GUNNERIDAE D. E. Soltis, P. S. Soltis et W. S Judd

Soltis, Soltis et Judd in Taxon 56: E27. Aug 2007


[Gunnerales+Pentapetalae]


GUNNERALES Takht. ex Reveal

Reveal in Novon 2: 239. 13 Oct 1992

Gunnerineae Shipunov in A. Shipunov et J. L. Reveal in Phytotaxa 16: 63. 4 Feb 2011

Habit Usually monoecious or bisexual (sometimes polygamomonoecious or dioecious), usually perennial (rarely annual) herbs.

Vegetative anatomy Phellogen? Pith with sclerenchymatous diaphragms. Stem usually with polystele consisting of few to several hundred vascular bundles, each one with endodermis; stolon with siphonostele. Secondary lateral growth usually absent. Vessel elements with scalariform, simple or reticulate-scalariform perforation plates; lateral pits alternate or opposite, bordered pits. Imperforate tracheary xylem elements tracheids or fibre-tracheids? with simple or bordered pits, non-septate. Wood rays uniseriate, homocellular, or absent. Axial parenchyma absent or very rare. Sieve tube plastids S, Pcs (P1b) type, with protein crystals and usually with starch grains. Nodes ≥3:≥3, trilacunar or multilacunar with three or more leaf traces. Secretory cavities absent. Epidermal cells sometimes resin-producing. Calciumoxalate druses often frequent.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, stalked and globular hairs as well as spines often present (hairs sometimes absent).

Leaves Alternate (spiral) or opposite, simple, entire or palmately lobed, sometimes peltate, with plicate ptyxis. Stipule large, scale-like, axillary, intrapetiolar (squamula intravaginalis) or stipules two, simple, lateral; leaf sheath absent. Petiole vascular bundle transection complex. Venation pinnate or subpalmate, actinodromous or palinactinodromous (sometimes palmate-flabellate). Stomata anomocytic. Cuticular wax crystalloids at least sometimes as rodlets. Lamina without secretory cavities. Epidermis sometimes with balsam-producing resinous cells and subepidermal abaxial cells sometimes tanniniferous. Mesophyll sometimes with calciumoxalate druses. Leaf margin dentate, serrate or crenate; leaf teeth often hydathodal, usually with glandular tip and two veins.

Inflorescence Axillary or pseudoterminal, simple or branched spike, capitulum, spadix or panicle, or terminal and spike- or catkin-like on lateral shoots.

Flowers Actinomorphic, small. Epigyny. Tepals 2(–3)+2(–3), with valvate aestivation, sepaloid, transversal, free (sometimes absent). Nectary absent. Disc absent.

Androecium Stamens one to eight, alternisepalous (alternitepalous). Filaments free from each other, free from or somewhat adnate to tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse or latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (sometimes tetra- or pentacolpate), usually shed as monads (sometimes as tetrads), bicellular at dispersal. Exine usually semitectate (sometimes intectate), with columellate infratectum, reticulate or microreticulate.

Gynoecium Pistil composed of two (to four) connate carpels. Ovary superior, unilocular (due to pseudomonomery; sometimes partially tri- or quadrilocular). Style single, simple, or absent (stylodia sometimes three or four). Stigma bilobate, papillate, Dry type (or almost so). Pistillodium absent.

Ovules Placentation usually apical or subapical (sometimes central-axile). Ovule usually one per ovary (ovules sometimes two to more than 50 per carpel), anatropous, pendulous or horizontal, bitegmic, crassinucellar. Micropyle usually endostomal (sometimes bistomal). Megagametophyte usually tetrasporous, 16-nucleate, Peperomia type, with six antipodal cells and a group of cells fusing into secondary megagametophyte nucleus (sometimes disporous, 8-nucleate, Allium type). Endosperm development usually ab initio cellular (sometimes nuclear). Endosperm haustoria? Embryogenesis?

Fruit Usually a drupe (sometimes a schizocarp with capsular mericarps, rarely a nutlet).

Seeds Aril absent. Seed coat testal? Exotestal cells sometimes with thickened outer walls. Endotesta? Tegmen? Perisperm not developed. Endosperm copious, oily, starchy and with aleurone, usually with crystalloids. Embryo small, usually well differentiated, chlorophyll? Cotyledons two. Germination phanerocotylar.

Cytology n = 10, 12, 17, 27

DNA d copy of nuclear gene RPB2 lost. Mitochondrial gene rps11 probably lost. Nuclear gene euAP3?

