MAGNOLIOPSIDA Brongn.

Brongniart, Enum. Plant. Mus. Paris: xxvi, 95. 12 Aug 1843 [’Magnolineae’]


Maximum likelihood (ML) majority-rule consensus tree of Magnoliopsida (Pan-Angiospermae) based on DNA sequence data (Soltis & al. 2011, slightly modified). Amborella, Nymphaeales and Schisandrales being successive sister-groups to all other angiosperms had more than 80% bootstrap (BS) support in the 17-gene analysis by Soltis & al. (2011). The position of Amborella as sister to all other angiosperms is highly supported by complete plastid genome sequence analyses (Kim, Yoo & al. 2004; Moore & al. 2007; Soltis & al. 2011; etc.). The sister-group relationship [Chloranthaceae+Magnoliidae] had a BS support of 85%. The clades [Magnoliales+Laurales] and [Canellales+Piperales] each had a BS support of 100%. The clade comprising Liliidae, Ceratophyllum and Tricolpatae was supported by 86%, whereas the support of Ceratophyllum as sister to Tricolpatae was only 68%. The BS support for Sabiaceae as sister to the remaining Tricolpatae (a trichotomy in this tree) was likewise relatively low (59%). Sabiaceae are sometimes recovered as sister to Proteales, yet with weak to moderate support (Qiu & al. 2006; Moore & al. 2008; Burleigh & al. 2009; Moore & al. 2011; Soltis & al. 2011). Gunnerales were sister to the Pentapetalae with a BS support of 99%. Ranunculales were as usual sister to the remaining Tricolpatae (BS support 100%). The positions of Didymelales and Trochodendrales as successive sister-groups to Gunneridae had a BS support of 98% and 100%, respectively (Moore & al. 2010; Soltis & al. 2011). Gunnerales were sister to the remaining angiosperms, the Pentapetalae, with a support of 100%. Superasteridae (Santalales to Asteridae) and Superrosidae (Saxifragales and Rosidae) were supported by 87% and 100%, respectively. In some other analyses Berberidopsidales were sister to Asteridae, and Caryophyllales were sister to these two groups. The position of Dilleniaceae as sister to Superasteridae was supported by 97% in Soltis & al. (2011). In some other analyses they were recovered as sister to, i.a., the remaining Pentapetalae, or to the clade [Superasteridae+Superrosidae] or to Superrosidae, although with fairly low support (Moore & al. 2010). The maximum parsimony (MP) consensus tree was largely identical to the ML tree, although Ceratophyllum was sister to Liliidae and Dilleniaceae were sister to Caryophyllales. – Extant angiosperms began to diversify in the mid-Jurassic, c. 170 Mya, according to unconstrained penalized likelihood analyses (Moore & al. 2007), and the five major mesangiosperm lineages diversified fairly rapidly during the earliest Cretaceous. The initial divergence of these five lineages was dated to 143.8+4.8 Mya, and the divergence of Chloranthus and Magnoliidae was dated to 140.3+4.8 Mya. The origins of the extant crown groups of Magnoliidae, Liliidae, and Tricolpatae were dated to branching points somewhat later in the Cretaceous: 130.1+4.4 Mya for Magnoliidae, 128.9+4.9 Mya for Liliidae, and 124.8+6.3 Mya for Tricolpatae. Divergence times and standard errors (in parentheses) in Mya for deep-level angiosperm nodes as estimated by penalized likelihood analyses were as follows: angiosperms 169.7 (3.46) – Nymphaeales+Illicium+Mesangiospermae 163.5 (2.63) – Illicium+Mesangiospermae 154.8 (2.53) – Mesangiospermae 143.9 (2.67) – Chloranthus+Magnoliidae 140.4 (2.54) – Magnoliidae 130.3 (2.20) – Liliidae+Ceratophyllum+Tricolpatae 143.1 (3.18) – Liliidae 129.1 (2.69) – Ceratophyllum+Tricolpatae 141.4 (2.97) – Tricolpatae 124.9 (3.43).

Pan-Angiospermae P. D. Cantino et M. J. Donoghue in Taxon 56, E23. 2007

Habit Bisexual or unisexual, trees, shrubs, lianas, suffrutices, or perennial, biennial or annual herbs.

Root Main root usually developing from radicula and usually as tap root with lateral roots (radicula sometimes ephemeral, all roots of mature plant being adventitious). Root cap and epidermis usually with common ontogenetic origin. Apical meristem open or intermediate. Vascular tissue diarch to pentarch. Lateral roots arising opposite or when diarch immediately adjacent to xylem poles. Phellogen deeply seated. Trichoblasts (differentiated cells forming root hairs) absent. Epidermis probably initiated from inner root cap layer.

Stem Shoot apex with tunica-corpus construction. Tunica two-layered. Phellogen usually superficial (initiated at or immediately below epidermis; sometimes deeply seated, i.e. initiated deep in cortex, inside pericycle or in phloem). Vascular bundles usually arranged in cylinder (annular in cross-section; sometimes in two or more concentric cylinders or as scattered bundles). Circular bordered pits when present without margo and torus. Perforation plates (tracheid:tracheid plates) with primarily scalariform pitting (secondarily simple). Wood fibres (imperforate tracheary xylem elements) and axial (wood) parenchyma usually present. Reaction wood with gelatinous fibres. Starch grains simple. Primary cell walls usually with pectic polysaccharides (mannans sparse). Cytoplasm not occluding sieve plate pores, containing P proteins. Sieve tube with sieve plate. Sieve tubes eunucleate (nucleated companion cells, non-nucleated sieve tube and P proteins developing from common mother cell). Albuminous Strassburger cells, functionally associated with sieve cells, not developing from same mother cell. Sieve tube plastids containing only starch grains (S type), or with protein inclusions as well (P type) (rarely with neither starch nor protein, S0 type). Nodes usually unilacunar or trilacunar (sometimes bilacunar or multilacunar) with usually one or three (sometimes two or more than three) leaf traces. Prophylls (including bracteoles) usually single or paired.

Leaves Leaf usually with petiole and lamina (lamina often sessile or leaf only consisting of petiole); lamina developing from primordial leaf apex. Leaf with acropetal development of venation. Stipules present or absent. Leaf sheath present (petiole base sheathing stem) or absent. Secondary venation pinnate, palmate or parallel; fine venation usually reticulate. Vein endings usually free (with open venation). Stomata often paracytic, with ends of guard cells level with pore; outer stomatal ledges producing vestibule. Cuticular wax crystalloids as parallel oriented platelets (Convallaria type). Leaf margin entire or serrate (with teeth). Leaf axil usually with bud (axillary bud).

Flower Flower bisexual or unisexual. Symmetry actinomorphic, bisymmetrical, zygomorphic or asymmetrical. Pedicel present or absent, usually provided with one or two floral prophylls (bracteoles). Floral parts spirally arranged or whorled in one or more series. Floral parts usually present in stable (sometimes unstable) numbers. Perianth differentiated into sepals and petals or undifferentiated. Tepals usually centripetally developing, with usually one or three traces, free or more or less connate, persistent or caducous. Outer tepals (sepals) enclosing or not enclosing remainder of floral bud. Floral parts when whorled usually trimerous, tetramerous or pentamerous. Floral nectaries of various origin present or absent.

Androecium Stamens usually centripetally (sometimes centrifugally) developing. Each stamen usually supported by one trace. Stamen usually differentiated into filament and anther (microsporangia sometimes embedded in distal part of stamen). Filament band-shaped or terete, usually narrow (sometimes wide and stout). Anther usually dithecal (microsporangia organized in two groups each with two sporangia; sometimes monothecal etc.), tetrasporangiate (sometimes disporangiate or polysporangiate), introrse, latrorse or extrorse. Microsporangia with at least outer secondary parietal cells dividing. Thecae usually dehiscing longitudinally (longicidally) by action of hypodermal endothecium (sometimes poricidally, valvicidally etc.). Endothecial cells usually elongated at right angles to longitudinal axis of anther. Tapetum usually secretory (glandular), with binucleate (sometimes uninucleate or multinucleate) cells (sometimes amoeboid-periplasmodial).

Pollen grains Microsporogenesis usually simultaneous (sometimes successive). Pollen grains usually mono- or triaperturate (sometimes other numbers), bicellular or tricellular at dispersal. Male gametophyte tricellular. Tectum continuous, discontinuous or absent. Infratectal layer usually columellate (sometimes granular or intermediate). Endexine usually thin, compact and only in apertural regions lamellate. Male gametangia (antheridia) absent. Male gametes two, without cell walls, without flagellae. Pollen tube with pectic outer cell wall, inner wall of callose, and with posterior callose plug and usually moderately fast growth (between c. 100 µm and c. 600 µm per hour). Siphonogamy prevailing. Pollen tubes growing inside secretions from stigma and through stylar canal and ovary locule, or through compitum (non-destructive pollen tube growing between megasporangial cells), callose being secreted onto cell walls behind growing pollen tube apex and over entire substigmatic region. Pollen tube usually penetrating micropylar end of ovule (porogamy) and proceeding into synergids (sometimes chalazogamy).

Gynoecium Carpels usually several or numerous, usually more or less connate (sometimes free). Carpels plicate or ascidiate, postgenitally usually fused (sometimes occluded by secretion). Carpels usually early closed (rarely delayed, e.g. in many Alismatales, Cyperales, Ranunculales, and Caryophyllales). Compitum usually present. Carpellary distal-adaxial pollen-receptive part usually papillate or non-papillate, Dry or Wet (secretory) type stigma (receptive area sometimes present along free carpellary margins). Pollen grains deposited on receptive surface. Stigmatic surface also aiding in development of pollen tubes. Stylar part of gynoecium present or absent (stigma sessile), often hollow (with central canal).

Ovule Placentation of different types (axile, parietal, laminar etc.). Ovules usually anatropous, bitegmic or unitegmic and crassinucellar or tenuinucellar. Micropyle endostomal, bistomal or exostomal. Each integument one or several cell layers thick. Inner integument dermal or subdermal in origin. Parietal tissue present (ovule crassinucellar) or absent (ovule tenuinucellar). Megasporocyte usually single (archespore sometimes multicellular), hypodermal, present in centre of ovule. Cytoplasmically dense zone developing between megasporocyte nucleus in centre of cell and chalazal cell wall, this dense zone persisting through megasporogenesis. Megasporogenesis resulting in usually linear tetrad. Functional megaspore without sporopollenin and cuticle and usually chalazal. Megagametophyte usually monosporic and developing from chalazal cell. Meiosis I resulting in a dyad of two uninucleate cells divided by transverse cell wall. Meiosis II yielding a usually linear tetrad of megaspore cells, of which chalazal cell becomes megaspore and remaining three megaspores degenerating prior to initiation of megagametogenesis. Large central nucleus of functional megaspore surrounded by vacuole. Two nuclei migrating to opposite poles of cell after first mitosis. Two nuclei present at each pole after second mitosis, nuclei at micropylar pole becoming fusiform. Four nuclei present at each pole after third mitosis, cytokinesis now taking place. Resulting megagametophyte 8-nucleate and septacellular. Three cells at micropylar end becoming egg apparatus consisting of usually two synergids and one egg cell. Each synergid often containing a cuneate filiform apparatus, usually a small number of plastids and in general with thicker wall than egg cell. Three cells at chalazal end becoming antipodal cells, usually containing numerous plastids, and in many cases proliferating (dividing). Nuclei of these cells more or less fusiform (torpedo-shaped) and each with distinct nucleolus. Remaining two nuclei, polar nuclei, of seventh cell, central cell, moving to centre of megagametophyte. Here they are situated in a parietal band of cytoplasm. Female gametangia (archegonia) absent. Fertilization taking place some time between one day and one year following pollination. Fertilization double, i.e. one male gamete fusing with egg cell and second male gamete with central cell containing two free or fused polar nuclei (polar nuclei fusing in centre of central cell either immediately prior to or during fertilization process and subsequently moving into position adjacent to egg cell with its terminal nucleus). Triploid cell resulting from fertilization of diploid central cell usually developing into endosperm. Endosperm development cellular, helobial or nuclear. Endosperm nuclei triploid.

Fruit Fruit developing from ovary. Additional tissues often contributing to structures surrounding ovary resulting in pseudofruit. Fruit wall, pericarp, usually consisting of innermost endocarp, mesocarp outside this, and outer exocarp.

Seeds Seed coat consisting of one or several layers developed from integument(s). Endosperm sparse to copious, oily and/or proteinaceous and/or starchy (occasionally absent). Embryo ab initio cellular. Cotyledons usually two (sometimes one, rarely three or four), each usually provided with three vascular bundles (when one cotyledon, then usually with two main vascular bundles). Plumule usually terminal. Seedling with sympodial growth. Germination usually phanerocotyl (sometimes cryptocotyl).

Cytology and genes A genes are found only in angiosperms. A duplication event took place in the ancestor of angiosperms, which resulted in a D orthologue, usually expressed only in the ovules, and a C orthologue, only occasionally expressed in ovules, but in carpels and stamens as well.

Telomeres of Arabidopsis type (TTTAGGG)n. Entire nuclear genome duplicated. Second duplication of nuclear genes PEBP resulting in FT-like and TFL1-like gene families (first duplication leading to two PEBP gene families, MFT-like and FT/TFL1-like, and probably coinciding with evolution of seed plants).

Nuclear genes LEAFY and RPB2 present in single copy. knox genes extensively duplicated (A1 to A4). Nuclear genes AP1/FUL, paleoAP3 and PI (paralogous B-class genes) present, and possessing “DEAER” motif. Three copies of nuclear gene PHY (PHYBc(PHYA/PHYC)) and gene pair SEP3/LOFSEP duplicated (gene PHYA involved in, i.a., germination and etiolation response of seedling).

Nuclear gene euAP3 in angiosperms consisting of duplicated copy of gene paleoAP3 with 8 bp insertion causing a frame-shift mutation. APETALA3 and similar nuclear genes and PISTILLATA are paralogous B-class genes. B-function MADS-box genes are extremely important for the floral development.

The exon 5’ in the PI-homologues has a size of 42 base pairs in the basalmost clades Amborella and Nymphaeales. Illicium (Schisandrales) and all younger clades has a deletion of 12 bp in this exon 5’ resulting in a length of 30 bp.

Plastid gene ndhB extended 21 codons at 5’ end.

Phytochemistry Lignans, quercetin and/or kaempferol, O-methyl flavonols, dihydroflavonols, oleanane (triterpenoid), non-hydrolyzable tannins, tyrosine-derived cyanogenic compounds, apigenin and/or luteolin present. Lignins often derived from coniferyl and sinapyl alcohols, containing syringaldehyde (in positive Mäule reaction, syringyl:guaiacyl ratio higher than 2,0–2,5:1). Hemicelluloses often present as amyloid (xyloglucans).

Early angiosperm fossils of unknown affinity (adopted from Friis & al. 2011)

- Fossilized angiosperm leaves occur in Aptian and younger layers. A peculiar leaf fossil is the Aptian to Albian Trifurcatia flabellata, which is connected to the fossil genus Klitzschophyllites. These leaves are thick, circular in outline and with serrate margins. The venation is flabellate with more than 20 primary and secondary veins terminating at or between the leaf teeth. Gland-like structures are present along the leaf margins.

- Small male flowers from the Late Barremian to the Aptian (Early Cretaceous) of Portugal, with ten to 15 stamens having wide flat filaments and lateral thecae and trichotomocolpate pollen grains, are in some way similar to Amborella trichopoda, although the anthers were extrorse instead of introrse and the pollen surface was verrucate-rugulate.

- The Early Cretaceous (Early to Late Aptian, the Liaoning Province in northeastern China) probably limnic species of Archaefructus were herbaceous with multiple times divided leaves and leaflets. They had naked unisexual terminal reproductive organs usually arising in pairs, with female and male parts separate on the elongating axis. Bracts and perianth seem to have been absent. The seed-bearing carpel-like organs (possibly developing into follicles) were elongated and slightly stipitate and the stamen-like organs were present two to four together on a common stipe. The reproductive organ has been interpreted as a single bisexual flower or as an inflorescence consisting of numerous unisexual units. Archaefructaceae were recovered as sister to all other angiosperms in a combined morphological and 3-gene-analysis by Sun & al. (2002). Archaefructaceae comprise the two species Archaefructus liaoningensis Sun, Dilcher, Ji & Zhou and A. sinensis Sun, Dilcher, Ji & Nixon.

- Cronquistiflora and Detrusandra from the Turonian (93,5–89 Mya) in New Jersey had numerous spiral carpels and other floral parts.

- Caloda delevoryana, from Late Albian to Early Cenomanian (mid-Cretaceous) strata of the central United States, is represented by elongate infructescences bearing alternately arranged lateral branches each ending in a receptacle with numerous free stipitate carpels.

- The floral fossil Carpestella lacunata, from the Early to Middle Albian (Early Cretaceous) of Virginia, may have been related to extant basalmost angiosperms. The fossil consists mainly of a syncarpous gynoecium with 13 carpels covered by spiral scars of detached perianth and androecium.

- Caspiocarpus paniculiger is represented by a single shoot from the mid-Albian of Kazakhstan, having opposite palmately veined leaves and paniculate reproductive axes bearing follicle-like fruits.

- Cretovarium japonicum from the Coniacian to Campanian (Late Cretaceous) of Hokkaido (Japan) has perianth-like structures surrounding a trilocular inferior ovary with axile placentation (two separate placentae in each locule).

- Hidakanthus shiinae and Protomonimia kasai-nakajhongii are multicarpellate fruit structures from the Coniacian to Santonian (Late Cretaceous) of Hokkaido (Japan). Hidakanthus has c. 55 sessile carpels with oil cells and Protomonimia c. 170 or stipitate carpels on a concave receptacle. The seeds of Protomonimia are exotestal.

- Lesqueria elocata represents elongate infructescences from the Late Albian to Early Cenomanian (mid-Cretaceous) of Kansas and northern Texas. The gynoecium was apocarpous and multicarpellate, and bore up to c. 150 helically arranged laminar appendages and up to c. 250 stalked follicles.

- Xingxueina heilongjiangensis is an Aptian spicate inflorescence from the Heilongjiang Province in northeastern China. The proposed floral units are situated in an elongated helix. The monocolpate pollen grains have a reticulate exine.

- Zlatkocarpus brnikensis and Z. pragensis resemble the Chloranthaceae. They have spicate inflorescences with helically arranged floral units containing a single carpel subtended by an adnate bract and probably developed into a berry with resin bodies (possibly ethereal oil cells) in the pericarp.

- A number of flowers have been described from Cretaceous strata in New Jersey and Portugal. Mabelia (Turonian, Late Cretaceous) and Nuhliantha (Late Santonian, Late Cretaceous) were trimerous and unisexual, with six tepals and three extrorse stamens containing monocolpate (monosulcate) or trichotomocolpate pollen grains. With the exception of a pistillodium in Nuhliantha no female organs are known. The floral morphology suggests a monocotyledonous affinity. Microvictoria (Turonian) consists of bisexual pedicellate flowers bearing numerous tepals (or bracts?), flattened staminodia and stamens and carpels. They are similar to flowers in Nymphaeaceae, although this relationship may be questioned.

- Numerous fossilized fruits and seeds occur in Cretaceous layers. The Early Cretaceous Anacostia represents small single-seeded berries with exotestal anatropous seeds. Trichotomocolpate pollen grains with reticulate tectum are often associated with these fruits. The flowers seem to have been apocarpous with several or many carpels. Couperites likewise comprises single-seeded berries with exotestal anatropous seeds, often found together with monocolpate pollen grains with reticulate sexine similar to the Clavatipollenites pollen type.

- Angiosperm pollen grains are frequent in Cretaceous beds. The Afropollis form genus includes spheroidal, acolumellate coarsely reticulate grains, usually with a granular infratectum. They may be zonacolpate, monocolpate or inaperturate and either isopolar or heteropolar. Afropollis occurs in Early Cretaceous layers from the Barremian to the Cenomanian. The angiospermous origin of Afropollis has been questioned, i.a. due to the presence of a thick laminar endexine unknown among extant flowering plants. The similar Schrankipollis form genus from the Early Cretacous represents zonacolpate, loosely reticulate pollen grains with columellate infratectum.

- Clavatipollenites comprises monocolpate pollen grains with a reticulate exine, finely verrucate colpus membrane and indistinct colpus margins. Many Clavatipollenites grains have been assigned to Chloranthaceae, and to Ascarina in particular, although the form genus Clavatipollenites certainly represents several different early angiosperm clades.

- Retimonocolpites dividuus is an Early Cenomanian monocolpate pollen with a reticulate exine and an aperture encircling most of the grain. Brenneripollis represents monocolpate pollen grains with irregularly reticulate exine and columellate infratectum, whereas the similar Pennipollis has acolumellate infratectum.

- Liliacidites is monocolpate or trichotomocolpate and has a graded reticulum with the small lumina concentrated in the equatorial area. This Early Cretaceous to Early Cenozoic type resembles pollen grains of extant monocotyledons. Similipollis, also with possible monocotyledonous affinities, has the small lumina of the reticulum concentrated in the polar area.

- The Barremian to Cenomanian Stellatopollis comprises monocolpate pollen grains with columellate infratectum and reticulate exine beset with clavate supratectal elements which are borne in a stellate pattern. The Albian Transitoripollis pollen type is monocolpate and has continuous verrucate to microechinate tectum and granular infratectum. The Barremian to Aptian Tucanopollis is similar to Transitoripollis, but the colpus is sometimes nearly circular in outline. The large Lethomasites pollen type is also monocolpate and tectate with granular infratectum, although the tectum is perforate.

Systematics The main clades of flowering plants are briefly presented below. The potential synapomorphies are mainly adopted from Peter F. Stevens, “The Angiosperm Phylogeny Website”, version 9 (June 2008, updated in July 2012). More comprehensive descriptions are given for Magnoliidae (the magnolids), Liliidae (the monocots), Asteridae (the asterids), and Rosidae (the rosids).

Nymphaeidae J. W. Walker ex Takht., Divers. Classif. Fl. Pl.: 74. 24 Apr 1997

[Nymphaeales+[Schisandrales+[[Chloranthaceae+Magnoliidae]+[Liliidae+[Ceratophyllum+Tricolpatae]]]]]

Potential synapomorphies: Vessels present in wood (xylem). Vessel elements with elongated scalariform perforation plates. Wood fibres (imperforate tracheary xylem elements) present. Axial parenchyma diffuse or diffuse-in-aggregates. Pollen grains monosulcate (anasulcate). Exine tectate, columellate, reticulate to perforate. “DEAER” motif of AP3 and PI genes absent (lost). – Nymphaeidae comprise all extant flowering plants except Amborella trichopoda. Wood characters in general are extremely variable and very much depend on the environmental conditions. The wood anatomical variation is also, naturally, correlated with size, age and life style of the plant. Hence, the presence of different types of perforation plates, pits, imperforate tracheary xylem elements, wood (axial) parenchyma, and wood rays only exceptionally present features useful at taxonomically higher levels.

Illiciidae C. Y. Wu in Acta Phytotaxon. Sin. 40: 291. 2002

[Schisandrales+[[Chloranthaceae+Magnoliidae]+[Liliidae+[Ceratophyllum+Tricolpatae]]]]

Potential synapomorphies: Vessels present in stem xylem. Ethereal oils in spherical idioblasts (oil cells, making leaves and tepals pellucid-punctate). Tension wood absent. Anther wall with dividing outer secondary parietal cell layer. Sexine reticulate. Infratectal layer columellate. Carpels plicate, sealed by postgenital fusion of their margins. Nucellar cap present. Deletion comprising 12 bp (representing four amino acids) in exon 5’ of nuclear gene PI. – Illiciidae include all angiosperms except Amborella and Nymphaeales.

Mesangiospermae M. J. Donoghue, J. A. Doyle & P. D. Cantino in Taxon 56, E23. Aug 2007

[[Chloranthaceae+Magnoliidae]+[Liliidae+[Ceratophyllum+Tricolpatae]]]

Potential synapomorphies: Endomycorrhiza vesicular-arbuscular. Outer epidermal walls of root elongation zone provided with cellulose fibrils transversely orientated in relation to root axis. Perianth trimerous. Tepals whorled, trimerous. Stamens whorled. Megagametophyte bipolar, septacellular, octanucleate. Antipodal cells persistent. Endosperm triploid. Benzylisoquinoline alkaloids and polyacetate-derived anthraquinones present. – Mesangiospermae embrace flowering plants other than the ANITA grade (i.e. Amborella, Nymphaeales and Schisandrales). It is questionable whether whorled floral parts is a synapomorphy at this level. Both spiral and whorled tepals, stamens and carpels are frequent in Magnoliidae.

[Chloranthaceae+[[Magnoliales+Laurales]+[Canellales+Piperales]]]

Potential synapomorphies: Seed coat endotestal. Sesquiterpenes present.

Magnoliidae Novák ex Takht., Sist. Filog. Cvetk. Rast.: 51. 4 Feb 1967 (magnolids)

[[Magnoliales+Laurales]+[Canellales+Piperales]]

Potential synapomorphies: Vessel elements solitary and in radial multiples. Sieve tube plastids often containing polygonal protein crystals. Leaf margin entire. Stamens numerous, spirally arranged. Anthers extrorse. Hypostase present. Nucellar cap present. Antipodal cells ephemeral. Raphal bundle branches present at chalaza. Galbacin and verguensin (lignans) present. Licarin (neolignan) sometimes present. Asarone (phenylpropane)?

Habit Usually woody (in Piperales usually herbaceous). Often aromatic.

Vegetative anatomy Medulla septate, with sclerenchymatous diaphragmata. Primary stem with eustele or (pseudo)siphonostele (sometimes atactostele), with separate (sometimes scattered) vascular bundles or with continuous vascular cylinder (rarely with several concentric cylinders). Secondary lateral growth rarely anomalous or absent (Piperales). Wood elements (and cambium) sometimes storied. Vessel elements with usually scalariform or simple (sometimes opposite or reticulate) perforation plates; lateral pits alternate, scalariform or opposite, simple or bordered pits; vessel elements sometimes absent and replaced by tracheids. Vestured pits sometimes present. Imperforate tracheary xylem elements tracheids, fibre tracheids or libriform fibres with simple or bordered pits, septate or non-septate, or absent. Secondary phloem often stratified. Sieve tube plastids usually Psc type (sometimes Ss, S0, Pcs, Psf, Pcsf, P2c, or Pc type). Secretory cavities with resins present or absent. Wood rays sometimes with oil cells or crystals. Idioblasts with ethereal oils often present at least in parenchyma. Sclereids often present. Mucilage ducts sometimes present. Silica bodies sometimes present. Calciumcarbonate as prismatic, rhomboidal or acicular crystals, styloids, druses or crystal sand sometimes present.

Trichomes Hairs unicellular or multicellular, usually uniseriate, simple or branched (stellate, dendritic, furcate, peltate, lepidote, candelabra-shaped, T-shaped or fimbriate), or absent; glandular hairs usually absent (pearl glands occasionally present).

Leaves Usually alternate (sometimes opposite, rarely verticillate), simple, usually entire (rarely lobed or scale-like), with conduplicate, supervolute, involute, convolute, curved or flate ptyxis. Stipules usually absent (sometimes intrapetiolar or ocreate and enclosing young leaf); leaf sheath absent (petiole rarely sheathing). Venation usually pinnate, eucraspedodromous or brochidodromous (rarely campylodromous, palmate, acrodromous or actinodromous, triplinerved or pedate). Stomata usually paracytic (sometimes tetracytic, rarely anomocytic, actinocytic, cyclocytic or helicocytic). Cuticular wax crystalloids as platelets (sometimes parallel), rodlets (often transversely ridged Aristolochia type crystalloids) or tubuli (sometimes as clustered tubuli of Berberis type), chemically characterized usually by presence of palmitone (hentriacontan-16-one) and absence of nonacosan-10-ol (nonacosan-10-ol present in Canellales). Lamina often gland-dotted. Domatia sometimes present in abaxial vein axils. Mesophyll and epidermis usually with idioblasts (secretory cavities) containing ethereal oils (sometimes calciumoxalate crystals, resin or mucilage) or sclereids, sometimes with calciumoxalate druses. Sclerenchymatous idioblasts with branched sclereids of various kinds (also asterosclereids) or fibres often present. Silica bodies sometimes present. Leaf margin usually entire (sometimes serrate with monimioid teeth).

Inflorescence Cymose panicle, umbellate, corymb, rhyrse, cyme or fasciculate (sometimes spadix; rarely capitate, spicate or raceme), or solitary. Floral prophyll (bracteole) often single, median, adaxial (sometimes absent).

Flowers Usually actinomorphic (in Piperales usually zygomorphic). Usually hypogyny (rarely half epigyny or epigyny), sometimes with urceolate, campanulate, cupular or infundibuliform receptacle surrounding floral parts. Tepals (two or) three (or 2+2) or 3+3(+3) (sometimes 2+2+2 or 4+4, rarely to more than 50), with valvate (usually outer) or imbricate (outer or inner; rarely decussate) aestivation, spiral or whorled, sepaloid (usually outer) or petaloid (usually inner), usually free or connate only at base (sometimes intirely connate); tepals sometimes absent. Nectary usually absent (sometimes with nectariferous disc, staminal nectariferous glands or adaxial nectaries inside perianth tube). Disc usually absent.

Androecium Stamens (one or) two to c. 20 to more than 200, laminar (foliaceous), spiral or whorled, not differentiated into filament and anther, with separate microsporangia embedded in distal part (adaxially, laterally, abaxially or apically), or differentiated into filament and anther. Filaments when present usually free from each other (sometimes partially or entirely connate; occasionally adnate to pistil into synandrium or gynostemium), usually free from tepals, sometimes with basal nectariferous glands. Anthers when present usually basifixed, non-versatile, usually free (rarely adnate to style), usually tetrasporangiate (sometimes disporangiate), sometimes with transversely septate thecae, extrorse, latrorse or introrse, longicidal (dehiscing by longitudinal slits) or valvicidal (dehiscing by valves), sometimes connate into synandrium; or microsporangia four, usually adaxial or lateral (sometimes abaxial), usually introrse or latrorse (sometimes extrorse), longicidal (dehiscing by longitudinal slits) or valvicidal (dehiscing by valves). Tapetum secretory or amoeboid-periplasmodial. Staminodia extrastaminal, intrastaminal, or absent.

Pollen grains Microsporogenesis simultaneous, successive or intermediate. Pollen grains usually monosulc(ul)ate (anasulc[ul]ate), monoporate or inaperturate (sometimes di- or trisulc[ul]ate, trichotomosulcate, polyporate, etc.), boat-shaped, usually shed as monads, usually bicellular at dispersal. Exine with granular, columellate or intermediary infratectum.

Gynoecium Carpels usually ten to more than 50 (sometimes one or few), spiral or whorled, free or more or less connate (sometimes paracarpous); carpel plicate to conduplicate (sometimes basally ascidiate and not differentiated into ovary and style), usually postgenitally incompletely or entirely occluded by fusion and/or secretion, with secretory canal, often open and filled by secretions, or without canal. Carpels often not differentiated into ovary, style and stigma. Ovary usually superior (sometimes inferior, rarely semi-inferior), unilocular to 20-locular (or more). Stylodium or style single, terminal, usually simple (occasionally lobate), or stylodia lateral to gynobasic, or absent (pollen tube transmitting tissue well developed). Stigma capitate or lobate, terminal or decurrent, papillate or non-papillate, Dry or Wet type. Nectar sometimes secreted from exposed carpel surfaces. Pistillodium usually absent (male flowers sometimes with pistillodium).

Ovules Placentation parietal, laminar, marginal, submarginal, apical, subapical, basal, subbasal, lateral or axile. Ovules (one or) two to more than 100 per carpel (or one per ovary), usually anatropous (sometimes hemianatropous, orthotropous, hemiorthotropous or campylotropous), ascending, horizontal or pendulous, apotropous, usually bitegmic (sometimes unitegmic, rarely tritegmic), usually crassinucellar (sometimes tenuinucellar). Micropyle endostomal or bistomal (rarely exostomal), sometimes Z-shaped (zig-zag). Funicular obturator sometimes present. Archespore usually unicellular (rarely multicellular). Nucellar cap present or absent. Nucellar beak present or absent. Megagametophyte usually monosporic, Polygonum type (sometimes tetrasporic, Fritillaria or Peperomia type, etc.). Synergids usually with filiform apparatus. Antipodal cells ephemeral or persistent, sometimes proliferating. Endosperm development usually cellular (sometimes nuclear). Chalazal or micropylar endosperm haustoria sometimes present. Embryogenesis onagrad, asterad, piperad, or irregular.

Fruit A usually fleshy (sometimes leathery or more or less woody), dehiscent or indehiscent, apocarpous follicular fruit or a multifolliculus, or a dry or fleshy syncarp, a loculicidal (and occasionally septicidal) capsule, or a drupe (sometimes a single-seeded berry or an assemblage of achenes, berries, drupelets, dry follicles, samaras, etc.).

Seeds Perisperm usually not developed (in Piperales usually copious, starchy). Endosperm copious (to scarce), oily (occasionally also with compound starch grains), or absent. Embryo straight or slightly curved, more or less differentiated or undifferentiated, without chlorophyll. Cotyledons usually two.

DNA Deletion of 30 bp (corresponding to 10 amino acids) present in PI-derived motif in nuclear gene AP3 in most Magnoliales. Gene PI duplicated in Laurales. Intergenic inversion of c. 200 bp present in plastid inverted repeat in Laurales. Nuclear gene PHYE lost in Piperales.

Phytochemistry Flavonols (kaempferol, quercetin, etc.), 5-O-methylflavonols, flavones, flavanonols, diarylpropanes, catechins, cyanidin, monoterpenes, diterpenes (kauranes, clerodanes etc.), triterpenoids (tetracyclic etc.), oleanolic acid derivatives, sesquiterpenes, drimane sesquiterpenoids, sesquiterpene lactones, allyl- and propenylphenols, oxyphenols and other aromatic substances, phenylpropanes, caffeic acid, tannins, proanthocyanidins, aporphine alkaloids (aporphines, oxoaporphines, etc.), aporphine derivatives, benzylisoquinoline and other isoquinoline alkaloids, protoberberine alkaloids, C-methylated alkaloids, indole alkaloids, polyketide alkaloids (e.g. hallucinogenic pyridine alkaloids), quercetin glycosides, cyanogenic glycosides (dhurrin, triglochinin etc.), α-pyrones, myristicin, N-(cinnamoyl)-tryptamines, lignans (austrobailignan, veraguensin, dihydrocubebin), neolignans (aryltetralin, diaryltetrahydrofurans, etc.), lignoids, ethereal oils, phenanthrenes, aristolochic acids, polyketides, nitrophenyl ethan, germacrane-like compounds, myo-inisitol, syringaresinol, pinitol, kadsurin A, galbacin, licarin A, naphthoquinones, cinnamoylamides, arbutin, asarone, and amides present. Ellagic acid, gallo- and ellagitannins not found.

Fossils Examples of early fossils not assigned to any particular magnoliid clade are as follows.

- Araripia florifera, from Upper Aptian to Lower Albian of Brazil, is represented by a flowering shoot with decussate trilobate leaves. The tepals and bracts are spirally inserted on a cupular receptacle. It has not been possible to assign this fossil to a particular clade of the Magnoliidae.

- Detrusandra mystagoga, from the Turonian (Late Cretaceous) of New Jersey, is another uplaced magnoliid fossil comprising pedicellate flowers with cup-shaped receptacle, on which bracts and tepals are spirally inserted. The numerous stamens are situated on the inner upper part of the receptacle. The four microsporangia are adaxial on each stamen. The pollen grains are monocolpate with a reticulate exine. The five carpels are plicate and free and the stigmas are bilobate. Ovules are numerous and arranged in two ventral rows.

- Cronquistiflora sayrevillensis is a Turonian floral fossil from New Jersey. It resembles the above two fossils, having spirally arranged bracts and tepals, but the receptacular cup is shallow. The numerous free carpels are spirally inserted and terminating in a peltate stigma. The ovules are interpreted as orthotropous, bitegmic and with an endostomal micropyle.

- Canrightia resinifera, from the Aptian to Early Albian of Portugal, comprises fossilized flowers, fruits and seeds. The tepals are arranged in one whorl and connate, forming a hypanthium. The pollen grains are monocolpate with a reticulate exine and columellate infratectum. The two to five carpels are unilocular, connate and adnate to the tepals. The single ovule is orthotropous, endotestal-endotegmic and has a well-developed endothelium (also present in the extant Lactoris fernandeziana). Resin bodies are frequent on the ovary walls, indicating the presence of oil cells. The fruit was probably a berry.

Systematics Cuticular wax crystalloids as transversely ridged rodlets (Aristolochia type) are of high systematic significance characterizing Magnoliales, Laurales and Piperales. Sporadically, they also occur in various other taxa. Chemical analyses show that transversely ridged rodlets clearly differ in their composition. Waxes of one group are characterized by ketones, whereas a second group completely lacks ketones and is dominated by alkanes. Hentriacontan-16-one (palmitone) was found to be characteristic for transversely ridged rodlets in Aristolochia, Laurus, and Paeonia. Transversely ridged rodlets or related crystals grow from total waxes of all species but never crystallize from individual compounds such as alkanes or palmitone. Transversely ridged crystals are formed by self-assembly based on a slow crystallization process and the presence of additives.

[Magnoliales+Laurales]

Potential synapomorphies: Cuticular wax crystalloids as annularly ridged rodlets; main wax palmitol. Stamens whorled. Pollen grains with lamellate endexine. Carpel cross-zone initiated late. Placentation basal. Ovules one (or two) per carpel, orthotropous, apotropous. Fruitlets single-seeded.

[Canellales+Piperales]

Potential synapomorphies: Nodes 3:3. Carpels whorled. Flavonols and aporphine alkaloids present.

[Liliidae+[Ceratophyllum+Tricolpatae]]

Potential synapomorphies: Tepals present in two whorls (secondarily one whorl). Stamens present in two whorls (secondarily one whorl), outer whorl antesepalous, inner whorl antepetalous.

Liliidae J. H. Schaffner in Ohio Naturalist 11: 413. Dec 1911 (monocotyledons)

Habit Usually perennial herbs (sometimes secondarily woody). Growth basically sympodial (sometimes monopodial). Prophylls usually single, adaxial. Often with bulb or corm rich in polysaccharides. Usually without idioblasts containing ethereal oils etc.

Root Ectomycorrhiza usually absent (Arum type or Paris type arbuscular mycorrhiza occasionally present). Radicula usually ephemeral, early withering and replaced by adventitious roots from stem (or sometimes from hypocotyl). Root cap and root epidermis of different ontogenetic origin. Root epidermis developing from outer cortical layer. Inner epidermis absent. Tunica two-layered. Single- or multi-layered velamen often present. Trichoblast present in atrichoblast or trichoblast cell pair further from apical meristem. Trichoblasts (small densely staining cells giving rise to root hairs) present in vertical files with small proximal cell (near root apex) producing root hairs, or hypodermal cells (particularly those with velamen) sometimes dimorphic (root hairs pushing up through overlying cells). Phellogen usually absent (rarely superficial; phellogen initially developing immediately inside exodermis). Vascular root tissue oligarch to polyarch, usually medullated. Lateral roots arising opposite phloem poles. Endodermal cells with U-shaped wall thickenings. Secondary growth usually absent; anomalous when present. Vessels present only in roots. Vessel elements with scalariform or simple perforation plates. Tracheids absent.

Stem Distinct bark and medulla usually absent. Primary thickening meristem at least usually absent. Vascular system usually consisting of numerous separate scattered bundles (atactostele), often amphivasal, closed (sometimes consisting of one or two or more concentric cylinders of bundles). Interfascicular (vascular) cambium usually not developing (vestigial cambium occasionally present; vascular bundles sometimes with weakly developed cambial layer). Thickening of main axis sometimes taking place by division and enlargement of ground parenchyma cells (diffuse secondary growth) or by special type of cambium arising in parenchyma outside primary vascular system. Secondary lateral growth usually absent (anomalous when present). Amphivasal vascular bundles usually present. Vessel elements usually absent in stem and leaves; when present with usually scalariform (sometimes simple, rarely reticulate) perforation plates; lateral pits scalariform or alternate, simple or bordered pits. Imperforate tracheary xylem elements tracheids. Phloem parenchyma absent. Vascular bundles with late developing thick-walled sieve tubes without companion-cells. Sieve tube plastids usually P2c or P2cf types (sometimes P2cs or P2cfs type, rarely Ss type). Laticifers and latex sometimes present. Schizogenous ducts and cavities with resins and oils sometimes present. Secretory (often lysigenous) mucilage cavities and ducts often present. Tanniniferous idioblasts sometimes present. Idioblasts with suberised cell walls and containing aromatic oils and resins sometimes present. Silica bodies present or absent (special cells, isodiametric stegmata connected to fibres, with cap-shaped, druse-like, stellate, conical, boat-shaped or spherical silica bodies, sometimes present). Mucilage cells, ducts and chambers present, often with calciumoxalate as raphides, pseudo-raphides, styloids, crystal sand, or rhomboidal, cuboid or acicular crystals. Epidermal cells often with crystals.

Trichomes Hairs usually absent (sometimes unicellular or multicellular, uniseriate or multiseriate, simple or branched, T-shaped, stellate, peltate or lepidote, rarely prickly or dendritic); microhairs sometimes present; glandular hairs usually absent (multicellular glandular hairs or tricellular glandular microhairs rarely present).

Leaves Usually alternate (often tristichous; rarely opposite or verticillate), usually simple and entire (sometimes compound and/or lobed), often linear, usually bifacial, often subulate (sometimes equitant), with revolute, supervolute, involute, convolute, conduplicate, plicate, explicative, adplicate, curved or flat ptyxis, not differentiated into petiole and lamina (sometimes differentiated into pseudopetiole and pseudolamina, ptyxis then referring to pseudolamina); when seemingly present, then not homologous to petiole and lamina in other angiosperms (true lamina absent). Majority of leaf usually developing from hypophyll (pseudolamina developing from leaf base zone). Vorläuferspitze (precursor tip, abaxial unifacial conical or cylindrical protrusion at apex of mature leaf, representing upper part of leaf) often present. Stipules usually absent (rarely present as axillary scales inside leaf sheath); leaf sheath open or closed, often well developed, or absent (rarely with axillary intravaginal scales/colleters, squamulae intravaginales, in Alismatales). Ligule(s) (developing from adaxial intercalary meristems in transition zone between hypophyll and hyperphyll) sometimes present. Venation parallelodromous or pinnate-parallelodromous (rarely acrodromous, pedate, curvipalmate, campylodromous, reticulodromous, actinodromous or camptodromous), acropetally and basipetally developing from base, converging towards apex (closed at apex), or secondary pseudopinnate or pseudopalmate types; intermediate and other veins basipetal from apex; vein endings not free. Imperforate tracheary xylem elements tracheids. Stomata paracytic (in lines, parallel to long axis of leaf), brachyparacytic (cell divisions oblique), tetracytic, anomocytic, or tricytic (sometimes cyclocytic, hexacytic or polycytic); neighbouring cells with oblique or non-oblique divisions. Cuticular wax crystalloids as parallel platelets (Convallaria type), as longitudinally aggregated rodlets (Strelitzia type, chemically dominated by wax esters) or as unordered platelets, rodlets or filiform reticulate processes, or absent. Dimorphic hypodermal cells sometimes present. Epidermis often with bulliform cells or with idioblasts containing silica bodies. Mesophyll often with sclerenchymatous idioblasts, or with mucilaginous idioblasts containing calciumoxalate raphides, druses, prismatic or rhomboidal crystals, styloids, or crystal sand (sometimes with idioblasts containing ethereal oils). Schizogenous laticiferous cavities sometimes present. Tanniniferous cells sometimes abundant. Leaf margin usually entire (sometimes serrate or spinose-serrate). Leaf teeth non-glandular.

Inflorescence Simple or compound, cymose pseudumbel or pseudoraceme, spicate or capitate, panicle, fascicle, corymb, thyrsoid or spadix, often compound and consisting of bostrychoid or helicoid monochasial partial inflorescences, or raceme or spike, sometimes subtended by one or several spathae (enlarged bract usually surrounding spadix); or flowers solitary. Floral prophylls (bracteoles) usually single, usually adaxial, bicarinate (rarely lateral, pairwise or absent; axillary flowers sometimes possibly representing reduced lateral inflorescence branches).

Flowers Actinomorphic or zygomorphic, often with median outer tepal adaxial (rarely asymmetrical). Flowers usually pentacyclic and trimerous. Hypanthium rarely present. Hypogyny or epigyny (rarely half epigyny). Usually trimerous (rarely dimerous, tetramerous or pentamerous), usually pentacyclic. Perianth pseudomonocyclic (each providing sector for perianth tube when present). Tepals (2–)3(–7)+(2–)3(–7), in two whorls, often similar, with tepals of successive whorls alternating, with usually open (sometimes imbricate or valvate; rarely contorted, conduplicate, induplicate, etc.) aestivation, all sepaloid or petaloid, or outer tepals sepaloid and inner tepals petaloid, free or more or less connate into infundibuliform, tubular or urceolate perianth, or absent (tepals sometimes membranous or chartaceous, sometimes modified into scales, bristles or hairs); median outer tepal usually abaxial (rarely adaxial); each tepal provided with three leaf traces. Nectaries as septal nectaries, usually infralocular, or androecial nectaries (rarely tepal nectaries), or absent. Disc usually absent (nectariferous disc occasionally present).

Androecium Stamens (2–)3(–6)+(2–)3(–6) (sometimes one or three, rarely two, five, 6+3, 6+4 or up to more than 1.000), usually as many as tepals, usually antesepalous (sometimes antepetalous), whorled. Staminal primordia often associated and/or stamens vascularized from tepal trace. Anther and filament sharply distinguished. Filaments free from each other or more or less connate (rarely connate into synandrium), free from or adnate to tepals (epitepalous; rarely to style). Anthers usually dorsifixed, basifixed or subbasifixed (sometimes centrifixed), versatile or non-versatile, usually tetrasporangiate (rarely disporangiate or trisporangiate), introrse, latrorse or extrorse, usually longicidal (dehiscing by longitudinal slits; sometimes poricidal, dehiscing by one or two apical or subapical pores, or transverse slits). Endothecium developing from outer secondary parietal cell layer; inner secondary parietal cell layer dividing. Tapetum usually secretory (sometimes amoeboid-periplasmodial), with uninucleate to quadrinucleate cells. Staminodia present (rarely petaloid) or absent (female flowers often with staminodia).

Pollen grains Microsporogenesis usually successive (sometimes simultaneous); tetrads usually tetragonal. Pollen grains usually monosulcate (monocolpate; sometimes monosulcoidate, disulcate, trichotomosulcate, mono- to polyporate, spiraperturate, inaperturate, etc.), usually shed as monads (rarely dyads, tetrads, polyads or cryptotetrads), usually bicellular (sometimes tricellular) at dispersal. Exine usually with columellate (sometimes granular) infratectum. Endexine usually absent. Callose plugs of pollen tube usually irregularly spaced and incomplete.

Gynoecium Pistil composed of (one to) three (to more than 100) usually more or less connate (eusyncarpous or paracarpous; sometimes secondarily free), usually whorled (rarely seemingly spiral), antesepalous carpels; median carpel usually abaxial; carpel plicate or conduplicate; fusion congenital intercarpellary and/or postgenital; carpel ascidiate to plicate or intermediate, seemingly occluded by secretion. Ovary superior or inferior (rarely semi-inferior), (unilocular to) trilocular or multilocular. Style single, simple, with stylar canal (hollow), or stylodia terminal, lateral (rarely gynobasic), or absent. Stigma capitate, punctate, peltate or lobate (sometimes infundibuliform, copular, etc.), or stigmas linear, papillate or non-papillate, Dry or Wet type. Pistillodium usually absent (male flowers sometimes with pistillodium).

Ovules Placentation axile, parietal, basal, subbasal or apical (rarely laminar or marginal). Ovules one to more than 100 per carpel (rarely hundreds to tens of thousands or more), anatropous or campylotropous (sometimes semicampylotropous, hemianatropous, amphitropous, orthotropous, pleurotropous, plagiotropous, etc.), ascending, horizontal or pendulous, apotropous or epitropous, usually bitegmic (sometimes unitegmic, rarely ategmic), crassinucellar or tenuinucellar (sometimes pseudocrassinucellar or pseudotenuinucellar). Micropyle endostomal or bistomal (sometimes exostomal). Funicular obturator sometimes present. Parietal cell formed from archesporial cell (parietal tissue usually one cell layer thick) or absent. Periclinal cell divisions sometimes taking place in megasporangial tissue (parietal cell then not formed). Nucellar cap sometimes formed by periclinal divisions of megasporangial epidermis. Epidermal cells of megasporangium sometimes forming ‘nucellar pad’. Megagametophyte usually monosporic, Polygonum type (occasionally Oenothera type, or disporic, Allium, Veratrum lobelianum, Endymion, Scilla types, or tetrasporic, Adoxa, Fritillaria or Drusa types). Synergids often with filiform apparatus. Antipodal cells usually persistent, sometimes proliferating. Endosperm development usually helobial (sometimes nuclear, rarely cellular), with distinct (large) micropylar and (small) chalazal chambers usually developed. Endosperm haustoria chalazal and/or micropylar or absent. Embryogenesis asterad or onagrad (sometimes caryophyllad, chenopodiad, or solanad).

Fruit Usually a loculicidal capsule (rarely septicidal, septifragal, poricidal, ventricidal, irregularly dehiscent or indehiscent), a berry, nut or drupe (sometimes a nut-like caryopsis, follicle, samara or schizocarp, or an assemblage of achenes, drupelets or berrylets or a multifolliculus).

Seeds Exotesta usually with thin phytomelan layer on epidermal cell walls. Perisperm usually not developed (sometimes well developed, with lipids and proteins or compound starch grains). Endosperm copious to sparse, often with starch (with simple or compound starch grains), and/or lipids, aleurone and hemicellulose, or absent. Chalazosperm developed or absent. Embryo straight to curved, well or poorly differentiated, sometimes covered with discoid or conical embryostega, testal operculum and surrounded by micropylar collar, with or without chlorophyll. Cotyledon one (rarely with rudimentary additional cotyledon), terminal, sometimes photosynthesizing, with closed sheath, usually unifacial (hyperphyllar; sometimes bifacial), assimilating and haustorial, usually with two main vascular bundles. Plumule lateral. Cotyledon hyperphyll elongate or compact, dorsiventrally flattened, assimilating or not assimilating, sometimes modified into haustorium or nutrient-storing organ. Hypocotyl internode short to long (sometimes modified into nutrient-storing organ), or absent. Mesocotyl present or absent. Coleoptile present (sometimes modified into plumule envelope), with or without lamina, or absent. Collar rhizoids or collar roots sometimes present. Radicula unbranched, usually poorly developed, contractile, persistent or ephemeral (rarely absent). First leaf usually orientated at 180o to plane of cotyledon (in most angiosperms orientated at 90o to plane of cotyledons).

Cytology Membrane complexes absent. Paracrystalline bodies with closely spaced subunits.

DNA Duplication producing monocotyledonous nuclear genes LOFSEP and FUL3 (latter duplication of gene AP1/FUL). Nuclear genes PHYA, PHYB and PHYC present. Nuclear gene PHYE lost. AP3 expression localised on tepal edges. Mitochondrial genes rpl2 and sdh3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin, isorhamnetin, syringetin, etc.), O-methylated flavonols, laricitrin, flavonol glycosides, dihydroflavones, flavones, flavone glycosides, flavonoid sulfates, biflavonoids, isoflavones, biflavones, flavanones, homoisoflavanones, hydroxyflavonoids, aurones, luteolin, apigenin, cyanidin, delphinidin, pelargonidin, malvidin, etc., anthoxanthins, deoxyanthocyanins, ethereal oils consisting of mono-, di-, tri- and sesquiterpenes, proanthocyanidins, phenylpropanoids and related curcumins (diarylheptanoids), caffeic acid, chalcones, 6-hydroxyapigenin methyl ethers, diterpenes, triterpenes, oxidized tetracyclic and pentacyclic diterpenes and triterpenes, sesquiterpenes, chalcones, (ent-)epicatechin-4 (non-hydrolyzable tannin), protocatechinic aldehyde, catechins, proanthocyanidins, cinnamic acid, daphnetin, juncosol, caffeic acid derivatives (including caffeic acid sulfate), chlorogenic acid, phenolic glycosides, polyphenolic glycosides with caffeic acid, phenolic sulfates (sulfonated phenolic acids), phenols, norbelladine alkaloids (toxic tyrosine derivatives), isoquinoline alkaloids (benzylisoquinoline alkaloids rare), tryptophane- or tyramine-derived alkaloids, pyrrolizidine alkaloids as 1-aminopyrrolizidine derivatives, indole alkaloids, steroidal alkaloids, quinines, polyhydroxyalkaloids, piperidine alkaloids, lactone alkaloids (tuberostemonine), tropane alkaloids, cholestane glycosides (cardiotoxic bufodienolides, cardenolide glycosides and spirostanol glycosides), tyrosine-derived cyanogenic glycosides etc., steroidal saponins and sapogenins, chelidonic acid, cyanogenic compounds (e.g. cyanogenic glycosides), chrysazine, anthrones (e.g. anthrone-C-glycoside in leaves), tetrahydroanthracenones, naphthoquinones, quinonoid pigments, resins, aromatic acids and ketones, benzoic quinones, shikimic acid- or polyacetate-derived arthroquinones, nepodin, dianellidin, stypandrol, dianellidone, magniferin (glycosylic xanthone), chromones, lactone, phenylpyrones, phenylphenalenones (perinaphthenones), arylphenalenones, phenolic amines, polyamines, acetidine carbonic acid, ascorbic acid, tuliposides (glucose esters), allyl sulfides, allyl disulfides, propyl sulfides, vinyl disulfides, alliin, propionaldehyde, propionthiol, hydroxycinnamic acid, eicosanyl arachidate, crocein, phytosterols, 5-alkylic- and 5-alkenylic resorcinols, homogentisic acid and their glycosides, p-coumaric acid, -sitosterol, ceryl alcohol, amines, non-protein amino acids (tricine [zwitterionic amino acid], S-methylcysteine, etc.), meta-carboxysubstituted aromatic amino- and γ-glutamic peptides, acaroid resins, oxypipe colanic acid (polysaccharide), saccharose esters of diferulic or triferulic acid, and stem fructans present. p-hydroxybenzaldehyde (lignin component) at least often present. Ellagic acid, ellagitannins, lignans, and neolignans not found. Triterpene saponines rare. Hemicelluloses present as xylans.

Fossils Monocotyledon fossils are often difficult to distinguish from other basal angiosperm groups. However, numerous fossils more or less similar to extant Liliidae have been described during the last decades. Many of these have not been assigned to any particular extant clade.

- The oldest known fossil Liliidae are 120–110 My old and resemble Pothooideae (Araceae).

