”The Nitrogen Fixing clade”


[Polygalales+[Rosales+[Cucurbitales+Juglandales]]]


CUCURBITALES Juss. ex Bercht. et J. Presl

Berchtold et Presl, Přir. Rostlin: 236. Jan-Apr 1820 [‘Cucurbitaceae’]

Cucurbitopsida Brongn., Enum. Plant. Mus. Paris: xxx, 116. 12 Aug 1843 [’Cucurbitineae’]; Cucurbitanae Reveal in Phytologia 76: 4. 2 Mai 1994

Habit Monoecious, andromonoecious, gynomonoecious, polygamomonoecious, dioecious, androdioecious, or gynodioecious (rarely bisexual), evergreen or deciduous trees, shrubs, lianas, suffrutices, or perennial (rarely annual) herbs.

Vegetative anatomy Root nodules containing nitrogen-fixing endosymbiotic actinobacteria (Frankia) often present; Frankia infection sometimes via intercellular penetration. Phellogen ab initio superficially or deeply seated. Secondary lateral growth normal or anomalous (from concentric cambia or simple cambial cylinder). Cambial initials storied, fusiform. Vessel elements with usually simple (sometimes scalariform) perforation plates; lateral pits alternate or scalariform, simple or reduced bordered pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, septate or non-septate (also vasicentric tracheids). Wood rays multiseriate, homocellular or heterocellular, or absent. Axial parenchyma apotracheal, diffuse or diffuse-in-aggregates, or paratracheal scanty, aliform, lozenge-aliform, winged-aliform, confluent or vasicentric, or banded. Intraxylary phloem usually present. Sieve tube plastids usually Ss type (sometimes S0 type). Nodes 1:1 or 1:3, unilacunar with one or three leaf traces, 3:1–3, trilacunar with one to three traces, or 5:5, pentalacunar with five traces. Heartwood sometimes with resinous substances. Branched idioblasts with bitter substances. Calciumoxalate as prismatic crystals, druses and raphides.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, sometimes bristle-like, candelabra-shaped, stellate or prickles; glandular hairs often present, sometimes lepidote glands and pearl glands; cell walls of hairs often calcified; calcified cystoliths and similar structures often present at hair bases or in adjacent cells.

Leaves Usually alternate (spiral or distichous, sometimes opposite, rarely verticillate), simple or usually palmately (rarely pinnately) compound, entire or palmately (rarely pinnately) lobed, with conduplicate ptyxis. Stipules present (sometimes large, cauline-extrapetiolar or intrapetiolar) or absent; leaf sheath absent. Petiole vascular bundle transection arcuate or annular. Venation pinnate or palmate. Stomata anomocytic, helicocytic, anisocytic, or paracytic. Cuticular wax crystalloids usually absent (sometimes as rosettes of platelets, Fabales type). Mesophyll often with sclerenchymatous idioblasts. Cystoliths usually present. Leaf margin entire, crenate, dentate or serrate; leaf teeth often begonioid or cucurbitoid.

Inflorescence Axillary, panicle, thyrse, raceme, spike, bostrycoid, dichasial, or flowers solitary. Floral prophylls (bracteoles) often absent.

Flowers Usually actinomorphic (sometimes zygomorphic or bisymmetrical). Hypanthium often present. Usually epigyny (sometimes hypogyny or half epigyny). Sepals two to five (to 16), with imbricate, valvate or open aestivation, free from each other or more or less connate (rarely absent). Petals two to five (to 16), with valvate, induplicate-valvate or imbricate (sometimes open) aestivation, in lower part often connate into campanulate corolla (rarely absent). Nectariferous disc interstaminal and/or intrastaminal, or nectaries inserted on adaxial side of hypanthium, on ovary, on hypanthial base, as nectariferous hairs, or absent. Disc intrastaminal or absent.

Androecium Stamens usually five, 4+4 or 5+5 (sometimes three, 3+3, 6+6 to more than 100, rarely two), in one to five whorls. Filaments free from each other or more or less connate, free from tepals or adnate to petals (epipetalous). Anthers basifixed or dorsifixed, usually non-versatile, usually tetrasporangiate (sometimes disporangiate, thecae rarely up to more than 50), introrse, latrorse or extrorse, usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pore). Tapetum secretory. Staminodia absent or present (female flowers often with staminodia).

Pollen grains Microsporogenesis simultaneous. Pollen grains colpate, colporate or porate (sometimes pororate or stephanoporate) with three to 16 apertures, usually shed as monads (rarely tetrads), usually bicellular (sometimes tricellular) at dispersal. Exine tectate or semitectate, usually with columellate (sometimes granular or intermediate, acolumellate) infratectum, striate or reticulate, scabrate, echinate, spinulate or psilate.

Gynoecium Pistil composed of (one to) three or four (to six, rarely ten or twelve) usually more or less connate (rarely free) carpels. Ovary usually inferior (sometimes superior or semi-inferior), unilocular to quadrilocular (to sexalocular), sometimes with roof-like structure. Style single, simple, or stylodia (two or) three or four (to six), free or more or less connate. Stigmas one or (two or) three (to five), commissural, often bilobate (in association with commissural lines), papillate or non-papillate, Dry or Wet type. Pistillodium absent.

Ovules Placentation axile, apical or (intrusively) parietal. Ovules one to more than 100 per carpel, anatropous, pendulous, horizontal or ascending, apotropous, usually bitegmic (rarely unitegmic), usually crassinucellar (sometimes tenuinucellar). Inner integument, when present, often delayed in development. Micropyle usually endostomal (sometimes bistomal, rarely absent). Nucellar cap or nucellar beak present. Hypostase present or absent. Megagametophyte usually monosporous, Polygonum type (rarely disporous, Allium type). Antipodal cells sometimes degenerating prior to fertilization, sometimes persistent, sometimes proliferating. Endosperm development ab initio nuclear. Endosperm haustorium chalazal or absent. Embryogenesis onagrad (sometimes caryophyllad?).

Fruit A loculicidal and/or septicidal capsule, a drupe, a berry, a schizocarp or a berry-like gourd (pepo, amphisarca?) with hard pericarp (rarely a samara or an assemblage of achenes).

Seeds Aril sometimes present. Operculum (formed by micropyle and hilum) often present. Seed coat testal, exotestal or mesotestal. Testa multiplicative, often vascularized, with lignified epidermis, unilayered or multilayered with sclerotic hypodermis and lignified inner layer. Exotesta usually thick. Endotesta usually membranous. Tegmen persistent, with tracheidal outer cells, or crushed or absent. Perisperm usually not developed (sometimes well developed, enclosing embryo). Endosperm rudimentary or absent. Embryo straight, usually well differentiated, without chlorophyll. Cotyledons two. Germination phanerocotylar or cryptocotylar.

Cytology x = 7–12, 15, c. 23

DNA Plastid gene infA lost/defunct. Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin), cyanidin, bitter-tasting tetracyclic and pentacyclic triterpenes (cucurbitacins etc.), toxic sesquiterpenoid compounds, methylated and non-methylated ellagic acids, gallic acid, tannins, geraniins, karakin and other poisonous alkaloids, very poisonous bitter-tasting glycosides, triterpene saponins, cyclic polyvalent alcohols, punicic acid, eleostearic acid (isomere of punicic acid), special long-chain fatty acids (present in seed oils), myo-inisitol, and citrullin (α-amino-δ-ureidopentanoic acid, free amino acid) present. Cyanogenic compounds not found.

Systematics A possible topology of Cucurbitales is the following: [Anisophylleaceae+[Cucur-bitaceae+[[Coriariaceae+Corynocarpaceae]+[Tetramelaceae+[Datiscaceae+Begoniaceae]]]]]. The sister-group relationships of Apodanthaceae and Anisophylleaceae are still unresolved, although the inclusion of the stem-holoparasitic Apodanthaceae in Cucurbitales is well supported (Schaefer & Renner 2011).

The crown clade of Cucurbitales, [[Coriariaceae+Corynocarpaceae]+[Cucurbitaceae+ [Tetramelaceae+[Datiscaceae+Begoniaceae]]]] has the potential synapomorphies (Stevens 2001 onwards): absence of uniseriate wood rays; filaments shorter than anthers in bud; anthers basifixed; absence of nectaries; and presence of free stylodia. Coriariaceae and Corynocarpaceae share the following synapomorphies: wood rays wide; sieve tube plastids without starch and protein inclusions; stomata paracytic; leaf margin entire; flowers small; hypogyny; sepals with imbricate quincuncial aestivation; petals thick, with broad base; carpels ascidiate; ovule one per carpel; vascular bundle extending into outer integument; cotyledons very large; and presence of ellagic acid.

The clade [Cucurbitaceae+[Tetramelaceae+[Datiscaceae+Begoniaceae]]] is characterized by the following features (Stevens 2001 onwards): flowers unisexual; perennial herbaceous growth; young stem with separate vascular bundles; absence of stipules; leaf margin serrate; medial vein ending in aggregation of translucent cells, lateral vein also entering tooth; carpels antesepalous or median carpel adaxial; roof-like structure present above ovary; stylodia marginal; stigmas large, elongated, bilobate; placentation parietal; ovules numerous per carpel; fruit many-seeded; presence of cucurbitacins; and absence of myricetin and ellagic acid.

The clade [Tetramelaceae+[Datiscaceae+Begoniaceae]] has the potential synapomorphies (Stevens 2001 onwards): pollen grains spheroidal; stigmas elongate; fruit an apically dehiscent septicidal capsule; testa with operculum formed by micropyle and hilum; exotestal cells honeycomb-shaped, inner walls strongly thickened and lignified; and cotyledons medium-sized. Datisca and Begoniaceae share the synapomorphies: herbaceous growth; and outer and inner integuments two cell layers thick. Tetramelaceae and Datiscaceae are both dioecious; have completely isomerous but not regularly pentamerous flowers (not in male plants of Datisca) with only small sepals and without petals (present in male plants of Octomeles).

Cucurbitaceae have the following features in common with [Tetramelaceae+[Datiscaceae+ Begoniaceae]] (Stevens 2001 onwards): herbaceous growth form; young stem with separate vascular bundles; leaf margin serrate, with cucurbitoid teeth (i.e. medial vein ending in pad of packed translucent cells, lateral veins also entering); absence of stipules; flowers unisexual; epigyny; carpels antesepalous or median carpel adaxial; extended roof-shaped structure on top of ovary (stylodia marginal), formed by ventral carpellary segments; stigmas large, elongated, bilobate; placentation parietal, often intrusive; ovules numerous per carpel; presence of cucurbitacins (oxidized triterpenes); and absence of myricetin and ellagic acid. The flowers are often androdioecious, the anthers basifixed and extrorse or latrorse, the free carpellary parts bifurcate, and the gynoecium trimerous.

Phylogeny of Cucurbitales based on molecular data. Zhang & al. (2006) identified Cucurbitaceae as sister-group to the clade [Tetramelaceae+Begoniaceae+Datiscaceae]. On the other hand, Schaefer & Renner (2011; in a maximum likelihood tree based on 18S sequence data) recovered Cucurbitaceae as sister to the clade [[Coriariaceae+Corynocarpaceae]+[Tetramelaceae+[Begoniaceae+Datiscaceae]]]. Other analyses have found the sister-group relationships [Datiscaceae+Tetramelaceae] or [Begoniaceae+Tetramelaceae], always with weak or moderate support. The position of Apodanthaceae is very uncertain. Close affinities with Coriaria and Corynocarpus are weakly supported.

ANISOPHYLLEACEAE Ridl.

( Back to Cucurbitales )

Ridley, Fl. Malay Penins. 1: 700. 13-22 Jul 1922 [‘Anisophylleae’]

Polygonanthaceae Croizat in Cact. Succ. J. (Los Angeles) 15: 64. Mai 1943; Anisophylleales (Benth. et Hook.f.) Takht. ex Reveal et Doweld in Novon 9: 550. 30 Dec 1999

Genera/species 4/c 35

Distribution Northern South America (Amazonas), tropical Africa, southern India, Sri Lanka, West Malesia.

Fossils Uncertain. Fossil pollen grains of Anisophylleaceae type are known from mid- and upper Miocene layers on Borneo. Fossil flowers of Platydiscus, a possible Anisophylleaceae (or Cunoniaceae?), have been found in upper Cretaceous strata in southern Sweden.

Habit Usually monoecious (sometimes polygamomonoecious or bisexual; in Combretocarpus dioecious), evergreen trees or shrubs. Most species are anisophyllous (Combretocarpus is isophyllous).

Vegetative anatomy Phellogen? Cambial stratification? Vessel elements with simple perforation plates; lateral pits alternate, simple or bordered pits. Imperforate tracheary xylem elements ? with simple or bordered pits, non-septate (also vasicentric tracheids). Wood rays multiseriate, heterocellular. Axial parenchyma apotracheal diffuse or diffuse-in-aggregates, or paratracheal banded, aliform, lozenge-aliform or winged-aliform. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Parenchyma in Poga with lysigenous secretory cavities. Laticifers absent. Heartwood with resinous substances. Prismatic calciumoxalate crystals frequent.

Trichomes Hairs unicellular or multicellular, uniseriate, simple; glandular hairs?

Leaves Alternate (spiral or distichous; in Anisophyllea tetrastichous), simple, entire, coriaceous, with ? ptyxis, usually dimorphic (in Combretocarpus monomorphic). Stipules usually absent (rarely two to four, very small, arising from petiole base, colleters?); leaf sheath absent. Petiole vascular bundle transection simple. Leaf base in Anisophyllea asymmetrical. Venation usually palmate (in Combretocarpus pinnate). Stomata usually paracytic. Cuticular wax crystalloids as platelets (in Polygonanthus cupular). Leaf margin entire.

Inflorescence Axillary, usually panicle, raceme or spike (flowers rarely solitary).

Flowers Actinomorphic, usually small. Epigyny. Sepals (three or) four (to 16), in one whorl, with valvate aestivation, persistent, with mucilaginous inner epidermal walls, postgenitally coherent. Petals (three or) four (to 16; in Combretocarpus often absent), with valvate or open aestivation, clawed, usually trilobate, quinquelobate or septalobate (in Poga entire), more or less enclosing groups of free stamens. Nectariferous disc crenate, usually both interstaminal and intrastaminal (nectariferous disc in Combretocarpus only intrastaminal; in Anisophyllea formed by protrusions between and behind each stamen).

Androecium Stamens 3+3, 4+4 or 5+5, obdiplostemonous. Filaments narrow, free from each other and from tepals, inflexed in bud. Anthers dorsifixed, versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia present or absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate to tricolporoidate (in Anisophyllea usually dicolpate), shed as monads or tetrads (or polyads?), bicellular at dispersal. Exine tectate or semitectate, with columellate infratectum, usually reticulate or punctate (sometimes striate or smooth).

Gynoecium Pistil composed of (three or) four (or five) carpels connate in lower part. Ovary inferior, (trilocular or) quadrilocular (or quinquelocular); sometimes with roof-like structure above ovary. Stylodia (three or) four (or five), free, sometimes hollow; compitum absent. Stigmas widened or punctate, type? Pistillodium?

Ovules Placentation apical-axile. Ovule usually one per carpel, anatropous, pendulous, epitropous, bitegmic or unitegmic (Anisophyllea, Combretocarpus), crassinucellar. Micropyle bistomal (Poga, Polygonanthum; in Anisophyllea slit-shaped). Outer integument seven to nine cell layers thick. Inner integument approx. two cell layers thick. Integument in Anisophyllea four to seven cell layers thick. Parietal tissue approx. one cell layer thick. Nucellar cap present. Megagametophyte usually monosporous, Polygonum type (in Combretocarpus disporous, 8-nucleate, Allium type). Antipodal cells degenerating prior to fertilization (mature megagametophyte quinquecellular). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit Usually a drupe (rarely a capsule; in Combretocarpus a samara), sometimes with accrescent sepals.

Seeds Aril present or absent. Seed coat testal. Testa usually multiplicative, sometimes vascularized, approx. ten to c. 30 cell layers thick, thin and one-layered (Combretocarpus), or thick and multilayered (Anisophyllea, Poga). Outer exotestal epidermis cells cuboid, with thick, lignified walls. Mesotestal cell walls sometimes lignified. Tegmen crushed or absent. Exotegmen not sclerified. Perisperm not developed. Endosperm absent. Embryo fusiform, with long hypocotyl, chlorophyll? Cotyledons two, usually indistinct or absent (in Combretocarpus small). Germination cryptocotylar.

Cytology x = 7, 8

DNA

Phytochemistry Very insufficiently known. Tannins present. Alkaloids and saponins not found. Aluminium accumulated.

Use Timber (Combretocarpus rotundatus, Poga oleosa), seed oils (Poga).

Systematics Anisophyllea (c 30; tropical regions on both hemispheres), Poga (1; P. oleosa; Guinea to Congo), Polygonanthus (2; Amazonia), Combretocarpus (1; C. rotundatus; West Malesia).

According to Zhang & al. (2007), the genetic distance between Anisophylleaceae and the other Cucurbitales is large, and no morphological synapomorphies are known. Anisophylleaceae appear to be sister to the remaining Cucurbitales.

Combretocarpus is sister to the remaining Anisophylleaceae.

Cladogram of Anisophylleaceae based on DNA sequence data (Zhang & al. 2007).

APODANTHACEAE (R. Br.) Tiegh. ex Takht.

( Back to Cucurbitales )

Takhtajan, Sist. Magnoliof. [Systema Magnoliophytorum]: 42. 24 Jun 1987

Genera/species 2/10

Distribution Tropical East Africa, southeastern Turkey to northern Iran, southwestern Australia, southern California, Mexico, Central America, the West Indies, South America southwards to central Argentina.

Fossils Unknown.

Habit Usually monoecious or dioecious (rarely bisexual), achlorophyllous herbaceous endophytes without rhizome or normal roots. Root or stem holoendoparasites (Apodanthes on Salicaceae [Casearia, Xylosma]; Pilostyles on Faboideae in Fabaceae).

Vegetative anatomy Hypha-like cell-threads invading host plants, forming endophytic system inside host roots. Phellogen absent. Secondary lateral growth absent. Vessels absent. Imperforate tracheary elements? Wood rays absent. Axial parenchyma? Stomata anomocytic. Sieve tube plastids S0 type, without starch or protein inclusions. Cells with calciumoxalate crystals. Oils or mucilage absent.

Trichomes Hairs (in flowers) unicellular or multicellular, uniseriate; vesicular hairs present.

Leaves Absent.

Inflorescence Flowers terminal, solitary.

