LILIIDAE J. H. Schaffn.

Schaffner in Ohio Naturalist 11: 413. Dec 1911 [’Liliiflorae’]

Liliopsida Batsch, Tab. Regni Veg.: 121. 2 Mai 1802


[Acorus+[Alismatales+[Petrosaviaceae+[Taccales+Pandanales]+[Liliales+[Iridales+ Commelinidae]]]]]


ACORACEAE Martinov

Martinov, Tekhno-Bot. Slovar: 6. 3 Aug 1820

Acorineae Link, Handbuch 1: 114. 4-11 Jul 1829 [’Acoroideae’]; Acorales Link in C. F. P. von Martius, Consp. Regn. Veg.: 6. Sep-Oct 1835 [‘Acorinae’]; Acoranae Reveal in Phytologia 82: 129. 28 Nov 1997

Genera/species 1/2

Distribution Temperate and subtropical regions in Eurasia, eastern North America, southern, eastern and southeastern Asia.

Fossils There are few unambiguous fossils of Acoraceae. Some Late Barremian to Early Aptian pollen grains from Portugal may be closely allied to Acorus. Remnants of Acorus are known from the Cenozoic of North America.

Habit Bisexual, perennial herbs. Aquatic plants or hygrophytes. Aromatic.

Vegetative anatomy Root cortex with schizogenous intercellular spaces and idioblasts with ethereal oils, etc. Root stele pentarch. Phellogen absent. Stem endodermis with casparian strips. Vascular bundles amphivasal. Vessel elements in roots and rhizome, aberrant and tracheid-like, with scalariform perforation plates with pit membranes; lateral pits scalariform or transitional, simple pits. Imperforate tracheary xylem elements tracheids with simple pits. Wood rays absent. Axial parenchyma? Sieve tube plastids P2c type. Nodes multilacunar, with several leaf traces. Laticifers absent. Silica bodies absent. Calciumoxalate as druses, prismatic crystals, etc. (raphides absent).

Trichomes Hairs unicellular.

Leaves Alternate (distichous), simple, entire, isobifacial, ensiform, with ? ptyxis. Pseudolamina developing from leaf base zone or from upper part of foliar primordium. Stipules absent; leaf sheath open. Petiole vascular bundle transection? Leaf axils with intravaginal scales/colleters (squamulae intravaginales). Venation parallel. Stomata paracytic. Cuticular wax crystalloids? Mesophyll with idioblasts containing ethereal oils. Leaf margin entire.

Inflorescence Terminal, persistent fleshy spadix in axil of foliaceous green bract, spatha, seemingly forming continuation of peduncle. Peduncle foliaceous, ensiform, with two separate vascular bundle systems. Bracts and foliar prophylls (bracteoles) absent.

Flowers Slightly zygomorphic. Hypogyny. Tepals 3+3, sepaloid, persistent, free; abaxial (median) tepal in outer perianth whorl larger, resembling bract (possibly bract, then abaxial outer tepal absent; alternatively tepal strongly adnate to bract) and enclosing bud; bract and abaxial (median) outer tepal developmentally similar. Nectary probably absent. Disc absent.

Androecium Stamens 3+3, whorled. Filaments linear, free from each other and from tepals. Anthers basifixed, non-versatile, tetrasporangiate, introrse-latrorse, longicidal (dehiscing by longitudinal slits). Tapetum secretory, with binucleate to quadrinucleate cells. Staminodia absent.

Pollen grains Microsporogenesis successive. Pollen grains monosulcate to subulcerate, shed as monads, bicellular at dispersal. Exine tectate, with columellate? infratectum, foveolate to psilate; endexine lamellate.

Gynoecium Pistil composed of two or three connate carpels; carpel ascidiate and plicate (intermediate), postgenitally fused, with secretory canal (filled by secretions). Ovary superior, bilocular or trilocular; ovules enclosed by mucilage secreted from mucilaginous hairs on inner side of ovary; septa with non-secreting slits (septal nectaries?). Style single, simple, very short, wide, massive; stylar canal with mucilaginous exudate. Stigma very small, type? Pistillodium absent.