- Acaciaephyllum from the Potomac Group of eastern North America represents herbaceous plants with sheathing leaf bases and an acrodromous reticulate venation. The taxonomic affiliation is highly questioned, although they have been assigned to the monocotyledon stem group (Doyle 1973, etc.).

- A number of fossilized leaves and stems of monocotyledons have been found in Turonian layers in Israel and in the Maastrichtian Deccan Intertrappen Beds of India. These include Geonomites, Limnobiophyllum dentatum, Plumafolium bipartitum, Pontederites eichhornioides, Potamogetophyllum mite, Quturea fimbriata, Typhacites negevensis, Aerophyllites intertrappea, and Aerorhizos harrissii.

- Spinizonocolpites is a Late Cretaceous pollen fossil strongly resembling the extant Nypa (Arecaceae). Early Cretaceous pollen types which have been referred to monocotyledons due to their characteristic monocot morphology include the sometimes frequently occurring Liliacidites and Similipollis.

- Shuklanthus superbum is a racemose inflorescence found in the Maastrichtian layers of the Indian Deccan Intertrappean Beds, whereas Viracarpon from the same layers represents an infructescence that may actually belong to the same species. The unisexual flowers are trimerous with six tepals and six uniovulate carpels. The fruits consist of single-seeded drupelets.

- Deccananthus savitrii from the Deccan Intertrappean Beds of India is a trimerous flower with six tepals and six stamens. The pollen grains are trichotomosulcate and the ovary is trilocular.

- Tricoccites trigonum comprises three-seeded trilocular drupes, likewise from the Deccan Intertrappean Beds, resembles extant Arecaceae and Pandanaceae.

- Eriospermocormus indicus is a fossilized corm from the Deccan Intertrappean Beds. It is somewhat similar to the Eriospermum (Ruscaceae), but its systematic affiliation is uncertain.

Systematics Acorus is sister to the remaining monocots and Alismatales successive sister-group to the remainder.

A widely accepted hypothesis is that Liliidae have evolved from helophytic (or even aquatic) ancestors. Numerous adventitious roots replacing an ephemeral main root (instead of a single tap-root), sympodial growth, atactostele (vascular bundles scattered in stem), absence from normal secondary lateral growth, and usually linear leaves lacking normal lamina are characteristics of the monocots which have been explained through this hypothesis. Moreover, most members of the two basal monocot clades, Acorus and Alismatales, are helophytes or aquatic.

Reticulately veined pseudolamina and baccate fruits – probable adaptations to forest habitats – have evolved in parallel in many monocotyledon clades. According to Givnish & al. (2005), baccate or drupaceous fruits have evolved 21 times and reticulodromous venation perhaps between 25 and 30 times during the evolution of Liliidae.

Phylogeny of Liliidae based on DNA sequence data (Tamura & al. 2004; Chase & al. 2006; Graham & al. 2006; Soltis & al. 2011). Acorus and Alismatales are supported by 100% (bootstrap-value) as successive sister-groups to the remaining Liliidae. The clade [Pandanales+Taccales] also has very high support. Liliales and Iridales are successive sisters to the remainder, the Commelinidae (a clade bootstrap support of 100%)

Nartheciidae S. W. Graham et W. S. Judd in Taxon 56: E25. Aug 2007

[Alismatales+[Petrosaviaceae+[Taccales+Pandanales]+[Liliales+[Iridales+Commelinidae]]]]

Potential synapomorphies: Ethereal oils absent. Raphides present. Ptyxis (of pseudolamina) supervolute-curved or variations of this principle. Endothecium developing directly from undivided outer secondary parietal cells. Pollen grains boat-shaped. Sexine reticulate. Tectum with finer sculpture at pollen ends. Endexine absent. Septal (epithelial) nectaries often present (intercarpellary fusion often postgenital). – Nartheciidae contain all monocotyledons except Acorus.

Petrosaviidae S. W. Graham et W. S. Judd in Taxon 56: E25. Aug 2007

[Petrosaviaceae+[Taccales+Pandanales]+[Liliales+[Iridales+Commelinidae]]]

Potential synapomorphies: Pseudolamina developing from leaf base zone. Epidermis with bulliform cells. Stomata anomocytic. Cuticular wax crystalloids sometimes as parallel platelets. Colleters (squamulae intravaginales) absent. Starch grains simple, amylophobic. Cyanogenic glycosides infrequent. – Petrosaviidae comprise Liliidae except Acorus and Alismatales.

[[Taccales+Pandanales]+[Liliales+[Iridales+Commelinidae]]]

Potential synapomorphies: Nucellar cap absent. Endosperm development nuclear.

Pandananae Thorne ex Reveal in Novon 2: 236. 1992

[Taccales+Pandanales]

Potential synapomorphy: Outer integument two (or three) cell layers thick.

[Liliales+[Iridales+Commelinidae]]

Synapomorphies other than from DNA sequences have not been found.

[Iridales+Commelinidae]

Potential synapomorphy: Style long.

Commelinidae Takht., Sist. Filog. Cvetk. Rast.: 514. 4 Feb 1967 [sensu S. W. Graham et W. S. Judd]

[Arecaceae+Dasypogonaceae+[Cyperales+Commelinanae]]

Potential synapomorphies: Unlignified cell walls containing UV-fluorescent ferulic acid and coumaric acid (fluorescence of unlignified cell walls caused by presence of ferulic and/or coumaric acids). Vessel elements sometimes present in stem and leaves. Cells with silica bodies present in leaves. Stomata paracytic or tetracytic. Cuticular wax crystalloids sometimes Strelitzia type (as aggregated rodlets resembling scallops of butter). Inflorescence indeterminate. Peduncle bracteate. Filaments adnate to inner tepals (epipetalous). Pollen grains containing starch. Embryo short and wide. Expression of B-class gene orthologue of nuclear gene PISTILLATA probably restricted to androecium and inner tepals.

[Cyperales+[Commelinales+Cannales]]

Potential synapomorphies: Primary cell walls usually with glucurono-arabinoxylans. Stomatal subsidiary cells with parallel divisions. Endosperm with starch.

[Commelinales+Cannales]

Potential synapomorphies: Inflorescence a helicoid cyme (with many-flowered cincinnal branches). Tapetum amoeboid-periplasmodial or invasive. Operculum of seed combined with micropylar collar (micropylar collar formed at apex of outer integument, protruding as orbicular wedge into megasporangium; sclerotic layer of seed coat discontinuous at site of micropylar collar; collar sometimes with special rupturing layer). Endotestal cells silicified.

[Ceratophyllum+Tricolpatae]

Potential synapomorphy: Ethereal oils absent. – Ceratophyllum is sister to Tricolpatae in the maximum-likelihood tree of Soltis & al. (2011), but recovered as sister-group to Liliidae in the maximum-parsimony tree of the same study.

Ceratophyllum has a large number of autapomorphies, in part due to their highly specialized aquatic lifestyle. Roots, vessels, stomata and cuticular waxes are absent and the perianth is reduced. Even their pollen morphology – inaperturate (to indistinctly monocolpate) and with very reduced exine – may be a result of adaptation to an aquatic environment. The microsporogenesis is successive (like in monocots) in some species and simultaneous (like in most eudicots) in others. Further investigations of the pollen development in Ceratophyllum are certainly critical to our understanding of pollen character optimization among Tricolpatae.

Ceratophyllum share many features with the majority of Liliidae, including ephemeral primary root, closed stem vascular bundles, absence of interfascicular cambium, absence of vessels in stem and leaves, perianth (if present) trimerous, and successive microsporogenesis. On the other hand, it seems to be very difficult to find morphological synapomorphies for the clade [Ceratophyllum+Tricolpatae].

Tricolpatae M. J. Donoghue, J. A. Doyle et P. D. Cantino in Taxon 56: E26. Aug 2007 (tricolpates, eudicots)

Potential synapomorphies: Root epidermis derived from root cap. Nodes 3:3 (trilacunar with three leaf traces). Foliar lamina usually developing from leaf apex. Stomata anomocytic. Cuticular wax crystalloids as clustered tubuli (Berberis type), with nonacosan-10-ol as dominating wax. Chloranthoid leaf teeth possibly apomorphous (also in Chloranthaceae). Flowers cyclic, sometimes dimerous. Outer tepals (sepals) with three traces. Inner tepals (petals) with one trace. Stamens few, individually antetepalous (also in Lauraceae). Polyandry (secondary) widespread. Initial primordia sometimes five, ten or annular, sometimes centrifugally developing. Filaments fairly slender. Anthers basifixed. Microsporogenesis simultaneous. Pollen tetrads tetrahedral. Pollen grains triaperturate. Apertures in pairs at six points on young tetrad, according to Fischer’s rule. Cell division (cleavage) centripetal. Pollen wall with endexine. Carpels with complete postgenital fusion. Style solid (not hollow). x = 7. Vacuolar crystal formation associated with membranes and paracrystalline bodies with widely spaced subunits. Myricetin and delphinidin scattered, asarone absent (present in some asterids).

Fossils The oldest known fossil tricolpate pollen grains have been found in Late Barremian to Early Aptian strata in England, Portugal, Israel, Egypt, tropical West Africa, and eastern North America. The exine is finely to coarsely reticulate or striate, with a columellate infratectum. Examples of early fossils not assigned to any particular eudicot clade are as follows.

- Sinocarpus decussatus comprises parts of infructescences and leaves from the Aptian of China. The decussate leaves are provided with chloranthoid teeth and the fruits are formed by three or four whorled and partially connate carpels.

- Hyrcantha karatscheensis is represented by reproductive axes and fruits from the mid-Albian of Kazakhstan. The gynoecium is composed of three to five free carpels.

- Ternariocarpites floribundus is an infructescence with free carpels from the Albian of the Russian Far East. The fruitlets are follicular and the five tepals are persistent.

- Ranunculaecarpus quinquecarpellatus from the Albian of East Siberia consists of an apocarpous fruit with five follicular carpels. The fossilized bicarpellate syncarpous fruit of Araliaecarpum kolymense emanates from the same Siberian locality.

- The Cenomanian flower Callicrypta chlamydea from eastern Siberia has a perianth consisting of three whorls, stamens/staminodia and six free carpels.

- Cathiaria zhilinii is known from several localities from eastern Europe to Japan. It comprises fruiting structures with monocarpellate single-seeded fruits from the Cenomanian to the Coniacian.

- Numerous follicular fruits (Agapitocarpus emisxus, Chontrocarpus pachytoichus, Maiandrocarpus moirasmenus, Malliocarpus batrachoides, Mitocarpus elegans, Xylocarpus rhitidodes, Zeugarocarpus) have been found in Late Santonian to Early Campanian layers of Sweden. The different fossil species are relatively similar to each other. The gynoecium is apocarpous or monocarpellate, the carpels are plicate and the multiple ovules, when known, are anatropous and bitegmic. Traces of tepals are absent.

Systematics Apart from the unresolved relationship (beyond Ranunculaceae) between Proteales, Sabiaceae and the remaining Tricolpatae, Sabiaceae have been recovered as sister to Proteales in several studies (Qiu & al. 2006; Moore & al. 2008; Burleigh & al. 2009; Moore & al. 2011; Soltis & al. 2011), yet with weak to moderate support. Hence, I am apt to include Sabiaceae in Proteales. In other analyses, Sabiaceae have been identified (with weak support) as sister to Tricolpatae except Ranunculales and Proteales (Soltis & al. 2008), to Tricolpatae except Ranunculales (Worberg & al. 2007; Qiu & al. 2010; etc.), or even as sister to Buxales (Kim & al. 2004). The recovered sister-group relationships in this part of Tricolpatae largely depend on number and types of sequenced genes (plastid and/or mitochondrial and/or nuclear genes).

In all, I have followed Moore & al. 2010, Moore & al. 2011 and Soltis & al. 2011, since there phylogenies are strongly supported.

[Proteales+Sabiaceae+[Trochodendrales+[Didymelales+Gunneridae]]]

Potential synapomorphy: Axial/receptacular nectaries sometimes present.

[Trochodendrales+[Didymelales+Gunneridae]]

Potential synapomorphies: Mitochondrial gene rps2 absent (lost). Benzylisoquinoline alkaloids absent.

Gunneridae D. E. Soltis, P. S. Soltis et W. S Judd in Taxon 56: E27. Aug 2007

[Gunnerales+Pentapetalae]

Potential synapomorphies: Leaf margin serrate. Compitum present. Duplication of floral organ identity B-class gene paleoAP3 (yielding euAP3 and TM6 paralogs). PI-dB motif present. Small deletion in the 18SrDNA frequently present. Ellagic and gallic acids abundant.

Fossils In the Late Albian to the Early Cenomanian of Nebraska, there are unambiguous fossils of pentamerous heterochlamydeous flowers (with differentiated calyx and corolla) which are assignable to the Gunneridae.

Systematics Several other gene duplications seem to have taken place in the ancestors of either Gunneridae or Pentapetalae (or sometimes even earlier), i.a. duplication of nuclear floral regulatory genes AP1/FUL or FUL-like gene (yielding euAP1, euFUL and AGL79); duplication of nuclear gene RPB2; duplication of AG-like C-class gene (yielding PLE and euAG paralogs); duplication of nuclear genes AGL2/3/4 (yielding SEP1 and FBP6) and AGL1/2/3, etc. (see, i.a., Kramer & Zimmer 2006; Kramer & al. 2004; Kramer & al. 2006). The knowledge of many of these duplications is insufficient for many critical clades (Proteales, Sabiaceae, Trochodendrales, Didymelales, Gunnerales, Dilleniaceae, Santalales, Berberidopsidales, etc.). Consequently, it is still impossible to optimize them convincingly on the tree.

Since Gunnerales are sister to Pentapetalae, detailed knowledge of floral development in Gunnera and Myrothamnus is important for our interpretation of floral characters in the crown group of Tricolpatae. The flowers of Gunnerales are strongly adapted to wind pollination, a fact that makes it even more difficult to draw conclusions on homologies. Furthermore, the organization of the androecial and perianth whorls are more similar to basal Tricolpatae than to Pentapetalae.

Pentapetalae D. E. Soltis, P. S. Soltis & W. S. Judd in Taxon 56: E27. Aug 2007

Potential synapomorphies: Root apical meristem closed. Flowers pentamerous, with whorled floral parts. Calyx/sepals and corolla/petals distinct. Sepals enclosing flower in bud (sepals and petals encircling floral axis). Sepals with three or more traces. Petals with one trace. Nectariferous disc present. Stamens twice the number of sepals/petals (sometimes numerous, but then usually fasciculate), developing internally/adaxially to corolla whorl and successively alternating from five (ten) primordials, and/or centrifugally. Pollen grains tricolporate. Carpels five (although three also frequent; when carpels two, then superposed). Style present. Stigma not decurrent. Placentation axile. Endosperm development nuclear. Fruit dry, dehiscent (when capsule then loculicidal). RNase-based gametophytic incompatibility system present (stylar response mediated by glycoprotein with RNase activity). Whole genome triplication (γ triplication) leading to paleohexaploidy. Cyanogenesis also via phenylalanine, isoleucine or valine pathways (cyanogenic compounds also phenylalanine-, isoleucine- or valine-derived). – Numerous stamens have evolved multiple times in Pentapetalae. In these cases the stamens are often arranged in fascicles. They may develop – centripetally or centrifugally – from usually five antepetalous or ten separate primordial or from an annular androecial primordium.

[Dilleniaceae+[Santalales+[[Caryophyllales+Berberidopsidales]+Asteridae]]]

Synapomorphies other than from DNA sequences have not been found for this clade. – The position of Dilleniaceae is still very unstable. They were recovered as sister-group to the clade [Saxifragales+Rosidae] (Superrosidae) in an analysis of complete plastid genome sequence data (Moore & al. 2010). Presence of stipules (usually inserted on the stem/branch) is a feature common to Dilleniaceae and rosids. On the other hand, in an analysis of inverted repeat sequences, Dilleniaceae were identified as sister to the clade [Superasteridae+Superrosidae], i.e. to all other Pentapetalae (Moore & al. 2011). In the analyses by Soltis & al. (2011), Dilleniaceae were sister-group to Superasteridae in the maximum-likelihood analysis, whereas the maximum-parsimony analysis revealed them as sister to Caryophyllales. A position as sister to Caryophyllales was revealed by Bell & al. (2010) and to Superasteridae by Arakaki & al. (2011). Qiu & al. (2010) recovered the topology [[Dilleniaceae+ Berberidopsidales]+[Asteridae+[Caryophyllales+Santalales]]]. Pending more convincing information I leave Dilleniaceae as sister to Superasteridae, even if the support for the position is not very strong.

Superasteridae W. S. Judd, D. E. Soltis et P. S. Soltis in Amer. J. Bot. 98: E23. Apr 2011

[Santalales+[[Caryophyllales+Berberidopsidales]+Asteridae]]

Potential synapomorphies: Corolla in Santalales and Asteridae visible in bud stage long before floral dehiscence (possibly a parallelism).

[Caryophyllales+Asteridae]

Potential synapomorphies: Seed coat exotestal. Embryo elongated. – Presence and morphology of transfer cells and intermediary cells may provide synapomorphies.

Asteridae Takht., Sist. Filog. Cvetk. Rast.: 405. 4 Feb 1967

[Loasales+[Ericales+Gentianidae]]

Potential synapomorphies: Tension wood not frequent. Petals connate (sometimes only visible during early development). Corolla enclosing androecium and gynoecium in bud. Nectary gynoecial, supplied from gynoecial traces. Style single, long. Ovules unitegmic. Integument thick. Endothelium present. Megasporangial epidermis not persistent. Exotestal cells lignified, especially on anticlinal and/or inner periclinal walls. Endosperm development cellular. Embryo elongated. Nicotinic acid metabolized to its arabinosides. Iridoids and/or polyacetylenes frequent in many (also basal) clades. – Early initiation of the corolla tube may be a synapomorphy at this level.

Vegetative anatomy Ectomycorrhiza sometimes present. Medullary and/or cortical vascular bundles (sometimes inverted) often present. Secondary lateral growth normal, anomalous (via concentric cambia or cylindrical cambium) or absent. Vessel elements usually with scalariform or simple (rarely reticulate) perforation plates; lateral pits alternate, opposite or scalariform, simple or bordered pits. Vestured pits often present. Imperforate tracheary xylem elements fibre tracheids, libriform fibres or tracheids with simple or bordered pits. Wood elements sometimes storied. Tyloses sometimes frequent. Palisade mesophyll sometimes with arm cells. Secondary phloem often stratified into hard fibrous and soft parenchymatous layers. Intraxylary phloem rarely present. Sieve tube plastids usually Ss type (sometimes Pc, Pcs or Pcf type). Non-articulated branched or unbranched laticifers with white or bluish latex sometimes present. Schizogenous secretory canals and cavities with ethereal oils, resins, gutta-percha or mucilage sometimes present. Heartwood sometimes with gum-like substances. Sclerenchymatous idioblasts often present. Silica bodies sometimes present in parenchyma cells. Calciumoxalate as raphides, styloids, druses, crystal sand, or acicular, rhomboidal or prismatic crystals often present (rarely sphaerites or tuberculate, glochidiate or stinging hairs).

Trichomes Hairs unicellular or multicellular, simple or branched, furcate, stellate, fasciculate, dendritic, candelabra-, funnel- or cup-shaped, T-shaped, arachnoid, peltate, lepidote, vesicular, flagellar hairs, bristle- or prickle-like, or papillose (rarely moniliform), or absent; stalked or sessile glandular hairs often present; laticiferous hairs sometimes present.

Leaves Alternate or opposite (rarely verticillate), pinnately or palmately compound or simple and entire or lobed, with conduplicate, involute, supervolute, convolute, revolute, curved or flat ptyxis. Stipules usually absent (sometimes cauline or interpetiolar, rarely intrapetiolar); leaf sheath usually absent (sometimes present, conspicuous). Colleters often present. Venation pinnate or palmate, eucamptodromous, brochidodromous, craspedodromous, or semicraspedodromous (rarely parallelodromous, flabellate, actinodromous or acrodromous), or leaves single-veined. Stomata usually anomocytic, paracytic, or diacytic (sometimes diallelocytic, anisocytic, helicocytic, tetracytic, laterocytic or cyclocytic). Cuticular wax crystalloids as platelets, scales or rodlets (rarely threads or amorphous or as tubuli dominated by diketones). Domatia as pits, pockets or hair tufts, or absent. Secretory canals and cavities sometimes with ethereal oils, resins, gums, or mucilage. Epidermis with or without mucilage cells. Secretory oil cavities occasionally present. Mesophyll often with resiniferous, laticiferous or sclerenchymatous idioblasts. Mesophyll cells often with calciumoxalate as prismatic crystals or druses (sometimes sphaerites, styloids, raphides, acicular crystals or crystal sand). Leaf margin entire, serrate, crenate or lobate. Leaf teeth often with glandular apex, one accessory vein proceeding into tooth, the other running above tooth; or with simple vein and translucent caducous apex; leaf teeth sometimes theoid.

Inflorescence Panicle, fascicle, raceme-like, corymb, cincinnate, scorpioid, spicate, catkin-like, thyrsoid, botryoid, umbellate or capitate thyrse, often as whorls of dichasial and/or monochasial partial inflorescences, or racemes, spikes, umbels or heads (flowers sometimes solitary or paired, axillary). Floral prophylls (bracteoles) usually pairwise, lateral (rarely absent).

Flowers Actinomorphic or zygomorphic (rarely resupinate or asymmetrical). Pedicel sometimes articulated. Hypogyny, epigyny or half epigyny. Sepals (two to) four or five (to 16), with imbricate, valvate, contorted or open aestivation, usually more or less connate. Petals (three or) four or five (to 18), with imbricate, valvate, contorted, convolute or ascending-cochlear (rarely induplicate, descending-cochlear or open) aestivation, free from each other or connate into campanulate, hypocrateromorphous, discoid, urceolate, tubular or infundibuliform, often bilabiate corolla, sometimes spurred. Nectaries usually present on petal bases or intrastaminal nectariferous disc, usually annular (sometimes cupular, rarely unilateral), entire or lobate, or as separate nectariferous glands alternating with stamens, often only on abaxial side (rarely absent).

Androecium Stamens (two to) four or five (to 16, rarely to more than 1.200), usually in one whorl, haplostemonous, antesepalous, alternipetalous (rarely in two or several whorls). Filaments usually free from each other (sometimes more or less connate), usually adnate to petals/corolla tube (epipetalous). Anthers usually free from each other (sometimes more or less connate, occasionally adnate to style forming gynostegium), basifixed, ventrifixed or dorsifixed, versatile or non-versatile, usually tetrasporangiate (sometimes disporangiate or synthecal, rarely monosporangiate or octosporangiate), usually extrorse or introrse (rarely latrorse), usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical or basal pores). Placentoid often present. Tapetum secretory or amoeboid-periplasmodial. Staminodia one to three or absent; female flowers often with staminodia.

Pollen grains Microsporogenesis simultaneous. Pollen grains 2–3(–10)-colpate, -porate, or -colpor(oid)ate (sometimes syncolpate, sometimes with few or numerous pseudocolpi; rarely monocolpate, pororate, pantoporate, inaperturate, pericolpate, stephanocolp[or]ate or spiraperturate), usually shed as monads (rarely dyads, triads, tetrads or polyads), bicellular or tricellular at dispersal. Exine with usually columellate (sometimes granular) infratectum.

Gynoecium Pistil composed of usually two (rarely up to c. 30) connate carpels (rarely one carpel). Ovary superior, inferior or semi-inferior, unilocular or bilocular (sometimes incompletely septate, sometimes pseudomonomerous, rarely up to c. 30-locular), sometimes with locules divided by secondary septa. Style usually single, usually terminal (sometimes gynobasic), simple or lobate (stylodia sometimes two, free), or absent. Stigma capitate, truncate, discoid, infundibuliform, peltate, clavate, fusiform, or lobate, or stigmas punctate to capitate, papillate or non-papillate, usually Dry or Wet type. Pistillodium usually absent (male flowers often with pistillodium).

Ovules Placentation apical, subapical, basal, subbasal or axile (sometimes free central or parietal, rarely intrusive). Ovules one or two to numerous (to several hundred) per carpel, anatropous, hemianatropous, amphitropous, pleurotropous or campylotropous (rarely orthotropous, circinotropous or hypertropous), ascending, horizontal or pendulous, apotropous or epitropous, usually unitegmic (sometimes bitegmic, rarely ategmic), usually tenuinucellar (sometimes crassinucellar), often non-vascularized. Integument when single often with dermal origin; outer integument when present usually subdermal in origin. Placental obturator often present. Hypostase often present. Endothelium usually present. Archespore sometimes multicellular. Parietal cell often dividing. Nucellar cap present or absent. Megagametophyte usually monosporic, Polygonum type (rarely Oenothera type, or disporic, Allium type, or tetrasporic, Adoxa, Penaea, Fritillaria, or Drusa type). Synergids sometimes with filiform apparatus. Antipodal cells sometimes persistent, sometimes proliferating. Endosperm development usually cellular (sometimes nuclear, rarely seemingly helobial or other aberrant type). Endosperm haustorium chalazal and/or micropylar, or absent. Embryogenesis onagrad, asterad, solanad, chenopodiad or caryophyllad.

Fruit A loculicidal and/or septicidal capsule (sometimes septifragal, rarely a pyxidium, a denticidal capsule or irregularly dehiscing), a drupe, a berry, an achene, or a schizocarp with usually nutlike (rarely baccate, drupaceous or follicular) mericarps (rarely a samara or syncarp).

Seeds Perisperm not developed. Endosperm copious to sparse or absent, with starch, oil, hemicellulose and/or proteins (sometimes with petroselinic acid). Embryo straight to curved, sometimes oily, well to poorly differentiated, usually without chlorophyll. Cotyledons usually two (rarely one, four or absent), accumbent or incumbent, rarely foliaceous.

Cytology Protein bodies often present in mesophyll cell nuclei.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin, gossypetin), flavones, methyl flavones, sulfated or O-methylated flavonoids, oxygenated flavones, flavone glycosides, catechins, cyanidin, delphinidin, acylated anthocyanins, davidigenin, Route I carbocyclic iridoids, Route II iridoids (also C4-decarboxylated iridoids, i.e. iridoid glycosides and glycosides of monoterpenoid lactones), Group I carbocyclic iridoids, Group II carbocyclic iridoids, Group III carbocyclic iridoids, Group IV carbocyclic iridoids, Group V carbocyclic iridoids, Group VI secoiridoids, Group VII secoiridoids, Group VIII secoiridoids, Group IX secoiridoids, Group X secoiridoids (including iridoid pyridine alkaloids), iridoid aldehydes, iridoid glycosides (usually C10 and C11 iridoid glycosides, rarely C8 iridoid glycosides), iridoid coumarins, cardenolides, sarracenin, oleanolic acid derivatives, monoterpenes, diterpenes, sesquiterpenes, triterpenes, ethereal oils, balsams, and resins consisting of monoterpenoids, triterpenoids, sesquiterpenoids, phenylpropanoids, etc., free terpenic acids, dammaranes, ursolic acid, arjunolic acid derivatives, ellagic and gallic acids, ellagitannins, non-hydrolyzable tannins, proanthocyanidins, ursolic and caffeic acid, ursolic acid and caffeic acid esters (chlorogenic acid often abundant), nicotinic acid compounds, quinazolinone alkaloids, benzylisoquinoline and other isoquinoline alkaloids, hemlock alkaloids, C17 and other indole alkaloids, pyrrolizidine and pyrrolidine alkaloids, pyrrolizidine alkaloids as macrocyclic diesters or as aliphatic monocarboxylic esters or esters of arylic or aralkylic acids, strongly toxic diterpene alkaloids, steroid alkaloids, tryptophane-derived alkaloids, hygroline alkaloids, nortropane- and tropane-3α-ols, tropane-3β-ols, tropane alkaloids, hydroxyl tropines, toxic (cardiotonic) steroid glycosides, syringin, phenolic heterosides, 3-galactoside, triterpene saponins, simple coumarins (e.g. umbelliferone), hydroxycoumarins, pyranocoumarins, dihydropyranocoumarins, furanocoumarins, dihydrofuranocoumarins etc., p-coumaride, betaines, hydroxycinnamic acids (ferulic acids), coniferin, silicic acid, polyacetate-derived arthroquinones, shikimic acid derived arthroquinones, benzoquinones and naphthoquinones (also prenylated) and their derivatives, anthraquinones, terpenoid-derived quinones, phenylalanine- or tyrosine-derived cyanogenic compounds, cyanogenic compounds (i.a. cyanogenic glycosides), simmondsinoid compounds, arbutin, eleostearic acid, valerianic acid, actinidin, acetophenones, sesquiterpene lactones, withanolide steroidal lactones, phenantrenes, phenylpropenes (e.g. myristicin), germacrane-like compounds, asarone, syringaresinol, pinoresinol, aliphatic monocarboxylic acids, polyacetylenes (e.g. falcarinone) derived from fatty acids, mostly aliphatic C17 acetylenes, petroselinic (cis-6-octadecenoic) acid (in endosperm), xanthones, eucommin A, benzopyrones, cucurbitacins, dihydrosterculic acid, lignans, myo-inositol, and gutta-percha. Carbohydrates often stored as oligosaccharides (i.a. stachyose, mannitol, hexites, saccharose, or umbelliferose). Carbohydrates sometimes stored as oligo- or polyfructosans (inulin) with kestose or isokestose linkages (starch then usually absent).

Systematics The combination of solitary and very long vessel elements (800 µm or more) with scalariform perforation plates, usually opposite pitting of vessel elements, non-septate and very long fibres (2.190 µm or more) with bordered pits, and axial parenchyma diffuse or diffuse-in-aggegates and paratracheal scanty (the Baileyan wood anatomical syndrome) is abundant among asterids. Compound leaves are fairly uncommon and the leaflets are often articulated and/or distinct. Stipules are also relatively infrequent.

Sympetalous zygomorphic flowers are often combined with epipetalous stamens. Sympetaly is a character common to the majority of Asteridae. Even many clades with choripetalous flowers (possessing free petals) seem to be principally sympetalous, since they develop an early annular primordium and show early initiation of the corolla tube (Leins & Erbar 2003; Erbar & Leins 2011). Early initiation of the corolla tube occurs particularly among Campanulidae (i.a. in Araliales, Campanulales and Dipsacales), but also in some Lamiidae (e.g. Oleaceae among Plantaginales, and Rubiaceae in Rubiales) and in several Loasales. Unfortunately, knowledge about corolla initiation in the basal clades of Gentianidae is lacking.

The ovules in Asteridae are usually characterized as tenuinucellar and unitegmic, although the seemingly single integument may in fact be composed of two fused integuments. In bitegmic asterids the outer integument usually has a subdermal origin. The integument in unitegmic asteroids are often dermal in origin and possibly corresponds to the inner integument in most bitegmic angiosperms.

Phylogeny of Asteridae based on DNA sequence data (González & al. 2007; Winkworth & al. 2008; Tank & Donoghue 2010; Soltis & al. 2011; etc.). Loasales ("Cornales") and Ericales are successive sister-group to the remainder with high bootstrap support (97% and 100%, respectively, in Soltis & al. 2011). The two major clades are Lamiidae (Icacinales to Solanales) and Campanulidae (Aquifoliales to Dipsacales). Aquifoliales are sister to the remaining CampanulidaeApiidae – with high support, yet the sister-group relationships within Apiidae are unclear. Bruniaceae are sometimes sister to Columelliaceae, with a bootstrap support of 79% in plastid DNA analyses, and <50% in combined analyses (Soltis & al. 2011). A likewise weakly supported Dipsapiidae clade (Tank & Donoghue 2010) is sometimes recovered (Winkworth & al. 2008; Soltis & al. 2011; etc.), consisting of Araliales as sister to Paracryphiaceae and Dipsacales. Escalloniaceae are recovered as sister to Campanulales, with low support, in some studies (e.g. Soltis & al. 2011), yet sister to all Campanulidae except Aquifoliales in, i.a., Tank & Donoghue (2010). In Refulio-Rodriguez & Olmstead (2014) Garryales are sister-group to the clade [Rubiales ("Gentianales")+[Solanales+[Boraginales+ Plantaginales ("Lamiales")]]], although the support for this hypothesis is fairly weak.

[Ericales+Gentianidae]

Potential synapomorphies: Ovules without parietal tissue, tenuinucellar.

Gentianidae R. G. Olmstead, W. S. Judd et P. D. Cantino in Taxon 56: E29. Aug 2007

Potential synapomorphies: Sugar transport in phloem active. Inflorescence basically cymose. Petals connate, forming distinct tube. Stamens as many as (or less than) sepals/petals, antesepalous. Polyandry when present usually associated with increased numbers of petals or carpels. Pollen grains sometimes with orbicules (Ubisch bodies). Filaments adnate to petals (epipetalous). Duplication of nuclear gene PI. Non-hydrolyzable tannins infrequent. Ellagic acid absent.

Ellagic acid occurs together with iridoids in many basal asterid clades, especially in Loasales and Ericales, whereas ellagic acid is absent in Gentianidae. Moreover, polyandry (possession of numerous stamens), a characteristic feature of several clades in Loasales and Ericales, is very infrequent among Gentianidae (rare examples are Hoplestigma in Boraginaceae and Dialypetalanthus in Rubiaceae). Polyandry may be correlated with increase in tepal (and sometimes carpel) number, contrary to the case in non-asterid Tricolpatae.

Lamiidae Takht. ex Reveal in Phytologia 74: 178. 25 Mar 1993 (euasterids I)

Potential synapomorphies: Carpels two, superposed. Introns 18–23 in d copy of gene RPB2 lost. Caffeic acid present. – The I copy of the gene RPB2 is present in most Lamiidae and also in Ericales (absent from Rosidae and remaining Asteridae).

Icacinales Tiegh. in Just’s Bot. Jahresber. 25(2): 406. 19 Jan 1900

Synapomorphies other than from DNA sequences have not been identified.

Metteniusidae G. W. Stull, D. E. Soltis et P. S. Soltis in Amer. J. Bot. 102: 1806. Nov 2015

Metteniusales Takht. Divers. Classif. Flor. Plant.: 352. 24 Apr 1997

Potential synapomorphies: Vessel elements with scalariform perforation plates. Nodes 5:5. Petiole vascular bundle transection arcuate, complex. Bracts thick, triangular. Stamens as many as petals, alternipetalous. Anthers basifixed. Carpels five. Ovules two per carpel. Funicle long. Fruit a drupe, with persistent calyx. Endosperm copious.

Garryidae Olmstead, Judd et Cantino in Taxon 56: E30. Aug 2007

Synapomorphies other than from DNA sequences have not been found.

Garryales Lindley in C. F. P. von Martius, Consp. Regn. Veg.: 16. Sep-Oct 1835 [‘Garryaceae’]

Garrya and Eucommia have only the d copy of the gene RPB2.

[Boraginaceae+Vahliaceae+[Rubiales+[Plantaginales+Solanales]]]

Lamianae Takht., Sist. Filog. Cvetk. Rast.: 405. 4 Feb 1967

Potential synapomorphies: Vessel elements with simple perforation plates. Corolla tube initiation late (petals appearing as distinct primordia that subsequently fuse). Nectary (vascularized) at base of ovary. Carpels two. Style long. 8-ring desoxyflavonols sometimes present.

Scandianthus costatus and S. major, from the Late Santonian to the Early Campanian of southern Sweden, may be attributed to some group of Lamianae. They comprise bisexual actinomorphic epigynous flowers with pentamerous perianth and androecium and a gynoecium formed by two connate carpels. The sepals and petals are free and the stamens diplostemonous. The nectariferous disc is intrastaminal. The pollen grains are tricolporate and tectate, the ovaries unilocular, the styles free, and the capsules many-seeded and apically dehiscent.

[Rubiales+[Plantaginales+Solanales]]

Synapomorphies other than from DNA sequences have not been found.

[Plantaginales+Solanales]

Potential synapomorphies: Nodes 1:1. Sepals connate. Anther theca with placentoid. Endothelium present. Myricetin, iridoids and non-hydrolyzable tannins usually absent. – Protein crystals seem to be frequently present in the nucleus, although the knowledge of their distribution is still very insufficient. Presence of arabino- and galactoxyloglucans (instead of fucogalactoxyloglucans) in cell walls may be a synapomorphy.

Campanulidae M. J. Donoghue et P. D. Cantino in Taxon 56: E30. Aug 2007 (euasterids II)

Potential synapomorphies: Vessel elements with scalariform perforation plates. Corolla with valvate aestivation. Corolla tube initiation early; corolla tube starting as annular meristem, ‘ring primordium’, from which separate petals develop (petal primordia originating on ‘ring primordium’ and staminal primordia arising in front of interprimordial connections). Petals often with acuminate apex. Endosperm copious. Embryo short or very short. Myricetin absent. – Information on corolla tube initiation is very insufficient and for numerous clades absent. Epigyny (inferior ovary) may be a synapomorphy here, yet in that case with several reversals to hypogyny. The I copy of the nuclear gene RPB2 is present in at least Escallonia of Escalloniaceae and in Ilex (Aquifoliaceae), but is lost in the majority of Campanulidae. Ilex has also lost the introns 18–23 of the d copy of RPB2, whereas these introns persist in Escallonia. As usual, the situation in the smaller clades (i.a. Bruniales and Paracryphiales) is not known.

Silvianthemum, from the Late Santonian to the Early Campanian of southern Sweden, comprises bisexual actinomorphic epigynous flowers with pentamerous perianth and androecium and a gynoecium of three free carpels. The surface is beset with peltate and simple hairs. The eight or nine stamens are probably inserted in two series. The pollen grains are tricolpate and tectate, the ovaries unilocular, the styles free, and the numerous ovules anatropous and bitegmic. A close relationship with Quintinia in Paracryphiaceae has been suggested.

Apiidae M. J. Donoghue et P. D. Cantino in Taxon 56: E31. Aug 2007

[Campanulales+[Escalloniaceae+[Bruniales+[Araliales+[Paracryphiaceae+Dipsacales]]]]]

Potential synapomorphies: Epigyny. Corolla tube initiation early. Carpels two or three. I copy of gene RPB2 lost. Iridoids or polyacetylenes present. – This clade comprises all Campanulidae except Aquifoliales.

Dipsapiidae D. C. Tank et M. J. Donoghue in Syst. Bot. 35(2): 434. 2010

[Araliales+[Paracryphiaceae+Dipsacales]]

Potential synapomorphy: Nodes 3:3.

Dipsidae D. C. Tank et M. J. Donoghue in Syst. Bot. 35(2): 434. 2010

[Paracryphiales+Dipsacales]

Potential synapomorphies: True tracheids present. Leaf margin serrate. Inflorescence terminal.

Superrosidae W. S. Judd, D. E. Soltis et P. S. Soltis in Amer. J. Bot. 98: E21-E22. Apr 2011

[Saxifragales+Rosidae]

Potential synapomorphies: Stipules present. Nodes 3:3, trilacunar with three leaf traces. Sepals trilacunar and supported by three traces (instead of unilacunar as in many basal Tricolpatae). Nectaries receptacular, supplied from receptacular or androecial traces. I copy of nuclear gene RPB2 lost. – Floral mucilaginous cells with strongly thickened mucilaginous inner periclinal wall and typical cytoplasm may be a synapomorphy of Superrosidae.

Rosidae Takht., Sist. Filog. Cvetk. Rast.: 264. 4 Feb 1967

[Vitaceae+[Fabidae+Malvidae]]

Potential synapomorphies: Mucilage cells with thickened inner mucilaginous periclinal walls and distinct cytoplasm. Anthers articulated (dorsifixed, transition to filament narrow, connective thin). Embryo elongated. Genome duplication leading to paleohexaploidy.

Vegetative anatomy Ectomycorrhiza sometimes present. Root nodules containing nitrogen-fixing endosymbiotic actinobacteria (Frankia) sometimes present. Secondary lateral growth normal, anomalous (from cylindrical cambium or concentric cambia) or absent. Vessel elements with simple or scalariform (sometimes reticulate) perforation plates; lateral pits alternate, scalariform or opposite, simple or bordered pits. Vestured pits often present. Imperforate tracheary xylem elements tracheids, fibre tracheids or libriform fibres with simple or bordered pits. Intraxylary phloem sometimes present. Sieve tube plastids Ss, S0, Pc, Pcs or Pcfs type (rarely Pfs type); sieve tubes sometimes with non-dispersive P-protein bodies. Schizogenous secretory cells, canals or cavities or glands with resins, balsam, tannins, ethereal oils or other secretions often abundant. Lysigenic or schizogenic mucilage ducts and cavities sometimes present. Laticiferous cavities or ducts sometimes present. Heartwood often with gum-like substances. Sometimes with laticifers containing gutta between cortex and phloem. Sclerenchymatous idioblasts often present. Silica bodies sometimes present. Cristarque cells sometimes present. Calciumoxalate as prismatic, rhomboidal, cuboid, acicular or irregular crystals, crystal sand, druses, raphides, or styloids. Calciumcarbonate and/or calciumsulfate sometimes present.

Trichomes Hairs unicellular or multicellular, uniseriate or multiseriate, simple or branched, furcate, T-shaped, malpighiaceous hairs, stellate, fasciculate, candelabra-shaped, bristle-like, prickly hairs, dendritic, lepidote or peltate (sometimes lanate, rarely vesicular), or absent; glands and glandular hairs sometimes present (rarely lepidote glands, helical glands or pearl glands); stinging hairs occasionally present.

Leaves Alternate or opposite (rarely verticillate), pinnately or palmately compound or simple and entire or lobed, with conduplicate, supervolute, convolute, involute, revolute, plicate, curved, circinate or flat ptyxis (rarely absent). Stipules interpetiolar, intrapetiolar, petiolar or cauline, free or connate, often rudimentary or absent (sometimes modified into spines, hairs or glands); leaf sheath absent. Colleters sometimes present. Venation pinnate or palmate, eucamptodromous, brochidodromous, craspedodromous, semicraspedodromous or reticulodromous (rarely acrodromous, actinodromous, campylodromous or parallelodromous). Stomata anomocytic, paracytic or anisocytic (rarely cyclocytic, laterocytic, helicocytic, staurocytic, hemiparacytic, diacytic, tetracytic or polycytic). Cuticular wax crystalloids as rodlets, platelets, scales, tubuli or rosettes of platelets (Fabales type) (sometimes absent). Domatia as pits, pockets or hair tufts, or absent. Epidermis with or without mucilaginous idioblasts, often containing druses; often with idioblasts (sometimes gland-dots and schizogenous secretory cavities) containing ethereal oils; epidermal cells sometimes with crystals. Lamina occasionally with resinous glands (colleters). Mesophyll with or without secretory cavities and/or ducts, with or without sclerenchymatous idioblasts, often with crystalliferous cells containing calciumoxalate as rhomboidal crystals or druses (sometimes styloids or crystal sand), or with sclerenchymatous idioblasts containing dendrosclereids or other types of sclereids; sometimes with tanniniferous cells. Laticifers with gutta sometimes present. Stomatal (including guard cells) or idioblastic myrosin cells (with myrosinase) sometimes frequent. Leaf margin or leaflet margins entire, crenate, sinuate or serrate; teeth with one vein proceeding into congested caducous tooth apex; glandular teeth rarely present on leaf margin. Leaf teeth sometimes begonioid, cucurbioid, cunonioid, malvoid, rosoid, salicoid, urticoid or violoid.

Inflorescence Terminal or axillary, panicle, fascicle, thyrse, thyrsoid, botryoid, bostrycoid, corymb, raceme-, spike-, catkin- or umbel-like cymose, or raceme, spike or catkin (sometimes pseudanthium). Bracts and/or floral prophylls (bracteoles) sometimes absent.

Flowers Actinomorphic or zygomorphic (rarely asymmetrical). Pedicel often articulated. Hypanthium sometimes present. Usually hypogyny (sometimes epigyny or half epigyny). Receptacle sometimes elongated into androgynophore or gynophore. Sepals (two to) four to five (to c. 20), usually with imbricate or imbricate-quincuncial, valvate or open (sometimes truncate, contorted or decussate, rarely induplicate-valvate or cochlear) aestivation, usually whorled (rarely [secondarily] spiral and indistinctly separate from petals), usually free (sometimes connate at base). Sepals often with three leaf traces from three gaps. Petals (two to) four or five (to more than 15), usually whorled (rarely spiral and indistinctly separate from sepals), with imbricate or imbricate-quincuncial, valvate, contorted or involute (sometimes crumpled, decussate or cochlear-descending, rarely cochlear, plicate or open) aestivation, usually free (sometimes more or less connate, rarely connate into campanulate corolla), or absent. Nectaries receptacular, supplied from receptacular or androecial traces, or on filament bases, or staminodial, or extrastaminal or intrastaminal, annular, cupular, unilateral or lobate, nectariferous disc, or as nectariferous glands of various shape, inserted on disc, perianth, adaxial side of hypanthium or as nectariferous hairs, or nectary absent. Disc present or absent. Flower often with typical mucilage cells having strongly thickened mucilaginous inner periclinal cell wall and distinct cytoplasm.

Androecium Stamens one to numerous (often 4+4 or 5+5; rarely more than 1.000), usually in one or more whorls, sometimes in three to five alternisepalous or antesepalous fascicles, usually haplostemonous or diplostemonous (sometimes obdiplostemonous, rarely triplostemonous), centripetally or centrifugally developing. Filaments free from each other or more or less connate, usually free from tepals (sometimes adnate at base to petals, epipetalous). Anthers basifixed or dorsifixed, versatile or non-versatile, usually tetrasporangiate (rarely monosporangiate, disporangiate or trisporangiate), usually introrse (sometimes extrorse or latrorse), usually longicidal (dehiscing by longitudinal slits; rarely poricidal, dehiscing by apical pores). Tapetum usually secretory (rarely amoeboid-periplasmodial). Staminodia present or absent.

Pollen grains Microsporogenesis usually simultaneous (rarely successive). Pollen grains (2–)3(–11)-colp(oid)ate, (2–)3(–33)-colpor(oid)ate or (2–)3(–4)- to polypor(or)ate (rarely syncolpate or inaperturate; sometimes heterocolpate with pseudocolpi alternating with apertures), usually shed as monads (sometimes tetrads, rarely polyads), bicellular or tricellular at dispersal. Exine with usually columellate (sometimes granular or intermediate) infratectum.

Gynoecium Pistil composed of (one or) two to ten (to 20) usually connate (often paracarpous, rarely pseudomonomerous, rarely [secondarily] free), usually whorled antepetalous (rarely [secondarily] spiral) carpels; when three then median carpel adaxial. Ovary usually superior (sometimes inferior or semi-inferior), unilocular to quinquelocular (to 20-locular), sometimes on gynophore or androgynophore. Style single, simple, often hollow, or stylodia two to five (to 18), usually free, or absent. Stigma one, capitate, lobate, spatulate or peltate, or stigmas two to five, punctate, capitate, truncate or adaxially decurrent (rarely flabellate, fimbriate, penicillate or almost petaloid or as commissural ridges down style), usually papillate, usually Dry (sometimes Wet) type. Pistillodium usually absent (male flowers sometimes with pistillodium).

Ovules Placentation axile, apical, basal, subbasal or parietal (sometimes intrusively parietal, lateral, basal-lateral, marginal or free-central; rarely laminar). Ovules one to more than 300 per carpel, anatropous, campylotropous or hemianatropous (sometimes orthotropous, amphitropous or anacampylotropous, rarely pleurotropous), ascending, horizontal or pendulous, apotropous or epitropous, usually bitegmic, tenuinucellar or crassinucellar. Micropyle bistomal or endostomal (sometimes exostomal). Funicular, placental or stylar obturator sometimes present. Archespore sometimes bicellular or multicellular. Nucellar cap or nucellar beak sometimes present. Megagametophyte usually monosporic, Polygonum type (sometimes disporic, Allium or Endymion type, or tetrasporic, Penaea, Drusa or Adoxa type). Synergids sometimes with a filiform apparatus. Antipodal cells sometimes proliferating, sometimes absent. Endosperm development usually nuclear (rarely helobial). Endosperm haustoria chalazal (sometimes lateral) or absent. Embryogenesis usually solanad, onagrad or asterad (rarely piperad or caryophyllad).

Fruit A loculicidal and/or septicidal (rarely septifragal or denticidal) capsule, berry, drupe, nut, samara or schizocarp (divided into two to five nut-like, samaroid, baccate or drupaceous mericarps; rarely a pyxidium, a hesperidium, a secondary syncarp, or an assemblage of achenes or follicles).

Seeds Perisperm rarely developed. Endosperm copious to sparse, oily, sometimes starchy, or absent. Embryo large or small, straight, plicate or curved (rarely hook-shaped, spirally twisted or circinate), usually well differentiated (rarely absent), oily, with or without chlorophyll. Cotyledons usually two (rarely three or four).

DNA Plastid gene infA usually lost/defunct. Mitochondrial intron coxII.i3 lost.

Phytochemistry Flavonols (kaempferol, quercetin, myricetin, etc.) and their glycosides, flavones, flavone-C-glycosides, flavone methyleters, flavanone glycosides, afzelechin, biflavonoids, 5-deoxyflavonoids, desoxyflavonoids with B-ring, biflavanoids, trihydroxyflavonoids, methylated flavonoids, flavonoid sulfates, isoflavonoids, acylated anthocyanins, cyanidin, cyanidin-3-glycoside, delphinidin, apigenin, monoterpenoids and their esters, diterpene and triterpene derivatives, toxic diterpene esters, bitter-tasting tetracyclic and pentacyclic triterpenes and other triterpenes, tetranor- and pentanortriterpenes, dihydrochalcones, dammaranes, dammarane triterpenoids, surianol, phorbole ester diterpenes, oleanolic acid derivatives, arjunolic acid derivatives, quinoid and/or phenolic sesquiterpenes, gutta (trans-1,4-polyisoprene), catechin, oleanolic acid derivatives, ellagic, methylated ellagic and gallic acids, non-hydrolyzable tannins, ellagitannins, galloyltannins, proanthocyanidins (prodelphinidins), p-coumaric acid, caffeic acid, chlorogenic acid, cinnamic acid derivatives, hydroxycinnamate derivatives, protoalkaloids, tropane (hygrolinic) alkaloids, peptide alkaloids, indole alkaloids, quinazoline alkaloids, polyhydroxyalkaloids, pyridine alkaloids, loline alkaloids, quinolizidine alkaloids, pyrrolidine alkaloids, piperidine alkaloids, pyrrolizidine alkaloids (also as aliphatic monocarboxylic esters), benzylisoquinoline alkaloids, sesquiterpene alkaloids and other alkaloids (securinine, phyllantine, phyllochrisine, etc.), d-norpseudoephedrine (cathine), acacetin-7-O-glycoside, acacetin-7-O-diglycoside, glucosinolates (mustard oil glycosides) derived from phenylalanine, tyrosine, methionine, valine, isoleucine and/or leucine, triterpene saponins, pentacyclic terpene saponins, tyrosine-, leucine- or phenylalanine-derived cyanogenic compounds, phenol glycosides (salicin, populin etc.), cyclopentenoid (cyclopentenylic) cyanogenic glycosides and/or cyclopentenylic fatty acids, cyclopentenoid cyanhydrin glycosides derived from non-protein amino acid 2-(2-cyclopentenyl)glycine, toxic bufadienolides, steroidal and triterpene saponins, xanthones, polyacetate-derived anthraquinones and arthroquinones, anthraquinones, bitter anthracenones, naphthoquinones, narcotic L(S)-(-)-α-aminopropiophenone (cathinone), phlobaphene, bergenin, benzoquinone rapanone, benzoquinones (embelin), pyranochromones, β-sitosterol and its glycoside, hentriacontane, mesoinosite, maytansine (ansamycin macrolide), hexitols (dulcitol etc.), salacinol, cyclic polyvalent alcohols, punicic acid, eleostearic acid (isomere of punicic acid), hypericin, pseudohypericin, arbutin, emodin derivatives, biemodyles and closely allied compounds, benzophenones, acetophenones, anthrones, naphthodianthrones, coumarins, furanocoumarins, p-coumaric acid, coumarin derivatives substituted at position 4, syringaresinol, ferulic acid, phytosterols, quebrachitol, barbeyol, cannabinoids, humulones, lupulones, naphthalene and lupeolin derivatives, ethereal oils, hyperforin, picrotoxans, hydroxyproline betaines, mustard oils based on glucotropaeolin, glucocapparin, glucocleomin, citrullin, stilbenes, cholinesters etc., erucic acid, n-eicose-11-enoic acid, docosadienoic acid and other unsaturated fatty acids, sinapic acid, tartaric acid, tariric acid, tartric acid, lipids of cyclopropane and cyclopropenoid fatty acids and their derivatives, benzyl- and methoxybenzylisothiocyanates, myo-inositol, lignans, neolignans, nor-neolignans, pinitol, apiitol, N-methyltyrosine (non-protein amino acid), cyclic polyvalent alcohols, amides, type C18:3 fatty acids, cyclopropane amino acids, polygalitol, sweet-tasting proteins (brazzein, pentadin), and aromatic m-carboxycinnamic acids and proteolytic enzymes (papain, carpain), and nigracin present.

Fossils The oldest known flower fossil showing rosid affinities (with distinct calyx and corolla) emanate from the Late Albian to the Early Cenomanian of Nebraska. This ‘Rose Creek flower’ is pentamerous and hypogynous, with four series of floral parts, free persistent sepals and free thin petals, probably five antepetalous stamens, tricolporate pollen grains with psilate exine, and five connate carpels with free styles.

[Fabidae+Malvidae]

Potential synapomorphies: Mucilage cells sometimes with thickened inner periclinal walls and distinct cytoplasm. Endosperm scanty. Embryo elongated. Genome duplication. Plastid gene infA usually lost/non-functional (functional in Celastrales). Mitochondrial intron coxII.i3 lost. Plastid gene rps16 often entirely or partially lost. – This clade embraces all Rosidae except Vitaceae.

Rosidae have principally receptacular nectaries, whereas Vitaceae have gynoecial nectaries. The corolla often has a delayed development compared to other floral parts.

Phylogeny of Rosidae based on DNA data (Wang & al. 2009; Worberg & al. 2009; Soltis & al. 2011; somewhat modified). The bootstrap support for Rosidae was 85% (Soltis & al. 2011), whereas the support for the clades [Geraniales+Myrtales] and [Cucurbitales+Juglandales] was 79% and 76%, respectively. Vitaceae are sister to all other Rosidae (bootstrap support 100%, although 72% in Wang & al. 2009). Rosidae sensu stricto are split into the two clades Fabidae (Zygophyllales to Juglandales) and Malvidae (Myrtales to Capparales, BS support 97%). The branching pattern within these clades are highly supported (75% to 100%). The support for the COM clade (Celastrales, Oxalidales and Malpighiales) as sister to the Nitrogen-fixing clade (Polygalales, Rosales, Cucurbitales and Juglandales) was only 57%. The clade [Malpighiales+Oxalidales], to which Celastrales are sister-group, is supported by 59%. Zygophyllales may be sister to [COM+Nitrogen-fixing-clade], but the support for this is low. The COM clade is sister to Malvidae in a study by Qiu & al. 2010.

