N, Rashi Devi N. 2003. Development of the anther in Nepenthes khasiana Hook. f. (Nepenthaceae), an endemic and endangered insectivorous plant of North East India. – Feddes Repert. 115: 69-73.

Verdcourt B. 1968. Basellaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-4.

Vickery AR. 1983. 103. Plumbaginaceae. – In: Launert E (ed), Flora Zambesiaca 7 (Part 1), Flora Zambesiaca Managing Committee, London, pp. 181-184.

Vishnu-Mittre P. 1963. Pollen morphology of Indian Amaranthaceae. – J. Indian Bot. Soc. 42: 86-101.

Vishnu-Mittre P, Gupta HP. 1964. Studies of Indian pollen grains III. Caryophyllaceae. – Pollen Spores 6: 99-111.

Voit G. 1979. Untersuchungen zur Mikromorphologie der Cactaceen-Samen unter Berücksichtigung taxonomischer Aspekte. – Ph.D. diss., Universität Heidelberg, Germany.

Volgin SA. 1988. Vergleichende Morphologie und Gefässbündelanatomie der Blüte bei den Rivinoideae (Phytolaccaceae). – Flora 181: 325-337.

Volkens G. 1893a. Chenopodiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, III(1a), W. Engelmann, Leipzig, pp. 36-91.

Volkens G. 1893b. Basellaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(1), W. Engelmann, Leipzig, pp. 124-128.

Volkov AG, Adesina T, Markin VS, Jovanov E. 2008. Kinetics and mechanism of Dionaea muscipula trap closing. – Plant Physiol. 146: 694-702.

Volkova EV. 1964. A review of the species of Claytonia in USSR. – Bot. Žurn. 49: 1760-1768. [In Russian]

Volponi CR. 1983. Sinopsis de las especies argentinas de Stellaria (Caryophyllaceae). – Lilloa 36: 69-75.

Volponi CR. 1986a. Sobre Stellaria cuspidata (Caryophyllaceae) y especies afines en Argentina. – Kurtziana 18: 93-107.

Volponi CR. 1986b. Contribución a la espermatología de especies argentinas de Stellaria (Caryophyllaceae). – Bol. Soc. Argent. Bot. 24: 283-294.

Volponi CR. 1993. Stellaria cuspidata (Caryophyllaceae) and some related species in the Andes. – Willdenowia 23: 193-209.

Voznesenskaya EV, Artyusheva EG, Franceschi VR, Pyankov VI, Kiirats O, Ku MSB, Edwards GE. 2001. Salsola arbusculiformis, a C3-C4intermediate in Salsoleae (Chenopodiaceae). – Ann. Bot. 88: 337-348.

Voznesenskaya EV, Edwards GE, Kiirats O, Artyusheva EG, Franceschi VR. 2003. Development of biochemical specialization and organelle partitioning in the single-cell C4 system in leaves of Borszczowia aralocaspica (Chenopodiaceae). – Amer. J. Bot. 90: 1669-1680.

Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G. 2010. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3–C4 intermediate in genus Portulaca L. (Portulacaceae). – J. Experim. Bot. 61: 3647-3662.

Voznesenskaya EV, Koteyeva NK, Akhani H, Roalson EH, Edwards GE. 2013. Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. – J. Experim. Bot. 64: 3583-3604.

Vrijdaghs A, Flores-Olvera H, Smets E. 2014. Enigmatic floral structures in Alternanthera, Iresine, and Tidestromia (Gomphrenoideae, Amaranthaceae). A developmental homology assessment. – Plant Ecol. Evol. 147: 49-66.

Vural C. 2008. A new species of Dianthus (Caryophyllaceae) from Mount Erciyes, Central Anatolia, Turkey. – Bot. J. Linn. Soc. 158: 55-61.

Wagenitz G. 1959. Neue und bemerkenswerte Chenopodiaceen Inneranatoliens. – Ber. Deutsch. Bot. Ges. 72: 151-158.

Wagner WL, Harris EM. 2000. A unique Hawaiian Schiedea (Caryophyllaceae: Alsinoideae) with only five fertile stamens. – Amer. J. Bot. 87: 153-160.

Wagner WL, Weller SG, Sakai AK. 1995. Phylogeny and biogeography in Schiedea and Alsinidendron (Caryophyllaceae). – In: Wagner WL, Funk VA (eds), Hawaiian biogeography: evolution on a hot spot archipelago, Smithsonian Institution Press, Washington, D.C., pp. 221-258.