Flowers Actinomorphic, small, usually with evil smell. Epigyny or half epigyny. Floral (tepaloid) scales with entire margin probably in three di-, tri-, tetra- or hexamerous whorls of eight to 15 scales in total (2+4+4 or 3+6+6, etc.), at least inner scales probably tepals and outer scales bracts, usually with open or imbricate (sometimes contorted) aestivation, free or connate at base, usually persistent (outer scales in Apodanthes caducous); inner whorl of scales with adaxial hair tufts. Thin tissue, diaphragma, and special outgrowth, ramenta, inserted on top of perigonal tube. Gynostemium present. Nectariferous disc somewhat quadrangular or sexangular, extrastaminal (formed by base of innermost scales), in Apodanthes and Pilostyles with stomata. Ring of vesicular hairs present in male flowers on upper part of pistillodium, immediately above synandrium.

Androecium Stamens congenitally connate into synandrium, not differentiated into filaments and anthers. Thecae five to more than 50, in (one or) two or three (or four) whorls, extrorse, longicidal (in Pilostyles dehiscing by longitudinal slits, sometimes between thecal whorls, and in Apodanthes by longitudinal slits) or poricidal (dehiscing by apical pore). Endothecium absent. Tapetum secretory? Staminodia absent.

Pollen grains Microsporogenesis simultaneous? Pollen grains monoporate, monocolpate, triporate, tricolpate (Apodanthes, Pilostyles), or inaperturate (Pilostyles), shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, psilate.

Gynoecium Pistil usually composed of four (or five) connate antepetalous carpels. Ovary inferior or semi-inferior, unilocular. Style single, simple, very short, hollow, with H-shaped (in transverse view) stylar canal, compitum; nectary present on stylar base. Stigma single, simple (Apodanthes, Pilostyles) or somewhat quadrilobate (Pilostyles), annular, hemispherical, relatively large, inserted below apex of central column, papillate, Wet type. Male flowers with pistillodium with basal nectary and vesicular hairs at least on margin.

Ovules Placentation parietal. Ovules c. 15 to more than 90 per carpel, anatropous, bitegmic, tenuinucellar. Micropyle bistomal or endostomal (Pilostyles), or absent (Apodanthes, Pilostyles). Outer integument one or two cell layers thick. Inner integument one or two cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A berry.

Seeds Aril absent. Testa thin-walled, mucilaginous. Exotestal cells? Endotesta? Exo(?)tegmic cell walls strongly lignified. Endotegmen? Perisperm not developed. Endosperm copious. Embryo rudimentary, undifferentiated, without chlorophyll? Cotyledons two? Germination?

Cytology n = c. 12, 16?, 6, 30–31 + B (Pilostyles)

DNA

Phytochemistry Virtually unknown. Tannins present in floral scales.

Use Unknown.

Systematics Apodanthes (1; A. caseariae; Central America, tropical South America),  Pilostyles (9; southeastern Turkey and Iran [P. haussknechtii], southwestern Western Australia [P. coccoidea, P. collina, P. hamiltonii], southeastern tropical Africa [P. aethiopica], southwestern United States, Mexico, Central America, the West Indies, South America).

Androecial and gynoecial features support the insertion of Apodanthaceae into Cucurbitales. The sister-group relationship of Apodanthaceae is unresolved.

BEGONIACEAE C. Agardh

( Back to Cucurbitales )

Agardh, Aphor. Bot.: 200. 13 Jun 1824, nom. cons.

Begoniales Bercht. et J. Presl, Přir. Rostlin: 270. Jan-Apr 1820 [‘Begoniae’]; Begoniineae Engl., Syllabus, ed. 2: 156. Mai 1898; Begonianae Doweld, Tent. Syst. Plant. Vasc.: xxxix. 23 Dec 2001

Genera/species 2/c 1.525

Distribution Tropical and subtropical regions on both hemispheres, with their highest diversity in tropical Asia and northern South America.

Fossils Unknown.

Habit Usually monoecious (male flowers are produced ab initio, and subsequently female flowers; rarely dioecious), usually more or less succulent perennial herbs with tuber (in Hillebrandia round) or rhizome (in Begonia rhizome, rarely tuber), sometimes climbing, sometimes somewhat woody below and frutescent. Nodes swollen.

Vegetative anatomy Phellogen ab initio subepidermal. Medulla sometimes storied by diaphragms. Cortical and medullary vascular bundles usually present. Primary vascular tissue cylinder of vascular bundles. Pericyclic envelope absent. Vessel elements with simple or scalariform perforation plates; lateral pits scalariform, simple pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, non-septate. Wood rays multiseriate, heterocellular, or absent. Axial parenchyma paratracheal scanty. Fibres sometimes storied. Tyloses often abundant. Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces, or 5:5, pentalacunar with five traces. Brachysclereids and non-calcified cystoliths present. Calciumoxalate as prismatic crystals, druses and raphides.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, sometimes bristle-like (setular), candelabra-shaped or stellate, often large and flat; peltate-lepidote glands and sessile spherical pearl glands present.

Leaves Usually alternate (usually distichous, sometimes spiral, rarely opposite), usually simple (rarely palmately compound), entire or palmately lobed, with usually conduplicate (vertically or laterally; sometimes supervolute-curved) ptyxis. Stipules usually large, cauline-extrapetiolar or intrapetiolar, caducous or persistent; leaf sheath absent. Petiole vascular bundle transection annular; petiole sometimes with central vascular bundles. Leaf base usually strongly asymmetrical. Venation palmate. Stomata helicocytic with three to six subsidiary cells (often in two whorls) or anisocytic (rarely paracytic or diacytic?), often only on adaxial side of lamina. Cuticular wax crystalloids? Mesophyll with or without sclerenchymatous idioblasts. Cystoliths (non-calcified) usually present. Hydathodes usually absent. Leaf margin usually serrate or crenate (rarely entire); leaf teeth begonioid, supplied by several veins; medial vein ending in aggregation of translucent cells, lateral vein dominant, also entering tooth. Caducous pearl glands present.

Inflorescence Usually axillary (in Begonia rarely epiphyllous), dichasial or bostrycoid. Female flowers in Begonia usually developed in cymose inflorescence after male flower anthesis (inflorescence in Symbegonia subclade racemose and female flowers produced prior to male flowers).

Flowers More or less zygomorphic or bisymmetrical. Usually epigyny (in Hillebrandia half epigyny). Sepals usually two, with valvate or imbricate aestivation, petaloid (rarely six to eight; in Hillebrandia five, larger to much larger than petals), usually free (sometimes connate into tube). Petals usually two, with valvate aestivation, or absent (in Hillebrandia five, smaller to much smaller than sepals and possibly staminodia; in female flowers of Begonia two to nine; tepals in male flowers of Begonia usually two or four, sometimes three or five to eight), usually free (rarely connate into campanulate corolla). Nectary usually absent (nectaries rarely present at stylodium bases). Disc absent.

Androecium Stamens three to c. 50 to more than 100, in two to five whorls, centrifugally developing (in Hillebrandia with branched vascular bundles). Filaments free or more or less connate, free from tepals. Anthers basifixed, non-versatile, tetrasporangiate, extrorse or latrorse, usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pores), yellow; connective often exlpanded. Tapetum secretory. Female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolp(or)ate, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, often striate.

Gynoecium Pistil composed of (two or) three (or six; in Hillebrandia five; in Begonia sometimes one) carpels connate in lower part. Ovary usually inferior (in Hillebrandia semi-inferior), unilocular (in Hillebrandia and some species of Begonia) or secondarily usually trilocular (rarely bilocular or sexalocular), usually three-winged; carpels strongly developed ventrally forming roof-like structure above locule, this forming perianth tube base; calyx tube with widely separated stylodia inserted on roof edge. Stylodia (two or) three (or six), usually free (sometimes connate at base; in Hillebrandia peripheral; in Begonia central), short, usually deeply bifid. Nectaries inserted at stylodium bases in some ornithophilous species. Stigmas often twisted (yellow, resembling anthers), papillate, Dry type. Pistillodium absent.

Ovules Placentation usually axile (in Hillebrandia axile at base and parietal at apex; in Begonia axile to parietal), with large usually bilamellate placentae. Ovules numerous per carpel, anatropous, bitegmic, crassinucellar. Micropyle bistomal, Z-shaped (zig-zag). Outer integument ? cell layers thick. Inner integument approx. two cell layers thick. Endothelium present. Parietal tissue approx. two cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit Usually a loculicidal capsule (in Hillebrandia septicidal, dehiscing at apex between stylodia; in Begonia rarely also septicidal), usually winged (often asymmetrically winged; rarely a berry).

Seeds Aril absent. Funicle surrounded by collar formed as extension of testa. Operculum formed by micropyle and hilum, and surrounding annulus of collar cells. Seed coat exotestal. Exotestal cells with honeycomb-like arrangement, with heavily thickened and lignified inner walls? Endotesta? Tegmen? Perisperm not developed. Endosperm sparse or absent. Embryo small, straight, little to well differentiated, chlorophyll? Cotyledons two. Germination phanerocotylar.

Cytology n = 9–21 or more (Begonia)

DNA

Phytochemistry Flavonols (quercetin), cyanidin, cucurbitacins, tannins, and saponins present. Ellagic acid, alkaloids, and cyanogenic compounds not found.

Use Ornamental plants, medicinal plants, occasionally as vegetables.

Systematics Hillebrandia (1; H. sandwicensis; the Hawaiian Islands), Begonia (c 1.400; tropical and subtropical regions on both hemispheres).

Begoniaceae are sister to Datisca (Datiscaceae).

CORIARIACEAE DC.

( Back to Cucurbitales )

de Candolle, Prodr. 1: 739. med Jan 1824 [’Coriarieae’], nom. cons.

Coriariales Lindl., Nix. Plant.: 11. 17 Sep 1833 [‘Coriales’]; Coriariopsida Parl., Fl. Ital. 5: 486. 1872 [’Coriarineae’]; Coriariineae Engl., Syllabus, ed. 2: 142. Mai 1898

Genera/species 1/13

Distribution western Mediterranean, Himalayas to Japan, Taiwan, the Philippines, New Guinea, New Zealand, islands in the Southwest Pacific, tropical America.

Fossils Macrofossils assigned to Coriaria longaeva are known from Oligocene layers in France, and seeds and pollen grains of Coriariaceae have been described from the Miocene of several European sites.

Habit Usually dioecious (sometimes monoecious, andromonoecious, gynomonoecious or polygamomonoecious, rarely bisexual), evergreen or deciduous shrubs (sometimes suffrutices or small trees). Some branches with limitied growth similar to pinnate leaves. Buds usually perulate.

Vegetative anatomy Root nodules containing nitrogen-fixing endosymbiotic actinobacteria (Frankia) present in most species. Phellogen ab initio superficial. Primary medullary strands wide. Vessel elements present in multiples. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements tracheids or libriform fibres with simple or bordered pits, non-septate (also vasicentric tracheids). Wood rays multiseriate, heterocellular. Axial parenchyma paratracheal scanty, confluent or vasicentric. Wood elements partially storied. Sieve tube plastids S type. Nodes 1:1, unilacunar with one leaf trace. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs absent?

Leaves Usually opposite (sometimes verticillate, rarely alternate spiral), simple, entire, coriaceous, with flat ptyxis. Stipules minute, caducous; leaf sheath absent. Petiole vascular bundle transection arcuate. Venation palmate. Stomata paracytic. Cuticular waxes absent. Epidermis with secretory cells. Calciumoxalate crystals abundant. Tannins very abundant. Leaf margin entire or weakly dentate.

Inflorescence Terminal, raceme. Floral prophylls (bracteoles) absent.

Flowers Actinomorphic, small. Hypogyny. Sepals five (or six), with imbricate quincuncial aestivation, persistent, free. Petals five (or six), with valvate or open aestivation, persistent, free, usually adaxially keeled. Nectary? Disc absent.

Androecium Stamens usually 5+5 (rarely 6+6), diplostemonous. Filaments thin, free from each other, free from tepals or antepetalous filaments adnate to petal keel. Anthers basifixed or slightly dorsifixed, versatile?, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits); connective narrow. Tapetum secretory, with binucleate to quadrinucleate cells. Staminodia absent (female flowers with staminodia?).

Pollen grains Microsporogenesis simultaneous. Pollen grains (2–)3(–4)-colporate or 3(–4)-pororate, starchy, shed as monads, usually tricellular (sometimes bicellular) at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Carpels usually five, antesepalous (rarely ten or twelve), free from each other or connate at base (although bulging and seemingly free); carpel ascidiate? Ovary superior, unilocular (apocarpy). Stylodia usually five, filiform, subbasal; compitum present. Stigmatic areas surrounding style, papillate, Dry type. Male flowers with pistillodium?

Ovules Placentation apical-axile. Ovule one per carpel, anatropous, pendulous, apotropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument three or four cell layers thick. Inner integument two or three cell layers thick. Parietal tissue approx. eight cell layers thick. Nucellar cap approx. four cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit: A schizocarp with nutlike mericarps or an assemblage of achenes with persistent subbasal stylodia and enclosed by carnose accrescent petals, resulting in baccate or drupaceous appearance.

Seeds Aril absent. Seed coat exotestal. Exotesta consisting of cuboid, tanniniferous cells with thick lignified? walls. Endotesta and tegmen indistinct. Perisperm not developed. Endosperm sparse, oily, or absent. Embryo straight, oily, chlorophyll? Cotyledons two, large. Germination phanerocotylar.

Cytology n = 10, 15

DNA

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), toxic sesquiterpenoid compounds, methylated and non-methylated ellagic acids, gallic acid, tannins, alkaloids, geraniins, cyclic polyvalent alcohols, coriolic fatty acid (in seeds), and myo-inisitol present. Triterpene saponins? Proanthocyanidins and cyanogenic compounds not found.

Use Ornamental plants, tanning, insecticides, medicinal plants.

Systematics Coriaria (13; western Mediterranean, temperate and subtropical Himalayas and eastwards to Japan, Taiwan, the Philippines and New Guinea, the Solomon Islands, Vanuatu, Fiji, New Zealand, Samoa, the Society Islands and other islands in the South Pacific, Mexico, Central America, the Andes from Colombia to central Chile).

Coriaria is sister to Corynocarpus (Corynocarpaceae).

The Eurasiatic clade of Coriaria is sister to the remaining species. Species limits in Coriaria are problematic.

CORYNOCARPACEAE Engl.

( Back to Cucurbitales )

Engler in Engler et Prantl, Nat. Pflanzenfam., Nachtr. 1: 215. Oct 1897, nom. cons.

Corynocarpales Takht., Divers. Classif. Fl. Pl.: 340. 24 Apr 1997; Corynocarpanae Takht., Divers. Classif. Fl. Pl.: 340. 24 Apr 1997

Genera/species 1/5

Distribution The Aru Islands, New Guinea, New Britain, New Ireland, northeastern and eastern Australia, Melanesia, New Zealand.

Fossils Unknown.

Habit Bisexual, evergreen trees.

Vegetative anatomy Phellogen ab initio subepidermal. Young stem with separate vascular bundles. Cambium storied. Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, non-septate. Wood rays multiseriate, homocellular or heterocellular, very wide. Wood elements partially storied. Axial parenchyma paratracheal scanty, confluent, vasicentric or wide-banded. Sieve tube plastids S type. Nodes 3:3?, trilacunar with three? leaf traces. Prismatic calciumoxalate crystals abundant.

Trichomes Hairs absent.

Leaves Leaves alternate (spiral), simple, entire, coriaceous, with conduplicate ptyxis. Stipule single, intrapetiolar, caducous, or absent; leaf sheath absent. Petiole vascular bundle transection forming line. Venation pinnate, brochidodromous. Stomata paracytic. Cuticular wax crystalloids? Leaf margin entire.

Inflorescence Terminal, branched panicle or raceme.

Flowers Actinomorphic, small. Hypanthium short. Hypogyny. Sepals five, with imbricate aestivation, free. Petals five, with imbricate aestivation, free. Nectaries five, intrastaminal. Disc consisting of five separate parts.

Androecium Fertile stamens five, obhaplostemonous, alternisepalous, antepetalous. Filaments free, adnate at base to petals, inflexed in bud. Anthers dorsifixed, non-versatile, tetrasporangiate, introrse, longicidal (dehiscing by longitudinal slits). Tapetum secretory? Staminodia five, petaloid, extrastaminal or interstaminal, alternating with stamens, fimbriate, each with basal adaxial antesepalous nectary.

Pollen grains Microsporogenesis simultaneous? Pollen grains dicolp(or)ate, heteropolar (one short colpus at each pole), shed as monads, ?-cellular at dispersal. Exine tectate, with granular to intermediate infratectum, scabrate to psilate.

Gynoecium Pistil composed of two connate carpels, one of which more or less reduced and sterile leading to pseudomonomery. Ovary superior, unilocular or bilocular. Stylodium usually single, simple, short, conduplicate (stylodia rarely two). Stigma capitate, Dry type. Pistillodium absent.

Ovules Placentation apical. Ovule one per fertile carpel, anatropous, pendulous, apotropous or epitropous?, with erect micropyle, bitegmic, crassinucellar. Micropyle endostomal. Outer integument c. 11 (to c. 30?) cell layers thick. Inner integument ? cell layers thick. Megagametophyte monosporous, Polygonum type. Antipodal cells proliferating (with up to eight cells). Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis caryophyllad?

Fruit A drupe with persistent eccentric styloid.

Seeds Aril absent. Testa pachychalazal?, ab initio thick, vascularized, finally crushed. Tegmen? Perisperm not developed. Endosperm sparse, starchy, or absent. Embryo straight, well differentiated, oily and starchy, chlorophyll? Cotyledons two, large, thick. Germination phanerocotylar.

Cytology n = (22?) 23 (46)

DNA

Phytochemistry Flavonols (kaempferol), ellagic acid, very poisonous bitter glucosides (at least in bark and seeds), and karakin (in fruits) present. Proanthocyanidins, saponin, and cyanogenic compounds not found.

Use Timber (ship’s masts, canoes etc.).

Systematics Corynocarpus (5; he Aru Islands, New Guinea, New Britain, New Ireland, the Solomon Islands, eastern Queensland, eastern New South Wales, Vanuatu, New Caledonia, North Island of New Zealand).

Corynocarpus is sister to Coriaria (Coriariaceae).

CUCURBITACEAE Juss.

( Back to Cucurbitales )

de Jussieu, Gen. Plant.: 393. 4 Aug 1789, nom. cons.