Fabidae W. S. Judd, D. E. Soltis et P. S. Soltis in Taxon 56: E29. Aug 2007 (eurosids I)

Potential synapomorphies: Extrafloral nectaries often consisting of palisade epidermal cells. Endosperm scanty. – A trichotomy is formed by Zygophyllales, the COM clade and the Nitrogen-fixing clade, or Zygophyllales is sister-group to a clade comprising the COM and the Nitrogen-fixing clades.

The COM clade

[Celastrales+[Oxalidales+Malpighiales]]

Potential synapomorphies: Ovules incompletely tenuinucellar. Seed coat exotegmic; exotegmen often fibrous of special type.

[Oxalidales+Malpighiales]

Potential synapomorphies: Inner integument often thicker than outer integument. Plastid gene infA lost or non-functioning. – The megasporangium is often thin and the seeds often arillate.

The Nitrogen-fixing clade

[Polygalales+[Rosales+[Cucurbitales+Juglandales]]]

Potential synapomorphies: Pre-adaptation to fixation of nitrogen by root-dwelling associates, usually actinobacteria of the genus Frankia or rhizobia (with exception in Cannabaceae). Tension wood present. Seed coat exotestal. Endosperm at most sparce. Embryo large.

Symbiosis with nitrogen-fixing Gram-positive actinobacteria, Frankia, seems to have evolved at least four times (possibly six times). The three lineages of Frankia have obviously diverged prior to the origin of angiosperms. Frankia strains are responsible for nitrogen-fixation in Cucurbitales (i.a. Coriaria and Datisca), Juglandales (e.g. Alnus, Casuarinaceae and Myricaceae) and Rosales (i.a. Elaeagnaceae and Rhamnaceae), whereas N-fixation is carried out by Gram-negative α-proteobacteria (Rhizobium) in Polygalales (some Mimosoideae and the majority of Faboideae inFabaceae) and in Parasponia (Cannabaceae in Rosales). β-proteobacteria are responsible for the nodule formation and the N-fixation in some Fabaceae clades.

The underlying molecular causes of developing nodular nitrogen-fixation are being explored and it seems that plasmid-borne genetic components, which may be exchanged between bacteria, are partly involved. Furthermore, many genes directing the development of vesicular-arbuscular mycorrhiza are identical to those involved in nodular N-fixation. Ectomycorrhiza is frequently occurring among groups in the Nitrogen-fixing clade. Nodulation probably involves interactions between several genes.

The Frankia nodules (and also the rhizobial nodules in Parasponia) form through the modification of lateral roots, a process directed by genes in the host plant. The pericyclic nodule initiation results in the establishment of N-fixing bacterial colonies in mid-cortical cells surrounding a central vascular cylinder. The nodule tissues are enclosed by an outer periderm. Intercellular penetration of root epidermis occurs in Rosales and may be a plesiomorphy, whereas in Cucurbitales and Juglandales the infection takes place via rhizoids (root hairs).

In Fabaceae the nodules develop from root cortical cell divisions and their vascular tissue becomes peripheral. The nodular initiation may take place by intercellular penetration, infection through rhizoids or infection at wound sites. The symbiosis between Rhizobium and the plant is a prerequisite of the nitrogen fixation, the fabaceous plant producing at least one of the co-factor components essential for the nitrogenase activity. The nitrogenase is present in Frankia in special symbiotic vesicles located on short lateral branches of the filamentous vegetative mycelium-forming bacterial cells. The vesicles differ in their morphology among the lineages of the Nitrogen-fixing clade (the NF clade).

Multiple parallel gains and losses have probably taken place during the evolution of nodular nitrogen-fixation among angiosperms. The majority of groups included in the NF clade seem to lack the capacity of forming root nodules and fix nitrogen. There may be a genetically based predisposition with a single origin for nodular N-fixation in the NF clade. If so, the common ancestor of the NF clade may have evolved the underlying genetic requirements for bacterial nodular N-fixation. Subsequently, parallel lineages would have the necessary genetic equipment for developing N-fixing mutualism. Alternatively, ancestors of many lineages in the NF clade may have lost the ability to develop the symbiosis.

Although there is high support for a single origin of nitrogen-fixing symbiosis, there are significant differences in nodule morphology among the four lineages of the NF clade. Apart from the rhizobial mutualism carried out by Gram-negative proteobacteria in Fabaceae, each of the remaining three (Frankia-inhabited) clades exhibits a distinct nodule type.

In Rosaceae, Elaeagnaceae and Rhamnaceae (Rosales) the infection is carried out by hyphal penetration of the middle lamella between epidermal cells of the root. Subsequent intercellular bacterial growth takes place towards the cortex of the root and, finally, penetration by the hyphae of cortical cells in a nodule primordium.

Coriariaceae and Datiscaceae (Cucurbitales) are infected via rhizoids (root hairs). They also have a specific arrangement of vesicles in infected cells, with vesicles orientated at right angles to a central vacuole instead of vesicles surrounding the periphery of the cytoplasm. Coriaria and Datisca possess well-aerated nodule tissue and their nodules have a specific cell layer that limits the diffusion of oxygen. Datisca produces nodule roots, as is the case in Myricaceae (Juglandales), whereas Coriaria does not produce nodule roots. Instead, Coriaria has lenticels, through which oxygen may pass into the nodule. Moreover, the non-infected cells are separate from the multinucleate infected cells.

The nodules of Casuarinaceae and Myricaceae (Juglandales) possess a specialized cell layer which has thick or lignified walls and is resistant against oxygen diffusion, resulting in a lower oxygen concentration in the Frankia-infected cells. The growth of the nodule lobes (formation of the nodular roots) in Juglandales is usually indeterminate. This probably results in higher absorption of oxygen due to the increased surface area. Alnus, which does not produce nodule roots, is an exception to this. Instead, Alnus (having well-aerated nodule tissue) possesses nodule lenticels, which are similar to those in Coriaria (Cucurbitales) and enhance the transport of free oxygen into the nodules (oxygen diffusion resistance layer is absent in Alnus). Furthermore, the haemoglobin concentration is usually higher in the nodules of Juglandales (again, Alnus is an exception).

[Rosales+[Cucurbitales+Juglandales]]

Potential synapomorphies: Placentation apical. Ovules one or two per carpel.

[Cucurbitales+Juglandales]

Potential synapomorphies: Epigyny (ovary inferior). Ovules two per carpel. Fruit single-seeded, indehiscent. – The gynoecium is usually tricarpellate.

Malvidae W. S. Judd, D. E. Soltis et P. S. Soltis in Taxon 56: E29. Aug 2007 (eurosids II)

Potential synapomorphies: Contorted petal aestivation. Presence of gynophore and/or androphore. Campylotropous ovules. Micropyle Z-shaped (zig-zag).

[Geraniales+Myrtales]

Potential synapomorphies: Calyx persistent in fruit. Ellagic acid present.

[Picramniaceae+[Sapindales+[Huerteales+[Malvales+Capparales]]]]

Potential synapomorphies: Placentation apical. Ovules two per carpel, pendulous. – This clade is sister to Staphyleales.

The relationships in Malvidae are unclear and it is not at all certain which group is sister to Capparales. The clade [Malvales+Sapindales] is a possible candidate, and the clade [Malvales+Capparales] has large support in some analyses, although the sampling was insufficient and Huerteales was not included.

[Sapindales+[Huerteales+[Malvales+Capparales]]]

Potential synapomorphies: Cambium sometimes storied. Vessel elements with simple perforation plates. Petiole vascular bundle transection annular. Style present. Inner integument thicker than outer. Endosperm scarce. Flavonols present.


Literature

Abbe EC. 1974. Flowers and inflorescences of the “Amentiferae”. – Bot. Rev. 40: 159-261.

Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier F, Plomion C, Cooke R, Feuillet C, Salse J. 2010. Palaeogenomics of plants: synteny-based models of extinct ancestors. – Trends Plant Sci. 15: 479-487.

Ackerly D. 2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. – Proc. Natl. Acad. Sci. U.S.A. 106, suppl. 2: 19699-19706.

Ackery PR. 1988. Host plants and classification: a review of nymphalid butterflies. – Biol. J. Linn. Soc. 33: 95-203.

Adamec L, Kohout P, Benes K. 2006. Root anatomy of three carnivorous plant species. – Carniv. Plant Newsl. 35: 19-22.

Adams KL, Rosenblueth M, Qiu Y-L, Palmer JD. 2001. Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. – Genetics 158: 1289-1300.

Adams KL, Daly DO, Whelan J, Palmer JD. 2002. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. – Plant Cell 14: 931-943.

Adams KL, Qiu Y-L, Stoutemyer M, Palmer JD. 2002. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. – Proc. Natl. Acad. Sci. U.S.A. 99: 9905-9912.

Adams RJ, Morton JK. 1979. An atlas of pollen of the trees and shrubs of eastern Canada and adjacent United States IV5. – Univ. Waterloo Biol. Ser. 11: 14-19.

Adams SP, Hartman TPV, Lim KY, Chase MW, Bennett MD, Leitch IJ, Leitch AR. 2001. Loss and recovery of Arabidopsis-type telomere repeat sequences 5’-(TTTAGGG)n-3’ in the evolution of a major radiation of flowering plants. – Proc. Roy. Soc. London B, 268: 1541-1546.

Adsersen A, Adsersen H, Brimer L. 1986. Cyanogenic constituents in plants from the Galápagos Islands. – Biochem. Syst. Ecol. 16: 65-77.

Agababian VS. 1964. Evolution of pollen in the orders Cunoniales and Saxifragales in relation to some questions of their systematics and phylogeny. – Izv. Akad. Nauk Armyanskoi SSR 17: 59-75. [In Russian]

Agardh JG. 1858. Theoria systematis plantarum: accedit familiarum phanerogamarum in series naturales disposition, secundum structurae normas et evolutionis gradus instituta. – C. W. K. Gleerup, Lund.

Airy Shaw HK. 1932. Diagnoses of new families, new names, etc., for the seventh edition of Willis’s ‘Dictionary’. – Kew Bull. 4: 161-176.

Airy Shaw HK. 1965. Diagnoses of new families, new names, etc., for the seventh edition of Willis’s ‘Dictionary’. – Kew Bull. 18: 249-273.

Akhmetzhanova AA, Soudzilovskaia NA, Onipchenko VG, Cornwell WK, Agafonov VA, Selivanov I, Cornelissen JHC. 2012. A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. – Ecology 92: 2012.

Akkermans ADL, Van Dijk C. 1981. Non-leguminous root-nodule symbioses with actinomycetes and Rhizobium. – In: Broughton W (ed), Nitrogen fixation 1, Oxford University Press, London, pp. 57-103.

Albach DC. 1998. Phylogeny of the Asteridae s.l. – M.Sc. thesis, Washington State University, Pullman, Washington.

Albach DC, Soltis PS, Soltis DE, Olmstead RG. 2001. Phylogenetic analysis of asterids based on sequences of four genes. – Ann. Missouri Bot. Gard. 88: 163-212.

Albach DC, Soltis PS, Soltis DE. 2001. Patterns of embryological and biochemical evolution in the asterids. – Syst. Bot. 26: 242-262.

Albert VA, Williams SE, Chase MW. 1992. Carnivorous plants: phylogeny and structural evolution. – Science 257: 1491-1495.

Albert VA, Backlund A, Bremer K, Chase MW, Manhart JR, Mishler BD, Nixon KC. 1994. Functional constraints and rbcL evidence for land plant phylogeny. – Ann. Missouri Bot. Gard. 81: 534-567.

Albert VA, Gustafsson MHG, Di Laurenzio L. 1998. Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal. – In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular systematics of plants II, Kluwer Academic Publ., Boston, Massachusetts, pp. 349-374.

Albrizio M, Gara L de, Benedetto C de, Arrigoni O, Gallerani R. 1994. Investigations of the coxII intron structure in the mitochondrial genomes of angiosperms. – Plant Sci. 100: 179-186.

Aldén B, Ryman S, Hjertson M, Huldén M. 2009. Våra kulturväxters namn, ursprung och användning. – Formas Förlag, Stockholm.

Aldridge AE, Ortega J. 1976. Estudios en la flora de Macaronesia: algunos números de cromosomas II. – Bot. Macaronésica 2: 9-18.

Allègre CJ, Birck JL, Capmas F, Courtillot V. 1999. Age of the Deccan traps using 187Re-187Os systematic. – Earth Planetary Sci. Lett. 170: 197-204.

Alley NF, Kreig GW, Callen RA. 1996. Early Tertiary Eyre Formation, lower Nelly Creek, southern Lake Eyre Basin, Australia: palynological dating of macrofloras and silcrete and palaeoclimatic interpretations. – Aust. J. Earth Sci. 43: 71-84.

Al-Shammary KI, Gornall RJ. 1994. Trichome anatomy of the Saxifragaceae s.l. from the southern hemisphere. – Bot. J. Linn. Soc. 114: 99-131.

Al-Turki TA, Filfilan A, Mehmood SE. 2000. A cytological study of flowering plants from Saudi Arabia. – Willdenowia 30: 339-358.

Alvarez I, Wendel JF. 2003. Ribosomal ITS sequences and plant phylogenetic inference. – Mol. Phylogen. Evol. 29: 417-434.

Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ. 2000. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. – Mol. Cell 5: 569-579.

Amelunxen F, Morgenroth K, Picksak T. 1967. Untersuchungen an der Epidermis mit dem Stereoscan-Elektronenmikroskop. – Zeitschr. Pflanzenphys. 57: 79-95.

Anderson CE. 1974. A review of structure in several North Carolina salt marsh plants. – In: Reimold RJ, Queen WH (eds), Ecology of halophytes, Academic Press, New York, pp. 307-344.

Anderson CL, Bremer K, Friis EM. 2005. Dating phylogenetically basal eudicots using rbcL sequences and multiple fossil reference points. – Amer. J. Bot. 92: 1737-1748.

Anderson JAR, Muller J. 1975. Palynological study of a Holocene peat and a Miocene coal deposit from NW Borneo. – Rev. Palaeobot. Palynol. 19: 291-351.

Aniszewski T. 2007. Alkaloids – secrets of life. – Elsevier, Amsterdam.

Antonov AS, Troitsky AV, Samigullin TK, Bobrova VK, Veliejo-Roman KM, Martin W. 2000. Early events in the evolution of angiosperms deduced from cp rDNA ITS 2-4 sequence comparisons. – In: Liu Y-H, Fan H-M, Chen Z-Y, Wu Q-G, Zeng Q-W (eds), Proceedings of the International Symposium on the Family Magnoliaceae, May 18-22, 1998, Guangzhou, China, Science Press, Beijing, pp. 210-214.

Aoki S, Uchara K, Imafuku M, Hasebe M, Ito M. 2004. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. – J. Plant Res. 117: 229-244.

APG I – The Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants. – Ann. Missouri Bot. Gard. 85: 531-553.

APG II – The Angiosperm Phylogeny Group. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. – Bot. J. Linn. Soc. 141: 399-436.

APG III – The Angiosperm Phylogeny Group 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. – Bot. J. Linn. Soc. 161: 105-121.

Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ. 2011. Contemporaneous and recent radiations of the world’s major succulent lineages. – Proc. Natl. Acad. Sci. U.S.A. 108: 8379-8384.

Arber A. 1918. The phyllode theory of the monocotyledonous leaf with special reference to anatomical evidence. – Ann. Bot. 32: 465-501.

Arber A. 1920a. Leaf-base phyllodes among Liliaceae. – Bot. Gaz. 69: 337-340.

Arber A. 1920b. Water plants: a study of aquatic angiosperms. – Cambridge University Press, Cambridge.

Arber A. 1920c. On the leaf structure of certain Liliaceae, considered in relation to the phyllode theory. – Ann. Bot. 34: 447-465.

Arber A. 1922a. On the nature of the “blade” in certain monocotyledonous leaves. – Ann. Bot. 36: 329-351.

Arber A. 1922b. Leaves of the Farinosae. – Bot. Gaz. 74: 80-94.

Arber A. 1922c. On the leaf tips of certain monocotyledons. – Bot. J. Linn. Soc. 45: 467-476.

Arber A. 1925. Monocotyledons. A morphological study. – Cambridge University Press, Cambridge.

Archangelsky S, Taylor TN. 1993. The ultrastructure of in situ Clavatipollenites pollen from the Early Cretaceous of Patagonia. – Amer. J. Bot. 80: 879-885.

Archangelsky, S, Barreda V, Passalia MG, Gandolfo M, Pramparo M, Romero E, Cuneo R, Zamuner A, Iglesias A, Llorens M, Puebla GG, Quattrocchio M, Volkheimer W. 2009. Early angiosperm diversification: evidence from southern South America. – Cretaceous Res. 30: 1073-1082.

Ardévol Gonzalez JF, Borgen L, Pérez De Paz PL. 1993. Checklist of chromosome numbers counted in Canarian vascular plants. – Sommerfeltia 18: 1-59.

Armbruster WS. 1984. The role of resin in angiosperm pollination: ecological and chemical considerations. – Amer. J. Bot. 71: 1149-1160.

Armbruster WS. 1992. Phylogeny and the evolution of plant-animal interactions. – BioScience 42: 12-20.

Armbruster WS, Debevec EM, Willson MF. 2002. Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. – J. Evol. Biol. 15: 657-672.

Arnold AE. 2008. Endophytic fungi: hidden components of tropical community ecology. – In: Carson WF, Schnitzer SA (eds), Tropical forest community ecology, Wiley-Blackwell, London, New York, pp. 254-271.

Aronne G, Wilcock CC. 1994. First evidence of myrmecochory in fleshy-fruited shrubs of the Mediterranean region. – New Phytol. 127: 781-788.

Arora OP, Mehta M. 1981. Chemical investigations of some Rajasthan desert plants. – Indian J. Chem., Ser. B, 20: 834.

Artaud J. 1992. Identification of α-linolenic acid-rich oils. – Ann. Falsifications Expertise Chim. Toxic. 85/909: 231-239.

Aryavand A. 1975. Contribution à l’étude cytotaxonomique de quelques angiospermes de l’Iran. – Bot. Not. 128: 299-311.

Asker SE. 1979. Progress in apomixis research. – Hereditas 91: 231-240.

Asker SE, Jerling L. 1992. Apomixis in plants. – CRC Press, Boca Raton, Florida.

Askin RA. 1990. Campanian to Paleocene spore and pollen assemblages of Seymour Island, Antarctica. – Rev. Palaeobot. Palynol. 65: 105-113.

Aston HI. 1973. Aquatic plants of Australia. – Melbourne University Press, Carleton, Victoria.

Atsatt PR. 1970. Hemiparasitic flowering plants: phenotypic canalization by hosts. – Nature 225: 1161-1163.

Atta-Peters D, Salami MB. 2006. Aptian-Maastrichtian palynomorphs from the offshore Tano Basin, western Ghana. – J. African Earth Sci. 46: 379-394.

Aubréville A. 1974a. Les origines des angiospermes (1re partie). – Adansonia, sér. II, 14: 5-27.

Aubréville A. 1974b. Origines polytopiques des angiospermes tropicales (2e partie). – Adansonia, sér. II, 14: 145-198.

Augier J. 1956. Les glucides de quelques monocotylédones de l’ordre des Farinosae. – Bull. Soc. Bot. France 103: 251-253.

Augspurger CK. 1983. Phenology, flowering synchrony and fruit set of sex neotropical shrubs. – Biotropica 15: 257-267.

Avella T, Dechamps R, Bastin M. 1988. Fluorescence studies of 10,610 woody species from the Tervuren (Tw) collection, Belgium. – IAWA Bull., N. S., 9: 346-352.

Awasthi N, Panjwani M. 1984. Studies on some more carbonised woods from the Neogene of Kerala, India. – Palaeobotanist 32: 326-336.

Axelrod DI. 1952. A theory of angiosperm evolution. – Evolution 6: 29-60.

Axelrod DI. 1959. Poleward migration of early angiosperm flora. – Science 130: 203-207.

Axelrod DI. 1970. Mesozoic paleogeography and early angiosperm history. – Bot. Rev. 36: 277-319.

Axelrod DI. 1975. Plate tectonics and problems of angiosperm history. – Mém. Mus. Natl. Hist. Nat. Paris, sér. II, 88A: 72-86.

Axelrod DI. 1987. The late Oligocene Creede flora, Colorado. – Univ. Calif. Publ. Geol. Sci. 130: 1-235.

Axelrod DI, Raven PH. 1985. Origins of the cordilleran flora. – J. Biogeogr. 12: 21-47.

Baas P. 1982. Systematic, phylogenetic and ecological wood anatomy – history and perspectives. – In: Baas P (ed), New perspectives in wood anatomy, The Hague, pp. 23-58.

Baas P. 1986a. Terminology of imperforate tracheary elements – in defense of libriform fibres with minutely bordered pits. – IAWA Bull., N. S., 7: 82-86.

Baas P. 1986b. Ecological patterns of xylem anatomy. – In: Givnish J (ed), On the economy of plant form and function, Cambridge University Press, New York, pp. 327-352.

Baas P, Gregory M. 1985. A survey of oil cells in the dicotyledons with comments on their replacement by and joint occurrence with mucilage cells. – Israel J. Bot. 34: 167-186.

Baas P, Wheeler EA. 1996. Parallelism and reversibility on xylem evolution – a review. – IAWA J. 17: 351-364.

Baas P, Wheeler EA, Chase M. 2000. Dicotyledonous wood anatomy and the APG system of angiosperm classification. – Bot. J. Linn. Soc. 134: 3-17.

Baas P, Jansen S, Wheeler EA. 2003. Ecological adaptations and deep phylogenetic splits – evidence and questions from the secondary xylem. – In: Stuessy TF, Mayer V, Hörandl E (eds), Deep morphology: toward a renaissance of morphology in plant systematics, A. R. G. Gantner, Ruggell, Liechtenstein, pp. 221-239.

Backlund A, Bremer B. 1997. Phylogeny of the Asteridae s. str. based on rbcL sequences, with particular reference to the Dipsacales. – Plant Syst. Evol. 207: 225-254.

Backlund A, Bremer K. 1998. To be or not to be – principles of classification and monotypic plant families. – Taxon 47: 391-400.

Badami RC, Patil KB. 1981. Structure and occurrence of unusual fatty acids in minor seed oils. – Progr. Lipid Res. 19: 119-153.

Badr A, Gasim A. 1992. Chromosomal studies on some plants in the flora of Madinah region. – J. King Abdul Aziz Univ. 4: 23-35.

Bailey CD. 1957. The potentialities and limitations of wood anatomy in the study of the phylogeny and classification of angiosperms. – J. Arnold Arbor. 38: 243-254.

Bailey CD, Carr TG, Harris SA, Hughes CE. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. – Mol. Phylogen. Evol. 29: 435-455.

Bailey IW. 1933. The cambium and its derivative tissues VIII. Structure, distribution, and diagnostic significance of vestured pits in dicotyledons. – J. Arnold Arbor. 14: 259-273.

Bailey IW. 1936. The problem of differentiating and classifying tracheids, fiber-tracheids, and libriform wood fibers. – Trop. Woods 45: 18-23.

Bailey IW. 1944. The development of vessels in angiosperms and its significance in morphological research. – Amer. J. Bot. 31: 421-428.

Bailey IW. 1951. The conduplicate carpel of dicotyledons and its intial trends of specialization. – Amer. J. Bot. 38: 373-379.

Bailey IW. 1954. Contributions to plant anatomy. – Chronica Botanica, Waltham, Massachusetts.

Bailey IW. 1956. Nodal anatomy in retrospect. – J. Arnold Arbor. 37: 269-287.

Bailey IW. 1957. The potentialities and limitations of wood anatomy in the study of the phylogeny and classification of angiosperms. – J. Arnold Arbor. 38: 243-254.

Bailey IW, Sinnott EW. 1916. The climatic distribution of certain types of angiosperm leaves. – Amer. J. Bot. 3: 24-39.

Bailey IW, Swamy BGL. 1951. The conduplicate carpel of dicotyledons and its initial trends of specialization. – Amer. J. Bot. 38: 373-379.

Baillon H. 1890. Observations sur quelques nouveaux types du Congo. – Bull. Mens. Soc. Linn. Paris 109: 870.

Bakerf AJM, Brooks RR. 1989. Terrestrial higher plants which accumulate metallic elements – a review of their distribution, ecology and phytochemistry. – Biorecovery 1: 81-126.

Baker DD, Mullin BC. 1992. Actinorhizal symbioses. – In: Stacey G, Burris RH, Evans HJ (eds), Biological nitrogen fixation, Chapman and Hall, New York, pp. 259-292.

Baker DD, Schwintzer CR. 1990. Introduction. – In: Schwintzer CR, Tjepkema JD (eds), The biology of Frankia and actinorhizal plants, Academic Press, San Diego, pp. 1-13.

Baker EA. 1982. Chemistry and morphology of plant epicuticular waxes. – In: Cutler DF, Alvin KL, Price CE (eds), The plant cuticle, Academic Press, London, New York, pp. 139-165.

Baker EG. 1895. Diagnoses africanae VII. – Kew Bull. 1895: 211-250.

Baker HG. 1959. Reproductive methods as factors in speciation in flowering plants. – Cold Spr. Harb. Symp. Quant. Biol. 24: 177-191.

Baker HG. 1961. The adaptation of flowering plants to nocturnal and crepuscular pollinators. – Quart. Rev. Biol. 36: 64-73.

Baker HG. 1984. Some functions of dioecy in seed plants – Amer. Natur. 124: 149-158.

Baker HG, Baker I. 1979. Starch in angiosperm pollen grains and its evolutionary significance. – Amer. J. Bot. 66: 591-600.

Bakker ME. 1992. Oil and mucilage cells in dicotyledons: ontogeny, ultrastructure, distribution, and systematic value. – Rijksherbarium/Hortus Botanicus, Leiden.

Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. – Ann. Missouri Bot. Gard. 82: 247-277.

Baldwin BG, Crawford DJ, Francisco-Ortega J, Kim S-C, Sang T, Stuessy TF. 1998. Molecular phylogenetic insights on the origin and evolution of oceanic island plants. – In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular systematics of plants II: DNA sequencing, Kluwer Academic Press, Boston, New York, pp. 410-441.

Balfour EE, Philipson WR. 1962. The development of the primary vascular system in certain dicotyledons. – Phytomorphology 12: 110-143.

Balfour IB. 1882. Diagnoses plantarum novarum phanerogamarum socotriensium I. – Proc. Roy. Soc. Edinb. 11: 498-514.

Balfour IB. 1884. Diagnoses plantarum novarum phanerogamarum socotriensium IV. – Proc. Roy. Soc. Edinb. 12: 402-411.

Balfour IB. 1888. Botany of Socotra. – Trans. Roy Soc. Edinb. 31: 1-446.

Balgooy MMJ van. 1997. Malesian seed plants: an aid for identification of families and genera. – Rijksherbarium/Hortus Botanicus, Leiden.

Balick MJ, Cox PA. 1996. Plants, people, and culture. The science of ethnobotany. – Scientific American Library, New York.

Balicka-Iwanowska G. 1899. Contribution à l’étude du sac embryonnaire chez certains Gamopetales. – Flora 86: 47-71.

Balthazar M von, Pedersen KR, Crane PR, Friis EM. 2008. Carpestella lacunata gen. et sp. nov., a new basal angiosperm flower from the Early Cretaceous (Early to Middle Albian) of eastern North America. – Intern. J. Plant Sci. 169: 890-898.

Baltisberger M. 1984. Zytologische Untersuchungen an einigen Pflanzen aus Albanien. – Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich 51: 63-77.

Baltisberger M. 1987. Chromosomenzahlen einiger Pflanzen aus Albanien. – Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich 53: 47-63.

Baltisberger M. 1988. Chromosomenzahlen einiger Pflanzen aus Albanien II. – Ber. Geobot. Inst. ETH, Stiftung Rübel, Zürich 54: 42-50.

Baltisberger M. 1990. Zytologische Untersuchungen an einigen Arten aus Italien. – Arch. Bot. Ital. 66: 153-165.

Baltisberger M. 1991a. Cytological investigations of some plants from Turkey. – Willdenowia 21: 225-232.

Baltisberger M. 1991b. Cytological investigations of some Greek plants. – Flora Mediterr. 1: 157-173.

Baltisberger M. 1994. Chromosome numbers in some species from Greece. – Bot. Chron. 11: 15-29.

Baltisberger M. 2002. Cytological investigations on some Albanian plant species. – Candollea 56: 245-259.

Baltisberger M, Baltisberger E. 1995. Cytological data of Albanian plants. – Candollea 50: 457-493.

Baltisberger M, Widmer A. 2004. Cytological data of some plant species from Israel. – Israel J. Plant Sci. 52: 171-176.

Baltisberger M, Huber W, Merz B. 1990. Zytologische Untersuchungen an einigen Pflanzen von den Kanarischen Inseln. – Ber. Geobot. Inst. E. T. H. Stiftung Rübel 56: 142-149.

Bamber RK, Welle BJH ter. 1994. Adaptive trends in the wood anatomy of lianas. – In: Iqbal M (ed), Growth patterns in vascular plants, Dioscorides Press, Portland, Oregon, pp. 272-287.

Bancroft N. 1914. A review of the literature concerning the evolution of monocotyledons. – New Phytol. 13: 285-308.

Bande MB. 1992. The Paleogene vegetation of peninsular India (megafossil evidence). – Palaeobotanist 40: 275-284.

Bande MB, Prakash U. 1986. The Tertiary flora of Southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. – Rev. Palaeobot. Palynol. 49: 203-233.

Bandoni AL, Mendiondo ME, Rondina RVD, Coussio JD. 1976. Survey of Argentinian medicinal plants – folklore and phytochemical screening 2. – Econ. Bot. 31: 161-185.

Banerji ML. 1955. Some edible and medicinal plants from East Nepal. – J. Bombay Nat. Hist. Soc. 53: 153-155.

Banerji ML. 1966. Contributions to the flora of East Nepal. – Rec. Bot. Surv. India 19: 1-90.

Bannister JM, Jordan GJ, Carpenter RJ, Conran JG, Lee DE. 2011. Fossil leaves provide evidence of a diverse swamp forest flora from a Late Oligocene/Early Miocene site in the Gore Lignite Measures. – In: Litchfield NJ, Clark K (eds), Abstract volume, Geosciences 2011 Conference, Nelson, New Zealand. Geosci. Soc. New Zealand Misc. Publ. 130A, Geoscience Society of New Zealand, Nelson, p. 8.

Baquar SR, Abid Askari SH. 1970. Chromosome numbers in some flowering plants of West Pakistan. – Genét. Ibér. 22: 1-11.

Baquar SR, Hussain A. 1967. Chromosome studies in some flowering plants of West Pakistan I. – Phyton 24: 49-55.

Baquar SR, Akhtar S, Husain A. 1965. Meiotic chromosome numbers in some vascular plants of Indus Delta I. – Bot. Not. 118: 289-298.

Barabé D. 1984. Application du cladisme à la systématique des Angiospermes: cas de Hamamelidales. – Candollea 39: 51-70.

Barabé D, Bergeron Y, Vincent GA. 1982a. La position de Daphniphyllaceae, Buxaceae, Simmondsiaceae, et Cecropiaceae dans la sous-classe des Hamamelididae: étude numérique. – Compt. Rend. Acad. Sci. Paris, sér. III, 294: 891-896.

Barabé D, Bergeron Y, Vincent GA. 1982b. Étude quantitative de la classification des Hamamelididae. – Taxon 31: 619-645.

Barabé D, Bergeron Y, Vincent GA. 1987. La répartition des caractères dans la classification des Hamamelididae (Angiospermae). – Can. J. Bot. 65: 1756-1767.

Barale G, Ouaja M. 2001. Découverte de nouvelles flores avec des restes à affinités angiospermiennes dans le Crétacé inférieur du Sud Tunisien. – Cretaceous Res. 22: 131-143.

Baranova MA. 1983. On the laterocytic stomatotype in angiosperms. – Brittonia 35: 93-102.

Baranova MA. 1987. Historical development of the present classification of morphological types of stomates. – Bot. Rev. 53: 53-79.

Baranova MV. 1981. On the relationship of bulb structure with environment. – Tr. Mosk. Ova. Ispyt. Prir. 56: 76-90. [In Russian]

Barclay RS, Johnson KR, Betterton WJ, Dilcher DL. 2003. Stratigraphy and megaflora of a K-T boundary section in the eastern Denver Basin, Colorado. – Rocky Mountain Geology 38: 45-71.

Baretta-Kuipers T. 1976. Comparative wood anatomy of Bonnetiaceae, Theaceae and Guttiferae. – In: Baas P, Bolton AJ, Catling DM (eds), Wood structure in biological and technological research, Leiden Bot. Ser., 3: 76-101.

Barghoorn ES. 1941. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons II. Modification of the multiseriate and uniseriate rays. – Amer. J. Bot. 28: 273-282.

Barghoorn ES, Spackman W. 1949. A preliminary study of the flora of the Brandon Lignite. – Amer. J. Sci. 247: 33-39.

Barker NP. 2005. A review and survey of basicarpy, geocarpy, and amphicarpy in the African and Madagascan flora. – Ann. Missouri Bot. Gard. 92: 445-462.

Barkley TM, DePriest P, Funk V, Kiger RW, Kress WJ, Moore G. 2004. Linnaean nomenclature in the 21st Century: a report from a workshop on integrating traditional nomenclature and phylogenetic classification. – Taxon 53: 153-158.

Barkman TJ, Chenery G, McNeal JR, Lyons-Weiler J, dePamphilis CW. 2000. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. – Proc. Natl. Acad. Sci. U.S.A. 97: 13166-13171.

Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom HB, Young ND, dePamphilis CW. 2007. Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. – BMC Evol. Biol. 7: e248.

Bärner J. 1927. Serodiagnostische Verwandtschaftforschungen innerhalb der Geraniales, Sapindales, Rhamnales und Malvales. – Bibl. Bot. 94: 1-39.

Baroux C, Spillane C, Grossniklaus U. 2002. Evolutionary origin of the endosperm in flowering plants. – Genome Biol. 2002, 3(9): Reviews 1026.1-1026.5.

Barr A et al. 1993. Traditional aboriginal medicines in the Northern Territory of Australia. – Conservation Commission, Darwin.

Barraclough TG. 2006. What can phylogenetics tell us about speciation in the Cape flora. – Divers. Distrib. 12: 21-26.

Barraclough TG, Savolainen V. 2001. Evolutionary rates and species diversity in flowering plants. – Evolution 55: 677-683.

Barraclough TG, Harvey PH, Nee S. 1996. Rate of rbcL gene sequence evolution and species diversification in flowering plants (angiosperms). – Proc. Roy. Soc. London, Ser. B, 263: 589-591.

Barreda V. 1997a. Palynomorph assemblage of the Chenque Formation, late Oligocene?-Miocene from Golfo San Jorge basin, Patagonia, Argentina. Part 4. Polyporate and porate pollen. – Ameghiniana 34: 131-143.

Barreda V. 1997b. Palinoestratigrafía de la Formación San Julián el área de Playa LaMina (Pronvincia de Santa Cruz), Oligoceno de la Cuenca Austral. – Ameghiniana 34: 283-294.

Barreda V, Archangelsky S. 2006. The southernmost record of tropical pollen grains in the mid-Cretaceous of Patagonia, Argentina. – Cretaceous Res. 27: 778-787.

Barrett SCH. 1993. The evolution of heterostyly. – Springer, Berlin, Heidelberg, New York.

Barrett SCH, Richards JH. 1990. Heterostyly in tropical plants. – Mem. New York Bot. Gard. 55: 35-61.

Barrett SCH, Jesson LK, Baker AM. 2000. The evolution and function of stylar polymorphisms in flowering plants. – Ann. Bot. 85: 253-265.

Barringer BC. 2007. Polyploidy and self-fertilization in flowering plants. – Amer. J. Bot. 94: 1527-1533.

Barron D, Varin L, Ibrahim RK, Harborne JB, Williams CA. 1988. Sulphated flavonoids – an update. – Phytochemistry 27: 2375-2395.

Barthlott W. 1981. Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects. – Nord. J. Bot. 1: 345-355.

Barthlott W. 1984. Microstructural features of seed surfaces. – In: Heywood VH, Moore DM (eds), Current concepts in plant taxonomy, Academic Press, London, pp. 95-105.

Barthlott W. 1990. Scanning electron microscopy of the epidermal surface in plants. – In: Claugher D (ed), Scanning electron microscopy in taxonomy and functional morphology, Syst. Assoc. Spec. Vol. 41, Clarendon Press, Oxford, pp. 69-83.

Barthlott W, Frölich D. 1983. Mikromorphologie und Orientierungsmuster epicuticularer Wachs-Kristalloide: ein neues systematisches Merkmal bei Monokotylen. – Plant Syst. Evol. 142: 171-185.

Barthlott W, Theisen I. 1995. Epicuticular wx ultrastructure and classification of Ranunculiflorae. – In: Jensen U, Kadereit J (eds), Systematics and evolution of the Ranunculiflorae, Plant Syst. Evol. [Suppl.] 9: 39-45.

Barthlott W, Wollenweber E. 1981. Zur Feinstruktur, Chemie und taxonomischen Signifikanz epicuticularer Wachse und ähnlicher Sekrete. – Trop. Subtrop. Pflanzenwelt 32: 35-97.

Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H. 1998. Classification and terminology of plant epicuticular waxes. – Bot. J. Linn. Soc. 126: 237-260.

Barthlott W, Theisen I, Borsch T, Neinhuis C. 2003. Epicuticular waxes and vascular plant systematics: integrating micromorphological and chemical data. – In: Stuessy TF, Mayer V, Hörandl E (eds), Deep morphology: toward a renaissance of morphology in plant systematics, A. R. G. Gantner, Ruggell, Liechtenstein, pp. 189-206.

Bartolo GS, Brullo S, Grillo M, Majorana G, Pavone P. 1977. Numeri cromosomici per la Flora Italiana. – Inf. Bot. Ital. 9: 71-87.

Basinger JF, Dilcher DL. 1984. Ancient bisexual flowers. – Science 224: 511-513.

Baskin JM, Baskin CC, Li X. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. – Plant Spec. Biol. 15: 139-152.

Basualdo I, Zardini EM, Ortiz M. 1995. Medicinal plants of Paraguay: underground organs II. – Econ. Bot. 49: 387-394.

Bateman RM. 1999. Integrating molecular and morphological evidence of evolutionary radiations. – In: Hollingsworth PM, Bateman RM, Gornall RJ (eds), Molecular systematics and plant evolution, London, pp. 432-471.

Bateman RM, Simpson NJ. 1998. Comparing phylogenetic signals from reproductive and vegetative organs. – In: Owens SJ, Rudall PJ (eds), Reproductive biology in systematics, conservation and economic botany, Royal Botanic Gardens, Kew, pp. 231-253.

Bateman RM, Hilton J, Rudall PJ. 2006. Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. – J. Exper. Bot. 57: 3471-3503.

Bateman RM, Hilton J, Rudall PJ. 2011. Spatial separation and developmental divergence of male and female reproductive units in gymnosperms, and their relevance to the origin of the angiosperm flower. – In: Wanntorp L, Ronse de Craene LP (eds), Flowers on the Tree of Life, Systematics Association Spec. Vol. 80, Cambridge University Press, Cambridge, pp. 8-48.

Bate-Smith E-C. 1962. The phenolic constituents of plants and their taxonomic significance I. Dicotyledons. – Bot. J. Linn. Soc. 58: 95-173.

Bate-Smith E-C. 1965. Recent progress in the chemical taxonomy of some phenolic constituents of plants. – Mém. Soc. Bot. France 1965: 16-28.

Bate-Smith E-C. 1968. The phenolic constituents of plants and their taxonomic significance II. Monocotyledons. – Bot. J. Linn. Soc. 60: 325-356.

Bate-Smith E-C. 1972. Chemistry and phylogeny of the angiosperms. – Nature 236: 353-354.

Bate-Smith E-C. 1973. Systematic distribution of ellagitannins in relation to the phylogeny and classification of the angiosperms. – In: Bendz G, Santesson J (eds), Chemistry in botanical classification, Nobel Foundation, Stockholm, pp. 93-100.

Bate-Smith E-C. 1984. Age and distribution of galloyl esters, iridoids and certain other repellents in plants. – Phytochemistry 23: 945-950.

Bate-Smith E-C, Metcalfe CR. 1957. Leuco-anthocyanins 3. The nature and systematic distribution of tannins in dicotyledonous plants. – Bot. J. Linn. Soc. 55: 669-705.

Bate-Smith E-C, Swain T. 1966. The asperulosides and the aucubins. – In: Swain T (ed), Comparative phytochemistry, Academic Press, London, pp. 159-174.

Battaglia E. 1989. Embryological questions 14. The evolution of the female gametophyte of angiosperms: an interpretative key. – Ann. Bot., N. S., 47: 7-144.

Batten DJ. 1973. Palynology of early Cretaceous soil beds and associated strata. – Palaeontology 16: 399-424.

Batten DJ. 1981. Stratigraphy, palaeogeography and evolutionary significance of Late Cretaceous and Early Tertiary Normapolles pollen. – Rev. Palaeobot. Palynol. 35: 125-137.

Batten DJ. 1986a. Possible functional implications of exine sculpture and architecture in some Late Cretaceous Normapolles pollen. – In: Blackmore S, Ferguson IK (eds), Pollen and spores. Form and function, Academic Press, London, pp. 219-232.

Batten DJ. 1986b. The Cretaceous Normapolles pollen genus Vancampopollenites: occurrence, form, and function. – Palaeontology, Spec. Pap. 35: 21-39.

Batten DJ. 1988. A revision of S. J. Diikstra’s Late Cretaceous megaspores and other plant microfossils from Limburg, The Netherlands. – Meded. Rijks Geol. Dienst 41-3: 1-55.

Batten DJ, Christopher RA. 1981. Key to recognition of Normapolles and some morphologically similar genera. – Rev. Palaeobot. Palynol. 35: 359-383.

Batten DJ, Morrison L. 1987. Morphology and occurrence of the Normapolles pollen genus Papillopollis in the Cretaceous of Portugal. – Palynology 11: 133-154.

Batten DJ, Dupagne-Kievits J, Lister JK. 1988. Palynology of the Upper Cretaceous Aachen Formation of northeastern Belgium. – In: Streel M, Bless MJM (eds), The Chalk District of the Euregio Meuse-Rhine, Nat. Mus. Lab. Paleontol. Univ. Liège, Liège, pp. 95-103.

Batygina TB, Vasilyeva VE. 1996. The revision of Oenothera-type of embryo sac development in angiosperms. – In: Mukerji KG (ed), Advances in botany, A. P. H. Publ., New Delhi, India, pp. 1-20.

Batygina TB, Yakovlev MS (eds). 1990. Comparative embryology of flowering plants: monocotyledons. – Nauka, Leningrad. [In Russian]

Baum DA, Hileman LC. 2006. A developmental genetic model for the origin of the flower. – In: Ainsworth C (ed), Flowering and its manipulation, Annual Plant Reviews 20, Blackwell, Oxford, pp. 3-27.

Baum H. 1948a. Über die postgenitale Verwachsung in Karpellen. – Österr. Bot. Zeitschr. 95: 86-94.

Baum H. 1948b. Ontogenetische Beobachtungen an einkarpelligen Griffeln und Griffelenden. – Österr. Bot. Zeitschr. 95: 362-372.

Baum H. 1948c. Postgenitale Verwachsung in und zwischen Karpell- und Staubblattkreisen. – Sitzungsber. Österr. Akad. Wiss. Math.-Nat. Kl., Abt. I 157: 17-38.

Baum H. 1949a. Die Verbreitung der postgenitalen Verwachsung im Gynözeum und ihre Bedeutung für die typologische Betrachtung des Coenokarpen Gynözeums. – Österr. Bot. Zeitschr. 95: 124-128.

Baum H. 1949b. Das Zustandekommen ’offener’ Angiospermengynözeen. – Österr. Bot. Zeithschr. 96: 285-288.

Baumann-Bodenheim MG. 1954. Prinzipien eines Fruchtsystems der Angiospermen. – Ber. Schweiz. Bot. Ges. 64: 94-112.

Baum-Leinfellner H. 1953. Über unifaziale Griffel und Narben. – Planta 42: 452-460.

Bawa KS. 1973. Chromosome numbers of tree species of a lowland tropical community. – J. Arnold Arbor. 54: 422-434.

Bawa KS. 1974. Breeding system of tree species of a lowland tropical community. – Evolution 28: 85-92.

Bawa KS. 1980. Evolution of dioecy in flowering plants. – Ann. Rev. Ecol. Syst. 11: 15-39.

Bawa KS, Webb CJ. 1984. Flower, fruit and seed abortion in tropical forest trees: implications for the evolution of paternal and maternal reproductive patterns. – Amer. J. Bot. 71: 736-751.

Bawa KS, Bullock SH, Perry DB, Covulle RE,Grayum MH. 1985. Reproductive biology of tropical lowland rain forest trees II. Pollination systems. – Amer. J. Bot. 72: 346-356.

Bayer C, Appel O. 1996. Occurrence and taxonomic significance of ruminate endosperm. – Bot. Rev. 62: 301-310.

Beaman JH, DeYong DCD, Stoutamire WP. 1962. Chromosome studies in the alpine and subalpine flora of Mexico and Guatemala. – Amer. J. Bot. 49: 41-50.

Beard JS, Chapman AR, Giola P. 2000. Species richness and endemism in the western Australia flora. – J. Biogeogr. 27: 1257-1268.

Beattie AJ. 1985. The evolutionary ecology of ant-plant mutualisms. – Cambridge University Press, Cambridge.

Beaulieu JM, Donoghue MJ. 2013. Fruit evolution and diversification in campanulid angiosperms. – Evolution 67: 3132-3144.

Beaulieu JM, O’Meara BC. 2018. Can we build it? Yes we can, but should we use it? Assessing the quality and value of a very large phylogeny of campanulid angiosperms. – Amer. J. Bot. 105: 417-432.

Beaulieu JM, Tank DC, Donoghue MJ. 2013. A southern hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana. – BMC Evol. Biol. 13: 80.

Beaulieu JM, O’Meara BC, Donoghue MJ. 2013. Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. – Syst. Biol. 62: 725-737.

Beck CB, Schmid R, Rothwell GW. 1982. Stelar morphology and the primary vascular system of seed plants. – Bot. Rev. 48: 681-815.

Becker A, Theißen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. – Mol. Phylogenet. Evol. 29: 464-489.

Becker A, Winter KU, Meyer B, Saedler H, Theissen G. 2000. MADS gene diversity in seed plants 300 million years ago. – Mol. Biol. Evol. 17: 1425-1434.

Becker HF. 1961. Oligocene plants from the upper Ruby River Basin, southwestern Montana. – Mem. Geol. Soc. Amer. 82: 1-127.

Bedell HG, Reveal JL. 1982. Amended outlines and indices for six recently published systems of angiosperm classification. – Phytologia 51: 65-156.

Beer T, Swaine MD. 1977. On the theory of explosively dispersed seeds. – New Phytol. 78: 681-694.

Behnke H-D. 1969. Die Siebrohren-Plastid der Monocotyledonen: vergleichende Untersuchungen über Feinbau und Verbreitung eines charakteristischen Plastidentyps. – Planta 84: 174-184.

Behnke H-D. 1971. Sieve-tube plastids of Magnoliidae and Ranunculidae in relation to systematics. – Taxon 20: 723-730.

Behnke H-D. 1972. Sieve-tube plastids in relation to angiosperm systematics – an attempt towards a classification by ultrastructural analysis. – Bot. Rev. 38: 155-197.

Behnke H-D. 1973. Sieve-tube plastids of Hamamelidae. – Taxon 22: 205-210.

Behnke H-D. 1974. Sieve-element plastids of Gymnospermae: their ultrastructure in relation to systematics. – Plant Syst. Evol. 123: 1-12.

Behnke H-D. 1975. The bases of angiosperm phylogeny: ultrastructure. – Ann. Missouri Bot. Gard. 62: 647-663.

Behnke H-D. 1976. The distribution of characters within an angiosperm system. – Bot. Not. 129: 287-295.

Behnke H-D. 1981a. Sieve-element characters. – Nord. J. Bot. 1: 381-400.

Behnke H-D. 1981b. Siebelement-Plastiden, Phloem-Protein und Evolution der Blütenpflanzen II. Monokotyledonen. – Ber. Deutsch. Bot. Ges. 94: 647-662.

Behnke H-D. 1988. Sieve-element plastids, phloem protein, and evolution of flowering plants III. Magnoliidae. – Taxon 37: 699-732.

Behnke H-D. 1989. Sieve-element plastids, phloem proteins, and the evolution of flowering plants IV. Hamamelidae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 1, Introduction and ‘Lower’ Hamamelidae, Systematics Assoc. Spec. Vol. 40A, Clarendon Press, Oxford, pp. 105-128.

Behnke H-D. 1990. Siebelemente. Kernlose Spezialisten für den Stofftransport in Pflanzen. – Naturwissenschaften 77: 1-11.

Behnke H-D. 1991a. Distribution and evolution of forms and types of sieve-element plastids in the dicotyledons. – Aliso 13: 167-182.

Behnke H-D. 1991b. Non-dispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. – IAWA Bull., N. S., 12: 143-175.

Behnke H-D. 2003. Sieve-element plastids and evolution of monocotyledons with emphasis on Melanthiaceae sensu lato and Aristolochiaceae-Asaroideae, a putative dicotyledon sister group. – Bot. Rev. 68: 524-544.

Behnke H-D, Barthlott W. 1983. New evidence from ultrastructural and micromorphological fields in angiosperm classification. – Nord. J. Bot. 3: 43-66.

Behrensmeyer AK, Quade J, Cerling TE, Kappelman J, Khan IA, Copeland P, Roe L, Hicks J, Stubblefield P, Willis BJ, Latorre C. 2007. The structure and rate of late Miocene expansion of C4 plants: evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. – Bull. Geol. Soc. Amer. 119: 1486-1505.

Beille C. 1901. Recherches sur le développement floral des Disciflores. – Act. Soc. Linn. Bordeaux 56: 235-410.

Beimforde C, Schäfer N, Dörfelt H, Nascimbene PC, Singh H, Heinrichs J, Reitner J, Rana RS, Schmidt AR. 2011. Ectomycorrhizas from a Lower Eocene angiosperm forest. – New Phytol. 192: 988-996.

Belin-Depoux M. 1989. Des hydathodes aux nectaires foliaires chez les plantes tropicales. – Bull. Soc. Bot. France 136: 151-168.

Bell AD, Bryan A. 1991. Plant form. An illustrated guide to flowering plant morphology. – University Press, Oxford.

Bell AD, Bryan A. 2008. Plant form. An illustrated guide to flowering plant morphology, New Edition. – Timber Press, Portland, Oregon.

Bell AD, Tomlinson PB. 1980. Adaptive architecture in rhizomatous plants. – Bot. J. Linn. Soc. 80: 125-160.

Bell CD, Soltis DE, Soltis PS. 2005. The age of the angiosperms: a molecular timescale without a clock. – Evolution 59: 1245-1258.

Bell CD, Soltis DE, Soltis PS. 2010. The age and diversification of the angiosperms re-revisited. – Amer. J. Bot. 97: 1296-1303.

Bell G. 1985. On the function of flowers. – Proc. Roy. Soc. London, Ser. B, 224: 223-265.

Bell WA. 1949. Uppermost Cretaceous and Paleocene floras of western Alberta. – Geol. Surv. Canada Bull. 13: 1-231.

Bell WA. 1957. Flora of the Upper Cretaceous Nanaimo Group, Vancouver Island, British Columbia. – Mem. Geol. Surv. Can. 292: 1-89.

Bender F, Mädler K. 1969. Die sandige Schichtenfolge der Kreide mit einer Angiospermen-Flora in Südjordanien. – Beih. Geol. Jahrb. 81: 35-92.

Benlloch R, Berbel A, Serrano-Mislata A, Madueño F. 2007. Floral initiation and inflorescence architecture: a comparative view. – Ann. Bot. 100: 659-676.

Bensel CR, Palser BF. 1975. Floral anatomy in the Saxifragaceae sensu lato III. Kirengeshomoideae, Hydrangeoideae and Escallonioideae. – Amer. J. Bot. 62: 676-687.

Benson DR, Silvester WB. 1993. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. – Microbiol. Rev. 57: 293-319.

Benson L. 1957. Plant classification. – D. C. Heath & Co., Boston.

Benson L. 1979. Plant classification. – Heath & Co., Lexington, England.

Bentley KW. 1998. The isoquinoline alkaloids. – Harwood, Australia.

Benzing DH. 1967a. Developmental patterns in stem primary xylem of woody Ranales I. Species with unilacunar nodes. – Amer. J. Bot. 54: 805-813.

Benzing DH. 1967b. Developmental patterns in stem primary xylem of woody Ranales II. Species with trilacunar and multilacunar nodes. – Amer. J. Bot. 54: 813-820.

Berg RY. 1975. Myrmecochorous plants in Australia and their dispersal by ants. – Aust. J. Bot. 23: 475-508.

Berg RY. 1981. The role of ants in seed dispersal in Australian lowland heathland. – In: Specht RL (ed.), Heathlands and related shrubblands: analytical studies [Ecosystems of the World 9B]. – Elsevier, Amsterdam.

Berggren S. 1878. Några nya eller ofullständigt kända arter av Ny-Zeeländska fanerogamer. – Fysiografiska Sällskapets Minnesskrift, Lund, Sweden.

Bergthorsson U, Adams KL, Thomason B, Palmer JD. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. – Nature 424: 197-201.

Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD. 2004. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. – Proc. Natl. Acad. Sci. USA 101: 17747-17752.

Bernard C. 1903. Sur l’embryogénie de quelques parasites. – J. Bot. (Morot) 17: 23-32, 62-86, 117-137, 168-197.

Bernardello G. 2007. A systematic survey of floral nectaries. – In: Nicoloson SW, Nepi M, Pacini E (eds), Nectaries and nectar, Springer, New York, pp. 19-128.

Bernards MA. 2002. Demystifying suberin. – Can. J. Bot. 80: 227-240.

Bernardello G. 2007. A systematic survey of floral nectaries. – In: Nicolson SW, Nepi M, Pacini E (eds), Nectaries and nectar, Springer, New York, pp. 19-128.

Bernhardt P. 1996. Anther adaptation in animal pollination. – In: D’Arcy WG, Keating RC (eds), The anther: form, function, and phylogeny, Cambridge University Press, Cambridge, pp. 192-220.

Bernhardt P. 2000. Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. – Plant Syst. Evol. 222: 293-320.

Bernhardt P, Thien LB. 1987. Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. – Plant Syst. Evol. 156: 159-176.

