SAPINDANAE Doweld

Doweld, Tent. Syst. Plant. Vasc.: xxxiv. 23 Dec 2001

Rutanae Takht., Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 311. 4 Feb 1967, nom. illeg.; Rutidae Doweld, Tent. Syst. Plant. Vasc.: xxxiii. 23 Dec 2001; Rutineae Doweld ex Reveal in Kew Bull. 66: 48. Mar 2011


[Sapindales+[Huerteales+[Capparales+Malvales]]]


SAPINDALES Juss. ex Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 224. Jan-Apr 1820 [‘Sapindeae’]

Fossils Chaneya, from the Cenozoic of North America, Europe and Asia, is represented by flowers and winged fruits. It may be assigned to some group of Sapindales.

Habit Bisexual, monoecious, andromonoecious, polygamomonoecious, dioecious, androdioecious, gynodioecious, or polygamodioecious (sometimes morphologically bisexual and functionally monoecious), evergreen or deciduous trees, shrubs or lianas (sometimes perennial or annual herbs).

Vegetative anatomy Phellogen ab initio usually superficial (sometimes cortical or pericyclic; sometimes absent). Secondary lateral growth normal or anomalous (from concentric cambia). Vessels usually solitary and in radial multiples. Vessel elements usually with simple (rarely scalariform or reticulate) perforation plates; lateral pits usually alternate (rarely opposite or scalariform), simple or bordered pits. Vestured pits sometimes present. Imperforate tracheary xylem elements usually libriform fibres (sometimes fibre tracheids) with usually simple (sometimes bordered) pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular, or absent. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, aliform, lozenge-aliform, winged-aliform, confluent, vasicentric, or banded, or absent. Secondary phloem sometimes stratified into hard fibrous and soft parenchymatous layers. Sieve tube plastids S type. Nodes usually 3:3, trilacunar with three leaf traces, or 5:5, pentalacunar with five traces (sometimes 1:1, unilacunar with one trace, rarely heptalacunar). Laticifers with latex or resinous substances sometimes present; resinous cells sometimes frequent. Sclereids often present in cortex. Parenchyma sometimes with mucilage cells, often having swollen and layered inner periclinal walls, or with secretory cavities and ducts containing ethereal oils. Wood often silicified or with silica bodies. Calciumoxalate as prismatic crystals or druses.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple, furcate, stellate or lepidote (sometimes complex capitate); glandular hairs multicellular (sometimes peltate-lepidote; helical glands sometimes frequent).

Leaves Usually alternate (spiral; sometimes opposite, rarely verticillate), usually pinnately or palmately compound (sometimes bipinnate or unifoliolate, or simple and entire or lobed), with conduplicate, supervolute or plicate (sometimes curved or flat) ptyxis. Stipules usually absent (sometimes petiolar, rarely intrapetiolar or cauline); stipules possibly being modified leaflets (described as pseudostipules or metastipules, having typical stipule morphology, although probably being modified pseudostipules); leaf sheath absent. Colleters often abundant. Petiole vascular bundle transection arcuate or annular; petiole sometimes with cortical or adaxial bundles (sometimes wing bundles). Venation usually pinnate (sometimes palmate), brochidodromous, eucamptodromous, or craspedodromous. Stomata usually anomocytic, paracytic (sometimes cyclocytic, tetracytic, actinocytic or parallelocytic). Cuticular wax crystalloids usually absent (rarely as tubuli). Domatia present as pits, pockets or hair tufts, or absent. Lamina often gland dotted, usually without secretory cavities (sometimes with lysigenous or schizogenous cavities and canals containing resins or ethereal oils). Epidermis usually with mucilaginous idioblasts. Mesophyll with or without spherical idioblasts containing ethereal oils, with or without mucilaginous idioblasts, with or without sclerenchymatous idioblasts. Mesophyll cells often with calciumoxalate druses or prismatic crystals. Leaf margin and leaflet margins entire, crenate, or serrate. Leaf teeth, when present, with transparent glandular tip, distally expanding and with foramen and two accessory veins (or one vein, second vein running above tooth).

Inflorescence Terminal or axillary, panicle, thyrsoid, dichasial, raceme- or umbel-like, thyrse, raceme, spike or head (rarely solitary axillary). Floral prophylls (bracteoles) rarely absent.

Flowers Usually actinomorphic (rarely zygomorphic). Usually hypogyny (occasionally epigyny). Sepals (two or) four or five (to eight), usually with imbricate, valvate or induplicate-valvate (rarely open) aestivation, free or connate in lower part (rarely absent). Petals (two or) four or five (to 14), usually with imbricate or valvate (sometimes induplicate-valvate or contorted) aestivation, often clawed and/or with scale-like or other appendages or folds enclosing nectaries, usually free (rarely connate at base; sometimes absent). Nectariferous disc extrastaminal or intrastaminal, annular or unilateral (sometimes lobate or reduced to glandular teeth), or nectariferous glands extrastaminal, alternipetalous, and disc absent.

Androecium Stamens (three or) five, 3+3, 4+4 or 5+5 (to 18) in one to three (to five) whorls, usually haplo-, diplo- or obdiplostemonous. Filaments usually free from each other and from tepals (sometimes more or less connate, sometimes connate into tube), sometimes articulated. Anthers usually dorsifixed (sometimes basifixed), usually versatile, tetrasporangiate, usually introrse (rarely extrorse or latrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia one to ten, extrastaminal or intrastaminal, or absent; female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually triporate, 2–4-colpate or 2–5(–8)-colpor(oid)ate (sometimes acolpate, syncolporate or parasyncolporate, rarely polyporate or rugate), usually shed as monads (rarely tetrads), usually bicellular (sometimes tricellular) at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate, microreticulate, rugulate, scabrate, striate, gemmate, spinulate or psilate.

Gynoecium Pistil composed of (two or) three to five (to 20) connate eusyncarpous antepetalous carpels, or carpels secondarily free (apocarpy); odd carpel usually adaxial. Ovary usually superior (rarely inferior), unilocular to quinquelocular (to 20-locular; sometimes pseudomonomerous). Style single, simple or lobate (sometimes hollow), or stylodia two to six, free or connate in lower part, or absent. Stigma one, capitate, clavate, peltate or lobate, or stigmas two to five, punctate, usually non-papillate, Dry or Wet type. Male flowers often with pistillodium.

Ovules Placentation axile, apical, basal, or parietal. Ovules usually one or two (sometimes three to numerous) per carpel, usually anatropous or campylotropous (sometimes hemianatropous or amphitropous, rarely orthotropous), ascending, horizontal or pendulous, apotropous or epitropous, usually bitegmic (sometimes unitegmic), crassinucellar. Micropyle bistomal or endostomal. Placental obturator sometimes present. Archespore sometimes multicellular. Nucellar cap sometimes present. Megagametophyte usually monosporous, Polygonum type (rarely tetrasporous, 16-nucleate, 13-celled, Penaea type). Synergids sometimes with a filiform apparatus. Antipodal cells sometimes proliferating (up to 14 cells), rarely persistent. Endosperm development ab initio nuclear. Endosperm haustoria chalazal or absent. Embryogenesis asterad, solanad or onagrad.

Fruit Usually a loculicidal (sometimes septicidal, septifragal or irregularly dehiscent) capsule or a drupe (sometimes a berry, samara, follicle, pyxidium, nut, hesperidium, syncarp, or schizocarp with nutlike, samaroid, berry-like or drupaceous mericarps).

Seeds Aril usually absent. Arillode, sarcotesta or elaiosome sometimes present. Testa often vascularized (sometimes collapsed). Exotesta often palisade, lignified or non-lignified. Mestotesta sometimes sclerotic or lignified. Endotesta sometimes with stellate calciumoxalate crystals, sometimes lignified and tracheidal. Exotegmen often lignified or fibrous, sometimes tracheidal, or crushed. Endotegmen sometimes thickened and lignified (rarely tracheidal or fibrous), or crushed. Perisperm not developed. Endosperm usually sparse or absent (rarely copious). Embryo usually curved to spirally twisted (sometimes straight), usually well differentiated, often large, oily, proteinaceous or often starchy, with or without chlorophyll. Cotyledons two. Germination phanerocotylar or cryptocotylar.

Cytology x = 5–13

DNA Plastid gene infA lost/defunct. Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), flavones, biflavones, flavone methyleters, biflavonyls, 5-deoxyflavonoids, cyanidin, delphinidin, monoterpenes, triterpenes, tetranor- and pentanortriterpenes, triterpenoid bitter substances (meliacins, limonoids, simaroubalides-quassinoids), ethereal oils (monoterpenes, sesquiterpenes, phenylpropans), ellagic acid (rare), hydrolyzable and non-hydrolyzable tannins, phenols with unsaturated side-chains, acridines, β-carbaline alkaloids, imidazole, quinoline alkaloids, benzylisoquinoline alkaloids, anthranilic-derived alkaloids, toxic triterpene saponins, pentacyclic terpene saponins, leucine- or phenylalanine-derived cyanogenic compounds, polyacetate- or shikimic acid-derived arthroquinones, pyranochromones, coumarins, furanocoumarins, quebrachitol (cyclitol), ethereal oils with high content of aliphatic carbohydrates, polyacetylenes, cyclic polyvalent alcohols, amides, type C18:3 fatty acids, cyclopropane amino acids, and polygalitol present.

Systematics Sapindales may be sister-group to the clade [Huerteales+[Capparales+Malvales]].

The sister-group relationships in Sapindales are only partly resolved and several clades are only weakly supported.

According to Stevens (2001 onwards) Sapindales except Biebersteinia (Biebersteiniaceae) are supported by the synapomorphy: stigma papillate, stigmatic head arising from postgenitally fused free carpellary apices. There is weak support from molecular data for Nitrariaceae being sister to the remaining Sapindales (except Biebersteinia). The following potential synapomorphies are suggested by Stevens (2001 onwards): remnants of floral apex persisting in centre of gynoecium; ovules two per carpel, epitropous, superposed; micropyle endostomal (inner integument elongated), S- or Z-shaped; and presence of nucellar cap. The clade [Kirkiaceae+[Burseraceae+Anacar-diaceae]] is usually well supported and has the following synapomorphies: inflorescence thyrsoid (panicle consisting of cymes); carpels adnate to central receptacular apex, synascidiate; stigma with uniseriate multicellular papillae, Wet type; fruits containing one seed per carpel; and endocarp well developed. Finally, Anacardiaceae and Burseraceae share the following characters: phloem with vertical intercellular secretory resinous ducts, and surrounded by light-coloured, sinuous sclerenchymatous band; glandular hairs with uniseriate stalk; absence (usually) of cuticular waxes; flowers fairly small; sepals often connate; petals little longer than sepals; central receptacular apex more or less exposed in floral centre; ovule pachychalazal; fruit an operculate drupe; endocarp cells lignified and not orientated; and presence of biflavonoids.

[Sapindaceae+[Simaroubaceae+[Meliaceae+Rutaceae]]] is a clade with relatively low support in molecular analyses. Stevens (2001 onwards) lists the following potential synapomorphies: anthers with pseudo-pit; tapetal cells multinucleate, nuclei fusing to form polyploid mass; presence of hypostase; and testa multiplicative and more than five cell layers thick. The unresolved clade [Simaroubaceae+Rutaceae+Meliaceae] has the following characters in common: absence of cuticular waxes; inflorescence branches cymose; and presence of alkaloids and bitter-tasting pentanortriterpenes (limonoids, protolimonoids, meliacins, cneorids, quassinoids, etc. – all triterpenoids – are closely related biosynthetically). Moreover, Meliaceae and Rutaceae share the potential synapomorphies: capitate stigma; and presence of flavones and tetranortriterpenes (bitter-tasting).

Cladogram of Sapindales based on DNA sequence data (Muellner & al. 2007; Bachelier & Endress 2008; Soltis & al. 2011). The branches are not particularly well supported and the tree partially unresolved. Biebersteinia as sister to the remaining Sapindales has a fairly low support. Sapindaceae are sometimes recovered as sister to the [Rutaceae+Meliaceae+Simaroubaceae] clade, although with weak support, the clade [Kirkiaceae+[Burseraceae+Anacardiaceae]] as sister-group to these, and Nitrariaceae as sister to all other Sapindales except Biebersteinia.

ANACARDIACEAE R. Br.

( Back to Sapindales )

Brown in J. H. Tuckey, Narr. Exped. Zaire: 431. 5 Mar 1818 [‘Cassuviae (or Anacardeae)’], nom. cons.

Terebinthaceae Juss., Gen. Plant.: 368. 4 Aug 1789 [’Terebintaceae’], nom. illeg.; Cassuviaceae Juss. ex R. Br. in J. H. Tuckey, Narr. Exped. Zaire: 431. 5 Mar 1818 [‘Cassuviae (or Anacardeae)’], nom. illeg.; Comocladiaceae Martinov, Tekhno-Bot. Slovar: 144. 3 Aug 1820 [‘Comocladieae’]; Pistaciaceae Martinov, Tekhno-Bot. Slovar: 485. 3 Aug 1820 [‘Pistaceae’]; Spondiadaceae Martinov, Tekhno-Bot. Slovar: 594. 3 Aug 1820 [‘Spondiaceae’]; Terebinthales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 228. Jan-Apr 1820 [‘Terebinthaceae’], nom. illeg.; Rhoaceae Spreng. ex J. Sadler, Fl. Comit. Pest. 2: 135. 30 Mai 1826 [‘Therebinthaceae, Rhoes Spr., Dumosae L.’]; Anacardiineae Link, Handbuch 2: 124. 4-11 Jul 1829 [‘Anacardiaceae’]; Spondiadineae Link, Handbuch 2: 126. 4-11 Jul 1829 [‘Spondiaceae’]; Terebinthopsida Bartl., Ord. Nat. Pl.: 229, 382. Sep 1830 [’Terebinthinae’], nom. illeg.; Vernicaceae Schultz Sch., Nat. Syst. Pflanzenr.: 488. 30 Jan-10 Feb 1832 [’Verniceae’]; Cassuviales R. Br. in C. F. P. von Martius, Consp. Regn. Veg.: 41. Sep-Oct 1835 [‘Cassuvieae’], nom. illeg.; Spondiadales Kunth in C. F. P. von Martius, Consp. Regn. Veg.: 56. Sep-Oct 1835 [‘Spondiaceae’]; Schinaceae Raf., Fl. Tellur. 3: 55. Nov-Dec 1837 [‘Schinidia’]; Sumachiaceae DC. ex Perleb, Clav. Class.: 31. Jan-Mar 1838 [’Sumachineae’], nom. illeg.; Lentiscaceae Horan., Tetractys: 25. Jun-Dec 1843 [‘Lentiscaceae (Pistaceae Link et Mart.)’]; Podoaceae Baill. ex Franch., Pl. Delav.: 145. Mai 1889 [‘Podoonaceae’]; Julianaceae Hemsl. in J. Bot. 44: 379. Oct 1906 [‘Julianiaceae’], nom. cons.; Julianales Engl., Syllabus, ed. 5: 111. Jul 1907 [‘Julianiales’]; Blepharocaryaceae Airy Shaw in Kew Bull. 18: 254. 8 Dec 1965

Genera/species 75–77/880–900

Distribution Mainly tropical and subtropical regions in the Northern and Southern Hemispheres; some species in warm-temperate areas northwards to southern Canada, Central and East Europe, and northeastern China.

Fossils Fruits are found in the Early Eocene of North America and England, and Paleogene wood has been attributed to Anacardiaceae.

Habit Monoecious, andromonoecious, polygamomonoecious, dioecious, or gynodioecious (sometimes bisexual), evergreen or deciduous trees or shrubs (sometimes with spines; rarely lianas or perennial herbs to suffrutices).

Vegetative anatomy Phellogen ab initio usually superficial (sometimes cortical). Medulla loose, shining. Primary medullary rays narrow or wide. Vessel elements usually with simple (rarely scalariform or reticulate) perforation plates; lateral pits alternate, simple pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma usually paratracheal scanty, aliform, vasicentric, or banded (sometimes absent). Wood often fluorescent. Tyloses often frequent. Sieve tube plastids S type. Nodes usually 3:3, trilacunar with three leaf traces (rarely unilacunar or 5:5, pentalacunar with five traces). Phloem with vertical intercellular secretory ducts and surrounded by pale sinuous sclerenchymatous band. Bark in many species with laticifers or vertical resinous ducts with black, red to yellow, white or colour-less exudate. Wood often silicified or with silica grains. Prismatic calciumoxalate crystals frequent.

Trichomes Hairs unicellular or multicellular, uniseriate; stellate or peltate-lepidote glandular hairs often present.

Leaves Usually alternate (spiral; in, e.g., Bouea and Blepharocarya opposite, rarely verticillate), trifoliolate or imparipinnate (sometimes unifoliolate, or simple and entire or lobed; rarely palmate bipinnately compound), with conduplicate? ptyxis. Stipules absent; leaf sheath absent. Petiole base often pulvinate. Petiole vascular bundle transection?; petiole with cylinder of wing bundles. Petiole base often swollen. Distal part of petiole sometimes with paired extrafloral nectaries. Petiolules not articulated. Venation usually pinnate (sometimes palmate). Stomata anomocytic, paracytic, cyclocytic, tetracytic or parallelocytic. Cuticular wax crystalloids as clustered tubuli (Berberis type), chemically dominated by nonacosan-10-ol. Domatia as pits, pockets or hair tufts. Larger leaf veins and petiole phloem with usually lysigenous (rarely schizogenous) secretory cavities and ducts containing resin, balsam or latex. Mesophyll cells sometimes with calciumoxalate druses. Leaf margin and leaflet margins serrate, crenate or entire. Extrafloral nectaries sometimes present on stipules, petiole and lamina (e.g. in Anacardium and Holigarna).

Inflorescence Terminal or axillary, panicle, thyrsoid or raceme- or spike-like (flowers rarely solitary). Extrafloral nectaries present on bracts in, e.g., Holigarna.

Flowers Usually actinomorphic (rarely zygomorphic), small. Pedicel often articulated (in Anacardium accrescent and swollen in fruit). Hypanthium sometimes present. Usually hypogyny (in Drimycarpus and Holigarna epigyny). Sepals (three or) four or five (to eight), with imbricate or valvate aestivation, usually connate in lower part (sometimes absent), persistent or caducous, sometimes accrescent in fruit. Petals (three or) four or five (to eight), with imbricate or valvate (rarely open) aestivation, usually free (rarely connate at base; sometimes absent), persistent (rarely accrescent) in fruit or caducous. Nectariferous disc usually intrastaminal (in Mangifera extrastaminal), usually annular (sometimes quinquelobate or modified into androphore or gynophore, or absent). Floral tissues usually resiniferous.

Androecium Stamens usually five, haplostemonous, antesepalous, alternipetalous, or 5+5, diplostemonous (rarely one, in Anacardium, to four, 4+4, or more than ten to more than 100). Filaments usually free (rarely connate at base), free from tepals, sometimes inserted on nectariferous disc. Anthers usually dorsifixed (sometimes basifixed), versatile, tetrasporangiate, usually introrse (rarely extrorse or latrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory, often with at least binucleate cells. Staminodia one to nine or absent; female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually (2–)3(–8)-colporate (rarely colpate, rugate or polyporate), shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate or microreticulate to striate or striate-reticulate.

Gynoecium Carpels usually one to five (rarely up to 13 [Pleiogynium]), usually connate (rarely free in upper part; often only one carpel fertile leading to pseudomonomery). Ovary usually superior (rarely inferior), usually bilocular to quinquelocular (rarely up to 13-locular; often only a single locule fertile: pseudomonomerous), or unilocular (monomerous). Style single, simple, or stylodia three to five (rarely up to 13; sometimes gynobasic), connate in upper parts. Stigma(s) one to five, usually capitate (sometimes discoid, spatulate or lobate, rarely punctate), non-papillate, Dry type. Male flowers sometimes with pistillodium.

Ovules Placentation apical to axile or basal (when ovary multilocular), or parietal to basal (when ovary unilocular). Ovule one per fertile carpel, usually anatropous (rarely hemianatropous), ascending or pendulous, usually apotropous (sometimes epitropous), unitegmic or bitegmic, crassinucellar. Funicle often long. Micropyle usually bistomal, Z-shaped (zig-zag; sometimes endostomal). Outer integument ? cell layers thick. Inner integument ? cell layers thick. Hypostase present or absent. Often with a placental obturator, ponticulus, at funicular base. Nucellar beak absent. Megagametophyte monosporous, Polygonum type. Synergids hooked. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis? Polyembryony occurring in several species. Chalazogamy present in many species (pollen tube growing via ponticulus to chalaza).

Fruit Usually a drupe, often asymmetrical, often operculate, flattened, sometimes with accrescent calyx (sometimes a samara; rarely with accrescent corolla; rarely a berry- or nutlike fruit, or a syncarp; fruits in Blepharocarya adnate to cupule-like lignified inflorescence branches; fruit in Amphipterygium attached to wing-like flat peduncle). Mesocarp sometimes with black resins. Endocarp often consisting of unorientated sclerified and crystalliferous cells.

Seeds Aril absent. Seed often pachychalazal. Seed coat usually reduced. Exotestal cells (and hypodermis) sometimes thickened. Endotesta? Exotegmen? Endotegmen usually thickened, with lignified cell walls. Perisperm not developed. Endosperm sparse, with oil and sometimes starch, or absent. Embryo usually curved (sometimes straight, rarely hippocrepomorphic), usually well differentiated, oily, with or without chlorophyll. Cotyledons two, in e.g. Mangifera folded. Germination phanerocotylar or cryptocotylar.

Cytology n = 7–12, 14–16, 21

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), biflavones, biflavonyls, 5-deoxyflavonoids, cyanidin, delphinidin, balsams containing mono- and triterpenes, hydrolyzable and condensed tannins, often extremely allergenic phenols with unsaturated side-chains and cyclic polyvalent alcohols and their derivatives, often very toxic and dermatitis-causing resins (e.g. campnospermonol, catechols, resorcinols, anacardic acid, cardanol, cardol, and urushiol), triterpene saponins and polyacetate-derived arthroquinones present. Ellagic acid and cyanogenic compounds not found.

Use Ornamental plants, fruits (Anacardium occidentale, Magnifera indica, Pistacia vera, Schinus, Semecarpus, Spondias, etc.), spices, terpentine, lacquer, resins, tannins, oils, varnish (Pistacia, ‘Rhus’ s.l., Toxicodendron), timber.

Systematics (under construction) Anacardiaceae are sister to Burseraceae.

Pegia and the doubtfully monophyletic Spondias appear to form a sister-group (here Spondiadoideae s.str.) to the remaining Anacardiaceae (Pell 2004).

Spondiadoideae Kunth ex Arn., Botany: 106. 9 Mar 1832 [‘Spondiaceae’]

Pegia (3; eastern Himalayas, East Asia, West Malesia), Spondias (10–11; Madagascar, tropical Asia to Indochina, tropical America; monophyletic?), Poupartiopsis (1; P. spondiocarpus; eastern Madagascar). – Madagascar, tropical Asia to West Malesia, tropical America. Trees or lianas. Stamens eight or ten. Nectariferous disc intrastaminal. Ovary quadrilocular or quinquelocular. Style one, simple, or stylidia four or five, connate above. Fruit a drupe. Endocarp consisting of unorientated sclerified cells and crystalliferous cells.

Anacardioideae Arn., Botany: 106. 9 Mar 1832 [’Anacardiaceae’]

Lannea clade

Choerospondias (1; C. axillaris; northeastern India to northern Thailand, southeastern China and Japan), Cyrtocarpa (2; Mexico), Pleiogynium (2–3; Central Malesia and eastwards to islands in the Pacific), Dracontomelon (8; Southeast Asia, Malesia and eastwards to Fiji), Tapirira (10; tropical America), Antrocaryon (3–4; tropical West Africa, tropical America), Poupartia (17; tropical and southern Africa, Madagascar), Harpephyllum (1; H. caffrum; southern Africa), Lannea (c 40; tropical Africa, Madagascar, tropical Asia), Operculicarya (5; Madagascar). – Pantropical. Stamens obdiplostemonous. Pistil composed of (one to) four or five (to twelve) connate carpels. Ovary (1–)4–5(–12)-locular. When locule single, then ovary possibly pseudomonomerous. Placentation apical. Ovules usually one (sometimes two) per carpel, pendulous (when two then one ovule epitropous). Hypostase present. Funicle massive. Exocarp thick, with or without operculum. Endocarp consisting of unorientated sclerified cells and crystalliferous cells. Exotestal cells thickened or not, persistent. Tegmen often absent. Hypostase persistent, saddle-shaped. Biflavonoids present. Alkylcathechols and alkylresorcinols absent.

Buchananieae Marchand, Rév. Anacardiac.: 191. Jan-Jun 1869

Buchanania (c 25; tropical Asia and eastwards to islands in western Pacific), Campnosperma (c 10; Madagascar, the Seychelles, Sri Lanka, Southeast Asia, Malesia to New Guinea, islands in western Pacific, tropical America), Pentaspadon (6; Southeast Asia, Malesia to New Guinea). – Madagascar, the Seychelles, tropical Asia to western Pacific, tropical America. Pistil in Buchanania composed of six partially connate carpels. – Buchanania is sister to the remaining Anacardioideae (except the Lannea clade) in several analyses. They differ from Anacardieae in the number of carpels (four to six), the position of the fertile carpel, the endocarp anatomy (endocarp consisting of unorientated sclerified cells and crystalliferous cells), and phytochemistry. Campnosperma and Pentaspadon have similar endocarp and Campnosperma may have bilocular fruit.

Anacardieae DC., Prodr. 2: 62. Nov (med.) 1825

Mainly tropical, but also temperate regions. Leaves sometimes opposite, usually simple (sometimes compound). Stamens usually five or ten (sometimes one+staminodia, or numerous). Filaments sometimes connate at base. Pistil composed of usually one or three connate carpels; only antesepalous carpel fertile. Styles sometimes connate. Placentation apical to basal. Ponticulus sometimes present. Exocarp thin, with lignified epidermis. Endocarp stratified, with up to three layers of lignified palisade sclereids; inside these crystalliferous layer. Seed coat undifferentiated.

Clade 1

Faguetia (1; F. falcata; Madagascar), Semecarpus (c 75; tropical Asia and eastwards to New Caledonia and Fiji), Fegimanra (2; tropical Africa), Anacardium (11; tropical America), Gluta (c 30; Madagascar, tropical Asia), Bouea (3; Southeast Asia, Malesia), Mangifera (40–60; tropical Asia). – Tropical Africa, Madagascar, tropical Asia and eastwards to New Caledonia and Fiji, tropical America.

Clade 2

Thyrsodium (7; tropical America), Amphipterygium (4; Mexico, Peru), Orthopterygium (1; O. huaucui; Peru), Loxopterygium (3; tropical South America), Astronium (c 15; tropical America), Schinopsis (7; tropical South America), Bonetiella (1; B. anomala; Mexico), Comocladia (c 20; tropical America), Metopium (3; Florida, Mexico, the West Indies), Cotinus (3; C. coggygria: the Mediterranean and eastwards to China; C. nana: northwestern Yunnan; C. obovatus: southeastern United States), Mosquitoxylum (1; M. jamaicense; Jamaica), Rhus (c 100; temperate and subtropical regions on both hemispheres), Searsia (c 100; tropical and subtropical Africa), Malosma (1; M. laurina; southwestern California, Baja California), Laurophyllus (1; L. capensis; Western and Eastern Cape), Lithraea (3; South America), Schinus (33; tropical America), Pachycormus (1; P. discolor; Baja California in northwestern Mexico), Pistacia (9; the Mediterranean, Asia to Malesia, southern United States to Central America), Actinocheita (1; A. filicina; Mexico),  Toxicodendron (13; tropical and East Asia, North America to Central America). – Temperate to tropical regions on both hemispheres. – ‘Rhus’ is polyphyletic and needs extensive investigations.

Clade 3

Dobinea (2; eastern Himalayas to southern China); Loxostylis (1; L. alata; KwaZulu-Natal, Western and Eastern Cape), Smodingium (1; S. argutum; South Africa, Swaziland, Lesotho), Sorindeia (9; tropical Africa, Madagascar, the Mascarene Islands), Mauria (10; the Andes), Protorhus (2; Namibia, South Africa, Swaziland, Madagascar), Abrahamia (19; Madagascar), Heeria (1; H. argentea; Western Cape), Ozoroa (c 40; Africa, the Arabian Peninsula)?, Micronychia (5; Madagascar). – Tropical and southern Africa, Madagascar, the Mascarene Islands, the Arabian Peninsula, eastern Himalayas to southern China, the Andes.

Bootstrap consensus tree of Anacardiaceae based on DNA sequence data (Pell 2004).

Unplaced Anacardiaceae

Androtium (1; A. astylum; West Malesia), Blepharocarya (2; Arnhem Land in Northern Territory, northeastern Queensland), Campylopetalum (1; C. siamense; Thailand), Cardenasiodendron (1; C. brachypterum; Bolivia), Drimycarpus (≥2; tropical Asia), Euleria (1; E. tetramera; Cuba), Euroschinus (6; Malesia, eastern Queensland, eastern New South Wales, New Caledonia), Haematostaphis (2; tropical West and Central Africa), Haplospondias (2; Yunnan, tropical Asia), Haplorhus (1; H. peruviana; the Andes in Peru and northern Chile), Hermogenodendron (1; H. concinnum; Bahia and Espírito Santo in Brazil), Holigarna (8; tropical Asia), Koordersiodendron (1; K. pinnatum; the Philippines to New Guinea), Melanochyla (c 30; Malesia), Nothopegia (7; India, Sri Lanka), Ochoterenaea (1; O. colombiana; Colombia), Parishia (7; tropical Asia), Pseudosmodingium (7; Mexico), Pseudospondias (2; tropical West and Central Africa), Rhodosphaera (1; R. rhodanthema; southeastern Queensland, northeastern New South Wales), Swintonia (13; tropical Asia), Trichoscypha (c 50; tropical Africa).

BIEBERSTEINIACEAE Schnizl.

( Back to Sapindales )

Schnizlein, Anal. Nat. Ordn. Gew.: 14. 1856 [‘Biebersteinieae’]

Biebersteiniales Takht., Divers. Classif. Fl. Pl.: 327. 24 Apr 1997

Genera/species 1/5

Distribution Greece, Turkey, Caucasus, Iran eastwards to Central Asia and eastern Tibet.

Fossils Unknown.

Habit Bisexual, perennial herbs with tuberous rhizome. Often evil-smelling.

Vegetative anatomy Phellogen absent. Vessel elements with simple? perforation plates; lateral pits? Imperforate tracheary xylem elements libriform fibres? Wood rays absent. Axial parenchyma? Sieve tube plastids? Nodes? Crystals?

Trichomes Eglandular hairs absent; glandular hairs with long multiseriate stalk and multicellular head.

Leaves Alternate (spiral), 2- or 3-imparipinnate with lobed leaflets, or simple and pinnately lobed, with ? ptyxis. Stipules petiolar, often lobed; leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Leaflet margins serrate.

Inflorescence Terminal, erect panicle or raceme.

Flowers Actinomorphic, large. Hypogyny. Sepals five, with imbricate aestivation, persistent, free. Petals five, with imbricate or contorted aestivation, often clawed, caducous, free. Nectariferous glands extrastaminal, antesepalous, alternipetalous, fleshy (staminodial?). Disc absent.

Androecium Stamens 5+5, diplostemonous, antesepalous, alternipetalous, unequal in length. Filaments connate at base, free from tepals. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with up to duodecemnucleate cells. Staminodia absent (alternatively as extrastaminal nectariferous glands?).

Pollen grains Microsporogenesis simultaneous. Pollen grains dicolporate, shed as monads, tricellular at dispersal. Exine tectate, with columellate infratectum, striate.

Gynoecium Pistil composed of five connate carpels. Ovary superior, deeply lobed, on short gynophore. Stylodia five, compressed, gynobasic (inserted at base of ovary lobes), free in lower part, connate at apex. Stigma capitate, type? Pistillodium absent.

Ovules Placentation apical. Ovule one per carpel, anatropous, pendulous, epitropous, unitegmic, crassinucellar. Micropyle endostomal. Integument four or five cell layers thick. Funicle long, massive and irregularly bent. Obturator absent. Megagametophyte tetrasporous, 16-nucleate, 13-celled, Penaea type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A schizocarp with five single-seeded nutlike mericarps, persistent central columella and accrescent calyx.

Seeds Aril absent. Testa thin-walled, more or less collapsed. Exotestal cells thick-walled, non-lignified, non-fibrous, with sinuous anticlinal walls. Endotestal cells polygonal, tanniniferous, with lignified walls. Perisperm not developed. Endosperm sparse or absent. Suspensor absent. Embryo somewhat curved, well differentiated, chlorophyll? Cotyledons two, foliaceous. Germination?

Cytology n = 5

DNA

Phytochemistry Flavone methylethers, fatty acids of the type C18:3, and ethereal oils with high content of aliphatic carbohydrates present. Oxygenated sesquiterpenes not found.

Use Medicinal plants.

Systematics Biebersteinia (5; Greece, Turkey, Caucasus, Iran eastwards to Central Asia and eastern Tibet).

Biebersteinia is sister to the remaining Sapindales.

In Biebersteinia the pollen tube reaches the apex of the megasporangium prior to micropyle formation (pseudoporogamy; Yamamoto & al. 2014). The Penaea type of female gametophyte is not known in other representatives of Sapindales (Kamelina & Konnova 1990).

BURSERACEAE Kunth

( Back to Sapindales )

Kunth in Ann. Sci. Nat. (Paris) 2: 346. Jul 1824, nom. cons.

Balsameaceae Dumort., Anal. Fam. Plant.: 36, 41. 1829; Burserineae Link, Handbuch 2: 127. 4-11 Jul 1829 [‘Burseraceae’]; Burserales Kunth in C. F. P. von Martius, Consp. Regn. Veg.: 55. Sep-Oct 1835 [‘Burseraceae’]; Burseranae Doweld, Tent. Syst. Plant. Vasc.: xxxiv. 23 Dec 2001

Genera/species c 19/625–630

Distribution Tropical and subtropical regions on both hemispheres northwards to California, Himalayas and eastern China, and southwards to Uruguay, South Africa and northern Australia.

Fossils Fruits and seeds have been found in Eocene layers in North America and Eocene fruits in England.

Habit Usually dioecious or polygamomonoecious (sometimes bisexual), evergreen or deciduous trees or shrubs (Bursera standleyana epiphytic). Branches usually spinose. Sometimes pachycaul. Stilt roots or plank buttresses often present. Resin often fragrant (often like almond).

Vegetative anatomy Phellogen usually superficial (in Santiria deeplier seated). Medulla often with vascular strands. Vessel elements usually with simple (in Beiselia scalariform) perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, usually septate. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma usually paratracheal scanty vasicentric, or absent. Tyloses often abundant. Secondary phloem sometimes stratified into hard fibrous and soft parenchymatous layers. Sieve tube plastids S type. Nodes usually 5:5, pentalacunar with five leaf traces (sometimes multilacunar). Phloem with vertical intercellular secretory ducts and surrounded by light sinuous sclerenchymatous band. Schizogenous secretory cavities and canals with white or uncoloured resinous exudate, aromatic (often almond-scented). Sclereids present in stem cortex. Parenchyma often with mucilage cells. Wood often silicified or with silica grains. Prismatic calciumoxalate crystals frequent.

Trichomes Hairs unicellular or multicellular, uniseriate, usually simple (sometimes furcate or stellate); helical glands (spirally twisted, uniseriate glandular hairs) abundant.

Leaves Alternate (spiral), usually imparipinnate (sometimes unifoliolate, rarely bipinnate or seemingly trifoliolate), lobed, with conduplicate? ptyxis. Stipules usually absent (rarely petiolar or cauline, laciniate to entire, possibly in reality reduced basal leaflets); leaf sheath absent. Colleters often abundant. Stipule-like leaflets or colleters often present. Petiole and petiolules often pulvinate. Petiole vascular bundle transection usually annular (in Commiphora arcuate); petiole sometimes with medullary rays. Leaf base often swollen, adaxially concave. Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Domatia as pits or hair tufts, or absent. Epidermis usually with mucilage cells, sometimes with pellucid dots. Mesophyll with or without mucilaginous idioblasts. Secretory cavities absent. Leaflet margins serrate or entire.

Inflorescence Axillary, thyrsoid, often raceme-, spike- or fascicle-like.

Flowers Actinomorphic, small. Hypanthium present in, i.a., Garuga. Hypogyny. Sepals (three or) four or five (to seven), with induplicate-valvate or imbricate (sometimes open) aestivation, usually caducous (sometimes accrescent in fruit), usually connate at base. Petals (three or) four or five (to seven), usually with induplicate-valvate (in Boswellia and Canarium sometimes imbricate) aestivation, usually free (sometimes connate at base; sometimes absent). Nectariferous disc usually intrastaminal (in Aucoumea and Triomma extrastaminal), usually annular or quinquepartite (sometimes absent or as ovariodisc).

Androecium Stamens usually 3+3, 4+4 or 5+5, obdiplostemonous (sometimes three to five, haplostemonous, alternisepalous, with antepetalous whorl absent; rarely antesepalous). Filaments usually free from each other (in Canarium often more or less connate), free from tepals. Anthers dorsifixed or basifixed, non-versatile or somewhat versatile, tetrasporangiate, introrse or latrorse, longicidal (dehiscing by longitudinal slits); connective sometimes slightly prolonged apically. Tapetum secretory, with often binucleate cells. Female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–6)-colporate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate, microreticulate, often spinulate, sometimes striate or psilate.