Nhandirobaceae T. Lestib., Botanogr. Elém.: 515. Jun 1826 [’Nandhirobées’]; Zanoniaceae Dumort., Anal. Fam. Plant.: 28, 29. 1829; Bryoniaceae G. Mey., Chloris Han.: 6, 112. Jul-Aug 1836; Cyclantheraceae Lilja, Skånes Fl., ed. 2: 716, 980. Apr-Dec 1870 [’Cyclanthereae’]; Cucurbitineae Engl., Syllabus, ed. 2: 190. Mai 1898

Genera/species 96/905–1.060

Distribution Tropical and subtropical regions, with their largest diversity in South American rainforests and arid regions in Africa, few species in Australasia and in temperate regions.

Fossils Seeds have been described from the Paleocene and the Eocene of England. Fossil hexacolpate or stephanocolpate pollen grains, Hexacolpites echinatus, have been described from the Oligocene of Cameroon.

Habit Monoecious, andromonoecious, gynomonoecious, polygamomonoecious, dioecious, androdioecious, and gynodioecious (in Actinostemma and Schizopepon sometimes bisexual), usually perennial herbs, mostly climbing or winding (rarely lianas, shrubs or tree, secondarily woody, or annual herbs; Dendrosicyos extremely pachycaul and secondarily arborescent with soft juicy stem). Many species are xerophytes. In leaf axils usually lateral and often branched tendrils formed by modified lateral shoots with lower part corresponding to stem branch and climbing upper part corresponding to strongly modified leaves (tendrils sometimes modified into spines [i.a. in Acanthosicyos, Momordica] or absent). Tendrils simple or branched; branched tendrils with or without sensitive coiling base (zanonioid tendrils), sometimes with terminal adhesive pads. Tendrils often part of axillary complex together with axillary buds and inflorescences. Many species provided with epigeal tuberous pachypodium (root stock) formed by swollen hypocotyl (cauduciform succulents).

Vegetative anatomy Root phellogen superficial. Stem phellogen ab initio superficially to deeply seated. Primary vascular tissue with separate bundles or consisting of cylinder of bundles. Young stem usually with bicollateral vascular bundles, often arranged in two cylinders. Cortical vascular bundles usually present. Cortex with sclerenchymatous envelope. Pericyclic sheath absent. Secondary lateral growth normal or anomalous (via concentric cambia or from simple cambial cylinder). Vessel elements with simple perforation plates; lateral pits alternate, bordered pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, septate (also vasicentric tracheids). Wood rays multiseriate, heterocellular. Axial parenchyma apotracheal or paratracheal aliform or banded. Wood elements often storied. Tyloses often frequent. Extrafascicular phloem usually present in cortex outside sclerenchymatous envelope (in species with bicollateral vascular bundles). Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces. Branched idioblasts with bitter substances. Cystoliths usually present. Crystals?

Trichomes Hairs unicellular, simple, verrucate or often as prickles; glandular hairs often frequent; cell walls often calcified; calcified cystoliths and similar structures often present at hair bases or in adjacent cells.

Leaves Alternate (spiral), palmately compound or simple and usually palmately lobed (sometimes entire), with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection arcuate or as ring of arcuate bundles, unequal in size (larger bundles bicollateral); leaf supplied by one vascular strand from outer ring of bundles and by branches from two additional strands of outer bundle ring. Pericyclic envelope usually absent. Extrafloral nectaries frequent on abaxial surface of lamina and/or sometimes on petiole, node or leaf margin. Venation usually palmate. Stomata usually anomocytic. Cuticular wax crystalloids usually absent, sometimes as rosettes of platelets (Fabales type), or as irregular platelets or terete rodlets, chemically dominated by triterpenoids, etc. Hydathodes often present. Leaf margin usually serrate (rarely entire); leaf teeth often cucurbitoid.

Inflorescence Axillary, cymose, umbel, raceme, fascicle, pseudopanicle, or flowers solitary. Female flowers often solitary in leaf axils on main branch, male inflorescence arising from this first node. Floral prophylls (bracteoles) often absent. Floral bracts sometimes with extrafloral nectaries.

Flowers Usually actinomorphic (sometimes with zygomorphic androecium), often large. Hypanthium, formed by lower parts of perianth and stamens, usually present. Usually epigyny (rarely half epigyny). Sepals (three to) five (to seven), with imbricate or open aestivation, usually more or less connate (rarely absent). Petals (three to) five (to seven), with valvate, induplicate-valvate or imbricate quincuncial aestivation, in lower parts usually connate into campanulate perigonal tube. Nectary usually disc-shaped (sometimes covered by tissue lobe). Male flowers usually with nectaries on adaxial side of hypanthium. Female flowers with nectaries on ovary, on hypanthial base, or as nectariferous glandular hairs. Oil-secreting hairs sometimes present. Disc intrastaminal or absent.

Androecium Stamens usually five (sometimes three; in, e.g., Gurania, Helmontia and Psiguria two), haplostemonous, antesepalous, alternipetalous. Filaments usually entirely or almost entirely connate in fascicles 2+2+1 or all five stamens into central columella (sometimes free or five free stamens or three free filaments due to fusion of two adjacent stamens, although still five anthers due to incomplete fusion of thecae; in Fevillea five free stamens with bilocular anthers), often adnate to petals, usually inserted into hypanthium. Anthers dorsifixed, non-versatile, straight or arcuate to triplicate or (often strongly) sigmoid, often connate into tube (in Thladiantha connate 4+1), when three anthers then usually two tetrasporangiate and one disporangiate (monothecal), when five anthers then all disporangiate (monothecal), extrorse, longicidal (dehiscing by longitudinal slits); connective sometimes prolonged at apex. Tapetum secretory. Female flowers with rudimentary staminodia (male flowers in Gerrardanthus with one out of five stamens modified into staminodium).

Pollen grains Microsporogenesis simultaneous. Pollen grains colpate, colporate or porate (sometimes stephanoporate) with three to 16 apertures, starchy, sometimes operculate, sometimes very large (40–70 µm or more), usually shed as monads (in Gurania and Psiguria tetrads), bicellular at dispersal. Exine tectate to semitectate, with columellate or acolumellate infratectum, perforate or reticulate, echinate, spinulate, striate or microstriate. Pollen grain germinating with several pollen tubes (polysiphony).

Gynoecium Pistil composed of usually (two or) three (to five) connate carpels (in Sicyoeae often one carpel); median carpel sometimes abaxial. Ovary usually inferior (rarely semi-inferior), unilocular, although usually almost filled up by enlarged placentae, sometimes fused in centre and seemingly multilocular; carpels strongly developed ventrally forming roof-like structure above locule, this forming perianth tube base; calyx tube with widely separated stylodia inserted on roof edge. Stylodia (two or) three (to five), entirely (sometimes only below) connate (style simple) or more or less separate. Stigmas one or (two or) three (to five), commissural, often bilobate (in connection with commissural lines), papillate or non-papillate, Dry or Wet type. Pistillodium absent (small processes alternating with stamens perhaps representing reduced carpels).

Ovules Placentation intrusively parietal (sometimes seemingly axile). Ovules usually numerous (sometimes few; in Sicyoeae one) per carpel, anatropous, pendulous or horizontal to ascending, bitegmic, crassinucellar. Micropyle usually endostomal (rarely bistomal). Outer integument four to eight cell layers thick, vascularized. Inner integument one to at least six cell layers thick. Parietal tissue five to eleven cell layers thick. Nucellar cap and nucellar beak present. Hypostase present or absent. Megagametophyte usually monosporous, Polygonum type (rarely disporous, 8-nucleate, Allium type), sometimes extremely long (cf Santalales). Antipodal cells usually degenerating. Endosperm development ab initio nuclear. Chalazal end of megagametophyte usually forming tubular endosperm haustorium. Embryogenesis onagrad.

Fruit Usually a single- to many-seeded berry or berry-like gourd (pepo, amphisarca?) with hard pericarp (rarely a dry och fleshy capsule, a samara or a fleshy explosion fruit; fruit in Actinostemma and Bolbostemma operculate).

Seeds Aril usually absent (sometimes present). Seeds often flattened, sometimes winged. Operculum? Seed coat mesotestal. Testa multiplicative, vascularized, often complex, with lignified epidermis, unilayered or multilayered sclerotic hypodermis (absent in Coniandreae) and finally lignified inner layer, with single cell layer usually rich in asterosclereids (sometimes osteosclereids), sclereid layers usually strongly separated from other cells; testa often with aerenchyma inside epidermis, thick-walled and lignified, but little differentiated from hypodermal layer; inner sclerenchymatous layers often with anticlinal cell divisions, brachysclereid. Exotesta usually thick, often palisade or cuboid (in some species with multilayered epidermis). Endotesta usually membranous. Tegmen persistent, with tracheidal outer cells. Perisperm usually not developed (sometimes well developed, enclosing embryo). Endosperm rudimentary or absent. Embryo straight, well differentiated (plumule often with distinct leaves), without chlorophyll; often with crystalloid inclusions in protein bodies. Cotyledons two, large, flat. Germination phanerocotylar or cryptocotylar. Seedlings often with cortical outgrowth on lower side of axis in transition zone between root and stem.

Cytology n = 7–24 (9–14, 16, 20, 22, 33, 44, 66, 88); x = 12 – Fixed polyploidy (n = 20) occurring in Cucurbiteae.

DNA Plastid gene infA lost/defunct (Luffa). Inversion of 35–40 bp present in plastid trnL/trnF-intergenic spacer (absent in other Cucurbitales; absent in Neoalsomitra and Cucurbita digitata). Cucurbitaceae usually with labile genome organization: two (or three) cases (out of extremely few known among angiosperms) of independent transfer of gene rbcL from plastid to mitochondrial genome (Cucumis sativus, Cucurbita maxima and Cucurbita pepo). Mitochondrial coxI intron present in at least Citrullus, Cucumis and Melothria. Cucumis with largest known mitochondrial genome among angiosperms (1.500 kb in C. sativus, 2.400 kb in C. melo).

Phytochemistry Flavonols (kaempferol, quercetin), extremely bitter-tasting tetra- and pentacyclic triterpenoids (cucurbitacins etc.), alkaloids, triterpene saponins, punicic acid (C18H30O2), eleostearic acid (isomere of punicic acid, in Joliffieae), long-chain fatty acids (in seed oils) and citrullin (free non-protein amino acid α-amino-δ-ureidopentanoic acid) present. Ellagic acid, tannins, and proanthocyanidins not found.

Use Ornamental plants, fruits, vegetables, water sources, medicinal plants, containers and musical instruments (Lagenaria siceraria).

Systematics A probable topology of Cucurbitaceae is (Schaefer & Renner 2011): [Gomphogyneae+[Alsomitra macrocarpa+[[Triceratieae+Zanonieae]+[Actinostemmateae+[Indofevilleeae+[Thladiantheae+[Siraitieae+[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]]]]]]]].

Gomphogyneae Benth. et Hook. f., Gen. Plant. 1: 820. Sep 1867

5/≤55. Bayabusua (1; B. clarkei; the Malay Peninsula), Gomphogyne (2; eastern Himalayas to central China and Southeast Asia), Gynostemma (c 10; East and tropical Asia), Hemsleya (≤30; East Asia), Neoalsomitra (12; tropical Asia and eastwards to eastern Queensland and Fiji). – East and tropical Asia, eastern Queensland, Fiji, with their largest diversity in Southeast Asia. Lianas. Tendrils usually apically bifid, often with adhesive pads. Petals with multicellular nectariferous hairs. Stamens three or five, largely connate. Filaments adnate at base to petals. Anthers dithecal and/or monothecal. Fruit a capsule or berry. n = 11 (Gynostemma), 14 (Hemsleya), 16 (Gomphogyne).

[Alsomitra macrocarpa+[[Triceratieae+Zanonieae]+[Actinostemmateae+[Indofevilleeae+[Thladiantheae+[Siraitieae+[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]]]]]]]

Alsomitra?

1/1. (1; A. macrocarpa; Southeast Asia and eastwards to New Guinea). – Liana. n = ? –Alsomitra has sometimes been identified as sister to the remaining Cucurbitaceae, yet this may be the result of long-branch attraction.

[[Triceratieae+Zanonieae]+[Actinostemmateae+[Indofevilleeae+[Thladiantheae+[Siraitieae+[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]]]]]]

[Triceratieae+Zanonieae]

Triceratieae A. Rich. in R. de la Sagra, Hist. Fis. Cuba, Bot. 10: 298. 1845 [’Triceratiae’]

5/24. Fevillea (8; tropical America), Anisosperma (1; A. passiflora; Brazil), Pteropepon (5; Brazil, northern Argentina), Cyclantheropsis (3; tropical Africa, Madagascar), Sicydium (7; tropical America). – Tropical Africa, Madagascar, tropical America. Lianas. Tendrils simple or apically bifid. Petals with multicellular nectariferous hairs? Stamens one to five. Filaments adnate at base to petals. Anthers dithecal or monothecal. Female flowers with five staminodia. Fruit a pepo, samara or achene. n = ?

Zanonieae Benth. et Hook. f., Gen. Plant. 1: 820. Sep 1867

4/11–13. Gerrardanthus (3–5; tropical and southern Africa), Siolmatra (2; Amazonas), Zanonia (1; Z. indica; tropical Asia), Xerosicyos (5; Madagascar). – Tropical and southern Africa, Madagascar, tropical Asia to New Guinea, the Amazon Basin. Lianas or twining herbs. Xerosicyos comprises twining woody leaf succulents. Tendrils usually bifid. Inflorescence with internode below leaf under first flower. Petals in Xerosicyos free. Petals with multicellular nectariferous hairs. Stamens (four or) five. Filaments adnate in lower parts to petals. Anthers monothecal. Fruit a capsule. n = ?

[Actinostemmateae+[Indofevilleeae+[Thladiantheae+[Siraitieae+[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]]]]]

Actinostemmateae H. Schaef. et S. S. Renner in Taxon 60: 130. 1 Feb 2011

1/1. Actinostemma (1–4; A. tenerum; India, China to Japan). – Twining herbs. Tendrils usually bifid. Petals with multicellular nectariferous hairs. Stamens five or 2+2+1. Filaments adnate at base to petals. Anthers monothecal. Style single. Ovule pendulous. Fruit a pyxidium. Testa often winged. n = 8.

[Indofevilleeae+[Thladiantheae+[Siraitieae+[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]]]]

Usually only branches of tendrils coiled. Young stem with bicollateral vascular bundles. Extrafascicular phloem associated with adaxial phloem of vascular bundles. Axillary complex consisting of tendril, bud, male inflorescence, and female flower (collateral). Nectary usually disc-shaped, parenchymatous, with stomata. Male flowers with well developed hypanthium. Style single. Secretion-filled stylar canal present. Ovules horizontal to erect. Outer integument six to ten cell layers thick. Inner integument (one or) two to five (or six) cell layers thick. Parietal tissue five to eleven cell layers thick. Antipodal cells degenerating. Fruit usually baccate. Testa not winged. Exotesta enlarged, palisade or cuboid, mucilaginous, with distinctive sclereid layer and often strongly thickened cell walls. Innermost layer chlorenchymatous. Non-protein amino acids present.

Indofevilleeae H. Schaef. et S. S. Renner in Taxon 60: 130. 1 Feb 2011

1/1. Indofevillea (1; I. khasiana; Assam, Bhutan, Tibet). – Liana. Tendrils zanonioid, apically bifid. Stamens 2+2+1, adnate at base to corolla tube. Anthers monothecal. Fruits dry, indehiscent, with thick lignified pericarp. n = ?

[Thladiantheae+[Siraitieae+[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]]]

Thladiantheae H. Schaef. et S. S. Renner in Taxon 60: 130. 1 Feb 2011

2/c 35. Baijiania (5; southern China, Thailand, Laos, Taiwan, Borneo), Thladiantha (25–30; southern Russia and western Asia, India, Nepal, Bhutan, China, the Korean Peninsula, Southeast Asia, Malesia). – Temperate Asia, East and tropical Asia to Taiwan and Malesia. Lianas or twining herbs. Tendrils simple or bifid. Stamens 2+2+1, adnate to corolla tube (epipetalous). Anthers monothecal. Fruits baccate. n = 9 (Thladiantha), 16 (Baijiania).

[Siraitieae+[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]]

Siraitieae H. Schaef. et S. S. Renner in Taxon 60: 130. 1 Feb 2011

1/3–4. Siraitia (3–4; Sikkim, southern China, Thailand, Vietnam, Malesia, one species in tropical Africa?). – Twining herbs. Tendrils zanonioid, apically bifid. Black to yellow glandular hairs frequent. Stamens five or 2+2+1, adnate at base to corolla tube. Filaments separate. Anthers monothecal. Fruit baccate. n = 14.

[Momordiceae+[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]]

Momordiceae H. Schaef. et S. S. Renner in Taxon 60: 130. 1 Feb 2011

1/c 60. Momordica (c 60; tropical and subtropical Africa, the Arabian Peninsula, tropical Asia and eastwards to eastern Queensland). – Usually lianas or twining herbs (rarely shrubs). Tendrils simple or apically bifid. Stamens three or two, adnate to corolla tube (epipetalous). Filaments separate. Two anthers dithecal and one anther monothecal, or one anther trithecal and one dithecal. Fruit indehiscent or capsular (dehiscing by three valves or irregularly). Aril often present. n = 11, 14.

[Joliffieae+[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]]

Joliffieae Schrad. in Linnaea 12: 402. Apr-Sep 1838

3/10. Cogniauxia (2; tropical Africa), Telfairia (3; tropical Africa), Ampelosycios (5; Madagascar). – Tropical Africa, Madagascar. Lianas or twining herbs. Tendrils simple or bifid. Stamens three (or five). Fruit fleshy. n = 12 (Telfairia). Eleostearic acid (isomer of punicic acid) present.

[Bryonieae+[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]]

Bryonieae Dumort., Fl. Belg.: 54. 1827

3/15–17. Austrobryonia (4; northwestern and central Australia), Bryonia (10–12; Europe, the Canary Islands, the Mediterranean, North Africa, Southwest and Central Asia), Ecballium (1; E. elaterium; the Mediterranean). – Europe, the Mediterranean, North Africa, the Canary Islands, Southwest and Central Asia, northwestern and central Australia. Twining herbs. Tendrils simple or absent. Stamens three. Fruit a berry (in Ecballium elaterium ejecting seeds by elastic contraction). n = 9 (Ecballium), 10 (Bryonia).