Berry AM, Sunell LA. 1990. The infection process and nodule development. – In: Schwintzer CR, Tjepkema JD (eds), The biology of Frankia and actinorhizal plants, Academic Press, New York, pp. 61-81.

Berry EW. 1916. Lower Eocene floras of southeastern North America. – U.S. Geol. Surv. Prof. Pap. 91: 1-481.

Berry EW. 1919. Upper Cretaceous floras of the eastern Gulf Region in Tennessee, Mississippi, Alabama, and Georgia. – US Geol. Surv. Prof. Pap. 112: 1-177.

Berry EW. 1921. Tertiary fossil plants from Venezuela. – Proc. U.S. Natl. Mus. 59: 553-579.

Berry EW. 1922. Pliocene fossil plants from eastern Bolivia. – B. W. I. Johns Hopkins Univ. Stud. Geol. 4: 145-186.

Berry EW. 1924a. The Tertiary flora of the island of Trinidad. – B. W. I. Johns Hopkins Univ. Stud. Geol. 6: 120-123.

Berry EW. 1924b. Fossil fruits from the eastern Andes of Colombia. – Bull. Torrey Bot. Club 51: 61-67.

Berry EW. 1927. Petrified fruits and seeds from the Oligocene of Peru. Pan Amer. Geol. 47: 121-132.

Berry EW. 1929a. A revision of the flora of the Latah Formation. – Prof. Pap. U.S. Geol. Surv. 154: 225-266.

Berry EW. 1929b. Fossil fruits in the Ancon sandstone of Ecuador. – J. Paleontol. 3: 298-301.

Berry EW. 1929c. Early Tertiary fruits and seeds from Belen, Peru. – B. W. I. Johns Hopkins Univ. Stud. Geol. 10: 137-172.

Berry EW. 1929d. An Eogene tropical forest in the Peruvian desert. – Proc. Natl. Acad. Sci. U.S.A. 15: 345-346.

Berry EW. 1929e. Tertiary fossil plants from Colombia, South America. – Proc. U. S. Natl. Mus. 75: 1-12.

Berry EW. 1937. Gyrocarpus and other fossil plants from the Cumarebo field in Venezuela. – J. Washington Acad. Sci. 27: 501-506.

Berry EW. 1939. Fossil plants from the Cretaceous of Minnesota. – J. Washington Acad. Sci. 29: 331-336.

Berry PE. 2002. Biological inventories and the PhyloCode. – Taxon 51: 27-29.

Bessey CE. 1893. Evolution and classification. – Bot. Gaz. 18: 329-333.

Bessey CE. 1896. The point of divergence of monocotyledons and dicotyledons. – Bot. Gaz. 22: 229-232.

Bessey CE. 1897. Phylogeny and taxonomy of the angiosperms. – Bot. Gaz. 24: 145-178.

Bessey CE. 1915. The phylogenetic taxonomy of flowering plants. – Ann. Missouri Bot. Gard. 2: 109-164.

Beutler JA, Brubaker AN. 1987. The chemistry and pharmacology of the securinine alkaloids. – Drugs of the Future 12: 957-976.

Beuzenberg EJ, Hair JB. 1963. Contributions to a chromosome atlas of the New Zealand flora 5. Miscellaneous families. – New Zealand J. Bot. 1: 53-67.

Beuzenberg EJ, Hair JB. 1983. Contributions to a chromosome atlas of the New Zealand flora 25. Miscellaneous families. – New Zealand J. Bot. 21: 13-20.

Bews JW. 1927. Studies in the ecological evolution of angiosperms. – New Phytol. 26: 1-21, 65-84, 129-148, 209-278, 273-294.

Bhambie S. 1972. Correlation between form, structure and habit in some lianas. – Proc. Indan Acad. Sci., Sect. B, 75: 246-256.

Bhansali AK, Bhandari MM. 1974. Chromosome numbers of Indian desert plants, Part I. – Geobios (Jodhpur) 1: 144-145.

Bharathan G. 1996. Does the monocot mode of leaf development characterize all monocots? – Aliso 14: 271-279.

Bharathan G, Zimmer EA. 1995. Early branching events in monocotyledons: partial 18S ribosomal DNA sequence analysis. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 81-107.

Bharathan G, Lambert G, Galbraith DW. 1944. Nuclear DNA content of monocotyledons and related taxa. – Amer. J. Bot. 81: 381-386.

Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. – Science 296: 1858-1860.

Bhat RB, Etejere EO, Oladipo VT. 1990. Ethnobotanical studies from Central Nigeria. – Econ. Bot. 44: 382-390.

Bhatnagar AK. 1978. Morphology and embryology of some taxa of controversial affinities. – Ph.D. diss., University of Delhi, India.

Bhatnagar SP, Uma MC. 1969. The structure of style and stigma in some Tubiflorae. – Phytomorphology 19: 99-109.

Bianchi G. 1995. Plant waxes. – In: Hamilton RJ (ed), Waxes: chemistry, molecular biology and functions, the Oily Press, Dundee, Scotland, pp. 177-222.

Bidartondo MI. 2005. The evolutionary ecology of myco-heterotrophy. – New Phytol. 167:335-352.

Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ. 2002. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. – Nature 419: 389-392.

Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG. 2011. The dawn of symbiosis between plants and fungi. – Biol. Lett. 7: 574-577.

Biedinger N, Barthlott W. 1993. Untersuchungen zur Ultraviolett-Reflektion von Angiospermenblüten I: Monocotyledoneae. – Trop. Subtrop. Pflanzenwelt (Akad. Wiss. Lit. Mainz) 86: 1-122.

Bierhorst DW. 1971. Morphology of vascular plants. – Macmillan, New York.

Bierhorst DW, Zamora PM. 1965. Primary xylem elements and element associations of angiosperms. – Amer. J. Bot. 52: 657-710.

Bigazzi M. 1990. Structural interrelationships between different forms of nuclear inclusion. – Gion. Bot. Ital. 124: 662-663.

Bir SS, Sahni M. 1984. SOCGI plant chromosome number reports II. – J. Cytol. Genet. 19: 113-114.

Bir SS, Sahni M. 1986. SOCGI plant chromosome number reports IV. – J. Cytol. Gen. 21: 152-154.

Bir SS, Kumari S, Shoree SP, Sagoo MS. 1978. Cytological studies in certain Bicarpellatae from north and central India. – J. Cytol. Genet. 13: 99-106.

Bisset NS. 1985. Plants as a source of isoquinoline alkaloids. – In: Phillipson JD, Roberts MF, Zenk MH (eds), The chemistry and biology of isoquinoline alkaloids, Springer, Berlin, pp. 1-2.

Björkqvist I, Bothmer R von, Nilsson Ö, Nordenstam B. 1970. Chromosome numbers in Iberian angiosperms. – Bot. Not. 122: 271-283.

Blackburn DT, Sluiter IR. 1994. The Oligo-Miocene coal floras of south eastern Australia. – In: Hill RS (ed), History of the Australian vegetation: Cretaceous to recent, Cambridge University Press, Cambridge, England, pp. 328-367.

Blackmore S, Barnes SH. 1990. Pollen wall development in angiosperms. – In: Blackmore S, Knox RB (eds), Microspores: evolution and ontogeny, Academic Press, London, pp. 173-192.

Blackmore S, Barnes SH (eds). 1991. Pollen and spores: patterns of diversification. – Syst. Assoc. Spec. Vol. 44: 1-391.

Blackmore S, Ferguson IK (eds). 1986. Pollen and spores. Form and function. – Linnean Society Symposium Series 12, Academic Press, London, New York.

Blackwell M. 2011. The fungi: 1, 2, 3 ... 5.1 million species? – Amer. J. Bot. 98: 426-438.

Blackwell WH. 1983. Fossil wood from “Sand Hill”, western central Mississippi. – Bull. Torrey Bot. Club 110: 63-69.

Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P. 2008. A conserved molecular framework for compound leaf development. – Science 322: 1835-1839.

Blein T, Hasson A, Laufs P. 2010. Leaf development: what it needs to be complex. – Curr. Opin. Plant Biol. 13: 75-82.

Blyth A. 1958. Origin or primary extraxylary stem fibers in dicotyledons. – Univ. Calif. Publ. Bot. 30: 145-232.

Böcher TW. 1938. Zur Zytologie einiger arktischen und borealen Blütenpflanzen. – Svensk Bot. Tidskr. 32: 346-361.

Böcher TW, Larsen K. 1950. Chromosome numbers in some arctic and boreal flowering plants. – Medd. Grønl. 147: 1-32.

Bocquet G. 1959. The campylotropous ovule. – Phytomorphology 9: 222-227.

Bocquet G, Bersier JD. 1960. La valeur systématique de l’ovule: développements tératologiques. – Arch. Sci. 13: 475-496.

Bodt S de, Maere S, Peer Y van de. 2005. Gene duplication and the evolution of angiosperms. – Trends Ecol. Evol. 20: 591-597.

Boeke JH. 1973. The use of light microscopy versus electron microscopy for the location of postgenital fusions in plants. – Proc. Kon. Nederl. Akad. Wet. Ser. C 76: 528-535.

Bohdanowicz J, Turala-Szybowska K. 1985. I. Antipodals in the mature embryo sac. – Protoplasma 127: 163-170.

Böhle U-R, Hilger H, Cerff R, Martin WF. 1994. Non-coding chloroplast DNA for plant molecular systematics at the infrageneric level. – In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds), Molecular ecology and evolution: approaches and applications, Birkhäuser, Basel, pp. 391-403.

Bohlmann F, Burkhardt T, Zdero C. 1973. Naturally occurring acetylenes. – Academic Press, London, New York.

Bohlmann J, Meyer-Gauen G, Croteau R. 1998. Plant terpenoid synthases: molecular biology and phylogenetic analysis. – Proc. Natl. Acad. Sci. U.S.A. 95: 4126-4133.

Bohm BA. 1988. The minor flavonoids. – In: Harborne JB (ed), The flavonoids: advances in research since 1980, Chapman and Hall, London, pp. 329-388.

Bohm BA. 1998. Introduction to flavonoids. – Harwood, Australia.

Bolmgren K, Eriksson O. 2005. Fleshy fruits – origins, niche shifts, and diversification. – Oikos 109: 255-272.

Boltenhagen E. 1967. Spores et pollen de Crétacé supérieure du Gabon. – Pollen Spores 9: 335-355.

Bond WJ, Scott AC. 2010. Fire and the spread of flowering plants in the Cretaceous. – New Phytol. 188: 1137-1150.

Bond WJ, Slingsby P. 1983. Seed dispersal by ants in shrub lands of the Cape Province and its evolutionary implications. – South Afr. J. Sci. 79: 231-233.

Bond WJ, Yeaton R, Stock WD. 1991. Myrmecochory in Cape fynbos. – In: Huxley CR, Cutler DF (eds), Ant-plant interactions, Oxford University Press, Oxford, pp. 448-462.

Bonfante P, Anca I-A. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. – Ann. Rev. Microbiol. 63: 363-383.

Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. – Nature Commun. Doi/10.1038/ncomms1046

Bonnefille R, Riollet G. 190. Pollens des Savanes d’Afrique Oriental. – Centre National de la Recherche Scientifique, Paris.

Boppré M 1986. Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). – Naturwiss. 73: 17-26.

Borchers E, Frey W, Hilger HH. 1982. C4 species in the highlands of Iran and Afghanistan. – Notes Roy. Bot. Gard. Edinb. 40: 99-113.

Borgen L. 1969. Chromosome numbers of vascular plants from the Canary Islands, with special reference to the occurrence of polyploidy. – Nytt Mag. Bot. 16: 18-121.

Borgen L. 1970. Chromosome numbers of Macaronesian flowering plants. – Nytt Mag. Bot. 17: 145-161.

Borgen L. 1974. Chromosome numbers of Macaronesian flowering plants II. – Norw. J. Bot. 21: 195-210.

Borgen L. 1975. Chromosome numbers of vascular plants from Macaronesia. – Norw. J. Bot. 22: 71-76.

Borgen L. 1977. Check-list of chromosome numbers counted in Macaronesian vascular plants. – Oslo.

Borgen L. 1979. Karyology of the Canarian flora. – In: Bramwell D (ed), Plants and islands, Academic Press, London, pp. 329-346.

Borgen L, Elven R. 1983. Chromosome numbers of flowering plants from northern Norway and Svalbard. – Nord. J. Bot. 3: 301-306.

Borgmann E. 1964. Anteil der Polyploiden in der Flora des Bismarckgebirges von Ostneuguinea. – Zeitschr. Bot. 52: 118-172.

Borhidi A, Acuna J, Muniz G. 1973. New plants in Cuba III. –Acta Bot. Acad. Sci. Hug. 19: 37-45.

Bormann FH, Beatty AV. 1955. Chromosome studies of plants from the arctic slope of Alaska. – Bull. Torrey Bot. Club 82: 113-120.

Boros CA, Stermitz FR. 1991. Iridoids. An updated review II. – J. Nat. Prod. 54: 1173-1246.

Borrell BJ. 2005. Long tongues and loose niches: evolution of euglossine bees and their nectar flowers. – Biotropica 37: 664-669.

Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W. 2003. Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. – J. Evol. Biol. 16: 558-576.

Borsch T, Löhne C, Müller K, Hilu KW, Wanke S, Worberg A, Barthlott W, Neinhuis C, Quandt D. 2005. Towards understanding basal angiosperm diversification: recent insights using rapidly evolving genomic regions. – Nova Acta Leopoldina, N. F., 92: 85-110.

Borsos O. 1972. Contribution to the knowledge on the chromosome numbers of phanerogams growing in Hungary and southeastern Europe II. – Acta Bot. Acad. Sci. Hung. 17: 37-46.

Bortenschlager S, Erdtman G, Praglowski J. 1966. Pollenmorphologische Notizen über einige Blütenpflanzen incertae sedis. – Bot. Not. 119: 160-168.

Bouchal JM. 2013. The microflora of the uppermost Eocene (Priabonian) Florissant Formation, a combined method approach. – M.Sc. thesis, University of Vienna, Austria.

Boulter D, Peacock D, Guise A, Gleaves JT, Estabrook G. 1979. Relationships between the partial amino acid sequences of plastocyanin from members of ten families of flowering plants. – Phytochemistry 18: 603-608.

Boulter D, Ramshaw JAM, Thompson EV, Richardson M, Brown RH. 1972. A phylogeny of higher plants based on the amino acid sequences of cytochrome c and its biological implications. – Proc. Roy. Soc. London, B, 181: 441-455.

Bouman F. 1974. Developmental studies of the ovule, integuments and seed in some angiosperms. – Ph.D. diss., University of Amsterdam, The Netherlands.

Bouman F. 1977. Integumentary studies in the Polycarpicae. – Acta Bot. Neerl. 26: 213-223.

Bouman F. 1984. The ovule. – In: Johri BM (ed), Embryology of angiosperms, Springer, Berlin, Heidelberg, New York, pp. 123-157.

Bouman F, Boesewinkel FD. 1991. The campylotropous ovules and seeds, their structure and functions. – Bot. Jahrb. Syst. 113: 255-270.

Bouman F, Calis JIM. 1977. Integumentary shifting – a third way to unitegmy. – Ber. Deutsch. Bot. Ges. 90: 15-28.

Bousquet J, Strauss SH, Doerksen AH, Price RA. 1992. Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. – Proc. Natl. Acad. Sci. U.S.A. 89: 7844-7848.

Bowden WM. 1940. Diploidy, polyploidy, and winter hardiness relationships in the flowering plants. – Amer. J. Bot. 27: 357-371.

Bowden WM. 1945a. A list of chromosome numbers in higher plants I. Acanthaceae to Myrtaceae. – Amer. J. Bot. 32: 81-92.

Bowden WM. 1945b. A list of chromosome numbers in higher plants II. – Amer. J. Bot. 32: 191-201.

Bowe LM, Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales closest relatives are conifers. – Proc. Natl. Acad. Sci. U.S.A. 97: 4092-4097.

Bowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosome duplication events. – Nature 422: 433-438.

Bowers MD. 1988. Chemistry and coevolution: iridoid glycosides, plants and herbivorous insects. – In: Spencer KC (ed), Chemical mediation of coevolution, Academic Press, San Diego, pp. 133-165.

Bowling AJ, Vaughn KC. 2008. Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. – Amer. J. Bot. 95: 655-663.

Bowman JL. 1997. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. – J. Biosci. 22: 515-527.

Boyce CK. 2005. The evolutionary history of roots and leaves. – In: Holbrook NM, Zwieniecki MA (eds), Vascular transport in plants, Elsevier, Amsterdam, pp. 479-499.

Boyce CK. 2010. The evolution of plant development in a paleontological context. – Curr. Opin. Plant Biol. 13: 102-107.

Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, Holbrook NM. 2004. Evolution of xylem lignification and hydrogel transport regulation. – Proc. Natl. Acad. Sci. U.S.A. 101: 17555-17558.

Boyce CK, Brodribb FJ, Feild TS, Zwieniecki MA. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. – Proc. Royal Soc., Sect. B, 276: 1771-1776.

Boyd L. 1932. Monocotylous seedlings. Morphological studies in the post-seminal development of the embryo. – Trans. Proc. Bot. Soc. Edinb. 31: 1-24.

Bramwell D. 1972. Endemism in the flora of the Canary Islands. – In: Valentine DH (ed), Taxonomy, phytogeography and evolution, Academic Press, London, pp. 141-160.

Bramwell D, Humphries CJ, Murray BG, Owens SJ. 1971. Chromosome numbers in plants from the Canary Islands. – Bot. Not. 124: 376-382.

Bramwell D, Humphries CJ, Murray BG, Owens SJ. 1972. Chromosome studies in the flora of Macaronesia. – Bot. Not. 125: 139-152.

Bramwell D, Peres de Paz J, Ortega J. 1976. Studies in the flora of Macaronesia: some chromosome numbers of flowering plants. – Bot. Macaronésica 1: 9-16.

Brandegee TS. 1899. New species of western plants. – Bot. Gaz. 27: 444-457.

Brandegee TS. 1909. Plantae mexicanae Purpusianae. – Univ. Calif. Publ. Bot. 3: 377-396.

Brandl R, Mann W, Sprinzl M. 1992. Estimation of the monocot-dicot age through tRNA sequences from the chloroplast. – Proc. Roy. Soc. London, Ser. B, 249: 13-17.

Bravi S, Barone Lumaga MR, Mickle JE. 2020. Sagaria cilentana gen. et sp. nov. – a new angiosperm fructification from the Middle Albian of Southern Italy. – Cretaceous Res. 31: 285-290.

Breindl M. 1934. Zur Kenntnis der Baumechanik des Blütenkelches der Dikotylen. – Bot. Archiv 36: 191-268.

Breitenbach F von. 1965. The indigenous trees of Southern Africa. – Government Printer, Pretoria.

Bremer B, Bremer K, Heidari N, Erixon P, Anderberg AA, Olmstead RG, Källersjö M, Barkhordarian E. 2002. Phylogenetics of asterids based on three coding and three non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. – Mol. Phylogen. Evol. 24: 274-301.

Bremer K. 1988. The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. – Evolution 42: 795-803.

Bremer K. 2000a. Phylogenetic nomenclature and the new ordinal system of the angiosperms. – In: Nordenstam B, El-Ghazaly G, Kassas M, Laurent TC (eds), Plant systematics for the 21st century, Portland Press, London, pp. 125-133.

Bremer K. 2000b. Early Cretaceous lineages of monocot flowering plants. – Proc. Natl. Acad. Sci. U.S.A. 97: 4707-4711.

Bremer K, Gustafsson MHG. 1997. East Gondwana ancestry of the sunflower alliance of families. – Proc. Natl. Acad. Sci. U.S.A. 94: 9188-9190.

Bremer K, Janssen T. 2006. Gondwanan origin of major monocot groups inferred from dispersal-vicariance analysis. – In: Columbus JT, Friar EA, Hamilton CW, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Aliso 22, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 22-27.

Bremer K, Backlund A, Sennblad B, Swenson U, Andreasen K, Hjertson M, Lundberg J, Backlund M, Bremer B. 2001. A phylogenetic analysis of 100+ genera and 50+ families of euasterids based on morphological and molecular data with notes on possible higher level morphological synapomorphies. – Plant Syst. Evol. 229: 137-169.

Bremer K, Bremer B, Thulin M. 2003. Introduction to phylogeny and systematics of flowering plants. – Symb. Bot. Ups. 33(2): 1-102.

Bremer K, Friis EM, Bremer B. 2004. Molecular phylogenetic dating of asterid flowering plants shows Early Cretaceous diversification. – Syst. Biol. 53: 496-505.

Brenan JPM. 1949. A contribution to the flora of east tropical Africa. – Kew Bull. 4: 79-95.

Brenner GJ. 1963. The spores and pollen of the Potomac Group of Maryland. – Maryland Dept. Geol. Mines Water Res. Bull. 27: 1-215.

Brenner GJ. 1976. Middle Cretaceous floral provinces and early migration of angiosperms. – In: Beck CB (ed), Origin and early evolution of angiosperms, Columbia University Press, New York, pp. 23-47.

Brenner GJ. 1992. Palynology and age of the Lower Cretaceous basal Kurnub Group from the coastal plain to the northern Negev of Israel. – Palynology 16: 137-185.

Brenner GJ. 1996. Evidence for the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution and phylogeny, Chapman and Hall, New York, pp. 91-115.

Brenner GJ, Bickoff IS. 1992. Palynology and the age of the Lower Cretaceous basal Kurnub Group from the coastal plain to the northern Negev of Israel. – Palynology 16: 137-185.

Bresinsky A. 1963. Bau, Entwicklungsgeschichte und Inhaltsstoffe der Elaiosomen (Studien zur myrmekochoren Verbreitung von Samen und Früchten). – Bibl. Bot. 126: 1-54.

Bresky G de N. 1975. Alcance taxonomico del estudio de los estomas en Corolliferae chilenas. – Anal. Mus. Hist. Nat. Valparaiso 8: 100-107.

Brewbaker JL. 1967. The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. – Amer. J. Bot. 54: 1069-1083.

Breyer B, Stuhlfauth T, Fock H, Huber H. 1987. Fatty acids of some Cornaceae, Hydrangeaceae, Aquifoliaceae, Hamamelidaceae and Styracaceae. – Phytochemistry 26: 1441-1445.

Brickell CD & al. (eds). 1980. Petaloid monocotyledons: horticultural and botanical research. – Linn. Soc. Symposium, No. 8, London, New York.

Briggs BG. 1966. Chromosome numbers of some Australian monocotyledons. – Contr. New South Wales Natl. Herb. 4: 24-34.

Briggs BG. 2002. Chromosome numbers of some native and naturalised plant species in Australia. – Telopea 9: 833-835.

Briggs JD, Leigh JH. 1995. Rare or threatened Australian plants. – CSIRO, Canberra.

Briggs LH, Cambie RC, Couch RAF. 1967. Triterpenes from some New Zealand dicotyledons. – New Zealand J. Sci. 10: 1076-1082.

Bringmann G. 1986. The naphthyl isoquinoline alkaloids. – In: Brossi A (ed), The Alkaloids 29, Academic Press, New York, pp. 141-184.

Bringmann G, Pokorny F. 1995. The naphthyl isoquinoline alkaloids. – In: Cordell GA (ed), The Alkaloids 46, Academic Press, New York, pp. 127-271.

Brink RA, Cooper DC. 1947. The endosperm in seed development. – Bot. Rev. 13: 423-541.

Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ. 2001. Phylogenetic variation in heavy metal accumulation in angiosperms. – New Phytol. 152: 9-27.

Brodie HJ. 1951. The splash-cup dispersal mechanism in plants. – Can. J. Bot. 29: 224-234.

Brodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. – Ecol. Lett. 13: 175-183.

Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. – New Phytol. 162: 663-670.

Brouwr YM, Clifford HT. 1990. An annotated list of domatia-bearing species. – Notes from the Jockell Laboratory 12, Royal Botanic Gardens, Kew, pp. 1-50.

Brown EM, Buridge JD, Dell J, Edinger D, Hopper SD, Wills RT. 1997. Pollination in Western Australia. A database of animals visiting flowers. – Handbook no. 15, Western Australian Naturalists’ Club.

Brown FBH. 1922. The secondary xylem of Hawaiian trees. – Occas. Pap. Bernice P. Bishop Mus. 8: 217-371.

Brown NJ, Newell CA, Stanley S, Chen JE, Perrin AJ, Kajala K, Hibberd JM. 2011. Independent and parallel recruitment of pre-existing mechanisms underlying C4 photosynthesis. – Science 331: 1436-1439.

Brown RH, Hattersley PW. 1989. Leaf anatomy of C3-C4 species as related to evolution of C4 photosynthesis. – Plant Physiol. 91: 1543-1550.

Brown RW. 1944. Temperate species in the Eocene flora of the southeastern United States. – J. Washington Acad. Sci. 34: 349-351.

Brown RW. 1956. Palmlike plants from the Dolores Formation (Triassic) southwestern Colorado. – US Geol. Surv. Prof. Pap. 274-H: 205-209.

Brown WH. 1938. The bearing of nectaries on the phylogeny of flowering plants. – Proc. Amer. Phil. Soc. 79: 549-594.

Brown WV. 1975. Variations in anatomy, associations, and origins of Kranz tissue. – Amer. J. Bot. 62: 395-402.

Brücher H. 1989. Useful plants of neotropical origin. – Springer, Berlin, Heidelberg, New York.

Brummitt RK. 1992. Vascular plant families and genera. – Royal Botanic Gardens, Kew.

Brundrett MC. 2002. Coevolution of roots and mycorrhizas of land plants. – New Phytol. 154: 275-304.

Brundrett MC. 2004. Diversity and classification of mycorrhizal associations. – Biol. Rev. 79: 473-495.

Brundrett MC. 2008. Mycorrhizal associations: The Web Resource. – http://mycorrhizas.info/

Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. – Plant Soil 269: 357-367.

Brundrett MC. 2011. Commentary on the de Vega et al. (2010) paper on hyphae in the parasitic plant Cytinus: mycorrhizal fungi growing within plants are not always mycorrhizal. – Amer. J. Bot. 98: 595-596.

Bruns TD, Shefferson RP. 2004. Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. – Can. J. Bot. 82: 1122-1132.

Bryant HN, Cantino PD. 2002. A review of criticisms of phylogenetic nomenclature: is taxonomic freedom the fundamental issue? – Biol. Rev. Cambridge Philos. Soc. 77: 39-55.

Buchmann SL. 1983. Buzz pollination in angiosperms. – In: Jones CE, Little RJ (eds), Handbook of experimental pollination biology, Scientific & Academic Editions, Van Nostrand, New York, pp. 73-113.

Buchmann SL. 1987. The ecology of oil flowers and their bees. – Ann. Rev. Ecol. Syst. 18: 343-369.

Buck KT. 1987. The bisbenzylisoquinoline alkaloids. – In: Brossi A (ed), The Alkaloids 29, Academic Press, New York, pp. 1-222.

Buckeridge MS, Santos HP dos, Tiné MAS. 2000. Mobilisation of storage cell wall polysaccharides in seeds. – Plant Physiol. Biochem. 38: 141-156.

Buckler ES, Ippolits A, Holtsford TP. 1997. The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. – Genetics 145: 821-832.

Bugnon F, Bonnard J. 1966. Introduction à l’étude du système prefoliaire chez les Monocotyledones. – Bull. Soc. Bourgogne 24: 23-38.

Bukhari G, Zhang J, Stevens PF, Zhang W. 2017. Evolution of the process underlying floral zygomorphy development in pentapetalous angiosperms. – Amer. J. Bot. 104: 1846-1856.

Bullock AA. 1958. Indices nominum familiarum angiospermarum prodromus. – Taxon 7: 1-36.

Bullock SH. 1982. Componentes fenológicos del sistema de cruzamiento monóico de Cnidoscolus spinosus (Euphorbiaceae) en Jalisco. – Bol. Soc. Bot. Mexic. 42: 1-9.

Bulmer MG. 1986. Genetic models of endosperm evolution in higher plants. – In: Karlin S, Nevo E (eds), Evolutionary process and theory, Academic Press, New York, pp. 743-763.

Bult CJ, Sweere JA, Zimmer EA. 1995. Cryptic sequence simplicity, nucleotide composition bias, and molecular co-evolution in the large subunit of ribosomal DNA in plants: implications for phylogenetic analyses. – Ann. Missouri Bot. Gard. 82: 235-246.

Bungard RA. 2004. Photosynthetic evolution in parasitic plants: insights from the chloroplast genome. – BioEssays 26: 235-247.

Bünning E, Sagromsky H. 1948. Die Bildung des Spaltöffnungsmusters in der Blattepidermis. – Zeitschr. Naturf. 3b: 203-216.

Burger D. 1980. Palynological studies in the Lower Cretaceous of the Surat Basin, Australia. – Bur. Mineral Res. Geol. Geophys. (Canberra), Bull. 189: 1-106.

Burger D. 1990. Early Cretaceous angiosperms from Queensland, Australia. – Rev. Palaeobot. Palyn. 65: 153-163.

Burger WC. 1977 [1978]. The Piperales and the monocots; alternative hypotheses for the origin of monocotyledonous flowers. – Bot. Rev. (Lancaster) 43: 345-393.

Burger WC. 1981a. Why are there so many kinds of flowering plants? – BioScience 31: 572, 577-581.

Burger WC. 1981b. Heresy revived: the monocot theory of angiosperm evolution. – Evol. Theory 5: 189-225.

Burger WC. 1998. The question of cotyledon homology in angiosperms. – Bot. Rev. 64: 356-371.

Burkill HM. 1985. The useful plants of west tropical Africa. – Royal Botanic Gardens, Kew.

Burkill HM. 1997. The useful plants of west tropical Africa 4. 2nd ed. Families M-R. – Royal Botanic Gardens, Kew.

Burleigh JG. 2012. Variation in rates of molecular evolution in plants with implications for estimating divergence times. – In: Wendel JF, Greilhuber J, Dolezel J, Leitch I (eds), Plant genome diversity, Vol. 1: Plant genomes, their residents, and their evolutionary dynamics, Springer, Berlin, pp. 103-111.

Burleigh JG, Mathews S. 2004. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. – Amer. J. Bot. 91: 1599-1613.

Burleigh JG, Mathews S. 2007a. Assessing among-locus variation in the inference of seed plant phylogeny. – Intern. J. Plant Sci. 168: 111-124.

Burleigh JG, Mathews S. 2007b. Assessing systematic error in the inference of seed plant phylogeny. – Intern. J. Plant Sci. 168: 125-135.

Burleigh JG, Hilu KW, Soltis DE. 2009. Inferring phylogenies with incomplete data sets: a 5-gene, 567-taxon analysis of angiosperms. – BMC Evol. Biol. 9: 61.

Burleigh JG, Bansal MS, Eulenstein O, Hartmann S, Whe A, Vision TJ. 2011. Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. – Syst. Biol. 60: 117-125.

Burnham RJ, Johnson KR. 2004. South American palaeobotany and the origins of neotropical rain forests. – Phil. Trans. Roy. Soc. London, Ser. B, 359: 1595-1610.

Burrows CJ. 1995. Germination behaviour of the seeds of the New Zealand species Aristotelia serrata, Coprosma robusta, Cordyline australis, Myrtus obcordata, and Schefflera digitata. – New Zealand J. Bot. 33: 257-264.

Burtt BL. 1970. The evolution and taxonomic significance of a subterranean ovary in certain monocotyledons. – Israel J. Bot. 19: 77-90.

Burtt BL. 1977. Notes on rain forest herbs. – In: Mabberley DJ, Chang KL (eds), Tropical botany, Gard. Bull. (Singapore) 29: 73-80.

Burtt BL. 1991. On cryptocotylar germination in dicotyledons. – Bot. Jahrb. Syst. 113: 429-442.

Busch A, Zachgo S. 2009. Flower symmetry evolution: towards understanding the abominable mystery of angiosperm radiation. – BioEssays 31: 1181-1190.

Buzato S, Sazima M, Sazima I. 2000. Hummingbird-pollinated floras at three Atlantic forest sites. – Biotropica 32: 824-841.

Caceres A, Lopez BR, Giron MA, Logemann H. 1991. Plants used in Guatemala for the treatment of dermatophytic infections 1. Screening for antimycotic activity of 44 plant extracts. – J. Ethnopharm. 31: 263-276.

Cadet T. 1984. Plantes rares ou remarquable des Mascareignes. – Agence de Coopération Culturelle et Technique, Paris.

Cai Z, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK. 2006. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. – BMC Evol. Biol. 6: 77.

Cain BF, La Roche S, Cambie RC. 1962. A New Zealand phytochemical survey 5. The monocotyledons. – New Zealand J. Sci. 5: 537-554.

Caldwell JE, Abildgaard F, Džakula Ž, Ming D, Hellekant D, Markley JL. 1998. Solution structure of the termostable sweet-tasting protein brazzein. – Nature Struct. Biol. 5: 427-431.

Callmander MW, Rakotovao C, Razafitsalama J, Phillipson PB, Buerki S, Hong-Wa C, Rakotoarivelo N, Andriambololonera S, Koopman MM, Johnson DM, Deroin T, Ravoahangy A, Solo S, Labat J-N, Lowry II PP. 2009. New species from the Galoka and Kalabenono massifs: two unknown and severely threatened mountainous areas in NW Madagascar. – Candollea 64: 179-202.

Calsbeek R, Thompson JN, Richardson JE. 2003. Patterns of molecular evolution and diversification in a biodiversity hotspot: the California floristic province. – Mol. Ecol. 12: 1021-1029.

Cambie RC, Ash J. 1994. Fijian medicinal plants. – CSIRO Publ., Canberra.

Cambie RC, Parnell JC. 1969. A New Zealand phytochemical survey 7. Constituents of some dicotyledons. – New Zealand J. Sci. 12: 453-466.

Cambie RC, Cain BF, Laroche S. 1961. A New Zealand phytochemical survey 2. The dicotyledons. – New Zealand J. Sci. Technol. 4: 604-663.

Cameron KM, Wurdack KJ, Jobson RW. 2002. Molecular evidence for the common origin of snap-traps among carnivorous plants. – Amer. J. Bot. 89: 1503-1509.

Camp op den R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. – Science 331: 909-912.

Camp WH. 1947. Distribution patterns in modern plants and the problems of ancient dispersals. – Ecol. Monogr. 17: 160-183.

Campbell DR. 1989. Inflorescence size: test of the male function hypothesis. – Amer. J. Bot. 76: 730-738.

Campbell JD. 2002. Angiosperm fruit and leaf fossils from Miocene silcrete, Landslip Hill, northern Southland, New Zealand. – J. Roy. Soc. New Zealand 32: 149-154.

Campo M van. 1958. Palynologie africaine II. – Bull. Inst. Franç. Afr. Noire., Sér. A, 20: 753-760.

Campo M van. 1971. Précisions nouvelles sur les structures comparées des pollens de gymnospermes et d’angiospermes. – Compt. Rend. Acad. Sci. Paris, sér. D, 272: 2071-2074.

Campo M van. 1976. Patterns of pollen morphological variation within taxa. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine, Linn. Soc. Symp. Ser. 1, Academic Press, London, pp. 125-137.

Campo M van. 1978. La face interne de l’exine. – Rev. Palaeobot. Palynol. 26: 301-311.

Campo M van, Lugardon B. 1973. Structure grenue infratectale de l’ectexine des pollens de quelques gymnospermes et angiospermes. – Pollen Spores 15: 171-187.

Cane DE. 1981. Biosynthesis of sesquiterpenes. – In: Porter JW, Spurgeon SL (eds), Biosynthesis of isoprenoid compounds 1, Wiley, New York, pp. 283-374.

Cantino PD, Queiroz K de. 2006. PhyloCode: a phylogenetic code of biological nomenclature. Version 3a. – Website: http://www.phylocode.org. Revised June 16, 2006.

Cantino PD, Bryant HN, Queiroz K de, Donoghue MJ, Eriksson T, Hillis DM, Lee MSY. 1999. Species names in phylogenetic nomenclature. – Syst. Bot. 48: 790-807.

Cantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG, Soltis DE, Soltis PS, Donoghue MJ. 2007. Towards a phylogenetic nomenclature of Tracheophyta. – Taxon 56: 822-846.

Cantrill DJ. 2000. A Cretaceous macroflora from a freshwater lake deposit, President Head, Snow Island, Antarctica. – Palaeontographica B 253: 153-191.

Cantrill DJ, Nichols GJ. 1996. Taxonomy and palaeoecology of Early Cretaceous (Late Albian) angiosperm leaves from Alexander Island, Antarctica. – Rev. Palaeobot. Palyn. 92: 1-28.

Cantrill DJ, Poole IP. 2002. Cretaceous to Tertiary patterns of diversity change in the Antarctic Peninsula. – Geol. Soc. London, Spec. Publ. 194: 141-152.

Cantrill DJ, Poole IP. 2005. Taxonomic turnover and abundance in Cretaceous to Tertiary wood floras of Antarctica: implications for changes in forest ecology. – Palaeogeography, Palaeoclimatology, Palaeoecology 215: 205-219.

Cantrill DJ, Wanntorp L, Drinnan AN. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. – Cretaceous Res. 32: 164-173.

Cao Z, Wu S, Zhang P, Li J. 1997. Discovery of fossil monocotyledons from Yixian Formation, western Liaoning. – Chin. Sci. Bull. 16: 1764-1766. [in Chinese]

Cao Z, Wu S, Zhang P, Li J. 1998. Discovery of fossil monocotyledons from Yixian Formation, western Liaoning. – Chin. Sci. Bull. 43: 230-233. [in Chinese]

Capuron R. 1962. Contributions à l’étude de la flore forestière de Madagascar. – Adansonia, sér. II, 2: 268-284.

Capuron R. 1972. Contribution à l’étude de la flore forestière de Madagascar. – Adansonia, sér. II, 12: 383-386.

Carey G. 1934. Further investigations on the embryology of viviparous seeds. – Proc. Linn. Soc. New South Wales 59: 392-410.

Carine MA, Scotland RW. 2000. 68 taxa and 32 characters: resolving species relationships using morphological data. – In: Harley MM, Morton CM, Blackmore S (eds), Pollen and spores: morphology and biology, Royal Botanic Gardens, Kew, pp. 365-384.

Carlquist SJ. 1961. Comparative plant anatomy. – Holt, Rinehart, & Winston, New York.

Carlquist SJ. 1962. A theory of paedomorphosis in dicotyledonous woods. – Phytomorphology 12: 30-45.

Carlquist SJ. 1965. Island life. A natural history of the islands of the world. – The Natural History Press, New York.

Carlquist SJ. 1966. The biota of long-distance dispersal III. Loss of dispersibility in the Hawaiian flora. – Brittonia 18: 310-355.

Carlquist SJ. 1969. Toward acceptable evolutionary interpretations of floral anatomy. – Phytomorphology 19: 332-362.

Carlquist SJ. 1974. Island biology. – Columbia University Press, New York.

Carlquist SJ. 1975. Ecological strategies of xylem evolution. – University of California Press, Berkeley and Los Angeles, California.

Carlquist SJ. 1977. Ecological factors in wood evolution: a floristic approach. – Amer. J. Bot. 64: 887-896.

Carlquist SJ. 1980. Further concepts in ecological wood anatomy, with concepts on recent work in wood anatomy and evolution. – Aliso 9: 499-553.

Carlquist SJ. 1983. Intercontinental dispersal. – Sonderbd. Naturwiss. Ver. Hamburg 7: 37-47.

Carlquist SJ. 1984. Vessel grouping in dicotyledon wood: significance and relationship to imperforate tracheary elements. – Aliso 10: 505-525.

Carlquist SJ. 1985a. Vasicentric tracheids as a drought survival mechanism in the woody flora of southern California and similar regions: review of vasicentric tracheids. – Aliso 11: 37-68.

Carlquist SJ. 1985b. Ecological wood anatomy of the woody southern California flora. – IAWA Bull., N. S., 6: 319-347.

Carlquist SJ. 1985c. Observations on functional wood histology of vines and lianas: vessel dimorphism, tracheids, vasicentric tracheids, narrow vessels, and parenchyma. – Aliso 11: 139-157.

Carlquist SJ. 1986. Terminology of imperforate tracheary elements. – IAWA Bull., N. S., 7: 75-81, 168-170.

Carlquist SJ. 1987. Diagonal and tangential vessel aggregations in wood: function and relationship to vasicentric tracheids. – Aliso 11: 451-462.

Carlquist SJ. 1988a. Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. – Springer, Berlin, Heidelberg, New York.

Carlquist SJ. 1988b. Tracheid dimorphism: a new pathway in evolution of imperforate tracheary elements. – Aliso 12: 103-118.

Carlquist SJ. 1989. Adaptive wood anatomy of chaparral shrubs. – Nat. Hist. Mus. Los Angeles County Sci. Ser. 34: 25-35.

Carlquist SJ. 1991. Anatomy of vine and liana stems: a review and synthesis. – In: Putz F, Mooney HA (eds), The biology of vines, Cambridge University Press, Cambridge, pp. 73-97.

Carlquist SJ. 1992a. Wood anatomy of sympetalous dicotyledon families: a summary, with comments on systematic relationships and evolution of the woody habit. – Ann. Missouri Bot. Gard. 79: 303-332.

Carlquist SJ. 1992b. Pit membrane remnants in perforation plates of primitive dicotyledons and their significance. – Amer. J. Bot. 79: 660-672.

Carlquist SJ. 1994. Anatomy of tropical alpine plants. – In: Rundel PW, Smith AP, Meinzer FC (eds), Tropical alpine environments, Cambridge University Press, Cambridge, pp. 111-128.

Carlquist SJ. 1995. Comparative wood anatomy: new directions and opportunities. – In: Iqbal M (ed), The cambium and its products. Handbuch der Pflanzenanatomie, Spezieller Teil IX(4), Gebr. Borntraeger, Berlin, Stuttgart, pp. 173-185.

Carlquist SJ. 1996. Wood anatomy of primitive angiosperms: new perspectives and syntheses. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution and phylogeny, Chapman & Hall, New York, pp. 68-90.

Carlquist SJ. 2001. Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. 2nd ed. – Springer, Berlin.

Carlquist SJ. 2007a. Successive cambia revisited: ontogeny, histology, diversity, and functional significance. – J. Torrey Bot. Soc. 134: 301-332.

Carlquist SJ. 2007b. Bordered pits in ray cells and axial parenchyma: the histology of conduction, storage, and strength in living wood cells. – Bot. J. Linn. Soc. 153: 157-168.

Carlquist SJ. 2009. Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. – Bot. J. Linn. Soc. 161: 26-65.

Carlquist SJ, Baas P. 1985. A comparison of the ecological wood anatomy of the floras of southern California and Israel. – IAWA Bull., N. S., 6: 349-353.

Carlquist SJ, Hoekman DA. 1985. Ecological wood anatomy of the woody southern California flora. – IAWA Bull., N. S., 6: 319-347.

Carlquist SJ, Schneider EL. 2002. The tracheid-vessel element transition in angiosperms involves multiple independent features: cladistic consequences. – Amer. J. Bot. 89: 185-195.

Carniel K. 1952. Das Verhalten der Kerne im Tapetum der Angiospermen mit besonderer Berücksichtigung von Endomitosen und sogenannten Endomitosen. – Österr. Bot. Zeitschr. 99: 318-362.

Carniel K. 1963. Das Antherentapetum. Ein kritischer Überblick. – Österr. Bot. Zeitschr. 110: 145-176.

Carpenter I, Locksley HD, Scheinmann F. 1969. Xanthones in higher plants: biogenetic proposals and a chemotaxonomic survey. – Phytochemistry 8: 2013-2026.

Carpenter KJ. 2005. Stomatal architecture and evolution in basal angiosperms. – Amer. J. Bot. 92: 1595-1615.

Carpenter KJ. 2006. Specialized structures in the leaf epidermis of basal angiosperms: morphology, distribution and homology. – Amer. J. Bot. 93: 665-681.

Carpenter RJ, Pole M. 1995. Eocene plant fossils from the Lefroy and Cowan paleodrainages, Western Australia. – Aust. Syst. Bot. 6: 91-109.

Carpenter RJ, Hill RS, Jordan GJ. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. – In: Hill RS (ed), History of the Australian vegetation: Cretaceous to recent., Cambridge University Press, Cambridge, pp. 276-298.

Carr GD. 2001 etc. Images and descriptions of flowering plant families (as treated by Judd et al.). Version 15 March 2002. – http://www.botany.hawaii.edu/faculty/carr/phylo_fpfamilies.htm

Carr GD. 1978. Chromosome numbers of Hawaiian flowering plants and the significance of cytology in selected taxa. – Amer. J. Bot. 65: 236-242.

Carr GD. 1985. Additional chromosome numbers of Hawaiian flowering plants. – Pacific Sci. 39: 302-306.

Carr GD, McPherson G. 1986. Notes on chromosome numbers of New Caledonian plants. – Ann. Missouri Bot. Gard. 73: 486-489.

Carr SGM, Carr DJ. 1961. The functional significance of syncarpy. – Phytomorphology 11: 249-256.

Casas JF. 1981. Recuentos cromosomáticos de algunas angiospermas de Bolivia y Perú. – Saussurea 12: 157-164.

Castro M, Rossello JA. 2005. Chromosome numbers in plant taxa endemic to the Balearic Islands. – Bot. J. Linn. Soc. 148: 219-228.

Castro M, Rossello JA. 2007. Karyological observations on plant taxa endemic to the Balearic Islands. – Bot. J. Linn. Soc. 153: 463-476.

Cavalcante PB. 1972. Frutas comestiveis da Amazônia I. – Museu Paraense Museu Goeldi, Belém, Pará.

Cave MS. 1953. Cytology and embryology in the delimitation of genera. – Chron. Bot. 14: 140-153.

Čelakovský LJ. 1896. Über den phylogenetischen Entwicklungsgang der Blüthe und den Ursprung der Blumenkron I. Theil. – Sitzungsber. Kgl. Böhm. Ges., Math.-Naturw. Cl. 1896: 1-91.

Čelakovský LJ. 1901. Über den phylogenetischen Entwicklungsgang der Blüthe und den Ursprung der Blumenkron II. Theil. – Sitzungsber. Kgl. Böhm. Ges., Math.-Naturw. Cl. 1900: 1-221.

Cenci A, Combes MC, Lashermes P. 2011. Comparative sequence analyses indicate that Coffea (Asterids) and Vitis (Rosids) derive from the same paleo-hexaploid ancestral genome. – Mol. Genet. Genom. 283: 493-501.

Cevallos-Ferriz SRS, Stockey RA, Pigg KB. 1991. The Princeton Chert: evidence for in situ aquatic plants. – Rev. Palaeobot. Palynol. 70: 173-185.

Chadfaud M. 1955. Remarques sur quelques pollens de plantes tropicales, particulièrement intéressants des points de vue palynologique ou systématique. – Rev. Gén. Bot. 62: 641-660.

Chalk L. 1983. Wood structure. – In: Metcalfe CR, Chalk L (eds), Anatomy of the dicotyledons, 2nd ed., vol. II. Wood structure and conclusion of the general introduction, Clarendon Press, Oxford, pp. 1-51 [pp. 1-2 by Metcalfe CR].

Chalk L, Chattaway MM. 1937. Identification of woods with included phloem. – Trop. Woods 50: 1-31.

Chambers KL, Poinar G Jr, Buckley R. 2010. Tropidogyne, a new genus of Early Cretaceous eudicots (Angiospermae) from Burmese amber. – Novon 20: 23-29.

Chanderbali AS, Werff H van der, Renner SS, Zheng Z, Oppenheimer DG, Soltis DE, Soltis PS. 2006. Genetic footprints of stamen ancestors guide perianth evolution in Persea (Lauraceae). – Intern. J. Plant Sci. 167: 1075-1089.

Chanderbali AS, Albert VA, Leebens-Mack J, Altman NS, Soltis DE, Soltis PS. 2009. Transcriptional signals of ancient floral developmental genetics in avocado (Persea americana; Lauraceae). – Proc. Natl. Acad. Sci. U.S.A. 106: 8929-8934.

Chanderbali AS, Yoo M-J, Zahn LM, Brockington SF, Wall PK, Gitzendanner MA, Albert VA, Leebens-Mack J, Altman NS, Ma H, dePamphilis CW, Soltis DE, Soltis PS. 2010. Conservation and canalization of gene expression accompany the origin and evolution of the flower. – Proc. Natl. Acad. Sci. U.S.A. 107: 22570-22575.

Chandler MEJ. 1954. Some Upper Cretaceous and Eocene fruits from Egypt. – Bull. Brit. Mus. (Nat. Hist.) Geol. 2: 147-187.

Chandler MEJ. 1960. Plant remains of the Hengistbury and Barton Beds. – Bull. Brit. Mus. (Nat. Hist.), Geol. 4: 119-238.

Chandler MEJ. 1961. The Lower Tertiary floras of southern England I. Paleocene floras, London Clay Flora (Suppl.). – British Museum (Natural History), London.

Chandler MEJ. 1962. The Lower Tertiary floras of southern England II. Flora of the Pipe-clay series of Dorset (Lower Bagshot). – British Museum (Natural History), London.

Chandler MEJ. 1963. The Lower Tertiary floras of southern England III. Flora of the Bournemouths Beds, the Boscombe, and the Highcliffe Sands. – British Museum (Natural History), London.

Chandler MEJ. 1964. The Lower Tertiary floras of southern England IV. A summary and survey of findings in the light of recent botanical observations. – British Museum (Natural History), London.

Chandler MEJ, Axelrod DI. 1961. An Early Cretaceous (Hauterivian) angiosperm fruit from California. – Amer. J. Sci. 259: 441-446.

Chandrasekharam A. 1974. Megafossil flora from the Genesse locality, Alberta, Canada. – Palaeontographica B 147: 1-41.

Chaney RW, Sanborn EI. 1933. The Goshen Flora of west central Oregon. – Publ. Carnegie Inst. Wash. 439: 1-103.

Chapman BA, Bowers JE, Feltus FA, Paterson AH. 2006. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. – Proc. Natl. Acad. Sci. U.S.A. 103: 2730-2735.

Chapman F. 1935. Plant remains of lower Oligocene age from near Blanche Point, Aldinga, South Australia. – Trans. Roy. Soc. South Australia 69: 237-240.

Chapman JL, Smellie JL. 1992. Cretaceous fossil wood and palynomorphs from Williams Point, Livingston Island, Antarctic Peninsula. – Rev. Palaeobot. Palyn. 74: 163-192.

Charlesworth B, Charlesworth D. 1978. A model for the evolution of dioecy and gynodioecy. – Amer. Natur. 112: 975-997.

Charlesworth D. 1984. Androdioecy and the evolution of dioecy. – Biol. J. Linn. Soc. 23: 333-348.

Charlesworth D. 1985. Distribution of dioecy and self-incompatibility in angiosperms. – In: Greenwood PH, Slatkin M (eds), Evolution: essays in honour of John Maynard Smith, Cambridge University Press, Cambridge, pp. 237-268.

Charlesworth D, Vekemans X, Castric V, Glémin S. 2005. Plant self-incompatibility systems: a molecular evolutionary perspective. – New Phytol. 168: 61-69.

Charlton WA. 1993. The rotated-lamina syndrome III. Cases in Begonia, Corylus, Magnolia, Pellionia, Prunus, and Tilia. – Can. J. Bot. 71: 229-247.

Chase MW. 2004. Monocot relationships: an overview. – Amer. J. Bot. 91: 1645-1655.

Chase MW. 2005. Relationships between the families of flowering plants. – In: Henry RJ (ed), Plant diversity and evolution: genotypic and phenotypic variation in higher plants, CAB International, Wallingford, pp. 7-23.

Chase MW, Albert VA. 1998. A perspective on the contribution of plastid rbcL DNA sequences to angiosperm phylogenetics. – In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular systematics of plants II: DNA sequencing, Kluwer Academic Publ., Boston, Massachusetts, pp. 488-507.

Chase MW, Cox AV. 1998. Gene sequences, collaboration, and analysis of large data sets. – Aust. Syst. Bot. 11: 215-229.

Chase MW, Reveal JL. 2009. A phylogenetic classification of the land plants to accompany APG III. – Bot. J. Linn. Soc. 161: 122-127.

Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. – Ann. Missouri Bot. Gard. 80: 528-580.

Chase MW, Cameron KM, Hills HG, Jarrell D. 1994. Molecular systematics of the Orchidaceae and other lilioid monocots. – In: Pridgeon A (ed), Proceedings of the Fourteenth World Orchid Conference, London, pp. 61-73.

Chase MW, Duvall MR, Hills HG, Conran JG, Cox AV, Eguiarte LE, Hartwell J, Fay MF, Caddick LR, Cameron KM, Hoot S. 1995. Molecular phylogenetics of Lilianae. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 109-137.

Chase MW, Stevenson DW, Wilkin P, Rudall PJ. 1995. Monocot systematics: a combined analysis. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 685-730.

Chase MW, Fay MF, Savolainen V. 2000. Higher-level classification in the angiosperms: new insights from the perspective of DNA sequence data. – Taxon 49: 685-704.

Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC. 2000. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Melbourne, pp. 3-16.

Chase MW, Fay MF, Devey D, Maurin O, Rønsted N, Davies J, Pillon Y, Petersen G, Seberg O, Tamura MN, Asmussen CB, Hilu K, Borsch T, Davis JI, Stevenson DW, Pires JC, Givnish TJ, Sytsma KJ, McPherson MA, Graham SW, Rai HS. 2006. Multigene analyses of monocot relationships: a summary. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative Biology and Evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, Aliso 22: 63-75.

Chattaway MM. 1956. Crystals in woody tissues II. – Trop. Woods 104: 100-124.

Chatterjee D. 1949. New records of plants from India and Burma. – Kew Bull. 4: 563-564.

Chauveaud MLG. 1891. Recherches embryogéniques sur l’appareil laticifère des Euphorbiacées, Urticacées, Apocynées et Asclépiadées. – Ann. Sci. Nat., Bot. 14: 1-160.

Chávez RP. 1974. Observaciones en el polen de plantas con probable polinización quiropterófila. – An. Esc. Nac. Ci. Biol. Mexic. 21: 115-143.

Chaw SM, Parkinson CL, Cheng Y, Vincent TM, Palmer JD. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. – Proc. Natl. Acad. Sci. U.S.A. 97: 4086-4091.

Cheadle VI. 1937. Secondary growth by means of a thickening ring in certain monocotyledons. – Bot. Gaz. 98: 535-555.

Cheadle VI. 1942. The occurrence and types of vessels in the various organs of the plant in the Monocotyledoneae. – Amer. J. Bot. 29: 441-450.

Cheadle VI. 1943a. The origin and certain trends of specialization of the vessels in the Monocotyledoneae. – Amer. J. Bot. 30: 11-17.

Cheadle VI. 1943b. Vessel specialization in the late metaxylem of the various organs in the Monocotyledoneae. – Amer. J. Bot. 30: 484-490.