Gynoecium Pistil composed of (two or) three to five (nine to twelve in Beiselia) connate carpels (odd carpel in Amyris abaxial); symplicate zone of carpel well developed; occasionally only one carpel developing. Ovary usually superior (when hypanthium present then semi-inferior), (bilocular or) trilocular to quinquelocular (novem- to duodecemlocular in Beiselia); most locules usually reduced and sterile. Style usually single, simple (stylodia sometimes free at apex), usually short. Stigma capitate or (bilobate or) trilobate to quinquelobate (novem- to duodecemlobate in Beiselia), with stigmatic head formed by postgenital fusion, non-papillate?, type? Male flowers often with pistillodium.

Ovules Placentation apical-axile. Ovules (one or) two per carpel, usually anatropous or hemianatropous to campylotropous (rarely orthotropous), collateral, pendulous, epitropous (in Beiselia superposed), usually bitegmic (rarely unitegmic), crassinucellar. Micropyle usually endostomal (sometimes bistomal, Z-shaped, zig-zag). Outer integument approx. four cell layers thick. Inner integument approx. four cell layers thick. Obturator absent. Megasporangium six to twelve cell layers thick. Nucellar cap massive. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit Usually a drupe with one to five single-seeded pyrenes, or one multilocular pyrene (often with only one locule developed); pyrene with valves (rarely winged); pseudo-aril sometimes present (formed from pericarp in, e.g., Bursera and Commiphora); mesocarp often dehiscing along loculicidal radius (rarely a septifragal pseudocapsule with a columella; in Beiselia, Boswellia and Triomma a dry schizocarp). Endocarp often consisting of unorientated sclerified cells and crystalliferous cells.

Seeds Aril absent. Seed coat testal. Exotesta sometimes with unthickened radially elongate cells. Endotesta lignified, tracheidal. Tegmen? Perisperm not developed. Endosperm very sparse or absent. Embryo small, usually straight (rarely curved), well differentiated, with hemicellulose, oil and proteins, with chlorophyll. Cotyledons two, usually entire (sometimes palmately lobed, sometimes folded, rarely transversely folded twice). Germination phanerocotylar or cryptocotylar.

Cytology n = 11–13, 22–24

DNA Mitochondrial coxI intron present in Bursera.

Phytochemistry Flavonols (kaempferol, quercetin), biflavones, bitter-tasting triterpenoid substances (triterpenes with ursane and oleanane components), oleoresins (with mono- and bicyclic monoterpenes), ellagic acid, alkaloids, ethereal oils, cyanidin pentacyclic terpene saponins, and polyacetylenes present.

Use Aromatic substances (myrrh and frankincense from Commiphora, Boswellia etc.), medicinal plants, timber, carpentry, varnish (Bursera).

Systematics Burseraceae are sister-group to Anacardiaceae.

Beiselia is sister to the remaining Burseraceae (Clarkson 2002; Thulin & al. 2008).

Beiselieae Thulin, Beier et Razafim. in Nord. J. Bot. 26: 226. 22 Dec 2008

1/1. Beiselia (1; B. mexicana; Mexico). – Vessel elements sometimes with scalariform perforation plates. Leaf bases? persistent and provided with spine. Pistil composed of nine to twelve connate carpels. Ovary deeply furrowed. Ovules superposed. Fruit a capsule with pericarp dehiscing septifragally separately from endocarp; mericarps winged at apex; columella provided with deep flanges. Cotyledons simple. n = ?

Burseroideae Arn., Botany: 106. 9 Mar 1832 [‘Burseraceae’]

c 18/625–630. Protieae Marchand in Adansonia 8: 62. Oct 1867. Crepidospermum (6; northern South America), Tetragastris (9; Central America, tropical South America), ’Protium’ (c 150; Madagascar, tropical Asia from Pakistan to New Guinea, tropical America; polyphyletic). – Bursereae DC., Prodr. 2: 75. Nov (med.) 1825 [’Burseraceae’]. Aucoumea (1; A. klaineana; Central Africa); Bursera (c 100; southern United States and southwards to northern Argentina), Commiphora (c 150; tropical and subtropical Africa, Madagascar, the Arabian Peninsula to India and Sri Lanka, Mexico, South America). – Garugeae Marchand in Adansonia 8: 66. Nov 1867. Garuga (4; Himalayas, tropical Asia and eastwards to islands in the Pacific), ’Boswellia’ (c 25; semiarid regions in tropical Africa, Madagascar, Socotra, drier parts of tropical and subtropical Asia; polyphyletic). – Canarieae Engl. in H. G. A. Engler et C. G. O. Drude, Veg. Erde 9(3, 1): 780. 22-29 Jul 1915.Triomma (1; T. malaccensis; West Malesia), Ambilobea (1; A. madagascariensis; Madagascar), Canarium (75–80; tropical Africa, Madagascar, islands in the Indian Ocean, tropical Asia to southern China and New Guinea, northern and eastern Australia, Fiji, Micronesia, Tonga, Samoa), Dacryodes (c 40; tropical regions on both hemispheres), Santiria (24; tropical regions in the Old World), Trattinnickia (13; northern South America), Rosselia (1; R. bracteata; the Louisade Archipelago southeast of New Guinea). – unplaced Burseroideae Haplolobus (22; Borneo and the Moluccas and eastwards to Fiji and Samoa, with their highest diversity on New Guinea), Pseudodacryodes (1; P. leonardiana; Congo), Scutinanthe (2; Sri Lanka to Sulawesi). – Pantropical, with their highest diversity in tropical Asia and tropical America. Characters principally as for Burseraceae. – The phylogenetic relationship among the four clades are not resolved.

Bayesian majority rule consensus tree of Burseraceae based on DNA sequence data (Thulin & al. 2008).

KIRKIACEAE (Engl.) Takht.

( Back to Sapindales )

Takhtajan, Sist. Filog. Cvetk. Rast. [Syst. Phylog. Magnolioph.]: 321. 4 Feb 1967

Genera/species 1/6

Distribution Tropical and subtropical East and Southeast Africa, Angola?, Madagascar.

Fossils Unknown.

Habit Morphologically bisexual, functionally monoecious, polygamomonoecious or dioecious, usually deciduous trees or shrubs. Heartwood often honey-scented.

Vegetative anatomy Phellogen? Vessel elements with simple perforation plates; lateral pits alternate, simple or bordered pits? Imperforate tracheary xylem elements libriform fibres? with simple or bordered pits, usually septate. Wood rays multiseriate, heterocellular. Axial parenchyma paratracheal vasicentric. Tyloses frequent. Sieve tube plastids S type. Nodes usually 3:3?, trilacunar with three? leaf traces. Parenchyma without secretory cavities. Crystals?

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate; glandular hairs with multiseriate stalk and multicellular head.

Leaves Alternate (spiral), imparipinnate, leaflets entire, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection annular; petiole with medullary bundles. Venation pinnate. Stomata anomocytic or paracytic? Cuticular waxes absent. Epidermis sometimes with mucilaginous idioblasts. Leaflet margins serrate.

Inflorescence Axillary, compound thyrsoid consisting of dichasial and monochasial cymes, changing between functionally female and functionally male flowers from one branching order to next.

Flowers Actinomorphic, small. Hypogyny. Sepals (three or) four (to six), decussate, usually with valvate (sometimes imbricate quincuncial) and later open aestivation, free or connate at base. Petals (three or) four (to six), with open aestivation at base and imbricate aestivation in upper part, free. Nectariferous disc intrastaminal, annular, angular, wide, fleshy, well developed in male flowers, reduced in female flowers.

Androecium Stamens (three or) four (to six), haplostemonous, antesepalous, alternipetalous. Filaments conical, free from each other and from tepals. Anthers dorsobasifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains trisyncolporate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of four (or eight) antepetalous connate carpels. Ovary superior, quadrilocular (or octalocular), lobate. Gynophore short, glandular. Stylodia four (or eight), separate, tightly connivent in lower part, connate in upper part, upright, finally radiating. Stigmas four, short, connate, capitate, oblique, flattened, papillate, Wet type. Male flowers with pistillodium.

Ovules Placentation apical to axile. Ovules one (or two) per carpel, epitropous (longitudinal direction of ovule opposite involution direction of carpel) and somewhat campylotropous, pendulous, bitegmic, crassinucellar. Micropyle bistomal, Z-shaped (zig-zag), elongate (outer integument longer than inner integument). Outer integument two or three cell layers thick. Inner integument three or four cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A lignified schizocarp with four (or seven or eight) nutlike mericarps, with ridges and persistent columellar strands. Endocarp leathery, strongly lignified, with crystalliferous cells and cells containing elongate sclereids. Mericarps single-seeded, pendant from apex of central columella (carpophore) and dorsally with basal remnants of stylodium recurved over apex.

Seeds Aril absent. Testa thin. Exotesta? Endotesta? Tegmen? Perisperm not developed. Endosperm sparse or absent. Embryo somewhat curved, well differentiated. chlorophyll? Cotyledons two. Germination?

Cytology n = ?

DNA

Phytochemistry Ellagic acid, lignans and nor-carotenoids ((+)-dihydrodehydrodiconiferyl alcohol; (+)-lyoniresinol; (-)-ent-isolariciresinol; (-)-4′,9,9′-trihydroxy-3′-methoxy-3.O.8′,4.O.7′-neolignan; (+)-de-O-methyllasiodiplodin; (+)-(6S,7E,9R)-blumenol A; (+)-(6S,7E)-dehydrovomifoliol; (+)-4-ethanone-3,4-dihydro-6,8-dihydroxy-5-methylisocoumarin; (+)-(2R,3R)-7-O-methylaromadendrin; etc.) present. Quassinoids and limonoids not found.

Use Timber, carpentry, medicinal plants.

Systematics Kirkia (6; tropical and subtropical East and Southeast Africa, Angola?, Madagascar).

Kirkia is sister to [Anacardiaceae+Burseraceae].

MELIACEAE Juss.

( Back to Sapindales )

de Jussieu, Gen. Plant.: 263. 4 Aug 1789 [’Meliae’], nom. cons.

Cedrelaceae R. Br. in M. Flinders, Voy. Terra Austr. 2: 595, 596. 19 Jul 1814 [’Cedreleae’]; Meliales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 219. Jan-Apr 1820 [‘Meliaceae’]; Swieteniales Bercht. et J. Presl, Přir. Rostlin: 219. Jan-Apr 1820 [‘Swieteniae’]; Swieteniaceae E. D. M. Kirchn., Schul-Bot.: 415. 13-20 Oct 1831; Cedrelales R. Br. in C. F. P. von Martius, Consp. Regn. Veg.: 61. Sep-Oct 1835 [‘Cedreleae’]; Aitoniaceae R. A. Dyer, Gen. S. Afr. Fl. Pl. 1: 298. 1975, nom. illeg.

Genera/species c 48/650–660

Distribution Tropical and subtropical lowland areas, mainly southern and southeastern Asia; few species in warm-temperate regions; Xylocarpus consists of mangrove trees.

Fossils Eocene and Oligocene fruits of Meliaceae are found in North America and Eocene fruits in England.

Habit Bisexual, monoecious, polygamomonoecious or dioecious, evergreen trees and shrubs (in Munronia suffrutices, in Naregamia perennial herbs). Bark often with a bitter taste, often with a strong garlic-like or sweet smell, etc.

Vegetative anatomy Phellogen ab initio superficial. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple or bordered pits, septate or non-septate. Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty, aliform, lozenge-aliform, winged-aliform, confluent, vasicentric, or banded. Wood elements often storied. Secondary phloem sometimes stratified into hard fibrous and soft parenchymatous layers. Sieve tube plastids S type (in, e.g., Azadirachta and Melia Ps type with protein crystalloids and starch). Nodes usually 5:5, pentalacunar with five leaf traces (sometimes 3:3, trilacunar with three traces). Secretory cells with resins and ethereal oils present in leaves, cortex and medulla (rarely with secretory cavities). Laticifers with white latex present in heartwood of some species. Prismatic calciumoxalate crystals frequent.

Trichomes Hairs unicellular or multicellular, simple, furcate or stellate, sometimes lepidote; peltate-lepidote glandular hairs sometimes present.

Leaves Usually alternate (spiral; in Turraea distichous; in Capuronianthus opposite), usually paripinnate or imparipinnate (rarely trifoliolate or bipinnate; in Nymania, Turraea and Vavaea simple [unifoliolate?]), leaflets entire or lobed, with conduplicate? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection annular? Leaf base swollen, vertically elongate. Petiolules usually not articulated (in Walsura often pulvinate). Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Domatia as pits, pockets or hair tufts. Epidermis with or without mucilaginous idioblasts. Mesophyll with or without sclerenchymatous idioblasts. Secretory cells with resins and ethereal oils. Leaflet margins (or margin) usually entire (sometimes serrate). Extrafloral nectaries sometimes present on petiole and abaxial side of lamina.

Inflorescence Usually axillary (sometimes terminal), raceme, spike or panicle with thyrsoid partial inflorescences (flowers sometimes solitary or pairwise, axillary; rarely epiphylly).

Flowers Usually actinomorphic (rarely slightly zygomorphic). Hypogyny. Sepals (two to) three to five (to eight), usually with imbricate (rarely valvate or open) aestivation, usually entirely or partially connate. Petals three to seven (to 14), usually with imbricate or contorted (rarely valvate) aestivation, usually in one whorl (rarely two whorls), usually free (sometimes connate below). Nectariferous disc intrastaminal, annular, or absent.

Androecium Stamens usually four to ten (sometimes three or up to 20 or more, rarely up to c. 30), twice as many as petals, diplostemonous, or three to six, haplostemonous. Filaments usually connate into tube around pistil (staminal tube sometimes very long [rarely up to 14 cm!], sometimes corolla-like), often also adnate to petals (filaments in Vavaea, Walsura, Cedrela and Toona secondarily free or almost free). Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate to quadrinucleate (rarely up to decemnucleate) cells. Staminodia few to numerous or absent; female flowers often with staminodia. Secondary pollen display present in, e.g., Vavaea.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3–5(–6)-colporate (rarely porate), usually shed as monads (rarely tetrads), usually bicellular (rarely tricellular) at dispersal. Exine tectate, with columellate infratectum, rugulate, scabrate or psilate.

Gynoecium Pistil composed of usually two to six (rarely one or in Turraea up to 20) antepetalous connate carpels, postgenitally fused. Ovary superior, usually bilocular to sexalocular (rarely unilocular or up to 20-locular). Style single, simple, or absent. Stigma usually capitate, clavate or peltate (sometimes punctate or lobate), usually large, papillate, Wet type. Male flowers often with pistillodium.

Ovules Placentation usually axile and ovary multilocular (rarely parietal and ovary unilocular). Ovules usually two (sometimes one or more than two to numerous) per carpel, anatropous, campylotropous or orthotropous (rarely amphitropous), usually pendulous, epitropous, bitegmic, crassinucellar. Micropyle usually endostomal (rarely bistomal or exostomal). Outer integument two to five cell layers thick. Inner integument two to four cell layers thick. Placental obturator often present. Parietal tissue three to nine (to 18) cell layers thick. Archespore often multicellular. Nucellar cap present. Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit A loculicidal or septicidal capsule, a berry or drupe (rarely a nutlet).

Seeds Seeds often pachychalazal, often with chalazal aril and/or sarcotesta (Melioideae) or with suberinized/corky outer layer, or seeds winged and inserted at woody central columella (Cedreloideae). Seed coat usually exotegmic (sometimes reduced and undifferentiated). Testa vascularized, usually multiplicative. Exotesta unspecialized. Endotesta with calciumoxalate crystals. Tegmen usually multiplicative. Exotegmen usually fibrous. Endotegmen unspecialized? Perisperm not developed. Endosperm usually absent (rarely copious). Embryo straight or curved, elongate, well differentiated, with or without chlorophyll. Cotyledons two. Germination phanerocotylar or cryptocotylar.

Cytology n = 10–14 (sometimes more); x = 6 or 7

DNA Mitochondrial coxI intron present.

Phytochemistry Flavonols (kaempferol, quercetin), flavones, cyanidin, tetracyclic triterpenes, tetranortriperpenes, pentanortriterpenes, limonoids and meliacins and other bitter-tasting triterpenoid substances (turraeanthin, melianone, azadirone, homoazadirone, azadiradione, gedunin, grandifolin, khivorin, khivol, anthothecol, andirobin, methyl angolensate, nimbin, salannin, mexicanolide, swietenine, astrotrichilin, etc.), tannins, proanthocyanidins, alkaloids, triterpene saponins, polyacetylenes, coumarins, and ethereal oils present. Ellagic acid and cyanogenic compounds not found.

Use Ornamental plants, fruits (Lansium domesticum, Sandoricum koetjape), seed oils, medicinal plants, cosmetics, timber (e.g. Swietenia, Khaya), carpentries.

Systematics (under construction) Meliaceae are sister to Simaroubaceae.

The subdivision below follows Muellner & al. 2003, and Muellner, Samuel & al. 2008. Two main clades can be discerned, corresponding to Melioideae and Cedreloideae, respectively.

Melioideae Arn., Botany: 103. 9 Mar 1832 [‘Melieae’]

c 33/595–600. Azadirachta (2; tropical Asia), Melia (3; tropical regions in the Old World); Quivisianthe (2; Madagascar), Walsura (16; India and Sri Lanka to Sulawesi); Sandoricum (5; Malesia); Munronia (10; tropical Asia), Pseudoclausena (1; P. chrysogyne; Southeast Asia, Malesia), Cipadessa (1; C. baccifera; tropical Asia), Ekebergia (4; tropical and southern Africa), Trichilia (c 95; tropical regions on both hemispheres), Owenia (5; northern, central and eastern Australia), Malleastrum (23; Madagascar, the Comoro Islands, Aldabra), Pterorhachis (1–2; P. zenkeri; Central Africa), Nymania (1; N. capensis; southern Namibia, Northern, Western and Eastern Cape), Calodecaryia (2; Madagascar), Humbertioturraea (10; Madagascar), Turraea (c 60; tropical and southern Africa, Madagascar, the Mascarene Islands, Socotra, tropical Asia and eastwards to northern and eastern Australia); Lepidotrichilia (4; tropical East Africa, Madagascar), Vavaea (4; Sumatra and the Philippines and eastwards to northern Australia, Fiji, the Caroline Islands and Tonga), Synoum (1; S. glandulosum; eastern Queensland, eastern New South Wales), Anthocarapa (1; A. nitidula; northeastern and southeastern Queensland, northeastern New South Wales, New Guinea to New Caledonia and Rotuma), Heckeldora (6; tropical West and Central Africa), Turraeanthus (2–3; tropical Africa), Guarea (c 55; tropical Africa, tropical America), Ruagea (c 10; tropical America), ’Dysoxylum’ (c 80; tropical Asia to New Guinea, northern and eastern Australia, New Caledonia, New Zealand, Tonga; non-monophyletic?), Chisocheton (c 55; southern China, tropical Asia and eastwards to northeastern Queensland and Vanuatu), Cabralea (1; C. canjerana; tropical America), Aphanamixis (3; tropical Asia and eastwards to the Solomon Islands; in Aglaia?), Sphaerosacme (1; S. decandra; Himalayas), ’Aglaia’ (c 120; tropical Asia and eastwards to islands in western Pacific; paraphyletic), Lansium (3; Malesia; in Aglaia?), Reinwardtiodendron (7; tropical Asia; in Aglaia?). – Pantropical, with their largest diversity in tropical regions in the Old World. Trees or shrubs. Buds naked. Stigma capitate. Ovules usually one to three (rarely numerous) per carpel, epitropous. Fruit usually a loculicidal capsule (rarely berry, drupe or nut). Seeds usually without wings (in Quivisianthe winged), usually with arillode (in Naregamia funicular aril) or sarcotesta. n = 8, 11, 12, 14, 15, 18 up to 140. – Guarea in tropical America and Chisocheton in Malesia have leaves with unlimited growth. The clade [Melia+Azadirachta] is sister-group to the remaining Melioideae and has several unique anatomical features, such as clusters of minute vessels with spiral wall thickening (Muellner, Samuel & al. 2008). The position of Ekebergia is doubtful. In the rbcL tree in Muellner, Samuel & al. (2008), it is recovered as sister to Quivisianthe, Sandoricum being sister to the other two genera. In the Bayesian ITS nrDNA tree, Ekebergia is nested inside the Turraeeae/Trichilieae clade and sister to Cipadessa, whereas Quivisianthe and Walsura form a subbasal clade in Melioideae.

Cedreloideae Arn., Botany: 103. 9 Mar 1832 [‘Cedreleae’]

c 10/31–33. Chukrasia (1; C. tabularis; southern China, tropical Asia), Schmardaea (1; S. microphylla; the Andes), Neobeguea (3; Madagascar), Cedrela (8; tropical America), Toona (4–5; tropical Asia and eastwards to eastern Queensland and eastern New South Wales), Capuronianthus (2; Madagascar), Lovoa (2; tropical Africa; in Capuronianthus?), Carapa (2–3; tropical Africa, tropical America), Khaya (c 5; tropical Africa, Madagascar), Swietenia (3; tropical America). – Pantropical, with their highest diversity in tropical regions in tropical Africa and Madagascar. Buds usually perulate (in Capuronianthus naked). Stylar apex usually discoid (rarely capitate). Ovules usually three to numerous (in Capuronianthus two) per carpel, collateral. Fruit a septifragal capsule with caducous valves, persisting central columella and winged seeds, or rudimentary columella and seeds with massive woody or corky testa. n = 13, 18, 23, 25, 26, 28.

Cladogram of Meliaceae based on DNA sequence data (Muellner & al. 2003).

Unplaced Meliaceae

Astrotrichilia (c 12; Madagascar), Entandrophragma (11; tropical Africa), Pseudocedrela (1; P. kotschyi; tropical Africa), Soymida (1; S. febrifuga; India), Xylocarpus (2–3; mangroves in East Africa and eastwards to Tonga).

NITRARIACEAE Lindl.

( Back to Sapindales )

Lindley, Intr. Nat. Syst. Bot.: 149. 27 Sep 1830

Nitrariales Bercht. et J. Presl, Přir. Rostlin: 238. Jan-Apr 1820 [‘Nitrariae’]; Tetradiclidaceae (Engl.) Takht., Florist. Reg. World: 333. 27 Apr 1986; Peganaceae (Engl.) Tiegh. ex Takht., Sist. Magnoliof. [Systema Magnoliophytorum]: 178. 24 Jun 1987

Genera/species 4/19–20

Distribution North Africa, southern and southeastern Europe to Siberia and Mandshuria, Afghanistan, Central Asia, the Arabian Peninsula, southern Australia, southeastern Texas, northern Mexico.

Fossils Unknown.

Habit Bisexual, deciduous shrubs (Malacocarpus, Nitraria) or perennial (Peganum) or annual (Tetradiclis) herbs. Often xerophytic. Often succulent. Sometimes spiny.

Vegetative anatomy Mycorrhiza absent in at least Peganum. Phellogen ab initio inner-cortical. Primary vascular tissue cylinder, without separate vascular bundles. Vessel elements with simple perforation plates; lateral pits usually alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres usually with bordered (sometimes simple) pits, non-septate (in Nitraria also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma usually apotracheal (at least in Nitraria paratracheal aliform-confluent, vasicentric, or banded). Wood elements and/or parenchyma storied. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Secretory cavities and mucilage cells present in Nitraria. Heartwood in Nitraria with gum-like substances. Prismatic calciumoxalate crystals frequent.

Trichomes Hairs unicellular or multicellular, uniseriate and complex capitate hairs (not in Nitraria); uniseriate glandular hairs present in Peganum.

Leaves Usually alternate (spiral; in Nitraria often two or three per node; in Peganum often two per node; two lowermost leaf pairs in leaf rosette of Tetradiclis opposite), simple or pinnately or palmately compound, entire or pinnately or palmately lobed, often carnose, sometimes coriaceous, with ? ptyxis. Stipules small, bristle-like or foliaceous (in Peganum often also divided), cauline or intrapetiolar, persistent or caducous (absent in Tetradiclis); leaf sheath absent. Petiole vascular bundle transection arcuate; petiole with wing bundles. Venation pinnate or palmate (leaves sometimes one-veined). Stomata usually anomocytic (sometimes paracytic or actinocytic). Cuticular waxes usually absent (wax crystalloids rarely as platelets or rodlets). Epidermis with or without mucilaginous idioblasts. Mesophyll in Nitraria sometimes with mucilaginous idioblasts and occasionally with sclerenchymatous idioblasts. Calciumoxalate as raphides (Peganum, Malacocarpus), druses and solitary prismatic crystals. Leaflet margins usually entire (rarely serrate or lobate).

Inflorescence Terminal or axillary, cymose (in Nitraria scorpioid), or flowers solitary axillary. Floral prophyls (bracteoles) absent in Nitraria.

Flowers Actinomorphic. Hypanthium present. Hypogyny. Sepals (three or) four or five (in Tetradiclis usually four), with usually imbricate (in Peganum valvate) aestivation, sometimes pinnately compound, often persistent, free or more or less connate (Nitraria, Tetradiclis). Petals (three or) four or five (in Tetradiclis usually four), with imbricate, contorted or (induplicate-)valvate aestivation, free. Nectariferous disc extrastaminal or intrastaminal, annular (in Nitraria and Peganum as antepetalous nectaries; nectary in Tetradiclis absent).

Androecium Stamens 5+5, 4+4+4, or 15 in antesepalous fascicles of three, or in antepetalous pairs (occasionally five; in Peganum sometimes paired, antepetalous; in Tetradiclis usually four, antesepalous), obdiplostemonous (sometimes haplostemonous). Filaments free from each other and from tepals, in Nitraria inserted at hypanthium, often widened at base. Anthers dorsifixed, versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate cells (in Peganum finally often polyploid; in Tetradiclis finally modified into false plasmodium). Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grans 3(–4)-colporate, shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate (sometimes reticulate-rugulate) or striate.

Gynoecium Pistil composed of two to four (or six) connate carpels (carpels in Nitraria and Tetradiclis alternisepalous, antepetalous; each of usually four carpels in Tetradiclis divided into three partitions). Ovary superior, bilocular to quadrilocular, in Tetradiclis on gynophore. Style single, simple, usually terminal (in Nitraria and Tetradiclis basal), sometimes hollow. Stigma usually two- to four-keeled (rarely six-keeled), as commissural compital lines down upper part of style (stigma in Tetradiclis clavate, tetrasulcate, with four short decurrent double rows of papillae, stigmatic ridges running down widened apical part), papillate, Dry type. Pistillodium absent.

Ovules Placentation axile to apical (in Nitraria subapical; ovules in Tetradiclis pendulous from free basal-central placenta). Ovules one (Nitraria) or six (Tetradiclis: four ovules in central locellus and one ovule in each of two lateral locelli) or numerous (Peganum, Malacocarpus) per carpel, usually anatropous (in Tetradiclis hemianatropous), pendulous, apotropous or epitropous, bitegmic, crassinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument two to four cell layers thick, in Tetradiclis with mucilage cells. Inner integument two or three, or four to seven cell layers thick. Funicular-placental obturator present in Malacocarpus. Parietal tissue approx. three cell layers thick. Endothelium absent. Archespore in Peganum multicellular. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis solanad? (Nitraria).

Fruit A loculicidal capsule (Peganum, Tetradiclis), a single-seeded drupe with lignified scleromesocarp (Nitraria), or a berry (Malacocarpus, Peganum). In Tetradiclis only seeds of central locelli liberated as capsule opens, seeds in lateral locelli liberated later.

Seeds Aril absent. Testa in Peganum and Malacocarpus spongy, mucilaginous, in Tetradiclis thin, in Peganum multiplicative. Exotesta and endotesta (short) palisade; exotestal cells often enlarged (cells in Tetradiclis inflated), sometimes mucilaginous; endotesta often palisade. Exotegmen? Endotegmic cells tangentially elongate; endotegmen in Peganum almost fibriform, with lignified cells. Perisperm not developed. Endosperm sparse to copious, oily, or absent. Embryo straight or curved, well differentiated, sometimes with chlorophyll. Cotyledons two. Germination phanerocotylar.

Cytology n = 7 (Tetradiclis), 12, 13 (Peganum, Malacocarpus, Nitraria), 30 (Nitraria)

DNA

Phytochemistry Flavonols (kaempferol, quercetin), β-carboline alkaloids (harmine, harmaline, harmalol) and pyrroloquinazoline alkaloids (vasicine, vasicinone, desoxyvasicinone, etc.) present. Mustard oils reported from some species. Proanthocyanidins and cyanogenic compounds not found. Ethereal oils? Myricetin?

Use Dyeing substances (turkish red) from seeds used for dyeing hats (tarboosh), medicinal plants and narcotics (Peganum harmala).

Systematics Nitraria (12; Sahara, salt and arid regions in southern Russia to Afghanistan and Mandshuria, salt and arid regions in southern Australia), Tetradiclis (1; T. tenella; southeastern Russia and eastern Mediterranean to Central Asia), Malacocarpus (1; M. crithmifolius; Central Asia), Peganum (5–6; the Mediterranean and southwestern Asia to Mongolia, southeastern Texas, northern Mexico).

The sister-group relationship of Nitrariaceae is not resolved.

A possible topology, based on morphological and molecular data, is the following: [Nitraria+[Tetradiclis+[Peganum+Malacocarpus]]] (Sheahan & Chase 1996).

Phylogeny of Nitrariaceae based on morphological and molecular data (Sheahan & Chase 1996).

RUTACEAE Juss.

( Back to Sapindales )

de Jussieu, Gen. Plant.: 296. 4 Aug 1789, nom. cons.

Aurantiaceae Juss., Gen. Plant.: 259. 4 Aug 1789 [’Aurantia’]; Citraceae Roussel, Fl. Calvados, ed. 2: 271. 1806; Cneoraceae Vest, Anleit. Stud. Bot.: 267, 285. 1818 [’Cneoroideae’], nom. cons.; Dictamnaceae Vest, Anleit. Stud. Bot.: 269, 287. 1818 [’Dictamnoideae’]; Rutales Juss. ex Bercht. et J. Presl, Přir. Rostlin: 220. Jan-Apr 1820 [‘Rutaceae’]; Monieraceae Raf., Fl. Tellur. 4: 88. med 1838 [’Monierides’], nom. illeg.; Jamboliferaceae Martinov, Tekhno-Bot. Slovar: 324. 3 Aug 1820 [’Jamboliferae’]; Zanthoxylaceae Martinov, Tekhno-Bot. Slovar: 682. 3 Aug 1820 [’Xanthoxyleae’]; Zanthoxylales Bercht. et J. Presl, Přir. Rostlin: 227. Jan-Apr 1820 [‘Xanthoxyleae’]; Fraxinellaceae Nees et Mart. in Nova Acta Phys.-Med. Acad. Caes. Leop.-Carol. Nat. Cur. 11: 147, 183. 3 Oct 1823 [’Fraxinellae’]; Amyridaceae Kunth in Ann. Sci. Nat. (Paris) 2: 353. Jul 1824 [’Amyrideae’]; Pteleaceae Kunth in Ann. Sci. Nat. (Paris) 2: 354. Jul 1824; Cuspariaceae (DC.) Tratt., Gen. Nov. Plant. Fasc. 1: unpaged. 1825 [’Cuspariae’], nom. illeg.; Aurantiales Link, Handbuch 2: 345. 4-11 Jul 1829 [‘Aurantia’]; Citrales Dumort., Anal. Fam. Pl.: 43. 1829 [‘Citrarieae’]; Cneorales Link, Handbuch 2: 440. 4-11 Jul 1829 [‘Cneoreae’]; Pteleales Link, Handbuch 2: 118. 4-11 Jul 1829 [‘Pteleaceae’]; Amyridineae Link, Handbuch 2: 128. 4-11 Jul 1829 [‘Amyrideae’]; Diosmaceae R. Br. ex Bartl., Ord. Nat. Pl.: 229, 386. Sep 1830; Chamaeleaceae Bertol., Fl. Ital. 1: 196. 3 Feb 1834, nom. illeg.; Rutopsida A. Juss. ex Meisn., Plant. Vasc. Gen.: Tab. Diagn.: 59, Comm.: 43. 21-27 Mai 1837 [’Rutaceae’]; Aurantiineae Rchb., Deutsch. Bot. Herb.-Buch: lxxxviii. Jul 1841 [‘Aurantiiflorae‘]; Amyridales J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 335. 1846 [‘Amyrideae’]; Diosmales J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 271. 1846 [‘Diosmeae’]; Dictamnineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 271, 272. 1846 [‘Dictamneae‘]; Diosmineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 271, 278. 1846; Pteleineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 280, 285. 1846 [‘Pteleaceae‘]; Zanthoxylineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 280, 282. 1846 [‘Zanthoxyleae‘]; Boroniaceae J. Agardh, Theoria Syst. Plant.: 229. Apr-Sep 1858 [’Boronieae’]; Diplolaenaceae J. Agardh, Theoria Syst. Plant.: 229. Apr-Sep 1858 [’Diplolaeneae’]; Pilocarpaceae J. Agardh, Theoria Syst. Plant.: 221. Apr-Sep 1858 [’Pilocarpeae’]; Spatheliaceae J. Agardh, Theoria Syst. Plant.: 280. Apr-Sep 1858 [’Spathelieae’]; Ptaeroxylaceae J.-F. Leroy in J. Agric. Trop. Bot. Appl. 7: 456. 1960; Flindersiaceae (Luerss.) C. T. White ex Airy Shaw in Kew Bull. 18: 257. 8 Dec 1965

Genera/species c 155/2.110–2.140

Distribution Tropical, subtropical and warm-temperate regions on both hemispheres, with their highest diversity in the Cape Provinces and Australia.

Fossils Rutaspermum biornatum comprises seeds of Rutaceae from the Maastrichtian of Germany and the Eocene London Clay in England. Neogene seeds of Rutaceae have been found on many places in North America, Europe and Asia. Wood and leaves are also known from the mid-Eocene of North America and Europe.

Habit Usually bisexual (rarely monoecious, andromonoecious, polygamomonoecious, or dioecious), evergreen or deciduous trees, shrubs or lianas (rarely perennial herbs). Often strongly aromatic. Many species are xerophytes.

Vegetative anatomy Phellogen ab initio superficial. Vessel elements usually with simple (rarely scalariform) perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, usually non-septate (also vasicentric tracheids). Wood rays usually multiseriate (sometimes uniseriate), homocellular or heterocellular. Axial parenchyma apotracheal diffuse, or paratracheal scanty, aliform, lozenge-aliform, winged-aliform, confluent, vasicentric, or banded (rarely absent). Wood often fluorescent. Wood elements often storied. Sieve tube plastids S type. Nodes usually 3:3, trilacunar with three leaf traces (sometimes 1:1, unilacunar with one trace). Parenchyma with secretory cavities containing ethereal oils. Medulla, primary cortex and wood rays with resinous cells. Calciumoxalate as prismatic crystals and druses abundant.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, stellate, sometimes furcate, peltate-lepidote or peltate and directed forwards; glands (often with aromatic substances) frequent.

Leaves Usually alternate (spiral; sometimes opposite, rarely verticillate), usually pinnately compound (sometimes bipinnate), trifoliolate or unifoliolate (rarely simple, entire), often ericoid or scale-like, often coriaceous, with conduplicate or flat ptyxis. Stipules usually absent (in Metrodora intrapetiolar), or as glands or spines; leaf sheath absent (petiole in Metrodorea sheathing). Petiole vascular bundle transection arcuate or annular. Petiolules usually articulated. Rhachis sometimes winged. Venation pinnate or leaves one-veined. Stomata usually paracytic (rarely anomocytic or cyclocytic). Cuticular wax crystalloids as platelets, rodlets or clustered tubuli (Berberis type, chemically dominated by nonacosan-10-ol). Domatia present as pockets or absent. Epidermis with or without mucilaginous idioblasts. Mesophyll with or without sclerenchymatous idioblasts. Lamina usually with pellucid (glandular) dots, and with schizogenous or lysigenous secretory cavities containing ethereal oils (absent in Leptothyrsa and Phellodendron). Leaf margin and leaflet margins usually entire or crenate (sometimes serrate). Extrafloral nectaries sometimes present on abaxial side of lamina.

Inflorescence Terminal or axillary, usually panicle, corymb, etc. (sometimes racemose; flowers sometimes solitary axillary; in one species of Erythrochiton seemingly epiphyllous).

Flowers Usually actinomorphic (rarely vertically or obliquely zygomorphic, e.g. Dictamnus and Erythrochiton). Usually hypogyny (in Rutoideae usually epigyny). Sepals (two to) four or five, usually with imbricate (sometimes valvate) aestivation, often small, free or more or less connate (sepals in Zanthoxylum opposite; calyx in, e.g., Pilocarpus reduced to thin edge). Petals (two to) four or five, usually with imbricate (sometimes valvate) aestivation, usually free (sometimes connate at base, rarely entirely connate; absent in Empleurum). Nectariferous disc intrastaminal, annular to cupular (sometimes unilateral or modified into androgynophore, androphore or gynophore).

Androecium Stamens usually 4+4 or 5+5, usually obdiplostemonous (rarely diplostemonous; sometimes in one whorl with two [Angostura alliance] to five antesepalous stamens, haplostemonous, or three or four times as many as petals, or up to c. 60), antepetalous staminal whorl often staminodial (rarely two or three stamens fertile and remaining stamens staminodial). Filaments usually flattened, usually free (sometimes connate at base all or in three to twelve fascicles; sometimes connate into tube [Angostura alliance]), usually free from tepals (sometimes adnate to petals). Anthers basifixed or dorsifixed, versatile, tetrasporangiate, usually introrse (rarely latrorse), longicidal (dehiscing by longitudinal slits); connective sometimes with glandular apex; anthers sometimes with basal appendages. Tapetum secretory, with binucleate to quadrinucleate cells. Staminodia (three or) four or five (to ten), extrastaminal or intrastaminal, or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3–6(–8)-colporate, shed as monads, usually bicellular (rarely tricellular) at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate, gemmate, verrucate, striate or striate-reticulate.