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), hyperoside (quercetin 3-O-galactoside), isoquercetin (quercetin 3-O-glucoside), cyanidin pelargonidin, caffeic acid, ellagic and gallic acids, ellagitannins, polyphenols (e.g. galloyl quininic acid and galloyl esters of quininic acid), saponins, dihydrochalcones, p-coumaric acid, sinapic acid, p-hydrobenzoic acid, vanillic acid, and syringinic acid present. Ethereal oils in the form of carvone, perillinic acid, 1,8-cineol, diosphenol, trans-pinocarvenol, pinocarvone, trans-pinocarvone, α-pinene, β-selinene, etc. Cyanogenesis via phenylalanine, isoleucine or valine.

Systematics There is almost 100% bootstrap support for Gunnerales being sister-group to Pentapetalae.

GUNNERACEAE Meisn.

( Back to Gunnerales )

Meisner, Plant. Vasc. Gen. Tab. Diagn. 1: 345, 346; Comm. 2: 257. 13-15 Feb 1842, nom. cons.

Genera/species 1/66

Distribution Eastern and southern Africa, Madagascar, Malesia, New Guinea, the Solomon Islands, Tasmania, New Zealand, Hawaii, Central America, South America (above all in the Andes), Juan Fernandez, the Falkland Islands.

Fossils Fossil pollen grains similar to those in Gunnera are known from the Turonian of Peru. Campanian to Early Cenozoic pollen fossils of possible gunneraceous origin have been found in the Southern Hemisphere, including present-day Australia and Antarctica, and in West Africa and North America (possibly also Asia). Similar pollen fossils are known also from present-day India and the Indian Ocean from the Palaeogene onwards.

Habit Usually monoecious or bisexual (sometimes polygamomonoecious; rarely dioecious), usually perennial herbs (Gunnera herteri is an annual). Buds often covered by large bracts. Apex of stolon with pairwise or simple ocreoid (ochrea-like) bracts. Often with numerous simple or divided scales between leaves.

Vegetative anatomy Wartlike mucilaginous adventitious root primordia present between stem leaves (primordia normally not developing into adventitious roots), into which Nostoc (and/or Chlorococcus?) cells penetrate via hydathodes or mucilage glands, forming intercellular colonies in tissues inside. Roots triarch to polyarch. Phellogen? Medulla septate through sclerenchymatous diaphragms? Stem (including rhizome) with polystele consisting of few to several hundred vascular bundles, each with endodermis; stolon with vascular cylinder as siphonostele. Secondary lateral growth absent. Vessel elements with scalariform (bars few to more than 150) or simple (in stem of species with large leaves) perforation plates; lateral pits? Imperforate tracheary xylem elements ? (tracheids absent), thick-walled, with simple pits. Wood rays absent. Axial parenchyma? Sieve tube plastids Pcs type (P1b type), with protein crystals and starch grains. Nodes multilacunar with ? leaf traces. Secretory cavities absent. Calciumoxalate druses often frequent. Tannins abundant.

Trichomes Hairs unicellular, simple, uniseriate (hairs absent in Gunnera herteri), in subgenus Panke also multiseriate, stalked and globular hairs.

Leaves Alternate (spiral; concentrated to shoot apices; gland-tipped stolon cataphylls [prophylls?] often opposite), simple, entire or palmately lobed, sometimes peltate, often very large (diameter of lamina sometimes more than three metres), with conduplicate-plicate? ptyxis. Stipule? large, scale-like, axillary, intrapetiolar (squamula intravaginalis); ochrea (membranous scale surrounding shoot apex) present in Gunnera lobata and G. magellanica; leaf sheath absent. Small glandular colleters present in leaf axils of Gunnera herteri. Petiolar anatomy and petiole vascular bundle transection complex. Venation pinnate or subpalmate, palinactinodromous or actinodromous. Stomata anomocytic. Cuticular waxes? Lamina without secretory cavities. Leaf margin dentate, serrate or crenate, with distinct hydathodes; leaf teeth with distally expanded glandular tip and two veins. Spines present on petiole and abaxial side of lamina.

Inflorescence Axillary or pseudoterminal, simple or branched spike, capitulum, spadix or panicle. Lower flowers usually female, upper flowers male. Floral prophylls (bracteoles) absent?

Flowers Actinomorphic, small. Epigyny. Tepals 2(–3)+2(–3) (inner tepals, petals, often absent, especially in female flowers), with apert aestivation, sepaloid, transverse, free. Nectary absent. Disc absent.

Androecium Stamens (one or) two (or three), transverse, antepetalous, alternisepalous. Filaments short, free from each other, free from or somewhat adnate to tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse or latrorse?, longicidal (dehiscing by longitudinal slits). Tapetum secretory. Female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains usually tricolpate (sometimes tetra- or pentacolpate), fossaperturate with bulging mesocolpia, shed as monads, bicellular at dispersal. Exine semitectate, with columellate? infratectum, reticulate to microreticulate.