Wagner WL, Weller SG, Sakai AK. 2005. Monograph of Schiedea (Caryophyllaceae-Alsinoideae). – Syst. Bot. Monogr. 72: 1-169.

Wagstaff SJ, Hennion F. 2007. Evolution and biogeography of Lyallia and Hectorella (Portulacaceae), geographically isolated sisters from the Southern Hemisphere. – Antarctic Sci. 19: 417-426.

Walia K, Kapil RN. 1965. Embryology of Frankenia Linn. with some comments on the systematic position of the Frankeniaceae. – Bot. Not. 118: 412-429.

Walker JF, Yang Y, Feng T, Timoneda A, Mikenas J, Hutchison V, Edwards C, Wang N, Ahluwalia S, Olivieri J, Walker-Hale N, Majure LC, Puente R, Kadereit G, Lauterbach M, Eggli U, Flores-Olvera H, Ochoterena H, Brockington SF, Moore MJ, Smith SA. 2018. From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inferenceprovide further insight into the evolution of Caryophyllales. – Amer. J. Bot. 105: 446-462.

Wallace RS. 1987. Seed characters, biogeography, and systematics of the genus Mollugo (Molluginaceae). – Amer. J. Bot. 74: 763.

Wallace RS. 1995. Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. – Bradleya 13: 1-12.

Wallace RS. 2002a. The phylogeny and systematics of columnar cacti: an overview. – In Fleming TH, Valiente-Banuet A (eds), Columnar cacti and their mutualists, University of Arizona Press, Tucson, pp. 42-65.

Wallace RS. 2002b. An overview of columnar cactus evolution and systematics. – In: Fleming TH, Valiente Banuet A (eds), Columnar cacti and their mutualists: evolution, ecology and conservation, University of Arizona Press, Tucson, pp. 66-86.

Wallace RS, Cota JH. 1996. An intron loss in the chloroplast gene rpoC1 supports a monophyletic origin for the subfamily Cactoideae of the Cactaceae. – Curr. Gen. 29: 275-281.

Wallace RS, Dickie SL. 2002. Systematic implication of chloroplast DNA sequence variation in subfam. Opuntioideae (Cactaceae). – In: Hunt D, Taylor N (eds), Studies in the Opuntioideae, David Hunt, Sherborne, United Kingdom, pp. 9-24.

Wallace RS, Gibson AC. 2002. Evolution and systematics. – In: Nobel PS (ed), Cacti: biology and uses, University of California Press, Berkeley, pp. 1-21.

Walter H. 1906. Die Diagramme der Phytolaccaceen. – Engl. Bot. Jahrb. Syst. 37, Beibl. 85: 1-57.

Waly NM. 1999. Wood anatomical characters of the Egyptian Tamarix L. species and its taxonomic significance. – Taeckholmia 19: 115-125.

Wang A, Yang M, Liu J. 2005. Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. – Ann. Bot. 96: 489-498.

Wang Y, Chen C, Ding H. 1992. Development of ovule and female gametophyte in Rheum palmatum L. – Phytomorphology 42: 71-79.

Wang Y, Liu Y, Liu S, Huang H. 2009. Molecular phylogeny of Myricaria (Tamaricaceae): implications for taxonomy and conservation in China. – Bot. Stud. 50: 343-352.

Warburg O. 1894. Flacourtiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 1-56.

Warming E. 1920. Structure and biology of arctic flowering plants II. Caryophyllaceae. – Medd. Grønland 37: 231-342.

Waselkov KE, Boleda AS, Olsen KM. 2018. A phylogeny of the genus Amaranthus (Amaranthaceae) based on several low-copy nuclear loci and chloroplast regions. – Syst. Bot. 43: 439-458.

Watson SL. 1874. Revision of the North American Chenopodiaceae. – Proc. Amer. Acad. Arts Sci. 9: 82-126.

Watson SL. 1877. Descriptions of new species of plants, with revisions of Lychnis, Eriogonum and Chorizanthe. – Proc. Amer. Acad. Arts Sci. 12: 246-278.

Weber WA. 1950. A new species and subgenus of Atriplex from southwestern Colorado. – Madroño 10: 187-191.

Weberling F. 1956. Weitere Untersuchungen zur Morphologie des Unterblattes bei den Dikotylen I. Balsaminaceae: II. Plumbaginaceae. – Beitr. Biol. Pflanzen 33: 17-32.