Gynoecium Pistil composed of (one to) three to five (or six, or up to 20 [Aegle]), usually laterally or only at base or at apex connate carpels (carpels sometimes free, rarely entirely connate; in Zanthoxylum antesepalous); carpel fusion possibly postgenital; compitum sometimes (e.g. in Boenninghausenia and Ruta) restricted to stigmatic part. Ovary usually superior (sometimes inferior), usually trilocular to quinquelocular (rarely unilocular, bilocular, sexalocular or multilocular). Septal non-nectariferous cavities sometimes present. Stylodia usually three to five, often free or connate only at apex, impressed (style sometimes single, simple, marginal or, in some genera, gynobasic). Stigma capitate or peltate, usually entire (sometimes lobate), papillate or non-papillate, Dry or Wet type. Pistillodium usually absent (male flowers sometimes with pistillodium?).

Ovules Placentation usually axile (rarely parietal or apical). Ovules one to numerous per carpel, anatropous, hemianatropous, amphitropous or campylotropous, pendulous or ascending, apotropous or epitropous, usually bitegmic (in, e.g., Glycosmis unitegmic), crassinucellar. Micropyle usually bistomal, Z-shaped (zig-zag; rarely endostomal). Outer integument two to six cell layers thick. Inner integument two to five (or six) cell layers thick. Hypostase present or absent. Parietal tissue usually two to four (rarely five) cell layers thick. Nucellar cap approx. two cell layers thick or absent. Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Embryo sac haustoria chalazal. Endosperm development ab initio nuclear. Endosperm haustorium absent. Embryogenesis usually onagrad or solanad (rarely asterad). Polyembryony (nucellar) present in many species. Agamospermy sometimes frequent.

Fruit A loculicidal and/or entirely or partially septicidal capsule (often much lobed), a follicle, a berry (in Aurantieae often a hesperidium), or a schizocarp with few to numerous nutlike or drupaceous mericarps (sometimes a syncarp, rarely drupe or samara). Exocarp often glandular and punctate. Mesocarp often with secretory cavities. Mesocarp and endocarp often separating. Endocarp dividing periclinally, capsule becoming layered.

Seeds Aril often present. Elaiosome (endocarpial) present in some species (e.g. in Diosmeae). Seed sometimes winged or hairy. Seed coat usually endotestal (sometimes reduced and undifferentiated). Sarcotesta sometimes present (Aurantieae). Exotesta often mucilaginous, irregularly palisade, lignified and/or fibrous. Mesotesta sometimes sclerotic, rarely collenchyma-like. Endotesta sometimes lignified. Endotestal cells sometimes with calciumoxalate crystals. Exotegmen (sometimes also mesotegmen and endotegmen) usually tracheidal (in some species fibrous). Mesotegmen and endotegmen sometimes tracheidal. Perisperm not developed. Endosperm copious, sparse or absent, oily. Embryo usually straight (with micropyle close to hilum; sometimes, e.g. in Dictyoloma, curved), well differentiated, with or without chlorophyll. Cotyledons two, flat, folded or rolled. Germination phanerocotylar or cryptocotylar.

Cytology n = 7–11, 18 or more (in Erythrochiton n = 58)

DNA

PhytochemistryFlavonols (kaempferol, quercetin, myricetin, melisymplexin, ternatin, nobiletin, tangeretin, etc.), flavones, hydroxyflavones, polymethoxyflavones, flavonones (naringin, hesperetin etc.), cyanidin, monoterpenes, sesquiterpenes, bitter-tasting triterpenoid substances (flindissol, bourjotinolone etc., cneorids, limonoids [limonin, nomilin, obacunone, obacunoic acid, veprisone, etc.; in Cneoroideae also chromones]), tetracyclic triterpenes, tetra- and pentanortriterpenes, tannins, proanthocyanidins (prodelphinidins), anthranilin-derived alkaloids (arborine, hortiacine, euxylophorine, eduleine, cusparine, evocarpine, etc.), quinoline alkaloids (casimiroine, oxirine, lunacridine, flindersine, isobalfouridine, lunacrine, skimmianine, dictamnine, etc.), acridine alkaloids (acronycine, acridones, arborinine, evoxanthidine, melicopicine, melicopidine, etc.), indolopyridoquinazoline, furoquinoline and canthinone alkaloids, benzylisoquinoline alkaloids (produced via at least nine different biosynthetic pathways; in some Rutoideae), polyacetate- or shikimic acid-derived arthroquinone, ethereal oils (phenylpropans), pyranochromones, furanocoumarins, and amides present. Saponins and phenylalanine-derived cyanogenic compounds rare (often present in Amyridoideae). Ellagic acid not found. Aluminium accumulated in some species.

Use Ornamental plants, fruits, spices, flavouring, perfumes (Citrus, Aegle, Casimiroa, Clausena, etc.), medicinal plants, herbicides, insecticides, timber.

Systematics (under construction) Rutaceae may be sister to [Meliaceae+Simaroubaceae], but the support is fairly weak.

Rutaceae are in urgent need of a complete phylogenetic analysis.

Peltostigma has the floral formula K3C3A9G[?5] and resembles Lauraceae.

Cneoroideae Webb in London J. Bot. 1: 257. 1 Mai 1842 [‘Cneoreae’]

7/38–39. Dictyoloma (2; Peru, Brazil, Bolivia), Spathelia (c 20; the West Indies, northern South America); Harrisonia (3–4; tropical Africa, tropical Asia, northern Australia), Cneorum (3; C. pulverulentum: the Canary Islands; C. tricoccon: western Mediterranean; C. trimerum: Cuba), Ptaeroxylon (1; P. obliquum; northeastern Tanzania to South Africa), Cedrelopsis (8; Madagascar), Bottegoa (1; B. insignis; Somalia, southeastern Ethiopia, northern Kenya). – Tropical regions in the Old World, the Canary Islands, western Mediterranean, the West Indies, tropical South America. Trees or shrubs. Oil cavities usually absent (present in, e.g., Spathelia); oil cells usually solitary. Medullary secretory ducts absent in Harrisonia. Leaves in Cneorum simple, non-punctate. Stipules usually absent (in Harrisonia modified into spines adjacent to leaf bases). Petiole vascular bundle cylindrical, consisting of two opposed plates; petiole bundle transection in Bottegoa arcuate. Stomata in Ptaeroxylon anomocytic or cyclocytic. Schizogenous cavities usually present. Extrafloral foliar nectaries present in Harrisonia. Flower in Cneorum tricoccon and Ptaeroxylon trimerous. Petals in Dictyoloma with valvate aestivation. Nectaries present in Ptaeroxylon. Stamens usually four or five, haplostemonous (sometimes eight or ten, obdiplostemonous). Filaments with appendages (in Harrisonia scale-like). Exine in Ptaeroxylon reticulate. Carpels in Harrisonia not connate; pistil in Cneorum tricoccon composed of three connate carpels, with odd carpel adaxial. Androgynophore (short) present in Ptaeroxylon. Ovules one or two (in Harrisonia one; in Ptaeroxylon one to three; in Dictyoloma four or five) per carpel, campylotropous, apotropous (Harrisonia, Ptaeroxylon) or epitropous (Dictyoloma). Micropyle endostomal (Cneorum). Outer integument approx. two cell layers thick. Inner integument approx. three cell layers thick. Hypostase present (Ptaeroxylon). Parietal tissue approx. five cell layers thick. Fruit a loculicidal capsule (in Ptaeroxylon with carpels dehiscing adaxially and separating laterally and from columella), a follicle or a winged drupe (in Cneorum a drupe or schizocarp). Testa multiplicative (Harrisonia, Ptaeroxylon). Exotestal cells in Harrisonia large, with thickened outer walls. Exotegmen tracheidal (Harrisonia). Pyranochromones, diterpenoid cneorubin X, cedashnine (triterpenoid derivative), quassinoids, etc. present (in Cneorum and Harrisonia chromones [ptaeroxylins] and limonoids; in Ptaeroxylon chromones but no limonoids). n = ? – Cneoroideae are sister-group to the remaining Rutaceae.

[Amyridoideae+Rutoideae]

Amyridoideae Arn., Botany: 105. 9 Mar 1832 [‘Amyrideae’]

115–116/1.380–1.400. Casimiroa (5; mountain regions in Central America), Orixa (1; O. japonica; China, the Korean Peninsula, Japan), Skimmia (4; Afghanistan, Himalayas, China, Japan, Southeast Asia, the Philippines), Dictamnus (1; D. albus; Central and South Europe and eastwards to northern China); Ptelea (c 11; North America, Mexico, Central America), Pilocarpus (17; tropical America); Acmadenia (33; Western and Eastern Cape), Adenandra (18; Western Cape), Agathosma (140–150; Western and Eastern Cape, KwaZulu-Natal, Lesotho, with their highest diversity in Western Cape), Calodendrum (1; C. capense; tropical East Africa to South Africa), Coleonema (8; Western and southern Eastern Cape), Diosma (28; Western and Eastern Cape), Empleurum (2; Western and Eastern Cape), Euchaetis (23; Western and Eastern Cape), Macrostylis (10; Western and Eastern Cape), Phyllosma (2; Western Cape), Sheilanthera (1; S. pubens; Cold Bokkeveld in Western Cape); Balfourodendron (2; southern Brazil), Helietta (8; California, Texas, Mexico, tropical America), Esenbeckia (c 25; tropical America), Metrodorea (5–6; northeastern South America to Peru and Bolivia), Choisya (7; southwestern United States, Mexico), Andreadoxa (1; A. flava; Bahia in Brazil), Conchocarpus (c 45; tropical America), Ravenia (14; tropical America), Raputia (10; tropical South America), Neoraputia (6; Peru, Brazil), Almeidea (6; northeastern South America), Angostura (7; tropical South America), Decagonocarpus (2; Amazonia), Desmotes (1; D. incomparabilis; Oiba Island in Panamá), Erythrochiton (6; tropical America), Euxylophora (1; E. paraensis; eastern Peru, Amazonian Brazil), Galipea (14–16; tropical America), Leptothyrsa (1; L. sprucei; the Amazon), Lubaria (2; Costa Rica, Venezuela), Monnieria (2; tropical South America), Naudinia (1; N. amabilis; Colombia), Spiranthera (3–4; northern South America), Ticorea (5; Costa Rica to northeastern South America), Toxosiphon (4; tropical America), Adiscanthus (1; A. fusciflorus; the Amazon), Hortia (10; tropical South America); Toddalia (1; T. asiatica; tropical and southern Africa, Madagascar, tropical Asia), Toddaliopsis (2–4; tropical and southern Africa), Boninia (2; the Bonin Islands), Zanthoxylum (c 200; tropical and southern Africa, subtropical East Asia, tropical Asia, northern and eastern Australia, Melanesia, tropical America), Vepris (c 80; tropical and southern Africa, Madagascar, the Mascarene Islands, the Arabian Peninsula, southwestern India), Phellodendron (2–4; China, the Korean Peninsula, Japan, Russian Far East, Taiwan, Southeast Asia); Acradenia (4; eastern Queensland, eastern New South Wales, Tasmania), Crossosperma (2; New Caledonia), Bosistoa (4; eastern Queensland, northeastern New South Wales), Bouchardatia (4; New Guinea, southeastern Queensland, northeastern New South Wales), Dinosperma (4; eastern Queensland, northeastern New South Wales), Geijera (6; northern New Guinea, eastern and southern Australia, New Caledonia; incl. Dendrosma?), Dendrosma (1; D. deplanchei; New Caledonia; in Geijera?), Lunasia (1; L. amara; the Philippines to New Guinea, northeastern Queensland), Flindersia (17; the Moluccas, New Guinea, Queensland, New South Wales, New Caledonia), Pentaceras (1; P. australe; southeastern Queensland, northeastern New South Wales); Boronia (c 150; Australia, Tasmania, New Caledonia), Perryodendron (1; P. parviflorum; the Moluccas, New Guinea, New Britain), Zieria (42; eastern Queensland to southeastern South Australia, Tasmania, New Caledonia), Neobyrnesia (1; N. suberosa; northern Arnhem Land in Northern Territory), Brombya (2; northeastern Queensland), Euodia (7; New Guinea, eastern Queensland, the Solomon Islands), Pitaviaster (1; P. haplophyllus; northeastern Queensland), Dutaillyea (2; New Caledonia), Picrella (3; New Caledonia), Tetractomia (6; Malesia), Tetradium (9; Himalayas, China, the Korean Peninsula, Japan, the Ryukyu Islands, Taiwan, Southeast Asia, the Philippines, Sumatra, Java), Melicope (230–235; Madagascar, southern China, tropical Asia to New Guinea, northern and eastern Australia, New Zealand, Fiji to the Society Islands and the Hawaiian Islands), Sarcomelicope (7; eastern Queensland, northeastern New South Wales, New Caledonia, Lord Howe, Fiji),Comptonella (8; New Caledonia), Medicosma (c 25; New Guinea, eastern Queensland, New Caledonia), Acronychia (44; southern China, Taiwan, tropical Asia to New Guinea, eastern Queensland, eastern New South Wales, islands in western Pacific); Neoschmidia (2; New Caledonia), Halfordia (3; New Guinea, eastern Queensland, northeastern New South Wales, New Caledonia), Myrtopsis (9; New Caledonia), Asterolasia (15; southwestern Western Australia, southeastern South Australia, Victoria, eastern New South Wales), Eriostemon (2; eastern Queensland, eastern New South Wales, Victoria, Tasmania), Leionema (22; southeastern Queensland, eastern New South Wales, Victoria, southeastern South Australia, Tasmania, New Zealand), Philotheca (43; southwestern Western Australia, southeastern South Australia to southeastern Queensland, Tasmania), Geleznowia (1; G. calycina; southwestern Western Australia), Drummondita (5; southwestern Western Australia), Crowea (3; southwestern Western Australia, eastern New South Wales, Victoria), Correa (12; southeastern South Australia, Victoria, eastern New South Wales, Tasmania), Microcybe (3; southern Western Australia, southern South Australia, western Victoria), Muiriantha (1; M. hassellii; southwestern Western Australia), Phebalium (c 25; eastern and southern Australia), Rhadinothamnus (3; southwestern Western Australia), Diplolaena (18; western and southwestern Western Australia), Chorilaena (1; C. quercifolia; southwestern Western Australia), Nematolepis (7; southern Western Australia, eastern New South Wales, Victoria, Tasmania), Pitavia (1; P. punctata; Chile). – Tropical and subtropical regions on both hemispheres, temperate East Asia, temperate Australia, Tasmania, New Zealand, with their highest diversity in tropical Asia and Australia. – Unplaced Amyridoideae Bouzetia (1; B. maritima; New Caledonia), Fagaropsis (4; tropical and northeastern Africa, Madagascar), Ivodea (10; Madagascar), Pseudiosma (1; P. asiatica; Southeast Asia), Tractocopevodia (1; T. burmahica; Burma), Amyris (c 40; tropical America), Apocaulon (1; A. carnosum; Venezuela), Decatropis (2–3; Mexico, Guatemala), Decazyx (2; Mexico, Honduras), Kodalyodendron (1; K. cubensis; eastern Cuba), Megastigma (2; Mexico, Central America), Nycticalanthus (1; N. speciosus; Amazonia), Peltostigma (4; Central America, the West Indies), Plethadenia (2; P. cubensis: eastern Cuba; P. granulata: Hispaniola), Polyaster (1–2; Mexico), Raulinoa (1; R. echinata; Brazil), Raveniopsis (19; Guayana Highlands, Brazil), Rutaneblina (1; R. pusilla; Venezuela), Stauranthus (1; S. conzattii; southern Mexico).

Cladogram (simplified) of Rutoideae sensu stricto based on DNA sequence data (Bayer & al. 2009).

Rutoideae Arn., Encycl. Brit., ed. 7, 5: 104. 9 Mar 1832 [‘Ruteae’]

Exine sometimes striate. Outer integument three to six cell layers thick. Inner integument two to five (or six) cell layers thick. Parietal tissue five to twelve cell layers thick. Nucellar cap several cell layers thick. Exotesta sometimes mucilaginous.

Ruteae Dumort., Anal. Fam. Plant.: 45. 1829

7/85–90. Chloroxylon (2; C. faho: Madagascar; C. swietenia: southern India, Sri Lanka), Cneoridium (1; C. dumosum; southern California), Haplophyllum (65–70; the Mediterranean, northwestern Africa, the Arabian Peninsula, southwestern Asia to eastern Siberia), Psilopeganum (1; P. sinense; southern China), Ruta (7; Macaronesia, the Mediterranean, southwestern Asia), Boenninghausenia (1; B. albiflora; Assam to central Japan), Thamnosma (11; arid regions of Namibia, South Africa, Botswana, Somalia, Yemen, Socotra, southwestern United States, Mexico). – Africa, Madagascar, southwestern and southern Asia to eastern Siberia and Japan, southwestern United States, Mexico. Usually trees or shrubs (rarely perennial herbs). Oil cells often solitary. Leaves sometimes opposite. Flowers sometimes vertically or obliquely zygomorphic. Petals in Ruta sometimes with fimbriate margin. Quinolone and acridone alkaloids derived from anthranilic acid or from pyranoquinolines or furopyranoquinolines.

Aurantieae Rchb., Fl. Germ. Excurs. 2(2): 840. 1832

25/190–195. Bergera (2; South and Southeast Asia), Clausena (23; tropical and southern Africa, tropical Asia eastwards to West Malesia), Glycosmis (c 45; tropical Asia), Micromelum (9; Borneo and the Philippines to New Guinea, northern and eastern Australia, Tonga, Niue, Samoa), Merrillia (1; M. caloxylon; Burma to West Malesia),Murraya (3; Sri Lanka to southern China and southern Ryukyu Islands, Southeast Asia, Malesia to New Guinea, northern and eastern Australia, New Caledonia, Vanuatu, the Mariana Islands); Citrus (20–25; India and southern China to Southeast Asia, Malesia to New Guinea, northern and eastern Australia, New Caledonia), Atalantia (16–17; tropical Asia, East Asia to Taiwan), Limonia (1; L. acidissima; India to Java), Citropsis (4; tropical and southern Africa), Naringi (1; N. crenulata; tropical Asia), Triphasia (3; Southeast Asia, the Philippines), Swinglea (1; S. glutinosa; the Philippines),Burkillanthus (1; B. malaccensis; West Malesia),Pleiospermium (5; southern India, Sri Lanka, Sumatra, Java, Borneo), Aegle (3; tropical Asia), Aeglopsis (5; tropical Africa), Afraegle (4; tropical West and Central Africa), Balsamocitrus (2; tropical East Africa), Paramignya (12; tropical Asia), Luvunga (12; tropical Asia), Pamburus (1; P. missionis; southern India, Sri Lanka), Merope (1; M. angulata; tropical Asia), Monanthocitrus (4; Borneo, New Guinea), Wenzelia (9; southern Philippines, New Guinea, the Solomon Islands, Fiji). – Tropical and southern Africa, East Asia to Taiwan, tropical Asia to New Guinea, northern and eastern Australia, Melanesia, Micronesia, Polynesia. Trees or shrubs (sometimes spiny). Foliar rhachis sometimes winged. Epigyny. Petals often with imbricate aestivation. Stamens sometimes numerous. Carpels postgenitally fused. Ovary with multicellular hairs inside locules. Pistil in Triphasia composed of three connate carpels, with odd carpel adaxial. Ovules in Glycosmis unitegmic. Nucellar polyembryony frequent. Fruit a dry berry with mucilaginous pulp formed from endocarp and carnose hairs in loculi. Exotesta mucilaginous, often fibrous, with lignified inner cell walls. Exotesta and endotesta with crystalliferous cells. Exotegmen fibrous. Endosperm absent. x = 9. Flavonoids formed by polymethoxylation, and 3-methyl carbazole alkaloids (in the Clausena clade)present.

Phylogeny of Rutaceae based on Morton & Telmer (2014).

Bootstrap consensus tree of Rutaceae based on DNA sequence data (Scott & al. 2000).

Cladogram 1 of Rutaceae based on DNA sequence data (Groppo & al. 2008).

Cladogram 2 of Rutaceae based on DNA sequence data (Groppo & al. 2008; Salvo & al. 2008).

SAPINDACEAE Juss.

( Back to Sapindales )

de Jussieu, Gen. Plant.: 246. 4 Aug 1789 [’Sapindi’], nom. cons.

Aceraceae Juss., Gen. Plant.: 250. 4 Aug 1789 [’Acera’], nom. cons.; Acerales Bercht. et J. Presl, Přir. Rostlin: 225. Jan-Apr 1820 [‘Acerinae’]; Aesculales Bercht. et J. Presl, Přir. Rostlin: 224. Jan-Apr 1820 [‘Aesculeae’]; Allophylaceae Martinov, Tekhno-Bot. Slovar: 19. 3 Aug 1820 [’Allophylleae’]; Ornithropaceae Martinov, Tekhno-Bot. Slovar: 443. 3 Aug 1820 [’Ornitropheae’]; Hippocastanaceae A. Rich., Bot. Méd.: 680. 1823 [’Hippocastaneae’], nom. cons.; Hippocastanales Link, Handbuch 2: 335. 4-11 Jul 1829 [‘Hippocastaneae’]; Paviaceae Horan., Prim. Lin. Syst. Nat.: 100. 2 Nov 1834; Aesculaceae Burnett, Outl. Bot.: 891, 1093, 1126. Feb 1835; Aceropsida Endl., Gen. Plant.: 1055. Apr 1840 [’Acera’]; Aesculopsida Brongn., Enum. Plant. Mus. Paris: xxiv, 86. 12 Aug 1843 [’Aesculineae’]; Sapindineae J. Presl in Nowočeská Bibl. [Wšobecný Rostl.] 7: 222. 1846 [‘Sapindeae‘]; Koelreuteriaceae J. Agardh, Theoria Syst. Plant.: 227. Apr-Sep 1858 [’Koelreuterieae’]; Dodonaeaceae Kunth ex Small, Fl. S.E. U.S.: 724, 737. 22 Jul 1903, nom. cons.; Xanthoceraceae Buerki, Callm. et Lowry in Plant Ecol. Evol. 143: 155. 2010

Genera/species c 140/1.510–1.740

Distribution Tropical, subtropical and temperate regions on both hemispheres.

Fossils Schizocarpous winged fruits similar to those in extant Acer have been found in the Paleocene of North Dakota onwards. Vegetative organs of Sapindaceae are known from Eocene and younger layers. Sapindoxylon type of wood is reported from the Maastrichtian Deccan Intertrappean Beds in India and from Neogene strata of Southeast Asia, Pakistan, Northeast Africa, Europe and Columbia. Eocene seeds are represented by Palaealectryon, Palaeallophyllus and Sapindospermum, the latter also known from the Late Turonian to the Maastrichtian of Central Europe. Pollen grains of the ‘Cupaniopsis‘ type are reported from many areas including Africa, a continent lacking extant Sapindaceae with this kind of pollen.

Habit Monoecious, andromonoecious, polygamomonoecious, dioecious, androdioecious, or polygamodioecious (sometimes bisexual), evergreen or deciduous trees, shrubs or lianas (Cardiospermum consists of perennial climbing herbs with inflorescence branches modified into tendrils).

Vegetative anatomy Phellogen ab initio usually superficial (sometimes outer-cortical; in Dodonaea pericyclic). Primary medullary rays usually narrow. Secondary lateral growth in lianas anomalous (sometimes via concentric cambia). Vessel elements usually with simple (rarely scalariform) perforation plates; lateral pits usually alternate (rarely opposite), bordered pits. Vestured pits present (Aesculus). Imperforate tracheary xylem elements usually libriform fibres (sometimes fibre tracheids) with simple pits, septate or non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, homocellular or heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal scanty, aliform, confluent, vasicentric, or banded, or absent. Wood elements often storied. Secondary phloem sometimes stratified into hard fibrous and soft parenchymatous layers. Sieve tube plastids S type. Nodes usually 3:3, trilacunar with three leaf traces (rarely multilacunar with more than three traces). Many representatives with laticifers containing latex or resinous substances of unusual types. Silica bodies present in parenchyma in some species. Prismatic calciumoxalate crystals and druses frequent.

Trichomes Hairs unicellular, simple or branched, or multicellular, uniseriate or often furcate, stellate or lepidote; glandular hairs present (also peltate-lepidote).

Leaves Usually alternate (spiral; in Hippocastanoideae opposite), usually pinnately or palmately compound (sometimes bipinnate, or simple/unifoliolate and entire or lobed), also with conduplicate-plicate ptyxis. Stipules usually absent (sometimes petiolar); leaf sheath absent. Stipule-like leaflets or colleters often present. Petiole base usually pulvinate. Petiole vascular bundle transection ?; sometimes with cortical or adaxial bundles. Petiolules articulated. Rhachis sometimes winged. Venation usually pinnate (sometimes palmate), brochidodromous, eucamptodromous, craspedodromous, billioid, or bohlenioid. Stomata usually anomocytic (sometimes paracytic). Cuticular waxes usually absent (crystalloids rarely as platelets or rodlets). Domatia present as pits, pockets or hair tufts, or absent. Lamina often gland-dotted, without secretory cavities. Epidermis usually with mucilaginous idioblasts. Mesophyll with or without spherical idioblasts with ethereal oils, with or without mucilaginous idioblasts, with or without sclerenchymatous idioblasts. Mesophyll cells often with calciumoxalate as druses or prismatic crystals. Leaf margin and leaflet margins entire, crenate, or serrate. Extrafloral nectaries sometimes present on stipules and/or lamina.

Inflorescence Terminal or axillary, panicle, thyrsoid, raceme- or umbel-like (rarely solitary axillary).

Flowers Actinomorphic or zygomorphic (often obliquely, sometimes transversely), often small. Pedicel articulated. Receptacle often prolonged to androphore or gynophore. Hypogyny. Sepals (three or) four or five (to seven), usually with imbricate (rarely valvate) aestivation, usually free (sometimes connate at base). Petals (three or) four or five (or more than five), usually with imbricate (rarely valvate) aestivation, often clawed and/or with scale-like or other appendages or folds enclosing nectaries, free (sometimes absent). Nectariferous disc usually extrastaminal, annular or unilateral (sometimes lobate or reduced to glandular teeth, rarely absent; in Dodonaea intrastaminal).

Androecium Stamens usually 4+4 or 5+5 (rarely four to seven or numerous in three to five whorls), usually diplostemonous. Filaments free from each other and usually from petals, often pubescent or papillose. Anthers usually dorsifixed (sometimes basifixed to somewhat ventrifixed), usually versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective usually somewhat prolonged at apex. Tapetum secretory, with uni- to trinucleate cells. Female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually triporate, 2–4-colpate or 2–4-colporate (sometimes acolpate, syncolporate or parasyncolporate), shed as monads, bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, reticulate, finely reticulate or scabrate, sometimes striate or striate-reticulate.

Gynoecium Pistil composed of (two or) three (to eight) connate carpels. Ovary superior, (bilocular or) trilocular (to octalocular). Septal non-nectariferous cavities sometimes present. Style single, simple or lobate (sometimes hollow), or stylodia two to four, free or connate below. Stigma entire or lobate, usually non-papillate, Dry type (in, e.g., Aesculus) or Wet type (in, e.g., Dodonaea). Male flowers often with pistillodium.

Ovules Placentation axile to basal. Ovule usually one (ovules sometimes two; in Dodonaea two to five; in Xanthoceras five to eight) per carpel, anatropous, hemianatropous, amphitropous or campylotropous (rarely orthotropous), ascending, horizontal or pendulous, apotropous or epitropous, bitegmic, crassinucellar. Micropyle usually bistomal (rarely endostomal). Outer integument three to twelve cell layers thick. Inner integument two to six cell layers thick. Funicle absent. Placental obturator usually present, pressed to ovules. Hypostase present. Parietal tissue four to 15 cell layers thick. Megagametophyte monosporous, Polygonum type. Antipodal cells sometimes proliferating (up to 14 cells), rarely long-lived. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis asterad.

Fruit Usually a loculicidal capsule (rarely a pyxidium or an irregularly dehiscent capsule) or a schizocarp (often with carpophore) with two or three (to eight) one-seeded samaroid mericarps (rarely a nut, samara, drupe or berry), usually with only one or two fertile carpels. Capsule sometimes resembling a follicle, with only one carpel developed, although dehiscing abaxially (in contrast to follicles).

Seeds Aril or arillode, formed from integument or chalaza, and chalazal sarcotesta often present. Sarcotesta sometimes present. Seed often pachychalazal. Seed coat sometimes with fold or pocket. Seed coat usually exotestal (in Acer reduced). Testa vascularized, multiplicative. Exotesta usually palisade, non-lignified. Mesotestal cell walls sometimes thickened and lignified. Endotesta sometimes with stellate calciumoxalate crystals. Exotegmen often lignified (in Alectryon fibrous), sometimes multiplicative. Endotegmen? Perisperm not developed. Endosperm usually absent (sometimes with starch). Embryo usually curved to spirally twisted with micropyle adjacent to hilum (when straight then micropyle opposite hilum), well differentiated, oily and starchy, with or without amyloid, with or without chlorophyll. Radicula dorsal, often inserted in testal pocket. Cotyledons two, usually folded or spirally twisted. Germination phanerocotylar or cryptocotylar.

Cytology n = usually 10–12 (lianas) or 14–16 (non-lianas); x = 7

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, delphinidin, ellagic acid (in some species of Acer), condensed tannins, alkaloids (e.g. gramine), toxic triterpene saponins, leucine-derived cyanogenic compounds, quebrachitol (cyclitol), cyclic polyvalent alcohols, type C18:3 fatty acids, and non-protein cyclopropane amino acids (e.g. hypoglycine) present.

Use Ornamental plants, fruits (Blighia, Dimocarpus, Litchi, Melicoccus, Nephelium, Paullinia, Talisia), syrup (Acer), oils (Schleichera), soap (Sapindus saponaria etc.), medicinal plants, fish poison, timber.

Systematics The sister-group relationship of Sapindaceae is unresolved. They may be sister to the clade [Rutaceae+Meliaceae+Simaroubaceae], although the support is weak.

Xanthoceras is sister to the remaining Sapindaceae.

Xanthoceroideae thorne et Reveal in Bot. Rev. (Lancaster) 73: 119. 29 Jun 2007

1/1. Xanthoceras (1; X. sorbifolia; northern and northeastern China, the Korean Peninsula). – Andromonoecious, deciduous tree or shrub. Secondary phloem sometimes stratified. Leaves imparipinnate. Stomata anomocytic. Extrastaminal nectaries complex golden-yellow. Flowers actinomorphic. Sepals five, with imbricate aestivation. Petals five, shortly clawed. Nectariferous disc quinquelobate, provided with apical-abaxial golden yellow, horn-shaped glands. Stamens eight. Exine spinulate. Pistil composed of three connate carpels. Ovary trilocular. Stigma papillate. Ovules six to eight per carpel, arranged in parallel, campylotropous. Outer integument six to eight cell layers thick. Inner integument three or four cell layers thick. Obturator absent. Fruit a loculicidal schizocarp-like capsule. Pericarp coriaceous, thick, with fibre bundles. Arillode absent. Mesotestal cell walls thickened. Tegmen multiplicative. Inner tegmic cell layers with thickened walls. Cotyledons one large and one small. n = 15.

[Hippocastanoideae+[Dodonaeoideae+Sapindoideae]]

Pericyclic envelope formed by phloem fibres and sclerenchymatous cells. Flowers often strongly obliquely (in Aesculus vertically) zygomorphic. Ovules two per carpel, apotropous. Funicular obturator often present. Archespore sometimes multicellular. Fruit a loculicidal capsule or a schizocarp with single-seeded samara-like mericarps.

Hippocastanoideae Burnett, Outlines Bot.: 891, 1093, 1126. Feb 1835 [‘Hippocastanidae’]

5/c 140. Acer (>120; temperate regions on the Northern Hemisphere, tropical mountains), Dipteronia (2; China; in Acer?); Handeliodendron (1; H. bodinieri; southwestern China), Billia (2; southern Mexico, Central America, tropical South America), Aesculus (13; the Balkan Peninsula, Himalayas and eastwards to Japan and Indochina, North America, northwestern Mexico). – Temperate regions in the Northern Hemispere, tropical mountain regions southwards to Southeast Asia and tropical South America. Deciduous trees or shrubs. Pericyclic envelope sometimes absent. Leaves alternate (spiral) or opposite, usually palmately compound or lobed (rarely imparipinnate or simple). Cuticular wax crystalloids often present in Acer. Stomata usually actinocytic (sometimes anomocytic). Flowers actinomorphic or zygomorphic. Petals usually clawed. Nectariferous disc in Acer often intrastaminal. Stamens (five or) six to eight (to twelve). Stigma Dry type. “Hippocastanoid” ovules (inserted back-to-back in each pair, half-way twisted around one another, with elongate geniculate obturator) present in Aesculus, Billia and Handeliodendron. Outer integument three to five (in Acer) or eight to ten cell layers thick. Inner integument three to six cell layers thick (Handeliodendron). Nucellar cap present in Acer, eight to ten cell layers thick. Hypostase usually present (absent in Handeliodendron). Aril present in Handeliodendron. n = 13 (Acer), 20 (Aesculus). Cyanogenic glucosides not found. – Hippocastanoideae are sister to the remaining Sapindaceae except Xanthoceras. Billia and Handeliodendron are successive sister-groups to Aesculus.

[Dodonaeoideae+Sapindoideae]

Leaves usually paripinnate (sometimes bicompound or simple). Seed often with chalazal or integumentary aril and sarcotesta.

Dodonaeoideae Burnett, Outlines Bot.: 889. Feb 1835 [‘Dodonidae’]

21/140–145. Tropical to warm-temperate regions on both hemispheres, with their largest diversity in tropical Asia and Australia. Phellogen pericyclic (Dodonaea). Stomata cyclocytic (Dodonaea). Petals sometimes absent. Stamens five to numerous. Placentation basal or apical. Ovules usually two (sometimes one) per carpel, usually apotropous (sometimes epitropous), sometimes pendulous. Outer integument eight to ten cell layers thick. Inner integument three or four cell layers thick. Fruit usually a longicidal (sometimes septicidal) capsule (sometimes a berry). Seed sometimes with aril or sarcotesta. n = 10, 12, 14–16

Dodonaeeae Kunth ex DC., Prodr. 1: 615. Jan (med.) 1824 [‘Dodonaeaceae’]

10/c 90. Averrhoidium (5; southern Mexico, southwestern Amazonas, southeastern Brazil, Paraguay), Arfeuillea (1; A. arborescens; Southeast Asia), Majidea (1–5; M. zanguebarica; tropical East Africa, Madagascar), Euphorianthus (1; E. euneurus; tropical Asia), Eurycorymbus (1; E. cavaleriei; southern China, Taiwan), Llagunoa (2; western tropical South America), Cossinia (4; the Mascarene Islands, southeastern Queensland, New Caledonia, Fiji), Diplopeltis (5; Western Australia, Northern Territory), Hirania (1; H. rosea; southern central Somalia), Dodonaea (65–70; tropical and subtropical regions on both hemispheres, with their highest diversity in Australia), Loxodiscus (1; L. coriaceus; New Caledonia). – East Africa, Madagascar, tropical Asia and eastwards to Taiwan, Australia, New Caledonia and Fiji, Mexico to tropical South America (Dodonaea pantropical). Perianth in Averrhoidium spirally arranged. Fruit a capsule.

Harpullieae Radlk. in Sitzungsber. Math.-Phys. Cl. Königl. Bayer. Akad. Wiss. München 20: 255. Jun 1890

4/30–35. Hypelate (1; H. trifoliata; Florida, the West Indies)?, Zanha (3; tropical Africa, Madagascar)?, Harpullia (25–30; tropical Asia to New Guinea, northern Northern Territory, eastern Queensland, northeastern New South Wales, New Caledonia, Tonga), Magonia (1; M. pubescens; Brazil, Paraguay). – Tropical Africa, Madagascar, tropical Asia to New Guinea, northeastern Australia, New Caledonia, Tonga, Florida, the West Indies, southern tropical South America. Evergreen trees. – Harpullia is sister to [Cossinia+[Diplopeltis+Dodonaea]] in the analyses by Buerki & al. (2012).

DoratoxyleaeRadlk. in Sitzungsber. Math.-Phys. Cl. Königl. Bayer. Akad. Wiss. München 20: 255. Jun 1890

6/16–17. Doratoxylon (6; Madagascar, the Comoro Islands, Mauritius), Euchorium (1; E. cubense; western Cuba), Exothea (4; Florida, Central America, the West Indies, Surinam), Filicium (3–4; tropical regions in the Old World), Ganophyllum (1; G. falcatum; Central Africa?, the Andaman Islands, Vietnam, the Malay Peninsula, Sumatra, Java, the Philippines, New Guinea, northern Australia), Hippobromus (1; H. pauciflorus; South Africa). – Tropical and southern Africa, Madagascar, the Comoro Islands, Mauritius, tropical Asia and eastwards to northern Australia, tropical America. Fruit baccate.

Sapindoideae Burnett, Outlines Bot.: 889. Feb 1835 [‘Sapindidae’]

111/1.230–1.450. Mainly tropical and subtropical regions, few species in warm-temperate areas. Trees, shrubs (sometimes lianas with anomalous secondary thickening; rarely herbaceous). Petals often with complicated appendages. Stamens (four or) five (to numerous). Pollen grains sometimes triporate. Ovule usually one per carpel, apotropous, erect or ascending. Outer integument four to twelve cell layers thick. Inner integument two to six cell layers thick. Antipodal cells in Cardiospermum persistent. Fruit usually a loculicidal capsule (sometimes septicidal or fruit indehiscent). Seed usually with aril, arillode or sarcotesta. Amyloid (xyloglucans) present in seeds of Cardiospermum. n = 10–12, 14–16, etc.

Ungnadia clade

1/1 Ungnadia (1; U. speciosa; southernmost United States, northeastern Mexico). – Shrub or small tree. Flowers zygomorphic. Ovules two per carpel.