Cheadle VI. 1944. Specialization of vessels within the xylem of each organ in the Monocotyledoneae. – Amer. J. Bot. 31: 81-92.

Cheadle VI. 1948. Additional observations on the occurrence and phylogenetic specialization in structure of the sieve tubes in the metaphloem. – Amer. J. Bot. 35: 129-131.

Cheadle VI. 1953. Independent origin of vessels in the monocotyledons and dicotyledons. – Phytomorphology 3: 23-44.

Cheadle VI, Tucker JM. 1961. Vessels and phylogeny of Monocotyledoneae. – In: Recent Advances in Botany, Toronto, pp. 161-165.

Cheek M, Williams S. 1999. A review of African saprophytic flowering plants. – In: Timberlake J, Kativu S (eds), African plants: biodiversity, taxonomy, Royal Botanic Gardens, Kew, pp. 39-49.

Chen Z-D, Yang T, Lin L, Lu L-M, Li H-L, Sun M, Liu B. Chen M, Niu Y-T, Ye J-F, Cao Z-Y, Liu H-M, Wang X-M & al. 2016. Tree of life for the genera of Chinese vascular plants. – J. Syst. Evol. 54: 277-306.

Chenery EM. 1948. Aluminium in the plant world 1. General survey in dicotyledons. – Kew Bull. 1948: 173-183.

Chenery EM. 1949 [1950]. Aluminium in the plant world 2. Monocotyledons and gymnosperms. – Kew Bull. 1949: 463-466.

Chesters KIM. 1955. Some plant remains from the Upper Cretaceous and Tertiary of West Africa. – Ann. Mag. Nat. Hist., Ser. 12, 8: 498-503.

Chiarugi A. 1927. Il gametofito femmineo delle angiosperme nei suoi vari tipi di construzione e di sviluppo. – Nuovo Giorn. Bot. Ital., N. S., 34: 1-133.

Chitaley SD. 1954. On a fructification from the Intertrappean flora of the Madhya Pradesh, India. – The Palaeobotanist 3: 9-17.

Chitaley SD. 1956. On the fructification of Tricoccites trigonum Rode from the Deccan Intertrappean Series of India. – The Palaeobotanist 5: 56-63.

Chitaley SD. 1958. Seeds of Viracarpon hexaspermum Sahni from the Intertrappean beds of Mohgaon Kalan, India. – J. Indian Bot. Soc. 37: 408-411.

Chitaley SD. 1968. On Aerorhizos harrisii gen. et sp. nov. from India. – J. Indian Bot. Soc. 67: 7-12.

Chitaley SD, Kate UR. 1974. On a new petrified flower Deccananthus savrii gen. et sp. nov. from the Deccan Intertrappean beds of India. – The Palaeobotanist 21: 317-320.

Chitaley SD, Patel MZ. 1975. Raoanthus intertrappea, a new petrified flower from India. – Palaeontographica, Ser. B, 153: 141-149.

Chitaley SD, Patil GV. 1970. A petrified leaf from the Deccan Intertrappean beds of India. – J. Biol. Sci. 13: 30-36.

Chitaley SD, Patil GV. 1971. Reinvestigation of Shuklanthus superbum Verma. – The Botanique 2: 41-49.

Chitaley SD, Shallom LJ, Mehta NV. 1969. Viracarpon sahnii, sp. nov. from the Deccan Intertrappean beds of Mahurzari, India. – In: Santapau H, Ghosh AK, Roy SK, Chanda S, Chaudhuri SK (eds), J. Sen Memorial Volume, J. Sen Memorial Committee and Botanical Society of Bengal, Calcutta, pp. 331-334.

Chmura CA. 1973. Upper Cretaceous (Campanian-Maastrichtian) angiosperm pollen from the western San Joaquin Valley, California, U.S.A. – Palaeontographica, Ser. B, 141: 89-171.

Choat B, Cobb AR, Jansen S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. – New Phytol. 177: 608-626.

Choat B, Jansen S, Zwieniecki MA, Smets E, Holbrook NM. 2004. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. – J. Exper. Bot. 55: 1569-1575.

Chowdhury KA. 1964. Growth rings in tropical trees and taxonomy. – J. Indian Bot. Soc. 43: 334-342.

Christensen KI, Hansen HV. 1998. SEM-studies of epidermal patterns of petals in the angiosperms. – Opera Bot. 135: 1-91.

Christin P-A, Salamin N, Muasya AM, Roalson EH, Russier F, Besnard G. 2008. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. – Mol. Biol. Evol. 25: 2361-2368.

Christin P-A, Osborne CP, Sage RF, Arakaki M, Edwards EJ. 2011. C4 eudicots are not younger than C4 monocots. – J. Experim. Bot. 62: 3171-3181.

Christin P-A, Edwards EJ, Besnard G, Boxall SF, Grogeory R, Kellogg EA, Hartwell J, Osborne CP. 2012. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. – Curr. Biol. 22: 1-5.

Christin P-A, Arakaki M, Osborne CP, Edwards EJ. 2015. Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms. – Mol. Biol. Evol. 32: 846-858.

Christophel DC. 1994. The early Tertiary macrofloras of continental Australia. – In: Hill RS (ed), History of the Australian vegetation: Cretaceous to recent, Cambridge University Press, Cambridge, pp. 262-275.

Christophel DC, Greenwood DR. 1987. A megafossil flora for the Eocene of Golden Grove, South Australia. – Trans. Roy. Soc. South Australia 111: 155-162.

Christophel DC, Greenwood DR. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf-beds. – Proc. Ecol. Soc. Australia 15: 139-148.

Christophel DC, Hyland BPM. 1993. Leaf atlas of Australian tropical rain forest trees. – CSIRO, East Melbourne, Victoria.

Christophel DC, Harris WK, Syber AK. 1987. The Eocene flora of the Anglesea locality, Victoria. – Alcheringa 11: 303-323.

Christophel DC, Scriven LJ, Greenwood DR. 1992. An Eocene megafossil flora from Nelly Creek, South Australia. – Trans. Roy. Soc. South Australia 116: 65-76.

Christopher RA. 1979. Normapolles and triporate pollen assemblages from the Raritan and Magothy formations (Upper Cretaceous) of New Jersey. – Palynology 3: 73-122.

Chrtek J, Slavíková Z, Studnička M. 1989. Beitrag zur Leitbündelanordning in den Kronblättern von ausgewählten Arten der fleischfressenden Pflanzen. – Preslia 61: 107-124.

Chuang T-I, Chao Cy, Hu WWL, Kwan SC. 1962. Chromosome numbers of the vascular plants of Taiwan I. – Taiwania 8: 51-66.

Chupov VS. 1978. Comparative immunoelectrophoretic study of proteins of pollen of some Amentiferae. – Bot. Žurn. 63: 1579-1585.

Chute M. 1930. The morphology and anatomy of the achene. – Amer. J. Bot. 17: 703-723.

Citerne HL, Jabbour F, Nadot S, Damerval C. 2010. The evolution of floral symmetry. – Adv. Bot. Res. 54: 85-137.

Citerne HL, Le Guilloux M, Sannier J, Nadot S, Damerval C. 2013. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. – PLoS ONE 8: e74803.

Clark WD, Gaut BS, Duvall MR, Clegg MT. 1993. Phylogenetic relationships of the Bromeliiflorae-Commeliniflorae-Zingiberiflorae complex of monocots based on rbcL sequence comparisons. – Ann. Missouri Bot. Gard. 80: 987-998.

Clarke JT, Warnock RCM, Donoghue PCJ. 2011. Establishing a time-scale for plant evolution. – New Phytol. 192: 266-301.

Claßen-Bockhoff R. 1990. Pattern analysis in pseudanthia. – Plant Syst. Evol. 171: 57-88.

Claßen-Bockhoff R. 1991. Anthodien, Pseudanthien und Infloreszenzblumen. – Beitr. Biol. Pflanzen 66: 221-240.

Claßen-Bockhoff R. 1992. (Prä-)Disposition, Variation und Bewährung am Beispiel der Infloreszenzblumen-bildung. – Mitt. Hamburg. Zool. Mus. Inst. 89 [Ergänzungsband 1]: 37-72.

Claßen-Bockhoff R. 2009. Shaping inflorescence architecture: a successful alternative to floral specialisation. – South Afr. J. Bot. 75: 395-396.

Clausen P. 1927. Über das Verhalten des Antheren-Tapetums bei einigen Monocotylen und Ranales. – Bot. Arch. 18: 1-27.

Clawson ML, Bourret A, Benson DR. 2004. Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. – Mol. Phylogen. Evol. 31: 131-138.

Clifford HT. 1970. Monocotyledon classification with special reference to the origin of the grasses (Poaceae). – In: Robson NKB, Cutler DF, Gregory M (eds), New research in plant anatomy, Academic Press, London, pp. 25-34.

Clifford HT. 1977. Quantitative studies of interrelationships amongst the Liliatae. – Plant Syst. Evol. [Suppl.] 1: 77-95.

Clifford HT. 1983. New evidence from embryology in angiosperm classification. – Nord. J. Bot. 3: 67-73.

Clifford HT, Dettmann ME. 2001. Drupe – a term in search of a definition. – Austrobaileya 6: 127-131.

Clifford HT, Drake WE. 1981. Pollination and dispersal in eastern Australian heathlands. – In: Specht RL (ed), Ecosystems of the world 9B. Heathlands and related shrublands, analytical studies, Elsevier, Amsterdam, pp. 39-49.

Clifford HT, Drake WE. 1985. Seed dispersal by kangaroos and their relatives. – J. Trop. Ecol. 1: 373-374.

Clifford HT, Williams WT. 1980. Interrelationships amongst the Liliatae: a graph theory approach. – Aust. J. Bot. 28: 261-268.

Clos D. 1879. Des stipules considerées au point de vue morphologique. – Bull. Soc. Bot. France 27: 151-155.

Coates Palgrave K. 1977. Trees of Southern Africa. – Struik, Cape Town.

Cocucci AE. 1983. New evidence from embryology in angiosperm classification. – Nord. J. Bot. 3: 67-73.

Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. – Nature 353: 31-37.

Coen ES, Nugent JM. 1994. Evolution of flowers and inflorescences. – Genes Developm. (Suppl.): 107-116.

Coetzee JA. 1986. Microfloral elements in the Neogene of the southwestern Cape Province and their phytogeographical significance. – Palaeoecol. Afr. 17: 21-30.

Coetzee JA, Muller J. 1984. The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). – Ann. Missouri Bot. Gard. 71: 1088-1099.

Coetzee JA, Rogers J. 1982. Palynological and lithological evidence for the Miocene palaeoenvironment in the Saldanha Region (South Africa). – Palaeogeography, Palaeoclimatology, Palaeoecology 39: 71-85.

Coiffard C, Gomez B. 2009. The rise to dominance of the angiosperm kingdom: dispersal, habitat widening and evolution during the Late Cretaceous of Europe. – Lethaia 43: 164-169.

Coiffard C, Gomez B, Kvacek J, Thévenard F. 2006. Early angiosperm ecology: evidence from the Albian-Cenomanian of Europe. – Ann. Bot. 98: 495-502.

Coiffard C, Gomez B, Thévenard F. 2007. Early Cretaceous angiosperm invasion of Western Europe and major environmental changes. – Ann. Bot. 100: 545-553.

Coiffard C, Gomez B, Daviero-Gomez V, Dilcher DL. 2012. Rise to dominance of angiosperm pioneers in European Cretaceous environments. – Proc. Natl. Acad. Sci. U.S.S. 109: 20955-20959.

Coleman CM, Prather BL, Valente MJ, Dute RR, Miller ME. 2004. Torus lignification in hardwoods. – IAWA J. 25: 435-447.

Coleman JR, Smith LB. 1969. Chromosome numbers of some Brazilian angiosperms. – Rhodora 71: 548-551.

Collinson ME. 1983a. Palaeofloristic assemblages and palaeoecology of the Lower Oligocene Bembridge Marls, Hamstead ledge, Isle of Wight. – Bot. J. Linn. Soc. 86: 177-225.

Collinson ME. 1983b. Fossil plants of the London Clay. Palaeontological Association field guides to fossils no. 1. – The Palaeontological Association, London.

Collinson ME. 1988. Freshwater macrophytes in palaeolimnology. – Palaeogeography, Palaeoclimatology, Palaeoecology 62: 317-342.

Collinson ME, Van Bergen PF. 2004. Evolution of angiosperm fruit and seed dispersal biology and ecophysiology: morphological, anatomical and chemical evidence from fossils. – In: Hemsley AR, Poole I (eds), The evolution of plant physiology, Linnean Society of London, London, pp. 343-377.

Collinson ME, Boulter MC, Holmes PL. 1993. Magnoliophyta (Angiospermae). – In: Benton MJ (ed), The fossil record 2, Chapman & Hall, London, pp. 809-841.

Collinson ME, Manchester SR, Wilde V. 2012. Fossil fruits and seeds of the Middle Eocene Messel biota, Germany. – Abh. Senckenberg. Naturf. Ges. 570: 1-251.

Compton RH. 1913. Phenomena and problems of self-sterility. – New Phytol. 12: 197-206.

Condit C. 1944. the Table Mountain flora. – In: Chaney RW (ed), Pliocene floras of California, Publ. Carnegie Inst. Washington 553: 57-90.

Conn BJ. 1980. A taxonomic revision of Geniostoma subg. Geniostoma (Loganiaceae). – Blumea 26: 245-364.

Connolly JD, Hill RA. 1991. Dictionary of terpenoids. – Chapman & Hall, New York.

Connolly JD, Overton KH, Polonsky J. 1970. The chemistry and biochemistry of the limonoids and quassinoids. – In: Reinhold L, Liwschitz Y (eds), Progress in phytochemistry 2, Interscience, London, pp. 385-455.

Conover MH. 1983. The vegetative morphology of reticulate-veined Liliiflorae. – Telopea 2: 401-412.

Conover MH. 1991. Epidermal patterns of the reticulate-veined Liliiflorae and their parallel-veined allies. – Bot. J. Linn. Soc. 107: 295-312.

Conover MH. 1983. The vegetative morphology of the reticulate-veined Liliiflorae. – Telopea 2: 401-412.

Conran JG. 1988. The reproductive and vegetative phenology of some south east Qld rainforest monocotyledons. – Proc. Roy. Soc. Queensland 99: 35-43.

Conran JG. 1989. Cladistic analyses of some net-veined Liliiflorae. – Plant Syst. Evol. 168: 123-141.

Conran JG. 1995. Family distributions in the Liliiflorae and their biogeographical implications. – J. Biogeogr. 22: 1023-1034.

Conran JG, Mildenhall DC, Lee DE, Lindqvist JK, Shepherd C, Beu AG, Bannister JM, Stein JK. 2014. Subtropical rainforest vegetation from Cosy Dell, Southland: plant fossil evidence for late Oligocene terrestrial ecosystems. – New Zealand J. Geol. Geophys. 57: 236-252.

Conran JG, Bannister JM, Lee DE, Carpenter RJ, Kenedy EM, Reichgelt T, Fordyce RE. 2015. An update of monocot macrofossil data from New Zealand and Australia. – Bot. J. Linn. Soc. 178: 394-420.

Conran JG, Mildenhall DC, Raine JI, Kennedy EM, Lee DE. 2015. The monocot fossil pollen record of New Zealand and its implications for palaeoclimates and environments. – Bot. J. Linn. Soc. 178: 421-440.

Constantinidis T, Kamari G. 1995. Mediterranean chromosome number reports 5, 401-414. – Flora Mediterranea 5: 265-278.

Constantinidis T, Kamari G, Phitos D. 1997. A cytological study of 28 phanerogams from the mountains of SE Sterea Ellas, Greece. – Willdenowia 27: 121-142.

Constantinidis T, Bareka E-P, Kamari G. 2002. Karyotaxonomy of Greek serpentine angiosperms. – Bot. J. Linn. Soc. 139: 109-124.

Conwentz H. 1886. Die Angospermen der Bernsteins. – W. Engelmann, Danzig.

Cook AD, Atsatt PR, Simon CA. 1971. Doves and dove weed: multiple defenses against avian predation. – Bioscience 21: 277-281.

Cook CDK. 1990. Aquatic plant book. – SPB Academic Publ., The Hague.

Cook CDK. 1996a. Aquatic plant book. Rev. ed. – SPB Academic Publ., Amsterdam.

Cook CDK. 1996b. Aquatic and wetland plants of India: a reference book and identification manual for the vascular plants found in permanent or seasonal fresh water in the subcontinent of India South of the Himalayas. – Oxford University Press, New York.

Cook CDK. 1999. The number and kinds of embryo-bearing plants which have become aquatic: a survey. – Persp. Plant Ecol. Evol. Syst. 2: 79-102

Cook CDK, Gut BJ, Rix EM, Schneller J, Seitz M. 1974. Water plants of the world: a manual for the identification of the genera of freshwater macrophytes. – W. Junk, The Hague.

Cookson IC, Pike KM. 1954. Some dicotyledonous pollen types from Cainozoic deposits in the Australian region. – Aust. J. Bot. 2: 197-219.

Cooper MG. 1986. A pilot survey of six rare plants in New South Wales. – Parks and Wildlife Service, Sydney, New South Wales.

Cooper W, Cooper WT. 1994. Fruits of the rain forest. – Geo Productions, Chatswood.

Copeland HF. 1957. Forecast of a system of the dicotyledons. – Madroño 14: 1-9.

Corner EJH. 1940. Wayside trees of Malaya. – Government Printing Office, Singapore.

Corner EJH. 1946. Centrifugal stamens. – J. Arnold Arbor. 27: 423-437.

Corner EJH. 1949. The durian theory or the origin of the modern tree. – Ann. Bot., N. S., 13: 367-414.

Corner EJH. 1954a. The durian theory extended II. The arillate fruit and the compound leaf. – Phytomorphology 4: 152-165.

Corner EJH. 1954b. The durian theory extended III. Pachycauly and megaspermy – conclusion. – Phytomorphology 4: 263-274.

Corner EJH. 1976. The seeds of dicotyledons 1-2. – Cambridge University Press, Cambridge.

Cornet B. 1986. The leaf venation and reproductive structures of a Late Triassic angiosperm, Sanmiguelia lewisii. – Evol. Theory 7: 231-309.

Cornet B. 1989a. The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the Late Triassic. – Evol. Trends Plants 3: 25-51.

Cornet B. 1989b. Late Triassic angiosperm-like pollen from the Richmond rift basin of Virginia, U.S.A. – Palaeontographica, Abt. B, 213: 37-87.

Cornet B, Habib D. 1992. Angiosperm-like pollen from the ammonite-dated Oxfordian (Upper Jurassic) of France. – Rev. Palaeobot. Palyn. 71: 269-294.

Corriveau JL, Coleman AW. 1988. Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. – Amer. J. Bot. 75: 1443-1458.

Coscia CJ. 1969. Picrotoxin. – In: Taylor WI, Battersby AR (eds), Cyclopentanoid terpene derivates, Dekker, New York, pp. 147-202.

Cotthem WRJ van. 1970. A classification of stomatal types. – Bot. J. Linn. Soc. 63: 235-246.

Cotthem WRJ van. 1971. Vergleichende morphologische Studien über Stomata und eine neue Klassifikation ihrer Typen. – Ber. Deutsch. Bot. Ges. 84: 141-168.

Couper RA. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. – Palyn. Bull. New Zealand Geol. Surv. Pal. 22: 1-77.

Couper RA. 1960. New Zealand Mesozoic and Cainozoic plant microfossils. – Paleontol. Bull. New Zealand Geol. Surv. 32: 1-87.

Cournoyer B, Gouy M, Normand P. 1993. Molecular phylogeny of the symbiotic actinomycetes of the genus Frankia matches host-plant infection processes. – Mol. Biol. Evol. 10: 1303-1316.

Covas G, Schack B. 1946. Número de cromosomas en Antófitas de la región de Cuyo (Republica Argentina). – Rev. Argent. Agron. 13: 153-166.

Covas G, Schack B. 1947. Estudios cariológicos en Antófitas II. – Rev. Argent. Agron. 14: 224-231.

Cox PA. 1985. Noodles on the tide: why is water-borne pollen so long and stringy? – Nat. Hist. 94: 36-41.

Cox PA. 1988. Hydrophilous pollination. – Ann. Rev. Ecol. Syst. 19: 261-280.

Cox PA. 1993. Water-pollinated plants. – Sci. Amer. Oct. 1993: 51-56.

Cox PA, Cromar S, Jarvis T. 1991. Underwater pollination, three-dimensional search, and pollen morphology; predictions from a super-computer analysis. – In: Blackmore S, Barnes SH (eds), Pollen and Spores. Patterns of diversification, Oxford University Press, Oxford, pp. 365-375.

Crabtree DR. 1987. Angiosperms of the northern Rocky Mountains: Albian to Campanian (Cretaceous) megafossil floras. – Ann. Missouri Bot. Gard. 74: 707-747.

Crane PR. 1984. A re-evaluation of Cercidiphyllum-like plant fossils from the British Lower Tertiary. – Bot. J. Linn. Soc. 89: 199-230.

Crane PF. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. – Ann. Missouri Bot. Gard. 72: 716-793.

Crane PR. 1989. Paleobotanical evidence on the early radiation of non-magnoliid dicotyledons. – Plant Syst. Evol. 162: 165-191.

Crane PR, Blackmore S (eds). 1989. Evolution, systematics, and fossil history of the Hamamelidae 1-2. – Systematics Assoc. Spec. Vol. 40, Clarendon Press, Oxford.

Crane PR, Dilcher DL. 1984. Lesqueria: an early angiosperm fruiting axis from the mid-Cretaceous. – Ann. Missouri Bot. Gard. 71: 384-402.

Crane PR, Herendeen PS. 1996. Cretaceous floras containing angiosperm flowers and fruits from eastern North America. – Rev. Palaeobot. Palyn. 90: 319-337.

Crane PR, Kenrick P. 1997. Diverted development of reproductive organs: a source of morphological innovation in land plants. – Plant Syst. Evol. 206: 161-174.

Crane PR, Lidgard S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. – Science 246: 675-678.

Crane PR, Lidgard S. 1990. Angiosperm radiation and patterns of Cretaceous palynological diversity. – In: Taylor PD, Larwood GP (eds), Major evolutionary radiations, Systematics Association Spec. Vol. 42, Clarendon Press, Oxford, pp. 377-407.

Crane PR, Friis EM, Pedersen KR. 1986. Lower Cretaceous angiosperm flowers: fossil evidence on early radiation of dicotyledons. – Science 232: 852-854.

Crane PR, Donoghue MJ, Doyle JA, Friis EM. 1989. Angiosperm origins. – Nature 342: 131-132.

Crane PR, Manchester SR, Dilcher DL. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. – Fieldiana Geol., N. S., 20: 1-63.

Crane PR, Friis EM, Pedersen KR. 1994. Paleobotanical evidence on the early radiation of magnoliid angiosperms. – Plant Syst. Evol. [Suppl.] 8: 51-72.

Crane PF, Friis EM, Pedersen KR. 1995. The origin and early diversification of angiosperms. – Nature 374: 27-33.

Crane PF, Herendeen P, Friis EM. 2004. Fossils and plant phylogeny. – Amer. J. Bot. 91: 1683-1699.

Cranwell LM. 1953. New Zealand pollen studies. The monocotyledons – a comparative account. – Bull. Auckland Inst. Mus. 3: 1-91.

Cranwell LM. 1959. Fossil pollen from Seymour Island, Antarctica. – Nature 184: 1782-1785.

Crawford BCW, Yanofsky MF. 2008. The formation and function of the female reproductive tract in flowering plants. – Curr. Biol. 18: R972-R978.

Crawford DJ. 1978. Flavonoid chemistry and angiosperm evolution. – Bot. Rev. 44: 431-456.

Crawford DJ, Witkus R, Stuessy TF. 1987. Plant evolution and speciation on oceanic islands. – In: Urbanska KM (ed), Differentiaton patterns in higher plants, Academic Press, Orlando, pp. 183-199.

Crawley M. 2001. Angiosperm woods from British Lower Cretaceous and Palaeogene deposits. – Spec. Pap. Palaeontology 66: 1-100.

Crepet WL. 1983. The role of insect pollination in the evolution of the angiosperm. – In: Real L (ed), Pollination biology, Academic Press, Orlando, Florida, pp. 31-50.

Crepet WL. 1984. Advanced (constant) insect pollination mechanisms: patterns of evolution and implications vis-à-vis angiosperm diversity. – Ann. Missouri Bot. Gard. 71: 607-630.

Crepet WL. 1996. Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen. – Rev. Palaeobot. Palyn. 90: 339-359.

Crepet WL. 2000. Progress in understanding angiosperm history, success, and relationships: Darwin’s abominably ‘perplexing phenomenon’. – Proc. Natl. Acad. Sci. U.S.A. 97: 12939-12941.

Crepet WL. 2008. The fossil record of angiosperms: requiem or renaissance? – Ann. Missouri Bot. Gard. 95: 3-33.

Crepet WL, Friis EM. 1987. The evolution of insect pollination in angiosperms. – In: Friis EM, Chaloner WG, Crane PR (eds), The origin of angiosperms and their biological consequences, Cambridge University Press, Cambridge, pp. 181-201.

Crepet WL, Niklas KJ. 2009. Darwin’s second “abominable mystery”: Why are there so many angiosperm species? – Amer. J. Bot. 96: 366-381.

Crepet WL, Nixon KC. 1994. Flowers of Turonian Magnoliidae and their implications. – Plant Syst. Evol. [Suppl.] 8: 73-91.

Crepet WL, Nixon KC. 1996. The fossil history of stamens. – In: D’Arcy WG, Keating RC (eds), The anther. Form, function and phylogeny, Cambridge University Press, Cambridge, pp. 25-57.

Crepet WL, Nixon KC. 1998. Two new fossil flowers of magnoliid affinity from the Late Cretaceous of New Jersey. – Amer. J. Bot. 85: 1273-1288.

Crepet WL, Dilcher DL, Potter FW. 1974. Eocene angiosperm flowers. – Science 185: 781-782.

Crepet WL, Friis EM, Nixon KC. 1991. Fossil evidence for the evolution of biotic pollination. – Phil. Trans. Roy. Soc. London, Ser. B, 333: 187-195.

Crepet WL, Nixon KC, Friis EM, Freudentstein JV. 1992. Oldest fossil flowers of hamamelidaceous affinity, from the late Cretaceous of New Jersey. – Proc. Natl. Acad. Sci., U.S.A. 89: 8986-8989.

Crepet WL, Friis EM, Gandolfo MA. 2004. Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. – Amer. J. Bot. 91: 1666-1682.

Cresens EM, Smets E. 1992. On the character ‘carpel-form’. Trends in the Magnoliatae pistil. – Candollea 47: 373-390.

Crété P. 1951. Répartition et intérêt phylogénétique des albumens à formations haustoriales chez les Angiospermes et plus particulièrement chez gamopétales. – Ann. Sci. Nat., sér. II, 12: 131-191.

Crété P. 1964. L’embryogénie et son rôle dans les essais de classification phylogénétique. – Phytomorphology 14: 70-78.

Cribb AB, Cribb JW. 1976. Wild food in Australia. – Fontana Collins, Sydney.

Cribb AB, Cribb JW. 1982. Useful wild plants in Australia. – Fontana Collins, Sydney.

Crisp MD, Cook LG. 2009. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. – Evolution 63: 2257-2265.

Crisp MD, Cook LG. 2011. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. – New Phytol. 192: 997-1009.

Crisp MD, Cook LG, Steane D. 2004. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? – Philos. Trans. Roy. Soc. London, B, Biol. Sci. 359: 1551-1571.

Croat TB. 1978. Flora of Barro Colorado Island. – Stanford University Press, Stanford, California.

Croizat L. 1952. Thoughts on high systematics, phylogeny and floral morphology with a note on the origin of Angiospermae. – Candollea 19: 17-96.

Cronk QCB. 2009. The molecular organography of plants. – Oxford University Press, Oxford.

Cronk QCB, Möller M. 1997. Genetics of floral symmetry revealed. – Trends Ecol. Evol. 12: 85-86.

Cronquist A. 1957. Outline of a new system of families and orders of dicotyledons. – Bull. Jard. Bot. État Bruxelles 27: 13-41.

Cronquist A. 1965. The status of the general system of classification of flowering plants. – Ann. Missouri Bot. Gard. 52: 281-303.

Cronquist A. 1968. The evolution and classification of flowering plants. – Houghton Mifflin, Boston, Massachusetts.

Cronquist A. 1974. Chemical plant taxonomy: a generalist’s view of a promising specialty. – In: Bendz G, Santesson J (eds), Chemistry in botanical classification, Proceedings of the 25th Nobel Symposium, Academic Press, New York, pp. 29-36.

Cronquist A. 1977. On the taxonomic significance of secondary metabolites in angiosperms. – Plant Syst. Evol. [Suppl.] 1: 179-189.

Cronquist A. 1981. An integrated system of classification of flowering plants. – Columbia University Press, New York.

Cronquist A. 1983. Some realignments in the dicotyledons. – Nord. J. Bot. 3: 75-83.

Cronquist A. 1986. Commentary on the status of the Hamamelidae. – Ann. Missouri Bot. Gard. 73: 227.

Cronquist A. 1988. The evolution and classification of flowering plants. 2nd ed. – New York Botanical Garden, Bronx, New York.

Crossley NS, Djerassi C. 1962. Naturally occurring oxygen heterocyclics XI. Veraguensin. – J. Chem. Soc. 1962: 1459-1462.

Croteau R, Johnson MA. 1985. Biosynthesis of terpenoid wood extractives. – In: Higuchi T (ed), Biosynthesis and biodegradation of wood conponents, Academic Press, Orlando.

Crow GE, Hellquist CB. 2000. Aquatic and wetland plants of northeastern North America 2. – The University of Wisconsin Press, Madison, Wisconsin.

Cruden RW. 1977. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. – Evolution 31: 32-46.

Cruden RW, Lyon DL. 1985. Correlations among stigma depth, style length, and pollen grain size: do they reflect function or phylogeny? – Bot. Gaz. 146: 143-149.

Cuatrecasas J. 1948. Studies in South American plants I. – J. Nat. Prod. (Lloydia) 11: 185-225.

Cubas P. 2004. Floral zygomorphy, the recurring evolution of a successful trait. – BioEssays 26: 1175-1184.

Cubas P, Coen E, Zapater JMM. 2001. Ancient asymmetries in the evolution of flowers. – Curr. Biol. 11: 1050-1052.

Cuenca A, Petersen G, Seberg O, Jahren AH. 2012. Genes and processed paralogs co-exist in plant mitochondria. – J. Mol. Evol. 74: 158-169.

Cuerrier A, Brouillet L, Barabe D. 1998. Numerical and comparative analyses of the modern systems of classification of the flowering plants. – Bot. Rev. 64: 323-355.

Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, dePamphilis CW. 2006. Widespread genome duplications throughout the history of flowering plants. – Genome Res. 16: 738-749.

Cullen J. 1978. A preliminary survey of ptyxis (vernation) in the angiosperms. – Notes Roy.Bot. Gard. Edinb. 37: 161-214.

Cullings K, Szaro TM, Bruns TD. 1996. Evolution of extreme specialization within a lineage of ectomycorrhizal epiparasites. – Nature 379: 63-66.

Culvenor CC. 1978. Pyrrolizidine alkaloids – occurrence and systematic importance in angiosperms. – Bot. Not. 131: 473-486.

Currie HA, Perry CC. 2007. Silica in plants: biological, biochemical and chemical studies. – Ann. Bot. 100: 1383-1389.

Curtis WM. 1952. Variation in certain Tasmanian plants. – New Phytol. 51: 398-414.

Cusick F. 1966. On phylogenetic and ontogenetic fusions. – In: Cutter EG (ed), Trends in plant morphogenesis, Longmans Green, London, pp. 170-183.

Cusimano N, Renner SS. 2010. Slowdowns in diversification rates from real phylogenies may not be real. – Syst. Biol. 59: 458-464.

Cutler DF, Gregory M (eds). 1998, 2000 etc. Anatomy of the dicotyledons, 2nd ed. – Clarendon Press, Oxford.

Czaja AT. 1969. Mikroskopie der Stärkekörner. – Parey, Berlin.

Czaja AT. 1978a. Stärke und Stärkespeicherung bei Gefässpflanzen: Versuch einer Amylo-Taxonomie. – Gustav Fischer, Stuttgart.

Czaja AT. 1978b. Structure of starch grains and the classification of vascular plant families. – Taxon 27: 463-470.

Czapik R. 2000. Apomixis in monocotyledons. – In: Jacobs SWL, Everett J (eds), Grasses. Systematics and evolution, CSIRO publ., Collingwood, Australia, pp. 316-321.

Dafni A, Bernhardt P, Shmida A, Ivry Y, Greenbaum S, O’Toole C, Losito L. 1990. Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. – Israel J. Bot. 39: 81-92.

Daghlian CP. 1981. A review of the fossil record of monocotyledons. – Bot. Rev. (Lancaster) 47: 517-555.

Daghlian CP, Crepet WL, Delevoryas T. 1980. Investigations of Tertiary angiosperms: a new flora including Eomimosoidea plumosa from the Oligocene of Eastern Texas. – Amer. J. Bot. 67: 309-320.

Dahlgren G. 1989. An updated angiosperm classification. – Bot. J. Linn. Soc. 100: 197-203.

Dahlgren G. 1989. The last Dahlgrenogram: system of classification of the dicotyledons. – In: Tan K, Mill RR, Elias TS (ed), Plant taxonomy, phytogeography and related subjects, The Davis and Hedge Festschrift, Edinburgh University Press, Edinburgh, pp. 249-260.

Dahlgren G. 1991. Steps towards a natural system of the dicotyledons: embryological characters. – Aliso 13: 107-165.

Dahlgren KVO. 1927a. Die Morphologie des Nuzellus mit besonderer Berücksichtigung der deckzellosen Typen. – Jahrb. Wiss. Bot. 67: 347-426.

Dahlgren KVO. 1927b. Über das Vorkommen von Stärke in den Embryosäcken der Angiospermen. – Ber. Deutsch. Bot. Ges. 45: 374-384.

Dahlgren KVO. 1940. Postamentbildungen in den Embryosäcken der Angiospermen. – Bot. Not. 1940: 347-369.

Dahlgren RMT. 1975a. A system of classification of the angiosperms to be used to demonstrate the distribution of characters. – Bot. Not. 128: 119-147.

Dahlgren RMT. 1975b. The distribution of characters within an angiosperm system I. Some embryological characters. – Bot. Not. 128: 181-197.

Dahlgren RMT. 1977a. A note on the taxonomy of the ‘Sympetalae’ and related groups. – Publ. Cairo Univ. Herb. 7-8: 83-102.

Dahlgren RMT. 1977b. A commentary on a diagrammatic presentation of the angiosperms in relation to the distribution of character states. – Plant Syst. Evol. [Suppl.] 1: 253-283.

Dahlgren RMT. 1979. Angiospermernes taxonomi 1. 2. udg. – Akademisk Forlag, København.

Dahlgren RMT. 1980a. Angiospermernes taxonomi 2-3. 2. udg. – Akademisk Forlag, København.

Dahlgren RMT. 1980b. A revised system of classification of the angiosperms. – Bot. J. Linn. Soc. 80: 91-124.

Dahlgren RMT. 1980c. The taxonomic significance of chlorophyllous embryos in angiosperm seeds. – Bot. Not. 133: 337-341.

Dahlgren RMT. 1983a. General aspects of angiosperm evolution and macrosystematics. – Nord. J. Bot. 3: 119-149.

Dahlgren RMT. 1983b. The importance of modern serological research for angiosperm classification. – In: Jensen U, Fairbrothers DE (eds), Proteins and nucleic acids in plant systematics, Springer, Berlin, pp. 371-394.

Dahlgren RMT, Bremer K. 1985. Major clades of the angiosperms. – Cladistics 1: 349-368.

Dahlgren RMT, Clifford HT. 1981. Some conclusions from a comparative study of the monocotyledons and related dicotyledonous orders. – Ber. Deutsch. Bot. Ges. 94: 203-227.

Dahlgren RMT, Clifford HT. 1982. The monocotyledons: a comparative study. – London, New York.

Dahlgren RMT, Rasmussen FN. 1983. Monocotyledon evolution: characters and phylogenetic estimation. – In: Hecht MK, Wallace B, Prance GT (eds), Evolutionary biology 16, Plenum Publ., New York, pp. 255-395.

Dahlgren RMT, Wyk AE van. 1988. Structures and relationships of families endemic to or centered in southern Africa. – In: Goldblatt P, Lowry PP II (eds), Modern systematic studies in African botany, Monographs in Systematic Botany 25, Missouri Botanical Garden, St. Louis, pp. 1-94.

Dahlgren RMT, Karlsson T, Lassen P. 1971. Studies on the flora of the Balearic Islands I. Chromosome numbers in Balearic angiosperms. – Bot. Not. 124: 249-269.

Dahlgren RMT, Rosendal-Jensen S, Nielsen BJ. 1981. A revised classification of the angiosperms with comments on correlation between chemical and other characters. – In: Young DA, Seigler DS (eds.), Phytochemistry and angiosperm phylogeny, Praeger, New York, pp. 149-204.

Dahlgren RMT, Clifford HT, Yeo PF. 1985. The families of the monocotyledons: structure, evolution, and taxonomy. – Springer, Berlin, Heidelberg, New York.

Dahlian CP. 1981. A review of the fossil record of monocotyledons. – Bot. Rev. 47: 517-555.

Dajoz I, Tillbottraud I, Gouyon PH. 1991. Evolution of pollen morphology. – Science 253: 66-68.

Dalgaard V. 1985. Chromosome studies in flowering plants from Madeira. – Willdenowia 15: 137-156.

Dalgaard V. 1986a. Chromosome numbers in flowering plants from Madeira. – Willdenowia 16: 221-240.

Dalgaard V. 1986b. Chromosome studies in flowering plants from Macaronesia. – An. Jard. Bot. Madrid 43: 83-111.

Dalgaard V. 1991. Chromosome studies in flowering plants from Macaronesia II. – Willdenowia 20: 139-152.

Dalgaard V. 1994. Checklist of chromosome numbers counted in Madeiran flowering plants, with notes on polyploidy, life form, endemism and evolution. – Nord. J. Bot. 14: 241-255.

Dalziel JM. 1937. The useful plants of West Tropical Africa. – Crown Agents, London.

Däniker AU. 1931. Mitteilungen aus dem Botanischen Museum der Universität Zürich (CXXXVII) III. Ergebnisse der Reise von Dr. A. U. Däniker nach Neu-Caledonien und den Loyalitäts-Inseln (1924/25). – Vierteljahrsschr. Naturforsch. Ges. Zürich 76: 160-213.

Danilova MF, Nemirovich-Danchenko EN, Komar GA, Lodkina MM. 1990. Some trends of structural evolution of seeds in monocotyledons. – Bot. Žurn. 75: 755-773. [In Russian with English summary]

Danilova MF, Nemirovich-Danchenko EN, Komar GA, Lodkina MM. 1995. The seed structure of monocotyledons. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 461-472.

D’Arcy WG, Keating RC (eds). 1996. The anther: form, function and phylogeny. – Cambridge University Press, Cambridge.

D’Arcy WG, Keating RC, Buchmann SL. 1996. The calcium oxalate package or so-called resorbtion tissue in some angiosperm anthers. – In: D’Arcy WG, Keating RC (eds), The anther: form, function and phylogeny, Cambridge University Press, Cambridge, pp. 158-191.

Darlington CD, Wylie AP. 1955. Chromosome atlas of flowering plants. – George Allen & Unwin, London.

Darlington CD, Wylie AP. 1961. Chromosome atlas of flowering plants. 2nd ed. – University Press, Aberdeen.

Darwin C. 1875. Insectivorous plants. – John Murray, London.

Das MC, Mahato SB. 1983. Triterpenoids. – Phytochemistry 22: 1071-1095.

Daumann E. 1970. Das Blütennektarium der Monokotyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. – Feddes Repert. 80: 463-590.

Daumann E. 1974. Zur Frage nach dem Vorkommen eines Septalnektariums bei Dicotyledonen, zugleich ein Beitrag zur Blütenmorphologie und Bestäubungsökologie von Buxus L. und Cneorum L. – Preslia 46: 97-109.

Davidse G. 1981. Chromosome numbers of miscellaneous angiosperms. – Ann. Missouri Bot. Gard. 68: 222-223.

Davies TJ, Barraclough TG. 2007. The diversification of flowering plants through time and space: Key innovations, climate and chance. – In: Hodkinson TR, Parnell JAN (eds), Reconstructing the Tree of Life: taxonomy and systematics of species rich taxa, Systematics Association Spec. Vol. Ser. 72, CRC Press, Boca Raton, FLA, pp. 149-163.

Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V. 2004. Darwin’s abominable mystery: insights from a supertree of the angiosperms. – Proc. Natl. Acad. Sci. U.S.A. 101: 1904-1909.

Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TG. 2004. Environmental energy and evolutionary rates in flowering plants. – Proc. Roy. Soc. London, Sect. B, 271: 2195-2200.

Daviña JR, Honfi AI, Diana DF de, Vernández V, Lirussi I, Rovira A, Molero J. 2001. Chromosome studies on plants from Paraguay. – Phyton 50: 215-224.

Davis CC, Endress PK, Baum DA. 2008. The evolution of floral gigantism. – Curr. Opin. Plant Biol. 11: 49-57.

Davis GL. 1966. Systematic embryology of the angiosperms. – John Wiley & Sons, New York.

Davis JI. 1995. A phylogenetic structure for the monocotyledons, as inferred from chloroplast DNA restriction site variation, and a comparison of measures of clade support. – Syst. Bot. 20: 503-527.

Davis JI, Simmons MP, Stevenson DW, Wendel JF. 1998. Data decisiveness, data quality, and incongruence in phylogenetic analysis: an example from the monocotyledons using mitochondrial atpA sequences. – Syst. Biol. 47: 282-310.

Davis JI, Stevenson DW, Petersen G, Seberg O, Campbell LM, Freudenstein JV, Goldman DH, Hardy CR, Michelangeli FA, Simmons MP, Specht CD, Vergara-Silva F, Gandolfo M. 2004. A phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap values. – Syst. Bot. 29: 467-510.

Davis JI, Petersen G, Seberg O, Stevenson DW, Hardy CR, Simmons MP, Michelangeli FA, Goldman DH, Campbell LM, Specht CD, Cohen JI. 2006. Are mitochondrial genes useful for the analysis of monocot relationships? – Taxon 55: 857-870.

Davis JI, Mcneal JR, Barrett CF, Chase MW, Cohen JI, Duvall MR, Givnish TJ, Graham SW, Petersen G, Pires JC, Seberg O, Stevenson DW, Leebens-Mack J. 2013. Contrasting patterns of support among plastid genes and genomes for major clades of the monocotyledons. – In: Wilkin P, Mayo SJ (eds.), Early events in monocot evolution, Systematics Association Spec. Vol. Series, Cambridge University Press, Cambridge. doi:10.1017/CBO9781139002950.015

Davis PH, Heywood VH. 1973. Principles of angiosperm taxonomy. – Krieger, Huntington.

Davis WE, Yost JA. 1983. Ethnobotany of the Waorani of Eastern Ecuador. – Bot. Mus. Leafl. 29: 159-211.

Davlianidze MT. 1985. Čisla hromosom predstavitelej semejstv Asteraceae, Boraginaceae, Brassicaceae, Liliaceae, Fabaceae, Paeoniaceae, Poaceae, Primulaceae, Ranunculaceae, Rosaceae flory Gruzinskoj SSR. – Bot. Žurn. 70: 698-700. [In Russian]

Dawe JC, Murray DF. 1981. Chromosome numbers of selected Alaskan vascular plants. – Can. J. Bot. 59: 1373-1381.

Dawson JO. 1990. Interactions among actinorhizal and associated species. – In: Schwintzer CR, Tjepkema JD (eds), The biology of Frankia and actinorhizal plants, Academic Press, New York, pp. 299-316.

Dawson JW. 1886. Fossil plants of the Laramie Formation of Canada. – Trans. Roy. Soc. Canada 4: 17-34.

Dawson MI. 1995. Contributions to a chromosome atlas of the New Zealand flora 33. Miscellaneous species. – New Zealand J. Bot. 33: 477-487.

Dawson MI. 2000. Index of chromosome numbers of indigenous New Zealand spermatophytes. – New Zealand J. Bot. 38: 47-150.

Dawson MI, Beuzenberg EJ. 2000. Contributions to a chromosome atlas of the New Zealand flora 36: Miscellaneous families. – New Zealand J. Bot. 38: 1-23.

De Benedetto C, Gara L de; Arrigoni O, Albrizio M, Gallerani R. 1992. The structure of cytochrome oxidase subunit II gene and its use as a new character in the construction of the phylogenetic tree of Angiospermae. – Plant Sci. 81: 75-82.

De Bodt S, Maere S, Peer Y van de. 2005. Gene duplication and the evolution of angiosperms. – Trends Ecol. Evol. 20: 591-597.

Debray M, Jaquemin H, Razafindrambao R. 1971. Contribution à l’inventaire des plantes médicinales de Madagascar. – Trav. Doc. O.R.S.T.O.M. 8.

Dechamps R. 1979-1985. Étude anatomique de bois d’Amérique du Sud 1-3. – Musée Royal de l’Afrique Centrale, Trevuren.

Delaunay LN. 1926. Phylogenetische Chromosomenverkürzung. – Zeitschr. Zellf. Mikrosk. Anat. 4: 338-364.

Delay C. 1947. Recherches sur la structure des noyaux quiescents chez les Phanérogames. – Rev. Cytol. Cytophysiol. Veg. 9: 169-222; 10: 103-229.

Dellaporta SL, Calderon-Urrea A. 1993. Sex determination in flowering plants. – The Plant Cell 5: 1241-1251.

Delpino F. 1903. Aggiunte alla teoria della classificazione della Monocotyledoni. – Mem. Acad. Bologna, ser. Y, 10: 569-584.

deNettancourt D. 1977. Incompatibility in angiosperms. – Springer, New York.

dePamphilis CW, Young ND, Wolfe AD. 1997. Evolution of the plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. – Proc. Natl. Acad. Sci. U.S.A. 94: 7367-7372.

De Queiroz K. 1997. The Linnaean hierarchy and the evolutionization of taxonomy, with emphasis on the problem of nomenclature. – Aliso 15: 125-144.

De Queiroz K, Cantino PD. 2001. Phylogenetic nomenclature and the PhyloCode. – Bull. Zool. Nomencl. 58: 254-271.Dersch G. 1974. Über einige Chromosomenzählungen an mitteleuropäischen Blütenpflanzen. – Philippia 2: 75-82.

Desch HE. 1954. Manual of Malayan timbers. – Malayan For. Res. 15: 329-762.

Dettmann ME. 1973. Angiospermous pollen from Albian to Turonian sediments of eastern Australia. – Geol. Soc. Australia, Spec. Publ. 4: 3-34.

Dettmann ME, Clifford HT. 2000. Monocotyledon fruits and seeds, and an associated palynoflora from Eocene-Oligocene sediments of coastal central Queensland, Australia. – Rev. Paleobot. Palynol. 110: 141-173.

Dettmann ME, Jarzen DM. 1988. Angiosperm pollen from uppermost Cretaceous strata of southeastern Australia and the Antarctic Peninsula. – Mem. Ass. Australas. Paleontol. 5: 217-237.

Dettmann ME, Thomson MRA. 1987. Cretaceous palynomorphs from James Ross Island area – a pilot study. Bitish Antarctic Survey Bull. 77: 13-59.

Dettmann ME, Clifford HT, Peters M. 2009. Lovellea wintonensis gen. et sp. nov. – Early Cretaceous (late Albian), anatomically preserved, angiosperm flowers and fruits from the Winton Formation, western Queensland. – Cretaceous Res. 30: 339-355.

De Vega C, Arista M, Ortiz PL, Talavera S. 2010. Anatomical relations among endophytic holoparasitic angiosperms, autotrophic host plants and mycorrhizal fungi: a novel tripartite interaction. – Amer. J. Bot. 97: 730-737.

De Vega C, Arista M, Ortiz PL, Talavera S. 2011. Mycorrhizal fungi and parasitic plants: reply. – Amer. J. Bot. 98: 597-601.

De Vogel EF. 1980. Seedlings of dicotyledons. – Centre for Agricultural Publishing and Documentation, Wageningen.

De Wildeman E. 1904. Sur l’acarophytisme chez les monocotyledons. – Compt. Rend. Acad. Sci. Paris 139: 551-552.

De Wit HCD. 1947. A revision of the genus Eurya Thunb. (Theac.) in the Malay Archipelago (including New Guinea and south of the Philippines). – Bull. Jard. Bot. Buitenzorg, Sér. III, 17: 329-375.

Dexter KG, Pennington TD, Cunningham CW. 2010. Using DNA to assess errors in tropical tree identifications: How often are ecologists wrong and when does it matter? – Ecol. Monogr. 80: 267-286.

Deyl M. 1955. The evolution of the plants and the taxonomy of the monocotyledons. – Sborn. Nar. Mus. v. Praze, Řada B., Přir. Vědy 11(6), Botanica 3: 1-143.

Díaz Lifante Z, Luque T, Santa Barbara C. 1992. Chromosome numbers of plants collected during Iter Mediterraneum II in Israel. – Bocconea 3: 229-250.

Dick CW, Abdul-Salim K, Berminham E. 2003. Molecular systematic analysis reveals cryptic Tertiary diversification of a widespread tropical rain forest tree. – Amer. Natur. 162: 691-703.

Dickinson TA. 1978. Epiphylly in angiosperms. – Bot. Rev. 44: 181-232.

Dickison WC. 1975. The bases of angiosperm phylogeny: vegetative anatomy. – Ann. Missouri Bot. Gard. 62: 590-620.

Dickison WC. 1989. Comparisons of primitive Rosidae and Hamamelidae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae, vol. 1, Introduction and ‘lower’ Hamamelidae, Systematics Assoc., Spec. Vol. 40A, Clarendon Press, Oxford, pp. 47-73.

Dickison WC. 2000. Integrative plant anatomy. – Harcourt/Academic Press, San Diego, California.

Diels L. 1912. Über primitive Ranales der australischen Flora. – Engl. Bot. Jahrb. Syst. 48, Beibl. 107: 7-13.

Diels L, Pritzel E. 1904. Fragmenta phytographiae Australiae occidentalis. – Engl. Bot. Jahrb. Syst. 35: 55-662.

Di Fulvio TE. 1983. Los “Tipos” de endosperma y de haustorios endospermicos. Su classificación. – Kurtziana 16: 7-31.

Diggle PK. 1995. Architectural effects and the interpretation of patterns of fruit and seed development. – Ann. Rev. Ecol. Syst. 26: 531-552.

Dilcher DL. 1974. Approaches to the identification of angiosperm leaf remains. – Bot. Rev. (Lancaster) 40: 1-157.

Dilcher DL. 1979. Early angiosperm reproduction: an introductory report. – Rev. Palaeobot. Palynol. 27: 291-328.

Dilcher DL. 2000. Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. – Proc. Natl. Acad. Sci. U.S.A. 97: 7030-7036.

Dilcher DL. 2001. Paleobotany: some aspects of non-flowering and flowering plant evolution. – Taxon 50: 697-711.

Dilcher DL, Basson PW. 1990. Mid-Cretaceous angiosperm leaves from a new fossil locality in Lebanon. – Bot. Gaz. 151: 538-547.

Dilcher DL, Crane PR. 1984a. Archaeanthus: an early angiosperm from the Cenomanian of the western interior North America. – Ann. Missouri Bot. Gard. 71: 351-383.

Dilcher DL, Crane PR. 1984b. In pursuit of the first flower. – Nat. Hist. Mag. 93: 56-61.

Dilcher DL, Kovach WL. 1986. Early angiosperm reproduction: Caloda delevoryana gen. et sp. nov., a new fructification from the Dakota formation (Cenomanian) of Kansas. – Amer. J. Bot. 73: 1230-1237.

Dilcher DL, Wang H. 2009. An Early Cretaceous fruit with affinities to Ceratophyllaceae. – Amer. J. Bot. 96: 2256-2269.

Dilcher DL, Zavada S. 1986. Phylogeny of the Hamamelidae: an introduction. – Ann. Missouri Bot. Gard. 73: 225-226.

Dilcher DL, Crepet WL, Beeker CB, Reynolds HC. 1976. Reproductive and vegetative morphology of a Cretaceous angiosperm. – Science 191: 854-856.

Dilcher DL, Sun G, Ji Q, Li H. 2007. An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian formation in northeastern China. – Proc. Natl. Acad. Sci. U.S.A. 104: 9370-9374.

Dinkelaker B, Hengeler C, Marschner H. 1995. Distribution and function of proteoid roots and other root clusters. – Bot. Acta 108: 183-200.

Ditsch F, Barthlott W. 1994. Mikromorphologie der Epicuticularwachse und die Systematik der Dilleniales, Lecythidales, Malvales und Theales. – Trop. Subtrop. Pflanzenwelt 88: 1-74.

Ditsch F, Barthlott W. 1997. Mikromorphologie der Epicuticularwachse und das System der Dilleniidae und Rosidae. – Trop. Subtrop. Pflanzenwelt 97: 1-248.

Dixon RA, Xie D-Y, Sharma SB. 2005. Proanthocyanidins – a final frontier in flavonoid research. – New Phytol. 165: 9-28.

Dobat K, Pekert-Holle T. 1985. Blüten und Fledermäuse. Bestäubung durch Fledermäuse und Flughunde (Chiropterophilie). – Kramer, Frankfurt/Main.

Dobler S, Petschenka G, Pankoke H. 2011. Coping with toxic plant compounds – the insect’s perspective on iridoid glycosides and cardenolides. – Phytochemistry 72: 1593-1604.

Dobruskina IA. 1996. Connections of Israeli Upper Cretaceous flora with coeval floras of adjacent regions. – Rheedea 6: 43-58.

Dobruskina IA. 1997. Turonian plants from the southern Negev, Israel. – Cretaceous Res. 18: 87-107.

Dodd ME, Silvertown J, Chase MW. 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. – Evolution 53: 732-744.

Dode LA. 1912. Deux genres nouveaux pour la Chine. – Bull. Soc. Dendrol. France 23: 58-61.

Dombrovska O, Qiu Y-L. 2004. Distribution of introns in the mitochondrial gene nad1 in land plants: Phylogenetic and molecular evolutionary implications. – Mol. Phylogen. Evol. 32: 246-263.

Donnell Smith J. 1913. Undescribed plants from Guatemala and other Central American republics 36. – Bot. Gaz. 55: 433-434.

Donoghue MJ. 1989. Phylogenies and the analysis of evolutionary sequences with examples from seed plants. – Evolution 43: 1137-1156.

Donoghue MJ. 1994. Progress and prospects in reconstructing plant phylogeny. – Ann. Missouri Bot. Gard. 81: 405-418.