Weberling F. 1970. Weitere Untersuchungen zur Morphologie des Unterblattes bei den Dikotylen VI. Polygonaceae. – Beitr. Biol. Pflanzen 47: 127-140.

Weller SG, Sakai AK, Wagner WL, Herbst DR. 1990. Evolution of dioecy in Schiedea (Caryophyllaceae: Alsinoideae) in the Hawaiian Islands: biogeographical and ecological factors. – Syst. Bot. 15: 266-276.

Weller SG, Wagner WL, Sakai AK. 1995. A phylogenetic analysis of Schiedea and Alsinidendron (Caryophllaceae: Alsinoideae): implications for the evolution of breeding systems. – Syst. Bot. 20: 315-337.

Weller SG, Sakai AK, Straub C. 1996. Allozyme diversity and genetic identity in Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae) in the Hawaiian Islands. – Evolution 50: 23-34.

Weller SG, Sakai AK, Rankin AE, Golonka A, Kutcher B, Ashby KE. 1998. Dioecy and the evolution of pollination systems in Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae) in the Hawaiian Islands. – Amer. J. Bot. 85: 1377-1388.

Weller SG, Sakai AK, Wagner WL. 2001. Artificial and natural hybridization in Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae): the importance of phylogeny, genetic divergence, breeding system, and population size. – Syst. Bot. 26: 571-584.

Wen Z-B, Zhang M-L, Zhu G-L, Sanderson SC. 2010. Phylogeny of Salsoleae s.l. (Chenopodiaceae) based on DNA sequence data from ITS psbB-psbH, and rbcL, with emphasis on taxa of northwestern China. – Plant Syst. Evol. 288: 25-42.

Werker E, Many T. 1974. Heterocarpy and its ontogeny in Aellenia autrani (Post.) Zoh. Light- and electron-microscope study. – Israel J. Bot. 23: 132-144.

Wetterwald X. 1889. Blatt- und Sprossbildung bei Euphorbien und Cacteen. – Nova Acta Acad. Caes. Leop.-Carol. German. Nat. Cur. 53: 379-440.

Whalen MA. 1987. Wood anatomy of the American frankenias (Frankeniaceae): systematic and evolutionary implications. – Amer. J. Bot. 74: 1211-1223.

Whalen MA. 1989. Systematics of Frankenia (Frankeniaceae) in North and South America. – Syst. Bot. Monogr. 17: 1-93.

Wheat D. 1977. Successive cambia in the stem of Phytolacca dioica. – Amer. J. Bot. 64: 1209-1217.

Whitehouse C. 1996. Nyctaginaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-20.

Wiger J. 1935. Embryological studies on the families Buxaceae, Meliaceae, Simarubaceae and Burseraceae. – Ph.D. diss., Lund University, Sweden.

Wild H. 1961a. 21. Caryophyllaceae; 22. Illecebraceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 337-362.

Wild H. 1961b. 23. Portulacaceae. – In: Exell AW, Wild H (eds), Flora Zambesiaca 1 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 362-372.

Willert DJ von. 1979. Vorkommen und Regulation des CAM bei Mittagsblumengewächsen (Mesembryanthemaceae). – Ber. Deutsch. Bot. Ges. 92: 133-144.

Willert DJ von, Curdts E, Willert K von. 1977. Veränderung der PEP-Carboxylase während einer durch NaCl geförderten Ausbildung eines CAM bei Mesembryanthemum crystallinum. – Biochem. Physiol. Pflanzen 171: 101-107.

Williams FN. 1895. On the genus Arenaria L. – Bull. Herb. Boissier 3: 593-603.

Williams FN. 1896. A revision of the genus Silene L. – Bot. J. Linn. Soc. 32: 1-196.

Williams FN. 1898. A revision of the genus Arenaria Linn. – J. Linn. Soc. 38: 395-407.

Williams FN. 1909. The Caryophyllaceae of Tibet. – Bot. J. Linn. Soc. 38: 395-407.

Williams JT, Ford-Lloyd BV. 1974. The systematics of the Chenopodiaceae. – Taxon 23: 353-354.

Williams SE. 1976. Comparative sensory physiology of the Droseraceae – the evolution of a plant sensory system. – Proc. Amer. Philos. Soc. 120: 187-204.

Williams SE, Albert VA, Chase MW. 1994. Relationships of Droseraceae: a cladistic analysis of rbcL sequence and morphological data. – Amer. J. Bot. 81: 1027-1037.

Willis JC. 1892. The distribution of the seed in Claytonia. – Ann. Bot. 6: 382-383.