Delavaya clade

1/1. Delavaya (1; D. toxocarpa; southwestern China, northern Vietnam). – Dioecious shrub or small tree. Leaves trifoliolate. Stamens eight. Pistil composed of two (or three) connate carpels. Ovary bilocular (or trilocular). Ovules two per carpel. Pericarp coriaceous, almost woody.

Koelreuterieae Radlk. in Sitzungsber. Math.-Phys. Cl. Königl. Bayer. Akad. Wiss. München 20: 254. Jun 1890

4/20. Koelreuteria (4; China, Taiwan, Fiji), Stadmania (6; tropical East Africa, Madagascar, Mauritius), Erythrophysa (9; Ethiopia, Northern Cape, Free State, Northern Province, western Madagascar), Stocksia (1; S. brahuica; eastern Iran, Afghanistan). –Tropical East Africa, South Africa, Madagascar, Mauritius, southwestern Asia, China, Taiwan, Fiji. Anthers hairy. Ovules two per carpel.

Schleichereae Radlk. in Sitzungsber. Math.-Phys. Cl. Königl. Bayer. Akad. Wiss. München 20: 253, 287. Jun 1890

5/11. Amesiodendron (1; A. chinense; southwestern China to West Malesia), Bizonula (1; B. letestui; tropical Africa), Camptolepis (4; tropical eastern and northeastern Africa, Madagascar), Paranephelium (4; Southeast Asia, West Malesia), chleichera (1; S. oleosa; tropical Asia). – Tropical Africa, Madagascar, southwestern China, tropical Asia.

Pancovieae Baill., Hist. Plant. 5: 378, 414. Dec 1874

25/205–210. Deinbollia (c 40; tropical and subtropical Africa, Madagascar), Atalaya (9; tropical Africa, tropical Asia and eastwards to Australia), Pseudima (3; tropical America), Lepisanthes (c 25; tropical regions in the Old World eastwards to northern Australia), Pometia (2; tropical Asia), Nephelium (22; tropical Asia), Dimocarpus (6; India and Sri Lanka to northeastern Queensland), Litchi (1; L. chinensis; southern China to West Malesia), Lecaniodiscus (3; tropical Africa), Eriocoelum (c 10; tropical Africa), Lepidopetalum (6; the Andaman Islands, the Nicobar Islands, Sumatra, the Philippines to New Guinea, the Bismarck Archipelago, Bougainville, northernmost Queensland), Blighia (3; tropical Africa), Cubilia (1; C. cubili; Malesia), Haplocoelopsis (1; H. africana; Central and tropical East Africa), Glenniea (8; tropical Africa, Madagascar, tropical Asia), Laccodiscus (4; tropical West and Central Africa), Otonephelium (1; O. stipulaceum; India), Xerospermum (2; tropical Asia), Chytranthus (c 30; tropical Africa), Namataea (1; N. simplicifolia; Cameroun), Pancovia (10–12; tropical Africa), Placodiscus (c 15; tropical Africa), Pseudopancovia (1; P. heteropetala; Central Africa), Radlkofera (1; R. calodendron; tropical Africa), Zollingeria (2–3; Southeast Asia, Borneo). – Pantropical, with their highest diversity in tropical regions in the Old World. Ovules two per carpel.

Macphersonia clade

9/32–33. Pappea (1; P. capensis; tropical East to southern Africa, Dhofar in southeastern Arabian Peninsula), Tsingya (1; T. bemarana; Madagascar), Plagioscyphus (8; Madagascar), Gereaua (1; G. perrieri; Madagascar), Conchopetalum (2; Madagascar), Chouxia (6; northern Madagascar), Macphersonia (6; tropical East Africa, Madagascar), Pseudopteris (3; Madagascar), Beguea (4–5; Madagascar). – Africa, Madagascar, Dhofar, with their highest diversity in Madagascar. Flowers actinomorphic. Ovule usually one per carpel (in Conchopetalum two ovules).

Cupanieae Blume, Rumphia 3: 157. Jun 1847

c 38/435–440. Diploglottis (12; New Guinea, eastern Queensland, eastern New South Wales), Podonephelium (4; New Caledonia), Alectryon (c 35; Malesia to New Guinea, Australia, the Solomon Islands, New Caledonia, Vanuatu, Fiji, New Zealand, Samoa, the Hawaiian Islands), Elattostachys (c 20; Malesia to New Guinea, eastern Queensland, northeastern New South Wales, Fiji, Tonga, Niue, Samoa), Jagera (2; East Malesia to New Guinea, eastern Queensland, northeastern New South Wales), ’Guioa’ (c 65; Thailand, Malesia to New Guinea, eastern Queensland, eastern New South Wales, Fiji, Samoa, Tonga; non-monophyletic), Mischocarpus (c 15; Southeast Asia, Malesia to New Guinea, eastern Queensland, northeastern New South Wales), Sarcopteryx (12–13; the Moluccas, New Guinea, eastern Queensland, northeastern New South Wales), Molinaea (9; Madagascar, the Mascarene Islands), Tina (6; Madagascar),’Matayba’ (c 30; tropical America; polyphyletic), Vouarana (2; northeastern South America), Cupania (c 45; tropical and subtropical America), Mischarytera (3; New Guinea, eastern Queensland), Gongrodiscus (2; New Caledonia), Rhysotoechia (c 15; Borneo to New Guinea, eastern Queensland, northeastern New South Wales), Lepiderema (8; New Guinea, eastern Queensland), ’Sarcotoechia’ (10–11; New Guinea, northeastern Queensland; polyphyletic), Storthocalyx (4; New Caledonia), Toechima (6; Flores, New Guinea, eastern Queensland, northeastern New South Wales), Alatococcus (1; A. siqueirae; Brazil), Arytera (28; Southeast Asia, Malesia to New Guinea, northernmost Northern Territory, eastern Queensland and northestern New South Wales, Fiji, Samoa, Tonga), Synima (2; southeastern New Guinea, northeastern Queensland), Aporrhiza (6; tropical Africa), Blighiopsis (1; B. pseudostipularis; Congo), Cnesmocarpon (4; New Guinea, eastern Queensland), ’Cupaniopsis’ (c 60; Sulawesi, New Guinea, northern and eastern Australia, New Caledonia, Fiji, Samoa, Micronesia; polyphyletic), Dilodendron (3; tropical America), Diplokeleba (2; tropical South America), Gloeocarpus (1; G. patentivalvis; the Philippines), Gongrospermum (1; G. philippinense; the Philippines), Lychnodiscus (6; tropical Africa), Pavieasia (2; southern China, northern Vietnam), Pentascyphus (1; P. thyrsiflorus; Guyana), Phyllotrichum (1; P. mekongense; Southeast Asia), Scyphonychium (1; S. multiflora; northeastern Brazil), Sisyrolepis (1; S. muricata; Thailand, Cambodia), Trigonachras (8; Malesia), Tripterodendron (1; T. filicifolium; Brazil). – Pantropical, with their highest diversity in tropical Asia and tropical Australia.

Tristiropsis clade

2/5–8. Dictyoneura (2–3; Borneo to New Guinea, northeastern Queensland), Tristiropsis (3–5; Borneo, the Philippines and Sulawesi to New Guinea and the Bismarck Archipelago, northeastern Queensland, the Solomon Islands, Palau, Christmas Island, Guam). – Malesia to New Guinea, Queensland, islands in western Pacific.

Blomia clade

2/5–6. Blomia (1; B. prisca; Mexico), Haplocoelum (4–5; tropical Africa). – Tropical Africa, Mexico.

Melicocceae Blume in Rumphia 3: 142. Jun 1847

4/70–75. Castanospora (1; C. alphandii; eastern Queensland, northeastern New South Wales), Melicoccus (10; Central America, tropical South America), Talisia (c 60; tropical America), Tristira (1; T. pubescens; the Philippines). – Central Malesia, eastern Australia, Central and tropical South America.

Paullinieae Kunth ex DC., Prodr. 1: 601. Jan (med.) 1824 [‘Paullinieae’]

20/440–640. Athyana (1; A. weinmanniifolia; Paraguay, northern Argentina), Diatenopteryx (2; South America), Hornea (1; H. mauritiana; Mauritius), Porocystis (3; tropical South America), Sapindus (c 10; tropical and subtropical regions in the Old World, one species, S. oahuensis, in the Hawaiian Islands, one species, S. saponaria, in southeastern United States to South America), Thouinidium (7; Mexico to the West Indies), Toulicia (13; northern South America), Allophylus (1–200; A. cobbe; tropical and subtropical regions on both hemispheres), Allophylastrum (1; A. frutescens; Guyana, northern Brazil), Bridgesia (1; B. incisifolia; Chile), Guindilia (2; Chile, Argentina), Thouinia (28; Mexico to the West Indies), Cardiospermum (c 14; tropical America, one species, C. halicacabum, pantropical), Houssayanthus (3; Venezuela to Argentina), Lophostigma (2; Ecuador, Peru, Bolivia), Paullinia (c 195; tropical America, one species, P. pinnata, also in tropical Africa), Serjania (c 230; tropical and subtropical America), Thinouia (c 12; tropical and subtropical South America), Urvillea (13; tropical America), Balsas (1; B. guerrerensis; Guerrero in Mexico). – Pantropical, with their highest diversity in tropical America. Lianas with tendrils. Leaves imparipinnate, with stipules. Flowers zygomorphic. Petals with a prominent scale. Disc unilateral.

Unplaced Sapindoideae

Allosanthus (1; A. trifoliolatus; Peru), Boniodendron (2; southern China, northern Vietnam), Chonopetalum (1; C. stenodictyum; Equatorial Guinea).

Cladogram (simplified) of Sapindaceae based on morphology and DNA sequence data (Buerki & al. 2009).

Cladogram of Sapindaceae based on DNA sequence data (Harrington & al. 2005).

SIMAROUBACEAE DC.

( Back to Sapindales )

de Candolle in Nouv. Bull. Sci. Soc. Philom. Paris 2: 209. Jan 1811 [‘Simarubeae’], nom. cons.

Quassiaceae Bertol., Prael. Rei Herb.: 262. Mar 1827 [’Quassiae’]; Simabaceae Horan., Char. Ess. Fam.: 179. 30 Jun 1847; Ailanthaceae (Arn.) J. Agardh, Theoria Syst. Plant.: 223. Apr-Sep 1858 [‘Ailantheae’]; Castelaceae J. Agardh, Theoria Syst. Plant.: 181. Apr-Sep 1858 [‘Casteleae’]; Soulameaceae (Endl.) Pfeiffer, Nomencl. Bot. 2: 1202. 8 Mai 1874 [’Soulameae’]; Leitneriaceae Benth. et J. D. Hooker, Gen. Plant. 3: vi, 396. 7 Feb 1880 [‘Leitnerieae’], nom. cons.; Leitneriales Engl., Nat. Pflanzenfam. Nachtr. [1]: 345. Dec 1897

Genera/species c 19/100–105

Distribution Tropical and subtropical regions, few species (e.g. in Ailanthus) in temperate East Asia.

Fossils Fruits and leaves similar to those in Ailanthus are known from Eocene and younger strata in the Northern Hemisphere. Fossils assigned to Leitneria have been found in Oligocene layers in western Siberia and in Europe, East Asia and North America. The fossil Cenozoic fruit of Chaneya from the Northern Hemisphere may have been closely allied to Picrasma. Fossil wood under the names of Ailanthoxylon and Simarouboxylon have been described from the Deccan Intertrappean Beds from the Maastrichtian of India.

Habit Monoecious, polygamomonoecious, dioecious, or polygamodioecious (androdioecious) (sometimes bisexual), evergreen or deciduous trees or shrubs. Bark, wood and seeds often very bitter-tasting. Branch medulla characteristically light-coloured and well-developed.

Vegetative anatomy Phellogen ab initio superficial. Primary medullary rays at least in Leitneria narrow and usually uniseriate. Vessel elements with simple perforation plates (rarely also reticulate); lateral pits usually alternate (in Leitneria scalariform to opposite), usually bordered (sometimes simple) pits. Imperforate tracheary xylem elements fibre tracheids or libriform fibres with simple pits, usually non-septate (also vasicentric tracheids). Wood rays uniseriate or multiseriate, usually homocellular. Axial parenchyma apotracheal, or paratracheal scanty, aliform, lozenge-aliform, winged-aliform, confluent, vasicentric, or banded, or absent. Wood often fluorescent. Wood elements often storied. Secondary phloem at least in Leitneria stratified into hard fibrous and soft parenchymatous layers. Sieve tube plastids S type. Nodes usually 3:3, trilacunar with three leaf traces (sometimes heptalacunar). Secretory ducts with resinous substances sometimes present (especially in medulla), often also vertical intercellular canals. Parenchyma often with secretory cells containing oil, resin or mucilage. Sclereids frequent. Cortex with or without cristarque cells. Silica bodies present in parenchyma in some species. Prismatic calciumoxalate crystals or druses abundant.

Trichomes Hairs unicellular or multicellular, usually simple; capitate glandular hairs sometimes present.

Leaves Usually alternate (spiral; rarely opposite), usually imparipinnate (sometimes unifoliolate, rarely trifoliolate, or simple and entire), with conduplicate or supervolute-curved ptyxis (leaves in Holacantha scale-like or absent). Stipules absent (in Picrasma and some species of Soulamea petiolar or cauline pseudostipules); leaf sheath absent. Petiole vascular bundles? Petiolules not articulated. Rhachis collapsing at nodes. Venation pinnate, brochidodromous (sometimes reticulate). Stomata usually anomocytic (sometimes paracytic). Cuticular wax crystalloids? Domatia as hair tufts or absent. Adaxial or abaxial side of lamina often with flat to pitted glands and glandular hairs. Epidermis with or without mucilaginous idioblasts. Mesophyll with or without spherical idioblasts containing ethereal oils, usually with sclerenchymatous idioblasts (containing sclereids of several types), usually with calciumoxalate as druses or prismatic crystals. Leaf margin and leaflet margins entire, serrate or basally sinuate. Extrafloral nectaries often frequent on margin or adaxial side of lamina (rarely on petiole).

Inflorescence Terminal or axillary, cymose thyrse, sometimes umbel- or raceme-like (in Leitneria spike- or catkin-like), or simple or compound raceme, spike or panicle (flowers rarely solitary). Flowers in Leitneria surrounded by large bracts.

Flowers Actinomorphic, small. Receptacle sometimes prolonged into androphore or androgynophore. Hypogyny. Sepals (three or) four or five (to eight), with imbricate or valvate aestivation, usually connate at base (absent in Leitneria at least in male flowers). Petals (three or) four or five (to eight), with imbricate, valvate or contorted aestivation, free (absent in Leitneria). Nectariferous disc extrastaminal (intrastaminal?) (sometimes modified into gynophore or androgynophore) or absent.

Androecium Stamens usually twice as many as petals (sometimes five, antesepalous, or ten to 18; in Leitneria one to five), haplostemonous or diplostemonous. Filaments free from each other and from tepals, often with lateral or basal hairy scale-like appendages. Anthers usually dorsifixed (sometimes basifixed), versatile or non-versatile, tetrasporangiate, usually introrse (sometimes extrorse or latrorse), longicidal (dehiscing by longitudinal slits). Tapetum secretory, with tri- to duodecemnucleate cells. Female flowers sometimes with staminodia (male flowers of Eurycoma and Picrolemma with outer whorl of staminodia).

Pollen grains Microsporogenesis simultaneous. Pollen grains 3(–6)-colpor(oid)ate, shed as monads, bicellular at dispersal. Exine usually tectate (rarely semitectate), with columellate infratectum, perforate or striate (in Leitneria microreticulate or reticulate).

Gynoecium Pistil composed of (one or) two to five (to eight; in Leitneria one fertile carpel and one carpel sterile, degenerating) usually more or less connate carpels (often fused only in stylar parts; in Picrolemma and species of Ailanthus free). Short gynophore often present. Ovary superior, unilocular to quinquelocular (to octalocular). Style single, simple, often more or less basal or lateral, or stylodia several or absent. Stigmas stellately spreading, branched and more or less recurved (in Leitneria decurrent), pointed, with prolonged receptive zone, or stigma single, capitate to lobate, non-papillate, Dry type. Male flowers often with pistillodium.

Ovules Placentation usually axile (in Leitneria parietal). Ovule one (or two) per carpel, usually anatropous (rarely hemianatropous or amphitropous, in Leitneria orthotropous), usually pendulous (in Leitneria ascending), epitropous, unitegmic or bitegmic, crassinucellar. Micropyle usually endostomal (embryo axis and micropyle forming acute angle; in Leitneria and Samadera? Z-shaped [zig-zag]). Outer integument three to ten cell layers thick. Inner integument two to eight cell layers thick (in Leitneria long and folded). Hypostase present. Parietal tissue six to 20 cell layers thick. Nucellar cap approx. two cell layers thick. Megagametophyte monosporous, Polygonum type. Synergids sometimes with a filiform apparatus. Endosperm development ab initio nuclear. Endosperm haustorium chalazal. Embryogenesis usually onagrad.

Fruit A one- or two-seeded drupe with thin exocarp, a samara, or a schizocarp with (one or) two to five berry-like, drupaceous or samaroid mericarps.

Seeds Aril absent. Seeds sometimes pachychalazal. Seed coat usually testal (in Leitneria endotegmic). Exotesta indistinct, membranous. Endotesta often somewhat lignified. Testa in Leitneria multiplicative. Tegmen crushed. Mesotegmen in Leitneria with reticulate thickenings and only endotegmen persistent. Perisperm usually not developed (rarely developed, thin). Endosperm sparse or absent (sometimes with hemicellulose as storage polysaccharide, in Leitneria with starch). Embryo straight or curved, well differentiated, oily, with chlorophyll. Cotyledons two, large. Germination phanerocotylar or cryptocotylar.

Cytology n = 8–13; 16 (Leitneria)

DNA Plastid gene rpl22 absent from Leitneria.

Phytochemistry Flavonols (kaempferol, quercetin), tetracyclic triterpenes, pentanortriterpenes (malabaricol etc.), bitter-tasting triterpenoid lactones (simaroubalides and quassinoids, e.g. quassin, neoquassin, chaparrin, cedroniline, glaucarubol, simorolide, melianodiol, samaderene B and C, brusatol and klaineanone; especially in the bark), limonoids (limonin), ellagic acid, tannins, carboline and canthinone alkaloids, chromones, polyacetylenes, and polyacetate-derived arthroquinones present. Proanthocyanidins, saponins and cyanogenic compounds not found.

Use Ornamental plants, medicinal plants, insecticides, incense, timber, pulp.

SystematicsSimaroubaceae are probably sister to Meliaceae, although the support is fairly weak.

Picrasmateae are sister-group to the remaining Simaroubaceae and supported by a 6 bp deletion in the 5’-trnK intron. Leaves and fruits are similar in Castela and Picrasma, whereas Holacantha is a richly spiny shrub nested inside Castela.

The anemophilous Leitneria floridana is sister to the [Brucea+Soulamea] clade. Leitneria is characterized by a combination of features which is unique to Simaroubaceae, i.e., dioecy, silky young branches, bark not bitter, catkin-like cymose inflorescences consisting of numerous reduced dichasia, reduced flowers without calyx (at least in male flowers; in female flowers sepaloid bracts/bracteoles?), disc absent, four stamens with basifixed anthers, pollen grains with reticulate exine, one carpel (in reality two carpels, one of which reduced and rarely developing), unilocular (pseudomonomerous) ovary, decurrent stigma, parietal placentation, ascending ovules, bistomal micropyle, drupe, endotegmic seed-coat, mesotegmen with reticulate thickenings, starchy endosperm, and n = 16. – Judging from fossils, the Leitneria clade was more diverse in the past.

Picrasmateae Engl. in Engler et Prantl, Nat. Pflanzenfam. III, 4: 207. Apr 1896

2/c 25. Picrasma (c 10; tropical Asia, tropical America), Castela (c 15; tropical and subtropical America, the Galápagos Islands). – Tropical Asia, tropical and subtropical America.

Simaroubeae Dumort., Anal. Fam. Plant.: 45. 1829

c 16/75–80. Ailanthus (5; East and tropical Asia and eastwards to eastern Australia); Nothospondias (1; N. staudtii; Central Africa); Leitneria (1; L. floridana; southeastern United States), Brucea (6–8; tropical regions in the Old World), Soulamea (14; Mahé in the Seychelles, Malesia, New Caledonia, Fiji, with their highest diversity in New Caledonia); Picrolemma (2; eastern Peru, Amazonian Brazil), Samadera (3; India to eastern Queensland), Quassia (1; Q. amara; tropical South America), Gymnostemon (1; G. zaizou; Côte d’Ivoire), Perriera (2; Madagascar), Hannoa (5; Central Africa), Odyendea (1; O. gabunensis; tropical Africa), Eurycoma (3; tropical Asia), Simaba (c 25; Central America, tropical South America), Pierreodendron (2; tropical West and Central Africa), Simarouba (5; Panamá, the West Indies, tropical South America). – Pantropical, East Asia, southeastern United States.

Strict consensus parsimony tree (simplified) of Simaroubaceae based on DNA sequence data (Clayton & al. 2007, 2009). Nothospondias is sister to Picrolemma plus all the remaining Simaroubaceae in the majority rule consensus Bayesian tree.

Unplaced Simaroubaceae

Iridosma (1; I. letestui; Central Africa)


Literature

Abbe EC. 1974. Flowers and inflorescences of the ‘Amentiferae’. – Bot. Rev. 40: 159-261.

Abbe EC, Earle TT. 1940. Inflorescence, floral anatomy, and morphology of Leitneria floridana. – Bull. Torrey Bot. Club 67: 173-193.

Abdelgaleil S, Okamura H, Iwagawa T, Sato A, Miyahara I, Doe M, Nakatani M. 2001. Khayanolides, rearranged phragmalin limonoid antifeedants from Khaya senegalensis. – Tetrahedron 57: 119-126.

Abkenar AA, Isshiki S, Tashiro Y. 2004. Phylogenetic relationships in the ‘true citrus fruit trees’ revealed by PCR-RFLP analysis of cpDNA. – Sci. Horticult. 102: 233-242.

Aboutabl EA, El-Sakhawy FS, Fathy MM, Megid RMA. 2000. Composition and antimicrobial activity of the leaf and fruit oils from Amoora rohituka Wight et Arn. – J. Essential Oil Res. 12: 635-638.

Acevedo-Rodríguez P. 1993a. A revision of Lophostigma (Sapindaceae). – Syst. Bot. 18: 379-388.

Acevedo-Rodríguez P. 1993b. Systematics of Serjania (Sapindaceae) I: a revision of Serjania sect. Platycoccus. – Mem. New York Bot. Gard. 67: 1-94.

Acevedo-Rodríguez P. 1997. Novelties in Neotropical Sapindaceae. – BioLlania 6: 143-151.

Acevedo-Rodríguez P. 1998a. Paullinia lingulata (Sapindaceae), a new species from French Guiana. – Brittonia 50: 514-516.

Acevedo-Rodríguez P. 1998b. Novelties in Neotropical Sapindaceae II. Notes on Averrhoidium, Serjania, and Porocystis. – Novon 8: 105-106.

Acevedo-Rodríguez P. 2003. Flora Neotropica. Monograph 87. Melicocceae (Sapindaceae) – Melicoccus and Talisia. – New York Botanical Garden, Bronx, New York, pp. 1-179.

Acevedo-Rodríguez P. 2011. Allophylastrum: a new genus of Sapindaceae from northern South America. – PhytoKeys 5: 39-43.

Acevedo-Rodríguez P. 2012. Alatococcus, a new genus of Sapindaceae from Espirito Santo, Brazil. – PhytoKeys 10: 1-5.

Acevedo-Rodríguez P, Ferrucci MS. 2002. Averrhoidium dalyi (Sapindaceae): a new species from Western Amazonia. – Brittonia 54: 112-115.

Acevedo-Rodríguez P, Somner GV. 2001. Two new species of Serjania (Sapindaceae) from southeastern Brazil. – Brittonia 53: 477-481.

Acevedo-Rodríguez P, Welzen PC van, Adema F, Ham RWJM van der. 2011. Sapindaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 357-407.

Ackerly DD, Donoghue MJ. 1998. Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). – Amer. Natur. 152: 767-791.

Adams CD, Taylor DR, Warner JM. 1973. N-methylflindersine from Spathelia sorbifolia. – Phytochemistry 12: 1359-1360.

Adawadkar PD, El Sohly MA. 1983. An urushiol derivative from poison sumac. – Phytochemistry 22: 1280-1281.

Adema F. 1988. Notes on Cupaniopsis (Sapindaceae) 1. New species from New Caledonia. – Bull. Mus. Natl. Hist. Nat. Paris, sér. B, Adansonia 10: 263-270.

Adema F. 1991. Cupaniopsis Radlk. (Sapindaceae), a monograph. – Leiden Bot. Ser. 15: 1-190.

Adema F, Ham RWJM van der. 1993. Cnesmocarpon (gen. nov.), Jagera, and Trigonachras (Sapindaceae-Cupanieae): phylogeny and systematics. – Blumea 38: 173-215.

Adema F, Leenhouts PW, Welzen PC van. 1994. Sapindaceae. – In: Kalkman C et al. (eds), Flora Malesiana I, 11(3), Flora Malesiana Foundation, Rijksherbarium/Hortus Botanicus, Leiden, pp. 419-768.

Adsersen A, Smitt UW, Simonsen HT, Christensen SB, Jaroszewski JW. 2007. Prenylated acetophenones from Melicope obscura and Melicope obtusifolia ssp. obtusifolia var. arborea and their distribution in Rutaceae. – Biochem. Syst. Ecol. 35: 447-453.

Agarwal M, Gupta S, Painuly V. 2005. Xylotomic study of the family Sapindaceae: microstructure, systematics and ecological trends. – Indian Forester 131: 1024-1040.

Agbedahunsi JM, Elujoba AA. 1998. Grandifolin from Khaya grandifoliola stem bark. – Nig. J. Nat. Prod. Med. 2: 34-36.

Agostinho SMM, das GF da Silva MF, Fernandes JB, Vieira PC, Pinheiro AL, Vilela EF. 1994. Limonoids from Toona ciliata and speculations on their chemosystematic and ecological significance. – Biochem. Syst. Ecol. 22: 323-328.

Aguilar-Ortigoza CJ, Sosa V. 2004. The evolution of toxic phenolic compounds in a group of Anacardiaceae genera. – Taxon 53: 357-364.

Aguilar-Ortigoza CJ, Sosa V, Aguilar-Ortigoza M. 2003. Toxic phenols in various Anacardiaceae species. – Econ. Bot. 57: 354-364.

Aguilar-Ortigoza CJ, Sosa V, Angeles G. 2004. Phylogenetic relationships of three genera in Anacardiaceae: Bonetiella, Pseudosmodingium, and Smodingium. – Brittonia 56: 169-184.

Ahluwalia K. 1962. Morphological and embryological studies in the families Zygophyllaceae and Salvadoraceae I. Embryology and systematic position of Peganum harmala Linn.; II. Some embryological aspects of Salvadora persica Linn. – M.Sc. thesis, University of Delhi, India.

Airy-Shaw HK, Forman LL. 1967. The genus Spondias L. (Anacardiaceae) in tropical Asia. – Kew Bull. 21: 1-19.

Akhani H. 2002. Notes on the flora of Iran: 1. Asparagus (Asparagaceae) and Nitraria (Zygophyllaceae). – Edinburgh J. Bot. 59: 295-302.

Al-Nowaihi AS, Khalifa SF. 1973. Studies on some taxa of the Geraniales II. Floral morphology of certain Linaceae, Rutaceae and Geraniaceae with a reference to the consistency of some characters. – J. Indian Bot. Soc. 52: 198-206.

Álvarez R, Encina A, Pérez Hidalgo N. 2008. Pistacia terebinthus L. leaflets: an anatomical study. – Plant Syst. Evol. 272: 107-118.

Andrés-Hernández AR, Organista DE. 2002. Morfología de plántulas de Bursera Jacq. ex L. (Burseraceae) y sus implicaciones filogenéticas. – Bol. Soc. Bot. México 70: 5-12.

Andrés-Hernández AR, Terrazas, T. 2009. Leaf architecture of Rhus s. str. (Anacardiaceae). – Feddes Repert. 120: 293-306.

Andrés-Hernández AR, Espinosa D, Fraile-Ortega M, Terrazas T. 2012. Venation patterns of Bursera species Jacq. ex L. (Burseraceae) and systematic significance. – Plant Syst. Evol. 298: 1723-1731.

Andrés-Hernández AR, Terrazas T, Salazar G, Ochoterena H. 2014. Phylogenetic analysis based on structural and combined analyses of Rhus s.s. (Anacardiaceae). – Bot. J. Linn. Soc. 176: 452-468.

Appanah S. 1982. Pollination of androdioecious Xerospermum intermedium Radlk. (Sapindaceae) in a rain forest. – Biol. J. Linn. Soc. 18: 11-34.

Appelhans MS, Smets E, Razafimandimbison SG, Haevermans T, Marle EJ van, Couloux A, Rabarison H, Randrianarivelojosia M, Kessler PJ. 2011. Phylogeny, evolutionary trends and classification of the Spathelia-Paeroxylon clade: morphological and molecular insights. – Ann. Bot. 107: 1259-1277.

Appelhans MS, Heuven BJ, Lens F, Baas P. 2012. Phylogenetic and ecological signals in the wood of Spathelioideae (Rutaceae). – IAWA J. 33: 337-353.

Appelhans MS, Keßler PJA, Smets E, Razafimandimbison SG, Janssens SB. 2012. Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales). – J. Biogeogr. 39: 1235-1250.

Appelhans MS, Wen J, Wood KR, Allan GJ, Zimmer EA, Wagner WL. 2014. Molecular phylogenetic analysis of Hawaiian Rutaceae (Melicope, Platydesma and Zanthoxylum) and their different colonization patterns. – Bot. J. Linn. Soc. 174: 425-448.

Appelhans MS, Wen J, Wagner WL. 2014. A molecular phylogeny of Acronychia, Euodia, Melicope and relatives (Rutaceae) reveals polyphyletic genera and key innovations for species richness. – Molec. Phylogen. Evol. 79: 54-68.

Araújo EF de, Queiroz LP de, Machado MA. 2003. What is Citrus? Taxonomic implications from a study of cp-DNA evolution in tribe Citreae (Rutaceae subfamily Aurantioideae). – Organisms Divers. Evol. 3: 55-62.

Armstrong JA. 1991. Studies on pollination and systematics in the Australian Rutaceae. – Ph.D. diss., University of New South Wales, Sydney.

Armstrong JA. 2002. The genus Zieria (Rutaceae): a systematic and evolutionary study. – Aust. Syst. Bot. 15: 277-463.

Armstrong JA, Powell JM. 1980. Neobyrnesia (Rutaceae): a new genus endemic to northern Australia. – Telopea 1: 399-408.

Aryavand A. 1975. Contribution à l’étude cytotaxonomique de Biebersteinia multifida DC. (Géraniacées). – Compt. Rend. Acad. Sci. Paris, sér. D, 280: 1551-1554.

Aubréville A, Pellegrin F. 1937. Gymnostemon A. et P., genre nouveau de la Côte d’Ivoire, voisin d’un endémique de Madagascar. – Bull. Soc. Bot. France 84: 181-184.

Bacchetta G, Brullo S, Giusso del Galdo G. 2006. Ruta lamarmorae (Rutaceae), a new species from Sardinia. – Edinburgh J. Bot. 63: 153-160.

Bachelier JB, Endress PK. 2007. Development of inflorescences, cupules, and flowers in Amphipterygium and comparison with Pistacia (Anacardiaceae). – Intern. J. Plant Sci. 168: 1237-1253.

Bachelier JB, Endress PK. 2008. Floral structure of Kirkia (Kirkiaceae) and its position in Sapindales. – Ann. Bot. 102: 539-550.

Bachelier JB, Endress PK. 2009. Comparative floral morphology and anatomy of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution. – Bot. J. Linn. Soc. 159: 499-571.

Bachelier JB, Endress PK. Ronse De Craene LP. 2011. Comparative floral structure and development in Nitrariaceae (Sapindales) and systematic implications. – In: Wanntorp L, Ronse De Craene LP (eds), Flowers on the Tree of Life, Systematics Association, Spec. Vol. 80, Cambridge University Press, Cambridge, pp. 181-217.

Baehni C, Bonner EB. 1953. Les faisceaux vasculaires dans l’ovaire de l’Aesculus parviflora. – Candollea 14: 85-91.

Baer H, Hooton M, Fales H, Wu A, Schaub F. 1980. Catecholic and other constituents of the leaves of Toxicodendron radicans and variation of urushiol concentrations within one plant. – Phytochemistry 19: 799-802.

Bailey VL. 1962. Revision of the genus Ptelea (Rutaceae). – Brittonia 14: 1-45.

Baillon H. 1876. Traité du développement de la fleur et du fruit d’Anacardiées. – Bull. Mus. Natl. Hist. Nat., sér., III, Adansonia 11: 158-163.

Baily VL. 1962. Revision of the genus Ptelea (Rutaceae). – Brittonia 14: 1-45.

Bakker FT, Vassiliades DD, Morton C, Savolainen V. 1998. Phylogenetic relationships of Biebersteinia Stephan (Geraniaceae) inferred from rbcL and atpB sequence comparisons. – Bot. J. Linn. Soc. 127: 149-158.

Bamba FA, Vanhaelen FR, Vanhaelen M, Lo I,Toppet M, Ferster A, Fondu P. 1999. In vitro antisickling activity of a rearranged limonoid isolated from Khaya senegalensis. – Planta Med. 65: 209-212.

Bardot-Vaucoulon M. 2002. Une nouvelle espèce de Commiphora (Burseraceae) du Nord de Madagascar. – Adansonia 24: 43-47.

Barfod A. 1987. 104. Anacardiaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 30, Swedish Natural Science Research Council, Stockholm, pp. 11-49.

Barfod A. 1988. Inflorescence morphology of some South American Anacardiaceae and the possible phylogenetic trends. – Nord. J. Bot. 8: 3-11.

Barkley FA. 1937. A monographic study of Rhus and its immediate allies in North and Central America, including the West Indies. – Ann. Missouri Bot. Gard. 24: 265-498.

Barkley FA. 1940. Pseudosmodingium and Mosquitoxylum. – Amer. Midl. Natur. 24: 666-680.

Barkley FA. 1944. Schinus L. – Brittonia 5: 160-198.

Barkley FA. 1957. Generic key to the Sumac family (Anacardiaceae). – Lloydia 20: 255-265.

Barkley FA. 1962. Anacardiaceae: Rhoideae: Loxopterygium. – Lloydia 25: 109-122.

Barkley FA. 1963. A criticism of the traditional concept of the genus Rhus. – Prosp. Iraq Biol. 3: 52-58.

Barkley FA, Reed MJ. 1939. Actinocheita. – Amer. Midl. Natur. 21: 368-377.

Barrett HC, Rhodes AM. 1976. A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. – Syst. Bot. 1: 105-136.

Barros MA, Barth OM. 1994. Catálogo sistemático do pólen das plantas arbóreas do Brasil meridional, vol. 28. Burseraceae e Clethraceae. – Rev. Brasil. Biol. 54: 317-322.

Barth MO. 1982. Variações polínicas em espécies brasileiras da familia Rutaceae. – Bol. Inst. Geoci. Univ. São Paulo 13: 129-134.

Basak RK. 1963. Pollen morphology of Indian Simaroubaceae. – Bull. Bot. Surv. India 5: 381-397.

Basak RK. 1967. Studies on the pollen morphology of Simaroubaceae. – Bull. Bot. Surv. India 9: 63-67.

Baudouin G, Tillequin F, Koch M, Pusset J, Sêvenet T. 1981. Plantes de Nouvelle-Calédonie. LXXIII. Alcaloïdes de Dutaillyea oreophila et de Dutaillyea drupacea. – J. Nat. Prod. 44: 546-550.

Baum H. 1950. Septalspalten im Gynözeum von Koelreuteria paniculata. – Österr. Bot. Zeitschr. 97: 207-215.

Baumann TW, Schulthess BH, Hänni K. 1995. Guaraná (Paullinia cupana) rewards seed dispersers without intoxicating them by caffeine. – Phytochemistry 39: 1063-1070.

Bausher MG, Singh ND, Lee S-B, Jansen RK, Daniell H. 2006. the complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var. ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. – BMC Plant Biol. 6: 21.

Bawa KS. 1977. The reproductive biology of Cupania guatemalensis Radlk. (Sapindaceae). –Evolution 31: 52-63.

Bayer RJ, Mabberley DJ, Morton C, Miller CH, Sharma IK. Pfeil BE, Rich S, Hitchcock R, Sykes S. 2009. A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpDNA sequences. – Amer. J. Bot. 96: 668-685.

Bayly MJ. 1994. Variation within Eriostemon angustifolius (Rutaceae) and the recognition of a new species, E. sporadicus. – Aust. Syst. Bot. 7: 275-280.

Bayly MJ. 1998. Notes on the Eriostemon myoporoides (Rutaceae) species complex, including new names and a new generic placement in Philotheca. – Muelleria 11: 113-126.

Bayly MJ, Brophy JJ, Forster PI, Goldsack RJ, Wilson PG. 1998. Reinstatement of Eriostemon banksii (Rutaceae), with a report on the composition of leaf essential oils in E. banksii and E. australasius s. str. – Aust. Syst. Bot. 11: 13-22.

Bayly MJ, Holmes GD, Forster PI, Cantrill DJ, Ladiges PY. 2013. Major clades of Australasian Rutoideae (Rutaceae) based on rbcL and atpB sequences. – PLoS ONE 8(8); e72493 doi: 10.1371/journal.pone.0072493

Becerra JX. 2003. Evolution of Mexican Bursera (Burseraceae) inferred from ITS, ETS, and 5S nuclear ribosomal DNA sequences. – Mol. Phylogen. Evol. 26: 300-309.

Becerra JX, Venable DL. 1999. Nuclear ribosomal DNA phylogeny and its implication for evolutionary trends in Mexican Bursera (Burseraceae). – Amer. J. Bot. 86: 1047-1057.