Gynoecium Pistil composed of two connate carpels, transverse, alternitepalous; compitum present. Ovary inferior, unilocular due to pseudomonomery (sometimes bilocular). Style single, simple, short, or absent. Stigma bilobate, hairy, papillate, Dry type. Male flowers often with pistillodium.

Ovules Placentation apical or subapical. Ovule one (or two) per ovary, anatropous, pendulous, epitropous, bitegmic, crassinucellar. Micropyle endostomal. Outer integument approx. three cell layers thick. Inner integument (two? to) four cell layers thick. Megagametophyte tetrasporous, 16-nuclear, Peperomia type, with six antipodal cells and additional cells fusing forming secondary megagametophyte nucleus. Endosperm development cellular. Endosperm haustoria? Embryogenesis?

Fruit Usually a drupe (rarely a nutlet).

Seeds Aril absent. Seed coat? Exotesta? Endotesta? Tegmen? Perisperm not developed. Endosperm copious, oily, starchy and with aleurone, with crystalloids. Suspensor without haustorium. Embryo minute, eccentric, well differentiated, chlorophyll? Cotyledons two. Germination phanerocotylar.

Cytology n = 12, 17, 27

DNA AP3-duplication [euAP3- + TM6-paralogues]; PI-dB motif present? Mitochondrial genes rps2 and rps11 probably absent (lost). Nuclear gene euAP3?

Phytochemistry Flavonols (kaempferol, quercetin), hyperoside (quercetin 3-O-galactoside), isoquercetin (quercetin 3-O-glucoside), pelargonidin, caffeic acid, ellagic acid, ellagitannins, and saponins present. Cyanogenesis via phenylalanine, isoleucine or valine. Proanthocyanidins not found.

Use Ornamental plants, medicinal plants; Gunnera chiloensis used for dyeing and tanning and the petioles as vegetables (nalca, rahuay) by many South American indian tribes.

Systematics Gunnera (c 40; tropical East and southern Africa, Madagascar, Malesia, New Guinea, the Solomon Islands, Tasmania, New Zealand, the Hawaiian Islands, Central and South America (above all in the Andes), Juan Fernandez, the Falkland Islands).

Gunnera is sister to Myrothamnus (Myrothamnaceae).

Gunnera herteri seems to be sister to the remaining species of Gunnera.

MYROTHAMNACEAE Nied.

( Back to Gunnerales )

Niedenzu in Engler et Prantl, Nat. Pflanzenfam., III, 2a: 103. Mar 1891, nom. cons.

Myrothamnales Nakai ex Reveal in Phytologia 74: 176. 25 Mar 1993; Myrothamnanae Takht., Divers. Classif. Fl. Pl.: 134. 24 Apr 1997

Genera/species 1/2

Distribution East Africa, northwestern and northeastern South Africa, Madagascar.

Fossils Tetrahedral tetrads of triporoidate to tricolporoidate pollen grains (e.g. Virgo amiantopollis), resembling those in Myrothamnus, have been found in the mid-Albian to the Cenomanian of eastern North America and Portugal.

Habit Dioecious, deciduous shrubs. Strongly poikilohydric aromatic xerophytes (‘resurrection plants’). Lateral branches usually as short shoots. Stems and branches narrowly winged.

Vegetative anatomy Phellogen? Medulla septate by sclerenchymatous diaphragms. Primary medullary strands narrow, uniseriate. Vessel elements with scalariform or reticulate-scalariform perforation plates; lateral pits alternate or opposite, bordered pits. Imperforate tracheary xylem elements tracheids with bordered pits, non-septate. Wood rays uniseriate, homocellular. Axial parenchyma absent or very scarce (apotracheal?). Sieve tube plastids S type. Nodes 3:3, trilacunar with three leaf traces, split lateral, of ‘common gap type’. Epidermis with resin-producing enlarged cells. Inner walls of xylem elements with lipids. Calciumoxalate present as druses. Xylem with lipids.

Trichomes Hairs absent.

Leaves Opposite, simple, entire, with plicate ptyxis. Stipules two, simple, lateral, small, persistent on base of leaf sheath; petiole base sheathing, fused and persistent. Petiole vascular bundle transection arcuate. Leaf sheath with four bundles: two bundles running directly to mid-vein, and two bundles forming commissural veins. Lamina as dry strongly folded and blackening, otherwise fan-shaped and outspread (five to seven times folded). Venation palmate-flabellate (open, dichotomously branched). Cells with lipids in connection with vascular strands. Stomata anomocytic. Cuticular wax crystalloids as tiny rodlets. Epidermis with balsam producing resinous cells. Subepidermal abaxial cells with tannins. Mesophyll with calciumoxalate druses. Leaf margin serrate or dentate towards apex.