Willson J, Spellenberg R. 1977. Observations on anthocarp anatomy in the subtribe Mirabilinae (Nyctaginaceae). – Madroño 24: 104-111.

Willyard A, Wallace LE, Wagner WL, Weller SG, Sakai Ak, Nepokroeff M. 2011. Estimating the species tree for Hawaiian Schiedea (Caryophyllaceae) from multiple loci in the presence of reticulate evolution. – Mol. Phylogen. Evol. 60: 29-48.

Wilmot-Dear CM. 1976. Plumbaginaceae. – In: Polhill RM (ed), Flora of tropical East Africa, Crown Agents for Oversea Governments and Administrations, London, pp. 1-12.

Wilms HJ. 1981. Ultrastructure of the egg apparatus of Spinacia. – Acta Soc. Bot. Polon. 50: 165-168.

Wilson HD. 1988. Allozyme variation and morphological relationships of Chenopodium hircinum (s.l.). – Syst. Bot. 13: 215-228.

Wilson J. 1890. The mucilage – and other glands of the Plumbaginaceae. – Ann. Bot. 4: 231-258.

Wilson KL. 1988. Polygonum sensu lato (Polygonaceae) in Australia. – Telopea 3: 177-182.

Wilson KL. 1990. Some widespread species of Persicaria (Polygonaceae) and their allies. – Kew Bull. 45: 621-636.

Wilson KL. 1996. Nomenclatural notes on Polygonaceae in Australia. – Telopea 7: 83-94.

Wilson PG. 1972. A taxonomic revision of the genus Tecticornia. – Nuytsia 1: 277-288.

Wilson PG. 1975. A taxonomic revision of the genus Maireana. – Nuytsia 2: 2-83.

Wilson PG. 1980. A revision of the Australian species of Salicornieae (Chenopodiaceae). – Nuytsia 3: 3-154.

Wilson PG. 1983. A taxonomic revision of the tribe Chenopodieae (Chenopodiaceae) in Australia. – Nuytsia 4: 135-262.

Wilson PG. 1984. Chenopodiaceae. – In: George AS (ed), Flora of Australia 4, Australian Government Publ. Service, Canberra, pp. 81-317, 322-330.

Wilson RC. 1972. Distribution, ecology and habit of nine species of Abronia found in California. – Aliso 7: 421-437.

Wilson RC. 1974. Abronia 1. Anthocarp polymorphism and anatomy for 9 Abronia species found in California. – Aliso 8: 113-128.

Wilson RC. 1975. Abronia 2. Pericarp and seed coat anatomy and its ecological implications for nine species of Abronia. – Aliso 8: 289-299.

Wodehouse RP. 1931. Pollen grains in the identification of plants VI. Polygonaceae. – Amer. J. Bot. 18: 749-764.

Wofford BE. 1981. External seed morphology of Arenaria (Caryophyllaceae) of the southeastern United States. – Syst. Bot. 6: 126-135.

Wohlpart A, Mabry TJ. 1968. The distribution and phylogenetic significance of the betalains with respect to the Centrospermae. – Taxon 17: 148-152.

Wolfe GR, Xu S, Patterson GW, Salt TA. 1989. Polygonales and Plumbaginales: sterol composition in relation to the Caryophyllidae. – Phytochemistry 28: 143-149.

Wolter-Filho W, Da Rocha AI, Yoshida M, Gottlieb OR. 1985. Ellagic acid derivatives from Rhabdodendron macrophyllum. – Phytochemistry 24: 1991-1993.

Wolter-Filho W, Da Rocha AI, Yoshida M, Gottlieb OR. 1989. Chemosystematics of Rhabdodendron. – Phytochemistry 28: 2355-2357.

Woo W-S. 1975. The structure of esculentic acid: a new triterpene from Phytolacca esculenta. – Phytochemistry 14: 1885-1888.

Woo W-S, Kang S-S. 1976. Phytolaccoside B: triterpene glucoside from Phytolacca americana. – Phytochemistry 15: 1315-1317.

Wood CE. 1995. Evidence for the hybrid origin of Drosera anglica. – Rhodora 57: 105-130.

Woroschilov WN. 1942. Revision des espèces de Chenopodium de la section Ambrina (Spach) Hook. fil. – Bot. Žurn. 27: 33-47. [In Russian with French summary]

Wulff HD. 1936. Die Polysomatie der Chenopodiaceen. – Planta 26: 275-290.