Becerra JX, Venable DL, Evans PH, Bowers WS. 2001. Interactions between chemical and mechanical defences in the plant genus Bursera and their implications for herbivores. – Amer. Zool. 41: 865-876.

Becerra JX, Noge K, Venable DL. 2009. Macroevolutionary chemical escalation in an ancient plant-herbivore arms race. – Proc. Natl. Acad. Sci. U.S.A. 106: 18062-18066.

Becerra JX, Noge K, Olivier S, Venable DL. 2012. The monophyly of Bursera and its impact for divergence times of Burseraceae. – Taxon 61: 333-343.

Beck HT. 1991a. The taxonomy and economic botany of the cultivated guaraná and its wild relatives and the generic limits within the Paullinieae (Sapindaceae). – PhD diss., City University of New York, New York.

Beck HT. 1991b. Typificiation of Radlkofer’s infragenerica names in Paullinia L. (Sapindaceae). – Brittonia 43: 201-202.

Benencia F, Courreges MC, Coulombie FC. 2000. In vivo and in vitro immunomodulatory activities of Trichilia glabra aqueous leaf extracts. – J. Ethnopharmac. 69: 199-205.

Berry EW. 1924. New Tertiary species of Anacardium and Vantanea from Colombia. – Pan Amer. Geol. 42: 259-263.

Beurton C. 1986. Phyllodienbildende Zanthoxylum-Sippen in Cuba I. Zanthoxylum phyllopterum und Z. rolandii (Fam. Rutaceae). – Feddes Repert. 97: 29-41.

Beurton C. 1987. Phyllodienbildende Zanthoxylum-Sippen in Cuba II. Z. dumosum, Z. pseudodumosum, Z. ignoratum und Z. arnoldii (Fam. Rutaceae). – Feddes Repert. 98: 53-73.

Beurton C. 1994. Gynoecium and perianth in Zanthoxylum s.l. (Rutaceae). – Plant Syst. Evol. 189: 165-191.

Beurton C. 1996. Die Früchte und Samen der kubanischen Zanthoxylum-Arten (Rutaceae). – Willdenowia 26: 283-299.

Beurton C. 2000a. The genus Plethadenia (Rutaceae). – Willdenowia 30: 115-123.

Beurton C. 2000b. Notes on Zanthoxylum (Rutaceae) from the Antilles. – Willdenowia 30: 125-130.

Biesboer DD. 1975. Pollen morphology of the Aceraceae. – Grana 15: 19-27.

Boas F. 1913. Beiträge zur Anatomie und Systematik der Simarubaceen. – Beitr. Bot. Centralbl. 29: 303-356.

Boesewinkel FD. 1977. Development of ovule and testa in Rutaceae I. Ruta, Zanthoxylum, and Skimmia. – Acta Bot. Neerl. 26: 193-211.

Boesewinkel FD. 1978. Development of ovule and testa in Rutaceae III. Some representatives of the Aurantioideae. – Acta Bot. Neerl. 27: 341-354.

Boesewinkel FD. 1980. Development of ovule and seed-coat in the Rutales-Geraniales assembly. – Academisch Proefschrift, Hugo de Vries Laboratory, University of Amsterdam, The Netherlands.

Boesewinkel FD. 1984. Development of ovule and seed coat in Cneorum tricoccum L. (Cneoraceae). – Acta Bot. Neerl. 33: 61-70.

Boesewinkel FD. 1997. Seed structure and phylogenetic relationships of the Geraniales. – Bot. Jahrb. Syst. 119: 277-291.

Boesewinkel FD, Bouman F. 1978. Development of ovule and testa in Rutaceae II. The unitegmic and pachychalazal seed of Glycosmis cf. arborea (Roxb.) DC. – Acta Bot. Neerl. 27: 69-78.

Bohning-Gaese K, Gaese BH, Rabemanantsoa SB. 1999. Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guillaumini. – Ecology 8: 821-832.

Bombardelli E, Morazonni P, Griffini A. 1996. Aesculus hippocastanum L. – Fitoterapia 67: 483-511.

Bonnefille R, Letouzey R. 1976. Fruits fossiles de Antrocaryon dans la Vallée de l’Omo (Éthiopie). – Adansonia, n.s., 16: 65-82.

Bortenschlager S. 1967. Vorläufige Mitteilungen zur Pollenmorphologie in der Familie der Geraniaceen und ihre systematische Bedeutung. – Grana Palynol. 7: 400-468.

Bosser J. 2002. Une nouvelle espèce de Turraea (Meliaceae) des Mascareignes. Localisation de T. thouarsiana et identité de T. casimiriana. – Adansonia, sér. III, 24: 113-116.

Boulter M, Benfield J, Fisher H, Gee D, Lhotak M. 1996. The evolution and global migration of Aceraceae. – Philos. Trans., Ser. B, 351: 589-603.

Bourobou HB, Breteler FJ. 1999. Novitates Gabonenses 35. Sorindeia oxyandra, another new Anacardiaceae from Gabon. – Syst. Geogr. Plants 69: 115-117.

Braggins JE, Large MF, Mabberley DJ. 1999. Sexual arrangements in kohekohe (Dysoxylum spectabile, Meliaceae). – Telopea 89: 315-324.

Breteler FJ. 2001. The genus Trichoscypha (Anacardiaceae) in Upper Guinea: a synoptic revision. – Adansonia, sér. III, 23: 247-264.

Breteler FJ. 2003. The African genus Sorindeia (Anacardiaceae): a synoptic revision. – Adansonia, sér. III, 25: 93-113.

Breteler FJ. 2004. The genus Trichoscypha (Anacardiaceae) in Lower Guinea and Congolia: a synoptic revision. – Adansonia, sér. III, 26: 97-127.

Brizicky GK. 1962. Taxonomic and nomenclatural notes on Zanthoxylum and Glycosmis. – J. Arnold Arbor. 43: 80-93.

Brizicky GK. 1963. Taxonomy and nomenclatural notes on the genus Rhus (Anacardiaceae). – J. Arnold Arbor. 44: 60-80.

Broadhurst L. 2000. Morphometric analysis of variation in Geleznowia verrucosa Turcz. (Rutaceae). – Aust. Syst Bot. 13: 479-490.

Brophy JJ, Forster PI, Goldsack RJ. 1994. Diversity in Australian populations of Murraya paniculata (Rutaceae): new evidence from volatile leaf oils. – Aust Syst. Bot. 7: 409-418.

Brophy JJ, Goldsack RJ, Forster PI. 2005. The leaf oils of Coatesia and Geijera (Rutaceae) from Australia. – J. Ess. Oil Res. 17: 169-174.

Brückner C. 1991. Fruchtanatomische Studien an Dictamnus albus L., Zanthoxylum simulans Hance, Ptelea trifoliata L. und Ruta graveolens L. (Rutaceae). – Feddes Repert. 102: 541-570.

Budantsev L. 1994. Fossil flowering plants of Russia and adjacent states III. Leitneriaceae-Juglandaceae. – The Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg.

Buerki S, Callmander MW, Lowry II PP, Phillipson PB. 2009. A synoptic revision of the genus Lepisanthes Blume (Sapindaceae) in Madagascar. – Adansonia, sér. III, 31: 301-309.

Buerki S, Forest F, Acevedo-Rodriguez P, Callmander MW, Nylander JAA, Harrington M, Sanmartin I, Kupfer P, Alvarez N. 2009. Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). – Mol. Phylogen. Evol. 51: 238-258.

Buerki S, Lowry PP II, Phillipson PB, Callmander MW. 2010. Molecular phylogenetic and morphological evidence supports recognition of Gereaua, a new endemic genus of Sapindaceae from Madagascar. – Syst. Bot. 35: 172-180.

Buerki S, Lowry PP II, Alvarez N, Razafimandimbison SG, Küpfer P, Callmander MW. 2010. Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology, and biogeography support recognition of a new family, Xanthoceraceae. – Plant Ecol. Evol. 143: 148-159.

Buerki S, Forest F, Salamin N, Alvarez N. 2011. Comparative performance of supertree algorithms in large data sets using the soapberry family (Sapindaceae) as a case study. – Syst. Biol. 60: 32-44.

Buerki S, Forest F, Alvarez N, Nylander JAA, Arrigo N, Sanmartín I. 2011. An evaluation of new parsimony-based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae. – J. Biogeogr. 38: 531-550.

Buerki S, Lowry PP II, Andriambololonera S, Phillipson PB, Vary L, Callmander MW. 2011. How to kill two genera with one tree: clarifying generic circumscriptions in an endemic Malagasy clade of Sapindaceae. – Bot. J. Linn. Soc. 165: 223-234.

Buerki S, Callmander MW, Lowry PP II, Devey DS, Munzinger J. 2012. Phylogenetic inference of New Caledonian lineages of Sapindaceae: molecular evidence requires a reassessment of generic circumscriptions. – Taxon 61: 109-119.

Buerki S, Forest F, Stadler T, Alvarez N. 2013. The abrupt climate change at the Eocene-Oligocene boundary and the emergence of South-East Asia triggered the spread of sapindaceous lineages. – Ann. Bot. 112: 151-160.

Buerki S, Doherty R, Gautier L, Callmander MW. 2014. Rediscovery of the genus Tsingya Capuron (Sapindaceae) and its phylogenetic position. – Candollea 69: 195-200.

Buijsen JRM. 1995. Leaf anatomy of Harpullia, Majidea and Conchopetalum (Sapindaceae). – Blumea 40: 345-361.

Buijsen JRM, Welzen PC van, Ham RWJM van der. 2003. A phylogenetic analysis of Harpullia (Sapindaceae) with notes on historical biogeography. – Syst. Bot. 28: 106-117.

Burnham RJ, Carranco NL. 2004. Miocene winged fruits of Loxopterygium (Anacardiaceae) from the Ecuadorian Andes. – Amer. J. Bot. 91: 1767-1773.

But PP-H, Kong Y-C, Ng K, Chang H-T, Li Q, Yu S, Waterman PG. 1986. A chemotaxonomic study of Murraya (Rutaceae) in China. – Acta Phytotaxon. Sin. 24: 193-202.

But PP-H, Kong Y-C, Li Q, Chang H-T, Chang K-L, Wong K-M, Gray AI, Waterman PG. 1988. Chemotaxonomic relationships between Murraya and Merrillia (Rutaceae). – Acta Phytotaxon. Sin. 26: 205-210.

But PP-H, Poon AW-S, Shaw P-C, Simmons MP, Greger H. 2009. Contribution of molecular cladistics to the taxonomy of Rutaceae in China. – J. Syst. Evol. 47: 144-150.

Buttrose MS, Lott JNA. 1978. Inclusions in seed protein bodies in members of the Compositae and Anacardiaceae: comparison with other dicotyledonous families. – Can. J. Bot. 56: 2062-2071.

Cambell WE, Majal T, Bean A. 1986. Coumarins of the Rutoideae: tribe Diosmeae. – Phytochemistry 25: 655-657.

Cao L-M, Xia N-H. 2008. Structural characters of leaf epidermis and their systematic significance in Sapindaceae from China. – Acta Bot. Yunnan. 30: 405-421. [In Chinese]

Cao L-M, Xia N-H, Deng Y-F. 2008. Embryology of Handeliodendron bodinieri (Sapindaceae) and its systematic value: development of male and female gametophytes. – Plant Syst. Evol. 274: 17-23.

Capuron R. 1962. Contributions à l’étude de la flore forestière de Madagascar VI. Note sur les Burseracées. – Adansonia 2: 268-283.

Capuron R. 1969. Révision des Sapindacées de Madagascar et des Comores. – Mém. Mus. Natl. Hist. Nat. Paris, sér. B, Bot. 19: 1-189.

Caris P, Smets E, Coster K de, Ronse De Craene LP. 2006. Floral ontogeny of Cneorum tricoccon L. – Plant Syst. Evol. 257: 223-232.

Carlquist SJ. 1988. Wood anatomy of Cneoraceae: ecology, relationships, and generic definition. – Aliso 12: 7-16.

Carpenter RC, Sotheeswaran S, Sultanbawa MU, Balasubramaniam S. 1980. (-)-5-methylmellein and catechol derivatives from four Semecarpus species. – Phytochemistry 19: 445-447.

Castañeda-Posadas C, Cevallos-Ferriz SRS. 2007. Swietenia (Meliaceae) flower in Late Oligocene-Early Miocene amber from Simojovel de Allende, Chiapas, Mexico. – Amer. J. Bot. 94: 1821-1827.

Cavalcante P. 1983. Revisão taxonômica do gênero Simaba Aublet (Simaroubaceae) na América do Sul. – Publ. Avulsas Mus. Goeldi 37, Belém, Pará, Brasil.

Champluvier D. 1999. Un Sorindeia (Anacardiaceae) nouveau d’Afrique Centrale. – Syst. Geogr. Plants 69: 39-44.

Chang C-S, Giannasi DE. 1991. Foliar flavonoids af Acer sect. Palmata series Palmata. – Syst. Bot. 16: 225-241.

Chang C-S, Kim H. 2003. Analysis of morphological variation of the Acer tschonoskii complex in eastern Asia: implications of inflorescence size and number of flowers within sect. Macrantha. – Bot. J. Linn. Soc. 143: 29-42.

Chang YL. 1982. Sapindaceae. – In: Angiosperm pollen flora of tropic and subtropic China, Institute of Botany and South China Institute of Botany, Academia Sinica, pp. 343-344.

Chase MW, Morton CM, Kallunki JA. 1999. Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from rbcL and atpB sequence variation. – Amer. J. Bot. 86: 1191-1199.

Chayamarit K. 1997. Molecular phylogenetic analysis of Anacardiaceae in Thailand. – Thai Forest Bull. 25: 1-13.

Cheek MR. 1989a. The systematic seed anatomy of the Meliaceae. – Ph.D. diss., Bodleian Library, University of Oxford, England.

Cheek MR. 1989b. A new Trichilia (Meliaceae) from Tanzania and its relationship with Pseudobersama. – Kew Bull. 44: 457-463.

Cheek MR. 1990a. A new species of Turraea (Meliaceae) from Madagascar and comments on the status of Naregamia. – Kew Bull. 45: 711-715.

Cheek MR. 1990b. Systematic seed anatomy of the Turraeeae (Meliaceae); taxonomic and ecological aspects. – Mitt. Inst. Allg. Bot. Hamburg 23b: 683-706.

Cheek MR. 1992. The wood anatomy of Pseudobersama mossambicensis and Trichilia capitata (Meliaceae) compared. – Kew Bull. 47: 753-758.

Cheek MR. 1996. The identity of Naregamia Wight & Arn. (Meliaceae). – Kew Bull. 51: 716.

Cheek MR, Rakotozafy A. 1991. The identity of Leroy’s fifth subfamily of the Meliaceae, and a new combination in Commiphora (Burseraceae). – Taxon 40: 231-237.

Chiang F. 1989. Casimiroa gregii, formerly in Sargentia (Rutaceae). – Taxon 38: 116-119.

Cho H-J, Kim S, Suh Y, Park C-W. 1996. ITS sequences of some Acer species and phylogenetic implication. – Korean J. Plant Taxon. 26: 271-291.

Choi B-K, Duretto MF, Hong S-P. 2012. Comparative seed morphology of Boronia and related genera (Boroniinae: Rutaceae) and its systematic implications. – Nord. J. Bot. 30: 241-256.

Choux MP. 1925. Les Cupaniées malgaches. – Compt. Rend. Acad. Sci. Paris 181: 71-72.

Choux MP. 1926. Quelques nouvelles Sapindacées de Madagascar. – Compt. Rend. Acad. Sci. Paris 103: 712-714.

Choux MP. 1929. Nouvelles observations sur les Sapindacées de Madagascar. – Ann. Mus. Hist. Nat. Marseille 22: 35-47.

Clark TP. 1994. The species of Walsura and Pseudoclausena genus-novum (Meliaceae). – Blumea 38: 247-302.

Clarkson J, Chase MW, Harley MM. 2002. Phylogenetic relationships in Burseraceae based on plastid rps16 intron sequences. – Kew Bull. 57: 183-193.

Clayton JW. 2011. Simaroubaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 408-423.

Clayton JW, Fernando ES, Soltis PS, Soltis DS. 2007. Molecular phylogeny of the tree-of-heaven family (Simaroubaceae) based on chloroplast and nuclear markers. – Intern. J. Plant Sci. 168: 1325-1339.

Clayton JW, Soltis PS, Soltis DS. 2009. Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). – Syst. Biol. 58: 395-410.

Cojocaru M, Droby S, Glotter E, Goldman A, Gottlieb HE, Jacoby B, Prusky D. 1986. 5-(12-heptadecenyl)-resorcinol, the major component of the antifungal activity in the peel of mango fruit. – Phytochemistry 25: 1093-1095.

Constantinidis TA. 1996. Biebersteinia orphanidis Boiss. – Flora Mediterranea 6: 308-312.

Coombes PH, Naidoo D, Mulholland DA, Randrianarivelojosia M. 2005. Quassinoids from the leaves of the Madagascan Simaroubaceae Samadera madagascariensis. – Phytochemistry 66: 2734-2739.

Copeland HF. 1955. The reproductive structures of Pistacia chinensis (Anacardiaceae). – Phytomorphology 5: 440-449.

Copeland HF. 1959. The reproductive structures of Schinus molle (Anacardiaceae). – Madroño 15: 14-25.

Copeland HF. 1961. Observations on the reproductive structures of Anacardium occidentale. – Phytomorphology 11: 315-325.

Copeland HF, Doyle BE. 1940. Some features of the structure of Toxicodendron diversiloba. – Amer. J. Bot. 27: 932-939.

Corazza-Nunes MJ, Moreira Novelli V, Rosas Moreira ALO, Carvalho Nunes WM de, Alves de Carvalho S, Macaho MA. 2006. The phylogeny of Rutaceae: Contributions from molecular systematics. – In: Sharma AK, Sharma A (eds), Plant genome biodiversity and evolution, Vol. 1, Part C. Phanerogams (Angiosperms-Dicotyledons), Science Publ., Enfield, New Hampshire, pp. 331-360.

Corbett SL, Manchester SR. 2004. Phytogeography and fossil history of Ailanthus (Simaroubaceae). – Intern. J. Plant Sci. 165: 671-690.

Corthout J, Janssens J, Pieters L, Vanden Berghe D, Vlietninck AJ. 1989. The isolation of a long chain phenol from Spondias mombin. – Planta Med. 55: 112-113.

Coulerie P, Maciuk A, Lebouvier N, Hnawia E, Guillemot J-C, Canard B, Figadère B, Nour M. 2013. Phytochemical study of Myrtopsis corymbosa, perspectives for anti-dengue natural compound research. – Rec. Nat. Prod. 7(3): 250-253.

Coulleri J, Dematteis M, Ferrucci M. 2012. A new insight into Serjania Mill. (Sapindaceae, Paullinieae) infrageneric classification: a cytogenetic approach. – Plant Syst. Evol. 298: 1743-1753.

Coulleri JP, Urdampilleta JD, Ferrucci MS. 2014. Genome size evolution in Sapindaceae at subfamily level: a case study of independence in relation to karyological and palynological traits. – Bot. J. Linn. Soc. 174: 589-600.

Cowan RS, Brizicky GK. 1960. Taxonomic relationships of Diomma Engler ex Harms. – Mem. New York Bot. Gard. 10: 38-64.

Craven LA, Dunlop CR. 2009. Quassia arnhemensis, a new species of Simaroubaceae from Australia. – Novon 19: 454-456.

Crayn DM, Fernando ES, Gadek PA, Quinn CJ. 1995. A reassessment of the familial affinities of the Mexican genus Recchia Mocino & Sesse ex DC. – Brittonia 47: 397-402.

Croat TB. 1976. Flora of Panama. Sapindaceae. – Ann. Missouri Bot. Gard. 63: 419-540.

Cronquist A. 1944a. Studies in the Simaroubaceae I. The genus Castela. – J. Arnold Arbor. 25: 122-128.

Cronquist A. 1944b. Studies in the Simaroubaceae II. The genus Simarouba. – Bull. Torrey Bot. Club 71: 226-234.

Cronquist A. 1944c. Studies in the Simaroubaceae III. The genus Simaba. – Lloydia 7: 81-92.

Cronquist A. 1944d. Studies in the Simaroubaceae IV. Resumé of the American genera. – Brittonia 5: 128-147.

Daly DC. 1987. A taxonomic revision of Protium Burm. f. in Eastern Amazonia and the Guianas. – Ph.D. diss., City University of New York, New York.

Daly DC. 1989. Studies in Neotropical Burseraceae II. Generic limits in New World Protieae and Canarieae. – Brittonia 41: 17-27.

Daly DC. 1990. Studies in Neotropical Burseraceae III. The genus Tetragastris and the forests of eastern Brazil. – Kew Bull. 45: 179-194.

Daly DC. 1992a. Studies in Neotropical Burseraceae V. Two new taxa of Protium from eastern Brazil. – Kew Bull. 47: 713-719.

Daly DC. 1992b. Studies in Neotropical Burseraceae VI. New taxa and combinations in Protium Burm. f. – Brittonia 44: 280-299.

Daly DC. 1997. Burseraceae. – In: Steyermark P, Berry PE, Holst B (eds), Flora of the Venezuelan Guayana III, Timber Press, Portland, Oregon, pp. 688-728.

Daly DC. 1999. Studies in Neotropical Burseraceae IX. Notes on Trattinnickia, including a synopsis, in eastern Brazil’s Atlantic forest complex. – Kew Bull. 54: 129-137.

Daly DC. 2002. Studies in Neotropical Burseraceae X. Crepidospermum atlanticum sp. nov., a genus new to the Atlantic forest complex of Eastern Brazil. – Kew Bull. 57: 471-477.

Daly DC. 2005. Studies in Neotropical Burseraceae XII. Dacryodes edilsonii, a new species from southwestern Amazonia. – Brittonia 57: 118-122.

Daly DC. 2007. Studies in Neotropical Burseraceae XIII. A new section of Protium from the Neotropics. – Brittonia 59: 1-24.

Daly DC, Martinez-Habibe MC. 2003. Studies in Neotropical Burseraceae XI. Notes on Dacryodes Vahl, including a new species from the Rio Negro basin in Amazonia. – Brittonia 54: 266-274.

Daly DC, Harley MM, Martínez-Habibe M-C, Weeks A. 2011. Burseraceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 76-104.

Danguy P, Choux MP. 1926. Sapinda´cees malgaches nouvelles ou peu connues. – Bull. Mus. Natl. Hist. Nat. Paris 32: 387-392.

Danguy P, Choux MP. 1927. Sapindacées malgaches nouvelles ou peu connues. – Bull. Mus. Natl. Hist. Nat. Paris 33: 102-105.

Da Silva MF das GF, Gottlieb OR. 1987. Evolution of quassinoids and limonoids in the Rutales. – Biochem. Syst. Ecol. 15: 85-103.

Da Silva MF das GF, Gottlieb OR, Dreyer DL. 1984. Evolution of limonoids in the Meliaceae. – Biochem. Syst. Ecol. 12: 299-310.

Da Silva MF das GF, Gottlieb OR, Ehrendorfer F. 1988. Chemosystematics of Rutaceae: suggestions for a more natural taxonomy and evolutionary interpretation of the family. – Plant Syst. Evol. 161: 97-134.

Da Silva MF das GF, Agostinho SMM, Paula JR de, Neto JO, Castro-Gamboa I, Filho ER, Fernandes JB, Vieira PV. 1999. Chemistry of Toona ciliata and Cedrela odorata graft (Meliaceae): chemosystematic and ecological significane. – Pure Appl. Chem. 71: 1083-1087.

Datta PC, Samanta P. 1977. Cytotaxonomy of Meliaceae. – Cytologia 42: 197-208.

Daumann E. 1974. Zur Frage nach dem Vorkommen eines Septalnektariums bei Dicotyledonen, zugleich ein Beitrag zur Blütenmorphologie und Bestäubungsökologie von Buxus L. und Cneorum L. – Preslia 46: 97-109.

David E. 1938. Embryologische Untersuchungen an Myoporaceen, Salvadoraceen, Sapindaceen und Hippocrateaceen. – Planta 28: 680-703.

Davies FG. 1997. A new genus Haplocoelopsis (Sapindaceae) from East and Central Africa. – Kew Bull. 52: 231-234.

Davies FG, Verdcourt B. 1998. Sapindaceae. – In: Beentje HJ, Whitehouse CM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-108.

Delendick TJ. 1990. A survey of foliar flavonoids in the Aceraceae. – Mem. New York Bot. Gard. 54: 1-129.

dePamphilis C, Wyatt R. 1989. Hybridization and introgression in buckeyes (Aesculus: Hippocastanaceae): a review of the evidence and a hypothesis to explain long-distance gene flow. – Syst. Bot. 14: 593-611.

Desai S. 1962. Cytology and embryology of the Rutaceae. – Phytomorphology 12: 178-184.

Ding Hou. 1978. Anacardiaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 8(3), Sijthoff & Noordhoff International Publ., Alphen aan den Rijn, The Netherlands, pp. 395-548.

Dreyer DL. 1969. Coumarins and alkaloids of the genus Ptelea. – Phytochemistry 8: 1013-1020.

Dreyer DL. 1983. Limonoids of the Rutaceae. – In: Waterman PG, Grundon MF (eds), Chemistry and chemical taxonomy of the Rutales, Academic Press, London, pp. 215-245.

Du Y, Oshima R, Kumanotani J. 1984. Reversed-phase liquid chromatographic separation and identification of constituents of urushiol in the sap of the lac tree, Rhus vernicifera. – J. Chromatogr. 284: 463-467.

Duretto MF, Forster PI. 2007. A taxonomic revision of the genus Zieria Sm. (Rutaceae) in Queensland. – Austrobaileya 7: 473-544.

Duretto MF, Ladiges PY. 1997. Morphological variation within the Boronia grandisepala group (Rutaceae) and the description of nine taxa endemic to the Northern Territory, Australia. – Aust. Syst. Bot. 10: 249-302.

Duretto MF, Ladiges PY. 1999. A cladistic analysis of Boronia section Valvatae (Rutaceae). – Aust. Syst. Bot. 11: 636-665.

Edman G. 1936. Zur Verkieselung und Systematik der Simaroubaceae. – Svensk Bot. Tidskr. 30: 491-514.

Edwards KJ, Gadek PA. 2001. Evolution and biogeography of Alectryon (Sapindaceae). – Mol. Phylogen. Evol. 20: 14-26.

Eggers SH. 1974. Vesicant principles of Smodingium argutum (Anacardiaceae). – J. South Afr. Chem. Inst. 27: 99-104.

Eggli U. 1995. A synoptical revision of Operculicarya (Anacardiaceae). – Adansonia, sér. IV, 3-4: 149-158.

El Ottra JHL, Pirani JR, Endress PK. 2013. Fusion within and between whorls of floral organs in Galipeinae (Rutaceae): structural features and evolutionary implications. – Ann. Bot. 111: 821-837.

Endress PK, Jenny M, Fallen ME. 1983. Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons (Sapindales, Malvales, Gentianales). – Nord. J. Bot. 3: 293-300.

Engelmeier D, Hadacek F, Pacher T, Varodaya S, Greger H. 2000. Cyclopenta[b]benzofurans from Aglaia species with pronounced antifungal activity against rice blast fungus (Pyricularia grisea). – J. Agric. Food Chem. 48: 1400-1404.

Engler A. 1883. Über die morphologischen Verhältnisse und die geographische Verbreitung der Gattung Rhus, wie der mit ihr verwandten, lebenden und ausgestorbenen Anacardiaceae. – Engl. Bot. Jahrb. Syst. 1: 365-426.

Engler A. 1896a. Zygophyllaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 74-93.

Engler A. 1896b. Cneoraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 93-94.

Engler A. 1896c. Rutaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 95-201.

Engler A. 1896d. Simarubaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 202-230.

Engler A. 1896e. Burseraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 231-257.

Engler A. 1896f. Anacardiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 138-178, 458-459.

Engler A. 1905. Anacardiaceae africanae III. – Engl. Bot. Jahrb. 36: 216-217.

Engler A. 1913. Die Verbreitung der afrikanischen Burseraceen im Verhältnis zu ihrer systematischen Gliederung und die Einteilung der Gattung Commiphora. – Engl. Bot. Jahrb. Syst. 48: 443-490.

Engler A (†). 1931a. Zygophyllaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 144-184.

Engler A (†). 1931b. Cneoraceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 184-187.

Engler A (†). 1931c. Rutaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 187-359.

Engler A (†). 1931d. Simarubaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 359-405.

Engler A (†). 1931e. Burseraceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 405-456.

Etman B. 1994. A taxonomic and phylogenetic analysis of Rhysotoechia (Sapindaceae). – Blumea 39: 41-71.

Exell AW. 1966. 56. Sapindaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 494-543.

Fahn A, Evert RF. 1974. Ultrastructure of the secretory ducts of Rhus glabra L. – Amer. J. Bot. 61: 1-14.

Fang DQ, Krueger RR, Roose ML. 1998. Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers. – J. Amer. Soc. Horticult. Sci. 123: 612-617.

Fang W-P. 1966. Revisio taxorum aceracearum sinicarum. – Acta Phytotaxon. Sin. 11: 139-189.

Farsam H, Amanlou M, Reza Dehpour A, Jahaniani F. 2000. Anti-inflammatory and analgesic activity of Biebersteinia multifida DC. root extract. – J. Ethnopharmacol. 71: 443-447.

Federici CT, Fang DQ, Scora RW, Roose ML. 1998. Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. – Theor. Appl. Gen. 6: 812-822.

Fernandes RB 1966. Estudos nas Anacardiaceae africanas I – Contribuição para o conhecimento do gén. Ozoroa Del. – Garcia de Orta 14: 19-60.

Fernandes RB. 1975. Estudos nas Anacardiaceae africanas VIII – O género Antrocaryon Pierre em Angola. – Garcia de Orta 2: 107-110.

Fernandes R, Fernandes A. 1966. 59. Anacardiaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 550-615.

Fernando ES, Quinn CJ. 1992. Pericarp anatomy and systematics of the Simaroubaceae sensu lato. – Aust. J. Bot. 40: 263-289.

Fernando ES, Quinn CJ. 1995. Picramniaceae, a new family, and a recircumscription of Simaroubaceae. – Taxon 44: 177-182.

Fernando ES, Gadek PA, Quinn CJ. 1995. Simaroubaceae, an artificial construct: evidence from rbcL sequence variation. – Amer. J. Bot. 82: 92-103.

Ferrucci MS. 1987. Houssayanthus monogynus, nueva combinación en Sapindaceae. – Candollea 42: 805-807.

Ferrucci MS. 1989. Chromosomas en Cardiospermum y Diplokeleba (Sapindaceae), significado taxonómico y evolutivo. – Bonplandia 6: 151-164.

Ferrucci MS. 1991. Sapindaceae. – In: Spichiger RS, Ramella L (eds), Flora del Paraguay 16: 1-144.

Ferrucci MS. 2006. A new species of Urvillea (Sapindaceae) from northwestern Venezuela. – Brittonia 58: 83-87.

Ferrucci MS, Acevedo-Rodríguez P. 1997. New and noteworthy species in the Paullinieae tribe (Sapindaceae). – Brittonia 49: 441-448.

Ferrucci MS, Acevedo-Rodríguez P. 2005. Three new species of Serjania (Sapindaceae) from South America. – Syst. Bot. 30: 153-162.

Ferrucci MS, Anzótegui LM. 1993. El pollen de Paullinieae tribe (Sapindaceae). – Bonplandia 6: 211-243.

Feuillet C. 1983. Le statut des genres Quassia L., Samadera Gaertn., Simaba Aubl. et Simarouba Aubl. (Simaroubaceae). – Bull. Jard. Bot. Nat. Belg. 53: 510-511.

Fikenscher LH, Hegnauer R. 1977. Über die cyanogenen Verbindungen bei einigen Compositae, bei den Oliniaceae und in der Rutaceae-Gattung Zieria. – Pharmaceut. Weekbl. 112: 11-20.

Fine PV-A, Daly DC, Villa M FG, Mesones A I, Cameron KM. 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the Western Amazon. – Evolution 29: 1464-1478.

Fish F, Waterman PG. 1973. Chemosystematics in the Rutaceae II. The chemosystematics of the Zanthoxylum/Fagara complex. – Taxon 22: 177-203.

Fisher JB. 2002. Indeterminate leaves of Chisocheton (Meliaceae): survey of structure and development. – Bot. J. Linn. Soc. 139: 207-221.

Fisher JB, Rutishauser R. 1990. Leaves and epiphyllous shoots in Chisocheton (Meliaceae): a continuum of woody leaf and stem axes. – Can. J. Bot. 68: 2316-2328.

Forest F, Drouin JN, Charest R, Brouillet R, Bruneau A. 2001. A morphological phylogenetic analysis of Aesculus L. and Billia Peyr. (Sapindaceae). – Can. J. Bot. 79: 154-169.

Forman LL. 1954. A new genus from Thailand. – Kew Bull. 4: 555-564.

Forman LL. 1958. The identity of Feroniella pubescens Tanaka (Rutaceae). – Kew Bull. 1957: 503-504.

Forman LL. 1987. A new genus of Burseraceae from Mexico. – Kew Bull. 42: 262.

Forman LL, Brandham PE, Harley MM, Lawrence TJ. 1989. Beiselia mexicana (Burseraceae) and its affinities. – Kew Bull. 44: 1-31.

Forman LL, Ham RWJM van der, Harley MM, Lawrence TJ. 1994. Rosselia, a new genus of Burseraceae from the Louisiade Archipelago, Papua New Guinea. – Kew Bull. 49: 601-621.

Forster PI. 2005. New species of Philotheca Rudge (Rutaceae) from Queensland. – Austrobeileya 7: 175-181.

Forster PI, Brophy JJ, Goldsack RJ. 2004. Variation in Australian populations of Halfordia kendack s.l. (Rutaceae): evidence from leaf essential oils. – Aust. Syst. Bot. 17: 571-580.

Foster AS. 1955a. Comparative morphology of foliar sclereids in Boronella Baill. – J. Arnold Arbor. 36: 189-198.

Foster AS. 1955b. Structure and ontogeny of terminal sclereids in Boronia serrulata. – Amer. J. Bot. 42: 551-560.

Foster RC. 1933. Chromosome number in Acer and Staphylea. – J. Arnold Arbor. 14: 386-393.

Franceschinelli EV, Thomas WW. 2000. Simaba guianensis subsp. huberi, a new Venezuelan taxon of Simaroubaceae. – Brittonia 52: 311-314.

Franceschinelli EV, Yamamoto K, Shepherd GJ. 1999. Distinctions among three Simarouba species. – Syst. Bot. 23: 479-488.

Friis I. 1981. Notes on Somalian Sapindaceae. – Kew Bull. 36: 139-141.

Friis I. 1984. Additional notes on Somalian Sapindaceae. – Kew Bull. 39: 779-783.

Friis I, Berdcourt B, Vollesen K. 1996. New combinations in African Sapindaceae. – Kew Bull. 51: 802.

Fritsch FE. 1908. The anatomy of the Julianiaceae considered from systematic point of view. –Trans. Linn. Soc. London, ser. II, Bot. 7: 129-152.

Fukuhara T, Yokoyama J, Tsukaya H. 2003. Phylogenetic relationships among species in the genera Chisocheton and Guarea that have unique indeterminate leaves as inferred from sequences of chloroplast data. – Intern. J. Plant Sci. 164: 13-24.

Furth DG, Young DA. 1988. Relationships of herbivore feeding and plant flavonoids (Coleoptera: Chrysomelidae and Anacardiaceae: Rhus). – Oecologia (Berlin) 74: 496-500.

Gabriel WJ. 1968. Dichogamy in Acer saccharum. – Bot. Gaz. (Chicago) 129: 334-338.

Gadek PA, Fernando ES, Quinn CJ, Hoot SB, Terrazas T, Sheahan MC, Chase MW. 1996. Sapindales: molecular delimitation and infraordinal groups. – Amer. J. Bot. 83: 802-811.

Gambaro V, Chamy MC, Brand E von, Gambarino JA. 1986. 3-(pentadec-10-enyl)-catechol, a new allergenic compound from Lithraea caustica (Anacardiaceae). – Planta Medica 44: 20-22.

Garudamma GK. 1957. Studies in the Meliaceae II. Gametogenesis in Melia azadirachta Linn. – J. Indian Bot. Soc. 36: 227-231.

Gasson P, Cheek M. 1992. The wood anatomy of Pseudobersama mossambicensis and Trichilia capitata (Meliaceae) compared. – Kew Bull. 47: 753-758.

Gelderen DM van, Jong PC de, Oterdoom HJ. 1994. Maples of the world. – Timber Press, Portland, Oregon.

Gentry AH, Steyermark J. 1987. A revision of Dilodendron (Sapindaceae). – Ann. Missouri Bot. Gard. 74: 533-538.

George AS, Erdtman G. 1969. A revision of the genus Diplopeltis Endl. (Sapindaceae). – Grana Palynol. 9: 92-109.

Ghosh PK, Roy SK. 1979. Chisochetonoxylon bengalensis gen. et sp. nov., a new fossil wood of Meliaceae from the Tertiary beds of Birbhum District, West Bengal, India. – Curr. Sci. 48: 737-739.

Giannasi DE. 1986. Phytochemical aspects of phylogeny in Hamamelidae. – Ann. Missouri Bot. Gard. 73: 417-437.

Gilbert MG. 1986. A reconsideration of the Rhus glutinosa complex (Anacardiaceae). – Nord. J. Bot. 6: 571-572.

Gilg E, Pilger R. 1905. Rutaceae. – In: Pilger R (ed), Beiträge zur Flora der Hylea nach den Sammlungen von E. Ule, Verh. Bot. Ver. Prov. Brandenburg 47: 152-154.

Gillett JB. 1980. Commiphora (Burseraceae) in South America and its relationship to Bursera. – Kew Bull. 34: 569-587.