Inflorescence Terminal, spike- or catkin-like, on lateral shoots. Male inflorescence in Myrothamnus moschata with terminal flower.

Flowers Actinomorphic or slightly zygomorphic (female flowers), very small. Epigyny? Tepals absent in female flowers and probably in male flowers; male flowers with one to more than four sepaloid scale-like free leaves (bracts or tepals?), or scale leaves absent; terminal flowers with four sepaloid scale-like free leaves as well as bracts and floral prophylls (bracteoles). Nectary absent. Disc absent.

Androecium Stamens three or four, or three to eight, respectively, alternitepalous. Filaments free (when stamens three or four) or connate at base (when stamens three to eight). Anthers basifixed, non-versatile, tetrasporangiate, latrorse, longicidal (dehiscing by longitudinal slits), with a proximal (basal) bifid orifice; connective prolonged. Tapetum secretory, with binucleate cells. Staminodia absent.

Pollen grains Microsporogenesis simultaneous. Pollen grains indistinctly shortly tricolpate to almost triporate, shed as tetrads, bicellular at dispersal. Pores possibly arranged according to Garside’s rule. Exine intectate, columellate, with papillate clavate columellae.

Gynoecium Pistil composed of three or four basally connate carpels; odd carpel abaxial; carpels with epidermal oil cells; terminal flowers with four alternitepalous carpels; compitum absent. Ovary tri- or quadrilocular at base. Stylodia three or four, short, recurved. Stigma wing-shaped, spatulate, adaxially decurrent, papillate, Dry type or almost so? Pistillodium absent.

Ovules Placentation central-axile (submarginal). Ovules approx. ten to more than 50 per carpel, anatropous, horizontal, bitegmic, crassinucellar. Micropyle bistomal. Outer integument ? cell layers thick. Inner integument ? cell layers thick. Megagametophyte disporous, 8-nucleate, Allium type. Endosperm development ab initio nuclear. Endosperm haustoria? Embryogenesis?

Fruit A schizocarp with (follicular or) ventricidal-septicidal capsular mericarps.

Seeds Aril absent. Seed coat exotestal. Exotestal cells with somewhat thickened outer walls. Endotesta? Tegmen? Perisperm not developed. Endosperm copious, oily. Embryo small, poorly (or well?) differentiated, chlorophyll? Cotyledons two. Germination?

Cytology n = 10 – Chloroplasts with a unique type of grana.

DNA Mitochondrial genes rps2 and rps11 probably absent (lost). Nuclear gene euAP3?

Phytochemistry Flavonols (kaempferol, quercetin, myricetin), cyanidin, ellagic and gallic acid, ellagitannins, gallotannins, galloyl quininic acid, galloyl esters of quininic acid, chalcones, dihydrochalcones, p-coumaric acid, sinapic acid, p-hydrobenzoic acid, vanillic acid, and syringinic acid present. Ethereal oils in the form of carvone, perillinic acid, 1,8-cineol, diosphenol, trans-pinocarvenol, pinocarvone, trans-pinocarvone, α-pinene, β-selinene, etc. Cyanogenesis via phenylalanine, isoleucine or valine. Foliar mesophyll cell walls containing arabinans and arabinogalactan proteins in a pectic matrix.

Use Medicinal plants.

Systematics Myrothamnus (2; M. flabellifolia: tropical East Africa, northwestern and northeastern South Africa; M. moschata: Madagascar).

Myrothamnus is sister to Gunnera (Gunneraceae).


Literature

André E. 1872. Gunnera brephogea Linden et André. – Ill. Hort. 19: 367-368.

Arwidsson T. 1938. Gunnera Herteri Osten in Brasilien gefunden. – Rev. Sudameric. Bot. V, 5/6: 157-158.

Bader F. 1961. Das Areal der Gattung Gunnera L. – Bot. Jahrb. Syst. 80: 281-293.

Beckett KA. 1988. Gunnera in cultivation. – The Plantsman 10: 160-166.

Behnke H-D. 1986. Contributions to the knowledge of sieve-element plastids in Gunneraceae and allied families. – Plant Syst. Evol. 151: 215-222.

Bergman B, Johansson C, Söderbäck E. 1992. The Nostoc-Gunnera symbiosis. – New Phytol. 122: 379-400.

Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F & al. 1993. The unusual sugar composition in the leaves of the resurrection plant Myrothamnus flabellifolia. – Physiol. Plant. 87: 223-226.

Boutique R, Verdcourt B. 1973. Haloragaceae. – In: Milne-Redhead E, Polhill RM (eds), Flora of tropical East Africa, Balkema, London, Rotterdam, pp. 1-4.