Donoghue MJ. 2001. A wish list for systematic biology. – Syst. Biol. 50: 755-757.

Donoghue MJ. 2004. Immeasurable progress on the tree of life. – In: Cracraft J, Donoghue MJ (eds), Assembling the tree of life, Oxford University Press, Oxford, pp. 548-552.

Donoghue MJ. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. – Paleobiology 31: 77-93.

Donoghue MJ, Doyle JA. 1989a. Phylogenetic studies of seed plants and angiosperms based on morphological characters. – In: Fernholm B, Bremer K, Jörnvall H (eds), The hierarchy of life: molecules and morphology in phylogenetic analysis, Elsevier Science Publ., Amsterdam, pp. 181-193.

Donoghue MJ, Doyle JA. 1989b. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 1, Introduction and ‘lower’ Hamamelidae, Systematics Association, Spec. Vol. 40A, Clarendon Press, Oxford, pp. 17-45.

Donoghue MJ, Doyle JA. 1991. Angiosperm monophyly. – Trends Ecol. Evol. 6: 407.

Donoghue MJ, Doyle JA. 2000. Seed plant phylogeny: demise of the anthophyte hypothesis? – Curr. Biol. 10: R106-R109.

Donoghue MJ, Mathews S. 1998. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. – Mol. Phylogen. Evol. 9: 489-500.

Donoghue MJ, Scheiner SM. 1992. The evolution of endosperm: a phylogenetic account. – In: Wyatt R (ed), Ecology and evolution of plant reproduction: new approaches, Chapman & Hall, New York, pp. 356-389.

Donoghue MJ. Doyle JA, Gauthier J, Kluge AG, Rowe T. 1989. The importance of fossils in phylogeny reconstruction. – Ann. Rev. Ecol. Syst. 20: 431-460.

Donoghue MJ, Ree RH, Baum DA. 1998. Phylogeny and the evolution of flower symmetry in the Asteridae. – Trends Plant Sci. 3: 311-317.

Donoghue MJ, Bell CD, Li JH. 2001. Phylogenetic patterns in northern hemisphere plant geography. – Intern. J. Plant Sci. 162(Suppl.): S41-S52.

Dorf E. 1942. Upper Cretaceous floras of the Rocky Mountain Region II. Flora of the Lance Formation at its type locality, Niobrara County, Wyoming. – Carnegie Inst. Wash. Contr. Paleontol. 508: 79-159.

Dormer KJ. 1946. Anatomy of the primary vascular system in dicotyledonous plants. – Nature 158: 737-739.

Dorofeev PI. 1963. The Tertiary floras of Western Siberia. – Izdat. Akad. Nauk S.S.S.R. Bot. Inst. V. L. Komarov, Leningrad. [In Russian]

Dorofeev PI. 1988. Miocenovye flory Tambovskoi Oblasti. – Nauka, Leningrad.

Douglas GE. 1944. The inferior ovary. – Bot. Rev. 10: 125-186.

Douglas GE. 1957. The inferior ovary II. – Bot. Rev. 23: 1-46.

Doweld AB. 2000. Validation of some suprageneric taxa in dicotyledons (Rosopsida, sensu Magnoliopsida). – Bull. Moscow Soc. Natur. (Biol. Ser.), 105: 59.

Doweld AB. 2001. Prosyllabus tracheophytorum. Tentamen systematis plantarum vascularium (Tracheophyta). – GEOS, Moskow.

Downie SR, Palmer JD. 1992a. Restriction site mapping of the chloroplast DNA inverted repeat: a molecular phylogeny of the Asteridae. – Ann. Missouri Bot. Gard. 79: 266-283.

Downie SR, Palmer JD. 1992b. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. – In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular systematics in plants, Chapman & Hall, New York, pp. 14-35.

Downie SR, Olmstead RG, Zurawski G, Soltis DE, Soltis PS, Watson JC, Palmer JD. 1991. Six independent losses of the chloroplast rpl2 intron: molecular and phylogenetic implications. – Evolution 45: 1245-1259.

Downie SR, Katz-Downie DS, Wolfe KH, Calie PJ; Palmer JD. 1994. Structure and evolution of the largest chloroplast gene (ORF2280): internal plasticity and multiple gene loss during angiosperm evolution. – Curr. Genet. 25: 367-378.

Downie SR, Llanas E, Katz-Downie DS. 1996. Multiple independent losses of the rpoC1 intron in angiosperm chloroplast DNA’s. – Syst. Bot. 21: 135-151.

Downie SR, Katz-Downie DS, Cho K-J. 1997. Relationships in the Caryophyllales as suggested by phylogenetic analyses of partial chloroplast DNA ORF2280 homolog sequences. – Amer. J. Bot. 84: 253-273.

Doyle JA. 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. – J. Arnold Arbor. 50: 1-35.

Doyle JA. 1973. The monocotyledons: their evolution and comparative biology V. Fossil evidence on early evolution of the monocotyledons. – Quart. Rev. Biol. 48: 399-413.

Doyle JA. 1977. Patterns of evolution in early angiosperms. – In: Hallam A (ed), Patterns of evolution, Elsevier, Asterdam, pp. 501-546.

Doyle JA. 1978. Origin of angiosperms. – Ann. Rev. Ecol. Syst. 9: 365-392.

Doyle JA. 1992. Revised palynological correlations of the lower Potomac Group (USA) and the Cocobeach sequence of Gabon (Barremian-Aptian). – Cretaceous Res. 13: 337-349.

Doyle JA. 1993. Cladistic and paleobotanical perspectives on the origin of angiosperm organs. – J. Cell. Biochem., Suppl. 17B: 8.

Doyle JA. 1994. Origin of the angiosperm flower: a phylogenetic perspective. – Plant Syst. Evol. [Suppl.] 8: 7-29.

Doyle JA. 1996. Seed plant phylogeny and the relationships of the Gnetales. – Intern. J. Plant Sci. 157(Suppl.): S3-S39.

Doyle JA. 1998a. Phylogeny of vascular plants. – Ann. Rev. Ecol. Syst. 29: 567-599.

Doyle JA. 1998b. Molecules, morphology, fossils, and the relationship of angiosperms and Gnetales. – Mol. Phylogen. Evol. 9: 448-462.

Doyle JA. 1999. The rise of angiosperms as seen in the African Cretaceous record. – In: Scott L, Cadman A, Verhoeven R (eds), Proceedings of the 3rd Conference on African Palynology, Johannesburg, 14-19 September 1997, A. A. Balkema, Rotterdam, pp. 3-29.

Doyle JA. 2001. Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. – Palaeobotanist 50: 167-188.

Doyle JA. 2005. Early evolution of angiosperm pollen as inferred from molecular and morphological analyses. – Grana 44: 227-251.

Doyle JA. 2006. Seed ferns and the origin of angiosperms. – J. Torrey Bot. Club 133: 169-209.

Doyle JA. 2007. Systematic value and evolution of leaf architecture across the angiosperms in light of molecular phylogenetic analyses. – Cour. Forsch.-Inst. Senckenberg 258: 21-37.

Doyle JA. 2008. Integrating molecular phylogenetic and paleobotanical evidence on origin of the flower. – Intern. J. Plant Sci. 169: 816-843.

Doyle JA. 2009. Evolutionary significance of granular exine structure in the light of phylogenetic analyses. – Rev. Palaeobot. Palynol. 156: 198-210.

Doyle JA. 2012. Molecular and fossil evidence on the origin of angiosperms. – Ann. Rev. Earth Planet. Sci. 40: 301-326.

Doyle JA, Donoghue MJ. 1986a. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. – Bot. Rev. (Lancaster) 52: 321-431.

Doyle JA, Donoghue MJ. 1986b. Relationships of angiosperms and Gnetales: a numerical cladistic approach. – In: Spicer RA, Thomas BA (eds), Systematic and taxonomic approaches in palaeobotany, Systematics Association, Spec. Vol. 31: 177-199.

Doyle JA, Donoghue MJ. 1992. Fossils and seed plant phylogeny reanalyzed. – Brittonia 44: 89-106.

Doyle JA, Donoghue MJ. 1993. Phylogenies and angiosperm diversification. – Paleobiology 19: 141-167.

Doyle JA, Endress PK. 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. – Intern. J. Plant Sci. 161(Suppl.): S121-S153.

Doyle JA, Endress PK. 2010. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. – J. Syst. Evol. 48: 1-35.

Doyle JA, Endress PK. 2011. Tracing the early evolutionary diversification of the angiosperm flower. – In: Wanntorp L, Ronse De Craene LP (eds), Flowers on the Tree of Life, Cambridge University Press, Cambridge, United Kingdom, pp. 88-119.

Doyle JA, Endress PK. 2014. Integrating Early Cretaceous fossils into the phylogeny of living angiosperms: ANITA lines and relatives of Chloranthaceae. – Intern. J. Plant Sci. 175: 555-600.

Doyle JA, Hickey LJ. 1976. Pollen and leaves from the mid-Cretaceous Potomac Group and their bearing on early angiosperm evolution. – In: Beck CB (ed), Origin and early evolution of angiosperms, Columbia University Press, New York, pp. 139-206.

Doyle JA, Hotton CL. 1991. Diversification of early angiosperm pollen in a cladistic context. – In: Blackmore S, Barnes SH (eds.), Pollen and spores: patterns of diversification, Clarendon Press, Oxford, pp. 169-195.

Doyle JA, Robbins EI. 1977- Angiosperm pollen zonation of the continental Cretaceous of the Atlantic Coastal Plain and its application to deep wells in the Salisbury Embayment. – Palynology 1: 43-78.

Doyle JA, Van Campo M, Lugardon B. 1975. Observations on exine structure of Eucommiidites and Lower Cretaceous angiosperm pollen. – Pollen Spores 17: 429-486.

Doyle JA, Biens P, Doerenkamp A, Jardiné S. 1977. Angiosperm pollen from the pre-Albian Cretaceous of Equatorial Africa. – Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine 1: 451-473.

Doyle JA, Jardiné S, Doerenkamp A. 1982. Afropollis, a new genus of early angiosperm pollen, with notes on the Cretaceous palynostratigraphy and paleoenvironments of Northern Gondwana. – Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine 6: 39-117.

Doyle JA, Hotton CL, Ward JV. 1990a. Early Cretaceous tetrads, zonasulcate pollen, and Winteraceae I. Taxonomy, morphology, and ultrastructure. – Amer. J. Bot. 77: 1544-1557.

Doyle JA, Hotton CL, Ward JV. 1990b. Early Cretaceous tetrads, zonasulcate pollen, and Winteraceae II. Cladistic analysis and implications. – Amer. J. Bot. 77: 1558-1568.

Doyle JA, Donoghue MJ, Zimmer EA. 1994. Integration of morphological and ribosomal RNA data on the origin of angiosperms. – Ann. Missouri Bot. Gard. 81: 419-450.

Doyle JA, Endress PK, Upchurch GR. 2008. Early Cretaceous monocots: a phylogenetic evaluation. – Sborník Národního Muzea v Praze, ser. B, 64: 59-87.

Doyle JJ. 1993. DNA, phylogeny, and the flowering of plant systematics. – BioScience 43: 380-389.

Doyle JJ. 1994. Evolution of a plant homeotic multigene family: toward connecting molecular systematics and molecular developmental genetics. – Syst. Biol. 43: 307-328.

Doyle JJ. 1998. Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. – Trends Plant Sci. 3: 473-478.

Dräger B. 2004. Chemistry and biology of calystegins. – Nat. Prod. Rep. 21: 211-223.

Drake H, Burrows CJ. 1980. The influx of potential macrofossils into Lady Lake, north Westland, New Zealand. – New Zealand J. Bot. 18: 257-274.

Drinnan AN, Crane PR, Hoot SB. 1994. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). – Plant Syst. Evol. [Suppl.] 8: 93-122.

Drude O. 1885-1887. Die systematische und geographische Anordnung der Phanerogamen. – In: Schenk A (ed), Handbuch der Botanik III, 2, pp. 175-496.

Du Z-Y, Wang Q-F. 2014. Correlations of life form, pollination mode and sexual system in aquatic angiosperms. – PloS ONE 9: e115653. doi:10.1371/journal.pone.0115653

Du Z-Y, Wang Q-F, China Phylogeny Consortium. 2016. Phylogenetic tree of vascular plants reveals the origins of aquatic angiosperms. – J. Syst. Evol. 54: 342-348.

Duan S. 1998. The oldest angiosperm – a tricarpous female reproductive fossil from western Liaoning Province, NE China. – Science in China 41: 14-20.

Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires JC, Leebens-Mack J, dePamphilis CW. 2010. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. – BMC Evol. Biol. 10: 61. http://www.biomedcentral.com/1471-2148/10/61

Duarte L, Santos RS. 1993. Plant and fish megafossils of the Codó Formation, Parnaíba Basin, NE Brazil. – Cretaceous Res. 14: 735-746.

Ducke JA. 1925. Plantes nouvelles ou peu connues de la région amazonienne III. – Arq. Jard. Bot. Rio Janeiro 4: 1-208.

Ducke JA. 1935. Plantes nouvelles ou peu connues de la région amazonienne VII. – Arq. Inst. Biol. Veg. Rio de Janeiro 1: 205-212.

Ducke JA. 1948. Arvores Amazônicas e sua propagação. – Bol. Mus. Paraense Hist. Nat. Ethnogr. 10: 81-92.

Duke JA. 1969. On tropical tree seedlings I. Seeds seedlings, systems, and systematics. – Ann. Missouri Bot. Gard. 56: 125-161.

Duke JA. 1970. Ethnobotanical observations on the Chocó Indians. – Econ. Bot. 24: 344-366.

Dunbar A. 1973. A review of the ultrastructure and ontogeny of some angiosperm pollen. – Grana 13: 85-92.

Dunn RR, Gove AD, Barraclough TG, Givnish TJ, Majer JD. 2007. Convergent evolution of an ant-plant mutualism across plant families, continents, and time. – Evol. Ecol. Res. 9: 1349-1362.

Du Plessis H, Spies JJ. 1988. Chromosome studies on African plants 8. – Bothalia 18: 119-122.

Dusén P. 1908. Über die tertiäre Flora der Seymour-Insel. – Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition, 1901-1903, 3(3), pp. 1-27.

Dutra TL, Batten DJ. 2000. Upper Cretaceous floras of King George Island, West Antarctica, and their palaeoenvironmental and phytogeographic implications. – Cretaceous Res. 21: 181-209.

Duvall MR, Bricker Ervin A. 2004. 18S gene trees are positively misleading for monocot/dicot phylogenetics. – Mol. Phylogen. Evol. 30: 97-106.

Duvall MR, Chase MW, Soltis DE, Clegg MT. 1994. A phylogeny of seed plants resulting from analysis of DNA sequence variation among the rbcL loci of 499 species, with particular emphasis on alliances among monocotyledons. – In: Hoch PC, Stephenson AG (eds), Experimental and molecular approaches to plant biosystematics, Missouri Botanical Garden, St. Louis, pp. 27-40.

Duvall MR. 2000. Seeking the dicot sister group of the monocots. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Melbourne, pp. 25-32.

Duvall MR, Ervin AB. 2004. 18S gene trees are positively misleading for monocot/dicot phylogenetics. – Mol. Phylogen. Evol. 30: 97-106.

Duvall MR, Clegg MT, Chase MW, Clark WD, Kress WJ, Hills HG, Eguiarte LE, Smith JF, Gaut BS, Zimmer EA, Learn GH Jr. 1993. Phylogenetic hypotheses for the monocotyledons constructed from rbcL sequence data. – Ann. Missouri Bot. Gard. 80: 607-619.

Duvall MR, Mathews S, Mohammad N, Russell T. 2006. Placing the monocots: conflicting signals from trigenomic analyses. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 79-90.

Duvall MR, Robinson JW, Mattson JG, Moore A. 2008. Phylogenetic analysis of two mitochondrial metabolic genes sampled in parallel from angiosperms find fundamental interlocus incongruence. – Amer. J. Bot. 95: 871-884.

Dyer AG. 1996. Reflection of near-ultraviolet radiation from flowers of Australian native plants. – Aust. J. Bot. 44: 473-488.

Dyer ST. 1988. Wood fluorescence of indigenous South African trees. – IAWA Bull., N. S., 9: 75-87.

Eames AJ. 1931. The vascular anatomy of the flower with refutation of the theory of carpel polymorphism. – Amer. J. Bot. 18: 147-188.

Eames AJ. 1961. Morphology of the angiosperms. – McGraw-Hill, New York.

Eames AJ, MacDaniels LH. 1947. An introduction to plant anatomy. – McGraw-Hill, New York.

Earle FR, Jones Q. 1962. Analyses of seed samples from 13 plant families. – Econ. Bot. 16: 221-250.

East EM. 1940. The distribution of self-sterility in the flowering plants. – Proc. Amer. Philos. Soc. 82: 449-518.

Eber E. 1934. Karpellbau und Pflanzenverhältnisse in dem Reiche der Helobiae. – Flora 127: 273-330.

Eckardt T. 1937. Untersuchungen über Morphologie, Entwicklungsgeschichte und systematische Bedeutung des pseudomonomeren Gynoeceums. – Nova Acta Leopoldina, N. F., 5: 2-112.

Eckardt T. 1974. Vom Blütenbau der Centrospermen-Gattung Lophiocarpus Turcz. – Phyton (Horn) 16: 13-27.

Eckert G. 1966. Entwicklungsgeschichtliche und blütenanatomische Untersuchungen zum Problem der Obdiplostemonie. – Bot. Jahrb. Syst. 85: 523-604.

Edwards OE, Elmore NF. 1962. Fabianine. – Can. J. Chem. 40: 256-264.

Eglinton G, Gonzalez AG, Hamilton RJ, Raphael RA. 1962. Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. – Phytochemistry 1: 89-102.

Ehrendorfer F. 1970. Evolutionary patterns and strategies in seed plants. – Taxon 19: 185-195.

Ehrendorfer F. 1976. Evolutionary significance of chromosomal differentiation patterns in gymnosperms and primitive angiosperms. – In: Beck CB (ed), Origin and early evolution of angiosperms, Columbia University Press, New York, pp. 220-240.

Ehrendorfer F. 1977. New ideas about the early differentiation of angiosperms. – Plant Syst. Evol. [Suppl.] 1: 227-234.

Ehrendorfer F. 1986. Chromosomal differentiation and evolution in angiosperm groups. – In: Iwatsuki K, Raven PH, Bock WJ (eds), Modern aspects of species, University of Tokyo Press, Tokyo, pp. 59-86.

Ehrendorfer F. 1987. Differentiation trends in tropical woody angiosperms. – In: Urbanska KM (ed), Differentiation patterns in higher plants, Academic Press, London, New York, pp. 227-237.

Ehrendorfer F. 1989. The phylogenetic position of the Hamamelidae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 1, Introduction and ‘lower’ Hamamelidae, Systematics Association, Spec. Vol. 40A, Clarendon Press, Oxford, pp. 1-7.

Ehrendorfer F. 1995. Evolution und Lebensraum tropischer Holzpflanzen. – Bayer. Akad. Wissensch., Rundgespräche d. Komm. f. Ökologie 10, Verlag Dr. Pfeil, München, pp. 127-136.

Ehrendorfer F, Krendl F, Habeler E, Sauer W. 1968. Chromosome numbers and evolution in primitive angiosperms. – Taxon 17: 337-353.

Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. – Evolution 18: 586-608.

Eichler AW. 1875-1878. Blüthendiagramme construirt und erläutert I-II. – W. Engelmann, Leipzig.

Eifler DA. 1995. Patterns of plant visitation by nectar-feeding lizards. – Oecologia 101: 228-233.

Eklund H. 2003. First Cretaceous flowers from Antarctica. – Rev. Palaeobot. Palynol. 127: 187-217.

Eklund H, Cantrill DJ, Francis JE. 2004. Late Cretaceous mesofossil assemblage from Table Nunatak, Antarctica. – Cretaceous Res. 26: 211-228.

Eleftheriou E. 1990. Monocotyledons. – In: Behnke H-D, Sjolund RD (eds), Sieve elements: comparative structure, induction, and development, Springer, Berlin, pp. 139-159.

El-Gazzar A, Hamza MK. 1975. On the monocots-dicots distinction. – Publ. Cairo Univ. Herb. 6: 15-28.

El Ghazali GEB. 1993. A study on the pollen flora of Sudan. – Rev. Palaeobot. Palynol. 76: 99-345.

El Ghazali GEB, Tsuji S, El Ghazali GA, Nilsson S. 1998. Combretaceae. – In: Nilsson S (ed), World Pollen and Spore Flora 21, Scandinavian Unviersity Press, Oslo.

Elias TS. 1983. Extrafloral nectaries: their structure and distribution. – In: Bentley B, Elias TS (eds), The biology of nectaries, Columbia University Press, New York, pp. 174-203.

Eliasson U. 1970. Studies in Galápagos plants VIII. Chromosome numbers of some endemic species. – Bot. Not. 123: 149-154.

Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL. 2009. Manual of leaf architecture. – The New York Botanical Garden, Bronx, New York.

Ellison AM, Farnsworth EJ, Merkt RE. 1999. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. – Global Ecol. Biogeogr. 8: 95-115.

Ellison AM, Gotelli NJ, Brewer JS, Cochran-Stafira DL, Kneitel DM, Miller TE, Worley AS, Zamora R. 2003. The evolutionary ecology of carnivorous plants. – Adv. Ecol. Res. 33: 1-74.

Elmqvist T, Cox PA. 1996. The evolution of vivipary in flowering plants. – Oikos 77: 3-9.

Elsik WC. 1968a. Palynology of a Paleocene Rockdale lignite, Milam county, Texas I. Morphology and taxonomy. – Pollen Spores 10: 263-314.

Elsik WC. 1968b. Palynology of a Paleocene Rockdale lignite, Milam county, Texas II. Morphology and taxonomy. – Pollen Spores 10: 599-664.

Endress PK. 1972. Aspekte der Karpellontogenese. – Verhandl. Schweiz. Naturf. Ges. 152: 126-130.

Endress PK. 1973. Arils and aril-like structures in woody Ranales. – New Phytol. 72: 1159-1171.

Endress PK. 1974. Unbekannte Blütenpflanzenprobleme der Großsystematik. – Vierteljahrsschr. Naturf. Ges. Zürich 119: 1-21.

Endress PK. 1977. Evolutionary trends in the Hamamelidales-Fagales-group. – Plant Syst. Evol. [Suppl.] 1: 321-347.

Endress PK. 1982. Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. – Taxon 31: 48-52.

Endress PK. 1986. Reproductive structures and phylogenetic significance of extant primitive angiosperms. – Plant Syst. Evol. 152: 1-28.

Endress PK. 1987a. Floral phyllotaxis and floral evolution. – Bot. Jahrb. Syst. 108: 417-438.

Endress PK. 1987b. The early evolution of the angiosperm flower. – Trends Ecol. Evol. 2: 300-304.

Endress PK. 1990a. Patterns of floral construction in ontogeny and phylogeny. – Biol. J. Linn. Soc. 39: 153-175.

Endress PK. 1990b. Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). – Mem. New York Bot. Gard. 55: 5-34.

Endress PK. 1992. Evolution and floral diversity: the phylogenetic surroundings of Arabidopsis and Antirrhinum. – Intern. J. Plant Sci. 153(Suppl.): S106-S122.

Endress PK. 1994a. Shapes, sizes and evolutionary trends in stamens of Magnoliidae. – Bot. Jahrb. Syst. 115: 429-460.

Endress PK. 1994b. Floral structure and evolution of primitive angiosperms: recent advances. – Plant Syst. Evol. 192: 79-97.

Endress PK. 1994c. Diversity and evolutionary biology of tropical flowers. – Cambridge University Press, Cambridge.

Endress PK. 1995. Major evolutionary traits of monocot flowers. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 43-79.

Endress PK. 1996a. Diversity and evolutionary trends in angiosperm anthers. – In: D’Arcy WG, Keating RC (eds), The anther: form, function and phylogeny, Cambridge University Press, Cambridge, pp. 92-110.

Endress PK. 1996b. Homoplasy in angiosperm flowers. – In: Sanderson MJ, Hufford L (eds), Homoplasy: the recurrence of similarity in evolution, Academic Press, San Diego, California, pp. 303-325.

Endress PK. 1996c. Evolutionary aspects of fruits in basal flowering plants. – Norske Vid.-Akad. I. Mat. Nat. Kl. Avhandl., Ny ser. 18: 21-32.

Endress PK. 1998. Antirrhinum and the Asteridae: evolutionary changes of floral symmetry. – In: Greenland AJ, Meyerowitz EM, Steer M (eds), Control of plant development: genes and signals, The Company of Biologists, Cambridge, pp. 133-140.

Endress PK. 1999. Symmetry in flowers: diversity and evolution. – Intern. J. Plant Sci. 160(Suppl.): S3-S23.

Endress PK. 2000. The origins of flower morphology. – In: Wagner G (ed), Character concept in evolutionary biology, Academic Press, San Diego, California, pp. 493-510.

Endress PK. 2001a. The flowers in extant basal angiosperms and inferences on ancestral flowers. – Intern. J. Plant Sci. 162: 1111-1140.

Endress PK. 2001b. Evolution of floral symmetry. – Curr. Opin. Plant Biol. 4: 86-91.

Endress PK. 2001c. Origins of flower morphology. – J. Experim. Zool. 291: 105-115.

Endress PK. 2002. Morphology and angiosperm systematics in the molecular era. – Bot. Rev. 68: 545-570.

Endress PK. 2003. What should a “complete” morphological phylogenetic analysis entail? – In: Stuessy TF, Mayer V, Hörandl E (eds), Deep morphology: toward a renaissance of morphology in plant systematics, A. R. G. Gantner, Ruggell, Liechtenstein, pp. 131-164.

Endress PK. 2004a. Structure and relationships of basal relictual angiosperms. – Aust. Syst. Bot. 17: 343-366.

Endress PK. 2004b. Biologie und Evolution der Blüten basaler Blütenpflanzen. – Leopoldina 49: 467-486.

Endress PK. 2005a. The role of morphology in angiosperm evolutionary studies. – Nova Acta Leopoldina, N. F., 92: 221-238.

Endress PK. 2005b. Links between embryology and evolutionary floral morphology. – Curr. Sci. 89: 749-754.

Endress PK. 2006. Angiosperm floral evolution: morphological developmental framework. – Adv. Bot. Res. 44: 1-61.

Endress PK. 2008a. Perianth biology in the basal grade of extant angiosperms. – Intern. J. Plant Sci. 169: 844-862.

Endress PK. 2008b. The whole and the parts: relationships between floral architecture, floral organ shape, and their repercussions on the interpretation of fragmentary floral fossils. – Ann. Missouri Bot. Gard. 95: 101-120.

Endress PK. 2010a. Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. – J. Syst. Evol. 48: 225-239.

Endress PK. 2010b. Flower structure and trends of evolution in eudicots and their major subclades. – Ann. Missouri Bot. Gard. 97: 541-583.

Endress PK. 2010c. The evolution of floral biology in basal angiosperms. – Philos. Trans. Roy. Soc., Ser. B, 365: 411-421.

Endress PK. 2011a. Evolutionary diversification of the flowers in angiosperms. – Amer. J. Bot. 98: 370-396.

Endress PK. 2011b. Angiosperm ovules: diversity, development, evolution. – Ann. Bot. 107: 1465-1489.

Endress PK. 2015. Patterns of angiospermy development before carpel sealing across living angiosperms: diversity, and morphological and systematic aspects. – Bot. J. Linn. Soc. 178: 556-591.

Endress PK, Doyle JA. 2007. Floral phyllotaxis in basal angiosperms: development and evolution. – Curr. Opin. Plant Biol. 10: 52-57.

Endress PK, Doyle JA. 2009. Reconstructing the ancestral angiosperm flower and its initial specializations. – Amer. J. Bot. 96: 22-66.

Endress PK, Doyle JA. 2015. Ancestral traits and specializations in the flowers of the basal grade of living angiosperms. – Taxon 64: 1093-1116.

Endress PK, Friis EM. 2006. Rosids – reproductive structures, fossil and extant, and their bearing on deep relationships. Introduction. – Plant Syst. Evol. 260: 83-85.

Endress PK, Hufford LD. 1989. The diversity of stamen structures and dehiscence patterns among Magnoliidae. – Bot. J. Linn. Soc. 100: 45-85.

Endress PK, Igersheim A. 1999. Gynoecium diversity and systematics of the basal eudicots. – Bot. J. Linn. Soc. 130: 305-393.

Endress PK, Igersheim A. 2000. Gynoecium structure and evolution in basal angiosperms. – Intern. J. Plant Sci. 161(Suppl.): S211-S223.

Endress PK, Matthews ML. 2006a. First steps towards a floral characterization of the major rosid subclades. – Plant Syst. Evol. 260: 223-251.

Endress PK, Matthews ML. 2006b. Elaborate petals and staminodes in eudicots: diversity, function, and evolution. – Organisms Divers. Evol. 6: 257-293.

Endress PK, Matthews ML. 2012. Progress and problems in the assessment of flower morphology in higher-level systematics. – Plant Syst. Evol. 298: 257-276.

Endress PK, Stumpf S. 1990. Non-tetrasporangiate stamens in the angiosperms: structure, systematic distribution, and evolutionary aspects. – Bot. Jahrb. Syst. 112: 193-240.

Endress PK, Stumpf S. 1991. The diversity of stamen structures in the ‘lower’ Rosidae (Rosales, Fabales, Proteales, Sapindales). – Bot. J. Linn. Soc. 107: 217-293.

Endress PK, Jenny M, Fallen ME. 1983. Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons (Sapindales, Malvales, Gentianales). – Nord. J. Bot. 3: 293-300.

Endress PK, Baas P, Gregory M. 2000. Systematic plant morphology and anatomy – 50 years of progress. – Taxon 49: 401-434.

Engelskjøn T. 1979. Chromosome numbers in vascular plants from Norway, including Svalbard. – Opera Bot. 52: 1-38.

Engelskjøn T, Knaben G. 1971. Chromosome numbers of Scandinavian arctic-alpine plant species III. – Acta Borealia, ser. A, Scientia 28: 1-30.

Engler A. 1892. Die systematische Anordnung der monocotyledonen Angiospermen. – Abh. Preuss. Akad. Wiss. Berlin 1892: 1-55.

Engler A (ed). 1900. Die natürlichen Pflanzenfamilien. Nachträge II zum II.-IV. Teil. – W. Engelmann, Leipzig.

Engler A (ed). 1908. Die natürlichen Pflanzenfamilien. Ergänzungshefte II enthaltend die Nachträge III zu den Teilen II-IV für die Jahre 1899 bis 1904. – W. Engelmann, Leipzig.

Erbar C. 1983. Zum Karpellbau einiger Magnoliiden. – Bot. Jahrb. Syst. 104: 3-31.

Erbar C. 1988. Early developmental patterns in flowers and their value for systematics. – In: Leins P, Tucker SC, Endress PK (eds), Aspects of floral development, J. Cramr, Berlin, pp. 7-23.

Erbar C. 1991. Sympetaly – a systematic character? – Bot. Jahrb. Syst. 112: 417-451.

Erbar C, Leins P. 1983. Zur Sequenz von Blütenorganen bei einigen Magnoliiden. – Bot. Jahrb. Syst. 103: 433-449.

Erbar C, Leins P. 1994. Flowers in the Magnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. – Plant Syst. Evol. [Suppl.] 8: 193-208.

Erbar C, Leins P. 1996. Distribution of the character state ”early sympetaly” and ”late sympetaly” within the ”Sympetalae Tetracyclicae” and presumably allied groups. – Bot. Acta 109: 427-440.

Erbar C, Leins P. 2011. Synopsis of some important, non-DNA character states in asterids with special reference to sympetaly. – Plant Divers. Evol. 129: 93-123.

Erdtman G. 1944. Pollen morphology and plant taxonomy II. Notes on some monocotyledonous pollen types. – Svensk Bot. Tidskr. 38: 163-168.

Erdtman G. 1945. Pollen morphology and plant taxonomy V. On the occurrence of tetrads and dyads. – Svensk Bot. Tidskr. 39: 286-297.

Erdtman G. 1952a. Pollen morphology and plant taxonomy. An introduction to palynology I. – Almqvist & Wiksell, Stockholm.

Erdtman G. 1952b. Pollen morphology and plant taxonomy. Angiosperms. – Almqvist & Wiksell, Stockholm.

Erdtman G. 1954. Pollen morphology and plant taxonomy. – Bot. Not. 65-81.

Erdtman G. 1955. Pollen morphology and plant taxonomy in some African plants. – Webbia 9: 405-412.

Erdtman G. 1960. Pollen walls and angiosperm phylogeny. – Bot. Not. 113: 41-45.

Erdtman G. 1966. Pollen morphology and plant taxonomy: angiosperms. 2nd ed (corrected reprint of the 1952 edition with a new addendum). – Hafner, New York, London.

Erdtman G. 1969. Handbook of palynology. – Munksgaard, København.

Erdtman G. 1971. Pollen morphology and plant taxonomy: angiosperms. 3rd ed. – Hafner, New York, London.

Erdtman G. 1986. Pollen morphology and plant taxonomy: angiosperms. – E. J. Brill, Leiden.

Erdtman G, Berglund B, Praglowski J. 1961. An introduction to a Scandinavian pollen flora. – Almqvist & Wiksell, Stockholm.

Eriksson O, Bremer B. 1992. Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. – Evolution 46: 258-266.

Eriksson O, Friis EM, Löfgren P. 2000. Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. – Amer. Natur. 156: 47-58.

Eriksson O, Friis EM, Pedersen KR, Crane PR. 2000. Seed size and dispersal systems of Early Cretaceous angiosperms from Famalicão, Portugal. – Intern. J. Plant Sci. 161: 319-329.

Erwin DH, Davidson EH. 2002. The last common bilateralian ancestor. – Development 129: 3021-3032.

Erwin DM, Stockey RA. 1991. Soleredera rhizomorpha gen. et sp. nov. A permineralized monocotyledon from the Middle Eocene Princeton Chert of British Columbia, Canada. – Bot. Gaz. 152: 231-247.

Erwin DM, Stockey RA. 1992. Vegetative body of a permineralized monocotyledon from the Middle Eocene Princeton chert of British Columbia. – Courier Forschungsinstitut Senckenberg 147: 309-327.

Esau K. 1965. Plant anatomy. 2nd ed. – John Wiley & Sons, New York.

Esau K. 1977. Anatomy of seed plants. 2nd ed. – John Wiley & Sons, New York.

Estrada-Ruiz E, Martinez-Cabrera HI, Cevallos-Ferriz SRS. 2007. Fossil woods from the late Campanian-early Maastrichtian Olmos Formation, Coahuila, Mexico. – Rev. Palaeobot. Palynol. 145: 123-133.

Estrada-Ruiz E, Upchurch GR, Wheeler EA, Mack GH. 2012. Late Cretaceous angiosperm woods from the Crevasse Canyon and McRae Formations, south-central New Mexico, USA: Part 1. – Intern. J. Plant Sci. 173: 412-428.

Estrada-Ruiz E, Upchurch Jr GR, Wheeler EA, Mack GH. 2012. Late Cretaceous angiosperm woods from the Crevasse Canyon and McRae Formations, south-central New Mexico, USA. – Intern. J. Plant Sci. 173: 412-428.

Estrada-Ruiz E, Wheeler EA, Upchurch Jr GR, Mack GH. 2018. Late Cretaceous angiosperm woods from the McRae Formation, south-central New Mexico, USA: part 2. – Intern. J. Plant Sci. 179: 136-150.

Ettingshausen CV. 1883. Beiträge zur Kenntnis der Tertiärflora Australiens. – Denkschr. Kaiserl. Akad. Wiss. Wien, Tom. I, 47: 101-148.

Ettingshausen CV. 1886. Beiträge zur Kenntnis der Tertiärflora Australiens. – Denkschr. Kaiserl. Akad. Wiss. Wien, Tom. II, 53: 81-184.

Ettlinger MG, Kjaer A. 1968. Sulfur compounds in plants. – In: Mabry TJ, Alston RE, Runeckles VC (eds), Recent advances in phytochemistry 1: 59-144.

Evans FJ. 1986. Phorbol: its esters and derivates. – In: FJ Evans (ed), Naturally occurring phorbol esters, CRC Press, Boca Raton, Florida.

Evans FJ, Soper CJ. 1978. The tigliane, daphnane and ingenane diterpenes, their chemistry, distribution, and biological activities. – A review. – J. Nat. Prod. (Lloydia) 41: 193-233.

Everist SL. 1981. Poisonous plants in Australia. – Angus and Robertson, London.

Evert RF. 1990. Dicotyledons. – In: Behnke H-D, Sjolund RD (eds), Sieve elements: comparative structure, induction, and development, Springer, Berlin, pp. 103-137.

Evert RF. 2006. Esau’s Plant anatomy. Meristems, cells, and tissues of the plant body: their structure, function, and development. 3rd ed. – John Wiley, Hoboken, New Jersey.

Eyde RH. 1972. Note on geologic histories of flowering plants. – Brittonia 24: 111-116.

Eyde RH. 1975. The bases of angiosperm phylogeny: floral anatomy. – Ann. Missouri Bot. Gard. 62: 521-537.

Faegri K, Pijl L van der. 1979. The principles of pollination biology. 3rd ed. – Pergamon Press, Oxford.

Faegri K, Iversen J, Waterbolk HT. 1964. Textbook of pollen analysis, 2nd rev. ed. – Scandinavian Univ. Books, Munksgaard, Copenhagen.

Fagerlind F. 1944. Der tetrasporische Angiospermen-Embryosack und dessen Bedeutung für das Verständnis der Entwicklungsmechanik und Phylogenie des Embryosacks. – Ark. f. Bot. 31A(11): 1-71.

Fahey JW, Zalcmann AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. – Phytochemistry 56: 5-51.

Fahn A. 1952. On the structure of floral nectaries. – Bot. Gaz. 113: 464-570.

Fahn A. 1953. The topography of the nectary in the flower and its phylogenetic trend. – Phytomorphology 3: 424-426.

Fahn A. 1954. Metaxylem elements in some families of the Monocotyledonae. – New Phytol. 53: 530-540.

Fahn A. 1964. Some anatomical adaptations of desert plants. – Phytomorphology 14: 91-102.

Fahn A. 1979a. Ultrastructure of nectaries in relation to nectar secretion. – Amer. J. Bot. 66: 977-985.

Fahn A. 1979b. Secretory tissues in plants. – Academic Press, London, New York, San Francisco.

Fahn A. 1990. Plant anatomy. 4th ed. – Pergamon Press, London.

Fahn A, Werker E, Baas P. 1986. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. – Israel Academy of Science and Humanities, Jerusalem.

Fairbrothers DE. 1977a. Perspectives in plant serotaxonomy. – Ann. Missouri Bot. Gard. 64: 147-160.

Fairbrothers DE. 1977b. Chemosystematics. – Bull. Serol. Mus. 52: 3.

Fairbrothers DE. 1983. Evidence from nucleic acid and protein chemistry, in particular serology, in angiosperm classification. – Nord. J. Bot. 3: 35-41.

Fairbrothers DE, Mabry TJ, Scogin RL, Turner BL. 1975. The bases of angiosperm phylogeny: chemotaxonomy. – Ann. Missouri Bot. Gard. 62: 765-800.

Fairon-Demaret M. 1994 [1996]. Les fruits et graînes du Miocène de Bioul (Entre-Samre-et-Meuse, Belgique). Étude qualitative, quantitative et considérations paleoecologique. – Ann. Soc. Geol. Belg. 117: 277-309.

Fairon-Demaret M, Smith T. 2002. Fruits and seeds from the Tienen formation at Dormaal, Palaeocene-Eocene transition in eastern Belgium. – Rev. Palaeobot. Palynol. 122-47-62.

Farabee MJ. 1990. Triprojectate fossil genera pollen. – Rev. Palaeobot. Palynol. 65: 341-347.

Farabee MJ. 1991. Botanical affinities of some Triprojectacites fossil pollen. – Amer. J. Bot. 78: 1172-1181.

Farrell BD, Sequiera AS. 2004. Evolutionary rates in the adaptive radiation of beetles on plants. – Evolution 58: 1984-2001.

Farrell BD, Dussourd C, Mitter C. 1991. Escalation of plant defence: do latex and resin canals spur plant diversification? – Amer. Natur. 138: 891-900.

Faruqi SA. 1977. Chromosome numbers of some plants from Pakistan. – Libyan J. Sci. 7A: 71-72.

Fauth A. 1903. Beiträge zur Anatomie und Biologie der Früchte und Samen einiger einheimischer Wasser- und Sumpfpflanzen. – Beih. Bot. Centralbl. 14: 327-373.

Favre-DuChartre M. 1976. Interprétations de l’albumen et des éléments des sacs embryonaires selon divers auteurs. – Bull. Soc. Bot. France 123: 17-32.

Fawcett JA, Maere S, Peer Y van de. 2009. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. – Proc. Natl. Acad. Sci. U.S.A. 106: 5737-5742.

Fedorov AA (ed). 1969. Chromosome numbers of flowering plants. – Academy of Sciences of the USSR (Nauka), Leningrad. [In Russian] – English edition 1974, Otto Koeltz, Koenigstein.

Fehrenbach S, Barthlott W. 1988. Mikromorphologie der Epicuticular-Wachse der Rosales s.l. und deren systematische Gliederung. – Bot. Jahrb. Syst. 109: 407-428.

Feild TS, Arens NC. 2005. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. – New Phytol. 166: 383-408.

Feild TS, Arens NC. 2007. The ecophysiology of early angiosperms. – Plant Cell Environ. 30: 291-309.

Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A, Upchurch GR Jr, Gomez B, Mohr BAR, Couffard C, Kvacek J, Jaramillo C. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. – Proc. Natl. Acad. Sci. U.S.A. 108: 8363-8366.

Fenner CA. 1904. Beiträge zur Kenntnis der Anatomie, Entwicklungsgeschichte und Biologie der Laubblätter und Drüsen einiger Insectivoren. – Flora 93: 335-434.

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. 2004. Pollination syndromes and floral specialization. – Ann. Rev. Ecol. Syst. 35: 375-403.

Feild TS. 2005. Are vessels in seed plants evolutionary innovations to similar ecological contexts? – In: Holbrook NM, Zwieniecki MA (eds), Vascular transport in plants, Elsevier, Amsterdam, pp. 501-515.

Feild TS, Arens NC. 2004. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. – New Phytol. 166: 383-408.

Feild TS, Arens NC, Dawson TE. 2003. The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. – Intern. J. Plant Sci. 164 (Suppl.): S129-S142.

Feild TS, Arens NC, Doyle JA, Dawson TE, Donoghue MJ. 2004. Dark and disturbed: a new image of early angiosperm phylogeny. – Paleobiology 30: 82-107.

Feild TS, Chatelet DS, Brodribb TJ. 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. – Geobiology 7: 237-264.

Fenner CA. 1904. Beiträge zur Kenntnis der Anatomie, Entwickelungsgeschichte und Biologie der Laubblätter und Drüsen einiger Insectivoren. – Flora 93: 335-434.

Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thompson JD. 2004. Pollination syndromes and floral specialization. – Ann. Rev. Ecol. Evol. Syst. 35: 375-403.

Ferguson DK, Yusheng L, Zetter R. 1997. The paleoendemic plants of East Asia: evidence from the fossil record for changing distribution patterns. – In: Jablonski NG (ed), The changing face of East Asia during the Tertiary and Quaternary, The University of Hong Kong, pp. 359-371.

Ferguson DK, Lee DE, Bannister JM, Zetter R, Jordan GJ, Vavra N, Mildenhall DC. 2010. The taphonomy of a remarkable leaf bed assemblage from the late Oligocene-early Miocene Gore Lignite Measures, southern New Zealand. – Intern. J. Coal Geol. 83: 173-181.

Ferguson IK, Muller J. 1976. The evolutionary significance of the exine. – Linn. Soc. Symposium, No. 1, Academic Press, London, New York.

Fernald ML, Wiegand KM. 1913. The genus Empetrum in North America. – Rhodora 15: 211-217.

Fernandes A, França F. 1975. Sur les nombres chromosomiques de quelques plantes du Mozambique. – Rev. Ci. Biol. 7, Ser. A: 83-106.

Fernandes A, Neves JB. 1962. Sur la caryologie de quelques monocotylédones Africaines. – Compt. Rend. IVe Réunion Plenière de l’A.E.T.F.A.T, Lisboa, pp. 439-464.

Fernandez A. 1977. Numeros cromosomicos en angiospermas. – Hickenia 1: 83-86.

Ferreira ZS, Gottlieb OR. 1982. Polyacetylenes as systematic markers in dicotyledons. – Biochem. Syst. Ecol. 10: 155-160.

Field TS, Arens NC. 2005. Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. – New Phytol. 166: 383-408.

Fikenscher LH, Hegnauer R, Ruijgrock HWL. 1969. Iridoide Pflanzenstoffe (Pseudoindikane) als systematische Merkmale. – Pharm. Weekbl. 104: 561-566.

Finet C, Timme RE, Delwiche CF, Mariétaz F. 2010. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. – Curr. Biol. 20: 2217-2222.

Fink S. 1983. The occurrence of adventitious and preventitious buds within the bark of some temperate and tropical trees. – Amer. J. Bot. 70: 532-542.

Fischer H, Jensen U. 1992. Utilization of proteins to estimate relatonsips in plants: serology. A discussion based on the Asteraceae-Cichorioideae. – Belg. J. Bot. 125: 243-255.

Fishbein M, Venable DL. 1996. Evolution of inflorescence design: theory and data. – Evolution 50: 2165-2177.

Fisher DA, Bayer DE. 1972. Thin sections of plant cuticles demonstrating channels and wax platelets. – Can. J. Bot. 50: 1509-1511.

Fisher JB, French JC. 1978. Internodal meristems of monocotyledons: further studies and general taxonomic summary. – Ann. Bot., N. S., 42: 41-50.

Fisher KM. 2008. Bayesian reconstruction of ancestral expression of the LEA gene families reveal propagule-derived desiccation tolerance in resurrection plants. – Amer. J. Bot 95: 506-515.

Fitter AH, Moyersoen B. 1996. Evolutionary trends in root-microbe symbioses. – Phil. Trans. Roy. Soc. London, B, 351: 1367-1376.

Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V. 2011. Diversification of land plants: insights from a family-level phylogenetic analysis. – BMC Evol. Biol. 11: 341.

Fleischer E. 1929. Zur Biologie feilspanförmiger Samen. – Bot. Arch. 26: 86-132.

Fleming RF. 1990. Palynology of the Cretaceous-Tertiary boundary interval and Paleocene part of the Raton Formation, Colorado and New Mexico. – Ph.D. diss., University of Colorado, Boulder, Colorado.

Fleming TH, Muchhala N. 2008. Nectar-feeding bird and bat niches in two worlds: pantropical comparisons of vertebrate pollination systems. – J. Biogeogr. 35: 764-780.

Flovik K. 1940. Chromosome numbers and polyploidy within the flora of Spitzbergen. – Hereditas 26: 430-440.

Floyd SK, Friedman WE. 2000. Evolution of endosperm developmental patterns among basal flowering plants. – Intern. J. Plant Sci. 161(Suppl.): S57-S81.

Floyd SK, Friedman WE. 2001. Developmental evolution of endosperm in basal angiosperms: evidence from Amborella (Amborellaceae), Nuphar (Nymphaeaceae), and Illicium (Illiciaceae). – Plant Syst. Evol. 228: 153-169.

Fodor GB, Colosanti B. 1985. The pyridine and piperidine alkaloids: chemistry and pharmacology. – In: Pelletier SW (ed), Alkaloids: chemical and biological perspectives 3, Wiley, New York.

Folk RA, Sun M, Soltis PS, Smith SA, Soltis DE, Guralnick RP. 2018. Challenges of comprehensive taxon sampling in comparative biology: wrestling with rosids. – Amer. J. Bot. 105: 433-445.

Fontaine WM. 1889. The Potomac or younger Mesozoic flora. – US Geol. Surv. Monogr. 15: 1-377.

Fontaine WM. 1893. Notes on some fossil plants from the Trinity Division of the Comanche Series of Texas. – Proc. US Natl. Mus. 16: 261-282.

Forbis TA, Floyd SK, Queiroz A de. 2002. The evolution of seed size in angiosperms and other seed plants: implications for the evolution of seed dormancy. – Evolution 56: 2112-2125.

Forey PL. 2001. The PhyloCode: descripton and commentary. – Bull. Zool. Nomencl. 58: 81-96.

Forni-Martins ER, Martins FR. 2000. Chromosome studies on Brazilian cerrado plants. – Gen. Mol. Biol. 23: 947-955.

Forni-Martins ER, Pinto-Maglio CAF, Da Cruz ND. 1995. Chromosome numbers in Brazilian cerrado plants. – Rev. Brasil. Genét. 18: 281-288.

Fosberg FR, Herbst D. 1975. Rare and endangered species of Hawaiian vascular plants. – Allertonia 1: 1-72.

Fosberg FR, Sachet M-H. 1980. Systematic studies of Micronesian plants. – Smithsonian Contr. Bot. 45: 1-40.

Foster AS. 1952. Foliar venation in angiosperms from an ontogenetic standpoint. – Amer. J. Bot. 39: 752-766.

Fourquin C, Vinauger-Douard M, Chambrier P, Berne-Dedieu A, Schutt CP. 2007. Functional conservation between CRABS CLAW orthologues from widely diverged angiosperms. – Ann. Bot. 100: 651-657.

Fowden L. 1955. Azetidine-2-carboxylic acid: a new constituent of plants. – Nature 176: 347-348.

Fowden L, Lea PJ, Bell EA. 1979. The non-protein amino acids of plants. – Adv. Enzymol. 50: 117-175.

Frame D. 2003. Generalist flowers, biodiversity and florivory: implications for angiosperm evolution. – Taxon 52: 681-685.

Franceschi VR, Horner HT Jr. 1980. Calcium oxalate crystals in plants. – Bot. Rev. (Lancaster) 46: 361-427.

Franceschi VR, Nakata PA. 2005. Calcium oxalate in plants: formation and function. – Ann. Rev. Plant Biol. 56: 41-71.

Franchet A. 1886. Plantae Davidianae ex sinarum imperio II. – Nouv. Arch. Mus. Hist. Nat. 8: 183-254.

Franchi GG, Bellani L, Nepi M, Pacini E. 1996. Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. – Flora 191: 143-159.

Franchi GG, Nepi M, Dafni A, Pacini E. 2002. Partially hydrated pollen: taxonomic distribution, ecological and evolutionary significance. – Plant Syst. Evol. 234: 211-227.

Francis AP, Currie DJ. 2003. A globally consistent richness-climate relationship for angiosperms. – Amer. Natur. 161: 523-536.

Francisco-Ortega J, Jansen RK, Santos-Guerra A. 1995. Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macaronesian flora. – Proc. Natl. Acad. Sco. U.S.A. 93: 4085-4090.

Francisco-Ortega J, Santiago-Valentín E, Acevedo-Rodríguez P, Lewis C, Pipoly J III, Meerow AW, Maunder M. 2007. Seed plant genera endemic to the Caribbean Island biodiversity hotspot: a review and a molecular phylogenetic perspective. – Bot. Rev. 73: 183-234.

Franke T. 2007. Miscellaneous contribuions to the taxonomy and mycorrhiza of AMF-exploiting myco-heterotrophic plants. – Ph.D. diss., Fakultät für Biologie der Ludwig-Maximilians-Universität, München.

Franke T, Beenken L, Döring M, Kocyan A, Agerer R. 2006. Arbuscular mycorrhizal fungi of the Glomus-group A lineage (Glomerales; Glomeromycota) detected in myco-heterotrophic plants from tropical Africa. – Mycol. Progress 5: 24-31.

Frederiksen LB, Damtoft S, Jensen SR. 1999. Biosynthesis of iridoids lacking C-10 and the chemotaxonomic implications of their distribution. – Phytochemistry 52: 1409-1420.

Frederiksen NO. 1980. The mid-Tertiary spores and pollen grains from Mississippi and Alabama. – Tulane Stud. Geol. Palaeontol. 10: 65-86.

Frederiksen NO. 1988. Sporomorph biostratigraphy, floral changes, and paleoclimatology, Eocene and earliest Oligocene of the eastern Gulf Coast. – U.S. Geol. Surv. Profess. Paper 1448: 1-68.

Frederiksen NO. 1989. Late Cretaceous and Tertiary floras, vegetation, and paleoclimate of New England. – Rhodora 91: 25-48.

Freeman CC, Brooks RE. 1988. Documented plant chromosome numbers 1988: 1. Chromosome counts for North American plants I. – Sida Contr. Bot. 13: 241-250.

Freeman CE, Worthington RD, Jackson MS. 1991. Floral nectar sugar compositions of some South and Southeast Asian species. – Biotropica 23: 568-574.

Frei E. 1955. Die Innervierung der floralen Nektarien dikotyler Pflanzenfamilien. – Ber. Schweiz. Bot. Ges. 65: 60-114.

French JC, Tomlinson PB. 1986. Compound vascular bundles in monocotyledonous stems: construction and signification. – Kew Bull. 41: 561-574.

Friedman J, Barrett SCH. 2008. A phylogenetic analysis of the evolution of wind pollination in the angiosperms. – Intern. J. Plant Sci. 169: 49-58.

Friedman WE. 1992a. Double fertilization in nonflowering seed plants and its relevance to the origin of flowering plants. – Intern. Rev. Cytol. 140: 319-355.

Friedman WE. 1992b. Evidence of a pre-angiosperm origin of endosperm: implications for the evolution of flowering plants. – Science 255: 336-339.

Friedman WE. 1993. The evolutionary history of the seed plant male gametophyte. – Trends Ecol. Evol. 8: 15-20.

Friedman WE. 1994. The evolution of embryogeny in seed plants and the developmental origin and early history of endosperm. – Amer. J. Bot. 81: 1468-1486.

Friedman WE. 1995. Organismal duplication, inclusive fitness theory and altruism: understanding the evolution of endosperm and the angiosperm reproductive syndrome. – Proc. Natl. Acad. Sci. U.S.A. 92: 3913-3917.

Friedman WE. 2001a. Comparative embryology of basal angiosperms. – Curr. Opin. Plant Biol. 4: 14-20.

Friedman WE. 2001b. Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. – Compt. Rend. Acad. Sci. Paris 324: 559-567.

Friedman WE. 2006. Embryological evidence for developmental lability during early angiosperm evolution. – Nature 441: 337-340.

Friedman WE. 2008. Hydatellaceae are water lilies with gymnospermous tendencies. – Nature 453: 94-97.

Friedman WE, Floyd SK. 2001. Perspective: the origin of flowering plants and their reproductive biology – a tale of two phylogenies. – Evolution 55: 217-231.