Gillett JB. 1991. Burseraceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-94.

Gillis WT. 1971. The systematics and ecology of poison-ivy and the poison-oaks (Toxicodendron, Anacardiaceae). – Rhodora 73: 72-237, 370-443, 465-540.

Girard C, Muyard F, Bévalot F, Tillequin F, Vaquette J, Sévenet T, Litaudon M. 1999. Polyoxygenated flavones from the leaves of Comptonella microcarpa. – J. Nat. Prod. 62: 1188-1189.

Gleiser G, Verdú M. 2005. Repeated evolution of dioecy from androdioey in Acer. – New Phytol. 165: 633-640.

Godfrey RK, Clewell AF. 1965. Polygamodioecious Leitneria floridana (Leitneriaceae). – Sida 2: 172-173.

Golan-Goldhirsh A, Barazani O, Wang ZS, Khadka DK, Saunders JA, Kostiukovsky V, Rowland LJ. 2004. Genetic relationships among Mediterranean Pistacia species evaluated by RAPD and AFLP markers. – Plant Syst. Evol. 246: 9-18.

Goldblatt P, Tobe H, Carlquist S, Patel V. 1985. Familial position of the cape genus Empleuridium. – Ann. Missouri Bot. Gard. 72: 167-183.

González AM, Vesprini JL. 2010. Anatomy and fruit development in Schinopsis balansae (Anacardiaceae). – Anal. Jard. Bot. Madrid 67: 103-112.

Gouvêa CF, Dornelas MC, Rodriguez APM. 2008. Floral development in the tribe Cedreleae (Meliaceae, sub-family Swietenioideae): Cedrela and Toona. – Ann. Bot. 101: 39-48.

Gouvêa CF, Dornelas MC, Martinelli AP. 2008. Characterization of unisexual flower development in the endangered mahogany tree Swietenia macrophylla King. (Meliaceae). – Bot. J. Linn. Soc. 156: 529-535.

Govindachari TR, Suresh G, Banumathy B, Masilalami S, Gopalakrishnan G, Krishna KGN. 1999. Antifungal activity of some B,D-seco limonoids from two meliaceous plants. – J. Chem. Ecol. 25: 923-933.

Grant M, Blackmore S, Morton C. 2000. Pollen morphology of the subfamily Aurantioideae (Rutaceae). – Grana 39: 8-20.

Gray AI, Waterman PG. 1978. Coumarins in the Rutaceae. – Phytochemistry 17: 845-864.

Greenham J, Vassiliades DD, Harborne JB, Williams CA, Eagles J, Grayer RJ, Veitch NC. 2001. A distinctive flavonoid chemistry for the anomalous genus Biebersteinia. – Phytochemistry 56: 87-91.

Greger H, Pacher T, Brem B, Bacher M, Hofer O. 2001. Insecticidal flavaglines and other compounds from Fijian Aglaia species. – Phytochemistry 57: 57-64.

Gregor H-J. 1989. Aspects of the fossil record and phylogeny of the family Rutaceae (Zanthoxyleae, Toddalioideae). – Plant Syst. Evol. 162: 251-265.

Gregor V-J, Goth K. 1979. Erster Nachweis der Gattung Canarium Stickman 1759 (Burseraceae) im europäischen Alttertiär. – Stuttg. Beitr. Natkd. Ser. B (Geol. Palaeontol.) 47: 1-15.

Grieve CM, Scora RW. 1980. Flavonoid distribution in the Aurantioideae (Rutaceae). – Syst. Bot. 5: 39-53.

Grimm GW, Denk T, Hemleben V. 2007. Evolutionary history and systematics of Acer section Acer – a case study of low-level phylogenetics. – Plant Syst. Evol. 267: 215-253.

Grison F. 1978. Note sur les fleurs de l’okoumé (Aucoumea klaineana Pierre, Burseraceae). – Adansonia, sér. II, 17: 335-342.

Groppo M, Pirani JR. 2012. A revision of Hortia (Rutaceae). – Syst. Bot. 37: 197-212.

Groppo M, Kallunki JA, Pirani JR. 2005. Synonymy of Hortia arborea with H. brasiliana (Rutaceae) and a new species from Brazil. – Brittonia 57: 28-34.

Groppo M, Pirani JR, Salatino MLF, Blanco SR, Kallunki JA. 2008. Phylogeny of Rutaceae based on two noncoding regions from cpDNA. – Amer. J. Bot. 95: 985-1005.

Groppo M, Kallunki JA, Pirani JR, Antonelli A. 2012. Chilean Pitavia more closely related to Oceania and Old World Rutaceae than to Neotropical groups: evidence from two cpDNA non-coding regions, with a new subfamilial classification of the family. – PhytoKeys 19: 9-29.

Gross M, Baer H, Fales HM. 1975. Urushiols of poisonous Anacardiaceae. – Phytochemistry 14: 2263-2266.

Grudinski M, Pannell CM, Chase MW, Ahmad JA, Muellner-Riehl AN. 2014. An evaluation of taxonomic concepts of the widespread plant genus Aglaia and its allies across Wallace’s Line (tribe Aglaieae, Meliaceae). – Molec. Phylogen. Evol. 73: 65-76.

Grundwag M. 1976. Embryology and fruit development in four species of Pistacia L. (Anacardiaceae). – Bot. J. Linn. Soc. 73: 355-370.

Guérin MP. 1901. Développement de la graine et en particulier du tégument séminal de quelques Sapindacées. – J. Bot. 15: 336-362.

Guerra M dos S. 1984. New chromosome numbers in Rutaceae. – Plant Syst. Evol. 146: 13-30.

Guerra M, Santos KGB, Silva AEB, Ehrendorfer F. 2000. Heterochromatin banding pattern in Rutaceae-Aurantioideae – a case of parallel chromosomal evolution. – Amer. J. Bot. 87: 735-747.

Guillaumin MA. 1907. Sur deux Burséracées indo-chinoises. – Rev. Gen. Bot. 19: 161-166.

Gulati N, Mather S. 1977. Embryology and taxonomy of Filicium decipiens Thw. – Phytomorphology 27: 261-266.

Gupta S, Agarwal M. 2008. Wood anatomy of Anacardiaceae from India with special reference to the systematic position of Rhus.- IAWA Bull. 29: 79-106.

Gut BJ. 1966. Beiträge zur Morphologie des Gynoeceums und der Blütenachse einiger Rutaceen. – Bot. Jahrb. Syst. 85: 151-247.

Hall BA. 1951. The floral anatomy of the genus Acer. – Amer. J. Bot. 38: 793-799.

Hall BA. 1961. The floral anatomy of Dipteronia. – Amer. J. Bot. 48: 918-924.

Hallier H. 1910. Über Juliania, eine Terebinthaceen-Gattung mit Cupula und die wahren Stammeltern der Kätzchenblütler. – Beih. Bot. Centralbl., II, 23: 81-265.

Ham RWJM van der. 1988. Types harmomégathiques dans le pollen des Sapindaceae-Nephelieae. – Inst. Franç. Pondichéry Trav. Sect. Sci. Techn. 25: 355-358.

Ham RWJM van der. 1990. Nephelieae pollen (Sapindaceae): form, function, and evolution. – Natl. Herb. Nederl. Leiden, Bot. Ser. 13: 1-255.

Ham RWJM van der, Heuven BJ van. 1989. Evolutionary trends in the morphology and harmomegathy of the pollen of the genus Guioa (Sapindaceae-Cupanieae). – Blumea 34: 21-60.

Ham RWJM van der, Tomlik A. 1994. Serjania pollen and the origin of the tribe Paullinieae (Sapindaceae). – Rev. Palaeobot. Palynol. 83: 43-53.

Ham RWJM van der, Baas P, Bakker ME, Boesewinkel FD, Bouman F, Heuven BJ van, Klaasen RKWM. 1995. Bottegoa Chiov. transferred to Ptaeroxylaceae. – Kew Bull. 50: 243-265.

Harbaugh DT, Wagner WL, Allan G, Zimmer EA. 2009. The Hawaiian archipelago is a stepping-stone for dispersal in the Pacific: an example from the plant genus Melicope (Rutaceae). – J. Biogeogr. 36: 230-241.

Hardin JW. 1957a. A revision of the American Hippocastanaceae. – Brittonia 9: 145-195.

Hardin JW. 1957b. A revision of the American Hippocastanaceae II. – Brittonia 9: 173-195.

Hardin JW. 1960. Studies in the Hippocastanaceae: Old World species. – Brittonia 12: 26-38.

Harley MM, Clarkson JJ. 1999. Pollen morphology of the African Burseraceae and related genera. – In: Heine K (ed), Paleoecology of Africa and the surrounding islands, A. A. Balkema Publ., Rotterdam, pp. 225-242.

Harley MM, Daly DC. 1995. Burseraceae Kunth, Protieae March. em. Engl. – World Pollen and Spore Flora 20: 1-44.

Harley MM, Song U, Banks HI. 2005. Pollen morphology and systematics of Burseraceae. – Grana 44: 282-299.

Harms H. 1896. Meliaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 258-308.

Harms H. 1917. Über eine Meliacee mit blattbürtigen Blüten. – Ber. Deutsch. Bot. Gesellsch. 35: 338-348.

Harms H. 1940. Meliaceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19bI, W. Engelmann, Leipzig, pp. 1-172.

Harms H. 1940. Akaniaceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19bI, W. Engelmann, Leipzig, pp. 173-175.

Harrar ES. 1937. Notes on the genus Flindersia R. Br. and the systematic anatomy of the important flindersian timbers indigenous to Queensland. – J. Elisha Mitchell Sci. Soc. 53: 282-291.

Harrington MG, Gadek PA. 2009. A species well travelled – the Dodonaea viscosa (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETS sequence. – J. Biogeogr. 36: 2313-2323.

Harrington MG, Gadek PA. 2010. Phylogenetics of hopbushes and pepperflowers (Dodonaea, DiplopeltisSapindaceae), based on nuclear ribosomal ITS and partial ETS sequences incorporating secondary-structure models. – Aust. Syst. Bot. 23: 431-442.

Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA. 2005. Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences. – Syst. Bot. 30: 366-382.

Harrington MG, Biffin E, Gadek PA. 2009. Comparative study of the evolution of nuclear ribosomal spacers incorporating secondary structure analyzes within Dodonaeoideae, Hippocastanoideae and Xanthoceroideae (Sapindaceae). – Mol. Phylogen. Evol. 50: 364-375.

Harris AJ, Xiang Q-Y. 2009. Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to dispersal-vicariance analysis and a case using Aesculus L. (Sapindaceae) including fossils. – J. Syst. Evol. 47: 349-368.

Harris AJ, Xiang Q-Y, Thomas DT. 2009. Phylogeny, origin, and biogeographic history of Aesculus L. (Sapindales) – an update from combined analysis of DNA sequences, morphology, and fossils. – Taxon 58: 108-126.

Hartl D. 1957a. Struktur und Herkunft des Endokarps der Rutaceen. – Beitr. Biol. Pflanzen 34: 35-49.

Hartl D. 1957b. Die Pseudosympetalie von Correa speciosa (Rutaceae) und Oxalis tubiflora (Oxalidaceae). – Abh. Akad. Wiss. Lit. Mainz, Abh. Math. Naturwiss. Kl. 2: 53-63.

Hartl D. 1958. Die Übereinstimmung des Endokarps der Simaroubaceen, Rutaceen und Leguminosen. – Beitr. Biol. Pflanzen 34: 452-455.

Hartley TG. 1969. A revision of the genus Flindersia (Rutaceae). – J. Arnold Arbor. 50: 481-526.

Hartley TG. 1974. A revision of the genus Acronychia (Rutaceae). – J. Arnold Arbor. 55: 469-523, 525-567.

Hartley TG. 1977a. A revision of the genus Acradenia (Rutaceae). – J. Arnold Arbor. 58: 171-181.

Hartley TG. 1977b. A revision of the genus Bosistoa (Rutaceae). – J. Arnold Arbor. 58: 416-436.

Hartley TG. 1979. A revision of the genus Tetractomia (Rutaceae). – J. Arnold Arbor. 60: 127-153.

Hartley TG. 1981. A revision of the genus Tetradium (Rutaceae). – Gard. Bull. (Singapore) 34: 91-131.

Hartley TG. 1982a. A revision of the genus Sarcomelicope (Rutaceae). – Aust. J. Bot. 30: 359-372.

Hartley TG. 1982b. Two new species of Acronychia (Rutaceae) from New Guinea. – Reinwardtia 10: 93-96.

Hartley TG. 1983. A revision of the genus Comptonella (Rutaceae). – Bull. Mus. Natn. Hist. Nat. Paris, Sect. B, Adansonia 5: 391-413.

Hartley TG. 1984. A revision of the genus Dutaillyea (Rutaceae). – Bull. Mus. Natn. Hist. Nat. Paris, Sect. B, Adansonia 6: 29-35.

Hartley TG. 1985. A revision of the genus Medicosma (Rutaceae). – Aust. J. Bot. 33: 27-64.

Hartley TG. 1986. Three new species of Sarcomelicope (Rutaceae) from New Caledonia (with a new key to the species of the genus). – Bull. Mus. Natl. Hist. Nat. Paris, Sect. B, Adansonia 2: 183-189.

Hartley TG. 1990. A new species and new combinations in Melicope (Rutaceae) in New South Wales. – Telopea 4: 33-35.

Hartley TG. 1991. A new combination in Australian Acronychia (Rutaceae). – Aust. Syst. Bot. 4: 445-448.

Hartley TG. 1995. A new combination in Boronella (Rutaceae) and a view on relationships of the genus. – Bull. Mus. Natn. Hist. Paris, Sect. B, Adansonia 17: 107-111.

Hartley TG. 1997. Five new rain forest genera of Australasian Rutaceae. – Adansonia, sér. III, 19: 189-212.

Hartley TG. 2000. On the taxonomy and biogeography of Euodia and Melicope (Rutaceae). – Allertonia 8: 1-328.

Hartley TG. 2001a. Morphology and biogeography in Australasian-Malesian Rutaceae. – Malaysian Nature J. 55: 197-219.

Hartley TG. 2001b. On the taxonomy and biogeography of Euodia and Melicope (Rutaceae). – Allertonia 8: 1-319.

Hartley TG. 2003. Neoschmidia, a new genus of Rutaceae from New Caledonia. – Adansonia, sér. III, 25: 7-12.

Hartley TG, Hyland BMP. 1975. Additional notes on the genus Flindersia (Rutaceae). – J. Arnold Arbor. 56: 243-247.

Hartley TG, Hyland BMP. 1982. A new species of Acronychia (Rutaceae) from Australia. – Austrobaileya 1: 451-454.

Hartley TG, Jessup LW. 1982. A name change in the genus Flindersia (Rutaceae). – Brunonia 5: 109.

Hartley TG, Mabberley DJ. 2003. The identity of Picrella Baill. (Rutaceae) with a revision of the genus. – Adansonia, sér. III, 25: 251-259.

Hartley TG, Williams JB. 1983. A new species of Acronychia (Rutaceae) from Australia. – Brunonia 6: 251-255.

Hasebe M, Ando T, Iwatsuki K. 1998. Intrageneric relationships of maple trees based on the chloroplast DNA restriction fragment length polymorphisms. – J. Plant Res. 111: 441-451.

Hegnauer R. 1983. Chemical characters and the classification of the Rutales. – In: Waterman PG, Grundon MF (eds), Chemistry and chemical taxonomy of the Rutales, Academic Press, London, pp. 401-440.

Heimsch C. 1940. Wood anatomy and pollen morphology of Rhus and allied genera. – J. Arnold Arbor. 21: 279-291.

Heimsch C. 1942. Comparative anatomy of the secondary xylem in the ‘Gruinales’ and ‘Terebinthales’ of Wettstein with reference to taxonomic grouping. – Lilloa 8: 83-198.

Hemsley WB. 1908. On the Julianiaceae: a new natural order of plants. – Philos. Trans, Ser. B, 199: 167-197.

Herrero R, Asins MJ, Pina JA, Carbonel EA, Navarro L. 1996. Genetic diversity in the orange subfamily Aurantioideae II. Genetic relationships among genera and species. – Theor. Appl. Gen. 93: 1327-1334.

Hewson HJ. 1985a. Burseraceae. – In: George AS (ed), Flora of Australia 25, Australian Government Publ. Service, Canberra, pp. 165-170.

Hewson HJ. 1985b. Simaroubaceae. – In: George AS (ed), Flora of Australia 25, Australian Government Publ. Service, Canberra, pp. 188-196.

Hladik A, Hallé N. 1979. Note sur les endocarps de quatre espèces de Spondias d’Amériques (Anacardiacées). – Adansonia, n.s., 18: 487-492.

Hoehne FC. 1925. Sapindaceas Mattogrossenses. – Arch. Bot. São Paulo 1: 131-142.

Hogbin PM, Crisp MD. 2003. Evolution of the coastal neospecies Zieria prostrata (Rutaceae) and its relationships to the Zieria smithii species complex. – Aust. Syst. Bot. 16: 515-525.

Horner HTJ, Lersten NR. 1971. Microsporogenesis in Citrus limon (Rutaceae). – Amer. J. Bot. 58: 72-79.

Horton BM, Crayn DM, Clarke SW, Washington H. 2004. Leionema scopulinum (Rutaceae), a new species from Wollemi National Park. – Telopea 10: 815-822.

Huang S-F, Ricklefs RE, Raven PH. 2002. Phylogeny and historical biogeography of Acer I. Study history of the infrageneric classification. – Taiwania 47: 203-218.

Hussein SR, Kawashty SA, Tantawy ME, Saleh NAM. 2009. Chemosystematic studies of Nitraria retusa and selected taxa of Zygophyllaceae in Egypt. – Plant Syst. Evol. 277: 251-264.

Ikuta A, Nakamura T, Urabe H. 1998. Indolopyridoquinazoline, furoquinoline and canthinone type alkaloids from Phellodendron amurense callus tissues. – Phytochemistry 48: 285-291.

Immelman KL. 1984. Flowering in Kirkia wilmsii Engl. – Bothalia 15: 151-152.

Inamdar JA. 1969. Epidermal structure, stomatal ontogeny, and relationship of some Zygophyllaceae and Simaroubaceae. – Flora 158B: 360-368.

Inbar M. 2008. Systematics of Pistacia: insights from specialist parasitic aphids. – Taxon 57: 238-242.

Iriarte J, Kindl F, Rosenkranz G, Sondheimer F. 1956. The constituents of Casimiroa edulis Llave & Lex II. The bark. – J. Chem. Soc. 1956: 4170-4173.

Jadin F. 1901. Contribution à l’étude des Simarubacées. – Ann. Sci. Nat., sér. VIII, Bot. 13: 201-304.

Jaffré T, Fambart J. 2002. Quatre nouvelles espèces de Soulamea (Simaroubaceae) de Nouvelle-Calédonie. – Adansonia, sér. III, 24: 159-168.

Jarvis CE. 1989. A review of the order Leitneriales. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of Hamamelidae 2, ‘Higher’ Hamamelidae, Syst. Assoc. Special Vol. 40B, Clarendon Press, Oxford, pp. 189-192.

Jessup LW. 1985. Anacardiaceae. – In: George AS (ed), Flora of Australia 25, Australian Government Publ. Service, Canberra, pp. 170-187.

Jesus Freitas CM de, Lucchese AM, Silva FS. 2003. Coumarins, furoquinoline alkaloids and terpenes from Spiranthera odoratissima (Rutaceae). – J. Essential Oil Res. 31: 805-807.

Joel DM. 1980. Resin ducts in the mango fruit: a defense system. – J. Exp. Bot. 31: 1707-1718.

Joel DM, Fahn A. 1980a. Ultrastructure of the resin ducts of Mangifera indica (Anacardiaceae) 1. – Differentiation and senescence of shoot ducts. – Ann. Bot., N. S., 46: 225-233.

Joel DM, Fahn A. 1980b. Ultrastructure of the resin ducts of Mangifera indica (Anacardiaceae) 2. – Resin secretion on the primary shoot ducts. – Ann. Bot., N. S., 46: 779-783.

Johnson MAT, Taylor NP. 1989. Chromosome counts in the genus Skimmia (Rutaceae). – Kew Bull. 44: 503-513.

Johri BM, Ahuja MR. 1957. A contribution to the floral morphology and embryology of Aegle marmelos Correa. – Phytomorphology 7: 10-24.

Jones TGH, Smith FB. 1928. Campnospermonol, a ketonic phenol from Campnospermum brevipetiolatum. – J. Chem. Soc. 1928: 65-70.

Jong PC de. 1976. Flowering and sex expression in Acer L. A biosystematic study. – Meded. Landbouwh. Wageningen 76: 1-201.

Jong PC de. 1994. Taxonomy and reproductive biology of maples. – In: Gelderen DM van, Jong PC de, Oterdoom HJ (eds), Maples of the world, Timber Press, Portland, Oregon, pp. 69-103.

Kaastra RC. 1982. Flora Neotropica Monograph 13. Pilocarpinae (Rutaceae). – New York Botanical Garden, Bronx, New York.

Kadry AER. 1946. Embryology of Cardiospermum halicacabum L. – Svensk Bot. Tidskr. 40: 111-126.

Kadry AER. 1960. The seed of Cardiospermum halicacabum L., a criticism. – Acta Bot. Neerl. 9: 330-332.

Kafkas S, Perl-Treves R. 2001. Morphological and molecular phylogeny of Pistacia species in Turkey. – Theor. Appl. Genet. 102: 908-915.

Kalkman C. 1953. Revision of the Burseraceae of the Malaysian area in a wider sense. – Blumea 7: 470.

Kallunki JA. 1990. An emended description of and new combinations in Raputia (Cuspariinae, Rutaceae). – Brittonia 42: 175-177.

Kallunki JA. 1992. A revision of Erythrochiton sensu lato (Cuspariinae, Rutaceae). – Brittonia 44: 107-139.

Kallunki JA. 1994. Revision of Raputia Aubl. (Cuspariinae, Rutaceae). – Brittonia 46: 279-295.

Kallunki JA. 1998. Andreadoxa flava (Rutaceae, Cuspariinae): a new genus and species from Bahia, Brazil. – Brittonia 50: 59-62.

Kallunki JA. 1998. Revision of Ticorea Aubl. (Rutaceae, Galipeinae). – Brittonia 50: 500-513.

Kallunki JA. 2009. Validation of Neoraputia (Galipeae, Rutaceae) and description of two new species from eastern Brazil. – Brittonia 61: 28-34.

Kallunki JA, Pirani JR. 1998. Synopses of Angostura Roem. & Schult. and Conchocarpus J. C. Mikan. – Kew Bull. 53: 257-334.

Kamelina OP. 1994. Embryology and systematic position of Tetradiclis (Tetradiclidaceae). – Bot. Žurn. 79: 11-27.

Kamelina OP, Konnova VA. 1990. Embryological characters of the genus Biebersteinia Steph. in relation to its systematic position. – Doklady Akademii Nauk Tadzhikskoi SSR 33(3): 193-195.

Kamer P. 1939. The woods of Billia, Cashalia, Henoonia, and Juliania. – Trop. Woods 58: 1-2.

Kaniewski K, Wazynska Z. 1970. Sclerenchymatous endocarp with hairs in the fruit of Acer pseudoplatanus L. – Bull. Acad. Polon. Sci. 18: 413-420.

Kannan K. 1994. Burning out the black dammar, Canarium strictum Roxb. – J. Bombay Nat. Hist. Soc. 91: 159.

Kapil RN, Ahluwalia K. 1963. Embryology of Peganum harmala Linn. – Phytomorphology 13: 127-140.

Karimi HR, Kafkas S, Zamani Z, Ebadi A, Fatahi Moghadam MR. 2009. Genetic relationships among Pistacia species using AFLP markers. – Plant Syst. Evol. 279: 21-28.

Keay RWJ. 1996. The future of the genus Swietenia in its native forest. – Bot. J. Linn. Soc. 122: 3-7.

Kenfack D, Tindo M, Gueye M. 2014. Extranuptial nectaries in Carapa Aubl. (Meliaceae-Cedreloideae). – Adansonia, sér. 3, 36: 335-349.

Khalid SA. 1983. Chemistry of the Burseraceae. – In: Waterman PG, Grundon MF (eds), Chemistry and chemical taxonomy of the Rutales, Academic Press, London, pp. 281-289.

Khosla PK, Styles BT. 1975. Karyological studies and chromosome evolution in Meliaceae. – Silvae Genetica 24: 73-83.

Kimura H, Ogawa S, Jisaka M, Kimura Y, Katsube T, Yokota K. 2006. Identification of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata Blume) after treatment with wooden ashes and their nutraceutical activity. – J. Pharmaceut. Biomed. 41: 1657-1665.

Klaassen RKWM. 1999. Wood anatomy of the Sapindaceae. – IAWA J. (Suppl.)2: 1-214.

Knuth R. 1931. Geraniaceae. – In: Engler A (†), Harms H, Pax F (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 19a, W. Engelmann, Leipzig, pp. 43-66.

Kokwaro JO. 1978. New taxa and combinations in Rutaceae of E. and NE. Africa. – Kew Bull. 32: 789-791.

Kokwaro JO. 1982. Rutaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-52.

Kokwaro JO. 1986. Anacardiaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-59.

Kokwaro JO, Gillett J. 1980. Notes on the Anacardiaceae of Eastern Africa. – Kew Bull. 34: 745-760.

Kong Y-C, Cheng K-F, Ng K-M, But PP-H, Li Q, Yu S-X, Chang H-T, Cambie RC, Kinoshita T, Kan W-S, Waterman PG. 1986. A chemotaxonomic division of Murraya based on the distribution of the alkaloids yuehchukene and girinimbine. – Biochem. Syst. Ecol. 14: 491-497.

Kong Y-C, But PP-H, Ng K-M, Cheng K-F, Chang K, Wong K, Gray A, Waterman PG. 1988. The biochemical systematics of Merrillia; in relation to Murraya, the Clauseneae and the Aurantioideae. – Biochem. Syst. Ecol. 16: 47-50.

Kong Y-C, But PP-H, Ng K-M, Li Q, Cheng K-F, Waterman PG. 1988. Micromelum: a key genus in the chemosystematics of the Clauseneae. – Biochem. Syst. Ecol. 16: 485-489.

Kostermans AJGH. 1981. Notes on Spondias L. (Anacardiaceae). – Quart. J. Taiwan Mus. 34: 105-111.

Kostermans AJGH. 1991. Kedondong, Ambarella, Amra. The Spondioideae (Anacardiaceae) in Asia and the Pacific area. – Publ. by the author, printed in Bogor, Indonesia by O. Rachmat, Bina Karya 78 Printing Works, Jl. Semboja 13.

Kostermans AJGH. 1992. The identity of Dracontomelum petelotii Tardieu-Blot (Anacardiaceae). – Reinwardtia 11: 55.

Kribs DA. 1930. Comparative anatomy of the woods of the Meliaceae. – Amer. J. Bot. 17: 724-738.

Kubitzki K. 2011. Introduction to Sapindales. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 1-3.

Kubitzki K, Kallunki JA, Duretto M, Wilson PG. 2011. Rutaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 276-356.

Kubo I, Tanis SP, Lee Y, Miura I, Nakanishi K, Cahpya A. 1976. Harrisonin – a new limonoid from Harrisonia abyssinica. – Heterocycles 5: 485.

Labat J-N, Pignal M, Pascal O. 2005. Deux espèces nouvelles et une combinaison nouvelle chez les Rutaceae de l’Archipel des Comores. – Syst. Bot. Monogr. 104: 361-369.

Lal S. 1994. A contribution to the floral anatomy of Cedreleae (Meliaceae). – Feddes Repert. 105: 449-455.

Lal S, Narayana LL. 1994. Floral anatomy and systematic position of Flindersia R. Br. – Feddes Repert. 105: 31-36.

Lam HJ. 1931. Beiträge zur Morphologie der dreizähligen Burseraceae-Canarieae. – Ann. Bot. Jard. Buitenz. 41: 23-56.

Lam HJ. 1932a. Beiträge zur Morphologie der Burseraceae, insbesondere der Canarieae. – Ann. Bot. Jard. Buitenz. 42: 97-226.

Lam HJ. 1932b. The Burseraceae of the Malay Archipelago and Peninsula. – Bull. Jard. Bot. État, sér. III, 12: 281-561.

Lam HJ. 1938. Studies in phylogeny II. On the phylogeny of the Malaysian Burseraceae, Canarieae in general, and of Haplolobus in particular. – Blumea 3: 126-158.

Leenhouts PW. 1956. Burseraceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 5(2), Noordhoff-Kolff N. V., Djakarta, pp. 209-296.

Leenhouts PW. 1967. A conspectus of the genus Allophyllus (Sapindaceae). The problem of a complex species. – Blumea 15: 301-358.

Leenhouts PW. 1978. The pollen morphology of Burseraceae: a taxonomic comment. – Grana 17: 175-177.

Leenhouts PW. 1985. An attempt towards a natural system of Harpullia (Sapindaceae). – Blumea 31: 219-234.

Leenhouts PW. 1988a. Notes on some genera of Sapindaceae-Cupanieae. – Blumea 33: 197-213.

Leenhouts PW. 1988b. A revision of Alectryon (Sapindaceae) in Malesia. – Blumea 33: 313-327.

Leenhouts PW, Vente M. 1982. A taxonomic revision of Harpullia (Sapindaceae). – Blumea 28: 1-51.

Leroy J-F. 1959. Sur une petite famille de Sapindales proper à l’Afrique australe et à Madagascar: Les Ptaeroxylaceae. – Compt. Rend. Acad. Sci. Paris 248: 1001-1003.

Leroy J-F. 1976. Essais de taxonomie syncrétique 1. Étude sur les Meliaceae de Madagascar. – Adansonia, sér. II, 16: 167-203.

Leroy J-F, Lescot M. 1996. Taxons nouveaux de Trichilieae (Meliaceae-Melioideae) de Madagascar. – Bull. Mus. Natl. Hist. Nat. Paris, sect. B, Adansonia 18: 3-34.

Leroy J-F, Lobreau-Callen D, Lescot M. 1990. Les Ptaeroxylaceae: espèces nouvelles du genre malgache Cedrelopsis et palynologie de la famille. – Adansonia 12: 43-57.

Li B, Welle BJH ter, Klaassen R. 1995. Wood anatomy of trees and shrubs from China VII. Sapindaceae. – IAWA J. 16: 191-215.

Li S-W, Tu L-Z. 1994. The embryology and its systematic significance of Nitraria. – Bull. Bot. Res. 3: 255-262.

Ling K-H, Wang Y, Poon W-S, Shaw P-C, But PP-H. 2009. The relationship of Fagaropsis and Luvunga in Rutaceae. – Taiwania 54: 338-342.

Linney G. 1987. Nomenclature and taxonomic changes in Hawaiian Alectryon (Sapindaceae). – Pacific Sci. 41: 68-73.

List AJ, Steward FC. 1965. The nucellus, embryo sac, endosperm, and embryo of Aesculus and their interdependence during growth. – Ann. Bot., N. S., 29: 1-15.

Liu C. 1986. Studies of pollen morphology in the Bretschneideraceae and related families. – Acta Bot. Yunnan. 8: 441-450. [In Chinese with English summary]

Lobreau-Callen D, Jérémie J. 1986. L’espèce Cneorum tricoccon (Cneoraceae, Rutales) représentée à Cuba. – Grana 25: 155-158.

Lobreau-Callen D, Nilsson S, Albers F, Straka H. 1978. Les Cneoraceae (Rutales): étude taxonomique, palynologique, et systématique. – Grana 17: 125-139.

Lombello RA, Forni-Martins ER. 1998. Chromosomal studies and evolution in Sapindaceae. – Caryologia 51: 81-93.

Ma JS, Cao W, Liu QR, Yu M, Han LJ. 2006. A revision of the genus Phellodendron (Rutaceae). – Edinburgh J. Bot. 63: 131-151.

Mabberley DJ. 1979. The species of Chisocheton (Meliaceae). – Bull. Brit. Mus. (Nat. Hist.), Bot., ser. 6: 301-386.

Mabberley DJ. 1997. A classification for edible Citrus (Rutaceae). – Telopea 7: 167-172.

Mabberley DJ. 1998a. Australian Citreae with notes on other Aurantioideae (Rutaceae). – Telopea 7: 333-344.

Mabberley DJ. 1998b. Notes on Australian Meliaceae. – Telopea 8: 47-48.

Mabberley DJ. 2001. Citrus reunited. – Australian Plants 21: 52-54.

Mabberley DJ. 2004a. Citrus (Rutaceae): a review of recent advances in etymology, systematics, and medical applications. – Blumea 49: 481-498.

Mabberley DJ. 2004b. A key to Dysoxylum (Meliaceae) in Australia, with a description of a new species from far north Queensland. – Telopea 10: 725-730.

Mabberley DJ. 2011. Meliaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 185-211.

Mabberley DJ, Pannell CM, Sing AM. 1995. Meliaceae. – In: Kalkman C et al. (eds), Flora Malesiana I, 12(1), Flora Malesiana Foundation, Rijksberbarium/Hortus Botanicus, Leiden, pp. 1-407.

Macbride JF. 1956. Flora of Peru. Sapindaceae. – Bot. Ser. 13: 291-391.

McClain AM, Manchester SR. 2001. Dipteronia (Sapindaceae) from the Tertiary of North America and implications for the phytogeographic history of the Aceroideae. – Amer. J. Bot. 88: 1316-1325.

McGillivray DJ. 1975. Dodonaea (Sapindaceae): taxonomic notes. – Telopea 1: 66-67.

McVaugh R, Rzedowski J. 1965. Synopsis of the genus Bursera L. in western Mexico, with notes on the material of Bursera collected by Sessé & Mociño. – Kew Bull. 18: 317-346.

Mai DH. 1984. Die Endokarpien bei der Gattung Acer L. Eine biosystematische Studie. – Gleditschia 11: 17-46.

Manchester SR. 2001. Leaves and fruits of Aesculus (Sapindales) from the Paleocene of North America. – Intern. J. Plant Sci. 162: 985-998.

Manchester SR, Hermsen EJ. 2000. Flowers, fruits, seeds, and pollen of Landeenia gen. nov., an extinct sapindalean genus from the Eocene of Wyoming. – Amer. J. Bot. 87: 1909-1914.

Manchester SR, Wilde V, Collinson ME. 2007. Fossil cashew nuts from the Eocene of Europe: biogeographic links between Africa and South America. – Intern. J. Plant Sci. 168: 1199-1206.

Mandalari G, Bennett RN, Bisignano G, Trombetta D, Saija A, Faulds CB, Gasson MJ, Narbad A. 2007. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. – J Appl. Microbiol. 103: 2056-2064.

Marcone MR, Kakuda Y, Jahaniaval F, Yada RY, Montevirgen LS. 2002. Characterization of the proteins of pili nut (Canarium ovatum, Engl.). – Plant Foods Hum. Nutr. (Drodr.) 57: 107-120.

Martínez-Pallé E, Herrero M. 1995. The ponticulus – a structure bridging pollen tube access to the ovule in Pistacia vera. – Sex. Plant Repr. 8: 217-222.

Matsuda H. 1997. Antiinflammatory effects of escins Ia, Ib, IIa, and IIb from horse chestnut, the seeds of Aesculus hippocastanum L. – Bioorg. Med. Chem. Lett. 7: 1611-1616.

Mauritzon J. 1935. Über die Embryologie der Familie Rutaceae. – Svensk Bot. Tidskr. 29: 319-347.

Mauritzon J. 1936. Zur Embryologie und systematischen Abgrenzung der Reihen Terebinthales und Celastrales. – Bot. Not. 1936: 161-212.

Mehra PN, Sareen TS, Khosla PK. 1972. Cytological studies on Himalayan Meliaceae. – J. Arnold Arbor. 53: 558-568.

Meissner R, Markey A. 2007. Two new Western Australian species of Drummondita (Rutaceae: Boronieae) from banded ironstone ranges of the Yilgarn Craton. – Nuytsia 17: 273-280.

Mendonça FA. 1963. 40. Rutaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 180-210.

Merrien A, Polonsky J. 1971. The natural occurrence of melianodiol and its diacetate in Samadera madagascariensis (Simaroubaceae): model experiments on melianodiol directed towards simarolide. – J. Chem. Soc. D, 1971: 261-263.

Merxmüller H, Heine H. 1960. Simaroubaceae. – Mitt. Bot. Staatssamml. München 3: 617-619.

Mester I. 1983. Structural diversity and distribution of alkaloids in the Rutales. – In: Waterman PG, Grundon MF (eds), Chemistry and chemical taxonomy of the Rutales, Academic Press, London, pp. 31-96.

Mester I, Vicol EC. 1971. Contribution to the chemotaxonomy of the Haplophyllum genus. – Rev. Roum. Biol. 16: 221-233.

Meyer FG. 1976. A revision of the genus Koelreuteria (Sapindaceae). – J. Arnold Arbor. 57: 129-166.

Meyer FG. 1977. Sinoradlkofera: a new genus of Sapindaceae. – J. Arnold Arbor. 58: 182-188.

Miceli N, Taviano MF, Tzakou O, Yannitsaros A, Vassiliades D, Giuffrida D, Galati EM. 2005. Biebersteinia orphanidis Boiss. shows antioxidant and anti-inflammatory activity. – Pharmacogn. Mag. 1: 54-58.

Mikesell J. 1990. Anatomy of terminal haustoria in the ovule of plantain (Plantago major L.) with taxonomic comparison to other angiosperm taxa. – Bot. Gaz. 151: 452-464.

Milanez FR. 1943. Anatomia das pricipais madeiras brasileiras das Rutaceae. – Rodriguésia 7: 5-22.

Miller AJ, Young DA, Wen J. 2001. Phylogeny and biogeography of Rhus (Anacardiaceae) based on ITS sequence data. – Intern. J. Plant Sci. 162: 1401-1407.