Bywater M. 1984. Myrothamnaceae. – In: Polhill RM (ed), Flora of tropical East Africa, A. A. Balkema, Rotterdam, pp. 1-5.

Carlquist SJ. 1976. Wood anatomy of Myrothamnus flabellifolia (Myrothamnaceae) and the problem of multiperforate perforation plates. – J. Arnold Arbor. 57: 119-126.

Carlquist SJ. 1990. Leaf anatomy of Geissolomataceae and Myrothamnaceae as a possible indicator of relationship to Bruniaceae. – Bull. Torrey Bot. Club 117: 420-428.

Chagonda LS, Makanda C, Chalchat JC. 1999. Essential oils of four wild and semi-wild plants from Zimbabwe: Colophospermum mopane (Kirk ex Benth.) Kirk ex Leonard, Helichrysum splendidum (Thunb.) Less, Myrothamnus flabellifolia Welw. and Tagetes minuta L. – J. Essent. Oil Res. 11: 573-578.

Child GF. 1960. Brief notes on the ecology of the resurrection plant (Myrothamnus flabellifolia) with mention of its water-absorbing abilities. – J. South Afr. Bot. 26: 1-8.

Cunha AP da, Lurdes Rodriguez Roque O de. 1974. Identificaçâo e dosagem dos principais constituintes do óleo essencial do Myrothamus flabellifolius Welw. de Angola. – Bol. Fac. Farm. Ecim. Ed. Ci. 34: 49-61.

Dahlgren RMT, Wyk AE van. 1988. Structures and relationships of families endemic to or centered in southern Africa. – Monogr. Syst. Bot. Missouri Bot. Gard. 25: 1-94.

Dawson MI. 1983. Chromosome numbers of three South American species of Gunnera (Gunneraceae). – New Zealand J. Bot. 21: 457-459.

Doyle MF, Scogin R. 1988a. A comparative phytochemical profile of the Gunneraceae. – New Zealand J. Bot. 26: 493-496.

Doyle MF, Scogin R. 1988b. Leaf phenolics of Gunnera manicata (Gunneraceae). – Aliso 12: 77-80.

Drennan PM, Smith MT, Goldsworthy D, Staden J van. 1993. The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. – J. Plant Physiol. 142: 493-496.

Drennan PM, Goldsworthy D, Buswell A. 2009. Marginal and laminar hydathode-like structures in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welv. – Flora 204: 210-219.

Endress PK. 1989. The systematic position of the Myrothamnaceae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 1, Introduction and ‘lower’ Hamamelidae, Syst. Assoc. Spec. Vol. 40A, Clarendon Press, Oxford, pp. 193-200.

Farrant JM, Kruger LA. 2001. Longevity of dry Myrothamnus flabellifolius in simulated field conditions. – Plant Growth Regulation 35: 109-120.

Farrant JM, Cooper K, Kruger LA, Sherwin HW. 1999. The effect of drying rate on the survival of three desiccation-tolerant angiosperm species. – Ann. Bot. 84: 371-379.

Farrant JM, Vander Willigen C, Loffel DA, Bartsch S, Whittaker A. 2003. An investigation into the role of light during desiccation of three angiosperm resurrection plants. – Plant Cell Environm. 26: 1275-1286.

Fuller DQ, Hickey LJ. 2005. Systematics and leaf architecture of the Gunneraceae. – Bot. Rev. 71: 295-353.

Gaff DF. 1977. Desiccation tolerant vascular plants of Southern Africa. – Oecologia 31: 95-109.

Glen HF, Sherwin HW, Condy G. 1999. Myrothamnus flabellifolia. – In: Flowering plants of Africa 56, NBI Publ., Pretoria, pp. 62-68.

Goldsworthy D-A. 1992. Desiccation tolerance in Myrothamnus flabellifolia Welw. – M.Sc. thesis, University of Natal, Pietermaritzburg, Republic of South Africa.

González F, Bello MA. 2009. Intra-individual variation of flowers in Gunnera subgenus Panke (Gunneraceae) and proposed apomorphies for Gunnerales. – Bot. J. Linn. Soc. 160: 262-283.

Grundell R. 1933. Zur Anatomie von Myrothamnus flabellifolia Welw. – Symb. Bot. Upsal. I(2): 1-17.

Hegnauer R. 1969. Chemical evidence for classification of some plant taxa. – In: Harborne JB, Swain T (eds), Perspectives in phytochemistry, London, pp. 128-138.

Jäger-Zürn I. 1966. Infloreszenz- und blütenmorphologische, sowie embryologische Untersuchungen an Myrothamnus Welw. – Beitr. Biol. Pflanzen 42: 241-271.

Jarzen DM. 1980. The occurrence of Gunnera pollen in the fossil record. – Biotropica 12: 117-123.