[Sicyoeae+[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]]

Sicyoeae Schrad. in Linnaea 12: 407. Apr-Sep 1838 [‘Secyoideae’]

12/c 265. Nothoalsomitra (1; N. suberosa; southeastern Queensland); Luffa (5–7; tropical regions on both hemispheres); Trichosanthes (90–100; tropical Asia and eastwards to islands in the Pacific), Hodgsonia (2–3; tropical Asia), Linnaeosicyos (1; L. amara; Hispaniola), Echinocystis (1; E. lobata; North America), Marah (7; western North America), Frantzia (5; Central America), Sicyos (c 75; eastern Australia, Tasmania, New Zealand, islands in the Pacific, the Hawaiian Islands, tropical and subtropical America), Hanburia (7; Mexico, Guatemala), Cyclanthera (c 40; tropical America), Echinopepon (20; America, with their highest diversity in western Mexico). – Pantropical. Lianas or twining herbs. Tendrils simple or bifid to octafid. Multicellular nectariferous hairs present on hypanthium. Stamens two to five. Anther thecae often curved, sigmoid, convolute or fused to a flat or folded ring, dehiscing by continuous slit. Pistil sometimes consisting of one carpel. Endosperm haustorium in Sicyos edulis up to 19 mm long. Fruit dry or fleshy, indehiscent, explosively dehiscent or a pyxidium. n = 11–16(–44).

[Schizopeponeae+[Coniandreae+[Benincaseae+Cucurbiteae]]]

Schizopeponeae C. Jeffrey in Kew Bull. 17: 475. 9 Apr 1964

2/9–11. Schizopepon (6–8; Himalayas, Tibet, China, Japan), Herpetospermum (4; southern Himalayas to Burma, southwestern China). – Himalayas, Tibet, China, Japan. Twining herbs. Tendrils bifid or trifid. Stamens three. Pollen grains sometimes triporate. Fruit indehiscent or capsular. n = 10 (Schizopepon), 11 (Herpetospermum).

[Coniandreae+[Benincaseae+Cucurbiteae]]

Coniandreae Endl. ex M. Roem., Fam. Nat. Syn. Monogr. 2: 6. Dec 1846

19/140–210. Bambekea (2; tropical West and Central Africa), Eureiandra (10; tropical Africa, Madagascar, Socotra), Dendrosicyos (1; D. socotrana; Yemen, Socotra), Seyrigia (6; Madagascar), Trochomeriopsis (1; T. diversifolia; Madagascar), Halosicyos (1; H. ragonesei; northern Argentina), Cucurbitella (1; C. asperata; South America), Corallocarpus (13–17; tropical Africa, Madagascar, India), Kedrostis (23–28; tropical regions in the Old World), Ceratosanthes (4–12; tropical America), Doyerea (1; D. emetocathartica; tropical America), Gurania (37–75; tropical America), Psiguria (6–15; tropical America; incl. Helmontia?), Helmontia (2–4; Venezuela, Guyana, Brazil; in Psiguria?), Melothrianthus (1–3; M. smilacifolius; Brazil), Wilbrandia (2–5; northern South America), Apodanthera (16; tropical and subtropical America), Tumamoca (2; Arizona, Mexico), Ibervillea (9–10; southwestern United States, northwestern Mexico). – Tropical and subtropical Africa, Madagascar, Socotra, the Arabian Peninsula, India, tropical Asia, southern United States to northern Argentina. Usually lianas or twining herbs (rarely trees). Tendrils simple or bifid or trifid (rarely absent). Stamens two, three or five. Thecae often curved, convolute etc. Pollen grains sometimes shed in tetrads. Fruit baccate. Testal hypodermis not sclerotic. n = 12 or 13 (Kedrostis), 13 (Seyrigia, Corallocarpus), 14 (Apodanthera).

[Benincaseae+Cucurbiteae]

Benincaseae Ser. in Mém. Soc. Phys. Genève 3(1): 25. 1825 [‘Beninsaceae’]

24/188–240. Citrullus (4; tropical and southern Africa, tropical Asia?), Peponium (c 20; tropical and subtropical Africa, Madagascar), Lagenaria (6; tropical Africa, Madagascar, one species, L. siceraria, pantropical), Acanthosicyos (2; southern tropical and subtropical Africa), Raphidiocystis (5; tropical Africa, Madagascar), Cephalopentandra (1; C. ecirrhosa; northeastern tropical Africa), Lemurosicyos (1; L. variegata; Madagascar), Solena (3; tropical Asia), Borneosicyos (1–2; B. simplex; Sabah), Benincasa (1–2; B. hispida; tropical Asia), Ctenolepis (3; tropical Africa, Madagascar, India), Dactyliandra (2; D. welwitschii: Namibia, Rajasthan; D. stefaninii: Kenya), Khmeriosicyos (1; K. harmandii; Cambodia; probably extinct), Papuasicyos (1; P. papuanus; New Guinea), Scopellaria (2; Yunnan, Southeast Asia, West Malesia), Trochomeria (8; Africa), Indomelothria (2; Southeast Asia, West Malesia), Melothria (12; southeastern United States, Mexico, tropical America), Ruthalicia (2; tropical West Africa), Muellerargia (2; Madagascar, East Malesia, Australia), Cucumis (50–65; tropical regions in the Old World), Zehneria (25–60; tropical regions in the Old World), Diplocyclos (4; tropical Africa, tropical Asia), Coccinia (c 30; tropical and southern Africa, one species, C. cordifolia, also in tropical Asia). – Eastern Mediterranean, Africa, Madagascar, the Seychelles, Aldabra, western and tropical Asia and eastwards to New Guinea, Australia and Melanesia, Pacific islands, southeastern United States to South America, with their highest diversity in tropical Africa and Madagascar. Usually lianas or twining herbs (rarely shrubs). Tendrils simple, 2–5-fid or absent. Paired spines present at nodes in Acanthosicyos. Stamens usually three (sometimes two, four or five). Two anthers dithecal and one monothecal or all dithecal or all monothecal. Thecae often curved or convolute, etc. Fruit usually baccate. n = 7, 11, 12, 24. Mitochondrial coxI intron present.

Cucurbiteae Dumort., Fl. Belg.: 54. 1827

11/87–111. Polyclathra (1 or 6; P. cucumerina; Central America), Peponopsis (1; P. adhaerans; Mexico), Cucurbita (c 15; tropical and subtropical America), Calycophysum (5; northwestern tropical South America), Sicana (4; tropical America), Penelopeia (2; P. suburceolata; Hispaniola), Tecunumania (1; T. quetzalteca; Guatemala), Schizocarpum (8–11; Central America), Cionosicys (4–5; Central America, the West Indies), Abobra (1; A. tenuifolia; temperate South America), Cayaponia (45–59; southern United States, Mexico, Central America, the West Indies, South America, Fernando de Noronha, one species, C. africana, in tropical West and Central Africa and Madagascar). – Southern United States, Mexico, the Caribbean, Central and South America, tropical Africa, Madagascar. Lianas or twining herbs. Tendrils simple or 2–7-fid. Extrafascicular sieve tubes in Cucurbita present inside cylinder of “pericyclic” fibres. Stamens usually three (sometimes two or four). Thecae often reflexed, convolute, etc. Pollen grains triporate to periporate (sometimes up to 200 μm). Fruit small dry and indehiscent, or medium-sized or large pepos, or dry and capsular (dehiscing with several valves). n = 20 (Cucurbita, Sicana).

Phylogeny (simplified) of Cucurbitaceae based on DNA data (Schaeffer & Renner 2011).

DATISCACEAE Bercht. et J. Presl

( Back to Cucurbitales )

Berchtold et Presl in Přir. Rostlin: 217. Jan-Apr 1820, nom. cons.

Datiscales Bercht. et J. Presl, Přir. Rostlin: 217. Jan-Apr 1820 [‘Datisceae’]; Datiscineae Engl., Syllabus, ed. 2: 156. Mai 1898

Genera/species 1/2

Distribution Crete to Turkey and Caucasus, western Himalayas, northern California to northwestern Mexico.

Fossils Unknown.

Habit Polygamomonoecious, dioecious or androdioecious, perennial herbs. Superficially similar in habit to Cannabis (Cannabaceae).

Vegetative anatomy Root nodules containing nitrogen fixing endosymbiotic actinobacteria (Frankia). Phellogen ab initio superficial. Medullary vascular bundles present. Cambium and wood elements not storied. Vessel elements with simple perforation plates; lateral pits alternate, simple pits. Imperforate tracheary xylem elements libriform fibres with simple pits, non-septate? Wood rays absent? Axial parenchyma paratracheal? Sieve tube plastids S type. Nodes 1:3, unilacunar with three leaf traces. Tanniniferous sacs present. Crystals?

Trichomes Hairs unicellular or multicellular, uniseriate, simple; glandular hairs?

Leaves Alternate (spiral), deeply pinnately lobed to pinnately compound (imparipinnate), with conduplicate ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection? Venation pinnate. Stomata anomocytic. Cuticular wax crystalloids? Domatia as pockets. Mesophyll without sclerenchymatous idioblasts. Leaf margin serrate.

Inflorescence Axillary, compound, contracted thyrse.

Flowers Actinomorphic. Epigyny. Sepals three to nine (to ten), with valvate aestivation (in male flowers), persistent, free. Petals absent. Nectary absent. Disc absent.

Androecium Stamens in bisexual flowers three to five, in male flowers eight to c. 25, outer stamens often antesepalous. Filaments very short, free from each other and from tepals. Anthers straight, basifixed, non-versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia usually absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine tectate, with columellate infratectum, sculpturing?

Gynoecium Pistil composed of three to five (to eight) antesepalous carpels connate in lower part; carpels strongly developed, ventrally forming roof-like structure above locule, this forming perianth tube base; calyx tube with widely separated stylodia inserted on roof edge. Ovary inferior, unilocular. Stylodia three to five (to eight), subulate, deeply bifid; compitum possibly present. Stigmas papillate, Dry type. Pistillodium absent.

Ovules Placentation parietal. Ovules c. 30 to more than 100 per carpel, anatropous, pendulous to horizontal, bitegmic, crassinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument approx. two cell layers thick. Parietal tissue three to five cell layers thick. Nucellar cap two or three cell layers thick. Megagametophyte disporous, 8-nucleate, Allium type. Antipodal cells persistent. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis onagrad.

Fruit A membranous septicidal? capsule, apically dehiscing between persistent stylodia.

Seeds Aril absent. Funicle surrounded by collar formed as extension of testa. Operculum formed by micropyle and hilum, without surrounding annulus of collar cells. Exotestal cells with honeycomb-like arrangement, with strongly thickened and lignified inner walls? Endotesta? Exotegmic cells large, cuboid. Endotegmen? Perisperm not developed. Endosperm sparse or absent. Embryo small, straight, well differentiated, chlorophyll? Cotyledons two, oily. Germination phanerocotylar.

Cytology x = 11

DNA

Phytochemistry B-ring-nonsubstituted and 2’-hydroxylated flavonols (kaempferol, quercetin) and cucurbitacins present. Ellagic acid, tannins, proanthocyanidins, and cyanogenic compounds not found.

Use Ornamental plants.

Systematics Datisca (2; D. cannabina: Crete, eastern Aegaean, Turkey, Caucasus, western Himalayas; D. glomerata: northern California to northern Baja California in northwestern Mexico).

Datisca is sister to Begoniaceae.

TETRAMELACEAE (Warb.) Airy Shaw

( Back to Cucurbitales )

Airy Shaw in Kew Bull. 18: 267. 8 Dec 1965

Genera/species 2/2

Distribution Tropical Asia and eastwards to tropical Australia and the Solomon Islands.

Fossils Fossil wood, Tetrameleoxylon prenudiflora, has been described from the Maastrichtian Deccan Intertrappean Beds in India.

Habit Dioecious, evergreen trees. Often with large plank buttresses.

Vegetative anatomy Phellogen ab initio superficial. Vessel elements with simple perforation plates; lateral pits alternate, simple pits. Imperforate tracheary xylem elements libriform fibres with simple or bordered pits, non-septate. Wood rays multiseriate, heterocellular. Axial parenchyma paratracheal scanty, aliform, confluent, vasicentric, or banded. Wood soft, sometimes fluorescent. Wood elements often storied. Sieve tube plastids S type. Nodes usually 3:1–2, trilacunar with one or two leaf traces from each lateral leaf gap. Branched sclereids and stone cells present in cortex and medulla in Octomeles. Crystals?

Trichomes Hairs simple; glandular, lepidote hairs often present.

Leaves Alternate (spiral), simple, entire, asymmetrical, with ? ptyxis. Stipules and leaf sheath absent. Petiole vascular bundle transection? Venation palmate. Stomata anomocytic. Cuticular wax crystalloids absent? Mesophyll in at least Octomeles with sclerenchymatous H-shaped idioblasts (reaching from one epidermis to next). Leaf margin usually serrate (rarely entire).

Inflorescence Terminal or axillary, compound or contracted spicate thyrse.

Flowers Actinomorphic. Hypanthium present. Epigyny. Sepals four or six to eight, with valvate aestivation, free or connate (postgenitally coherent). Petals usually absent (in male flowers of Octomeles six to eight, small, with valvate aestivation, free, inserted on sepals). Nectaries possibly present inside male floral tube in Octomeles. Disc absent or present above ovary.

Androecium Stamens four or six to eight, obhaplostemonous, alternisepalous, antepetalous. Filaments flattened to narrowly elongate, free from each other and from tepals, inflexed in bud. Anthers straight or curved, basifixed, non-versatile, tetrasporangiate, extrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers sometimes with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains tricolporate, shed as monads, bicellular at dispersal. Exine semitectate, with columellate infratectum, reticulate.

Gynoecium Pistil composed of (three or) four or six to eight carpels connate in lower part; carpels strongly developed ventrally forming roof-like structure above locule, this forming perianth tube base; calyx tube with widely separated stylodia inserted on roof edge. Compitum possibly present in Octomeles. Ovary inferior, unilocular, septate. Stylodia (three or) four or six to eight, short, straight, free. Stigmas entire, decurrent to clavate or capitate, type? Male flowers sometimes with pistillodium.

Ovules Placentation axile, protruding-diffuse; placentae in Octomeles bilobate. Ovules c. 20 to more than 100 per carpel, anatropous, pendulous or horizontal, bitegmic, crassinucellar. Micropyle bistomal? Outer integument ? cell layers thick. Inner integument approx. two cell layers thick. Megagametophyte monosporous, Polygonum type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A septicidal capsule, in Tetrameles apically dehiscing between persistent stylodia and along sides, in Octomeles separating into two layers outer of which being detached.

Seeds Aril absent? Funicle surrounded by collar formed as extension of testa. Operculum formed by micropyle and hilum, without surrounding annulus of cells. Exotestal cells with honeycomb-like arrangement, with strongly thickened and lignified inner walls? Endotesta? Tegmen? Perisperm not developed. Endosperm very sparse or absent. Embryo straight, well differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = c. 23

DNA

Phytochemistry Insufficiently known. Flavonols (kaempferol, quercetin) and cucurbitacins present. Tannins and cyanogenic compounds not found.

Use Timber, carpentries, canoes.

Systematics Octomeles (1; O. sumatrana; Sumatra, Borneo and the Philippines to New Guinea and the Solomon Islands), Tetrameles (1; T. nudiflora; Sri Lanka, northeastern India, the Andaman Islands, southern Himalayas, southern Yunnan, Southeast Asia, Malesia to New Guinea and New Britain, northeastern Queensland).

Tetramelaceae are sister to [Datiscaceae+Begoniaceae].


Literature

Akkermans ADL, Roelofsen W, Blom J, Huss-Danell K, Harkink R. 1983. Utilization of carbon and nitrogen compounds by Frankia in synthetic media and in root nodules of Alnus glutinosa, Hippophae rhamnoides, and Datisca cannabina. – Can. J. Bot. 61: 2793-2800.

Akkermans ADL, Hafeez F, Roelofsen W, Chaudhary AH, Baas R. 1983. Ultrastructure and nitrogenase activity of Frankia grown in pure culture and in actinorrhizae of Alnus, Colletia and Datisca. – In: Veeger C, Newton WE (eds), Advances in nitrogen fixation research, Nijhoff/Dr. W. Junk, The Hague, The Netherlands, pp. 311-319.

Alvarado JL, Lira R, Caballero J. 1992. Palynological evidence for the generic delimitation of Sechium sensu lato (Cucurbitaceae) and its allies. – Bull. Brit. Mus. (Nat. Hist.), Bot. 22: 109-121.

Alverson AJ, Wei X-X, Rice DW, Stern DB, Barry K, Palmer JD. 2010. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). – Mol. Biol. Evol. 27: 1436-1448.

Amaral MM do, Ceccantini G. 2011. The endoparasite Pilostyles ulei (Apodanthaceae-Cucurbitales) influences wood structure in three host species of Mimosa. – IAWA J. 32: 1-13.

Anderson JAR, Muller J. 1975. Palynological study of a Holocene peat and a Miocene coal deposit from NW Borneo. – Rev. Paleobot. Palyn. 19: 291-351.

Ashurmetov OA. 1995. On morphology and taxonomy of the genera Cucumis L. and Melo Mill. – Feddes Repert. 106: 155-159.

Baehni C, Dansereau P. 1939. Polygonanthus, genre de Saxifragacées. – Bull. Soc. Bot. France 86: 183-186.

Barabé D. 1981. Vascularisation de la fleur pistillée de Begonia handelii. – Can. J. Bot. 59: 819-825.

Barabé D, Chrétien L. 1983. Nouvelles données sur la vascularisation de la fleur pistillée de Begonia (Begoniaceae). – Bull. Soc. Bot. France, Lettr. Bot. 130: 307-316.

Barabé D, Brouillet L, Bertrand C. 1985. Les Bégonias à placentation pariétale: Cas de Begonia masoniana Irmscher. – Bull. Mus. Natl. Hist. Nat., sér. IV, Sect. B, Adansonia 7: 403-414.

Barabé D, Brouillet L, Bertrand C. 1990. Analyse taxonumérique des caractères foliaires des Begoniaceae. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 12: 337-353.

Barabé D, Brouillet L, Daigle S. 1992. Organogénie de la feuille de Begonia radicans Vellozo et de B. scabrida A. DC. (Begoniaceae). – Can. J. Bot. 70: 1107-1122.

Baranov A, Barkley FA. 1974. The sections of the genus Begonia. – Northeastern University, Boston, Massachusetts.

Barber KG. 1909. Comparative histology of fruits and seeds of certain species of Cucurbitaceae. – Bot. Gaz. 47: 263-310.

Barkley FA. 1972. Begoniaceae. The genera, sections and known species of each. – The Buxtonian I, suppl. 4: 1-20.

Barkley FA, Golding J. 1974. The species of the Begoniaceae. – Northeastern University, Boston, Massachusetts.

Barth OM, Pinto da Luz CF, Gomes-Klein VL. 2005. Pollen morphology of Brazilian species of Cayaponia Silva Manso (Cucurbitaceae, Cucurbiteae). – Grana 44: 129-13.