Friedman WE, Williams JH. 2003. Modularity of the angiosperm female gametophyte and its bearing on the early evolution of endosperm in flowering plants. – Evolution 57: 216-230.

Friedman WE, Williams JH. 2004. Developmental evolution of the sexual process in ancient flowering plant lineages. – Plant Cell 16(Suppl.): S119-S132.

Friedman WE, Moore RC, Purugganan MD. 2004. The evolution of plant development. – Amer. J. Bot. 91: 1726-1741.

Friedman WE, Madrid EN, Williams J.H. 2008. Origin of the fittest and survival of the fittest: relating female gametophyte development to endosperm genetics. – Intern. J. Plant Sci. 169: 79-92.

Friesen ML, Porter SS, Stark SC, Wettberg EJ von, Sachs JL, Martínez-Romero E. 2011. Microbially mediated plant functional traits. – Ann. Rev. Ecol. Syst. 42: 23-46.

Friis EM. 1979. The Damgaard flora: a new Middle Miocene flora from Denmark. – Bull. Geol. Soc. Denmark 27: 117-142.

Friis EM. 1984. Preliminary report of Upper Cretaceous angiosperm reproductive organs from Sweden and their level of organization. – Ann. Missouri Bot. Gard. 71: 403-418.

Friis EM. 1985a. Actinocalyx gen. nov., sympetalous angiosperm flowers from the Upper Cretaceous of southern Sweden. – Rev. Palaeobot. Palyn. 45: 171-183.

Friis EM. 1985b. Angiosperm fruits and seeds from the Middle Miocene of Jutland, Denmark. – Kong. Danske Vidensk. Selsk., Biol. Skr. 24(3): 1-163.

Friis EM. 1985c. Structure and function in Late Cretaceous angiosperm flowers. – Kong. Danske Vidensk. Selsk., Biol. Skr. 25: 1-37.

Friis EM. 1990. Silvianthemum suecicum gen. et sp. nov., a new saxifragalean flower from the late Cretaceous of Sweden. – Kong. Danske Vidensk. Selsk., Biol. Skr. 36: 1-35.

Friis EM, Crane PR. 1989. Reproductive structures of Cretaceous Hamamelidae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 1, Introduction and ‘lower’ Hamamelidae, Systematics Assoc. Spec. Vol. 40A, Clarendon Press, Oxford, pp. 155-174.

Friis EM, Crane PR. 2007. New home for tiny aquatics. – Nature 446: 269-270.

Friis EM, Crepet WL. 1987. Time of appearance of floral features. – In: Friis EM, Chaloner WG, Crane PR (eds), The origins of angiosperms and their biological consequences, Cambridge University Press, Cambridge, pp. 145-179.

Friis EM, Endress PK. 1990. Origin and evolution of angiosperm flowers. – Adv. Bot. Res. 17: 99-162.

Friis EM, Endress PK. 1996. Flower evolution. – In: Behnke H-D, Lüttge U, Esser K, Kadereit JW, Runge M (eds), Progress in botany 57, Springer, Berlin, pp. 253-280.

Friis EM, Pedersen KR. 1996. Eucommitheca, a new pollen organ with Eucommiidites pollen from the Early Cretaceous of Portugal. – Grana 35: 104-112.

Friis EM, Pedersen KR. 2000. Die fossilen Blüten von Åsen in Schonen, Süd-Schweden. – In: Meischner D (ed), Europäische Fossillagerstätten, Springer-Verlag, Heidelberg, pp. 151-154.

Friis EM, Pedersen KR. 2011. Canrightia resinifera, a new Early Cretaceous fruit of magnolialean affinity from Portugal. – Grana 50: 3-29.

Friis EM, Pedersen KR. 2012. Bertilanthus scanicus, a new asterid flower from the late Cretaceous (late Santonian – early Campanian) of Scania, Sweden. – Intern. J. Plant Sci. 173: 318-330.

Friis EM, Skarby A. 1981. Structurally preserved angiosperm flowers from the Upper Cretaceous of southern Sweden. – Nature 291: 484-486.

Friis EM, Skarby A. 1982. Scandianthus gen. nov., angiosperm flowers of saxifragalean affinity from the Upper Cretaceous of southern Sweden. – Ann. Bot., N. S., 50: 569-583.

Friis EM, Crane PR, Pedersen KR. 1991. Stamen diversity and in situ pollen of Cretaceous angiosperms. – In: Blackmore S, Barnes SH (eds), Pollen and spores, Clarendon Press, Oxford, pp. 169-195.

Friis EM, Pedersen KR, Crane PR. 1994. Angiosperm floral structures from the Early Cretaceous of Portugal. – Plant Syst. Evol. [Suppl.] 8: 31-49.

Friis EM, Pedersen KR, Crane PR. 1995. Appomattoxia ancistrophora gen. et sp. nov., a new Early Cretaceous plant with similarities to Circaeaster and extant Magnoliidae. – Amer. J. Bot. 82: 933-943.

Friis EM, Crane PR, Pedersen KR. 1997a. Fossil history of magnoliid angiosperms. – In: Iwatsuki K, Raven PR (eds), Evolution and diversification of land plants, Springer, Tokyo, pp. 121-156.

Friis EM, Crane PR, Pedersen KR. 1997b. Anacostia, a new basal angiosperm from the Early Cretaceous of North America and Portugal with monocolpate/trichotomocolpate pollen. – Grana 36: 225-244.

Friis EM, Pedersen KR, Crane PR. 1999. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. – Ann. Missouri Bot. Gard. 86: 259-296.

Friis EM, Pedersen KR, Crane PR. 2000a. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. – Grana 39: 226-245.

Friis EM, Pedersen KR, Crane PR. 2000b. Reproductive structure and organization of basal angiosperms from early Cretaceous (Barremian or Aptian) of western Portugal. – Intern. J. Plant Sci. 161(Suppl.): S169-S182.

Friis EM, Doyle JA, Endress PK, Leng Q. 2003. Archaefructus – angiosperm precursor or specialised early angiosperm? – Trends Plant Sci. 8: 369-373.

Friis EM, Pedersen KR, Crane PR. 2005. When Earth started blooming: insights from the fossil record. – Curr. Opinion Plant Biol. 8: 5-12.

Friis EM, Pedersen KR, Crane PR. 2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. – Palaeogeogr. Palaeoclim. Palaeoecol. 232: 251-293.

Friis EM, Pedersen KR, Schönenberger J. 2006. Normapolles plants: a prominent component of the Cretaceous rosid diversification. – Plant Syst. Evol. 260: 107-140.

Friis EM, Pedersen KR, Crane PR. 2010a. Diversity in obscurity: fossil flowers and the early history of angiosperms. – Philos. Trans. Roy. Soc., Ser. B, 365: 369-382.

Friis EM, Pedersen KR, Crane PR. 2010b. Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. – Rev. Palaeobot. Palynol. 162: 341-361.

Friis EM, Crane PR, Pedersen KR. 2011. Early flowers and angiosperm evolution. – Cambridge University Press, Cambridge, New York, Melbourne, etc.

Fritsch K. 1920. Über den Begriff der Anisokotylie. – Ber. Deutsch. Bot. Ges. 38: 69-73.

Fritsch K. 1932. Die systematische Gruppierung der Monokotylen. – Ber. Deutsch. Bot. Ges. 51a: 162-184.

Fritsch R. 1970. Chromosomenzahlen von Pflanzen der Insel Kuba I. – Kulturpflanzen 18: 189-197.

Fritsch R. 1972. Chromosomenzahlen von Pflanzen der Insel Kuba II. – Kulturpflanzen 19: 305-313.

Fritsch RM, Friesen N. 2002. Evolution, domestication, and taxonomy. – In: Rabinowitch HD, Currah L (eds), Allium Crop Science: Recent Advances, CABI Publ., Wallingford.

Frohne D, Jensen U. 1985. Systematik des Pflanzenreichs. 3. Aufl. – Stuttgart.

Frohlich MW. 2002. The Mostly Male theory of flower origins: summary and update regarding the Jurassic pteridosperm Pteroma. – In: Cronk QCB, Bateman RM, Hawkins JA (eds), Developmental genetics and plant evolution, Taylor and Francis, London.

Frohlich MW. 2006. Recent developments regarding the evolutionary origin of flowers. – Adv. Bot. Res. 44: 63-127.

Frohlich MW, Chase MW. 2007. After a dozen years of progress the origin of angiosperms is still a great mystery. – Nature 450: 1184-1189.

Frohlich MW, Parker DS. 2000. The Mostly Male theory of flower evolutionary origins: from genes to fossils. – Syst. Bot. 25: 155-170.

Frölich D, Barthlott W. 1988. Mikromorphologie der epicuticulären Wachse und das System der Monokotylen. – Trop. Subtrop. Pflanzenwelt 63: 279-409.

Frumin S, Friis EM. 1999. Magnoliid reproductive organs from the Cenomanian-Turonian of northwestern Kazakstan. – Plant Syst. Evol. 216: 265-288.

Fry SC. 1983. Feruloylated pectins from the primary cell wall: their structure and possible functions. – Planta 157: 111-123.

Fryns-Claessens E, Cotthem W van. 1973. A new classification of the ontogenetic types of stomata. – Bot. Rev. (Lancaster) 39: 71-138.

Fryxell PH. 1957. Mode of reproduction of higher plants. – Bot. Rev. 23: 135-233.

Fulvio TE di. 1973. Recuentos cromosómicos en angiospermas argentinas II. – Kurtziana 7: 39-42.

Funkhouser JW. 1961. Pollen of the genus Aquilapollenites. – Micropaleontology 7: 193-198.

Furman TE, Trappe JM. 1971. Phylogeny and ecology of mycotrophic achlorophyllous angiosperms. – Quart. Rev. Biol. 46: 219-225.

Furness CA. 1985. A review of spiraperturate pollen. – Pollen Spores 27: 307-320.

Furness CA. 2007. Why does some pollen lack apertures? A review of inaperturate pollen in eudicots. – Bot. J. Linn. Soc. 155: 29-48.

Furness CA. 2008. A review of the distribution of plasmodial and invasive tapeta in eudicots. – Intern. J. Plant Sci. 169: 207-223.

Furness CA. 2013. Diversification of pollen and tapetum in early-divergent monocots. – In: Wilkin P, Mayo SJ (eds.), Early events in monocot evolution, Systematics Association Spec. Vol. Series, Cambridge University Press, Cambridge. doi:10.1017/CBO9781139002950.005

Furness CA, Rudall PJ. 1998. The tapetum and systematics in monocotyledons. – Bot. Rev. 64: 201-239.

Furness CA, Rudall PJ. 1999a. Microsporogenesis in monocotyledons. – Ann. Bot. 84: 475-499.

Furness CA, Rudall PJ. 1999b. Inaperturate pollen in monocotyledons. – Intern. J. Plant Sci. 160: 395-414.

Furness CA, Rudall PJ. 2000a. The systematic significance of simultaneous cytokinesis during microsporogenesis in monocotyledons. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO, Collingwood, pp. 189-193.

Furness CA, Rudall PJ. 2000b. Aperture absence in pollen of monocotyledons. – In: Harley MM, Morton CM, Blackmore S (eds), Pollen and spores: morphology and biology, Royal Botanic Gardens, Kew, pp. 249-257.

Furness CA, Rudall PJ. 2001a. Pollen and anther characters in monocot systematics. – Grana 40: 17-25.

Furness CA, Rudall PJ. 2001b. The tapetum in basal angiosperms: early diversity. – Intern. J. Plant Sci. 162: 375-392.

Furness CA, Rudall PJ. 2003. Apertures with lids: distribution and significance of operculate pollen in monocotyledons. – Intern. J. Plant Sci. 164: 835-854.

Furness CA, Rudall PJ. 2004. Pollen aperture evolution – a crucial factor for eudicot success? – Trends Plant Sci. 9: 154-158.

Furness CA, Rudall PJ. 2006. The operculum in pollen of monocotyledons. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California [Aliso 23], pp. 191-196.

Furness CA, Rudall PJ. 2011. Selective microspore abortion correlated with aneuploidy: an indication of meiotic drive. – Sex. Plant Repr. 24: 1-8.

Furness CA, Rudall PJ, Sampson FB. 2002. Evolution of microsporogenesis in angiosperms. – Intern. J. Plant Sci. 163: 235-260.

Furness CA, Magallón S, Rudall PJ. 2007. Evolution of endoapertures in early-diverging eudicots, with particular reference to pollen morphology in Sabiaceae. – Plant Syst. Evol. 263: 77-92.

Gabarayeva NI. 1991. Patterns of development in primitive angiosperm pollen. – In: Blackmore S, Barnes SH (eds), Pollen and spores: patterns of diversification, Clarendon Press, Oxford, pp. 257-268.

Gadella TWJ. 1970. Chromosome numbers of some Angiospermae collected in Cameroun and the Ivory Coast. – Acta Bot. Beerl. 19: 431-435.

Gadella TWJ. 1972. Cytological studies on some flowering plants collected in Africa. – Bull. Jard. Bot. Natl. Belg. 42: 393-402.

Gadella TWJ, Kliphuis K. 1963. Chromosome numbers of flowering plants in the Netherlands. – Acta Bot. Neerl. 12: 195-230.

Gadella TWJ, Kliphuis K. 1966. Chromosome numbers of flowering plants in the Netherlands II. – Proc. Roy. Netherl. Acad. Sci., Ser. C, 69: 541-556.

Gadella TWJ, Kliphui K. 1967. Chromosome numbers of flowering plants in the Netherlands III. – Proc. Roy. Netherl. Acad. Sci., Ser. C, 70: 7-20.

Gadella TWJ, Kliphuis E, Mennega EA. 1966. Chromosome numbers of some flowering plants of Spain and S. France. – Acta Bot. Neerl. 15: 484-489.

Gadella TWJ, Kliphuis E, Lindeman JC, Mennega EA. 1969. Chromosome numbers and seedling morphology of some angiosperms collected in Brazil. – Acta Bot. Neerl. 18: 74-83.

Gaff DF. 1977. Desiccation tolerant vascular plants of Southern Africa. – Oecologia 31: 95-109.

Gaff DF. 1981. The biology of resurrection plants. – In: Pate J, McComb AJ (eds), The biology of Australian plants, University of Western Australia Press, Perth, pp. 114-146.

Gaff DF, Loveys BR. 1984. Abscissic acid content and effects during dehydration of detached leaves of desiccation-tolerant plants. – J. Exp. Bot. 35(158): 1350-1358.

Gaff DF, Ziegler H. 1989. ATP and ADP contents in leaves of drying and rehydrating desiccation-tolerant plants. – Oecologia 78: 407-410.

Gagnidze R, Gviniashvili T, Shetekauri S, Margalitadze N. 2002. Endemic genera of the Caucasian flora. – Feddes Repert. 113: 616-630.

Gagnieu A, Linder R, Voggenreiter V. 1973. Caryotypes de la flore insulaire de Tenerife. – Monogr. Biol. Canar. 4: 126-133.

Gaisberg E von. 1922. Zur Deutung der Monokotylenblätter als Phyllodien. – Flora 115: 177-190.

Gajapathy C. 1962. Chromosome numbers in some south Indian plants. – Curr. Sci. 31: 115-117.

Galland N. 1988. Recherche sur l’origine de la flore orophile du Maroc:etude caryologique et cytogéographique. – Trav. Inst. Sci. Rabat, Sér. Bot., 35: 1-168.

Gamalei YV. 1991. Phloem loading and its development related to plant evolution from trees to herbs. – Trees 5: 50-64.

Ganders FR. 1979. The biology of heterostyly. – New Zealand J. Bot. 17: 607-635.

Gandolfo MA, Nixon KC, Crepet WL, Stevenson DW, Friis EM. 1998. Oldest known fossils of monocotyledons. – Nature 394: 532-533.

Gandolfo MA, Nixon KC, Crepet WL. 2000. Monocotyledons: a review of their Early Cretaceous record. – In: Wilson K, Morrison D (eds), Monocots: systematics and evolution, CSIRO, Collingwood, pp. 44-52.

Gandolfo MA, Nixon KC, Crepet WL. 2008. Selection of fossils for calibration of molecular dating models. – Ann. Missouri Bot. Gard. 95: 34-42.

Garbari F, Tornadore N, Pecori E. 1973. Numeri cromosomici per la Flora Italiana: 151-161. – Inform. Bot. Ital. 5: 161-169.

Gardner CA. 1932. Contributiones florae Australiae occidentalis no. 8. – J. Roy. Soc. West. Australia 19: 79-93.

Gardner CA. 1941. Contributiones florae Australiae occidentalis no. 9. – J. Roy. Soc. West. Australia 27: 165-210.

Gascoigne RM, Ritchie E, White DE. 1948. A survey of anthocyanins in the Australian flora. – J. Roy. Soc. New South Wales 82: 44-70.

Gates BN. 1943. Carunculate seed dissemination by ants. – Rhodora 45: 438-445.

Gatin VC. 1920. Recherches anatomiques sur le pédoncule et la fleur des Liliacées. – Rev. Gén. Bot. 32: 369-437, 460-528, 561-591.

Gaut BS. 1997. Molecular clock and nucleotide substitution rates in higher plants. – Evol. Biol. 30: 93-120.

Gaut BS, Muse SV, Clark WD, Clegg M. 1992. Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. – J. Mol. Evol. 35: 292-303.

Gaut BS, Muse SV, Clegg MT. 1993. Relative rates of nucleotide substitution in the chloroplast genome. – Mol. Phylogen. Evol. 2: 89-96.

Gaut BS, Yang L, Takuno S, Eguiarte LE. 2011. The patterns and causes of variation in plant nucleotide substitution rates. – Ann. Rev. Ecol. Syst. 42: 245-266.

Geesink R, Leeuwenberg AJM, Ridsdale CE, Veldkamp JF. 1981. Thonner’s analytical key to the families of flowering plants. – Leiden University Press, The Hague.

Gegear RJ, Burns JG. 2007. The birds, the bees, and the virtual flowers: can pollinator behaviour drive ecological speciation in flowering plants? – Amer. Natur. 170: 551-566.

Geiger H, Quinn C. 1975. Biflavonoids. – In: Harborne JB, Mabry TJ, Mabry H (eds), The flavonoids, Chapman and Hall, London, pp. 692-742.

Geissman TA, Knaack WF, Knight JO. 1966. Unedoside, a novel iridoid compound. – Tetrahedron Lett. 8: 1245-1249.

Geitmann A, Steer M. 2006. The architecture and properties of the pollen tube cell wall. – Plant Cell Monogr. 3: 177-200.

Gentner G. 1905. Über die Vorläuferspitze der Monokotylen. – Flora 95: 327-383.

Gentry AH. 1996. A field guide to the families and genera of woody plants of northwest South America. – University of Chicago Press, Chicago.

Gentry AH, Dodson CH. 1987. Diversity and biogeography of Neotropical vascular epiphytes. – Ann. Missouri Bot. Gard. 74: 205-233.

Gerenday A, French JC. 1988. Endothecial thickenings in anthers of porate monocotyledons. – Amer. J. Bot. 75: 22-25.

Germeraad JH, Hopping CA, Muller J. 1968. Palynology of Tertiary sediments from tropical areas. – Rev. Palaeobot. Palynol. 6: 189-348.

Gershenzon J, Mabry TJ. 1983. Secondary metabolites and the higher classification of angiosperms. – Nord. J. Bot. 3: 5-34.

Gherbi H, Markmann K, Svisoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D. 2008. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. – Proc. Natl. Acad. Sci. U.S.A. 105: 4928-4932.

Giannasi DE. 1986. Phytochemical aspects of phylogeny in Hamamelididae. – Ann. Missouri Bot. Gard. 73: 417-437.

Giannasi DE. 1988. Flavonoids and evolution in the dicotyledons. – In: Harborne JB (ed), The flavonoids. Advances in research since 1980, Chapman and Hall, London, pp. 479-504.

Gianoli E. 2004. Evolution of a climbing habit promotes diversification in flowering plants. – Proc. Roy. Soc. London, B, 271: 2011-2015.

Gibbs PE, Ingram R. 1982. Chromosome numbers of some Brazilian flowering plants. – Notes Roy. Bot. Gard. Edinb. 40: 399-407.

Gibbs RD. 1954. Comparative chemistry and phylogeny of the flowering plants. – Trans. Roy. Soc. Canada, ser. III, sect. 5, 48: 14-47.

Gibbs RD. 1957. The Mäule reaction, lignin, and the relationships between woody plants. – In: Thimann KV (ed), The physiology of forest trees, Ronald, New York, pp. 269-312.

Gibbs RD. 1958. Biochemistry as an aid in establishing the relationships of some families of dicotyledons. – Proc. Linn. Soc. London 69: 216-230.

Gibbs RD. 1974. Chemotaxonomy of flowering plants 1-4. – McGill-Queen’s University Press, Montreal.

Gibson RJH. 1905. Axillary scales of aquatic monocotyledons. – Bot. J. Linn. Soc. 37: 228-237.

Gielly L, Taberlet P. 1994. The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. – Mol. Biol. Evol. 11: 769-777.

Gifford EM. 1954. The shoot apex in angiosperms. – Bot. Rev. 20: 477-529.

Gifford EM, Corso GE Jr. 1971. The shoot apex in seed plants. – Bot. Rev. 37: 143-229.

Gifford EM, Foster AS. 1988. Morphology and evolution of vascular plants. 3rd ed. – W. H. Freeman, New York.

Gildemeister E, Hoffmann F. 1956. Die ätherischen Öle. 4. Aufl. – Akademie-Verlag, Berlin.

Gill BS, Singha VK, Bedi YS, Bir SS. 1990. Cytological evolution in the woody taxa of Pachmarhi Hills. – J. Cytol. Genet. 25: 308-320.

Gill LS. 1978. Chromosome numbers of angiosperms in Tanzania II. – Adansonia, sér. II, 18: 19-24.

Gill LS, Abubakar AM. 1975. Chromosome numbers of angiosperms in Tanzania I. – Univ. Sci. J. (Daressalam Univ.) 1: 30-38.

Gill LS, Obembe AO. 1991. Chromosome studies in some trees and shrubs from S Nigeria. – Willdenowia 21: 233-238.

Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK. 2012. Long-distance dispersal: a framework for hypothesis testing. – Trends Ecol. Evol. 27: 47-56.

Givnish TJ. 1982. Outcrossing versus ecological constraints in the evolution of dioecy. – Amer. Natur. 119: 849-865.

Givnish TJ. 1989. Ecology and evolution of carnivorous plants. – In: Abrahamson WG (ed), Plant-animal interactions, McGraw-Hill, New York, pp. 243-290.

Givnish TJ. 1998. Adaptive radiation of plants on oceanic islands: classic patterns, molecular data, new insights. – In: Givnish TJ, Sytsma KJ (eds), Molecular evolution and adaptive radiation, Cambridge University Press, New York, pp. 1-54.

Givnish TJ, Vermeij GJ. 1976. Sizes and shapes of liana leaves. – Amer. Natur. 110: 743-778.

Givnish TJ, Evans TM, Pires JC, Sytsma KJ. 1999. Polyphyly and convergent morphological evolution in Commelinales and Commelinidae: evidence from rbcL sequence data. – Mol. Phylogen. Evol. 12: 360-385.

Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn HJ, Millam KC, Meerow AW, Molvray M, Kores PJ, O’Brien HE, Hall JC, Kress WJ, Sytsma KJ. 2005. Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. – Proc. Roy. Soc. London, Ser. B, Biol. Sci. 272: 1481-1490.

Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn HJ, Millam KC, Meerow AW, Molvray M, Kores PJ, O’Brien HE, Hall JC, Kress WJ, Sytsma KJ. 2006. Phylogeny of the monocots based on the highly informative plastid gene ndhF: evidence for widespread concerted convergence. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 28-51.

Glasby JS. 1975-1983. Encyclopedia of the alkaloids 1-4. – Plenum Press, New York.

Gleason H. 1926. Studies on the flora of northern South America IX. – Bull. Torrey Bot. Club 53: 289-301.

Gleason HA, Cronquist A. 1991. Manual of vascular plants of Northeastern United States and adjacent Canada. 2nd ed. – New York Botanic Garden, Bronx, New York.

Gleissner P. 1999. Arrangement of reproductive elements in some temperate deciduous tree species. – Syst. Geogr. Plants 68: 95-111.

Glick L, Sabath N, Ashman T-L, Goldberg E, Mayrose I. 2016. Polyploidy and sexual system in angiosperms: is there an association? – Amer. J. Bot. 103: 1223-1235.

Glück H. 1901. Die Stipulargebilde der Monocotyledonen. – Verhandl. Naturhist. Med. Vereins Heidelberg, N. F., 7: 1-96.

Glück H. 1906. Biologische und morphologische Untersuchungen über Wasser- und Sumpfgewächse II. Unter-suchungen über die mitteleuropäischen Utricularia-Arten, über die Turionenbildung bei Wasserpflanzen, sowie über Ceratophyllum. – Gustav Fischer, Jena.

Glück H. 1919. Blatt- und blütenmorphologische Studien. – Gustav Fischer, Jena.

Góczán F, Juhász M. 1984. Monosulcate pollen grains of angiosperms from Hungarian Albian sediments I. – Acta Bot. Hung. 30: 289-319.

Godfrey RK, Wooten JW. 1979. Aquatic and wetland plants of southeastern United States I. Monocotyledons. – University of Georgia Press, Athens, Georgia.

Godfrey RK, Wooten JW. 1981. Aquatic and wetland plants of southeastern United States II. Dicotyledons. – University of Georgia Press, Athens, Georgia.

Godineau J-C. 1973. Le sac embryonnaire des angiosperms. Morphogenèse et infrastructure. – Soc. Bot. Fr. Mém. Coll. Morph., pp. 25-54.

Godley EJ. 1979. Flower biology in New Zealand. – New Zealand J. Bot. 17: 441-466.

Goebel KE. 1905. Morphologische und biologische Bemerkungen 16. Die Knollen der Dioscoreen und die Wurzelträger der Selaginellen, Organe, welche zwischen Wurzeln und Sprossen stehen. – Flora 95 (Ergänzungsband): 167-212.

Goebel KE. 1931. Blütenbildung und Sprossgestaltung. Anthokladien und Infloreszenzen. Zweiter Ergänzungs-band zur Organographie der Pflanzen. – Gustav Fischer, Jena.

Goebel KE. 1933. Organographie der Pflanzen 2. Samenpflanzen. 3. Aufl. – Gustav Fischer, Jena.

Goldberg A. 1986. Classification, evolution, and phylogeny of the families of dicotyledons. – Smithsonian Contr. Bot. 58, Smithsonian Institution Press, Washington, D.C.

Goldberg A. 1989. Classification, evolution, and phylogeny of the families of monocotyledons. – Smithsonian Contr. Bot. 71, Smithsonian Institution Press, Washington, D.C.

Goldberg A. 2003. Character variation in angiosperm families. – Contr. U.S. Natl. Herb. 47: 1-185.

Goldblatt P. 1974. Chromosome numbers of phanerogams 5. – Ann. Missouri Bot. Gard. 61: 901-904.

Goldblatt P. 1976. New or noteworthy chromosome records in the angiosperms. – Ann. Missouri Bot. Gard. 63: 889-895.

Goldblatt P. 1978. An analysis of the flora of Southern Africa: its characteristics, relationships, and origins. – Ann. Missouri Bot. Gard. 65: 369-436.

Goldblatt P. 1979. Miscellaneous chromosome counts in angiosperms II. Including new family and generic records. – Ann. Missouri Bot. Gard. 66: 856-861.

Goldblatt P. 1981. Index to plant chromosome numbers 1975-1978. – Monogr. Syst. Bot. Missouri Bot. Gard. 5.

Goldblatt P. 1984. Index to plant chromosome numbers 1979-1981. – Monogr. Syst. Bot. Missouri Bot. Gard. 8.

Goldblatt P. 1985. Index to plant chromosome numbers 1982-1983. – Monogr. Syst. Bot. Missouri Bot. Gard. 13.

Goldblatt P. 1988. Index to plant chromosome numbers 1984-1985. – Monogr. Syst. Bot. Missouri Bot. Gard. 23.

Goldblatt P, Johnson DE. 1990. Index to plant chromosome numbers 1986-1987. – Monogr. Syst. Bot. Missouri Bot. Gard. 30.

Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS, Källersjö M, Farris JS. 2009. Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups. – Cladistics 25: 211-230.

Golovneva LB. 1998. Cretaceous floral evolution in northeastern Russia. – Paleontol. J. 32: 633-641.

Golovneva LB, Oskolski AA. 2007. Infructescences of Cathiaria gen. n. from the late Cretaceous of North Kazakhstan and Siberia (Russia). – Acta Palaeobot. 47: 57-87.

Gomes CMR, Gottlieb OR. 1980. Alkaloid evolution and angiosperm systematics. – Biochem. Syst. Ecol. 8: 81-87.

González F, Bello MA. 2001. Dugandiodendron, Matudaea, Metteniusa, Oreomunnea, Trigonobalanus, y la nueva clasificación de las angiospermas. – Caldasia 23: 389-400.

Good R. 1927. The genus Empetrum L. – Bot. J. Linn. Soc. 47: 489-523.

Gorchov DL. 1987. Sequence of fruit ripening in bird-dispersed plants: consistency among years. – Ecology 68: 223-225.

Gorelick R. 2001. Did insect pollination cause increased seed plant diversity? – Biol. J. Linn. Soc. 74: 407-427.

Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W. 1996. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. – Mol. Biol. Evol. 13: 383-396.

Goremykin V, Hansmann S, Martin W. 1997. Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times. – Plant Syst. Evol. 206: 337-351.

Goremykin VV, Viola R, Hellwig FH. 2009. Removal of noisy characters from chloroplast genome-scale data suggests revision of phylogenetic placement of Amborella and Ceratophyllum. – J. Mol. Evol. 68: 197-204.

Goremykin VV, Salamini F, Velasco R, Viola R. 2009. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. – Mol. Biol. Evol. 26: 99-110.

Gornall RJ, Bohm BA. 1978. Angiosperm flavonoid evolution: a reappraisal. – Syst. Bot. 3: 353-368.

Gornall RJ, Bohm BA, Dahlgren RMT. 1979. The distribution of flavonoids in the angiosperms. – Bot. Not. 132: 1-30.

Gothan W. 1908. Die fossilen Hölzer von der Seymour- und Snow Hill-Insel. – Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition, 1901-1903, 3(8), pp. 1-33.

Gottlieb OR, Kaplan MAC, Kubitzki K, Barros T. 1989. Chemical dichotomies in the Magnolialean complex. – Nord. J. Bot. 8: 437-444.

Gottlieb OR, Kaplan MAC, Kubitzki K. 1993. A suggested role of galloyl esters in the evolution of dicotyledons. – Taxon 42: 539-552.

Gottsberger G. 1977. Some aspects of beetle pollination in the evolution of flowering plants. – Plant Syst. Evol. [Suppl.] 1: 211-226.

Gottsberger G. 1978. Seed dispersal by fish in the inundated regions of Humaitá, Amazonia. – Biotropica 10: 170-183.

Gottsberger G. 1990. Flowers and beetles in the South American tropics. – Bot. Acta 103: 360-365.

Gottsberger G, Prance GT (eds). 1990. Reproductive biology and evolution of tropical woody angiosperms. – New York Botanical Garden, Bronx, New York.

Gottwald DH. 1992. Hölzer aus marinen Sanden des oberen Eozän von Helmstedt (Niedersachsen). – Palaeontographica, Abt. B, Palaeophytology 225: 27-103.

Gottwald HPJ. 1977. The anatomy of the secondary xylem and the classification of ancient dicotyledons. – Plant Syst. Evol. [Suppl.] 1: 111-121.

Govaerts R. 2001. How many species of seed plants are there? – Taxon 50: 1085-1090.

Govaerts R (ed). 2006. World checklist of selected plant families. – In: Bisby FA, Roskov YR, Ruggiero MA, Orrell TM, Paglinawan LE, Brewer PW, Bailly N, Hertum J van (eds), Species 2000 & ITIS catalogue of life: 2007 annual checklist. https://urlproxy.sunet.se/canit/urlproxy.php?_q=aHR0cDovL3d3dw%3D%3D&_s=ZGVmYXVsdA%3D%3D&_c=00e06c15&_r=c3Utc2U%3D. catalogueoflife.org/annual-checklist/ Species 2000, University of Reading, England.

Graaf B de, Derksen J, Mariani C. 2001. Pollen and pistil in the progamic phase. – Sexual Plant Repr. 14: 41-55.

Graham A. 1963. Systematic revision of the Sucker Creek and Trout Creek Miocene floras of southeastern Oregon. – Amer. J. Bot. 50: 921-936.

Graham A. 1985. Studies in Neotropical palaeobotany IV. The Eocene communities of Panama. – Ann. Missouri Bot. Gard. 72: 504-534.

Graham A. 1988a. Studies in Neotropical paleobotany V. The lower Miocene communities of Panama: the Culebra Formation. – Ann. Missouri Bot. Gard. 75: 1440-1466.

Graham A. 1988b. Studies in Neotropical paleobotany VI. The lower Miocene communities of Panama: the Cucaracha Formation. – Ann. Missouri Bot. Gard. 75: 1467-1479.

Graham A. 1999. Late Cretaceous and Cenozoic history of North American vegetation (North of Mexico). – Oxford University Press, New York.

Graham A, Jarzen DM. 1969. Studies in Neotropical paleobotany 1. The Oligocene communities of Puerto Rico. – Ann. Missouri Bot. Gard. 56: 308-357.

Graham SW, Iles WJD. 2009. Different gymnosperm outgroups have (mostly) congruent signal regarding the root of flowering plant phylogeny. – Amer. J. Bot. 96: 216-227.

Graham SW, Olmstead RG. 2000a. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. – Amer. J. Bot. 87: 1712-1730.

Graham SW, Olmstead RG. 2000b. Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages. – Curr. Genet. 37: 183-188.

Graham SW, Reeves PA, Burns ACE, Olmstead RG. 2000. Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. – Intern. J. Plant Sci. 161(Suppl.): S83-S96.

Graham SW, Olmstead RG, Barrett SCH. 2002. Rooting phylogenetic trees with distant outgroups: a case study from the commelinoid monocots. – Mol. Biol. Evol. 19: 1769-1781.

Graham SW, Zgurski JM, McPherson MA, Cherniawsky DM, Saarela JM, Horne EFC, Smith SY, Wong WA, O’Brien HE, Biron VL, Pires JC, Olmstead RG, Chase MW, Rai HS. 2006. Robust inference of monocot deep phylogeny using an expanded multigene plastid data set. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 3-21.

Grant V. 1949. Pollinating systems as isolating mechanisms in angiosperms. – Evolution 3: 82-97.

Grant V. 1950. The protection of the ovules in flowering plats. – Evolution 4: 179-201.

Grant V. 1982. Chromosome number patterns in primitive angiosperms. – Bot. Gaz. 143: 390-394.

Grant V. 1994. Modes and origins of mechanical and ethological isolation in angiosperms. – Proc. Natl. Acad. Sci. U.S.A. 91: 3-10.

Grant V. 2001. Tests of the accuracy of cladograms in Gilia (Polemoniaceae) and some other angiosperm genera. – Plant Syst. Evol. 230: 89-96.

Grassmann P. 1884. Die Septaldrüsen. Ihre Verbreitung, Entstehung und Verrichtung. – Flora 67: 113-136.

Gray A. 1876. Miscellaneous botanical contributions. – Proc. Amer. Acad. Arts 11: 71-104.

Gray A. 1877. Characters of some little known or new genera of plants. – Proc. Amer. Acad. Arts 12: 159-165.

Grayer RJ, Chase MW, Simmonds MSJ. 1999. A comparison between chemical and molecular characters for the determination of phylogenetic relationships among plant families: an appreciation of Hegnauer’s “Chemotaxonomie der Pflanzen”. – Biochem. Syst. Ecol. 27: 369-393.

Green EP, Short FT. 2003. World atlas of seagrasses. – University of California Press, Berkeley, California.

Green JW. 1980. A revised terminology for the spore-containing parts of anthers. –New Phytol. 84: 401-406.

Greenman JH. 1903. New and otherwise noteworthy angiosperms from Mexico and Central America. – Proc. Amer. Arts Sci. 39: 69-120.

Greenway CA, Harder LD. 2007. Variation in ovule and seed size and associated size-number trade-offs in angiosperms. – Amer. J. Bot. 94: 840-846.

Greenwood DR, Conran JG. 2000. The Australian Cretaceous and Tertiary monocot fossil record. – In: Wilson KI, Morrison DA (eds), Monocots: systematics and evolution, CSIRO, Melbourne, pp. 52-59.

Gregor H-J. 1975. Die mittelmiozäne Mastixioideen-Flora aus dem Braunkohlen-Tagebau Oder II bei Wackersdorf (Oberpfalz). – Ph.D. diss., Ludwig-Maximilians-Universität, München, Germany.

Gregor H-J. 1977. Subtropische Elemente im europäischen Tertiär II (Fruktifikationen). – Paläontol. Zeitschr. 51: 199-226.

Gregor H-J, Hagn H. 1982. Fossil fructifications from the Cretaceous-Palaeocene-boundary of SW-Egypt (Danian, Bir Abu Munqar). – Tertiary Res. 4: 121-147.

Gregory M. 1994. Bibliography of systematic wood anatomy of dicotyledons. – IAWA J. [Suppl.] 1: 1-265.

Gregory M, Baas P. 1989. A survey of mucilage cells in vegetative organs of the dicotyledons. – Israel J. Bot. 38: 125-174.

Gregory M, Cutler DF (eds). 2002-2003. Anatomy of the monocotyledons. – Oxford University Press, Oxford.

Greguss P. 1959. Holzanatomie der europäischen Laubhölzer und Sträucher. – Akademiai Kiadó, Budapest.

Greilhuber J. 1995. Chromosomes of the monocotyledons (general aspects). – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 379-414.

Griffin NJ, Lin GD. 2000. Chemotaxonomy and geographical distribution of tropane alkaloids. – Phytochemistry 53: 623-637.

Grimaldi D. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. – Ann. Missouri Bot. Gard. 86: 373-406.

Grimaldi D (ed). 2000. Studies on fossils in amber, with particular reference to the Cretaceous of New Jersey. – Backhuys, Leiden.

Grímsson F, Denk T, Símonarson LA. 2007. Middle Miocene floras of Iceland – the early colonization of an island? – Rev. Palaeobot. Palynol. 144: 181-219.

Gröger D, Floss HG. 1998. Biochemistry of ergot alkaloids – achievements and challenges. – In: Cordell GA, The alkaloids – chemistry and biology 50, Academic Press, New York, pp. 171-218.

Groot EP, Doyle JA, Nichol SA, Rost TL. 2004. Phylogenetic distribution and evolution of root apical meristem organization in dicotyledonous angiosperms. – Intern. J. Plant Sci. 165: 97-105.

Groot JJ, Groot CR. 1962. Plant microfossils from Aptian, Albian and Cenomanian deposits of Portugal. – Com. Serv. Geol. Portugal 46: 133-176.

Groover AT. 2005. What genes make a tree a tree? – Trends Plant Sci. 10: 210-214.

Groppler R. 1894. Vergleichende Anatomie des Holzes der Magnoliaceen. – Bibl. Bot. 6: 1-49.

Grosser D. 1977. Die Hölzer Mitteleuropas. Ein mikroskopischer Lehratlas. – Springer Verlag, Berlin, Heidelberg.

Groves BE, Hair JB. 1971. Contributions to a chromosome atlas of the New Zealand flora 15. Miscellaneous families. – New Zealand J. Bot. 9: 569-575.

Gruas-Cavagnetto C. 1976. Étude palynologique du paleogène du sud de l’Angleterre. – Cahiers de Micro-paléontologie 1: 1-49.

Gruas-Cavagnetto C. 1987. Nouveaux éléments mégathermes dans la palynoflore éocène du Bassin Parisien. – Mém. Trav. Inst. Montpellier, École Pratique des Hautes Études 17: 207-233.

Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ. 2008. Distribution and evolution of circular miniproteins in flowering plants. – Plant Cell 20: 2471-2783.

Grubert M. 1974. Studies on the distribution of myxospermy among seeds and fruits of Angiospermae and its ecological importance. – Acta Biol. Venezuelica 8: 315-551.

Grubert M. 1981. Mucilage or gum in seeds and fruits of angiosperms: a review. – Minerva, München.

Grund C, Jensen U. 1981. Systematic relationships of the Saxifragales revealed by serological characteristics of seed proteins. – Plant Syst. Evol. 137: 1-22.

Gualtieri G, Bisseling T. 2000. The evolution of nodulation. – Plant Mol. Biol. 42: 181-194.

Guédès M. 1979. Morphology of seed plants. – J. Cramer, Vaduz.

Guédès M. 1982. Exine stratification, ectexine structure and angiosperm evolution. – Grana 21: 161-170.

Guéguen F. 1901. Anatomie comparée du tissue conducteur du style et du stigmate des phanérogames 1. Monocotylédones, Apétales et Gamopétales. – Mersch, Paris.

Guerra M dos S. 986. Citogénetica de angiospermas coletadas em Pernambuco 1. – Rev. Brasil. Genet. 9, 1: 21-40.

Guignard J-L. 1975. Du cotylédon des monocotylédones. – Phytomorphology 25: 193-200.

Guignard ML. 1893a. Rechereches sur la localisation des principes actifs chez les Capparidées, Tropéolées, Limnanthées, Résédacées (suite). – J. Bot. (Morot) 7: 417-426.

Guignard ML. 1893b. Développement de la graine tégument séminal. – J. Bot. (Morot) 7: 241-250.

Guillaumin A. 1948. Flore analytique et synoptique de la Nouvelle Calédonie. – Paris.

Guillaumin A. 1950. Contribution à la flore de la Nouvelle-Calédonie 96. Plantae neocaledonicae a C. Skottsberg a. 1949 lectae. – Acta Horti Gothoburg. 18: 247-265.

Guillaumin A, Virot R. 1953. Contributions à la Flore de la Nouvelle Calédonie CII. Plantes récoltées par M. R. Virot. – Mém. Mus. Natl. Hist. Nat. Paris, B, Bot. 4: 1-82.

Guinet P. 1962. Pollen d’Asie tropicale. – Inst. Franç. Pondichéry, Trav. Sect. Sci. Techn. 5(1): 1-8.

Guinet P. 1965. Remarques sur les pollens composes à paroid internes perforées. – Pollen Spores 7: 13-18.

Gumppenberg O von. 1929. Beiträge zur Entwicklungsgeschichte der Blumenblätter mit besondere Berücksichtigung der Nervatur. – Bot. Arch. 7: 448-490.

Gunatilaka AAL. 1996. Triterpenoid quinonemethiodes and related compounds (celastroloids). – Prog. Chem. Nat. Compounds 67: 1-114.

Gunatilaka AAL. 2006. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. – J. Nat. Prod. 69: 509-526.

Gunawardena AHLAN, Dengler NG. 2006. Alternative modes of leaf dissection in monocotyledons. – Bot. J. Linn. Soc. 150: 25-44.

Gundersen A. 1950. Families of dicotyledons. – Chronica Botanica, Waltham, Massachusetts.

Gunn CR, Wiersema JH, Ritchie CA, Kirkbride JH Jr. 1992. Families and genera of spermatophytes recognized by the Agricultural Research Service. – United States Dept. Agriculture, Techn. Bull. No. 1796.

Guppy HB. 1895. Water plants and their ways. – Sci. Gossip, n. s., 1: 195-199.

Gurzenkov NN. 1973. Studies of chromosome numbers of plants from the south of the Soviet Far East. – Komarov Lectures 20: 47-61. [In Russian]

Gustafsson MHG, Bremer K. 1995. Morphology and phylogenetic interrelationships of the Asteraceae, Calyceraceae, Campanulaceae, Goodeniaceae, and related families (Asterales). – Amer. J. Bot. 82: 250-265.

Gustafsson MHG, Backlund A, Bremer B. 1996. Phylogeny of the Asterales sensu lato based on rbcL sequences with particular reference to the Goodeniaceae. – Plant Syst. Evol. 199: 217-242.

Guttenberg H von. 1968. Der primäre Bau der Angiospermenwurzel. – In: Zimmermann W, Ozenda P, Wulff HD (eds), Handbuch der Pflanzenanatomie, 2. Aufl., VIII(5), Gebrüder Bornträger, Berlin, pp. 134-137, 318-333.

Gvinianidze ZI, Avazneli AA. 1982. Khromosomnye chisle nekotorykh predstavitelej vysokogornykh floristicheskikh kompleksov Kavkaza. – Soobsc. Akad. Nauk Gruzinsk. SSSR (Tbilis) 106: 577-580.

Haberlandt G. 1894. Über Bau und Funktion der Hydathoden. – Ber. Deutsch. Bot. Ges. 12: 367-378.

Haberlandt G. 1914. Physiological plant anatomy. Transl. by Drummond. – Macmillan, London.

Haccius B. 1939. Untersuchungen über die Bedeutung der Distichie für das Verständnis der zerstreuten Blattstellung bei den Dikotylen. – Bot. Archiv 40: 58-150.

Haccius B. 1950. Weitere Untersuchungen zum Verständnis der zerstreuten Blattstellung bei den Dikotylen. – Sitzungsber. Heidelberger Akad. Wiss. Math.-Naturwiss. Kl. 1950, 6. Abh.: 1-51, 289-337.

Haccius B. 1953. Embryologische und histogenetische Untersuchungen an ”monokotylen Dikotylen”. Bau und Funktion des Keimblattstiels. – Ber. Deutsch. Bot. Ges. 66: 17-19.

Hacke UG, Sperry JS, Feild TS, Sano Y, Sikkema EH, Pittermann J. 2007. Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. – Intern. J. Plant Sci. 168: 1113-1126.

Hagel JM, Yeung EC, Facchini PJ. 2008. Got milk? The secret life of laticifers. – Trends Plant Sci. 13: 631-639.

Hagemann W. 1963. Weitere Untersuchungen zur Organisation des Sproßscheitelmeristems; der Vegetationspunkt traubiger Floreszenzen. – Bot. Jahrb. Syst. 82: 273-315.

Hagemann W. 1970. Studien zur Entwicklungsgeschichte der Angiospermenblätter. Ein Beitrag zur Klärung ihres Gestaltungsprincips. – Bot. Jahrb. Syst. 90: 297-413.

Hagemann W. 1973. The organization of shoot development. – Rev. Biol. 9: 43-67.

Hagemann W. 1975. Eine mögliche Strategie der vergleichenden Morphologie zur phylogenetischen Rekonstruktion. – Bot. Jahrb. Syst. 96: 107-124.

Hagemann W. 1990. Comparative morphology of acrogenous branch systems and phylogenetic considerations II. Angiosperms. – Acta Biotheor. 38: 207-242.

Hagemann W, Gleissberg S. 1996. Organogenetic capacity of leaves: the significance of marginal blastozones in angiosperms. – Plant Syst. Evol. 199: 121-152.

Hagerup O. 1932. Über Polyploidie in Beziehung zu Klima, Ökologie und Phylogenie. Chromosomenzahlen aus Timbuktu. – Hereditas 16: 19-40.

Hahn WJ, Givnish TJ, Sytsma KJ. 1995. Evolution of the monocot chloroplast inverted repeat I. Evolution and phylogenetic implications of the ORF2280 deletion. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 579-587.

Haig D. 1990. New perspectives on the angiosperm female gametophyte. – Bot. Rev. 56: 236-274.

Haig D, Westoby M. 1989. Parent-specific gene expression and the triploid endosperm. – Amer. Natur. 134: 147-155.

Haines RW, Lye KA. 1979. Monocotylar seedlings: a review of evidence supporting origin by fusion. – Bot. J. Linn. Soc. 78: 123-140.

Hair JB. 1963. Contributions to a chromosome atlas of the New Zealand flora 6. Miscellaneous families. – New Zealand J. Bot. 1: 243-257.

Hair JB. 1966. Biosystematics of the New Zealand flora, 1945-1964. – New Zealand J. Bot. 4: 559-595.

Hair JB, Beuzenberg EJ. 1959. Contributions to a chromosome atlas of the New Zealand flora 2. Miscellaneous families. – New Zealand J. Sci. 2: 148-156.

Hair JB, Beuzenberg EJ. 1960. Contributions to a chromosome atlas of the New Zealand flora 4. Miscellaneous families. – New Zealand J. Sci. 3: 432-440.

Hair JB, Beuzenberg EJ. 1966. Contributions to a chromosome atlas of the New Zealand flora 7. – New Zealand J. Bot. 4: 256-266.

Hair JB, Beuzenberg EJ, Pearson B. 1967. Contributions to a chromosome atlas of the New Zealand flora 9. Miscellaneous families. – New Zealand J. Bot. 5: 185-196.

Hake S. 2008. Inflorescence architecture: the transition from branches to flowers. – Curr. Biol. 18: R1106-R1108.

Halbritter H, Hesse M. 1993. Sulcus morphology in some monocot families. – Grana 32: 87-99.

Halbritter H, Hesse M. 1995. The convergent evolution of exine shields in angiosperm pollen. – Grana 34: 108-119.

Halbritter H, Hesse M. 2004. Principle modes of infoldings in tricolp(or)ate angiosperm pollen. – Grana 43: 1-14.

Hald N. 1976. Early Tertiary flood basalts from Hareøen and western Nûgssuaq, West Greenland. – Bull. Grønlands Geol. Undersøgelse 120: 1-36.

Hald N. 1977. Lithostratigraphy of the Maligât and Hareøen Formations, West Greenland Basalt Group, on Hareøen and western Nûgssuaq. – Rapp. Grønlands Geol. Undersøgelse 79: 9-16.

Halkier BA, Gershenzon J. 2006. Biology and biochemistry of glucosinolates. – Ann. Rev. Plant Biol. 57: 303-333.

Hall DM, Matus AI, Lamberton JA, Barber HN. 1965. Infra-specific variation in wax on leaf surfaces. – Aust. J. Biol. Sci. 18: 323-332.

Hallé F, Oldeman RAA. 1970. Éssai sur l’architecture et la dynamique de croissance des arbres tropicaux. – Masson et Cie, Paris.

Hallé F, Oldeman RAA, Tomlinson PB. 1978. Tropical trees and forests. An architectural analysis. – Springer, Berlin, Heidelberg, New York.

Hallier H. 1901. Über die Verwandtschaftsverhältnisse der Tubifloren und Ebenalen den polyphyletischen Ursprung der Sympetalen und Apetalen und die Anordnung der Angiospermen überhaupt. – Abh. Naturwiss. Ver. Hamburg 16: 1-112.

Hallier H. 1903. Über Verwandtschaftsverhältnisse bei Engler’s Rosalen, Parietalen, Myrtifloren, und in anderen Ordnungen der Dikotylen. – Abh. Naturwiss. Ver. Hamburg 18: 3-98.

Hallier H. 1905a. Ein zweiter Entwurf des natürlichen (phylogenetischen) Systems der Blütenpflanzen. Vorläufige Mitteilung. – Ber. Deutsch. Bot. Ges. 23: 85-91.

Hallier H. 1905b. Provisional scheme of the natural (phylogenetic) system of flowering plants. – New Phytol. 4: 151-162.

Hallier H. 1908. Über Juliania, eine Terebinthaceen-Gattung mit Cupula, und die wahren Stammeltern der Kätzchenblütler: neue Beiträge zur Stammesgeschichte nebst einer Übersicht über das natürliche System der Dicotyledonen. – Dresden.

Hallier H. 1910. Über Phanerogamen von unsicherer oder unrichtiger Stellung. – Meded. Rijks-Herb. Leiden 1: 1-41.

Hallier H. 1912. L’origine et le système phylétique des angiosperms exposés à l’aide de leur arbre généalogique. – Arch. Néerl. Sci. Exactes Nat., sér. III, B (Sci. Nat.), 1: 146-234.

Hallier H. 1918. Über Aublet’s Gattungen unsicherer oder unbekannter Stellung und über Pflanzengeschichtliche Beziehungen zwischen Amerika und Afrika. – Meded. Rijks-Herb. 35: 1-33.

Hamann U. 1961. Merkmalsbestand und Verwandtschaftsbeziehungen der ”Farinosae”. Ein Beitrag zum System der Monokotyledonen. – Willdenowia 2: 639-768.

Hamann U. 1962. Weiteres über Merkmalsbestand und Verwandtschaftsbeziehungen der ”Farinosae”. – Willdenowia 3: 169-297.

Hamann U. 1977. Über Konvergenzen bei embryologischen Merkmalen der Angiospermen. – Ber. Deutsch. Bot. Ges. 90: 369-384.

Hamby RK. 1990. Ribosomal RNA and the early evolution of flowering plants. – Ph.D. diss., Louisiana State University, Baton Rouge, Louisiana.

Hamby RK, Zimmer EA. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. – In: Soltis PS, Soltis DE, Doyle JJ (eds), Molecular systematics of plants, Chapman and Hall, New York, pp. 50-91.

Hamilton WW. 1885. Notes on the occurrence and habits of some of our New Zealand plants. – Trans. Proc. New Zealand Inst. 17: 290-293.

Hammen T van der. 1956. Palynological systematic nomenclature. – Bol. Geol. (Bogotá) 4: 63-101.

Hammen T van der, García de Mutis C. 1966. The Paleocene pollen flora of Colombia. – Leidse Geol. Meded. 35: 105-116.

Handel-Mazzetti H. 1932. Plantae novae Chingianae II. – Sinensia 2: 125-132.

Handel-Mazzetti H. 1933. Plantae novae Chingianae III. – Sinensia 3: 185-198.

Hanf M. 1935. Vergleichende und entwicklungsgeschichtliche Untersuchungen über Morphologie und Anatomie der Griffel und Griffeläste. – Beih. Bot. Centralbl., A, 54: 99-141.

Hannah M. 1916. A comparative study of epigyny in certain monocotyledons and dicotyledons. – Trans. Amer. Microscop. Soc. 35: 207-220.

Hansen A, Hansmann S, Samigullin T, Antonov A, Martin W. 1999. Gnetum and the angiosperms: molecular evidence that their shared morphological characters are convergent, rather than homologous. – Mol. Biol. Evol. 16: 1006-1009.

Hansen B, Rahn K. 1969. Determination of angiosperm families by means of a punched card system. – Dansk Bot. Ark. 26: 1-46 (+ 172 punched cards).

Hansen DR, Dastidar SG, Cau Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK. 2007. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). – Mol. Phylogen. Evol. 45: 547-563.

Hanson L, McMahon KA, Johnson MAT, Bennett MD. 2001. First nuclear DNA e-values for 25 angiosperm families. – Ann. Bot. 87: 251-258.

Hanson L, Boyd A, Johnson MAT, Bennett MD. 2005. First nuclear DNA C-values for 18 eudicot families. – Ann. Bot., 96: 1315-1320.

Hao W, Richardson AO, Zheng Y, Palmer JD. 2010. Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion. – Proc. Natl. Acad. Sci. U.S.A. 107: 21576-21581.