Ovules Placentation apical(-axile). Ovules two to four (or five) per carpel, orthotropous, pendulous, bitegmic, pseudocrassinucellar. Micropyle endostomal. Outer integument three or four cell layers thick. Inner integument two cell layers thick. Integuments (especially outer integument) hairy. Hypostase massive, with central columella and radiating cells. Parietal cell not formed. Nucellar cap two cell layers thick, formed by periclinal cell divisions of megasporangial epidermis. Megagametophyte monosporous, Polygonum type. Antipodal cells persistent and somewhat proliferating (up to five cells). Chalazal basal apparatus absent. Endosperm development ab initio cellular, with first division transverse and divisions uniform within endosperm halves. Endosperm haustoria absent. Embryogenesis?

Fruit A one- or several-seeded baccate fleshy capsule (more or less dehiscent) with persistent tepals.

Seeds Aril absent. Testa in Acorus gramineus with bristle-like hairs. Exotesta? Mesotesta and endotesta unspecialized. Exotegmen fibrous to sclerotic. Endotegmen? Perisperm consisting of one cell layer, oily and proteinaceous, without starch, dermal (developing from megasporangial epidermis). Endosperm copious. Embryo small, axile, cylindrical, with chlorophyll. Cotyledon one, subulate, unifacial, with distal part in the form of haustorium. Germination phanerocotylar. Radicula ephemeral. Root collar with long, densely spaced rhizoids. First leaf terete.

Cytology n = 9, 11, 12, 18, 22, 24 – Polyploidy occurring.

DNA Deletion of 3 bp in atpA. Mitochondrial intron processing according to cis-splicing mechanism.

Phytochemistry Polyphenols, ethereal oils containing phenylpropanoids, monoterpenes and sesquiterpenes, tannins, proanthocyanidins, acorine (diterpene alkaloid), and asarone present.

Use Ornamental plants, aquarium plants (Acorus gramineus), medicinal plans, perfumes, aroma for liqueurs.

Systematics Acorus (2; A. calamus, A. gramineus; temperate and subtropical regions in Eurasia, eastern North America, southern, eastern and southeastern Asia to Sulawesi and New Guinea; naturalized over large areas).

Acorus has often been hypothesized as sister-group to all other monocotyledons (Liliidae). However, it was sister, with relatively low support, to the core Alismatales (Alismatales except Tofieldiaceae and Araceae) in the analyses by Petersen et al. (2016) using molecular and morphological characters.

The leaves have possibly developed from the upper part of the leaf primordium (cf. Alismatales).

The development of the endosperm in Acorus has been much debated during the years. The development is unique among monocots, according to Holloway & Friedman (2008), in being cellular. On the other hand, Tobe & Kadokawa (2010) reinterpret the endosperm in Alismatales and Petrosaviaceae as cellular instead of helobial. The cellular development is a plesiomorphy in Liliidae, and, provided Tobe & Kadokawa (2010) are correct, nuclear endosperm has evolved two or three times in the monocotyledons: once in Alismatales, once in Petrosavia (Petrosaviaceae) and once in the ancestor of all other (‘post-petrosavian’) monocots.

The presence of the volatile toxic ether asarone in both Acorus and Asaraceae is worth notifying, although it appears to be a parallelism.


Literature

Albertazzi FJ, Kudla J, Bock R. 1998. The cox2 locus of the primitive angiosperm plant Acorus calamus: molecular structure, transcript processing and RNA editing. – Mol. Gen. Genet. 259: 591-600.

Amelunxen VF, Gronau G. 1969a. Untersuchungen an den Gerbstoffzellen der Niederblätter von Acorus calamus L. – Cytobiologie 1: 58-69.

Amelunxen VF, Gronau G. 1969b. Electron microscopic investigations on the oil cells of Acorus calamus L. – Zeitschr. Pflanzenphysiol. 60: 156-158.

Björnstad K, Helander A, Hultén P, Beck O. 2009. Bioanalytical investigation of asarone in connection with Acorus calamus oil intoxications. – J. Anal. Toxicol. 33: 604-609.

Bochenska I, Kozłowski J. 1974. Porównawcze badania nad budowa owoców gatunków z rodziny obrazkowatych (Araceae) wystepujacych w Polsce. – Herba Pol. 20: 3-10.

Bogner J. 2001. What is Acorus brachystachys Heer? – Aroideana 24: 100-101.

Bogner J. 2011. Acoraceae. – In: Noteboom HP (ed), Flora Malesiana, ser. I, vol. 20, Nationaal Herbarium Nederland, Leiden, The Netherlands.