Bates DM, Robinson WR, Jeffrey C (eds). 1990. Biology and utilisation of the Cucurbitaceae. – Cornell University Press, Ithaca, New York.

Beevy SS, Kuriachan P. 1996. Chromosome numbers of South Indian Cucurbitaceae and a note on the cytological evolution in the family. – J. Cytol. Genet. 31: 65-71.

Behnke H-D. 1988. Sieve-element plastids and systematic relationships of Rhizophoraceae, Anisophylleaceae, and allied groups. – Ann. Missouri Bot. Gard. 75: 1387-1409.

Bell ME. 1974. Toxicology of karaka kernel, karakin, and β-nitropropionic acid. – New Zealand J. Sci. 17: 327-334.

Bellot S, Renner SS. 2013. Pollination and mating systems of Apodanthaceae and the distribution of reproductive traits in parasitic angiosperms. – Amer. J. Bot. 100: 1083-1094.

Bellot S, Renner SS. 2014a. Exploring new dating approaches for parasites: the worldwide Apodanthaceae (Cucurbitales) as an example. – Molec. Phylogen. Evol. 80: 1-10.

Bellot S, Renner SS. 2014b. The systematics of the worldwide endoparasite family Apodanthaceae (Cucurbitales), with a key, a map, and color photos of most species. – PhytoKeys 36: 41-57.

Benecke F. 1882. Beitrag zur Kenntniss der Begoniaceen. – Engl. Bot. Jahrb. Syst. 3: 288-318.

Berg RG van den. 1983. Pollen characteristics of the genera of the Begoniaceae. – In: Wilde JJFE de (ed), Studies in Begoniaceae II, Meded. Landbouwh. Wageningen 83: 55-66.

Berg RG van den 1984. Pollen morphology of the genus Begonia in Africa. – In: Wilde JJFE de (ed), Studies in Begoniaceae II, Meded. Landbouwh. Wageningen 84: 5-94.

Bhattachariya SS. 1954. Ein Beitrag zur Morphologie des Andröceums von Benincasa hispida (Thunb.) Cogn. – Ber. Deutsch. Bot. Ges. 67: 22-25.

Blarer A, Nickrent D, Endress PK. 2004. Comparative floral structure and systematics in Apodanthaceae (Rafflesiales). – Plant Syst. Evol. 245: 119-142.

Boer HJ de, Thulin M. 2012. Synopsis of Trichosanthes (Cucurbitaceae) based on recent molecular phylogenetic data. – PhytoKeys 12: 23-33.

Boesewinkel FD. 1984. Ovule and seed structure in Datiscaceae. – Acta Bot. Neerl. 33: 419-429.

Boesewinkel FD, De Lange A. 1983. Development of ovule and seed in Begonia squamulosa Hook. f. – Acta Bot. Neerl. 32: 417-425.

Bohm BA. 1988. Flavonoid systematics of the Datiscaceae. – Biochem. Syst. Ecol. 16: 151-155.

Bohm BA, Ornduff R. 1981. Leaf flavonoids and ordinal affinites of Coriariaceae. – Syst. Bot. 6: 15-26.

Bouman F, De Lange A. 1982. Micromorphology of the seed coats in Begonia section Squamibegonia Warb. – Acta Bot. Neerl. 31: 297-305.

Bouman F, Meijer W. 1994. Comparative structure of ovules and seeds in Rafflesiaceae. – Plant Syst. Evol. 193: 187-212.

Brown R. 1941. The growth of isolated cotyledons of Cucurbita pepo. – Ann. Bot., N. S., 5: 175-192.

Bugnon P. 1956. Valeur morphologique de l’ovaire infére chez les Begonia. – Bull. Soc. Linn. Normandie, sér. VII, 9: 7-25.

Bugnon P. 1956. Valeur morphologique du complexe axillaires chez les Cucurbitacées. – Ann. Sci. Nat. Bot., sér. IV, 11: 313-322.

Bugnon P, Bugnon F. 1953. La paroi de l’ovaire infère des Begonia est-elle de nature axile ou appendiculaire? – Bull. Sci. Bourgogne 14: 109-127.

Burt-Utley K. 1984. Studies on Middle American Begonia (Begoniaceae) I. – Brittonia 36: 232-235.

Burt-Utley K. 1985. A revision of Central American species of Begonia section Gireoudia (Begoniaceae). – Tulane Stud. Zool. Bot. 25: 1-131.

Burt-Utley K. 1986. Studies on Middle American Begonia (Begoniaceae) II. – Brittonia 38: 333-339.

Carlquist SJ. 1985a. Wood anatomy of Begoniaceae, with comments on raylessness, paedomorphosis, relationships, vessel diameter, and ecology. – Bull. Torrey Bot. Club 112: 59-69.

Carlquist SJ. 1985b. Wood anatomy of Coriariaceae: phylogenetic and ecological implications. – Syst. Bot. 10: 174-183.

Carlquist SJ. 1992. Wood anatomy of selected Cucurbitaceae and its relationship to habit and systematics. – Nord. J. Bot. 12. 347-355.

Carlquist SJ, Miller RB. 2001. Wood anatomy of Corynocarpaceae is consistent with its cucurbitalean placement. – Syst. Bot. 26: 54-65.

Chakravarty HL. 1958. Morphology of the staminate flowers in the Cucurbitaceae with special reference to the evolution of the stamens. – Lloydia 21: 49-87.

Chakravorti AK. 1947. The development of the female gametophyte and seed of Coccinia W. & A. – J. Indian Bot. Soc. 26: 95-104.

Charpentier A, Brouillet L, Barabé D. 1989. Organogénèse de la fleur pistillée du Begonia dregei et de l’Hillebrandia sandwicensis (Begoniaceae). – Can. J. Bot. 67: 3625-3639.

Chaudhary AH. 1979. Nitrogen-fixing root nodules in Datisca cannabina L. – Plant and Soil 51: 163-165.

Chen JCC, Chiu MH, Nie RL, Cordell GA, Qiu SX. 2005. Cucurbitacins and cucurbitane glycosides: structures and biological activities. – Nat. Prod. Rep. 22: 386-399.

Chen X, He H, Zhang L-B. 2013. A taxonomic revision of Anisophyllea (Anisophylleaceae) from Madagascar. – Phytotaxa 148: 32-46.

Chopra RN. 1955. Some observations on endosperm development in the Cucurbitaceae. – Phytomorphology 5: 219-230.

Chung S-M, Decker-Walters DS, Staub JE. 2003. Genetic relationships within the Cucurbitaceae as assessed by consensus chloroplast simple sequence repeats (ccSSR) marker and sequence analysis. – Can. J. Bot. 81: 814-832.

Clawson ML, Bourret A, Benson DR. 2004. Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16SrRNA and glutamine synthetase gene sequences. – Mol. Phylogen. Evol. 31: 131-138.

Clement WL, Tebbitt MC, Forrest LL, Blair JE, Brouillet L, Eriksson T, Swensen SM. 2004. Phylogenetic position and biogeography of Hillebrandia sandwicensis (Begoniaceae): a rare Hawaiian relict. – Amer. J. Bot. 91: 905-917.

Croizat L. 1943. New families [Polygonanthaceae]. – Cact. Succ. J. 15: 64.

Cuerrier A, Brouillet L, Barabé D. 1990a. Numerical taxonomic study of the Begoniaceae using the Mantel test on leaf microcharacters. – Taxon 39: 549-560.

Cuerrier A, Brouillet L, Barabé D. 1990b. Micromorphologie foliaire des Begoniaceae. – Bull. Mus. Natl. Hist. Nat. Paris, sér. IV, sect. B, Adansonia 12: 297-335.

Dahlgren RMT. 1988. Rhizophoraceae and Anisophylleaceae: summary statement, relationships. – Ann. Missouri Bot. Gard. 75: 1259-1277.

Dane F. 1976. Evolutionary studies in the genus Cucumis. – Ph.D. diss., C.S.U., Fort Collins Colorado.

Dane F, Tsuchiya T. 1979. Meiotic chromosome and pollen morphological studies of polyploid Cucumis species. – Euphytica 28: 53-567.

Dane F, Denna DW, Tsuchiya T. 1980. Evolutionary studies of wild species in the genus Cucumis. – Zeitschr. Pflanzenzücht. 85: 89-109.

Davidson C. 1972. An anatomical and morphological study of Datiscaceae. – Ph.D. diss., Claremont Graduate School, Claremont, California.

Davidson C. 1973. An anatomical and morphological study of Datiscaceae. – Aliso 8: 49-110.

Davidson C. 1976. Anatomy of the xylem and phloem of Datiscaceae. – Nat. Hist. County Museum Los Angeles Contr. Sci. 280: 1-28.

Dawson MI. 1997. Chromosome numbers in Corynocarpus (Corynocarpaceae). – New Zealand J. Bot. 35: 255-258.

De Lange A, Bouman F. 1986. Micromorphology of the seeds in Begonia section Solananthera A. DC. – Acta Bot. Neerl. 35: 489-495.

De Lima JE, Mamede MCH. 2004. Novelties in Begonia (Begoniaceae) from the coastal forests of Brazil. – Brittonia 56: 75-81.

Dell BD. 1984. Rafflesiaceae. – In: George AS (ed), Flora of Australia 22, Australian Government Publ. Service, Canberra, pp. 147-150.

Dell BD, Burbidge AH. 1981. Notes on the biology of Pilostyles (Rafflesiaceae) in Western Australia. – West. Aust. Herb. Res. Notes 5: 71-79.

Dell BD, Kuo J, Burbidge AH. 1982. Anatomy of Pilostyles hamiltonii C. A. Gardner (Rafflesiaceae) in stems of Daviesia. – Aust. J. Bot. 30: 1-9.

Deshpande BD, Kasat ML. 1966. Seedling anatomy of certain members of the Cucurbitaceae. – Proc. Indian Acad. Sci., Sect. B, 64: 62-67.

Devi HM, Naidu KC. 1979. Embryological studies in the family Begoniaceae. – Indian J. Bot. 2: 1-7.

De Wilde JJFE. 1984. Begonia section Cristasemen J. J. de Wilde, sect. nov. – In: Wilde JJFE de (ed), Studies in Begoniaceae II, Meded. Landbouwh. Wageningen 84: 113-129.

De Wilde JJFE. 1985. Taxonomy of the (African) Begoniaceae, and introduction. – Acta Bot. Neerl. 34: 226-227.

De Wilde JJFE, Plana V. 2003. A new section of Begonia (Begoniaceae) from west central Africa. – Edinburgh J. Bot. 60: 121-130.

De Wilde WJJO, De Wilde-Duyfjes BEE. 1999. Bayabusua, a new genus of Cucurbitaceae. – Sandakania 13: 1-16.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2001. Taxonomy of Hodgsonia (Cucurbitaceae), with a note on the ovules and seeds. – Blumea 46: 169-179.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2002. Synopsis of Momordica (Cucurbitaceae) in SE Asia and Malesia. – Bot. Žurn. 87: 132-148.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2003a. Revision of Neoalsomitra. – Blumea 48: 99-121.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2003b. The genus Baijiania (Cucurbitaceae). – Blumea 48: 279-284.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2004. Review of the genus Solena (Cucurbitaceae). – Blumea 49: 69-81.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2006a. Redefinition of Zehneria and four new related genera (Cucurbitaceae), with an enumeration of the Australasian and Pacific species. – Blumea 51: 1-88.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2006b. Review of the genus Gymnopetalum (Cucurbitaceae). – Blumea 51: 281-296.

De Wilde WJJO, DeWilde-Duyfjes BEE. 2006c. Scopellaria, a new genus name in Cucurbitaceae. – Blumea 51: 297-298.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2006d. The subtribe Thladianthinae (Cucurbitaceae) in Indochina and Malesia. – Blumea 51: 493-518.

De Wilde WJJO, De Wilde-Duyfjes BEE. 2006e. Mukia Arn. (Cucurbitaceae) in Asia, in particular in Thailand. – Thai Forest Bull. (Botany) 34: 38-52.

De Wilde WJJO, Duyfjes BEE. 2012. Keys to and checklist of species of the genus Trichosanthes L. (Cucurbitaceae) in Indochina. – Adansonia 34: 265-278.

De Wilde WJJO, De Wilde-Duyfjes BEE, Ham RWJM van der. 2004. Khmeriosicyos, a new monotypic genus of Cucurbitaceae from Cambodia. – Blumea 49: 441-446.

De Wilde-Duyfjes BEE, De Wilde WJJO. 1998. Revision of Alsomitra Spach. – In: Proceedings of the Fourth International Flora Malesiana Symposium 1998, Forest Research Institute Malaysia, Kuala Lumpur, pp. 101-105.

De Wilde-Duyfjes BEE, Ham RWJM van der, De Wilde WJJO. 2003. Papuasicyos, a new genus of Cucurbitaeae. – Blumea 48: 123-128.

Dewitte A, Twyford AD, Thomas DC, Kidner CA, Van Huylenbroeck J. 2011. The origin of diversity in Begonia: genome dynamism, population processes and phylogenetic patterns. – In: Grillo O (ed.), The dynamical processes of biodiversity – case studies of evolution and spatial distribution, publ. by InTech, Rijeka & Shanghai, pp. 27-52.

Dittmer HJ, Roser ML. 1963. The periderm of certain members of the Cucurbitaceae. – Southwest. Naturalist 8: 1-9.

Doorenbos J, Sosef MSM, de Wilde JJFE. 1998. Studies in Begoniaceae VI. The sections of Begonia including descriptions, keys and species lists. – Wageningen Agric. Univ. Papers 98-2: 1-266.

Doskotch RW, Hufford CD. 1970. Hexanor-cucurbitacin D, a degraded cucurbitacin from Begonia tuberhybrida var. alba. – Can. J. Chem. 48: 1787-1788.

Doskotch RW, Malik MY, Beal JL. 1969. Cucurbitacin B, the cytotoxic principle of Begonia tuberhybrida var. alba. – Lloydia 32: 115-122.

Duchen P, Renner SS. 2010. The evolution of Cayaponia (Cucurbitaceae): repeated shifts from bat to bee pollination and long-distance dispersal to Africa 2–5 million years ago. – Amer. J. Bot. 97: 1129-1141.

Duyfjes BEE. 1993. Coriariaceae. – In: Kalkman C et al. (eds), Flora Malesiana I, 11(2), Rijksherbarium/Hortus Botanicus, Leiden, pp. 385-391.

Eliasson UH. 1994. 59. Rafflesiaceae. – In: Harling G, Andersson L (eds), Flora of Ecuador 51, Nord. J. Bot., Copenhagen, pp. 43-49.

Endriss W. 1902. Monographie von Pilostyles ingae (Karst). – Flora 91: 209-236.

Engler A. 1912. Rafflesiaceae Africanae. – Engl. Bot. Jahrb. Syst. 46: 293.

Engler A. 1896. Coriariaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(5), W. Engelmann, Leipzig, pp. 128-129.

Engler A. 1897. Corynocarpaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu III(5), W. Engelmann, Leipzig, pp. 215-217.

Fellerer C. 1892. Beiträge zur Anatomie und Systematik der Begoniaceen. – Ph.D. diss., Universität München, Germany.

Fickel JF. 1876. Über die Anatomie und Entwicklungsgeschichte der Samenschalen einiger Cucurbitaceen. – Bot. Zeit. 34: 738-778.

Filipowicz N, Renner SS. 2010. The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. – BMC Evol. Biol. 10: 219.

Foreman DB. 1978. Corynocarpaceae. – In: Womersley JS (ed), Handbooks of the flora of Papua New Guinea 1, Melbourne University Press, Carlton, Victoria, pp. 111-113.

Forrest LL. 2000. A phylogeny of Begoniaceae Bercht. & J. Presl. – Ph.D. diss., University of Glasgow, Scotland.

Forrest LL, Hollingsworth PM. 2003. A recircumscription of Begonia based on nuclear ribosomal sequences. – Plant Syst. Evol. 241: 193-211.

Forrest LL, Hughes M, Hollingsworth PM. 2005. A phylogeny of Begonia using nuclear ribosomal sequence data and morphological characters. – Syst. Bot. 30: 671-682.

Fowden L. 1990. Amino acids as chemotaxonomic indicators. – In: Bates DM, Robinson WR, Jeffrey C (eds), Biology and utilisation of the Cucurbitaceae, Comstock Publ., Cornell University Press, Ithaca, New York, pp. 29-37.

Ganal M, Hemleben V. 1986. Comparison of the ribosomal RNA genes in four closely related Cucurbitaceae. – Plant Syst. Evol. 154: 63-77.

Gao X-F, Chen S-K, Gu Z-J, Zhao J-Z. 1995. A chromosomal study on the genus Gynostemma (Cucurbitaceae). – Acta Bot. Yunnan. 17: 312-316. [In Chinese]

Garcia-Mas J, Monforte AJ, Arús P. 2004. Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. – Plant Syst. Evol. 248: 191-203.

Garg M. 1981. Pollen morphology and systematic position of Coriaria. – Phytomorphology 30: 5-10.

Garnock-Jones PJ, Brockie RE, FitzJohn RG. 2007. Gynodioecy, sexual dimorphism and erratic fruiting in Corynocarpus laevigatus (Corynocarpaceae). – Aust. J. Bot. 55: 803-808.

Gauthier R. 1950. The nature of the inferior ovary in the genus Begonia. – Contr. Inst. Bot. Univ. Montréal 66: 5-91.

Gauthier R. 1959. L’anatomie vasculaire et l’interprétation de la fleur pistillée de l’Hillebrandia sandwicensis Oliv. – Phytomorphology 9: 72-87.

Gauthier R, Arros J. 1963. L’anatomie de la fleur staminée de l’Hillebrandia sandwicensis Oliver et la vascularisation de l’étamine. – Phytomorphology 13: 115-127.

Gentry AH. 1973. Flora of Panama. Rafflesiaceae. – Ann. Missouri Bot. Gard. 60: 17-21.

Gerrath JM, Guthrie TB Zitnak TA, Posluszny U. 2008. Development of the axillary bud complex in Echinocystis lobata (Cucurbitaceae): interpreting the cucurbitaceous tendril. – Amer. J. Bot. 95: 773-781.

Getahoun A. 1973. Developmental anatomy and germination of seeds of anchoté, Coccinia abyssinica (W. & A.) Cogn. (Cucurbitaceae). – Bot. Not. 126: 437-449.

Ghebretsinae AG, Thulin M, Barber JC. 2007. Relationships of cucumbers and melons unravelled: molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae). – Amer. J. Bot. 94: 1256-1266.