Milton G, Pirani JR, Salatino MLF, Blanco SR, Kallunki JA. 2008. Phylogeny of Rutaceae based on two noncoding regions from cpDNA. – Amer. J. Bot. 95: 985-1005.

Mitchell JD. 1990. The poisonous Anacardiaceae genera of the world. – Adv. Econ. Bot. 8: 103-129.

Mitchell JD, Daly DC. 1991. Cyrtocarpa (Anacardiaceae) in South America. – Ann. Missouri Bot. Gard. 78: 1184-1189.

Mitchell JD, Daly DC. 1993. A revision of the genus Thyrsodium (Anacardiaceae). – Brittonia 45: 115-129.

Mitchell JD, Daly DC. 1998. The ‘tortoise’s cajá’ – a new species of Spondias (Anacardiaceae) from southwestern amazonia. – Brittonia 50: 447-451.

Mitchell JD, Daly DC, Pell SK, Randrianasolo A. 2006. Poupartiopsis gen. nov. and its context in Anacardiaceae classification. – Syst. Bot. 31: 337-348.

Mitchell JD, Daly DC, Randrianasolo A. 2012. The first report of Spondias native to Madgascar: Spondias tefyi, sp. nov. (Anacardiaceae). – Brittonia 64: 263-267.

Mitra K, Mondal M, Saha S. 1977. The pollen morphology of Burseraceae. – Grana 16: 75-79.

Modliszewski JL, Thomas DT, Fan C, Crawford DJ, dePamphilis C, Xing Q-Y. 2006. Ancestral chloroplast polymorphism and historical secondary contact in a broad hybrid zone of Aesculus (Sapindaceae). – Amer. J. Bot. 93: 377-388.

Moffett RO. 1999. A new species of Rhus (Anacardiaceae), endemic to serpentine near Barberton, Mpumalanga (Eastern Transvaal), South Africa. – Bot. J. Linn. Soc. 130: 37-42.

Moffett RO. 2007. Name changes in the Old World Rhus and recognition of Searsia (Anacardiaceae). – Bothalia 37: 165-175.

Mole BJ, Udovicic F, Ladiges PY, Duretto MF. 2004. Molecular phylogeny of Phebalium (Rutaceae: Boronieae) and related genera based on the nrDNA regions ITS 1+2. – Plant Syst. Evol. 249: 197-212.

Molino J-F. 1991. Révision systématique du genre Clausena Burm. f. (Rutaceae); application à la production agro-industrielle d’anethole. – Thèse (Diplome de Doctorat), Université de Montpellier II: 1-208.

Molino J-F. 1994a. Révision du genre Clausena Burm. f. (Rutaceae). – Adansonia 1: 105-153.

Mollemans F. 1993. Drummondita wilsonii, Philotheca langei and P. basistyla (Rutaceae), new species from south-west Western Australia. – Nuytsia 9: 95-109.

Momotani Y. 1961. Taxonomic study of the genus Acer with special reference to the seed proteins I. Taxonomic characters. – Mem. Coll. Sci. Kyoto Imp. Univer., Ser. B, Biology 28: 455-470.

Moncada M, Machado S. 1987. Los granos de pollen de Simarubaceae. – Acta Bot. Cub. 45: 1-7.

Moncur MW, Wait AJ. 1986. Floral ontogeny of the cashew, Anacardium occidentale L. (Anacardiaceae). – Sci. Horticult. 30: 203-211.

Mondon A, Epe B. 1983. Bitter principles of Cneoraceae. – Progr. Chem. Org. Nat. Prod. 44: 101-187.

Monod T. 1979. Les arbres à encens (Boswellia sacra Flückiger 1867) dans le Hadramaut (Yémen du Sud). – Bull. Mus. Natl. Hist. Nat. Paris, sér. 4(1), sect. B: 131-169.

Moolla A, Vuuren SF van, Zyl RL van, Viljoen AM. 2007. Biological activity and toxicity profile of 17 Agathosma (Rutaceae) species. – South Afr. J. Bot. 73: 588-592.

Moore GA. 2001. Oranges and lemons: clues to the taxonomy of Citrus from molecular markers. – Trends Gen. 17: 536-540.

Moore J. 1936. Floral anatomy and phylogeny in the Rutaceae. – New Phytol. 35: 318-322.

Moraes VR de S, Tomaleza DM, Ferracin RJ, Garcia CF, Sannomiya M, Soriano M del PC, Silva MFGF da. 2003. Enzymatic inhibition studies of selected flavonoids and chemosystematic significance of polymethoxylated flavonoids and quinoline alkaloids in Neoraputia. – J. Brazilian Chem. Soc. 14: 380-387.

Morales JF. 2003. A new species of Paullinia (Sapindaceae) from Costa Rica. – Brittonia 55: 173-175.

Morton CM. 2009. Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions, atpB-rbcL spacer, rps16, and trnL-trnF. – Organisms Div. Evol. 9: 52-68.

Morton CM. 2015. Phylogenetic relationships of Zieria (Rutaceae) inferred from chloroplast, nuclear, and morphological data. – PhytoKeys 44: 15-38.

Morton CM, Kallunki JA. 1993. Pollen morphology of the subtribe Cuspariinae (Rutaceae). – Brittonia 45: 286-314.

Morton CM, Telmer C. 2014. New subfamily classification for the Rutaceae. – Ann. Missouri Bot. Gard. 99: 620-641.

Morton CM, Chase MW, Kallunki JA. 1996. Evaluation of the six subfamilies of Rutaceae using evidence from rbcL sequence variation. – Amer. J. Bot. 83: 180-181.

Morton CM, Grant M, Blackmore S. 2003. Phylogenetic relationships of the Aurantioideae inferred from chloroplast DNA sequence data. – Amer. J. Bot. 90: 1463-1469.

Morton JF. 1978. Brazilian pepper – its impact on people, animals and the environment. – Econ. Bot. 32: 353-359.

Mou F-J, Zhang D-X. 2009. Pollen morphology supports the reinstatement of Bergera (Rutaceae). – Nord. J. Bot. 27: 298-304.

Mou F-J, Zhang D-X. 2012. Chromosome studies in the tribe Clauseneae and the cytological homogeneity in the orange subfamily (Aurantioideae, Rutaceae). – J. Syst. Evol. 50: 460-466.

Müllner AN. 2011a. Biebersteiniaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 72-75.

Müllner AN. 2011b. Kirkiaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 180-184.

Müllner AN, Samuel R, Johnson SA, Cheek M, Pennington TD, Chase MW. 2003. Molecular phylogenetics of Meliaceae (Sapindales) based on nuclear and plastid DNA sequences. – Amer. J. Bot. 90: 471-480.

Müllner AN, Samuel R, Chase MW, Pannell CM, Greger H. 2005. Aglaia (Meliaceae) – an evaluation of taxonomic concepts based on DNA data and secondary metabolites. – Amer. J. Bot. 92: 534-543.

Müllner AN, Savolainen V, Samuel R, Chase MW. 2006. The mahogany family “out of Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. – Mol. Phylogen. Evol. 40: 236-250.

Müllner AN, Vassiliades DD, Renner SS. 2007. Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context. – Plant Syst. Evol. 266: 233-252.

Müllner AN, Pannell CM, Coleman A, Chase MW. 2008. The origin and evolution of Indomalesian, Australasian and Pacific island biotas: insights from Aglaieae (Meliaceae, Sapindales). – J. Biogeogr. 35: 1769-1789.

Müllner AN, Samuel R, Chase MW, Coleman A, Stuessy TF. 2008. An evaluation of tribes and generic relationships in Melioideae (Meliaceae) based on nuclear ITS ribosomal DNA. – Taxon 57: 98-108.

Müllner AN, Pennington TD, Chase MW. 2009. Molecular phylogenetics of neotropical Cedreleae (mahogany family, Meliaceae) based on nuclear and plastid DNA sequences reveal multiple origins of ‘Cedrela odorata’. – Mol. Phylogen. Evol. 52: 461-469.

Mulholland DA, Nair JJ, Taylor DAH. 1996. Astrotrichilin, a limonoid from Astrotrichilia asterotricha. – Phytochemistry 42: 1239-1241.

Mulholland DA, Kotsos M, Mahomed HA, Taylor DAH. 1998. Triterpenoids from Owenia cepiodora. – Phytochemistry 49: 2457-2460.

Mulholland DA, Parel B, Coombes PH. 2000. The chemistry of Meliaceae and Ptaeroxylaceae of southern and eastern Africa and Madagascar. – Curr. Org. Chem. 4: 1011-1054.

Mulholland DA, Cheplogoi P, Crouch NR. 2003. Secondary metabolites from Kirkia acuminata and Kirkia wilmsii (Kirkiacae). – Biochem. Syst. Ecol. 31: 793-797.

Mulholland DA, Naidoo D, Randrianarivelojosia M, Cheplogoi PK, Coombes PH. 2003. Secondary metabolites from Cedrelopsis grevei (Ptaeroxylaceae). – Phytochemistry 64: 631-635.

Muller J. 1985. Pollen morphology and evolution of the genus Harpullia (Sapindaceae-Harpullieae). – Blumea 31: 161-218.

Muller J, Leenhouts PW. 1976. A general survey of pollen types in Sapindaceae in relation to taxonomy. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine, Linn. Soc. Symposium, No. 1, Academic Press, London, New York, pp. 407-445.

Muller J, Schuller M. 1989. Fam. 120: Sapindaceae. – Trop. Subtrop. Pflanzenw. 67: 99-137.

Murray AE. 1970. A checklist of species of Acer. – Kalmia 2: 22-45.

Murty YS, Gupta S. 1978a. Morphological studies in Meliaceae II. A reinvestigation of floral anatomy of members of Swietenieae and Tricilieae. – Proc. Indian Acad. Sci., Ser. B, 87: 55-64.

Murty YS, Gupta S. 1978b. Morphological studies in Meliaceae III. A reinvestigation of floral anatomy of Azadirachta and Melia. – J. Indian Bot. Soc. 57: 195-204.

Muscarella M, Kimber MC, Moody CJ. 2008. Synthesis of ptaeroxylin (desoxykarenin): an unusual chromone from the sneezewood tree Ptaeroxylon obliquum. – Synlett. 14: 2101.

Mziray W. 1992. Taxonomic studies in Toddalieae Hook. f. (Rutaceae) in Africa. – Symb. Bot. Ups. 30(1): 1-95.

Naidoo D,Coombes PH, Mulholland DA, Crouch NR, Van Den Bergh AJJ. 2005. N-substituted acridone alkaloids from Toddaliopsis bremekampii (Rutaceae: Toddalioideae) of south-central Africa. – Phytochemistry 66: 1724-1728.

Nair GM, Venkaiah K, Shah J. 1983. Ultrastructure of gumresin ducts in cashew (Anacardium occidentale). – Ann. Bot., N. S., 51: 297-307.

Nair MNB. 1991. Wood anatomy of some members of the Meliaceae. – Phytomorphology 41: 63-73.

Nair NC. 1959a. Studies in Meliaceae I. Floral morphology and embryology of Naregamia alata W. et A. – J. Indian Bot. Soc. 38: 353-366.

Nair NC. 1959b. Studies in Meliaceae II. Floral morphology and embryology of Melia azedarach Linn.: a reinvestigation. – J. Indian Bot. Soc. 38: 366-378.

Nair NC. 1962. Studies in Meliaceae V. Morphology and anatomy of the flower of the tribes Melieae, Trichileae, and Swietenieae. – J. Indian Bot. Soc. 41: 226-242.

Nair NC. 1963. Studies in Meliaceae VI. Morphology and anatomy of the flower of the tribe Cedrelieae and discussion of the floral anatomy of the family. – J. Indian Bot. Soc. 42: 177-189.

Nair NC. 1970. Comparative embryology of angiosperms: Meliaceae, Rhamnaceae, Vitaceae, Leeaceae. – Bull. Natl. Sci. Acad. India 41: 151-155, 168-173, 174-179, 180-184.

Nair NC, Joseph TC. 1957. Floral morphology and embryology of Samadera indica. – Bot. Gaz. 119: 104-115.

Nair NC, Joseph TC. 1960. Morphology and embryology of Cardiospermum halicacabum L. – J. Indian Bot. Soc. 39: 176-194.

Nair NC, Joshi RK. 1958. Floral morphology of some members of the Simaroubaceae. – Bot. Gaz. 120: 88-99.

Nair NC, Nathawat KS. 1958. Vascular anatomy of the flower of some species of Zygophyllaceae 1. – J. Indian Bot. Soc. 37: 172-180.

Nair NC, Sukumaran NP. 1960. Floral morphology and embryology of Brucea amarissima. – Bot. Gaz. 121: 175-185.

Narayana LL. 1957. Embryology of two Simaroubaceae. – Curr. Sci. 26: 323-324.

Narayana LL. 1958a. Floral anatomy and embryology of Cipadessa baccifera Miq. – J. Indian Bot. Soc. 37: 147-154.

Narayana LL. 1958b. Floral anatomy of Meliaceae I. – J. Indian Bot. Soc. 37: 365-374.

Narayana LL. 1959a. Floral anatomy of Meliaceae II. – J. Indian Bot. Soc. 38: 288-295.

Narayana LL. 1959b. Microsporogenesis and female gametophyte in Boswellia serrata Roxb. – Curr. Sci. 28: 77-78.

Narayana LL. 1960a. Studies in Burseraceae I. – J. Indian Bot. Soc. 39: 204-209.

Narayana LL. 1960b. Studies in Burseraceae II. – J. Indian Bot. Soc. 39: 402-409.

Narayana LL. 1963. A note on the embryology of a few Rutaceae. – Curr. Sci. 32: 516-517.

Narayana LL, Sayeeduddin M. 1958. Floral anatomy of Simaroubaceae I. – J. Indian Bot. Soc. 37: 517-522.

Navarro C, Ward S, Hernandez M. 2002. The tree Cedrela odorata (Meliaceae): a morphologically subdivided species in Costa Rica. – Rev. Biol. Tropical 50: 21-29.

Navarro FB, Suarez-Santiago VN, Blanco G. 2004. A new species of Haplophyllum A. Juss. (Rutaceae) from the Iberian peninsula: evidence from morphological, karyological and molecular analyses. – Ann. Bot. 94: 571-582.

Nene PM, Tilak VD. 1977. Placentation in the Rutaceae. – Proc. Indian Acad. Sci., Sect. B, 85: 378-383.

Neto JO, das GF da Silva MF, Fo ER, Fernandes JB, Vieira PC, Pinheiro AL. 1998. Norlimonoids from seeds of Toona ciliata. – Phytochemistry 49: 1369-1373.

Ng K-M, But PP-H, Gray AI, Hartley TG, Kong Y-C, Waterman PG. 1987. The biochemical systematics of Tetradium, Euodia and Melicope, and their significance in the Rutaceae. – Biochem. Syst. Ecol. 15: 587-593.

Ng’ang’a MM, Hussain H, Chhabra S, Langat-Thoruwa C, Krohn K. 2009. Chemical constituents from the root bark of Ozoroa insignis. – Biochem. Syst. Ecol. 37: 116-119.

Nicolosi E, Deng Z-N, Gentile A, La Malfa S, Continella G, Tribulato E. 2000. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. – Theor. Appl. Gen. 100: 1155-1166.

Nie Z-L, Sun H, Meng Y, Wen J. 2009. Phylogenetic analysis of Toxicodendron (Anacardiaceae) and its biogeographic implications on the evolution of north temperate and tropical intercontinental disjunctions. – J. Syst. Evol. 47: 416-430.

Nooteboom HP. 1962a. Generic delimitation in Simaroubaceae tribus Simaroubeae and a conspectus of the genus Quassia L. – Blumea 11: 509-528.

Nooteboom HP. 1962b. Simaroubaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 6, Noordhoff, Leiden, pp. 193-226.

Nooteboom HP. 1966. Flavonols, leuco-anthocyanins, cinnamic acids, and alkaloids in dried leaves of some Asiatic and Malesian Simaroubaceae. – Blumea 14: 309-315.

Nooteboom HP. 1987. Laumoniera, a new genus of Simaroubaceae from Sumatra. – Blumea 32: 383-384.

Ogata K. 1967. A systematic study of the Aceraceae. – Bull. Tokyo Imp. Univ. For. 63: 89-206.

Okorie DA. 1982. Chromones and limonoids from Harrisonia abyssinica. – Phytochemistry 21: 2424-2426.

Oliver D. 1861. The natural order Aurantiaceae with a synopsis of the Indian species. – J. Linn. Soc. 5 [Suppl. 2]: 1-55.

Omoti U, Okiy DA. 1987. Characteristics and composition of the pulp oil and cake of the African pear, Dacryodes edulis (G. Don) H. J. Lam. – J. Sci. Food Agric. 38: 67-72.

Onana JM. 2008. A synoptic revision of Dacryodes (Burseraceae) in Africa, with a new species from Central Africa. – Kew Bull. 63: 385-400.

Oon BL, Choong CY, Mahani MC, Mat-Salleh K. 2000. Molecular phylogeny of Meliaceae based on chloroplast trnL-trnF nucleotide sequences. – Malaysian Appl. Biol. 29: 127-132.

Oterdom HJ. 1990. Paleobotany and evolution of the maples. – Intern. Dendol. Soc. Yearbook: 12-13.

Othman RNA, Jordan GJ, Worth JRP, Steane DA, Duretto MF. 2010. Phylogeny and infrageneric classification of Correa Andrews (Rutaceae) on the basis of nuclear and chloroplast DNA. – Plant Syst. Evol. 288: 127-138.

Paetow W. 1931. Embryologische Untersuchungen an Taccaceen, Meliaceen und Dilleniaceen. – Planta 14: 441-470.

Palacios WA. 2007. 98. Meliaceae. – In: Harling G, Persson C (eds), Flora of Ecuador 82, Department of Plant and Environmental Sciences, Göteborg University, pp. 1-88.

Pan Y-L, Shen G-M, Chen P. 1999. A preliminary research on taxonomy and systematics of genus Nitraria. – Acta Bot. Yunnan. 21: 287-295. [In Chinese]

Pang X-M, Hu C-G, Deng X-X. 2007. Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. – Gen. Res. Crop Evol. 54: 429-436.

Pannell CM. 1992. A taxonomic monograph of the genus Aglaia Lour. (Meliaceae). – Kew Bull., Add. Ser. 16, Her Majesty’s Stationery Office for the Royal Botanic Gardens, Kew, London.

Pannell CM. 1993. A monograph of Aglaia (Meliaceae): a correction. – Kew Bull. 48: 244.

Pannell CM. 1995. A monograph of Aglaia (Meliaceae): a second correction. – Kew Bull. 50: 348.

Pannell CM. 2004. Three new species, two new subspecies and five new combinations at the subspecific level in Aglaia Lour. (Meliaceae). – Kew Bull. 59: 87-94.

Panshin AJ. 1933. Comparative anatomy of the woods of the Meliaceae, subfamily Swietenioideae. – Amer. J. Bot. 20: 639-668.

Parfitt DE, Badenes ML. 1997. Phylogeny of the genus Pistacia as determined from analysis of the chloroplast genome. – Proc. Natl. Acad. Sci. U.S.A. 94: 7987-7992.

Parfitt DE, Badenes ML. 1998. Molecular phylogenetic analysis of the genus Pistacia. – Acta Hort. 470: 143-151.

Park C-W, Oh S-H, Shin H. 1993. Reexamination of vascular plants in Ullung Island, Korea II: taxonomic identity of Acer takesimense Nakai (Aceraceae). – Kor. J. Plant Taxon. 23: 217-231.

Pax F. 1896a. Aceraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 263-272.

Pax F. 1896b. Hippocastanaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 273-276.

Pell SK. 2004. Molecular systematics of the cashew family (Anacardiaceae). – Ph.D. diss., Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana.

Pell SK, Mitchell JD, Lowry PP, Randrianasolo A, Urbatsch LE. 2008. Phylogenetic split of Malagasy and African taxa of Protorhus and Rhus (Anacardiaceae) based on cpDNA trnL-trnF and nrDNA ETS and ITS sequence data. – Syst. Bot. 33: 375-383.

Pell SK, Mitchell JD, Miller AJ, Lobova TA. 2011. Anacardiaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 7-50.

Pennington TD. 1981. Meliaceae. Flora Neotropica Monograph 28. – New York Botanical Garden, Bronx, New York.

Pennington TD, Styles BT. 1975. A generic monograph of the Meliaceae. – Blumea 22: 419-540.

Pennington TD, Styles BT, Taylor DAH. 1981. Flora Neotropica. Monograph 28. Meliaceae. – The New York Botanical Garden, Bronx, New York.

Pernet R. 1972. Phytochemie der Burseraceae. – Lloydia 35: 280-287.

Perrier de la Bâthie H. 1944. Révision des Anacardiacées de Madagascar et des Comores. – Mém. Mus. Natl. Hist. Nat. Paris 18:243-269.

Perrier de la Bâthie H. 1946. 114e Famille. Anacardiacées. – In: Humbert H (ed), Flore de Madagascar et des Comores, Typ. Firmin-Didot & Co. Mesnil, France, pp. 1-85.

Perrier de la Bâthie H. 1950a. 104e Famille. Rutacées. – In: Humbert H (ed), Flore de Madagascar et des Comores, Typ. Firmin-Didot & Co. Mesnil, France, pp. 1-89.

Perrier de la Bâthie H. 1950b. 105e Famille. Simarubacées. – In: Humbert H (ed), Flore de Madagascar et des Comores, Typ. Firmin-Didot & Co. Mesnil, France, pp. 1-7.

Perveen A, Qaiser M. 2006. Pollen flora of Pakistan XLIX. Zygophyllaceae. – Pak. J. Bot. 38: 252-232.

Petersen FP, Fairbrothers DE. 1983. A serotaxonomic appraisal of Amphipterygium and Leitneria – two amentiferous taxa of Rutiflorae (Rosidae). – Syst. Bot. 8: 134-148.

Petersen FP, Fairbrothers DE. 1985. A serotaxonomic appraisal of the “Amentiferae”. – Bull. Torrey Bot. Club 112: 43-52.

Pfeiffer WM. 1912. The morphology of Leitneria floridana. – Bot. Gaz. 53: 189-203.

Pfeil BE, Crisp MD. 2008. The age and biogeography of Citrus and the orange subfamily (Rutaceae: Aurantioideae) in Australasia and New Caledonia. – Amer. J. Bot. 95: 1621-1631.

Pfosser M, Guzy-Wrobelska J, Sun B, Stuessy T, Sugawara T, Fujii N. 2002. The origin of species of Acer (Sapindaceae) endemic to Ullung Island, Korea. – Syst. Bot. 27: 351-367.

Pierlot R. 1997. Pseudodacryodes Pierlot, genre nouveau de Burseraceae de l’est de la Rep. dem. du Congo. – Bull. Jard. Bot. Belg. 66: 175-186.

Pijl L van der. 1957. On the arilloids of Nephelium, Euphoria, Litchi and Aesculus, and the seeds of Sapindaceae in general. – Acta Bot. Neerl. 6: 618-641.

Pirani JR. 1998. A revision of Helietta and Balfourodendron (Rutaceae, Pteleinae). – Brittonia 50: 348-380.

Pirani JR. 1999. Two new species of Esenbeckia (Rutaceae, Pilocarpinae) from Brazil and Bolivia. – Bot. J. Linn. Soc. 129: 305-313.

Pirani JR. 2004. Three new species of Galipea (Rutaceae, Galipeinae) from Brazil. – Bot. J. Linn. Soc. 144: 365-373.

Pirani JR, Kallunki JA. 2007. Two new species of Galipea (Rutaceae, Galipeeae) from Bolivia, Ecuador, and Peru. – Brittonia 59:343-349.

Pole M. 2010. Cuticle morphology of Australasian Sapindaceae. – Bot. J. Linn. Soc. 164: 264-292.

Polonsky J. 1983. Chemistry and biological activity of the quassinoids. – In: Waterman PG, Grundon MF (eds), Chemistry and chemical taxonomy of the Rutales, Academic Press, London, pp. 247-266.

Poon W-S, Shaw P-C, Simmons MP, But PP-H. 2007. Congruence of molecular, morphological and biochemical profiles in Rutaceae: a cladistic analysis of the subfamilies Rutoideae and Toddalioideae. – Syst. Bot. 32: 837-846.

Porter DM. 1973. Flora of Panama, family 90, Simaroubaceae. – Ann. Missouri Bot. Gard. 60: 23-39.

Potvin C, Bergeron Y, Simon J-P. 1983. A numerical taxonomic study of selected Citrus species (Rutaceae) based on biochemical characters. – Syst. Bot. 8: 127-133.

Powell JM, Armstrong JA. 1980. Seed surface structure in the genus Zieria Sm. (Rutaceae). – Telopea 2: 85-112.

Price JR. 1963. The distribution of alkaloids in the Rutaceae. – In: Swain T (ed), Chemical plant taxonomy, Academic Press, London, New York, pp. 429-452.

Puri GS. 1945. Some fossil leaflets of Aesculus indica Colebr. from the Karewa Beds at Laredura and Ningal Nullah, Pir Panjal, Kashmir. – J. Indian Bot. Soc. 24: 147-151.

Quader A, Armstrong JA, Gray AI, Hartley TG, Waterman PG. 1991. Chemosystematics of Acradenia and general significance of acetophenones in the Rutaceae. – Biochem. Syst. Ecol. 19: 171-176.

Radlkofer L. 1875. Monographie der Sapindaceen-Gattung Serjania. – Verlag der Königl. Bayer. Akademie Wissensch., München.

Radlkofer L. 1878a. Über Sapindus und damit in Zusammenhang stehende Pflanzen. – Sitzungsber. Math.-Phys. Cl. K. Bayer. Akad. Wiss. München 8: 334-338.

Radlkofer L. 1878b. Sopra un arillo speciale di una Sapindacea. – Nuovo G. Bot. Italiano 10: 105-109.

Radlkofer L. 1879. Über Cupania und damit verwandte Pflanzen. – Sitzungsber. Math.-Phys. Cl. K. Bayer. Akad. Wiss. München 9: 457-678.

Radlkofer L. 1886. Ergänzungen zur Monographie der Sapindaceen-Gattung Serjania. – Verlag der Königl. Bayer. Akademie Wissensch., München.

Radlkofer L. 1890. Über die Gliederung der Familie der Sapindaceen. – Sitzungsber. Königl. Bayer. Akademie Wissensch. München, Math.-Physik. Cl., 20: 105-379.

Radlkofer L. 1895. Monographie der Sapindaceen-Gattung Paullinia. – Verlag der Königl. Bayer. Akademie Wissensch., München.

Radlkofer L. 1896. Sapindaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 277-366, 460-462.

Radlkofer L. 1908. Sapindaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachtr. 3-III.5, W. Engelmann, Leipzig, pp. 202-209.

Radlkofer L. 1933. Sapindaceae 1. – W. Engelmann, Leipzig.

Radlkofer L. 1934. Sapindaceae 2. – W. Engelmann, Leipzig.

Ramírez JJ, Flores KV, Durán RC. 2011. Balsas (Sapindaceae), género nuevo de la Cuenca del Río Balsas en el Estado de Guerrero, México. – Novon 21: 196-200.

Ramp E. 1988. Struktur, Funktion und systematische Bedeutung des Gynoeciums bei den Rutaceae und Simaroubaceae. – Ph.D. diss., Philos. Fakultät, Universität Zürich, Switzerland.

Randrianasolo A. 1998. Systematics and evolution of three Malagasy genera of Anacardiaceae: Micronychia Oliv., Protorhus Engl. and Rhus section Baronia (Baker) H. Perrier. – Ph.D. diss., University of Missouri, St. Louis, Missouri.

Randrianasolo A, Lowry II PP. 2006. Operculicarya (Anacardiaceae) revisited: an updated taxonomic treatment for Madagascar and the Comoro Islands, with descriptions of two new species. – Adansonia, sér. III, 28: 359-371.

Randrianasolo A, Lowry II PP. 2009. Four new species and one new combination in the Malagasy endemic genus Micronychia Oliv. (Anacardiaceae). – Adansonia, sér. II, 31: 157-168.

Rao D. 1970. Comparative Embryology of Angiosperms: Simaroubaceae, Burseraceae. – Bull. Natl. Sci. Acad. India 41: 142-147, 148-150.

Razafimandimbison SG, Appenhans MS, Rabarison H, Haevermans T, Rakotondrafara A, Rakotonandrasana SR, Ratsimbason M, Labat JN, Kessler PJ, Smets E, Cruaud C, Couloux A, Randrianarivelojosia M. 2010. Implications of a molecular phylogenetic study of the Malagasy genus Cedrelopsis and its relatives (Ptaeroxylaceae). – Mol. Phylogen. Evol. 57: 258-265.

Record SJ. 1939. American woods of the family Anacardiaceae. – Trop. Woods 60: 11-45.

Record SJ. 1941. American timbers of the Mahogany family. – Trop. Woods 66: 7-33.

Record SJ, Hess RW. 1940. American woods of the family Rutaceae. – Trop. Woods 64: 1-28.

Reese G. 1958. Cyto-systematische Notizen zur Gattung Nitraria (Zygophyllaceae). – Flora 146: 478-488.

Rehder AA. 1935. Handeliodendron, a new genus of Sapindaceae. – J. Arnold Arbor. 16: 65-68.

Rehder AA. 1945. Moraceae, Hippocastanaceae et Vitaceae, nomina conservanda. – J. Arnold Arbor. 26: 277-279.

Reiche K. 1896. Geraniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(4), W. Engelmann, Leipzig, pp. 1-14.

Renner SS, Beenken L, Grimm GW, Kocyan A, Ricklefs RE. 2007. The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. – Evolution 61: 2701-2719.

Reynolds ST. 1981. Notes on Sapindaceae in Australia 1. – Austrobeileya 1: 388-419.

Reynolds ST. 1987. Notes on Sapindaceae in Australia 5. – Austrobaileya 2: 328-338.

Reynolds ST, West JG. 1985. Sapindaceae. – In: George AS (ed), Flora of Australia 25, Australian Government Publ. Service, Canberra, pp. 4-164.

Rios MY, Delgado G. 1992. Polyprenols and acylphloroglucinols from Esenbeckia nesiotica. – Phytochemistry 31: 3491-3494.

Rios MY, Rosas-Alonso E, Aguilar-Guadarrama AB. 2002. Alkaloids, coumarins and sesquiterpenes from Esenbeckia conspecta Kunt (Rutaceae). – Biochem. Syst. Ecol. 30: 367-369.

Rios MY, Aguilar-Guadarrama AB, Delgado G. 2002. Furoquinoline alkaloids, furocoumarins and terpenes from Esenbeckia litoralis (Rutaceae). – Biochem. Syst. Ecol. 30: 977-979.

Ritchie E. 1964. Chemistry of Flindersia species. – Rev. Pure Appl. Chemistry 14: 47-56.

Rivero-Cruz JF, Chávez D, Hernández B, Anaya AL, Mata R. 1997. Separation and characterization of Metopium brownei urushiol components. – Phytochemistry 45: 1003-1008.

Robbertse PJ, Teichman I von, Rensburg HJ van. 1986. A re-evaluation of the structure of the mango ovule in comparison with a few other Anacardiaceae species. – South Afr. J. Bot. 52: 17-24.

Rodan BD, Campbell FT. 1996. CITES and the sustainable management of Swietenia macrophylla King. – Bot. J. Linn. Soc. 122: 83-87.

Ronse De Craene L-P, Smets EF. 1991. Morphological studies in Zygophyllaceae I. The floral development and vascular anatomy of Nitraria retusa. – Amer. J. Bot. 78: 1438-1448.

Ronse De Craene L-P, De Laet J, Smets EF. 1996. Morphological studies in Zygophyllaceae II. The floral development and vascular anatomy of Peganum harmala. – Amer. J. Bot. 83: 201-215.

Ronse De Craene L-P, Smets E, Clinckemaillie D. 2000. Floral anatomy and ontogeny in Koelreuteria with special emphasis on monosymmetry and septal cavities. – Plant Syst. Evol. 223: 91-107.

Rossetto M. 2005. A simple molecular approach for identifying a rare Acronychia (Rutaceae) provides new insights on its multiple hybrid origins. – Biol. Cons. 121: 35-43.

Rozefelds A. 2001a. Notes on the Philotheca myoporoides complex (Rutaceae) in Victoria. – Muelleria 15: 15-18.

Rozefleds A. 2001b. The Tasmanian species of Philotheca (Rutaceae). – Muelleria 15: 19-26.

Rzedowski J, Kruse H. 1979. Algunas tendencias evolutivas en Bursera (Burseraceae). – Taxon 28: 103-116.

Rzedowski J, Palacios-Chávez R. 1985. La presencia de Commiphora (Burseraceae) en México. – Taxon 34: 207-210.

Sachdev K, Kulshreshtha DK. 1983. Flavonoids from Dodonaea viscosa. – Phytochemistry 22: 1253-1256.

Salvo G, Bacchetta G, Ghahremaninejad F, Conti E. 2008. Phylogenetic relationships of Ruteae (Rutaceae): new evidence from the chloroplast genome and comparisons with non-molecular data. – Mol. Phylogen. Evol. 49: 736-748.

Salvo G, Ho SYW, Rosenbaum G, Ree R, Conti E. 2010. Tracing the temporal and spatial origins of island endemics in the Mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). – Syst. Biol. 59: 705-722.

Salvo G, Manafzadeh S, Ghahremaninejad F, Tojibaev, K, Zeltner L, Conti E. 2011. Phylogeny, morphology, and biogeography of Haplophyllum (Rutaceae), a species-rich genus of the Irano-Turanian floristic region. – Taxon 60: 513-527.

Samuel R, Ehrendorfer F, Chase MW, Greger H. 2001. Phylogenetic analysis of Aurantioideae (Rutaceae) based on non-coding plastid DNA sequences and phytochemical features. – Plant Biol. 3: 77-87.

San Miguel E. 2003. Rue (Ruta L., Rutaceae) in traditonal Spain: frequency and distribution of its medicinal and symbolic applications. – Econ. Bot. 57: 231-244.

Santin D, Leitão-Filho H. 1991. Restabelecimento e revisão taxonomica do género Myracrodruon Freie Alemão (Anacardiaceae). – Rev. bras. Bot. 14: 133-145.

Santisuk T. 1992. Notes on the genus Acer (Aceraceae) in Thailand. – Nord. J. Bot. 12: 695-698.

Sarma V, Rao SRS. 1991. Taxonomic importance of epidermis in Simaroubaceae-Zygophyllaceae with special reference to position of Balanites. – Feddes Repert. 102: 579-585.

Sato T. 2002. Phenology of sex expression and gender variation in a heterodichogamous maple, Acer japonicum. – Ecology 83: 1226-1238.

Schatz GE, Gereau RE, Lowry II PP. 1999. A revision of the Malagasy endemic genus Chouxia Capuron (Sapindaceae). – Adansonia, sér. III, 21: 51-62.

Schneider C, Bohnenstengel FI, Nugroho BW, Wray V, Witte L, Hung PD, Kiet LC, Proksch P. 2000. Insecticidal rocaglamide derivatives from Aglaia spectabilis (Meliaceae). – Phytochemistry 54: 731-736.

Schönbeck-Temesy E. 1970. Geraniaceae: Biebersteinia. – In: Rechinger KH (ed), Flora Iranica, Akademische Druck- u. Verlagsanstalt, Graz, pp. 63-64.

Schwartz T. 2010. A phylogeny of the Rutaceae and a biogeographic study of its subfamily Aurantioideae. – M.Sc. thesis, Dept. of Plant and Environmental Science, University of Gothenburg, Sweden.

Scora RW. 1975. IX. On the history and origin of citrus. – Bull. Torrey Bot. Club 102: 369-375.

Scott KD, McIntyre CL, Playford J. 2000. Molecular analyses suggest a need for a significant rearrangement of Rutaceae subfamilies and a minor reassessment of species relationships within Flindersia. – Plant Syst. Evol. 223: 15-27.

Segaar PJ, Ham RWJM van der. 1993. Pollen of Scutinanthe brunnea compared with other burseraceous pollen types: a remarkable case of divergence. – Rev. Palaeobot. Palyn. 79: 297-334.

Seigler DS, Kawahara W. 1976. New reports of cyanolipids from sapindaceous plants. – Biochem. Syst. Ecol. 4: 263-265.

Setia RC, Parthasarathy MV, Shah JJ. 1977. Development, histochemistry and ultrastructure of gum-resin ducts in Commiphora mukul Engl. – Ann. Bot., N. S., 41: 999-1004.

Shan F, Yan G, Plummer JA. 2003. Karyotype evolution in the genus Boronia (Rutaceae). – Bot. J. Linn. Soc. 142: 309-320.

Sharma MR. 1954. Studies in the family Anacardiaceae I. Vascular anatomy of flowers of Mangifera indica. – Phytomorphology 4: 201-208.

Sheahan MC. 2011a. Nitrariaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 272-275.

Sheahan MC. 2011b. Tetradiclidaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 424-429.

Sheahan MC, Chase MW. 1996. A phylogenetic analysis of Zygophyllaceae R. Br. based on morphological, anatomical and rbcL sequence data. – Bot. J. Linn. Soc. 122: 279-300.

Sheahan MC, Cutler DF. 1993. Contribution of vegetative anatomy to the systematics of the Zygophyllaceae R. Br. – Bot. J. Linn. Soc. 113: 227-262.

Sherff EE. 1947. Further studies in the genus Dodonaea L. – Publ. Field Mus. Bot. 23: 269-317.

Sherman-Broyles SL, Gibson JP, Hamrick JL, Bucher MA, Gibson MJ. 1992. Comparisons of allozyme diversity among rare and widespread Rhus species. – Syst. Bot. 17: 551-559.

Shukla RD. 1955. On the morphology of the two abnormal gynoecia of Peganum harmala. – J. Indian Bot. Soc. 34: 382-387.