Wunschmann E. 1891. Nepenthaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2), W. Engelmann, Leipzig, pp. 253-260.

Wyatt R. 1984. The evolution of self-pollination in granite outcrop species of Arenaria I. Morphological correlates. – Evolution 38: 804-816.

Xi Y-Z. 1988. Study on pollen morphology of the Tamaricaceae from China. – Bull. Bot. Res. Harbin 8: 23-42.

Xu F, Sun M. 2001. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. – Mol. Phylogen. Evol. 21: 372-387.

Xue JJ, Zhang ML. 2011. Monophyly and infrageneric variation of Corispermum L. (Chenopodiaceae), evidence from sequence data psbB-psbH, rbcL and ITS. – J. Arid Land 3: 240-253.

Yakubovskaya TV. 1991. The genus Aldrovanda (Droseraceae) in the Pleistocene of the Belorussian SSR. – Bot. Žurn. 76: 109-118. [In Russian]

Yamazaki T. 1987. The floral anatomy of the genus Phytolacca with reference to the flower of the Caryophyllaceae. – Acta Phytotaxon. Geobot. 38: 21-32.

Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK-S, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y et al. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. – Mol. Biol. Evol. 32: 2001-2014.

Yao G. 2016. A contribution to the Flora of China: three new combinations in Solitaria (Caryophyllaceae). – Phytotaxa 298: 2. http://dx.doi.org/10.11646/phytotaxa.298.2.11

Yaprak AE, Kadereit G. 2009. A new species of Halocnemum M. Bieb. (Amaranthaceae) from southern Turkey. – Bot. J. Linn. Soc. 158: 716-721.

Yasmin G, Khan MA, Shaheen N, Hayat MQ. 2009. Micromorphological investigation of foliar anatomy of genera Aconogonon and Bistorta of family Polygonaceae. – Intern. J. Agricult. Biol. 11: 285-289.

Yasmin G, Khan MA, Shaheen N. 2010. Pollen morphology of selected Polygonum L. species (Polygonaceae) from Pakistan and its taxonomic significance. – Pakistan J. Bot. 42: 3693-3703.

Yasui Y, Ohnishi O. 1996. Comparative study of rbcL gene sequences in Fagopyrum and related taxa. – Genes Genet. Syst. 71: 219-224.

Yasui Y, Ohnishi O. 1998. Interspecific relationships in Fagopyrum (Polygonaceae) revealed by the nucleotide sequences of the rbcL and accD genes and their intergenic region. – Amer. J. Bot. 85: 1134-1142.

Yıldız K. 2002. Seed morphology of Caryophyllaceae species from Turkey (North Anatolia). – Pakistan J. Bot. 34: 161-171.

Yıldız K, Çırpıcı A. 1998. Seed morphological studies of Silene L. from Turkey. – Pakistan J. Bot. 30: 173-188.

Yıldız K, Minareci E, Çırpıcı A, Dadandi MY. 2009. A karyotypic study on Silene, section Siphonomorpha species of Turkey. – Nord. J. Bot. 26: 368-374.

Yonekura K, Ohashi H. 1997. New combinations of East Asian species of Polygonum s.l. – J. Jap. Bot. 72: 154-161.

Yu W, Fan S, Xu C, Zhu L, Hou Y, Lin F, Li F. 2008. Systematic position of Reynoutria and Polygonum sibiricum inferred from sequences of chloroplast trnL-F and matK. – J. Syst. Evol. 46: 676-681.

Yuasa H, Shimizu H, Kashiwai S, Kondo N. 1974. Chromosome numbers and their bearing on the geographic distribution in the subfamily Opuntioideae (Cactaceae). – Rep. Inst. Breed. Res., Tokyo Univ. Agric. 4: 1-10.

Yurtseva OV, Troitsky AV, Bobrova VK, Voylokova VN. 2010. A taxonomical revision of Polygonum s. str. (Polygonaceae): phylogenetic and morphological data. – Bot. Žurn. 95: 226-247. [In Russian]

Yurtseva OV, Severova EE, Bovina I. 2014. Pollen morphology and taxonomy of Atraphaxis (Polygoneae, Polygonaceae). – Plant Syst. Evol. 300: 749-766.

Zacharias EH. 2007. Evolutionary studies in American Atripliceae (Chenopodiaceae). – Ph.D. diss., University of California, Berkeley, California.

Zacharias EH, Baldwin BG. 2010. A molecular phylogeny of North American Atripliceae (Chenopodiaceae), with implications for floral and photosynthetic pathway evolution. – Syst. Bot. 35: 839-857.