Ghosh E. 1932. On the microstructure of the stem of Bengal Cucurbitaceae with reference to its value in taxonomy. – J. Indian Bot. Soc. 11: 259-270.

Gilg E. 1925a. Datiscaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 543-547.

Golding J, Wasshausen DC. 2002. Begoniaceae. 2nd ed. Part I: Annotated species lists; Part II: Illustrated key, abridgement and supplement. – Contr. U.S. Natl. Herb. 43: 1-289.

Good RDO. 1930. The geography of the genus Coriaria. – New Phytol. 29: 170-198.

Gomes-Klein VL, Pirani JR. 2005. Four new species of Cayaponia (Cucurbitaceae) from Brazil and Bolivia. – Brittonia 57: 108-117.

Gomez LD. 1983. Rafflesiaceae. – In: Burger W (ed), Flora Costaricensis, Fieldiana Bot. II, 13: 89-93.

Goodall-Copestake WP, Harris DJ, Hollingsworth PM. 2009. The origin of a megadiverse genus: dating Begonia (Begoniaceae) using alternative datasets, calibrations and relaxed clock models. – Bot. J. Linn. Soc. 159: 363-380.

Goodall-Copestake WP, Pérez-Espona S, Harris DJ, Hollingsworth PM. 2010. The early evolution of the mega-diverse genus Begonia (Begoniaceae) inferred from organelle DNA phylogenies. – Biol. J. Linn. Soc. 101: 243-250.

Gregor H-J. 1980. Seeds of the genus Coriaria Linné (Coriariaceae) in the European Neogene. – Tertiary Res. 3: 61-69.

Grisebach H, Grambow HJ. 1968. Biosynthesis of flavonoids XV. Occurrence and biosynthesis of flavonoids in Datisca cannabina. – Phytochemistry 7: 51-56.

Gulyaiev VA. 1963. Comparative embryology of Cucurbitaceae and its significance for the systematics of the family. – Bot. Žurn. 48: 80-85.

Guymer GP. 1984. Corynocarpaceae. – In: George AS (ed), Flora of Australia 22, Australian Government Publ. Service, Canberra, pp. 214-215.

Hagerup O. 1930. Vergleichende morphologische und systematische Studien über die Ranken und andere vegetative Organe der Cucurbitaceen und Passifloraceen. – Dansk Bot. Ark. 6(8): 1-103.

Hagman FA, De Wilde JJFE. 1983. Re-establishment of Begonia cavallyensis A. Chev. and the altitudinal vicariad Begonia fusicarpa Irmsch. (sect. Tetraphila). – Studies in Begoniaceae 1: 1-19.

Hall BA. 1949. The floral anatomy of Drosera and Begonia and its bearing on the theory of carpel polymorphism. – Amer. J. Bot. 36: 416-421.

Ham RWJM van der. 1999. Pollen morphology of Bayabusua (Cucurbitaceae) and its allies. – Sandakania 13: 17-22.

Ham RWJM van der, Heuven BJ van. 2003. A new type of Old World Cucurbitaceae pollen. – Grana 42: 88-90.

Ham RWJM van der, Pruesapan K. 2006. Pollen morphology of Zehneria s.l. (Cucurbitaceae). – Grana 45: 241-248.

Ham RWJM van der, Mennes C, Heuven BJ van. 2010. Fevilleoideae pollen (Cucurbitaceae): a study in striate ornamentation. – Grana 49: 157-169.

Harms H. 1935. Rafflesiaceae. – In: Engler A (†), Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16b, W. Engelmann, Leipzig, pp. 243-281.

Havey MJ. 1997. Predominant paternal transmission of the cucumber mitochondrial genome. – J. Hered. 88: 232-235.

Havey MJ, McCreight JD, Rhodes B, Taurik G. 1998. Differential transmission of the Cucumis organellar genomes. – Theor. Appl. Gen. 97: 122-128.

Hebeler F. 2000. Structural and ecophysiological shoot features on the leafless cucurbit Acanthosicyos horridus, a keystone endemic of the Namib Desert. – Diplomarbeit, Institut für Allgemeine Botanik und Pflanzenphysiologie, Justus-Liebig-Universität, Giessen, Germany.

Heiser CB, Schilling EE. 1990. The genus Luffa: a problem in phytogeography. – In: Bates DM, Robinson RW, Jeffrey C (eds), Biology and utilization of the Cucurbitaceae, Comstock Publ. Assoc., Cornell University Press, Ithaca, New York, pp. 120-133.

Heiser CB, Schilling EE, Dutt B. 1988. The American species of Luffa (Cucurbitaceae). – Syst. Bot. 13: 138-145.

Helm MA, Hemleben V. 1997. Characterization of a new prominent satellite DNA of Cucumis metuliferus and differential distribution of satellite DNA in cultivated and wild species of Cucumis and in related genera of Cucurbitaceae. – Euphytica 94: 219-226.

Hemleben V, Leweke B, Roth A, Stadler I. 1982. Organization of highly repetitive satellite DNA of two Cucurbitaceae species (Cucumis melo and Cucumis sativus). – Nucleic Acids Res. 10: 631-644.

Hemsley WB. 1903. On the genus Corynocarpus Forst., with descriptions of two new species. – Ann. Bot. 17: 743-760.

Hill AW. 1916. Studies in seed germination. The genus Marah (Megarrhiza), Cucurbitaceae. – Ann. Bot. 30: 215-222.

Holroyd R. 1924. Morphology and physiology of the axis in Cucurbitaceae. – Bot. Gaz. 78: 1-44.

Holstein N, Renner SS. 2010. Coccinia (Cucurbitaceae) gains two new species from East Africa, three new synonyms, and one new combination. – Kew Bull. 65: 435-441.

Hoover WS. 1986. Stomata and stomatal clusters in Begonia: ecological response in two Mexican species. – Biotropica 18: 16-21.

Hoover WS, Karegeannes C, Wiriadinata H, Hunter JM. 2004. Notes on the geography of South-East Asian Begonia and species diversity in montane forests. – Telopea 10: 749-764.

Hopkins CY. 1990. Fatty acid of Cucurbitaceae seed oils in relation to taxonomy. – In: Bates DM, Robinson WR, Jeffrey C (eds), Biology and utilization of the Cucurbitaceae, Comstock Publ., Cornell University Press, Ithaca, New York, pp. 38-50.

Huang L, Yang B, Yue C. 1997. Pollen morphology of Trichosanthes and its taxonomic significance. – Acta Phytotaxon. Sin. 35: 125-135.

Hufford GN. 1938. Development and structure of the watermelon seedling. – Bot. Gaz. 100: 100-122.

Hughes M, Hollingsworth PM. 2008. Population genetic divergence corresponds with species-level biodiversity patterns in the large genus Begonia. – Mol. Ecol. 17: 2643-2651.

Inamdar JA, Gangadhara M. 1976. Structure, ontogeny, and taxonomic significance of stomata in some Cucurbitaceae. – Feddes Repert. 87: 293-310.

Ingle HD. 1956. A note on the wood anatomy of the genus Corynocarpus. – Trop. Woods 105: 8-12.

Irmscher E. 1925. Begoniaceae. – In: Engler A, Gilg E (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 21, W. Engelmann, Leipzig, pp. 548-588.

Irmscher E. 1961. Monographische Revision der Begoniaceen Afrikas I. Sekt. Augustia und Rostrobegonia sowie einige neue Sippen aus anderen Sektionen. – Bot. Jahrb. Syst. 81: 106-188.

Isaev MI. 2000. Bryonia isoprenes II. Cucurbitacin L and bryoamaride from Bryonia melanocarpa. – Chem. Nat. Compounds 36: 292-294.

Jacques EL, Mamede MCH. 2004. Novelties in Begonia (Begoniaceae) from the coastal forests of Brazil. – Brittonia 56: 75-81.

Jeffrey C. 1962a. Notes on Cucurbitaceae, including a proposed new classification of the family. – Kew Bull. 15: 337-371.

Jeffrey C. 1962b. The application of the generic names Anguria and Elaterium (Cucurbitaceae). – Kew Bull. 16: 197-198.

Jeffrey C. 1962c. Notes on some species of Fevillea L., Siolmatra Bail., and Pseudosicydium Harms (Cucurbitaceae) in the Amazon Basin. – Kew Bull. 16: 199-202.

Jeffrey C. 1964a. A note on pollen morphology in Cucurbitaceae. – Kew Bull. 17: 473-476.

Jeffrey C. 1964b. Key to the Cucurbitaceae of West Tropical Africa, with a guide to localities of rare and little-known species. – J. West Afr. Sci. Assoc. 9: 79-97.

Jeffrey C. 1966. On the classification of the Cucurbitaceae. – Kew Bull. 20: 417-426.

Jeffrey C. 1967. Cucurbitaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Crown Agents for Oversea Governments, London, pp. 1-156.

Jeffrey C. 1969a. A review of the genus Bryonia L. (Cucurbitaceae). – Kew Bull. 23: 441-461.

Jeffrey C. 1969b. The genus Mukia in Asia, Malesia and Australia. – Hooker’s Icones Plant. 5th Ser. 7(3), Tab. 3661-3664: 1-12.

Jeffrey C. 1971. Further notes on Cucurbitaceae II. The tribe Cucurbiteae. – Kew Bull. 25: 191-236.

Jeffrey C. 1978a. Further notes on Cucurbitaceae IV. Some New World taxa. – Kew Bull. 33: 347-380.

Jeffrey C. 1978b. 86. Cucurbitaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 414-499.

Jeffrey C. 1980. A review of the Cucurbitaceae. – Bot. J. Linn. Soc. 81: 233-247.

Jeffrey C. 1982. Further notes on Cucurbitaceae VI. Cucurbitaceae of the Indian Subcontinent: Corrigenda and Addenda. – Kew Bull. 36: 737-740.

Jeffrey C. 1985. Further notes on Cucurbitaceae VII. Preliminary to the Flora of Ethiopia. – Kew Bull. 40: 209-211.

Jeffrey C. 1990a. Systematics of the Cucurbitaceae: an overview. – In: Bates DM, Robinson RW, Jeffrey C (eds), Biology and utilization of the Cucurbitaceae, Cornell University Press, Ithaca, New York, Appendix, pp. 3-9.

Jeffrey C. 1990b. Appendix: An outline classification of the Cucurbitaceae. – In: Bates DM, Robinson RW, Jeffrey C (eds), Biology and utilization of the Cucurbitaceae, Cornell University Press, Ithaca, New York, Appendix, pp. 449-463.

Jeffrey C. 1992a. Notes on Cucurbitaceae including a proposed new classification of the family. – Kew. Bull. 30: 475-493.

Jeffrey C. 1992b. The genus Apodanthera (Cucurbitaceae) in Bahia State (Brazil). – Kew Bull. 47: 517-528.

Jeffrey C. 2005. A new system of Cucurbitaceae. – Bot. Žurn. 90: 332-335.

Jeffrey C, De Wilde WJJO. 2006. A review of the subtribe Thladianthinae (Cucurbitaceae). – Bot. Žurn. 91: 766-776.

Jobst J, King K, Hemleben V. 1998. Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. – Mol. Phylogen. Evol. 9: 204-219.

Jones CS. 1992. Comparative ontogeny of a wild cucurbit and its derived cultivar. – Evolution 46: 1827-1847.

Jones CS. 1993. Heterochrony and heteroblastic leaf development in two subspecies of Cucurbita argyrosperma (Cucurbitaceae). – Amer. J. Bot. 80: 787-795.

Juncosa AM, Tomlinson PB. 1988a. A historical and taxonomic synopsis of Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1278-1295.

Juncosa AM, Tomlinson PB. 1988b. Systematic comparison and some biological characteristics of Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1296-1318.

Kartusch B, Kartusch R. 2008. Stem anatomy of Acanthosicyos horridus (Cucurbitaceae). – South Afr. J. Bot. 74: 647-650.

Kater MM, Franken J, Carney KJ, Colombo L, Angenent GC. 2001. Sex determination in the monoecious species cucumber is confined to specific floral whorls. – Plant Cell 13: 481-493.

Kearns DM. 1992. A revision of Sechiopsis (Cucurbitaceae). – Syst. Bot. 17: 395-408.

Kearns DM. 1994a. The genus Ibervillea (Cucurbitaceae): an enumeration of the species and two new combinations. – Madroño 41: 13-22.

Kearns DM. 1994b. A revision of Tumamoca (Cucurbitaceae). – Madroño 1: 23-29.

Keating RC, Randrianasolo V. 1988. The contribution of leaf architecture and wood anatomy to classification of the Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1343-1368.

Keraudren M. 1968. Recherches sur les cucurbitacées de Madagascar. – Mém. Mus. Natl. Hist. Nat., sér. B, Bot. 16: 122-330.

Khunwasi C. 1998. Palynology of the Cucurbitaceae. – Ph.D. diss., Leopold-Franzens-Universität, Innsbruck, Austria.

Kiew R. 2005. Begonias of Peninsular Malaysia. – Natural History Publ., Kota Kinabalu, Sabah, Malaysia, and Singapore Botanic Gardens, Singapore.

Kiew R. 2007. Notes on Vietnamese Begonia (Begoniaceae), including three new species. – Adansonia, sér. III, 29: 229-238.

King K, Torres RA, Zentgraf U, Hemleben V. 1993. Molecular evolution of the intergenic spacer in the nuclear ribosomal RNA genes of Cucurbitaceae. – J. Mol. Evol. 36: 144-152.

King K, Jobst J, Hemleben V. 1995. Differential homogenization and amplification of two satellite DNAs in the genus Cucurbita (Cucurbitaceae). – J. Mol. Evol. 41: 996-1005.

Kirkbride JH. 1993. Biosystematic monograph of the genus Cucumis (Cucurbitaceae). – Parkway Publ., Boone, North Carolina.

Kirkwood JC. 1905. The comparative morphology of the Cucurbitaceae. – Bull. New York Bot. Gard. 3: 313-402.

Kocyan A, Zhang LB, Schaefer H, Renner SS. 2007. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. – Mol. Phylogen. Evol. 44: 553-577.

Kolbe P-K, John J. 1979. Serologische Untersuchungen zur Systematik der Violales. – Bot. Jahrb. Syst. 101: 3-15.

Kollmann LJC. 2003. Begonia ruschii L. Kollmann (Begoniaceae), uma nova espécie da Floresta Atlântica do Espírito Santo, Brasil. – Bol. Mus. Biol. Prof. Mello-Leitão 15: 29-33.

Kollmann LJC. 2006. Begonia novalombardiensis L. Kollmann (Begoniaceae), une nouvelle espèce de la forêt atlantique de l’Etat de l’Espirito Santo, Brésil. – Candollea 61: 89-92.

Kollmann LJC. 2007. Begonia callosa L. Kollmann (Begoniaceae), a new species of Espírito Santo, Brazil. – Candollea 62: 141-144.

Kollmann LJC. 2008. Duas novas espécies de Begonia (Begoniaceae), do Espírito Santo, Brasil. Rodriguesia 59: 259-363.

Kollmann LJC. 2009. Begonia bullatifolia L. Kollmann and Begonia leopoldinensis L. Kollmann (Begoniaceae), two new species from the Atlantic forest in the State of Espírito Santo, Brazil. – Candollea 64: 117-122.

Konopa J, Matuszkiewicz A, Hrabowska M, Onoszka K. 1974. Cucurbitacines, cytotoxic and antitumor substances from Bryonia alba L. II: biological studies. – Arzneimettelforschung 24: 1741-1743.

Krause J. 1942. Corynocarpaceae. – In: Engler A (†), Harms H, Mattfeld J (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 20b, W. Engelmann, Leipzig, pp. 22-35.

Krauze-Baranowska M, Cisowski W. 1995. Flavone C-glycosides from Bryonia alba and B. dioica. – Phytochemistry 39: 727-729.

Kubitzki K. 2011a. Introduction to Cucurbitales. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 4-6.

Kubitzki K. 2011b. Coriariaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 105-108.

Kubitzki K. 2011c. Corynocarpaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 109-111.

Kuijt J, Bray D, Olson AR. 1985. Anatomy and ultrastructure of the endophytic system of Pilostyles thurberi (Rafflesiaceae). – Can. J. Bot. 63: 1231-1240.

Kumazawa M. 1964. Morphological interpretation of axillary organs in the Cucurbitaceae. – Phytomorphology 14: 287-298.

Kummerow J. 1962. Pilostyles berterii Guill., eine wenig bekannte Rafflesiaceae in Mittelchile. – Zeitschr. Bot. 50: 321-337.

Kupchan SM, Sigel CW, Guttman LJ, Restivo RJ, Bryan RF. 1972. Datiscoside, a novel antileukemic cucurbitacin glycoside from Datisca glomerata. – J. Amer. Chem. Soc. 94: 1353-1354.

Kupchan SM, Tsou G, Sigel CW. 1973. Datiscacin, a novel cytotoxic cucurbitacin 20-acetate from Datisca glomerata. – J. Org. Chem. 38: 1420-1421.

Kupicha FK. 1978. 87. Begoniaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 499-506.

Lakhanpal RN, Verma JK. 1965 [1966]. Fossil wood of Tetrameles from the Deccan Intertrappean beds of Mohgaonkalan, Madhya Pradesh. – Palaeobotanist 14: 209-213.

Lassnig P. 1997. Verzweigungsmuster und Rankenbau der Cucurbitaceae. – Trop. Subtrop. Pflanzenwelt 98: 1-146.

Leins P, Bonnery-Brachtendorf R. 1977. Entwicklungsgeschichtliche Untersuchungen an Blüten von Datisca cannabina (Datiscaceae). – Beitr. Biol. Pflanzen 53: 143-155.

Leins P, Galle P. 1971. Entwiklungsgeschichtliche Untersuchungen an Cucurbitaceen-Blüten. – Österr. Bot. Zeitschr. 119: 531-548.

Li H-Z, Ma H, Zhou Z-K, Guan K-Y. 2008. A new species of Begonia (Begoniaceae) from Guangxi, China. – Bot. J. Linn. Soc. 157: 83-90.

Li J-Q, Wu Z-Y, Lu A-M. 1993. Cytological observation on the plants of Thladianthinae (Cucurbitaceae). – Acta Bot. Yunnan. 15: 101-104.

Lira R. 1994. Especie nueva de Microsechium (Cucurbitaceae, tribu Sicyeae, subtribu Sicyinae) del estado de Oaxaca, México. – An. Inst. Biol. Univ. Nac. Autón. México, Bot. 65: 73-81.

Lira R. 1995. Estudios taxonómicos en el género Sechium P. Br. (Cucurbitaceae). – Ph.D. diss., Universidad Nacional Autónoma, México.