Siddiqui BS, Ali ST, Ali SK. 2008. Chemical wealth of Azadirachta indica (neem). – In: Singh KK, Phogat S, Tomar A, Dhillon RS (eds), Neem – a treatise, I. K. International Publ., New Delhi, pp. 171-207.

Simão SM, Barreiros EL, Silva MF das GF da, Gottlieb OR. 1991. Chemogeographical evolution of quassinoids in Simaroubaceae. – Phytochemistry 30: 853-865.

Simmonds MSJ, Stevenson PC, Porter EA, Veitch NC. 2001. Insect antifeedant activity of three new tetranortriterpenoids from Trichilia pallida. – J. Nat. Prod. 64: 1117-1120.

Simpson DS, Jacobs H. 2005. Alkaloids and coumarins from Esenbeckia pentaphylla (Rutaceae). – Biochem. Syst. Ecol. 33: 841-844.

Singh AK, Singh M, Singh AK. 1988. Antiviral activity and physical properties of the extracts of Azadirachta indica L. – Indian J. Virol. 4: 76-81.

Singh BP, Kaur I. 1998. Systematic position of the genus Peganum. – J. Econ. Taxon. Bot. 22: 705-708.

Skepner AP, Krane DE. 1997. RAPD reveals genetic similarity of Acer saccharum and Acer nigrum. – Heredity 80: 422-428.

Skorupa LA, Pirani JR. 2004. A new species of Pilocarpus (Rutaceae) from northern Brazil. – Brittonia 56: 147-150.

Smith-White S. 1954. Chromosome numbers in the Boronieae (Rutaceae) and their bearing on the evolutionary development of the tribe in the Australian flora. – Aust. J. Bot. 2: 287-303.

Snook LK. 1996. Catastrophic disturbance, logging and the ecology of mahogany (Swietenia macrophylla King): grounds for listing a major tropical timber species in CITES. – Bot. J. Linn. Soc. 122: 35-46.

Solis SM, Ferrucci MS. 2009. Morpho-anatomy and ontogeny of the floral nectaries of Cardiospermum grandiflorum and Urvillea chacoensis (Sapindaceae). – Ann. Bot. Fenn. 46: 485-495.

Somner GV, Ferrucci MS. 1997. Paullinia caerensis (Sapindaceae) nueva especie de Brasil. – Bonplandia 9: 241-243.

Somner GV, Ferrucci MS. 2004. A new species of Cupania sect. Trigonocarpus (Sapindaceae) from Brazil. – Bot. J. Linn. Soc. 146: 217-221.

Song W-H, Li X-D, Li X-W, Huang H-W, Li J-Q. 2004. Genetic diversity and conservation strategy of Psilopeganum sinense, a rare species in the three-gorges reservoir area. – Biodivers. Sci. 12: 227-236.

Souza LA, Mourão KSM, Moscheta IS, Rosa SM. 2003. Morfologia e anatomia da flor de Pilocarpus pennatifolius Lem. (Rutceae). – Rev. Brasileira Bot. 26: 175-184.

Spiegel-Roy P, Goldschmidt EE. 1996. Biology of Citrus. – Cambridge University Press, New York.

Sprague TA. 1910. XXVI. – Entandrophragma, Leioptyx and Pseudocedrela. – Kew Bull. 1910(6): 177-182.

Sprague TA. 1913. Diagnoses Africanae LIV. Protorhus namaquensis. – Kew Bull. 4: 179.

Stace HM, Armstrong JA. 1992. New chromosome numbers for Rutaceae. – Aust. Syst. Bot. 5: 501-505.

Stace HM, Leach GJ. 1994. Cytological notes in Rutaceae 2: Neobrynesia suberosa. – Telopea 6: 167-168.

Stace HM, Armstrong JA, James SH. 1993. Cytoevolutionary patterns in Rutaceae. – Plant Syst. Evol. 187: 1-28.

Stannard BL. 1981. A revision of Kirkia (Simaroubaceae). – Kew Bull. 35: 829-839.

Stannard BL. 2000. Simaroubaceae. – In: Beentje, Smith SAL, Whitehouse CM (eds), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-14.

Stannard BL. 2007. The inclusion of Pleiokirkia in Kirkia (Kirkiaceae), and corresponding combination. – Kew Bull. 62: 151-152.

Steingraeber DA, Fisher JB. 1986. Indeterminate growth of leaves in Guarea (Meliaceae): a twig analogue. – Amer. J. Bot. 73: 852-862.

Stern WL. 1952. The comparative anatomy of the xylem and the phylogeny of the Julianiaceae. – Amer. J. Bot. 39: 220-229.

Stevens PF. 1975. Review of Chisocheton (Meliaceae) in Papuasia. – Contr. Herb. Australiense 11: 1-55.

Stone BC, Nair KN. 1994. A new species of Clausena (Rutaceae) from India. – Nord. J. Bot. 14: 491-493.

Stone BC, Lowry JB, Scora RW, Jong K. 1973. Citrus halimii: a new species from Malaya and Peninsular Thailand. – Biotropica 5: 102-110.

Straka H, Albers F, Mondon A. 1976. Die Stellung und Gliederung der Familie Cneoraceae (Rutales). – Beitr. Biol. Pflanzen 52: 267-310.

Strid AK. 1972. Revision of the genus Adenandra (Rutaceae). – Opera Bot. 32: 1-112.

Stuhlfauth T, Fock H, Huber H, Klug K. 1985. The distribution of fatty acids including petroselinic and tariric acids in the fruit and seed oils of the Pittosporaceae, Araliaceae, Umbelliferae, Simarubaceae and Rutaceae. – Phytochemistry 13: 447-453.

Styles BT. 1972. The flower biology of the Meliaceae and its bearing on tree breeding. – Silvae Genet. 21: 175-182.

Styles BT, Bennett ST. 1992. Notes on the morphology, chemistry, ecology, conservation status and cytology of Schmardaea microphylla (Meliaceae). – Bot. J. Linn. Soc. 108: 359-373.

Styles BT, Vosa CG. 1971. Chromosome numbers in the Meliaceae. – Taxon 20: 485-499.

Suh Y, Cho H-J, Kim M, Park C-W. 1996. Comparative analysis of ITS sequences from Acer species (Aceraceae) in Korea. – J. Plant Biol. 39: 1-8.

Suh Y, Heo K, Park C-W. 2000. Phylogenetic relationships of maples (Acer L.; Aceraceae) implied by nuclear ribosomal ITS sequences. – J. Plant Res. 113: 193-202.

Sultana S, Ilyas M. 1986. A flavanone from Lannea acida. – Phytochemistry 25: 963-964.

Sunnichan VG, Mohan Ram HY, Shivanna KR. 2005. Reproductive biology of Boswellia serrata, the source of salai guggul, an important gum-resin. – Bot. J. Linn. Soc. 147: 73-82.

Swanepoel W. 2008. Commiphora otjihipana (Burseraceae), a new species from the Kaokoveld, Namibia. – South Afr. J. Bot. 74: 623-628.

Swart JJ. 1942. A monograph of the genus Protium and some allied genera (Burseraceae). – Drukkerij Koch en Knuttel, Gouda.

Swingle WT. 1914. Eremocitrus, a new genus of hardy, drought-resistant citrous fruits from Australia. – J. Agricult. Res. 2: 85-100.

Swingle WT. 1915a. A new genus, Fortunella, comprising four species of kumquat oranges. – J. Washington Acad. Sci. 5: 165-176.

Swingle WT. 1915b. Microcitrus,a new genus of Australian citrous fruits. – J. Washington Acad. Sci. 5: 569-578.

Swingle WT. 1918. Merrillia, a new rutaceous genus of the tribe Citreae from the Malay Peninsula. – Philipp. J. Sci, Sect. C, Botany 13: 335-343.

Swingle WT. 1939. Clymenia and Burkillanthus, new genera; also three new species of Pleiospermium (Rutaceae-Aurantioideae). – J. Arnold Arbor. 20: 250-263.

Swingle WT. 1943. The botany of Citrus and its wild relatives of the orange subfamily. – In: Batchelor LD, Webber HJ (eds), The citrus industry 1. History, world distribution, botany, and varieties, University of California, Berkeley, California, pp. 1129-474.

Swingle WT, Reece PC. 1967. The botany of Citrus and its wild relatives. – In: Reuther W, Webber HJ, Bachelor LD (eds), The citrus industry, rev. 2nd ed., 1. History, world distribution, botany, and varieties, University of California, Berkeley, California, pp. 190-430.

Takeuchi W. 2001. A distinctive new Rhysotoechia (Sapindaceae) from Papua New Guinea. – Blumea 46: 569-573.

Tanaka T. 1929. Chalcas, a Linnean genus, which includes many new types of Asian plants. – J. Soc. Trop. Agricult. 1: 22-44.

Tanaka T. 1932. Philippine Rutaceae-Aurantioideae (Revisio Aurantiacearum, VII.). – Trans. Nat. Hist. Soc. Formosa 22: 418-433.

Tanaka T. 1936. The taxonomy and nomenclature of Rutaceae-Aurantioideae. – Blumea 2: 101-110.

Tang F, Ye Q, Yao X, Huang H. 2007. Isolation and characterization of microsatellite loci in Psilopeganum sinense Hemsl. (Rutaceae), an endangered herb endemic to Yangtze River valley. – Mol. Ecol. Notes, publ. online, doi: 10.1111/j.1471-8286.2007.01933.x.

Tardieu-Blot ML. 1961. Sur les Dracontomelum d’Indochine. – Adansonia, n.s. 1: 55-58.

Tarus PK, Coombes PH, Crouch NR, Mulholland DA, Moodley B. 2005. Furoquinoline alkaloids from the southern African Rutaceae Teclea natalensis. – Phytochemistry 66: 703-706.

Tatsuhiro A. 2000. Dichogamy in fullmoon maple (Acer japonicum Thunb.). – Bull. Hokkaido Forest Exper. Station 37: 27-40.

Taylor DAH. 1982. Flora Neotropica Monograph 28. The occurrence of limonoids in the Meliaceae. – New York Botanical Garden,Bronx, New York, pp. 450-459.

Taylor DAH. 1983. Biogenesis, distribution, and systematic significance of limonoids in the Meliaceae, Cneoraceae, and allied taxa. – In: Waterman PG, Grundon MF (eds), Chemistry and chemical taxonomy of the Rutales, Academic Press, London, pp. 353-375.

Teichman I von. 1987. Development and structure of the pericarp of Lannea discolor (Sonder) Engl. (Anacardiaceae). – Bot. J. Linn. Soc. 95: 125-135.

Teichman I von. 1988. Notes on the ontogeny and structure of the seed-coat of Sclerocarya birrea (Richard) Hochst. subsp. caffra Kokwaro (Anacardiaceae). – Bot. J. Linn Soc. 98: 153-158.

Teichman I von. 1990. Pericarp and seed coat structure in Tapirira guianensis (Spondiadeae: Anacardiaceae). – South Afr. J. Bot. 56: 435-439.

Teichman I von. 1991a. Ontogeny of the seed-coat of Rhus lancea L. fil., and pachychalazy in the Anacardiaceae. – Bot. J. Linn. Soc. 107: 35-47.

Teichman I von. 1991b. Pericarp structure in Protorhus longifolia (Bernh.) Engl. (Anacardiaceae) and its taxonomic significance. – Bot. Bull. Acad. Sin. 32: 121-128.

Teichman I von. 1994. Generic position of Protorhus namaquensis Sprague (Anacardiaceae): evidence from seed structure. – Bot. Bull. Acad. Sin. 35: 53-60.

Teichman I von, Hardy DS. 1992. Flower and fruit structure of Operculicarya decaryi H. Perrier (Anacardiaceae) from Madagascar. – Bot. Bull. Acad. Sin., n.s., 33: 225-232.

Teichman I von, Robbertse L. 1986. Development and structure of the drupe in Sclerocarya birrea (Richard) Hochst. subsp. caffra Kokwaro (Anacardiaceae), with special reference to the pericarp and the operculum. – Bot. J. Linn. Soc. 92: 303-322.

Teichman I von, Wyk AE van. 1988. The ontogeny and structure of the pericarp and seed (coat) of Harpephyllum caffrum Bernh. ex Krauss (Anacardiaceae). – Bot. J. Linn. Soc. 98: 159-176.

Teichman I von, Wyk AE van. 1994. The generic position of Protorhus namaquensis Sprague (Anacardiaceae): evidence from fruit structure. – Ann. Bot., N. S., 73: 175-184.

Teichman I von, Wyk AE van. 1996. Taxonomic significance of pericarp and seed structure in Heeria argentea (Thunb.) Meisn. (Anacardiaceae), including reference to pachychalazy and recalcitrance. – Bot. J. Linn. Soc. 122: 335-352.

Telford I, Copeland L. 2006. Philotheca papillata (Rutaceae), a new endangered species from north-eastern New South Wales. – Telopea 11: 105-109.

Teodoridis V, Kvaček Z. 2005. The extinct genus Chaneya Wang et Manchester in the Tertiary of Europe: a revision of Porana-like fruit remains from Öhningen and Bohemia. – Rev. Palaeobot. Palynol. 134: 85-103.

Terrazas T. 1994. Wood anatomy of the Anacardiaceae: ecological and phylogenetic interpretations. – Ph.D. diss., University of North Carolina, Chapel Hill, North Carolina.

Thiv M, Van Dert Niet T, Rutschmann F, Thulin M, Brtune T, Linder HP. 2011. Old-New World and trans-African disjunctions of Thamnosma (Rutaceae): intercontinental long-distance dispersal and local differentiation in the succulent biome. – Amer. J. Bot. 98: 76-87.

Thomas DW, Harris DJ. 1999. New Sapindaceae from Cameroon and Nigeria. – Kew Bull. 54: 951-957.

Thomas WW. 1985. The Simaba guianensis complex in northern South America. – Acta Amazonica 15(suppl.): 71-79.

Thomas WW. 1990. The American genera of Simaroubaceae and their distribution. – Acta Bot. Brasil. 4: 11-18.

Thulin M. 1999. Burseraceae. – In: Thulin M (ed), Flora of Somalia, Royal Botanic Gardens, Kew, pp. 183-228.

Thulin M. 2001. Two new species of frankincense trees (Boswellia, Burseraceae) from Socotra. – Kew Bull. 56: 983-988.

Thulin M. 2004. A new genus of Sapindaceae from Somalia. – Nord. J. Bot. 24: 509-511.

Thulin M, Warfa AM. 1987. The frankincense trees (Boswellia spp., Burseraceae) of northern Somalia and southern Arabia. – Kew Bull. 42: 487-500.

Thulin M, Beier B-A, Razafimandimbison SG, Banks HI. 2008. Ambilobea, a new genus from Madagascar, the position of Aucoumea, and comments on the tribal classification of the frankincense and myrrh family (Burseraceae). – Nord. J. Bot. 26: 218-229.

Tieghem P van. 1898. Sur les Cnéoracées. – Bull. Mus. Natl. Hist. Nat. Paris 4: 241-244.

Tieghem P van, Lecomte H. 1886. Structure et affinité du Leitneria. – Bull. Soc. Bot. France 33: 181-184.

Tiffney BH. 1980. Fruits and seeds of the Brandon Lignite V. Rutaceae. – J. Arnold Arbor. 61: 1-40.

Tilak VD, Nene PM. 1978. Floral anatomy of the Rutaceae. – Indian J. Bot. 1: 83-90.

Tilson AH, Bamford R. 1938. The floral anatomy of the Aurantioideae. – Amer. J. Bot. 25: 780-793.

Tobe H. 2011. Embryological evidence supports the transfer of Leitneria floribunda to the family Simaroubaceae. – Ann. Missouri Bot. Gard. 98: 277-293.

Townsend CC. 1986. Taxonomic revision of the genus Haplophyllum (Rutaceae). – Hooker’s Icones Plantarum XL, I-III, Bentham-Moxon Trustees, Kew.

Traveset A. 1995. Reproductive ecology of Cneorum tricoccon L. (Cneoraceae) in the Balearic Islands. – Bot. J. Linn. Soc. 117: 221-232.

Trelease W. 1895. Leitneria floridana. – Missouri Bot. Gard. Sixth Report, pp. 65-90.

Trinder-Smith TH, Linder HP, Niet T van der, Verboom GA, Nowell TL. 2007. Plastid DNA sequences reveal generic paraphyly within Diosmeae (Rutoideae, Rutaceae). – Syst. Bot. 32: 847-855.

Trinder-Smith TH, Linder HP, Niet T van der, Verboom GA, Nowell TL. 2008. The Cape’s orange genes: are they well stitched? (Paraphyly of the Diosmeae, Rutiaceae). – South Afr. J. Bot. 74: 379.

Turland N, Xia N. 2005. A new combination in Chinese Aesculus (Hippocastanaceae). – Novon 15: 488-489.

Turner GW, Berry AM, Gifford EM. 1998. Schizogenous secretory cavities of Citrus limon (L.) Burm. f., and a review of the lysigenous gland concept. – Intern. J. Plant Sci. 159: 75-88.

Turner H. 1995. Cladistic and biogeographic analyses of Arytera Blume and Mischarytera gen. nov. (Sapindaceae), with notes on methodology and a full taxonomic revision. – Blumea Suppl. 9: 1-230.

Turner H. 1996. Sapindaceae and the biogeography of eastern Australia. – Aust. Syst. Bot. 9: 127-132.

Turner SR, Cook A, Baskin JM, Baskin CC, Tuckett RE, Steadman KJ, Dixon KW. 2009. Identification and characterization of the water gap in the physically dormant seeds of Dodonaea petiolaris: a first report for Sapindaceae. – Ann. Bot. 104: 833-844.

Tutel B. 1984. Comparison on the taxonomy and leaf anatomy of the genus Biebersteinia with the other genera of Geraniaceae in Turkey. – Istanbul Univ. Fen Fak. Mecm., B, 47-48: 51-87.

Tyman JH, Morris LJ. 1967. The composition of cashew nut-shell liquid (CNSL) and the detection of a novel phenolic ingredient. – J. Chromatogr. 27: 287-288.

Tzakou O, Yannitsaros A, Vassiliades DD. 2001. Investigation of the C16:3/C18:3 fatty acid balance in leaf tissues of Biebersteinia orphanidis Boiss. (Biebersteiniaceae). – Biochem. Syst. Ecol. 29: 765-767.

Umadevi I, Daniel M. 1991. Chemosystematics of the Sapindaceae. – Feddes Repert. 102: 607-612.

Umadevi I, Daniel M, Sabnis SD. 1986. Interrelationships among the families Aceraceae, Hippocastanaceae, Melianthaceae, Staphyleaceae. – J. Plant Anat. Morph. 3: 169-172.

Urdampilleta JD, Ferrucci MS, Vanzela ALL. 2005. Karyotype differentiation between Koelreuteria bipinnata and K. elegans ssp. formosana (Sapindaceae) based on chromosome banding patterns. – Bot. J. Linn. Soc. 149: 451-455.

Urdampilleta JD, Ferrucci MS, Torezan JMD, Vanzela ALL. 2006. Karyotype relationships among four South American species of Urvillea (Sapindaceae: Paullinieae). – Plant Syst. Evol. 258: 85-95.

Urdampilleta JD, Ferrucci MS, Vanzela ALL. 2007. Cytogenetic studies of four South American species of Paullinia L. (Sapindaceae). – Bot. J. Linn. Soc. 154: 313-320.

Valladares GR, Ferreyra D, Defago MT, Carpinella MC, Palacios S. 1999. Effects of Melia azedarach on Triatoma infestans. – Fitoterapia 70: 421-424.

Vassiliades D, Yannitsaros A. 2000. Orphanides’s best discovery. – Bot. Chron. 13: 241-248.

Veken P van der. 1960. Nothospondias Engl. Simaroubaceae africaine meconnue. – Bull. Jard. Bot. État Bruxelles 30: 105-109.

Venning FD. 1948. The ontogeny of the laticiferous canals in the Anacardiaceae. – Amer. J. Bot. 35: 637-644.

Verdcourt B. 1997. Proposal to conserve the gender of Sapindus (Sapindaceae) as masculine. – Taxon 46: 360.

Verdcourt B, Davies FG. 1996. Ptaeroxylaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-7.

Verdu M, Climent J. 2007. Evolutionary correlations of polycyclic shoot growth in Acer (Sapindaceae). – Amer. J. Bot. 94: 1316-1320.

Victor J, Wyk A van. 1999a. Pollen morphology of Adenandra (Rutaceae: Diosminae) and its taxonomic implications. – Grana 38: 1-11.

Victor J, Wyk A van. 1999b. Pollen morphology of Diosma and Coleonema (Rutaceae: Diosminae) and its taxonomic implications. – Grana 38: 12-19.

Victor J, Wyk A van. 2000. Pollen morphology of Phyllosma and Sheilanthera (Diosminae: Rutaceae) and its taxonomic implications. – Grana 39: 103-107.

Victor J, Wyk A van. 2001. Pollen morphology of Euchaetis and Macrostylis (Diosminae-Rutaceae) and its taxonomic implications. – Grana 40: 105-110.

Vieira PC, Lázaro AR, Fernandes JB, Da Silva FGF. 1988. The chemosystematics of Dictyoloma. – Biochem. Syst. Ecol. 16: 51-544.

Vieira PC, Lázaro AR, Fernandes JB, Da Silva FGF. 1990. Limonoids, alkaloids and chromosomes from Dictyoloma vandellianum, and their chemosystematic significance. – Quimica Nova 13: 287-233.

Vollesen K. 1984. Notes on Ethiopian Vitaceae and Burseraceae. – Nord. J. Bot. 4: 33-37.

Vollesen K. 1985. Studies in Burseraceae of northeastern Africa. – Kew Bull. 40: 39-76.

Vollesen K. 1986. Commiphora, some thoughts on the classification of an “impossible” genus. – In: Hedberg I (ed), Research on the Ethiopian flora. Proceedings of the first Ethiopian flora symposium held in Uppsala May 22-26, 1984, Almqvist & Wiksell International, Uppsala, pp. 204-212.

Waffo AFK, Coombes PH, Crouch NR, Mulholland DA, El Amin SMM, Smith PJ. 2007. Acridone and furoquinoline alkaloids from Teclea gerrardii (Rutaceae: Toddalioideae) of southern Africa. – Phytochemistry 68: 663-667.

Walsh N. 2004. A new species of Leionema (Rutaceae) from south-eastern New South Wales. – Telopea 10: 805-810.

Wang Q, Manchester SR, Gregor H-J, Shen S, Li Z-Y. 2013. Fruits of Koelreuteria (Sapindaceae) from the Cenozoic throughout the northern hemisphere: their ecological, evolutionary, and biogeographic implications. – Amer. J. Bot. 100: 422-449.

Wang Y-F, Manchester SR. 2000. Chaneya, a new genus of winged fruit from the Tertiary of North America and eastern Asia. – Intern. J. Plant Sci. 161: 167-178.

Wannan BS. 2006. Analysis of generic relationships in Anacardiaceae. – Blumea 51: 165-195.

Wannan BS, Quinn CJ. 1988. Biflavonoids in the Julianiaceae. – Phytochemistry 27: 3161-3162.

Wannan BS, Quinn CJ. 1990. Pericarp structure and generic affinities in the Anacardiaceae. – Bot. J. Linn. Soc. 102: 225-252.

Wannan BS, Quinn CJ. 1991. Floral structure and evolution in the Anacardiaceae. – Bot. J. Linn. Soc. 107: 349-385.

Wannan BS, Waterhouse JT, Gadek PA, Quinn CJ. 1985. Biflavonyls and the affinities of Blepharocarya. – Biochem. Syst. Ecol. 13: 105-108.

Waterman PG. 1974. A review of the chemosystematics of the genus Zanthoxylum (Rutaceae). – In: Stone BC (ed), The role and goals of tropical botanic gardens, Kuala Lumpur, pp. 109-130.

Waterman PG. 1975. Alkaloids of the Rutaceae: their distribution and systematic significance. – Biochem. Syst. Ecol. 3: 149-180.

Waterman PG. 1983. Phylogenetic implications of the distribution of secondary metabolites within the Rutales. – In: Waterman PG, Grundon MF (eds), Chemistry and chemical taxonomy of the Rutales, Academic Press, London, pp. 377-400.

Waterman PG. 1990. Chemosystematics of the Rutaceae: comments on the interpretation of Da Silva et al. – Plant Syst. Evol. 173: 39-48.

Waterman PG, Grundon MF (eds). 1983. Chemistry and chemical taxonomy of the Rutales. – Academic Press, London, New York.

Webber IE. 1936. Systematic anatomy of the woods of the Simarubaceae. – Amer. J. Bot. 23: 577-587.

Webber IE. 1941. Systematic anatomy of the woods of the “Burseraceae”. – Lilloa 6: 441-465.

Weberling F. 1976. Die Pseudostipeln der Sapindaceae. – Abhandl. Akad. Wiss. Math.-Naturwiss. Kl. 2, 1976: 1-27.

Weberling F, Leenhouts PW. 1965. Systematische-morphologische Studien an Terebinthales-Familien (Burseraceae, Simaroubaceae, Meliaceae, Anacardiaceae, Sapindaceae). – Abhandl. Akad. Wiss. Lit. Mainz, Math.-Naturwiss. Kl., 10: 495-584.

Webster IE. 1936. Systematic anatomy of the woods of the Simaroubaceae. – Amer. J. Bot. 23: 577-587.

Weckerle CS, Reynel C. 2003. An overview of the subspecies of Paullinia obovata (Sapindaceae-Paullinieae) in Peru. – Novon 13: 145-152.

Weckerle CS, Rutishauser R. 2004. Comparative morphology and systematic position of Averrhoidium within Sapindaceae. – Intern. J. Plant Sci. 164: 775-792.

Weckerle CS, Rutishauser R. 2005. Gynoecium, fruit and seed structure of Paullinieae (Sapindaceae). – Bot. J. Linn. Soc.147: 159-189.

Weckerle CS, Stutz MA, Baumann TW. 2003. Purine alkaloids in Paullinia. – Phytochemistry 64: 735-742.

Weekley CW, Rutishauser R. 2005. Gynoecium, fruit and seed structure of Paullinieae (Sapindaceae). – Bot. J. Linn. Soc. 147: 159-189.

Weeks A. 2003. The molecular systematics and biogeography of the Burseraceae. – Ph.D. diss., University of Texas, Austin, Texas.

Weeks A, Simpson BB. 2004. Molecular genetic evidence for interspecific hybridization among endemic Hispaniolan Bursera (Burseraceae). – Amer. J. Bot. 91: 976-984.

Weeks A, Simpson BB. 2007. Molecular phylogenetic analysis of Commiphora (Burseraceae) yields insight on the evolution and historical biogeography of an ‘impossible’ genus. – Mol. Phylogen. Evol. 42: 62-79.

Weeks A, Daly DC, Simpson BB. 2005. The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. – Mol. Phylogen. Evol. 35: 85-101.

Wei F, Ma L-Y, Jin W-T, Ma S-C, Han G-Z, Khan IA, Lin R-C. 2004. Antiinflammatoy triterpenoid saponins from the seeds of Aesculus chinensis. – Chem. Pharm. Bull. 52: 12452: 1246-1248.

Wei L, Wang Y-Z, Li Z-Y. 2012. Floral ontogeny of Ruteae (Rutaceae) and its systematic implications. – Plant Biol. 14: 190-197.

Welzen PC van. 1990. Guioa Cav. (Sapindaceae): taxonomy, phylogeny, and historical biogeography. – Leiden Bot. Ser. 12: 1-315.

Welzen PC van. 1991. Gloeocarpus Radlk. (Sapindaceae) revised. – Blumea 35: 389-392.

Welzen PC van. 1998. Indian Sapindaceae: interesting topic for research? – In: Mathew P, Sivadasan M (eds), Diversity and taxonomy of tropical flowering plants, Mentor Books, Calicut, pp. 135-165.

Welzen PC van, Turner H. 2001. Vicariance and dispersal in Malesian Sapindaceae: general patterns. – In: Saw LG, Chua LSL, Khoo KC (eds), Taxonomy, the cornerstone of biodiversity, Forest Research Institute Malaysia, Kuala Lumpur, pp. 233-251.

Welzen PC van, Piskaut P, Wandadri FI. 1992. Lepidopetalum Blume (Sapindaceae): taxonomy, phylogeny, and historical biogeography. – Blumea 36: 439-465.

Wendt T, Lott EJ. 1985. A new simple-leaved species of Recchia (Simaroubaceae) from southeastern Mexico. – Brittonia 37: 219-225.

West JG. 1980. A taxonomic revision of Dodonaea (Sapindaceae) in Australia. – Ph.D. diss, University of Adelaide, Australia.

West JG. 1984. A revision of Dodonaea (Sapindaceae) in Australia. – Brunonia 7: 1-194.

Weston PH. 1990. Notes on Boronia (Rutaceae) in New South Wales, including descriptions of three new species. – Telopea 4: 121-128.

Weston PH, Carolin R, Armstrong JA. 1984. A cladistics analysis of Boronia Sm. and Boronella Baill. (Rutaceae). – Aust. J. Bot. 32: 187-203.

Whiffin T. 1982. Variation and evolution in the genus Flindersia (Rutaceae) 1. Review of the genus. – Aust. J. Bot. 30: 635-643.

White F. 1986. The taxonomy, chorology, and reproductive biology of southern African Meliaceae and Ptaeroxylaceae. – Bothalia 16: 143-168.

White F. 1990. Ptaeroxylon obliquum (Ptaeroxylaceae), some other disjuncts, and the Quaternary history of African vegetation. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, 12: 139-185.

White F, Styles BT. 1963. 46. Meliaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 285-319.

White F, Styles BT. 1966. 58. Ptaeroxylaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 2), Crown Agents for Oversea Governments and Administrations, London, pp. 547-550.

Whitehouse C, Cheek M, Andrews S, Verdcourt B. 2001. Tiliaceae & Muntingiaceae. – In: Beentje HJ, Smith SAL (eds), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-120.

Wiens D, Barlow BA. 1971. The cytogeography and relationships of the viscaceous and eremolepidaceous mistletoes. – Taxon 20: 313-332.

Wiger J. 1935. Embryological studies on the families Buxaceae, Meliaceae, Simarubaceae, and Burseraceae. – Ph.D. diss., University of Lund, Sweden.

Wild H. 1959. A revised classification of the genus Commiphora Jacq. – Bot. Soc. Broteriana 33: 67-95.

Wild H. 1963. 45. Burseraceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 263-285.

Wild H, Phipps JB. 1963. 41. Simaroubaceae. – In: Exell AW, Fernandes A, Wild H (eds), Flora Zambesiaca 2 (Part 1), Crown Agents for Oversea Governments and Administrations, London, pp. 210-220.

Wilde JJFE de. 2007. Revision of the African genus Heckeldora (Meliaceae). – Blumea 52: 179-199.

Wilkinson HP. 1988. Sapindaceous pyritised twigs from the Eocene of Sheppey, England. – Tertiary Res. 9: 81-86.

Williams I. 1984. Studies on the genera of the Diosmeae (Rutaceae) 16. A key to the genera of Diosmeae Benth. & Hook. (Rutaceae) and a description of a new species of Agathosma (Rutaceae). – South Afr. J. Bot. 51: 149-151.

Wilson PG. 1970. A taxonomic revision of the genera Crowea, Eriostemon and Phebalium (Rutaceae). – Nuytsia 1: 5-155.

Wilson PG. 1971. Taxonomic notes on the family Rutaceae, principally of Western Australia. – Nuytsia 1: 197-207.

Wilson PG. 1997. Brief notes on the genus Crowea (Rutaceae). – Nuytsia 11: 429-430.

Wilson PG. 1998a. Nomenclatural notes and new taxa in the genera Asterolasia, Drummondita and Microcybe (Rutaceae: Boronieae). – Nuytsia 12: 83-88.

Wilson PG. 1998b. Notes on the genus Correa (Rutaceaee). – Nuytsia 12: 89-105.

Wilson PG. 1998c. New names and new taxa in the genus Boronia (Rutaceae) from Western Australia, with notes on seed characters. – Nuytsia 12: 119-154.

Wilson PG. 1998d. A taxonomic revision of the genera Eriostemon and Philotheca (Rutaceae: Boronieae). – Nuytsia 12: 239-265.

Wilson PG. 1998e. New species and nomenclatural changes in Phebalium and related genera (Rutaceae). – Nuytsia 12: 267-288.

Wilson PG, Armstrong JA, Griffin E. 1998. Diplolaena (Rutaceae), new taxa and nomenclatural notes. – Nuytsia 12: 107-118.

Wolfe JA, Tanai T. 1987. Systematics, phylogeny, and distribution of Acer (maples) in the Cenozoic of western North America. – J. Fac. Sci., Hokkaido Univ., Ser. IV, 22: 1-246.

Xiang Q-Y, Crawford DJ, Wolfe AD, Tang Y-C, dePamphilis CW. 1998. Origin and biogeography of Aesculus L. (Hippocastanaceae): a molecular phylogenetic perspective. – Evolution 52: 988-997.

Xie L, Yang Z-Y, Wen J, Li D-Z, Yi T-S. 2014. Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. – Molec. Phylogen. Evol. 77: 136-146.

Yamamoto T, Vassiliades DD, Tobe H. 2014. Embryology of Biebersteinia (Biebersteiniaceae, Sapindales): characteristics and comparisons with related families. – J. Plant Res. 127: 599-615.

Yan G, Shan F, Plummer JA. 2002. Genomic relationships within Boronia (Rutaceae) as revealed by karyotype analysis and RAPD molecular markers. – Plant Syst. Evol. 233: 147-161.

Yan H-X, Di Y-T, Fang X, Yang S-Y, He H-P, Li S-L, Lu Y, Hao X-J. 2011. Chemical constituents from fruits of Harrisonia perforata. – Phytochemistry 72: 508-513.

Yang J, Li S, Sun G, Yuan Y, Zhao G. 2008. Population structure and genetic variation in the genus Dipteronia Oliv. (Aceraceae) endemic to China as revealed by cpSSR analysis. – Plant Syst. Evol. 272: 97-106.

Yanishevski DE. 1940. Tetradiclis tenella (Ehrenb.) Litv. as the example of an ephemeral on the solonchaks of the Mediterranean desert regions. – Trudy Bot. Inst. Akad. Nauk SSSR, ser. IV, 4: 236-248. [In Russian with English summary]

Yannitsaros AG, Constantinidis TA, Vassiliades DD. 1996. The rediscovery of Biebersteinia orphanidis Boiss. (Geraniaceae) in Greece. – Bot. J. Linn. Soc. 120: 239-242.

Ye X-L, Wang F-X, Qian N-F. 1992. Embryological studies of Litchi chinensis. – Acta Bot. Yunnan. 14: 59-65. [In Chinese]

Yi T, Miller A, Wen J. 2004. Phylogenetic and biogeographic diversification of Rhus (Anacardiaceae) in the Northern Hemisphere. – Mol. Phylogen. Evol. 33: 861-879.

Yi T, Miller AJ, Wen J. 2007. Phylogeny of Rhus (Anacardiaceae) based on sequences of nuclear Nia-i3 intron and chloroplast trnC-trnD. – Syst. Bot. 32: 379-391.

Yi T, Wen J, Golan-Goldhirsh A, Parfitt DE. 2008. Phylogenetics and reticulate evolution in Pistacia (Anacardiaceae). – Amer. J. Bot. 95: 241-251.

Yin B, Huo C, Shen L, Wang C, Zhao L, Wang Y, Shi Q. 2009. Protolimonoids fro the seeds of Xylocarpus granatum. – Biochem. Syst. Ecol. 37: 218-220.

Yonemori K, Honsho C, Kanzaki S, Eiadthong W, Sugiura A. 2002. Phylogenetic relationships of Mangifera species revealed by ITS sequences of nuclear ribosomal DNA and a possibility of their hybrid origin. – Plant Syst. Evol. 231: 59-75.

Young DA. 1974. Comparative wood anatomy of Malosma and related genera (Anacardiaceae). – Aliso 8: 133-146.

Young DA. 1976. Flavonoid chemistry and the phylogenetic relationships of the Julianiaceae. – Syst. Bot. 1: 149-162.

Young DA. 1979. Heartwood flavonoids and the infrageneric relationships of Rhus (Anacardiaceae). – Amer. J. Bot. 66: 502-510.

Yuh-Meei L, Fa-Ching C, Kuo-Hsiung L. 1989. Hinokiflavone, a cytotoxic principle from Rhus succedanea and the cytotoxicity of the related biflavonoids. – Planta Medica 55: 166-168.

Zakaria MB. 2001. The phytochemistry of Rutaceae species with special reference to Melicope. – Malayan Nat. J. 55: 241-250.

Zavaleta-Mancera HA, Engleman EM. 1991. Anatomía del fruto de Casimiroa edulis (Rutaceae), ’zapote blanco’, durante su desarrollo. – Bol. Soc. Bot. México 51: 53-65.

Zhang X-F, Hu B-L, Zhou B-N. 1995. Studies on the active constituents of Tibetan herb Biebersteinia heterostemon Maxim. – Acta Pharmac. Sin. 30: 211-214.

Zhang Z, Li C, Li J. 2010. Conflicting phylogenies of section Macrantha (Acer, Aceroideae, Sapindaceae) based on chloroplast and nuclear DNA. – Syst. Bot. 35: 801-810.

Zhou Q, Wang Y, Jin X. 2002. Ontogeny of floral organs and morphology of floral apex in Phellodendron amurense (Rutaceae). – Aust. J. Bot. 50: 633-644.

Zhouy Q, Liu G. 2012. The embryology of Xanthoceras and its phylogenetic implications. – Plant Syst. Evol. 298: 457-468.

Zini L, Solís S, Ferrucci M. 2014. Anatomical and developmental studies on floral nectaries in Cardiospermum species: an approach to the evolutionary trend in Paullinieae. – Plant Syst. Evol. 300: 1515-1523.

Zohary M. 1952. A monographical study of the genus Pistacia. – Palestine J. Bot. (Jerusalem Series) 5: 187-228.