Jarzen DM, Dettmann ME. 1989. Taxonomic revision of Tricolpites reticulatus Cookson ex Couper 1953 with notes on the biogeography of Gunnera L. – Pollen Spores 31: 97-112.

Johansson C, Bergman B. 1994. Reconstitution of the Gunnera manicata Linde symbiosis: cyanobacterial specificity. – New Phytol. 126: 643-652.

Khamar HJ, Breathwaite EK, Prasse CE, Fraley ER, Secor CR, Chibane FL, Elhai J, Chiu W-L. 2010. Multiple roles of soluble sugars in the establishment of Gunnera-Nostoc endosymbiosis. – Plant Physiol. 154: 1381-1389.

Koonjul PK. 1999. Investigating the mechanisms of desiccation tolerance in the resurrection plant Myrothamnus flabellifolius (Welw.). – Ph.D. diss., University of Cape Town, Republic of South Africa.

Koonjul PK, Brandt WF, Lindsey GG, Farrant JM. 2000. Isolation and characterisation of chloroplasts from the resurrection plant Myrothamnus flabellifolius Welw. – J. Plant Physiol. 156: 584-594.

Kubitzki K. 1993. Myrothamnaceae. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 468-469.

Lisowski S, Malaisse F, Symoens JJ. 1970. Les Myrothamnaceae, nouvelle famille pour la flore phanérogamique du Congo-Kinshasa. – Bull. Jard. Bot. Natl. Belg. 40: 225-229.

Lowrey TK, Robinson ER. 1988. The interaction of gynomonoecy, dichogamy, and wind-pollination in Gunnera perpensa L. (Gunneraceae) in South Africa. – Monogr. Syst. Bot. Missouri Bot. Gard. 25: 237-246.

Mattfeld J. 1933. Weiteres zur Kenntnis der Gunnera Herteri Osten. – Ostenia (Colección de Trabajos Botanicos), Montevideo, pp. 102-118.

Meijden R van der, Caspers N. 1971. Haloragaceae. – In: Steenis CGGJ van (ed), Flora Malesiana I, 7, Wolters-Noordhoff, Groningen, pp. 239-263.

Mendes EJ. 1978. 69. Myrothamnaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 68-71.

Mendes EJ. 1978. 71. Haloragaceae. – In: Launert E (ed), Flora Zambesiaca 4, Flora Zambesiaca Managing Committee, London, pp. 74-81.

Miehe H. 1924. Entwicklungsgeschichtliche Untersuchungen der Algensymbiose bei Gunnera macrophylla Bl. – Flora 117: 1-15.

Modilewski J. 1908. Zur Embryobildung von Gunnera chilensis. – Ber. Deutsch. Bot. Ges. 26a: 550-556.

Moore JP, Ravenscroft N, Lindsey GG, Farrant JM, Brandt WF. 2004. Galloylquinate ester:anthocyanin complexes in the leaves of the desiccated resurrection plant Myrothamnus flabellifolius. – In: Hoikkalo A, Soidinsalo O (eds), Polyphenols Communications: XXII International Conference on Polyphenols, 25-28 August 2004, Helsinki, Finland.

Moore JP, Farrant JM, Lindsey GG, Brandt WF. 2005. The South African and Namibian populations of resurrection plant Myrothamnus flabellifolius are genetically distinct and display variation in their galloylquinic acid composition. – J. Chem. Ecol. 31: 2823-2834.

Moore JP, Westall KL, Ravenscroft N, Farrant JM, Lindsey GG, Brandt WF. 2005. The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5-tri-O-galloylquinic aid, protects membranes against desiccation and free radical-induced oxidation. – Biochem. J. 385: 301-308.

Moore JP, Nguema-Ona E, Chevalier L, Lindsey GG, Brandt WF, Lerouge P. 2006. Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. – Plant Physiol. 141: 651-662.

Moore JP, Lindsey GG, Farrant JM, Brandt WF. 2007. An overview of the desiccation-tolerant resurrection plant Myrothamnus flabellifer. – Ann. Bot. 99: 211-217.

Morgan DR, Soltis DE. 1993. Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. – Ann. Missouri Bot. Gard. 80: 631-660.

Niedenzu F. 1891. Myrothamnaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(2a), W. Engelmann, Leipzig, pp. 103-105.

Niedenzu F, Engler A. 1930. Myrothamnaceae. – In: Engler A, Harms H (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 18a, W. Engelmann, Leipzig, pp. 262-265.

Orchard AE. 1990. Gunneraceae. – In: George AS (ed), Flora of Australia 18, Australian Government Publ. Service, Canberra, pp. 85-87.

Osten C. 1932. Una Gunnera en el Uruguay: Gunnera Herteri Osten n. sp. – Communicaciones 2: 33-39.