Bogner J, Mayo SJ. 1998. Acoraceae. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 7-11.

Buell MF. 1935. Seed and seedling of Acorus calamus. – Bot. Gaz. (Crawfordsville) 96: 758-765.

Buell MF. 1938. Embryology of Acorus calamus. – Bot. Gaz. (Crawfordsville) 99: 556-568.

Buzgó M. 2001. Flower structure and development of Araceae compared with alismatids and Acoraceae. – Bot. J. Linn. Soc. 136: 393-425.

Buzgó M, Endress PK. 2000. Floral structure and development of Acoraceae and its systematic relationship with basal angiosperms. – Intern. J. Plant Sci. 161: 23-41.

Carlquist SJ, Schneider EL. 1997. Origin and nature of vessels in monocotyledons 1. Acorus. – Intern. J. Plant Sci. 158: 51-58.

Crepet WL. 1977. Investigations of angiosperms from the Eocene of North America: an aroid inflorescence. – Rev. Palaeobot. Palynol. 25: 241-252.

Duvall MR. 2001. An anatomical study of anther development in Acorus L.: phylogenetic implications. – Plant Syst. Evol. 228: 143-152.

Duvall MR, Learn GH Jr, Eguiarte LE, Clegg MT. 1993. Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon. – Proc. Natl. Acad. Sci. U.S.A. 90: 4641-4644.

Ertl PO. 1932. Vergleichende Untersuchungen über die Entwicklung der Blattnervatur der Araceen. – Flora 126: 118-120.

Floyd SK, Friedman WE. 2000. Evolution of endosperm developmental patterns among basal flowering plants. – Intern. J. Plant Sci. 161(Suppl.): S57-S81.

French JC. 1985. Patterns of endothecial wall thickenings in Araceae: subfamilies Pothoideae and Monsteroideae. – Amer. J. Bot. 72: 472-486.

French JC. 1987. Structure of ovular and placental trichomes of Araceae. – Bot. Gaz. 148: 198-208.

French JC. 1997. Vegetative anatomy. – In: Mayo SJ, Bogner J, Boyce PC (eds), The genera of Araceae, Royal Botanic Gardens, Kew, pp. 9-24.

French JC, Tomlinson PB. 1981. Vascular patterns in stems of Araceae: subfamily Pothoideae. – Amer. J. Bot. 68: 713-729.

Friis EM, Pedersen KR, Crane PR. 2010. Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. – Rev. Palaeobot. Palynol. 162: 341-361.

Goremykin VM/V, Holland B, Hirsch-Ernst KI, Hellwig FH. 2005. Analysis of Acorus calamus genome and its phylogenetic implications. – Mol. Biol. Evol. 22: 1813-1822.

Grayum MH. 1984. Palynology and phylogeny of the Araceae. – Ph.D. diss., University of Massachusetts, Amherst, Massachusetts.

Grayum MH. 1987. A summary of evidence and arguments supporting the removal of Acorus from the Araceae. – Taxon 36: 723-729.

Heer O. 1870. Die miozene Flora und Fauna Spitzbergens. – Kungl. Sv. Vetensk.-Akad. Handl. 8(7): 1-98.

Janaki-Ammal EK, Sobty SN, Handa KL. 1964. The interrelationship between polyploidy, altitude and chemical composition in Acorus calamus. – Curr. Sci. 33: 500.

Kaplan DR. 1970. Comparative foliar histogenesis of Acorus calamus and its bearing on the phyllode theory of monocotyledonous leaves. – Amer. J. Bot. 57: 331-361.

Kaplan DR. 1973. Comparative developmental analysis of heteroblastic leaf series of axillary shoots of Acorus calamus L. (Araceae). – Cellule 69: 253-290.

Keating RC. 2003. Acoraceae and Araceae. – In: Gregory M, Cutler DF (eds), Anatomy of the monocotyledons IX, Oxford University Press, Oxford.

Keller K. 1982. Untersuchungen zum ß-Asarongehalt handelsüblicher Kalmusdrogen sowie zu den Inhaltsstoffen des asaronfreien Kalmus. – Ph.D. diss., Universität Saarbrücken, Germany.

Kozlowski J. 1960. Kariotypy tartaraku (Acorus calamus L.) na terenie Polski. – Biul. Inst. Roslin Lecziczych. Poznan 6: 65-70.