Zamyatnin BN. 1951. On the inferior ovary of the axial origin. – Bot. Žurn. 36: 89-92. [In Russian]

Zandonella P. 1967. Les nectaires des Alsinoideae: Stellaria et Cerastium sensu lato. – Compt. Rend. Acad. Sci. Paris, sér. D, 264: 2466-2469.

Zandonella P. 1972. Le nectaire floral des Centrospermales. Localisation, morphologie, anatomie, histology, cytology. – Ph.D. diss., l’Université Claude-Bernard, Lyon, France.

Zandonella P. 1977. Apports de l’étude comparée des nectaires floraux à la conception phylogénétique de l’ordre des Centrospermales. – Ber. Deutsch. Bot. Ges. 90: 105-125.

Zandonella P, Lecocq M. 1977. Morphologie pollinique et mode de pollinisation chez les Amaranthaceae. – Pollen Spores 19: 119-141.

Zappetini G. 1953. The taxonomy of Halogeton glomeratus. – Amer. Midl. Natur. 50: 238-247.

Zappi DC. 1994. Pilosocereus, Cactaceae. The genus in Brazil. – Succ. Plant Res. 3: 1-160.

Zenk MH, Fürbringer M, Steglich W. 1969. Occurrence and distribution of 7-methyljuglone and plumbagin in the Droseraceae. – Phytochemistry 8: 2199-2200.

Zhang D-Y, Chen Z-D, Sun H-Y, Yin L-K, Pan B-R. 2000. Systematic studies on some questions of Tamaricaceae based on ITS sequence. – Acta Bot. Boreal.-Occid. Sin. 20: 421-431.

Zhang D-Y, Pan B-R, Yin L-K. 2003. The photogeographical studies of Tamarix (Tamaricaceae). – Acta Bot. Yunnan. 25: 415-427.

Zhang P-Y, Zhang Y-J. 1984. A study on the taxonomy of the genus Myricaria Desv. in China. – Acta Bot. Boreal.-Occid. Sin. 4: 67-80.

Zhang Q, Huang L-J, Wang X-F. 2018. The unusual gynoecium structure and extragynoecial pollen-tube pathway in Phytolacca (Phytolaccaceae). – Plant Syst. Evol. 304: 885-894.

Zhang Y-M. 2001. Pollen morphology of the Tamaricaceae from China and its taxonomic significance. – Acta Bot. Boreal.-Occid. Sin. 21: 857-864.

Zhang Y-M, Pan B-R, Yin L-K. 1998. Seed morphology of Tamaricaceae in China arid areas and its systematic evolution. – J. Plant Resourc. Environm. 7: 22-27.

Zheng H-C, Lu A-M, Hu Z-H. 2004. Floral organogenesis in Phytolacca (Phytolaccaceae). – Acta Phytotaxon. Sin. 42: 352-364. [In Chinese]

Zheng H-C, Ma S-W, Chai T-Y. 2010. Ovular development and perisperm formation in Phytolacca americana (Phytolaccaceae) and their systematic significance in Caryophyllales. – J. Syst. Evol. 48: 318-325.

Zhou LH. 1996. On the geographical distribution of Arenaria L. – Acta Phytotaxon. Sin. 3: 229-241.

Zhou Z-Z, Zhang X-P, Xu R-X. 2004. Pollen morphology of Koenigia from China. – Acta Phytotaxon. Sin. 42: 513-523.

Zibareva L, Volodin V, Saatov Z, Savchenko T, Whiting P, Lafont R, Dinan L. 2003. Distribution of phytoecdyosteroids in the Caryophyllaceae. – Phytochemistry 64: 499-517.

Zimmerman AD. 1985. Systematics of the genus Coryphantha (Cactaceae). – Ph.D. diss., University of Texas, Austin, Texas.

Zimmerman CA. 1977. A comparison of breeding systems and seed physiologies in three species of Portulaca L. – Ecology 58: 860-868.

Zmarzty Sue. 1993. A reconsideration of Gypsophila Series Deserticolae Barikoudah (Caryophyllaceae) including G. capillaris (Forssk.) C. Chr. – Kew Bull. 48: 683-697.

Zohary M, Baum B. 1965. On the androecium of Tamarix flower and its evolutionary trends. – Israel J. Bot. 14: 101-111.

Zohary M, Danin A. 1970. The genus Reaumuria in the Near East. – Israel J. Bot. 19: 305-313.