Osten C, Herter G. 1933. Sobre el descubrimiento de una Gunnera en el país. – Arch. Soc. Biol. Montevideo V: 3-9.

Pacheco P, Crawford DJ, Stuessy TF, Silva MO. 1993. Flavonoid chemistry and evolution of Gunnera (Gunneraceae) in the Juan Fernandez Islands, Chile. – Gayana Bot. 50: 17-28.

Pacheco PD, Stuessy TF, Crawford DJ. 1991. Natural interspecific hybridization in Gunnera (Gunneraceae) of the Juan Fernandez Islands, Chile. – Pacific Sci. 45: 389-399.

Palkovic LA. 1978. A hybrid of Gunnera from Costa Rica. – Syst. Bot. 3: 226-235.

Petersen OG. 1893. Halorrhagidaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien III(7), W. Engelmann, Leipzig, pp. 226-237.

Praglowski J. 1970. The pollen morphology of the Haloragaceae with reference to taxonomy. – Grana 10: 159-239.

Puff C. 1978a. The nodal anatomy of Myrothamnus flabellifolius (Myrothamnaceae): another example of a ‘split-lateral’ condition. – J. Arnold Arbor. 59: 192-196.

Puff C. 1978b. Zur Biologie von Myrothamnus flabellifolius Welw. (Myrothamnaceae). – Dinteria 14: 1-20.

Reiner G. 1991. Morphologie, Anatomie und Biologie dreier Gunnera-Arten: G. manicata, G. magellanica, G. monoica. – Diploma thesis, Universität Zürich, Switzerland.

Reinke J. 1873. Untersuchung über die Morphologie der Vegetationsorgane von Gunnera. – In: Reinke J (ed), Morphologische Abhandlungen, W. Engelmann, Leipzig, pp. 45-123.

Rodigas E. 1884. Gunnera manicata Lind. – Ill. Hort. 31: 128.

Ronse De Craene L-P, Wanntorp L. 2006. Evolution of floral characters in Gunnera (Gunneraceae). – Syst. Bot. 31: 671-688.

Ruiz E, Crawford DJ, Stuessy TF, Conzález F, Samuel R, Becerra J, Silva M. 2004. Phylogenetic relationships and genetic divergence among endemic species of Berberis, Gunnera, Myrceugenia and Sophora of the Juan Fernández Islands (Chile) and their continental progenitors based on isozymes and nrITS sequences. – Taxon 53: 321-332.

Rutishauser R, Wanntorp L, Pfeifer E. 2004. Gunnera herteri – developmental morphology of a dwarf from Uruguay and S. Brazil (Gunneraceae). – Plant Syst. Evol. 248: 219-241.

Schnegg H. 1902. Beiträge zur Kenntnis der Gattung Gunnera. – Flora 90: 161-208.

Schneider H, Wistuba N, Wagner H-J, Thürner F, Zimmermann U. 2000. Water rise kinetics in refilling xylem after desiccation in a resurrection plant. – New Phytol. 148: 221-238.

Schneider H, Manz B, Westhoff M, Mimietz S, Szimtenings M, Neuberger T, Faber C, Krohne G, Haase A, Volke F, Zimmermann U. 2003. The impact of lipid distribution, composition and mobility on xylem water refilling of the resurrection plant Myrothamnus flabellifolia. – New Phytol. 159: 487-505.

Schwacke W. 1890. Eine brasilianische Gunnera (Gunnera manicata Linden). – Beibl. Bot. Jahrb. 28: 1-3.

Sherwin HW, Farrant JM. 1996. Differences in re-hydration of three desiccation-tolerant angiosperm species. – Ann. Bot. 78: 703-710.

Sherwin HW, Lamenter NW, February E, Vander Willigen C, Farrant J. 1998. Xylem hydraulic characteristics, water relations and wood anatomy of the resurrection plant Myrothamnus flabellifolius Welw. – Ann. Bot. 81: 567-575.

Silvester WB, Smith DR. 1969. Nitrogen fixation by Gunnera-Nostoc symbiosis. – Nature 224: 1231.

Skottsberg C. 1928. Zur Organographie von Gunnera. – Svensk Bot. Tidskr. 22: 392-415.

Skottsberg C. 1930. Bemerkungen über die Morphologie von Gunnera macrophylla Bl. – Acta Horti Gothob. 5: 115-126.

Söderbäck E, Bergman B. 1993. The Nostoc-Gunnera symbiosis: carbon fixation and translocation. – Physiol. Plant. 89: 125-132.

Soltis DE, Senters AE, Zanis MJ, Kim S, Thompson JD, Soltis PS, Ronse De Craene LP, Endress PK, Farris JS. 2003. Gunnerales are sister to other core eudicots: implications for the evolution of pentamery. – Amer. J. Bot. 90: 461-470.