Lira R, Caballero J. 1997. A contribution to the generic delimitation of Sechium (Cucurbitaceae, Sicyinae). – Taxon 46: 269-282.

Lira R, Chiang F. 1992. Two new combinations in Sechium (Cucurbitaceae) from Central America and a new species from Oaxaca, Mexico. – Novon 2: 227-231.

Lira R, Alvarado JL, Castrejón J. 1994. Nota sobre el polen de Sechium chinantlense Lira & Chiang y Parasicyos dieterleae Lira & Torres (Cucurbitaceae). – Bol. Soc. Bot. México 54: 275-280.

Lira R, Villasenor JL, Davila PD. 1997. A cladistic analysis of the subtribe Sicyinae (Cucurbitaceae). – Syst. Bot. 22: 415-425.

Liston A. Rieseberg LH, Elias TS. 1989. Morphological stasis and molecular divergence in the intercontinental disjunct genus Datisca (Datiscaceae). – Aliso 12: 525-542.

Liston A, Rieseberg LH, Elias TS. 1990. Functional androdioecy in the flowering plant Datisca glomerata. – Nature 343: 641-642.

Liston A, Rieseberg LH, Hanson MA. 1992. Geographic partitioning of chloroplast DNA variation in the genus Datisca (Datiscaceae). – Plant Syst. Evol. 181: 121-132.

Lorence DH. 1987. The Hawaiian begonia. – Bull. Pac. Trop. Bot. Gard. 17: 130-133.

Lu A-M. 1985. Studies on the genus Schizopepon Max. (Cucurbitaceae). – Acta Phytotaxon. Sin. 23: 106-120. [In Chinese]

MacCaughey V. 1918. An endemic begonia of Hawaii. – Bot. Gaz. 66: 272-275.

McLellan T. 1990. Development of differences in leaf shape in Begonia dregei (Begoniaceae). – Amer. J. Bot. 77: 323-337.

McLellan T. 1993. The roles of heterochrony and heteroblasty in the diversification of leaf shape in Begonia dregei (Begoniaceae). – Amer. J. Bot. 80: 796-804.

McLellan T. 2000. Geographic variation and plasticity of leaf shape and size in Begonia dregei and B. homonyma (Begoniaceae). – Bot. J. Linn. Soc. 132: 79-95.

Marticorena C. 1963. Material para una monografía de la morfología del pollen de Cucurbitaceae. – Grana Palynol. 4: 78-91.

Matienko BT. 1957. On the anatomo-morphological nature of the flowers and fruits of Cucurbitaceae. – Trudy Bot. Inst. Akad. Nauk SSSR, ser. 7, 4: 288-322.

Matolweni LO, Balkwill K, McLellan T. 2000. Genetic diversity and gene flow in the morphologically variable, rare endemics Begonia dregei and Begonia homonyma (Begoniaceae). – Amer. J. Bot. 87: 431-439.

Matthews ML, Endress PK. 2004. Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Tetramelaceae, Datiscaceae, Begoniaceae, Cucurbitaceae, Anisophylleaceae). – Bot. J. Linn. Soc. 145: 129-185.

Matthews ML, Endress PK, Schönenberger J, Friis EM. 2001. A comparison of floral structures of Anisophylleaceae and Cunoniaceae and the problem of their systematic position. – Ann. Bot. 88: 439-455.

Mauritzon J. 1936. Zur Embryologie einiger Parietales-Familien. – Svensk Bot. Tidskr. 30: 79-113.

Meeuse ADJ. 1965. The Cucurbitaceae of southern Africa. – Bothalia 8: 59-82.

Meijer W. 1993. Rafflesiaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 557-563.

Mercado P, Lira Saade R. 1994. Contribucion al conocimiento de los numeros chromosomicos de los generos Sechium P. Br. y Sicana Naudin (Cucurbitaceae). – Acta Bot. Mex. 27: 7-13.

Merrick LC. 1990. Systematics and evolution of a domesticated squash, Cucurbita argyrosperma, and its wild and weedy relatives. – In: Bates DA, Robinson RW, Jeffrey C (eds), Biology and utilization of the Cucurbitaceae, Cornell University Press, Ithaca, New York, pp. 77-95.

Merrick LC, Bates DM. 1989. Classification and nomenclatural of Cucurbita argyrosperma Huber. – Baileya 23: 94-102.

Merxmüller H, Leins P. 1971. Zur Entwicklungsgeschichte männlicher Begonienblüten. – Flora 160: 333-339.

Mirza MS, Hahn D, Dobritsa SV, Akkermans ADL. 1994. Phylogenetic studies on uncultered Frankia populations in nodules of Datisca cannabina. – Can. J. Bot. 40: 313-318.

Molloy BPJ. 1990. The origin, relationships, and use of karaka or kopi (Corynocarpus laevigatus). – In: Harris W, Kapoor P (eds), Nga mahi maori o te wao nui a tane: contributions to an international workshop on ethnobotany, te rehua marae, Botany Division, Department of Scientific and Industrial Research, Christchurch, New Zealand, pp. 48-53.

Müller EGO, Pax F. 1894. Cucurbitaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV(5), W. Engelmann, Leipzig, pp. 1-39, 392-394.

Nakata M, Guan K, Li J, Lu Y, Li H. 2007. Cytotaxonomy of Begonia rubropunctata and B. purpureofolia (Begoniaceae). – Bot. J. Linn. Soc. 155: 513-517.

Narayana LL, Narayana PS, Vatsavaya SR. 1986. A contribution to the numerical chemotaxonomy of Corynocarpaceae. – J. Econ. Taxon. Bot. 8: 249-254.

Nee M, Schaefer H, Renner SS. 2009. The relationship between Anisosperma and Fevillea (Cucurbitaceae), and a new species of Fevillea from Bolivia. – Syst. Bot. 34: 704-708.

Newcomb W, Pankhurst CE. 1982. Fine structure of actinorhizal nodules of Coriaria arborea (Coriariaceae). – New Zealand J. Bot. 20: 93-103.

Newstrom LE. 1986. Studies in the origin and evolution of chayote, Sechium edule (Jacq.) Sw. (Cucurbitaceae). – Ph.D. diss., University of California, Berkeley, California.

Newstrom LE. 1990. Origin and evolution of chayote, Sechium edule. – In: Bates DM, Robinson RW, Jeffrey C (eds), Biology and utilization of the Cucurbitaceae, Ithaca, New York, pp. 141-149.

Nickrent DL, Blarer A, Qiu YL, Vidal-Russell R, Anderson FE. 2004. Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. – BMC Evol. Biol. 4: 40.

Norton JD, Granberry DM. 1980. Characteristics of progeny from an interspecific cross of Cucumis melo with Cucumis metuliferus. – J. Amer. Soc. Hort. Sci. 105: 174-180.

Nowicke JW, Skvarla JJ. 1983. Pollen morphology and the relationships of the Corynocarpaceae. – Taxon 32: 176-183.

Okoli BE. 1987. Morphological and cytological studies in Telfairia Hooker (Cucurbitaceae). – Feddes Repert. 98: 505-508.

Oliver FW. 1866. On Hillebrandia, a new genus of Begoniaceae. – Trans. Linn. Soc. London 25: 361-363.

Olson ME. 2003. Stem and leaf anatomy of the arborescent Cucurbitaceae Dendrosicyos socotrana with comments on the evolution of pachycauls from lianas. – Plant Syst. Evol. 239: 199-214.

Oobayashi K, Yoshikawa K, Arihara S. 1992. Structural revision of bryonoside and structure elucidation of minor saponins from Bryonia dioica. – Phytochemistry 31: 943-946.

Pant DD, Banerji R. 1965. Ontogeny of stomata and hairs in some cucurbits and allied plants. – J. Indian Bot. Soc. 44: 193-197.

Patel RN. 1975. Wood anatomy of the dicotyledons indigenous to New Zealand: 8. Corynocarpus. – New Zealand J. Bot. 13: 19-29.

Patil VS, Marcati CR, Rajput KS. 2011. Development of intra- and interxylary secondary phloem in Coccinia indica (Cucurbitaceae). – IAWA J. 32: 475-491.

Pax F, Engler A. 1897. Cucurbitaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge zu IV(5), W. Engelmann, Leipzig, pp. 317-318.

Perl-Treves R. 1999. Male to female conversion along the cucumber shoot: approaches to study sex genes and floral development in Cucumis sativus. – In: Ainsworth CC (ed), Sex determination in plants, BIOS Scientific Publ., Oxford, pp. 189-216.

Perl-Treves R, Zamir D, Navat N, Galun E. 1985. Phylogeny of Cucumis based on isoenzyme variability and its comparison with plastome phylogeny. – Theor. Appl. Gen. 71: 430-436.

Philipson WR. 1987. Corynocarpus J. R. and G. Forst. – an isolated genus. – Bot. J. Linn. Soc. 95: 9-18.

Pigott E. 1927. Observations on Corynocarpus laevigata Forst., the karaka. – Trans. New Zealand Inst. 58: 57-71.

Pires JM, Rodrigues WA. 1971. Notas sôbre os gêneros Polygonanthus e Anisophyllea. – Acta Amazonica 1: 7-15.

Plana V. 2002. Systematics and biogeography of the Afro-malagasy fleshy-fruited Begonia. – Ph.D. diss., University of Glasgow, United Kingdom.

Plana V. 2003. Phylogenetic relationships of the Afro-Malagasy members of the large genus Begonia inferred from trnL intron sequences. – Syst. Bot. 28: 693-704.

Plana V, Gascoigne A, Forrest LL, Harris D, Pennington RT. 2003 [2004]. Pleistocene and pre-Pleistocene Begonia speciation in Africa. – Mol. Phylogen. Evol. 31: 449-461.

Pozner R. 1998. Revisión del género Cucurbitella (Cucurbitaceae). – Ann. Missouri Bot. Gard. 85: 425-439.

Pozner R. 2004. A new species of Echinopepon from Argentina and taxonomic notes on the subtribe Cyclantherinae (Cucurbitaceae). – Syst Bot. 29: 29: 599-608.

Praglowski J. 1970. Coriariaceae. – In: Erdtman G (ed), World Pollen Flora, Scandinavian University Books, København, pp. 15-22.

Pruesapan K, Ham R van der. 2005. Pollen morphology of Trichosanthes (Cucurbitaceae). – Grana 44: 75-90.

Puchalski JT, Robinson RW. 1990. Electrophoretic analysis of isoenzymes in Cucurbita and Cucumis and its application for phylogenetic studies. – In: Bates DM, Robinson RW, Jeffrey C (eds), Biology and utilization of the Cucurbitaceae, Cornell University Press, Ithaca, New York, pp. 60-76.

Puri V. 1954. Studies in floral anatomy VII. On placentation in the Cucurbitaceae. – Phytomorphology 4: 278-299.

Raamsdonk LWD van, Visser DL. 1992. Autotetraploidy in Cucumis zeyheri and a derived new species C. diniae (Cucurbitaceae). – Nord. J. Bot. 12: 327-334.

Raamsdonk LWD van, Nijs APM den, Jongerius MC. 1989. Meiotic analyses of Cucumis hybrids and an evolutionary evaluation of the genus Cucumis (Cucurbitaceae). – Plant Syst. Evol. 163: 133-146.

Ramachadran C, Narayan RKJ. 1985. Chromosomal DNA variation in Cucumis. – Theor. Appl. Gen. 69: 497-502.

Rehm S, Enslin PR, Meeuse ADJ, Wessels JH. 1957. Bitter principles of the Cucurbitaceae VII. The distribution of bitter principles in this plant family. – J. Sci. Food Agric. 12: 679-680.

Reiche VK. 1921. Zur Kenntnis von Sechium edule. – Flora 14: 232-248.

Reitsma T. 1983. Placentation in Begonias from the African continent. – In: De Wilde JJFE (ed), Studies in Begoniaceae I, Meded. Landbouwh. Wageningen 83: 21-53.

Renner SS, Schaefer H, Kocyan A. 2007. Phylogenetics of Cucumis (Cucurbitaceae): C. sativus (cucumber) belongs in an Australian/Asian clade far from African C. melo (melon). – BMC Evol. Biol. 7: 58.

Rieseberg LH, Hanson MA, Philbrick CT. 1992. Androdioecy is derived from dioecy in Datiscaceae: evidence from restriction site mapping of PCR-amplified chloroplast DNA fragments. – Syst. Bot. 17: 324-336.

Robinson BL. 1891. Two undescribed species of Apodanthes. – Bot. Gaz. (Crawfordsville) 16: 82-84.

Robinson GL, Wunderlin RP. 2005a. Revision of Siolmatra (Cucurbitaceae: Zanonieae). – Sida 21: 1961-1969.

Robinson GL, Wunderlin RP. 2005b. Revision of Fevillea (Cucurbitaceae: Zanonieae). – Sida 21: 1971- 1996.

Rodriguez-Arévalo I. 2003. A new species of Sicyos (Cucurbitaceae, Sicyeae, Sicyinae) from Mexico and Guatemala. – Brittonia 55: 69-72.

Rodríguez-Arévalo I, Lira Saade R. 2001. Nueva especie del género Sicyos L. (Cucurbitaceae) para la República Mexicana. – Bol. Soc. Bot. México 68: 81-84.

Rodriguez-Arévalo I, Lira Saade R, Davila P. 2004. Two new species of Sicyos (Cucurbitaceae) from Guerrero and Oaxaca, Mexico. – Bot. J. Linn. Soc. 145: 373-378.

Rodriguez-Arévalo I, Lira Saade R, Calzada I. 2005. A new species of Sicyos L. (Cucurbitaceae) from Oaxaca, Mexico. – Brittonia 57: 43-46.

Ronse De Craene L-P, Smets E. 1990. The systematic relationship between Begoniaceae and Papaveraceae: a comparative study of their floral development. – Bull. Jard. Bot. Natl. Belg. 60: 229-273.

Roy RP, Saran S, Dutt B. 1991. Cytogenetics of the Cucurbitaceae. – In: Tschuchia T, Gupta PK (eds), Chromosome engineering in plants: genetics, breeding, evolution, Elsevier, Amsterdam, pp. 181-200.

Rugayah EA, De Wilde WJJO. 1997. Trichosanthes L. (Cucurbitaceae) in Java. – Blumea 42: 471-482.

Rugayah EA, De Wilde WJJO. 1999. Conspectus of Trichosanthes (Cucurbitaceae) in Malesia. – Reinwardtia 11: 227-280.

Rutherford RJ. 1970. The anatomy and cytology of Pilostyles thurberi Gray (Rafflesiaceae). – Aliso 7: 263-288.

Saade RL. 1996. Estudios taxonómicos y ecogeográficos de las Cucurbitaceae Latinoamericas de importancia económica. – Instituto de Biologia, UNAM.

Samuel R, Balasubramaniam S, Morawetz W. 1995. The karyology of some cultivated Cucurbitaceae of Sri Lanka. – Ceylon J. Sci. (Biol. Sci.) 24: 17-22.

Sang J, Kiew R, Geri C. 2013. Revision of Begonia ()Begoniaceae) from the Melinau Limestone in Gunung Mulu National Park and Gunung Buda National Park, Sarawak, Borneo, including thirteen new species. – Phytotaxa 99: 1-34.

Savolainen V, Manen J-F, Douzery E, Spichiger R. 1994. Molecular phylogeny of families related to Celastrales based on rbcL 5’ flanking sequences. – Mol. Phylogen. Evol. 3: 27-37.

Savolainen V, Spichiger R, Manen J-F. 1997. Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region. – Mol. Phylogen. Evol. 7: 145-157.

Schaefer H. 2007. Cucumis (Cucurbitaceae) must include Cucumella, Dicoelospermum, Mukia, Myrmecosicyos, and Oreosyce: a recircumscription based on nuclear and plastid DNA data. – Blumea 52: 165-177.

Schaefer H, Renner SS. 2010a. A gift from the New World? The West African crop Cucumeropsis mannii and the American Posadaea sphaerocarpa (Cucurbitaceae) are the same species. – Syst. Bot. 35: 534-540.

Schaefer H, Renner SS. 2010b. A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. – Mol. Phylogen. Evol. 54: 553-560.

Schaefer H, Renner SS. 2011a. Cucurbitaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 112-174.

Schaefer H, Renner SS. 2011b. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). – Taxon 60: 122-138.

Schaefer H, Telford IRH, Renner SS. 2008. Austrobryonia (Cucurbitaceae), a new Australian endemic genus, is the closest living relative to the Eurasian and Mediterranean Bryonia and Ecballium. – Syst. Bot. 33: 125-132.

Schaefer H, Kocyan A, Renner SS. 2008. Linnaeosicyos (Cucurbitaceae): a new genus for Trichosanthes amara, the Caribbean sister species of all Sicyeae. – Syst. Bot. 33: 349-355.

Schaefer H, Heibl C, Renner SS. 2009. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. – Proc. Roy. Soc., Ser. B, 276: 843-851.

Schemske DW, Ågren J, Le Corff J. 1996. Deceit pollination in the monoecic, neotropical herb Begonia oaxacana (Begoniaceae). – In: Lloyd DG, Barrett SCH (eds), Floral biology: studies on floral evolution in animal-pollinated plants, Chapman & Hall, New York, pp. 292-318.

Schimper AFW. 1893. Rhizophoraceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(7), W. Engelmann, Leipzig, pp. 42-56.

Schwarzbach AE, Ricklefs RE. 2000. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. – Amer. J. Bot. 87: 547-564.

Schwarzbach AE, Tomlinson PB. 2011. Anisophylleaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 51-55.

Sebastian P, Schaefer H, Telford IRH, Renner SS. 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. – Proc. Natl. Acad. Sci. U.S.A. 107: 14269-14273.

Sensarma P. 1955. Tendrils of the Cucurbitaceae: their morphological nature on anatomical evidences. – Proc. Natl. Inst. Sci India 21: 162-169.

Sharma VK. 1968. Floral morphology, anatomy, and embryology of Coriaria nepalensis Wall. with a discussion of the interrelationships of the family Coriariaceae. – Phytomorphology 18: 143-153.

Shui YM, Peng CI, Wu CY. 2002. Synopsis of the Chinese species of Begonia (Begoniaceae), with a reappraisal of sectional delimitation. – Bot. Bull. Acad. Sin. 43: 313-327.

Silvester WB, Harris SL. 1989. Nodule structure and nitrogenase activity of Coriaria arborea in response to varying pO2. – Plant and Soil 118: 97-109.

Singh AK. 1979. Cucurbitaceae and polyploidy. – Cytologia 44: 897-905.

Singh A, Dathan ASR. 1998. Morphology and embryology. – In: Nayar NM, More TA (eds), Cucurbits, Science Publ., Enfield, NH, pp. 67-84.