Löve Á, Löve D. 1957. Drug content and polyploidy in Acorus. – Proc. Genet. Soc. Can. 2: 14-17.

Mayo SJ, Bogner J, Boyce PC. 1997. The genera of Araceae I-XII. – Royal Botanic Gardens, Kew.

Mücke M. 1908. Über den Bau und die Entwicklung der Früchte und über die Herkunft von Acorus calamus L. – Bot. Zeitung (Berlin) 66: 1-23.

Packer JG, Ringius GS. 1984. The distribution and status of Acorus (Araceae) in Canada. – Can. J. Bot. 62: 2248-2252.

Parmelee J, Savile DBO. 1954. Life history and relationships of the rusts of Sparganium and Acorus. – Mycologia 46: 823-836.

Perrett S, Whitfield PJ. 1995. Anthelmintic and pesticidal activity of Acorus gramineus (Araceae) is associated with phenylpropanoid asarones. – Phytother. Res. 9: 405.

Peterson G. 1989. Cytology and systematics of Araceae. – Nord. J. Bot. 9: 119-166.

Petersen G, Seberg O, Cuenca A, Stevenson DW, Thadeo M, Davis JI, Graham S, Ross TG. 2016. Phylogeny of the Alismatales (Monocotyledons) and the relationship of Acorus (Acorales?). – Cladistics 32: 141-159.

Ray TS. 1988. Survey of shoot organization in the Araceae. – Amer. J. Bot. 75: 56-84.

Remizowa M, Sokoloff D. 2003. Inflorescence and floral morphology in Tofieldia (Tofieldiaceae) compared with Araceae, Acoraceae and Alismatales s. str. – Bot. Jahrb. Syst. 124: 255-271.

Röst LCM. 1978. Biosystematic investigations with Acorus L. (Araceae) 1. Cytotaxonomy. – Proc. Kon. Nederl. Akad. Wetensch., ser. C, 81: 428-441.

Röst LCM 1979. Biosystematic investigations with Acorus 4. Communication. A synthetic approach to the classification of the genus. – Planta Med. 37: 289-307.

Rudall PJ, Furness CA. 1997. Systematics of Acorus: ovule and anther. – Intern. J. Plant Sci. 158: 640-651.

Shenvi S, Vinod, Hgde R, Kush A, Reddy GC. 2011. A unique water soluble formulation of β-asarone from sweet flag (Acorus calamus L.) and its in vitro activity against some fungal plant pathogens. – J. Med. Plants Res. 5: 5132-5137.

Soukup A, Seago JL Jr, Votrubová O. 2005. Developmental anatomy of the root cortex of the basal monocotyledon Acorus calamus (Acorales, Acoraceae). – Ann. Bot. 96: 379-385.

Wieffering JH. 1972. Some notes on the diploid chromosome number of the genus Acorus L. (Araceae). – Acta Bot. Neerl. 21: 555-559.

Wulff HD. 1940. Über die Ursache der Sterilität des Kalmus (Acorus calamus L.). – Planta 31: 478-491.

Wulff HD. 1946. Der Ölgehalt verschiedenchromosomiger Rassen vom Kalmus (Acorus calamus L.). – Zeitschr. Naturforsch. 1: 600-603.

Wulff HD. 1950. Ölgehalt und Chromosomenzahl des nordamerikanischen Kalmus (Acorus calamus L.). – Arch. Pharm. 55: 155-161.

Wulff HD. 1954. Zur Zytologie, geographischen Verbreitung und Morphologie des Kalmus. – Arch. Pharm., Ber. Deutsch. Pharm. Ges. 287: 529-541.

Wulff HD, Fritz E. 1958. Untersuchungen an einem variegaten Kalmus (Acorus calamus). – Flora 146: 328-339.

Wulff HD, Hoffman B. 1957. Kalziumoxalat-Gehalt und Polyploidie be Rosa und Acorus. – Ber. Deutsch. Bot. Ges. 70: 383-388.

Wulff HD, Stahl E. 1960. “Chemische Rassen” bei Acorus calamus. – Naturwissenschaften 47: 114.

Zhu ZY. 1985. Some new taxa of Acorus (Araceae) from Sichuan. – Acta Bot. Boreali-Occident. Sin. 5: 118-121.