Stapf O. 1919. XXVI. Gunnera manicata and Gunnera brasiliensis. – Kew Bull. 1919: 376-378.

St. John H. 1946. Hawaiian plant studies 11. Endemism in the Hawaiian flora, and a revision of the Hawaiian species of Gunnera (Haloragidaceae). – Proc. Calif. Acad. Sci. XXV(16): 377-420.

St. John H. 1957. Gunnera magnifica, a new species from the Andes of Colombia. – Svensk Bot. Tidskr. 51: 521-528.

Suau R, Cuevas A, Values V, Reid MS. 1991. Arbutin and sucrose in the leaves of the resurrection plant Myrothamnus flabellifolia. – Phytochemistry 30: 2555-2556.

Vieweg GH, Ziegler H. 1969. Zur Physiologie von Myrothamnus flabellifolia. – Ber. Deutsch. Bot. Ges. 82: 29-36.

Viljoen AM, Klepser ME, Ernst EJ, Keele D, Roling E, Vuuren S van. 2002. The composition and antimicrobial activity of the essential oil of the resurrection plant Myrothamnus flabellfolius. – South Afr. J. Bot. 68: 100-105.

Wagner H-J, Schneider H, Mimietz S, Wistuba N, Rokitta M, Krohne G, Haase A, Zimmermann U. 2000. Xylem conduits of a resurrection plant contain a unique lipid lining and refill following a distinct pattern after desiccation. – New Phytol. 148: 239-255.

Wanntorp L. 2002. Phylogeny and biogeography of Gunnera. – Ph.D. diss., Stockholm University, Sweden.

Wanntorp L. 2006. Molecular systematics and evolution of the genus Gunnera. – In: Sharma AK, Sharma A (eds), Plant genome biodiversity and evolution. Vol. 1, Part C. Phanerogams (angiosperm-dicotyledons), Science Publ., Enfield, New Hampshire.

Wanntorp L, Ronse De Craene LP. 2005. The Gunnera flower: key to eudicot diversification or response to pollination mode? – Intern. J. Plant Sci. 166: 945-953.

Wanntorp L, Wanntorp H-E. 2003. The biogeography of Gunnera L.: vicariance and dispersal. – J. Biogeogr. 30: 979-987.

Wanntorp L, Wanntorp H-E, Oxelman B, Källersjö M. 2001. Phylogeny of Gunnera. – Plant Syst. Evol. 226: 85-107.

Wanntorp L, Wanntorp H-E, Källersjö M. 2002a. Phylogenetic relationships of Gunnera based on nuclear ribosomal DNA ITS region, rbcL and rps16 intron sequences. – Syst. Bot. 27: 512-521.

Wanntorp L, Wanntorp H-E, Källersjö M. 2002b. The identity of Gunnera manicata Linden ex André – resolving a Brazilian-Colombian enigma. – Taxon 51: 493-497.

Wanntorp L, Wanntorp H-E, Rutishauser R. 2003. On the homology of the scales in Gunnera (Gunneraceae). – Bot. J. Linn. Soc. 142: 301-308.

Wanntorp L, Praglowski J, Grafström E. 2004. New insights into the pollen morphology of the genus Gunnera (Gunneraceae). – Grana 43: 15-21.

Wanntorp L, Dettmann ME, Jarzen DM. 2004. Tracking the Mesozoic distribution of Gunnera: comparison with the fossil pollen species Tricolpites reticulatus Cookson. – Rev. Paleobot. Palynol. 132: 163-174.

Weimarck H. 1936. Myrothamnus flabellifolia Welw., eine polymorphe Pflanzenart. – Bot. Not. 1936: 451-462.

Wellburn FAM, Wellburn AR. 1976. Novel chloroplasts and unusual cellular ultrastructure in the ‘resurrection’ plant Myrothamnus flabellifolius Welw. (Myrothamnaceae). – Bot. J. Linn. Soc. 72: 51-54.

Wilkinson HP. 1998. Gunneraceae. – In: Cutler DF, Gregory M (eds), Anatomy of the dicotyledons. 2nd ed. Vol. IV. Saxifragales, Clarendon Press, Oxford, pp. 260-272.

Wilkinson HP. 2000. A revision of the anatomy of Gunneraceae. – Bot. J. Linn. Soc. 134: 233-266.

Wilkinson HP, Wanntorp L. 2006. Gunneraceae. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p. p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 177-183.

Wilson L, Drennan PM. 1992. The distribution of lipids in Myrothamnus flabellifolius Welw. – Proc. Electron Microscopy Soc. South. Africa 22: 99-100.