Singh A, Dathan ASR. 2001. Development and structure of seed coat in the Cucurbitaceae and its implications in systematics. – In: Chauhan SVS, Chaturvedi SN (eds), Botanical essays: tribute to professor Bahadur Singh, Printwell, Jaipur, pp. 87-111.

Singh B. 1942. The anatomy of the stem, leaf and petiole of Coccinia indica L. – J. Indian Bot. Soc.21: 319-326.

Singh B. 1952. Studies on the structure and development of seeds of Cucurbitaceae I. Seeds of Echinocystis Wrightii Cogn. – Phytomorphology 2: 201-209.

Singh B. 1953. Studies on the structure and development of seeds of Cucurbitaceae. – Phytomorphology 3: 224-239.

Singh D. 1961a. Studies on endosperm and development of seed in the Cucurbitaceae and some related families. – Agra Univ. J. Res. Sci. 10: 117-123.

Singh D. 1961b. Development of embryo in the Cucurbitaceae. – J. Indian Bot. Soc. 40: 620-623.

Singh D. 1964. A further contribution to the endosperm of the Cucurbitaceae. – Proc. Indian Acad. Sci., Sect. B, 60: 399-413.

Singh D. 1965a. Ovule and seed of Dicoelospermum C. B. Clarke, together with a note on its systematic position. – J. Indian Bot. Soc. 44: 181-190.

Singh D. 1965b. Ovule and seed of Sechium edule Sw. – a reinvestigation. – Curr. Sci. 34: 696-697.

Singh D. 1967. Structure and development of seedcoat in Cucurbitaceae I. Seeds of Biswarea Cogn., Edgaria Clarke and Herpetospermum Hook. f. – Proc. Indian Acad. Sci., Sect. B, 65: 267-274.

Singh D. 1970. Cucurbitaceae. – In: Proceedings of the symposium on comparative embryology of angiosperms, Indian National Science Academy, New Delhi, pp. 212-219.

Singh D, Bhandari MM. 1963. The identity of an imperfectly known hermaphrodite Luffa, with a note on related species. – Baileya 11: 132-141.

Singh D, Dathan ASR. 1974. Structure and development of the seed coat of Cucurbitaceae IX. Seeds of Corallocarpus, Kedrostis and Ibervillea. – Bull. Torrey Bot. Club 101: 78-82.

Singh NP, Matta NK. 2008. Variation studies on seed storage proteins and phylogenetics of the genus Cucumis. – Plant Syst. Evol. 275: 209-218.

Skey W. 1871. Preliminary notes on the isolation of bitter substances of the nut of the karaka tree (Corynocarpus laevigata). – Trans. Proc. New Zealand Inst. 4: 316-321.

Skog LE. 1972. The genus Coriaria (Coriariaceae) in the Western Hemisphere. – Rhodora 74: 242-253.

Skog LE. 1987. 103. Coriariaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 30, Swedish Natural Science Research Council, Stockholm, pp. 3-7.

Smith LB, Schubert BC. 1963. Begoniaceae Lindl. – Field Mass. Nat. Hist. Bot. 13: 181-202.

Smith LB, Wasshausen DC. 1986. 133. Begoniaceae. – In: Harling G, Sparre B (eds), Flora of Ecuador 25, Swedish Natural Science Research Council, Stockholm, pp. 1-65.

Smith LB, Wasshausen DC, Golding J, Karegeannes CE. 1986. Begoniaceae I. Illustrated key II. Annotated species list. – Smithsonian Contr. Bot. 60: 1-584.

Solms-Laubach H. 1874. Über den Thallus von Pilostyles haussknechtii. – Bot. Zeitung 32: 49-59.

Sosef MSM. 1994. Studies in Begoniaceae V. Refuge begonias: taxonomy, phylogeny and historical biogeography of Begonia sect. Loasibegonia and sect. Scutobegonia in relation to glacial rain forest refuges in Africa. – Wageningen Agric. Univ. Pap. 94: 1-306.

Soyfer VN. 1964. Seed anatomy of the family Cucurbitaceae Juss. as a systematic character. – Bull. Moscow Soc. Nat., Section Biol., N. S., 69(1): 86-101.

Sridhar, Singh D. 1986. Development of anther and male gametophyte in Cucurbitaceae. – J. Indian Bot. Soc. 65: 487-493.

Stafford PJ, Sutton DA. 1994. Pollen morphology of the Cyclantherinae C. Jeffr. (tribe Sicyeae Schrad., Cucurbitaceae) and its taxonomic significance. – Acta Bot. Gall. 141: 171-182.

Stanley TD. 1982. Datiscaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 199-200.

Steele PR. 2010. Taxonomic revision of the neotropical genus Psiguria (Cucurbitaceae). – Syst. Bot. 35: 341-357.

Steele PR, Guisinger-Bellian M, Linder CR, Jansen RK. 2008. Phylogenetic utility of 141 low-copy nuclear regions in taxa at different taxonomic levels in two distantly related families of rosids. – Mol. Phylogen. Evol. 48: 1013-1026.

Steele PR, Friar LM, Gilbert LE, jansen RK. 2010. Molecular systematics of the neotropical genus Psiguria (Cucurbitaceae): implications for phylogeny and species identification. – Amer. J. Bot. 97: 156-173.

Steenis CGGJ van. 1951. Corynocarpaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(2), Noordhoff-Kolff N. V., Batavia, pp. 262-264.

Steenis CGGJ van. 1953. Datiscaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 4(4), Noordhoff-Kolff N. V., Batavia, pp. 382-387.

Stocking KM. 1955. Some considerations of the genera Echinocystis and Echinopepon in the United States and northern Mexico. – Madroño 13: 84-100.

Stults DZ, Axsmith BJ. 2011. First macrofossil record of Begonia (Begoniaceae). – Amer. J. Bot. 98: 150-153.

Swensen SM, Kubitzki K. 2011. Datiscaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 175-179.

Swensen SM, Mullin BC, Chase MW. 1994. Phylogenetic affinities of Datiscaceae based on an analysis of nucleotide sequences from the plastid rbcL gene. – Syst. Bot. 19: 157-168.

Swensen SM, Luthi JN, Rieseberg LH. 1998. Datiscaceae revisited: monophyly and the sequence of breeding system evolution. – Syst. Bot. 23: 157-169.

Tebbitt MC. 2003. Taxonomy of Begonia longifolia Blume (Begoniaceae) and related species. – Brittonia 55: 19-29.

Tebbitt MC. 2005. Begonias: cultivation, identification, and natural history. – Timber Press, Portland, Oregon.

Tebbitt MC, Dickson JH. 2000. Amended edescriptions and revised sectional assignment of some Asian begonias (Begoniaceae). – Brittonia 52: 112-117.

Tebbitt MC, Maciver CM. 1999. The systematic significance of the endothecium in Begoniaceae. – Bot. J. Linn. Soc. 131: 203-221.

Tebbitt MC, Lowe-Forrest L, Santoriella A, Clement WL, Swensen S. 2006. Phylogenetic relationships of Asian Begonia, with an emphasis on the evolution of rain-ballist and animal dispersal mechanisms in sections Platycentrum, Sphenanthera, and Leprosae. – Syst. Bot. 31: 327-336.

Telford IR. 1982. Cucurbitaceae. – In: George AS (ed), Flora of Australia 8, Australian Government Publ. Service, Canberra, pp. 158-198.

Telford RH, Sebastian P, Lange PJ de, Bruhl JJ, Renner SS. 2012. Morphological and molecular data reveal three rather than one species of Sicyos (Cucurbitaceae) in Australia, New Zealand and islands of the South West Pacific. – Aust. Syst. Bot. 25: 188-201.

Teppner H. 2004. Notes on Lagenaria and Cucurbita (Cucurbitaceae) – review and new contributions. – Phyton 44: 245-308.

Thakur GK, Sinha BMB. 1973. Cytological investigation in some cucurbits. – J. Cytol. Genet. 7/8: 122-130.

Thiele KR, Wylie SJ, Maccarone L, Hollick P, McComb JA. 2008. Pilostyles coccoidea (Apodanthaceae), a new species from Western Australia described from morphological and molecular evidence. – Nuytsia 18: 273-284.

Thomas DC. 2010. Phylogenetics and historical biogeography of Southeast Asian Begonia L. (Begoniaceae). – PhD thesis. University of Glasgow.

Thomas DC, Hughes M, Phutthai T, Rajbhandary S, Rubite R, Ardi WH, Richardson JE. 2011. A non-coding plastid DNA phylogeny of Asian Begonia (Begoniaceae): evidence for morphological homoplasy and sectional polyphyly. – Mol. Phylogen. Evol. 60: 428-444.

Thomas DC, Hughes M, Phutthai T, Ardi WH, Rajbhandary S, Rubite R, Twyford AD, Richardson JE. 2012. West to east dispersal and subsequent rapid diversification of the mega-diverse genus Begonia (Begoniaceae) in the Malesian archipelago. – J. Biogeogr. 39: 98-113.

Thompson PN, Gornall RJ. 1995. Breeding systems in Coriaria (Coriariaceae). – Bot. J. Linn. Soc. 117: 293-304.

Thulin M. 1991. New species of Cucumis (Cucurbitaceae) from northeast tropical Africa. – Nord. J. Bot. 11: 535-542.

Thulin M. 1996. A new species of Zehneria (Cucurbitaceae) from Somalia. – Nord. J. Bot. 16: 297-299.

Thulin M. 2009. New species of Coccinia and Momordica (Cucurbitaceae) from north-eastern tropical Africa. – Kew Bull. 64: 485-489.

Thulin M, Al-Gifri AN. 1994. Cucumis canoxyi (Cucurbitaceae) – a new species from Yemen. – Nord. J. Bot. 14: 315-317.

Tobe H, Raven PH. 1987. Systematic embryology of the Anisophylleaceae. – Ann. Missouri Bot. Gard. 74: 1-26.

Tobe H, Raven PH. 1988a. Additional notes on the embryology of Polygonanthus (Anisophylleaceae) and relationships of the family. – Ann. Missouri Bot. Gard. 75: 1425-1428.

Tobe H, Raven PH. 1988b. Floral morphology and evolution in Anisophylleaceae. – Bot. J. Linn. Soc. 98: 1-25.

Tomlinson PB. 1988. Systematic comparison and some biological characters of Rhizophoraceae and Anisophylleaceae. – Ann. Missouri Bot. Gard. 75: 1297-1318.

Turgeon R, Oparka K. 2010. The secret life of pumpkins. – Proc. Natl. Acad. Sci. U.S.A. 107: 13201-13202.

Twyford AD, Kidner CA, Harrison N, Ennos RA. 2013. Population history and seed dispersal in widespread Central American Begonia species (Begoniaceae) inferred from plastome-derived microsatellite markers. – Bot. J. Linn. Soc. 171: 260-276.

Vattimo I de. 1955. Notice sur la tribu Apodantheae R. Br. (Rafflesiaceae). – Taxon 4: 211-212.

Vattimo I de. 1956. Notes on Apodanthes caseariae Poit. and Pilostyles calliandrae (Gardn.) R. Br. (Rafflesiaceae-Apodantheae). – Not. Syst. 15: 225-229.

Vattimo I de. 1971 Contribuição ao conhecimento da tribu Apodanthaceae R. Br. I. Conspecto das espécies (Rafflesiaceae). – Rodriguésia 26: 37-62.

Vattimo I de. 1978. Uma nova espécie de Apodanthes Poit. (Rafflesiaceae). – Rodriguésia 29: 269-306.

Verdcourt B. 1998. Rafflesiaceae. – In: Beentje HJ, Whitehouse CM (eds), Flora of tropical East Africa, A. A. Balkema, Rotterdam, The Netherlands, pp. 1-4.

Villiers JF. 1980. Corynocarpaceae. – In: Aubréville A, Leroy JF (eds), Flore de la Nouvelle Calédonie et Dépendances 9, Muséum National d’Histoire Naturelle, Paris, pp. 175-178.

Vincent JR, Tomlinson PB. 1983. Architecture and phyllotaxis of Anisophyllea disticha (Rhizophoraceae). – Gard. Bull. (Singapore) 36: 3-18.

Vogel S. 1981a. Trichomatische Blütennektaren bei Cucurbitaceen. – Beitr. Biol. Pflanzen 55: 325-353.

Vogel S. 1981b. Die Klebstoffhaare an den Antheren von Cyclanthera pedata (Cucurbitaceae). – Plant Syst. Evol. 137: 291-316.

Vogel S. 1990. Ölblumen und ölsammelnde Biene 3. Momordica, Thladiantha und die Ctenoplectridae. – Trop. Subtrop. Pflanzenwelt 73: 1-186.

Volz SM, Renner SS. 2008. Hybridization, polyploidy, and evolutionary transitions between monoecy and dioecy in Bryonia (Cucurbitaceae). – Amer. J. Bot. 95: 1297-1306.

Volz SM, Renner SS. 2009. Phylogeography of the ancient Eurasian medicinal plant genus Bryonia (Cucurbitaceae) inferred from nuclear and chloroplast sequences. – Taxon 58: 550-560.

Wagstaff SJ, Dawson MI. 2000. Classification, origin, and patterns of diversification of Corynocarpus (Corynocarpaceae) inferred from DNA sequences. – Syst. Bot. 25: 134-149.

Walters TW, Decker-Walters DS, Posluszny U, Kevan PG. 1991. Determination and interpretation of comigrating allozymes among genera of the Benincaseae (Cucurbitaceae). – Syst. Bot. 16: 30-40.

Warburg O. 1894a. Begoniaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 121-150.

Warburg O. 1894b. Datiscaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(6a), W. Engelmann, Leipzig, pp. 150-155.

Ward BL, Anderson RS, Bendich AJ. 1981. the mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). – Cell 25: 793-803.

Weiling F. 1959. Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). – Züchter 29: 161-179.

Whitaker TW. 1933. Cytological and phylogenetic studies in the Cucurbitaceae. – Bot. Gaz. 94: 780-790.

Whitaker TW, Bemis WP. 1964. Evolution in the genus Cucurbita. – Evolution 18: 553-559.

Whitaker TW, Davis GN. 1962. Cucurbits: botany, cultivation, and utilization. – Interscience, New York.

Whiting AG. 1938. Development and anatomy of primary structures in the seedlings of Cucurbita maxima Duch. – Bot. Gaz. 99: 497-528.

Widrlechner MP, Kirkbride JH, Ghebretinsae AG, Reitsma KR. 2008. Cucumis zambianus (Cucurbitaceae), a new species from northwestern Zambia. – Syst. Bot. 33: 732-738.

Wilde JJFE de. 2002. Studies in Begoniaceae VII. Begonia section Tetraphila A. DC., a taxonomic revision. – Wageningen Agric. Univ. Pap. 2001-2: 5-258.

Wilde JJFE de. 2011. Begoniaceae. – In: Kubitzki K (ed), Families and genera of vascular plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. Springer, Heidelberg, Dordrecht, London, New York, pp. 56-71.

Wilde WJJO de, Duyfjes BEE. 2006. Review of the genus Gymnopetalum (Cucurbitaceae). – Blumea 51: 281-296.

Wilde WJJO de, Duyfjes BEE. 2007. The wild species of Cucumis L. (Cucurbitaceae) in South-East Asia. – Adansonia, sér. III, 29: 239-248.

Wilson HD. 1989. Discordant patterns of allozyme and morphological variation in Mexican Cucurbita. – Syst. Bot. 14: 612-623.

Wilson HD, Doebley J, Duvall M. 1992. Chloroplast DNA diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). – Theor. Appl. Gen. 84: 859-865.

Wilson PG. 1958. Contributions to the flora of tropical America LXIII. – Kew Bull. 13: 161.

Wolf DE, Satkoski JA, White K, Rieseberg LH. 2001. Sex determination in the androdioecious plant Datisca glomerata and its dioecious sister species D. cannabina. – Genetics 159: 1243-1257.

Worsdell WC. 1915. The origin and meaning of medullary (intraxylary) phloem in the stem of dicotyledons 1. Cucurbitaceae. – Ann. Bot. 29: 567-590.

Wunderlin RP. 1976. Two new species and a new combination in Frantzia (Cucurbitaceae). – Brittonia 28: 239-244.

Wunderlin RP. 1977. A new species of Frantzia (Cucurbitaceae) from Panama. – Bull. Torrey Bot. Club 104: 102-104.

Yasuda A. 1901. On the comparative anatomy of the Cucurbitaceae, wild and cultivated in Japan. – J. Col. Sci. Imp. Univ. Tokyo, Japan 18: 1-56.

Yoda K, Suzuki M. 1992. Comparative wood anatomy of Coriaria. – Bot. Mag. (Tokyo) 105: 235-245.

Yokoyama J, Suzuki M, Iwatsuki K, Hasebe M. 2000. Molecular phylogeny of Coriaria, with special emphasis on the disjunct distribution. – Mol. Phylogen. Evol. 14: 11-19.

Zentgraf U, Ganal M, Hemleben V. 1990. Length heterogeneity of the rRNA precursor in cucumber (Cucumis sativus). – Plant Mol. Biol. 15: 465-474.

Zentgraf U, King K, Hemleben V. 1992. Repetitive sequences are valuable as molecular markers in studies of phylogenetic relationships within the genus Cucumis. – Acta Bot. Neerl. 41: 397-406.

Zhan Z-Y, Lu A-M. 1989. Pollen morphology of the subtribe Thladiantinae (Cucurbitaceae) and its taxonomic significance. – Cathaya 1: 23-36.

Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O. 2010. Divergent metabolome and proteome suggest functional independence of dual phloem transport system in cucurbits. – Proc. Natl. Acad. Sci. U.S.A. 107: 13532-13537.

Zhang C, Yu X, Ayre BG, Turgeon R. 2012. The origin and composition of cucurbit “phloem” exudate. – Plant Physiol. 158: 1873-1882.

Zhang L-B, Simmons MP, Kocyan A, Renner SS. 2006. Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual system evolution. – Mol. Phylogen. Evol. 39: 305-322.

Zhang L-B, Simmons MP, Renner SS. 2007. A phylogeny of Anisophylleaceae based on six nuclear and plastid loci: ancient disjunctions and recent dispersal between South America, Africa, and Asia. – Mol. Phylogen. Evol. 44: 1057-1067.

Zheng Y-H, Alverson AJ, Wang Q-F, Palmer JD. 2013. Chloroplast phylogeny of Cucurbita: evolution of the domesticated and wild species. – J. Syst. Evol. 51: 326-334.

Zimmermann A. 1922. Die Cucurbitaceen. Beiträge zur Anatomie, Physiologie, Morphologie, Biologie, Pathologie und Systematik. – Gustav Fisher, Jena.