Hara H. 1962. Racial differences in widespread species with special reference to those common to Japan and North America. – Amer. J. Bot. 49: 647-652.

Hara H. 1974. New or noteworthy flowering plants from eastern Himalaya. – J. Jap. Bot. 49:129-137.

Harada I. 1952. Chromosome studies of some dicotyledonous water plants. – Jap. J. Genet. 27: 117-120.

Harborne JB. 1966. Caffeic acid ester distribution in higher plants. – Zeitschr. Naturf. 21b: 604-605.

Harborne JB. 1967. Comparative biochemistry of the flavonoids. – Academic Press, London, New York.

Harborne JB. 1969a. Gossypetin and herbacetin as taxonomic markers in higher plants. – Phytochemistry 8: 177-183.

Harborne JB. 1969b. Occurrence of flavonol 5-methylethers in higher plants and their systematic significance. – Phytochemistry 8: 419-423.

Harborne JB. 1982. Flavonoid compounds. – In: Dahlgren RTM, Clifford HT (eds), The monocotyledons. A comparative study, Academic Press, London, pp. 264-274.

Harborne JB. 1999. The comparative biochemistry of phytoalexin induction in plants. – Biochem. Syst. Ecol. 27: 335-367.

Harborne JB. 2000. Arsenal for survival: secondary plant products. – Taxon 49: 435-449.

Harborne JB, Baxter HJ. 1993. Phytochemical dictionary. A handbook to bioactive compounds from plants. – Taylor & Francis, London.

Harborne JB, Baxter HJ. 1995. The handbook of natural flavonoids 1-2. – John Wiley & Son, Chichester.

Harborne JB, Mabry TJ (eds). 1982. The flavonoids: advances in research. – Chapman and Hall, London.

Harborne JB, Turner BL. 1984. Plant chemosystematics. – Academic Press, London.

Harborne JB, Williams CA. 1971. 6-hydroxyluteolin and scutellarein as phyletic markers in higher plants. – Phytochemistry 10: 367-373.

Harborne JB, Williams CA. 1995. Small molecules and monocot classification. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 201-215.

Harborne JB, Baxter HJ, Moss H. 1999. Phytochemical dictionary. A handbook of bioactive compounds from plants. 2nd ed. – Taylor & Francis, New York.

Harder LD, Johnson SD. 2008. Function and evolution of aggregated pollen in angiosperms. – Intern. J. Plant Sci. 169: 59-78.

Harder LD, Yordan CY, Gross WE, Routley MB. 2004. Beyond floricentrism: the pollination function of inflorescences. – Plant Spec. Biol. 19: 137-148.

Hardman R. 1987. Recent developments in our knowledge of steroids. – Planta Medica 53: 233-238.

Harley JM, Smith SE. 1983. Mycorrhizal symbiosis. – Academic Press, London.

Harley MM. 2004. Triaperturate pollen in the monocotyledons: configurations and conjectures. – Plant Syst. Evol. 247: 75-122.

Harley MM, Zavada MS. 2000. Pollen of the monocotyledons: selecting characters for cladistic analysis. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO, Collingwood, pp. 194-213.

Harms H. 1897. Verzeichnis derjenigen Angiospermen-Gattungen, welchen bis jetzt eine sichere Stellung bei einer der behandelten Familien noch nicht zugewiesen werden kann. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, Nachträge I zum II.-IV. Teil, W. Engelmann, Leipzig, pp. 331-340.

Harms H. 1935. Rafflesiaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 16b, W. Engelmann, Leipzig, pp. 243-281.

Harper JL, Lovell PH, Moore KG. 1970. The shapes and sizes of seeds. – Ann. Rev. Ecol. Syst. 1: 327-356.

Harris JA. 1905. The dehiscence of anthers by apical pores. – Ann. Rep. Missouri Bot. Gard. 16: 167-257.

Harris JG, Harris MW. 1994. Plant identification terminology: an illustrated glossary. – Spring Lake Publ., Spring Lake, Utah.

Harris PJ. 2000. Compositions of monocotyledon cell walls: implications for biosystematics. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO, Collingwood, pp. 114-126.

Harris PJ. 2005. Diversity in plant cell walls. – In: Henry RJ (ed), Plant diversity and evolution: genotypic and phenotypic variation in higher plants, CAB International, Wallingford, pp. 201-227.

Harris PJ, Hartley RD. 1980. Phenolic constituents of the cell walls of monocotyledons. – Biochem. Syst. Ecol. 8: 153-160.

Harris TM. 1956. The mystery of flowering plants. – The Listener 26 April: 514-516.

Harris TM. 1962. The occurrence of the fructification Carnoconites in New Zealand. – Trans. Roy. Soc. New Zealand, Geology, 1: 17-27.

Harris WK. 1972. New form species of pollen from southern Australian early tertiary sediments. – Trans. Roy. Soc. S. Aust. 96: 53-61.

Harshberger JW. 1909. The comparative leaf structure of the strand plants of New Jersey. – Proc. Amer. Phil. Soc. 48: 72-89.

Hart DM. 1990. Occurrence of the ‘Cyperaceae-type’ phytolith in dicotyledons. – Aust. Syst. Bot. 3: 745-750.

Hartl D. 1962. Die morphologische Natur und Verbreitung des Apicalseptums. Analyse einer bisher unbekannten Gestaltungsmöglichkeit des Gynoeciums. – Beitr. Biol. Pflanzen 37: 241-330.

Hartl D. 1964. Das Placentoid der Pollensäcke: ein Merkmal der Tubifloren. – Ber. Deutsch. Bot. Ges. 76: (70)-(72).

Hartl D, Severin I. 1981. Verwachsungen in Umfeld des Griffels bei Allium, Cyanastrum und Heliconia und den Monocotylen allgemein. – Beitr. Biol. Pflanzen 55: 235-260.

Hartley RD, Harris PJ. 1981. Phenolic constituents of the cell walls of dicotyledons. – Biochem. Syst. Evol. 9: 189-203.

Hartley TG. 1973. A survey of New Guinea plants for alkaloids. – J. Nat. Prod. 36: 217-319.

Hasebe M, Kofuji R, Ito M, Kato M, Iwatsuki K, Ueda K. 1992. Phylogeny of gymnosperms inferred from rbcL gene sequences. – Bot. Mag. (Tokyo) 105: 673-679.

Hasenboehler B. 1981. Étude paléobotanique et palynologique de l’Albien et du Cenomanien du “Bassin occidental Portugais” au sud de l’accident de Nazare (Province d’Estremadure, Portugal). – Ph.D. diss., Université Pierre et Marie Curie, Paris.

Hasitschka-Jenschke G. 1959. Vergleichende karyologische Untersuchungen an Antipoden. – Chromosoma 10: 229-267.

Hasitschka-Jenschke G. 1962. Notizen über endopolyploide Kerne im Bereich der Samenanlage von Angiospermen. – Österr. Bot. Zeitschr. 109: 125-137.

Haslam E. 1982. Proanthocyanidins. – In: Harborne JB, Mabry TJ (eds), The flavonoids: advances in research Chapman & Hall, London, pp. 417-448.

Haston E, Richardson JE, Stevens PF, Chase MW, Harris DJ. 2007. A linear sequence of Angiosperm Phylogeny Group II families. – Taxon 56: 7-12.

Haston E, Richardson JE, Stevens PF, Chase MW, Harris DJ. 2009. The Linear Angiosperm Phylogeny Group (LAPG) III: a linear sequence of the families in APG III. – Bot. J. Linn. Soc. 161: 128-131.

Heads M. 2006. Seed plants of Fiji: an ecological analysis. – Biol. J. Linn. Soc. 89: 407-431.

Heads M. 2008a. Panbiogeography of New Caledonia, southwest Pacific: basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic arcs, and old taxa endemic to young islands. – J. Biogeogr. 35: 2153-2175.

Heads M. 2008b. Biological disjunction along the West Caledonian Fault, New Caledonia: a synthesis of molecular phylogenetics and panbiogeography. – Bot. J. Linn. Soc. 158: 470-488.

Heads M. 2009a. Globally basal centres of endemism: the Tasman-Coral Sea region (south-west Pacific), Latin America and Madagascar/South Africa. – Biol. J. Linn. Soc. 96: 222-245.

Heads M. 2009b. Inferring biogeography from molecular phylogenies. – Biol. J. Linn. Soc. 98: 757-774.

Heads M. 2010. The endemic plant families and the palms of New Caledonia: a biogeographical analysis. – J. Biogeogr. 37: 1239-1250.

Hedberg I, Hedberg O. 1977. Chromosome numbers of afroalpine and afromontane angiosperms. – Bot. Not. 130: 1-24.

Hedberg O. 1957. Afroalpine vascular plants. A taxonomic revision. – Symb. Bot. Ups. 15(1): 1-411.

Hedberg O. 1967. Chromosome numbers of vascular plants from arctic and subarctic North America. – Ark. f. Bot. 6: 309-326.

Hedge IC, Miller AG. 1977. New and interesting taxa from NE tropical Africa. – Notes Roy. Bot. Gard. Edinb. 35: 179-193.

Hedge IC, Wendelbo P. 1964. Studies in the flora of Afghanistan I. – Årb. Univ. Bergen 18: 1-56.

Hedlund RW, Norris G. 1968. Spores and pollen grains from Fredericksburgian (Albian) strata, Marshall County, Oklahoma. – Pollen Spores 10: 129-159.

Heel WA van. 1970. Some unusual tropical labyrinth seeds. – Proc. Kon. Nederl. Akad. Wet., ser. C, 73: 288-301.

Heel WA van. 1971. Note on some more tropical labyrinth-seeds. – Blumea 19: 109-111.

Heel WA van. 1981. A S.E.M.-investigation on the development of free carpels. – Blumea 27: 499-522.

Heel WA van. 1983. The ascidiform early development of free carpels, a S.E.M.-investigation. – Blumea 28: 231-270.

Heel WA van. 1984. Variation in the development of ascidiform carpels, an S.E.M.-investigation. – Blumea 29: 443-452.

Heel WA van. 1988. On the development of some gynoecia with septal nectaries. – Blumea 33: 477-504.

Hegelmaier F. 1874. Zur Entwicklungsgeschichte monokotyledoner Keime nebst Bemerkungen über die Bildung der Samendeckel. – Bot. Zeit. 32: 631-639, 648-656, 657-671, 673-688, 689-700, 705-718.

Hegnauer R. 1958. Chemotaxonomische Betrachtungen 5. Mitt. Die systematische Bedeutung des Alkaloidmerkmals. – Planta Medica 6: 1-34.

Hegnauer R. 1962-1996. Chemotaxonomie der Pflanzen: eine Übersicht über die Verbreitung und der systematische Bedeutung der Pflanzenstoffe. Bd. 1-11. – Birkhäuser, Stuttgart, Basel.

Hegnauer R. 1963. The taxonomic significance of alkaloids. – In: Swain T (ed), Chemical plant taxonomy, Academic Press, London, pp. 389-427.

Hegnauer R. 1966a. Comparative phytochemistry of alkaloids. – In: Swain T (ed), Comparative phytochemistry, Academic Press, London, pp. 211-230.

Hegnauer R. 1966b. Aucubinartige Glycoside. Über die Verbreitung und Bedeutung als systematisches Merkmal. – Pharm. Acta Helv. 41: 577-587.

Hegnauer R. 1967. Chemical characters in plant taxonomy: some possibilities and limitations. – Pure Appl. Chem. 14: 173-187.

Hegnauer R. 1969. Chemical evidence for the classification of some plant taxa. – In: Harborne JB, Swain T (eds), Perspectives in phytochemistry, Academic Press, London, pp. 121-138.

Hegnauer R. 1986. Comparative phytochemistry and plant taxonomy. – Giorn. Bot. Italiano 120: 15-26.

Hegnauer R. 1988. Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. – Phytochemistry 27: 2423-2427.

Hegnauer R, Hegnauer M. 2001. Chemotaxonomie der Pflanzen 11b-2. – Birkhäuser, Basel.

Hegnauer R, Kooiman P. 1978. Die systematische Bedeutung von iridoiden Inhaltstoffen in Rahmen von Wettsteins Tubiflorae. – Planta Medica 33: 1-33.

Heide-Jørgensen HS. 2008. Parasitic flowering plants. – Brill, Leiden.

Heilbuth JC. 2000. Species richness in dioecious clades. – Amer. Natur. 156: 221-241.

Heimhofer U, Hochuli PA, Burla S, Dinis J, Weissert H. 2005. Timing of Early Cretaceous angiosperm diversification and possible links to major paleoenvironmental change. – Geology 33: 141-144.

Heimhofer U, Hochuli PA, Burla S, Weissert H. 2007. New records of Early Cretaceous pollen from Portuguese coastal deposits: implications for the timing of the early angiosperm radiation. – Rev. Palaeobot. Palynol. 144: 39-76.

Heimsch C, Seago JL Jr. 2008. Organization of the root apical meristem in angiosperms. – Amer. J. Bot. 95: 1-21.

Heimsch CH. 1942. Comparative anatomy of the secondary xylem in the “Gruinales” and “Terebinthales” of Wettstein with reference to taxonomic grouping. – Lilloa 8: 83-198.

Heier C. 1963. Numeración cromosomica de plantas equatorianas. – Ci. & Naturaleza [Quito] 6: 2-6.

Hejný S. 1960. Ökologische Charakteristik der Wasser- und Sumpfpflanzen in der slowakischen Tiefebene (Donau- und Theissgebiet). – Slowak. Akad. Wiss. (SAV), Bratislava.

Heller J. 1935. Über die männlichen Kätzchen windblütiger Holzgewächse. – Beih. Bot. Centralbl. 1, 53: 51-94.

Heller W, Tamm, C. 1981. Homoisoflavanones and biogenetically related compounds. – Progr. Chem. Org. Nat. Prod. 40: 105-152.

Hellmayr EM, Kiehn M, Weber A. 1994. Chromosome numbers of Malayan rain-forest angiosperms. – Beitr. Biol. Pflanzen 68: 51-71.

Helversen OV. 1993. Adaptations of flowers to the pollination by glossophagine bats. – In: Barthlott W, Naumann CM, Schmidt-Loske K, Schuchmann KL (eds), Animal-plant interaction in tropical environments, Museum Koenig, Bonn, pp. 41-59.

Hemsley AR, Gabarayeva NI. 2007. Exine development: the importance of looking through a colloid chemistry ‘window’. – Plant Syst. Evol. 263: 25-49.

Hendry GAF. 1993. Evolutionary origins and natural functions of fructans: a climatological, biogeographic and mechanistic appraisal. – New Phytol. 123: 3-14.

Hendry GAF, Wallace RK. 1993. The origin, distribution and evolutionary significance of fructans. – In: Suzuki M, Chatterton JN (eds), Science and technology of fructans, CRC Press, Boca Raton, Florida, pp. 119-139.

Hennig S, Barthlott W, Meusel I, Theisen I. 1994. Mikromorphologie der Epicuticularwachse und die Systematik der Magnoliidae, Ranunculidae und Hamamelididae. – Trop. Subtrop. Pflanzenwelt 90: 5-60.

Hepper FN. 1969. Arabian and African frankincense trees. – J. Egypt. Archaeol. 55: 66-72.

Hérail J. 1885. Recherches sur l’anatomie comparée de la tige des Dicotylédones. – Ann. Sci. Nat. Bot., sér. 2, 7: 203-314.

Herbin GA. 1964. The wax coating of plants as a taxonomic criterion. – Proc. East African Acad. 2: 11-17.

Herbin GA, Robins A. 1969. Patterns of variation and development in leaf wax alkanes. – Phytochemistry 8: 1985-1998.

Heredia ME, Paez MM, Guerstein GR, Parras A. 2012. Palinología del miembro Gran Bajo de la formación San Julián (Oligoceno Tardío) en su localidad tipo, Santa Cruz, Argentina: consideraciones paleoambientales. – Ameghiniana 49: 473-496.

Herendeen PS. 1991. Charcoalified angiosperm wood from the Cretaceous of eastern North America and Europe. – Rev. Palaeobot. Palynol. 70: 225-239.

Herendeen PS, Crane PR. 1995. The fossil history of the monocotyledons. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 1-21.

Herendeen PS, Miller RB. 2000. Utility of wood anatomical characters in cladistic studies. – IAWA J. 21: 247-276.

Herendeen PS, Magallon-Puebla S, Lupia R, Crane PR, Kobylinska J. 1999. A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of Central Georgia, U.S.A. – Ann. Missouri Bot. Gard. 86: 407-471.

Herendeen PS, Wheeler EA, Baas P. 1999. Angiosperm wood evolution and the potential contribution of paleontological data. – Bot. Rev. 65: 278-300.

Herman AB. 1994. A review of Late Cretaceous floras and climates of Arctic Russia. – In: Boulter MC, Fischer HC (eds), Cenozoic plants and climates of the Arctic, Springer-Verlag, Heidelberg, pp. 127-149.

Herman AB, Spicer RA. 1995. Latest Cretaceous flora of northeastern Russia and the “terminal Cretaceous event” in the Arctic. – Palaeontol. J. 29: 22-35.

Herman AB, Kvaček J. 2002. Campanian Grünbach flora of Lower Austria: preliminary floristics and palaeoclimatology. – Ann. Naturhist. Mus. Wien 103A: 1-21.

Herngreen GFW. 1973. Palynology of Albian-Cenomanian strata of borehole 1-QS-1-MA, State of Maranhão, Brazil. – Pollen Spores 15: 515-555.

Herngreen GFW. 1975. Palynology of Middle and Upper Cretaceous strata in Brazil. – Meded. Rijks Geol. Dienst, Nieuwe Ser. 26: 39-116.

Herngreen GFW, Chlonova AF. 1981. Cretaceous microfloral provinces. – Pollen Spores 23: 441-555.

Herr JM Jr. 1984. Embryology and taxonomy. – In: Johri BM (ed), Embryology of angiosperms, Springer, Berlin, Heidelberg, New York, pp. 647-696.

Herrera CM. 1989. Seed dispersal by animals: a role in angiosperm diversification. – Amer. Natur. 133: 309-322.

Herrera J. 1985. Nectar secretion patterns in southern Spanish Mediterranean scrublands. – Israel J. Bot. 34: 47-58.

Herrera LF, Urrego LE. 1996. Atlas de pollen de plantas útiles y cultivadas de la Amazonia colombiana. – Estudios en la Amazonia colombiana 11, Fundación Erigaie, Colombia.

Herriott EM. 1905. On the leaf structure of some plants from the Southern Islands of New Zealand. – Trans. Proc. New Zealand Inst. 38: 377-422.

Hershkovitz MA, Zimmer EA. 1996. Conservation patterns in angiosperm rDNA ITS2 sequences. – Nucl. Acids Res. 24: 2857-2867.

Hershkovitz MA, Zimmer EA, Hahn WJ. 1999. Ribosomal DNA sequences and angiosperm systematics. – In: Hollingsworth PM, Bateman RM, Gornall RJ (eds), Molecular systematics and plant evolution, Taylor & Francis, London, pp. 268-326.

Hertweck KL, Kinney MS, Stuart SA, Maurin O, Mathews S, Chase MW, Gandolfo MA, Pires JC. 2015. Phylogenetics, divergence times and diversification from three genomic partitions in monocots. – Bot. J. Linn. Soc. 178: 375-393.

Heslop-Harrison Y. 1971a. Wall pattern formation in angiosperm microsporogenesis. – Symp. Soc. Experim. Biol. 25: 277-300.

Heslop-Harrison Y (ed). 1971b. Pollen: development and physiology. – Appleton-Century-Crofts, New York.

Heslop-Harrison Y. 1976. The adaptive significance of the exine. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine. (Linn. Soc. Symp. Ser. No. 1), Academic Press, New York.

Heslop-Harrison Y. 1979. Pollen walls as adaptive systems. – Ann. Missouri Bot. Gard. 66: 813-829.

Heslop-Harrison Y. 1981. Stigma characteristics and angiosperm taxonomy. – Nord. J. Bot. 1: 401-420.

Heslop-Harrison Y, Shivanna KR. 1977. The receptive surface of the angiosperm stigma. – Ann. Bot., N. S., 41: 1233-1258.

Hess RW. 1936. Occurrence of raphides in wood. – Trop. Woods 46: 22-31.

Hess RW. 1950. Classification of the wood parenchyma in dicotyledons. – Trop. Woods 96: 1-20.

Hesse M. 1981. Viscinfäden bei Angiospermen: homologe oder analoge Gebilde? – Mikroskopie 38: 85-89.

Hesse M. 1986a. Orbicules and the ektexine are homologous sporopollenin concretions in Spermatophyta. – Plant Syst. Evol. 153: 37-48.

Hesse M. 1986b. Nature, form and function of pollen-connecting threads in angiosperms. – In: Blackmore S, Ferguson IK (eds), Pollen and spores: form and function, Academic Press, London, pp. 109-118.

Hesse M, Ehrendorfer F (eds). 1990. Morphology, development and systematic relevance of pollen and spores. – Plant Syst. Evol. [Suppl.] 5: 1-121.

Hesse M, Zetter R. 2005. Ultrastructure and diversity of recent and fossil zona-aperturate pollen grains. – Plant Syst. Evol. 255: 145-176.

Hesse M, Pacini E, Willemse M (eds). 1993. The tapetum. Cytology, function, biochemistry and evolution. – Plant Syst. Evol. [Suppl.] 7: 1-152.

Hesse M, Weber M, Halbritter H. 2000. A comparative study of the polyplicate pollen types in Arales, Laurales, Zingiberales and Gnetales. – In: Harley MM, Morton CM, Blackmore S (eds), Pollen and spores: morphology and biology, Royal Botanic Gardens, Kew, pp. 227-239.

Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S. 2009. Pollen terminology. An illustrated handbook. – Springer, Wien.

Heusser CJ. 1971. Pollen and spores of Chile. – The University of Arizona Press, Tucson, Arizona.

Hewson HJ. 1988. Plant indumentum. A handbook of terminology. – Aust. Gov. Publ. Serv., Canberra.

Heyn ANJ. 1938. Chromosome numbers of some cultivated plants of the Netherlands East Indies. – Chron. Bot. 4(2): 107.

Heywood VH. 1977. Principles and concepts in the classification of higher taxa. – In: Kubitzki K (ed), Flowering plants: Evolution and classification of higher categories, Plant Syst. Evol. [Suppl.] 1: 1-12.

Heywood VH (ed). 1985. Flowering plants of the world. – Prentice Hall, Englewood Cliffs, NJ.

Heywood VH (ed). 1993. Flowering plants of the world. 2nd ed. – Oxford University Press, New York.

Heywood VH, Brummitt RK, Culham A, Seberg O. 2007. Flowering plant families of the world. – Royal Botanic Gardens, Kew.

Hibbett DS, Matheny PB. 2009. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. – BMC Biol. 7: 13.

Hickey LJ. 1973. Classification of the architecture of dicotyledonous leaves. – Amer. J. Bot. 60: 17-33.

Hickey LJ. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota. – Mem. Geol. Soc. Amer. 150: 1-183.

Hickey LJ. 1978. Origin of the major features of angiospermous leaf architecture in the fossil record. – Courier Forschungsinst. Senckenberg 30: 27-34.

Hickey LJ. 1979. A revised classification of the architecture of dicotyledonous leaves. – In: Metcalfe CR, Chalk L (eds), Anatomy of the dicotyledons, 2nd ed., vol. 1, Systematic anatomy of leaf and stem, with a brief history of the subject, Clarendon Press, Oxford, pp. 25-39.

Hickey LJ, Doyle JA. 1977. Early Cretaceous fossil evidence for angiosperm evolution. – Bot. Rev. (Lancaster) 43: 3-104.

Hickey LJ, King C. 2000. The Cambridge illustrated glossary of botanical terms. – Cambridge University Press, Cambridge.

Hickey LJ, Taylor DW. 1996. Origin of the angiosperm flower. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution, and phylogeny, Chapman and Hall, New York etc, pp. 176-231.

Hickey LJ, Wolfe JA. 1975. The bases of angiosperm phylogeny: vegetative morphology. – Ann. Missouri Bot. Gard. 62: 538-589.

Hicks JF. 1993. Chrono-stratigraphic analysis of the Foreland Basin sediments of the latest Cretaceous, Western Interior, U.S.A. – Ph.D. diss., Yale University, New Haven, Connecticut.

Hideux MJ. 1979. Le pollen données nouvelles de la microscopie électronique et de l’informatique: structure du sporoderme des Rosidae-Saxifragales, étude comparative et dynamique. – Paris.

Hideux MJ, Ferguson IK. 1976. The stereostructure of the exine and its evolutionary significance in Saxifragaceae sensu lato. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine, Linn. Soc. Symposium, No. 1, Academic Press, London, New York, pp. 327-378.

Hiepko P. 1965. Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae I-II. – Bot. Jahrb. Syst. 84: 359-508.

Hightower CE. 1979. Plants that kill and cure. – Vet. Hum. Toxicol. 21: 360-362.

Hijwegen T. 1981. Fungi as plant taxonomists II. Affinities of the Rosiflorae. – Acta Bot. Neerl. 30: 479-491.

Hileman LC, Irish VF. 2009. More is better: the uses of developmental genetic data to reconstruct perianth evolution. – Amer. J. Bot. 96: 83-95.

Hill CR. 1996. A plant with flower-like organs from the Wealden of the Weald (Lower Cretaceous), southern England. – Cretaceous Res. 17: 27-38.

Hill CR, Crane PR. 1982. Evolutionary cladistics and the origin of angiosperms. – In: Joysey KA, Friday AE (eds), Problems of phylogenetic reconstruction, Syst. Ass. Spec. Vol. 21, Academic Press, London, New York, Orlando, pp. 269-361.

Hill RS (ed). 1994. History of Australian vegetation: Cretaceous to recent. – Cambridge University Press, Cambridge.

Hill RS. 2004. Origins of the southeastern Australian vegetation. – Philos. Trans. Roy. Soc. London, B, Biol. Sci. 359: 1537-1549.

Hill RS, Merrifield HE. 1993. An Early Tertiary macroflora from West Dale, south-western Australia. – Alcheringa 17: 285-326.

Hill RS, Truswell EM, McLoughlin S, Dettmann ME. 1999. The evolution of the Australian flora: fossil evidence. – In: Orchard AE (ed), Flora of Australia 1, Introduction, CSIRO Publ., Melbourne, pp. 251-320.

Hilliard OM, Burtt BL. 1973. Notes on some plants from southern Africa, chiefly from Natal III. – Notes Roy. Bot. Gard. Edinb. 32: 303-387.

Hilliard OM, Burtt BL. 1977. Notes on some plants of Southern Africa chiefly from Natal VI. – Notes Roy. Bot. Gard. Edinb. 35: 155-177.

Hilliard OM, Burtt BL. 1978. Notes on some plants from southern Africa, chiefly from Natal VII. – Notes Roy. Bot. Gard. Edinb. 36: 43-76.

Hilliard OM, Burtt BL. 1979. Notes on some plants of Southern Africa chiefly from Natal VIII. – Notes Roy. Bot. Gard. Edinb. 37: 285-325.

Hilliard OM, Burtt BL. 1982. Notes on some plants of southern Africa chiefly from Natal IX. – Notes Roy. Bot. Gard. Edinb. 40: 247-298.

Hilliard OM, Burtt BL. 1986. Notes on some plants of Southern Africa chiefly from Natal XII. – Notes Roy. Bot. Gard. Edinb. 43: 189-228.

Hils MH. 1985. Comparative anatomy and systematics of twelve woody Australasian genera of the Saxifragaceae. – Ph.D. diss., University of Florida, Gainesville, Florida.

Hilu KW, Liang H-P. 1997. The matK gene: sequence variation and application in plant systematics. – Amer. J. Bot. 84: 830-839.

Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell, MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW. 2003. Angiosperm phylogeny based on matK sequence information. – Amer. J. Bot. 90: 1758-1776.

Hilu KW, Black C, Diouf D, Burleigh JG. 2008. Phylogenetic signal in matK vs. trnK: a case study in early diverging eudicots (angiosperms). – Mol. Phylogen. Evol. 48: 1120-1130.

Hirmer M. 1917. Beiträge zur Morphologie der polyandrischen Blüten. – Flora 110: 140-192.

Hirmer M. 1931. Zur Kenntnis der Schraubenstellungen im Pflanzenreich. – Planta 14: 132-206.

Hjelmqvist H. 1948. Studies on the floral morphology and phylogeny of the Amentiferae. – Bot. Not. Suppl. 2(1): 1-171.

Hjelmqvist H, Grazi F. 1964. Studies on variation in embryo sac development. – Bot. Not. 117: 141-166.

Hjelmqvist H, Grazi F. 1965. Studies on variation in embryo sac development 2. – Bot. Not. 118: 329-360.

Hochuli P, Feist-Burkhardt S. 2004. An early boreal cradle of angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). – J. Micropalaeont. 23: 97-104.

Hocking B. 1975. Ant-plant mutualism: evolution and energy. – In: Gilbert LE, Raven PH (eds), Coevolution of animals and plants, University of Texas Press, Austin, Texas, pp. 78-90.

Hodges SA. 1997. Floral nectar spurs and diversification. – Intern. J. Plant Sci. 158(Suppl.): S81-S88.

Hodges SA, Arnold ML. 1995. Spurring plant diversification: Are floral nectar spurs a key innovation? – Proc. Roy. Soc. London, B, 262: 343-348.

Hodgkinson A. 1977. Oxalic acid in biology and medicine. – Academic Press, New York.

Hoehne FC. 1939. Plantas e substâncias vegetais tóxicas e medicinais. – Graphicars, São Paulo.

Hoeken-Klinkenberg PMJ van. 1964. A palynological investigation of some Upper Cretaceous sediments in Nigeria. – Pollen Spores 6: 209-231.

Hoekert FA. 1983. Physiological evolution in angiosperm pollen: possible role of pollen vigour. – In: Mulcahy DL, Ottaviano E (eds), Pollen: biology and implications for plant breeding, Elsevier, New York, pp. 35-41.

Hoffmann AJ. 1982. Flora Silvestre de Chile zona austral. – Fundacion Claudio Gay, Santiago.

Hoffmann MT, Arnold AE. 2010. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. – Appl. Environm. Microbiol. 76: 4063-4075.

Hofmann C-C, Zetter R. 2007. Upper Cretaceous pollen flora from the Vilui Basin, Siberia: circumpolar and endemic Aquilapollenites, Manicorpus, and Azonia species. – Grana 46: 227-249.

Hofmann C-C, Mohamed O, Egger H. 2011. A new terrestrial palynoflora from the Palaeocene/Eocene boundary in the northwestern Tethyan realm (St. Pankraz, Austria). – Rev. Palaeob. Palynol. 166: 295-310.

Hofmann C-C, Egger H, King C. 2015a. LM and SEM investigations of pollen from PETM and EECO localities of Austria and Great Britain: new findings of Atherospermataceae, Annonaceae, Araceae and Arecaceae from the Lower Eocene. – Plant Syst. Evol. 301: 773-793.

Hofmann C-C, Egger H, King C. 2015b. SEM investigation of pollen from the lower Eocene (Carinthia and Salzburg in Austria and Brixton, London area, in England): new findings of Vitaceae, Euphorbiaceae, Phyllanthaceae, Fabaceae, Anacardiaceae, Araliaceae and Apiaceae. – Plant Syst. Evol. 301: 2291-2312.

Hofmann E. 1952. Pflanzenreste aus dem phosphoritvorkommen von Prambachkirchen in Oberösterreich II. – Palaeontographica B, 92: 122-183.

Hofmann HL. 1884. Untersuchungen über fossile Kieselhölzer. – Ph.D. diss., Universität Leipzig, Zeitschr. Naturwiss. 57: 156-195.

Hofmeister W. 1861. Neue Beiträge zur Erkenntnis der Embryobildung der Phanerogamen 2. Monokotyledonen. – Abh. Königl. Sächs. Ges. Wiss. 5: 629-760.

Holden AM. 1983. Studies in New Zealand Oligocene and Miocene plant macrofossils. – Ph.D. diss., Victoria University, Wellington, New Zealand.

Hollick A. 1903. A fossil petal and a fossil fruit from the Cretaceous (Dakota Group) of Kansas. – Bull. Torrey Bot. Club 30: 102-105.

Hollick A. 1906. The Cretaceous flora of southern New York and New England. – Monogr. US Geol. Surv, United States Geological Survey, Washington.

Hollick A. 1912. Additions to the paleobotany of the Cretaceous Formation on Long Island III. – Bull. Torrey Bot. Club 8: 154-170.

Hollick A. 1930. The Upper Cretaceous floras of Alaska. – US Geol. Surv. Prof. Paper 159: 1-219.

Holloway PJ, Jeffree CE, Baker EA. 1976. Structural determination of secondary alcohols from plant epicuticular waxes. – Phytochemistry 15: 1768-1770.

Holm L. 1969. An uredinological approach to some problems in angiosperm taxonomy. – Nytt Mag. Bot. 16: 147-150.

Holm L. 1979. Some problems in angiosperm taxonomy in the light of rust data. – Symb. Bot. Ups. 22(4): 177-181.

Holttum RE. 1955. Growth-habits in monocotyledons: variations on a theme. – Phytomorphology 5: 399-413.

Holzer K. 1952. Untersuchungen zur karyologischen Anatomie der Wurzel. – Österr. Bot. Zeitschr. 99: 118-155.

Hong D-Y. 1993. Eastern Asia-North American disjunctions and their biological significance. – Cathaya 5: 1-39.

Hooghiemstra H, Wijninga VM, Cleef AM. 2006. The paleobotanical record of Colombia: implications for biogeography and biodiversity. – Ann. Missouri Bot. Gard. 93: 297-324.

Hoogland RD. 1972. Plant distribution patterns across the Torres Strait. – In: Walker D (ed), Bridge and barrier: The natural and cultural history of Torres Strait, Australian National University, Canberra, pp. 131-152.

Hoogland RD, Reveal JL. 2005. Index nominum familiarum plantarum vascularium. – Bot. Rev. 71: 1-291.

Hoot SB, Magallón S, Crane PR. 1999. Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. – Ann. Missouri Bot. Gard. 86: 1-32.

Hopper SD. 1979. Biogeographical aspects of speciation in the Southwest Australian flora. – Ann. Rev. Ecol. Syst. 10: 399-422.

Hopper SD. 1994. Plant taxonomy and genetic resources: foundations for conservation. – In: Moritz C, Kikkawa J (eds), Conservation biology in Australia and Oceania, Surrey Beattey & Sons, Sydney, pp. 269-285.

Hopper SD, Gioia P. 2004. The Southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. – Ann. Rev. Ecol. Syst. 35: 623-650.

Horne AS. 1914. A contribution to the study of the evolution of the flower with special reference to the Hamamelidaceae, Caprifoliaceae, and Cornaceae. – Trans. Linn. Soc. London, Ser. II, 8: 239-309.

Horner HT, Wagner BL. 1995. Calcium oxalate formation in higher plants. – In: Khan SR (ed), Calcium oxalate in biological systems, CRC Press, Boca Raton, Florida, pp. 53-72.

Höster H-R, Liese W. 1966. Über das Vorkommen von Reaktionsgewebe in Wurzeln und Ästen der Dikotyledonen. – Holzforschung 20: 80-90.

Hottenrott M, Gregor H-J, Oschkinis V. 2010. Die eozäne Braunkohleschichten aus dem Untertagebau Stolzenbach bei Kassel (PreußenElektra, Niederhessen) VII. Die Mikroflora. – Doc. Nat. 181: 29-43.

Hotton CL, Leffingwell HA, Skvarla JJ. 1994. Pollen ultrastructure and the fossil genus Pandaniidites. – In: Kurmann MH, Doyle JA (eds), Ultrastructure of fossil spores and pollen, Royal Botanic Gardens, Kew, pp. 173-191.

Howard RA. 1970. Some observations on the nodes of woody plants with special reference to the problem of the ‘split laterals’ versus the ‘common gap’. – In: Robson NKB, Cutler DF, Gregory M (eds), New research in plant anatomy, Bot. J. Linn. Soc. Suppl. 1, Academic Press, London, pp. 195-214.

Howard RA. 1974. The stem-node-leaf continuum of the Dicotyledoneae. – J. Arnold Arbor. 55: 125-181.

Howard RA. 1979a. The stem-node-leaf continuum of the Dicotyledoneae. – In: Metcalfe CR, Chalk L (eds), Anatomy of the dicotyledons, 2nd ed., vol. 1. Systematic anatomy of leaf and stem, with a brief history of the subject, Clarendon Press, Oxford, pp. 76-87.

Howard RA. 1979b. The petiole. – In: Metcalfe CR, Chalk L (eds), Anatomy of the dicotyledons, 2nd ed., vol. 1. Systematic anatomy of leaf and stem, with a brief history of the subject, Clarendon Press, Oxford, pp. 88-97.

Howarth DG, Donoghue MJ. 2006. Phylogenetic analysis of the “ECE” (CYC/TB1) clade reveals duplications predating core eudicots. – Proc. Natl. Acad. Sci. U.S.A. 103: 9101-9106.

Howell GJ, Slater AT, Know RB. 1993. Secondary pollen presentation in angiosperms and its biological significance. – Aust. J. Bot. 41: 417-438.

Hrazdina G. 1982. Anthocyanins. – In: Harborne JB, Mabry TJ (eds), The flavonoids: advances in research, Chapman & Hall, London, pp. 135-188.

Hsu C-C. 1967. Preliminary chromosome studies on the vascular plants of Taiwan I. – Taiwania 13: 117-129.

Hsu C-C. 1968. Preliminary chromosome studies on the vascular plants of Taiwan II. – Taiwania 14: 11-27.

Hsu C-C. 1971. Preliminary chromosome studies on the vascular plants of Taiwan IV. Counts and some systematic notes on some monocotyledons. – Taiwania 16: 123-136.

Hsu C-C. 1972. Preliminary chromosome studies on the vascular plants of Taiwan V. Cytotaxonomy of some monocotyledons. – Taiwania 17: 48-65.

Hsu P-S, Weng R-F, Kurita S. 1994. New chromosome counts of some dicots in the Sino-Japanese region and their systematic and evolutionary significance. – Acta Phytotaxon. Sin. 32: 411-418.

Hu H-H, Chaney RW. 1940. A Miocene flora from Shantung Province, China. – Publ. Carnegie Inst. Washington 507: 1-147.

Hu S, Jarzen DM, Dilcher DL. 2008. New species of angiosperm pollen from the Dakota Formation (Cenomanian, Upper Cretaceous) of Minnesota, U.S.A. – Palynology 32: 17-26.

Hu S, Dilcher DL, Jarzen DM, Taylow DW. 2008. Early steps of angiosperm-pollinator coevolution. – Proc. Natl. Acad. Sci. U.S.A. 105: 240-245.

Huang J-L, Sun L-G, Zhang D-M. 2010. Molecular evolution and phylogeny of the angiosperm ycf2 gene. – J. Syst. Evol. 48: 240-248.

Huang S-F, Chen S-J, Shi X-H. 1986. Plant chromosome count 2. – Subtrop. For. Sci. Techn. 3: 41-47.

Huang S-F, Zhao Z-F, Chen Z-Y, Huang X-X. 1989. Chromosome counts on one hundred species and infraspecific taxa. – Acta Bot. Austro Sin. 5: 161-176.

Huang TC. 1967. Pollen grains of Formosan plants 2. – Taiwania 13: 15-110.

Huang TC. 1970. Pollen grains of Formosan plants 6. – Taiwania 15: 73-179.

Huang TC. 1972. Pollen flora of Taiwan. – National Taiwan University, Botany Dept. Press, Taipei.

Huang TC. 1980. Miocene palynomorphs of Taiwan V. Angiosperm grains. – Taiwania 25: 57-103.

Huber H. 1963. Die Verwandtschaftsverhältnisse der Rosifloren. – Mitt. Bot. Staatssamml. München 5: 1-48.

Huber H. 1969. Die Samenmerkmale und Verwandtschaftsverhältnisse der Liliifloren. – Mitt. Bot. Staatssamml. München 8: 219-538.

Huber H. 1977. The treatment of the monocotyledons in an evolutionary system of classification. – Plant Syst. Evol. [Suppl.] 1: 285-298.

Huber H. 1982. Die zweikeimblättrigen Gehölze im System der Angiospermen. – Mitt. Bot. Staatssamml. München 18: 59-78.

Huber H. 1991. Angiospermen. Leitfaden durch die Ordnungen und Familien der Bedecktsamer. – Gustav Fischer, Stuttgart, New York.

Huber O. 1988. Guayana highland versus Guayana lowlands, a reappraisal. – Taxon 37: 595-614.

Hudson GS, Mahon JD, Anderson PA, Gibbs MJ, Badger MR, Andrews TJ, Whitfeld PR. 1990.Comparisons of rbcL genes for the large subunit of ribulose-bisphosphate carboxylase from closely related C3 and C4 plant species. –J. Biol. Chem. 265: 808-814.

Hueck K. 1966. Die Wälder Südamerikas. – Gustav Fischer, Stuttgart.

Hufford LD. 1992. Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical data. – Ann. Missouri Bot. Gard. 79: 218-248.

Hufford LD. 1996. The origin and early evolution of angiosperm stamens. – In: D’Arcy WG, Keating RC (eds), the anther: form, function and phylogeny, Cambridge University Press, Cambridge, pp. 58-91.

Hufford LD, Crane PR. 1989. A preliminary phylogenetic analysis of the “lower” Hamamelidae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 1, Introduction and “lower” Hamamelidae, Systematics Association, Spec. Vol. 40A, Clarendon Press, Oxford, pp. 175-192.

Hufford LD, Endress PK. 1989. The diversity of anther structures and dehiscence patterns among Hamamelididae. – Bot. J. Linn. Soc. 99: 301-346.

Hughes CE, Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of diversification after uplift of the Andes. – Proc. Natl. Acad. Sci. U.S.A. 103: 10334-10339.

Hughes JMR, Davis GL. 1989. Aquatic plants of Tasmania. – Department of Geography, University of Melbourne, Parkville, Victoria.

Hughes NF. 1961. Fossil evidence and angiosperm ancestry. – Science Progress 49: 84-102.

Hughes NF. 1976. Palaeobiology of angiosperm origins. – Cambridge University Press, Cambridge.

Hughes NF. 1994. The enigma of angiosperm origins. – Cambridge University Press, Cambridge.

Hughes NF, McDougall AB. 1987. Records of angiospermid pollen entry into the English early Cretaceous succession. – Rev. Palaeobot. Palynol. 50: 255-272.

Hughes NF, McDougall AB. 1990. Barremian-Aptian angiospermid pollen records from southern England. – Rev. Palaeobot. Palynol. 65: 145-151.

Hughes NF, Drewry GE, Laing JF. 1979. Barremian earliest angiosperm pollen. – Palaeontology 22: 513-535.

Hughes NF, McDougall AB, Chapman JL. 1991. Exceptional new record of Cretaceous Hauterivian angiospermid pollen from southern England. – J. Micropalaeont. 10: 75-82.

Humphries CJ, Murray BG, Bocquet G, Vasudevan KN. 1978. Chromosome numbers of phanerogams from Morocco and Algeria. – Bot. Not. 131: 391-406.

Hunziker JH, Xifreda CC, Wulff AR. 1985. Estudios cromosómicos en angiospermas de Sudamérica. – Darwiniana 26: 7-14.

Huss HA. 1906. Beiträge zur Morphologie und Physiologie der Antipoden. – Ph.D. diss., Universität Zürich, Switzerland.

Hutchings A. 1996. Zulu medicinal plants. – Natal University Press, Pietermaritzburg, Republic of South Africa.

Hutchinson J. 1923. Contributions towards a phylogenetic classification of flowering plants 1. – Kew Bull. 1923: 65-89.

Hutchinson J. 1926. The families of flowering plants, arranged according to a new system based on their probable phylogeny 1. Dicotyledons. – Macmillan, London.

Hutchinson J. 1934. The families of flowering plants 2. Monocotyledons. – Clarendon Press, Oxford.

Hutchinson J. 1959. The families of flowering plants 1-2. 2nd ed. – Clarendon Press, Oxford.

Hutchinson J. 1964. The genera of flowering plants (Angiospermae) based principally on the Genera Plantarum of G. Bentham and J. D. Hooker 1. – Oxford University Press, Oxford.

Hutchinson J. 1967. The genera of flowering plants (Angiospermae) based principally on the Genera Plantarum of G. Bentham and J. D. Hooker 2. – Oxford University Press, Oxford.

Hutchinson J. 1969. Evolution and phylogeny of flowering plants. Dicotyledons: facts and theory with over 550 illustrations and maps by the author. – Academic Press, London, New York.

Hutchinson J. 1973. The families of flowering plants arranged according to a new system based on their probable phylogeny 1-2. 3rd ed. – Oxford University Press, Oxford.

Huynh K-L. 1965. Contribution à l’étude caryologique et embryologique des phanérogames du Pérou. – Denkschr. Schweiz. Naturforsch. Ges. (Mém. Soc. Helv. Sci. Nat.) 85: 1-178.

Huynh K-L. 1972. The original position of the generative nucleus in the pollen tetrads of Agropyron, Itea, Limnanthes, and Onosma, and its phylogenetic significance in the angiosperms. – Grana 12: 105-112.

Huynh K-L. 1976. Arrangement of some monosulcate, disulcate, trisulcate,dicolpate, and tricolpate pollen types in the tetrads, and some aspects of evolution in the angiosperms. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine, Academic Press, London, pp. 101-124.

Huysmans S, El-Ghazaly G, Smets E. 1998. Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. – Bot. Rev. (Lancaster) 64: 240-272.

Hyland BPM, Whiffin T. 1993. Australian tropical rain forest trees: an interactive identification system 2. – C.S.I.R.O., Canberra.

Ibrahim MIA. 2002. New angiosperm pollen from the Upper Barremian-Aptian of the Western Desert, Egypt. – Palynology 26: 107-133.

Igersheim A, Endress PK. 1997. Gynoecium diversity and systematics of the Magnoliales and winteroids. – Bot. J. Linn. Soc. 124: 213-271.

Igersheim A, Endress PK. 1998. Gynoecium diversity and systematics of the paleoherbs. – Bot. J. Linn. Soc. 127: 289-370.

Igersheim A, Buzgo M, Endress PK. 2001. Gynoecium diversity and systematics in basal monocots. – Bot. J. Linn. Soc. 136: 1-65.

Igic B, Kohn JR. 2001. Evolutionary relationships among self-incompatibility RNases. – Proc. Natl. Acad. Sci. U.S.A. 98: 13167-13171.

Igic B, Bohs L, Kohn JR. 2006. Ancient polymorphism reveals unidirectional breeding system shifts. – Proc. Natl. Acad. Sci. U.S.A. 103: 1359-1363.

Ihlenfeldt H-D. 1971. Über ontogenetische Abbreviationen und Zeitkorrelationsänderungen und ihre Bedeutung für Morphologie und Systematik. – Ber. Deutsch. Bot. Ges. 84: 91-107.

Ikuse M. 1956. Pollen grains of Japan. – Hirokawa Publ. Co., Tokyo.

Iles WJD, Smith SY, Graham SW. 2013. A well-supported phylogenetic framework for the monocot order Alismatales reveals multiple losses of the plastid NADH dehydrogenase complex and a strong long-branch effect. – In: Wilkin P, Mayo SJ (eds), Early events in monocot evolution, Cambridge University Press, Cambridge, pp. 1-28.

Iles WJD, Smith SY, Gandolfo MA, Graham SW. 2015. Monocot fossils suitable for molecular dating analyses. – Bot. J. Linn. Soc. 178: 346-374.

Imaichi R, Hiratsuka R. 2007. Evolution of shoot apical meristem structures in vascular plants with respect to plasmodial network. – Amer. J. Bot. 94: 1911-1921.

Inamdar JA, Shenoy KN, Rao NV. 1983. Leaf architecture of some monocotyledons with reticulate venation. – Ann. Bot., N. S., 52: 725-735.

Incoll LD, Bonnett GD, Gott B. 1989. Fructans in the underground storage organs of some Australian plants used as food by aborigines. – J. Plant Physiol. 134: 196-202.

Ingle HD, Dadswell HE. 1953. The anatomy of timbers of the South-West Pacific area. – Aust. J. Bot. 1: 353-401.

Inouye H, Uesato S. 1986. Biosynthesis of iridoids and secoiridoids. – Prog. Chem. Org. Nat. Prod. 50: 169-236.

Iqbal M (ed). 1995a. The cambial derivatives. Handbuch der Pflanzenanatomie, Spez. Teil, IX, 4. – Bornträger, Berlin.

Iqbal M. 1995b. Ultrastructural differentiation of sieve elements. – In: Iqbal M (ed), The cambial derivatives, Handbuch der Pflanzenanatomie, Spez. Teil, IX, 4, Bornträger, Berlin, pp. 241-270.

Iqbal M, Zahur MS. 1995. Secondary phloem: origin, structure and specialization. – In: Iqbal M (ed), The cambial derivatives, Handbuch der Pflanzenanatomie, Spez. Teil. IX, 4, Bornträger, Berlin, pp. 187-240.

Irish VF. 1999. Patterning the flower. – Devel. Biol. 209: 211-220.

Irish VF. 2003. The evolution of floral homeotic gene function. – BioEssays 25: 637-646.

Irish VF. 2006. Duplication, diversification, and comparative genetics of angiosperm MADS-box genes. – Adv. Bot. Res. 44: 129-161.

Irish VF. 2009. Evolution of petal identity. – J. Experim. Bot. 60: 2517-2527.

Irvine AK, Armstrong JE. 1990. Beetle pollination in tropical forests of Australia. – In: Bawa KS, Hadley M (eds), Reproductive ecology of tropical forest plants, Man Biosph. Ser. 7: 135-148.

Islebe GA, Hooghiemstra H. 1995. Recent pollen spectra of Highland Guatemala. – J. Biogeogr. 22: 1091-1099.

Iwashina T. 2000. The structure and distribution of the flavonoids in plants. – J. Plant Res. 113: 287-299.

Jabbour F, Damerval C, Nadot S. 2008. Evolutionary trends in the flowers of Asteridae: is polyandry an alternative to zygomorphy? – Ann. Bot. 102: 153-165.

Jabbour F, Nadot S, Damerval C. 2009. Evolution of floral symmetry: a state of the art. – Compt. Rend. Biol. 332: 219-231.

Jaccard P, Frey A. 1928. Kristallhabitus und Ausbildungsformen des Calciumoxalats als Artmerkmal. – Vierteljahrschr. Naturforsch. Ges. Zür. 73, Beiheft: 126-161.

Jacobs BF. 2004. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah. – Phil. Trans. Roy. Soc. London, B, 359: 1573-1583.

Jacobsen H. 1960. A handbook of succulent plants 3. – Blandford, London.

Jacques-Félix H. 1988. Liliopsida (ex monocotyledons) n’ont pas de cotylédon II. La préfeuille de la plantule: ses rapports avec celles des axes feuillées. – Bull. Mus. Natl. Hist. Nat. Paris, sér IV, sect. B, Adansonia 10: 275-333.

Jäger EJ. 1964. Zur Deutung des Arealbildes von Wolffia arrhiza (L.) Wimm. und einiger anderer ornithochorer Wasserpflanzen. – Ber. Deutsch. Bot. Ges. 77: 101-111.

Jäger EJ. 1970. Charakteristische Typen mediterran-mitteleuropäischer Pflanzenareale. – Feddes Repert. 81: 67-92.

Jähnichen H. 1965. Beiträge zur Tertiärflora der Lausitz. Inkohlte Blätter und Epidermisstrukturen. – Monatsber. Deutsch. Akad. Wiss. Berlin 7: 664-670.

Jaillon O, Aury JM, Noel B, Plicriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot R, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vioco V, Fabbro C del, Alaux M, Gaspero G di, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. – Nature 449: 463-467.

Jakovleva OV. 198. Slime cells of the leaf epidermis in the dicotyledonous plants (electron microscope data). – Bot. Žurn. 73: 977-987.

Janchen E. 1950. Die Herkunft der Angiospermen-Blüte und die systematische Stellung der Apetalen. – Österr. Bot. Zeitschr. 97:129-167.

Jan du Chêne RE, Onyike MS, Sowunmi MA. 1978. Some new Eocene pollen of the Ogwashi-Asabe Formation, south-eastern Nigeria. – Rev. Esp. Micropaleont. 10: 285-322.

Jankun A. 1990. Further studies in chromosome numbers of Polish angiosperms 23. – Acta Biol. Cracov., Ser. Bot., 32: 172-183.

Janovec JP, Clark LG, Mori SA. 2003. Is the neotropical flora ready for the PhyloCode. – Bot. Rev. 69: 22-43.

Jansen RK, Kaittanis C, Lee S-B, Saski C, Tomkins J, Alverson AJ, Daniell H. 2006. Phylogenetic analysis of Vitis (Vitaceae) based on complete chloroplast genome sequences: effect of taxon sampling and phylogenetic methods on resolving relationships among rosids. – BMC Evol. Biol. 6: 21.

Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL. 2007. Analysis of 81 genes from 64 chloroplast genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. – Proc. Natl. Acad. Sci. U.S.A. 104: 19369-19374.

Jansen RK, Saski C, Lee S-B, Hansen AK, Daniell H. 2011. Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. – Mol. Biol. Evol. 28: 835-847.

Jansen S, Smets E, Baas P. 1998. Vestures pits in woody plants: a review. – IAWA J. 19: 347-382.

Jansen S, Baas P, Smets E. 2001. Vestured pits: their occurrence and systematic importance in eudicots. – Taxon 50: 135-167.

Jansen S, Broadley MR, Robbrecht E, Smets E. 2002. Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. – Bot. Rev. 68: 235-269.

Jansen S, Baas P, Gasson P, Lens F, Smets E. 2004. Variation in xylem structure from tropics to tundra: evidence from vestured pits. – Proc. Natl. Acad. Sci. U.S.A. 101: 8833-8837.

Jansen S, Choat B, Pletsers A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. – Amer. J. Bot. 96: 409-412.

Janssen T, Bremer K. 2004. The age of major monocot groups inferred from 800+ rbcL sequences. – Bot. J. Linn. Soc. 146: 385-398.

Janssonius HH. 1906-1936. Mikrographie des Holzes der auf Java vorkommenden Baumarten I-VI. – E. J. Brill, Leiden.

Janssonius HH. 1950. Wood anatomy and relationship. Taxonomic notes in connection with the key to the Javanese woods. – Blumea 6: 407-461.

Janz N, Nylin S. 1998. Butterflies and plants: a phylogenetic study. – Evolution 52: 486-502.

Janz N, Nyblom K, Nylin S. 2001. Evolutionary dynamics of host plant specialization: a case study of the tribe Nymphalini. – Evolution 55: 783-796.

Janzen DH. 1969. Seed-eaters versus seed size, number, toxicity and dispersal. – Evolution 23: 1-27.

Janzen DH. 1971. Euglossine bees as long-distance pollinators of tropical plants. – Science 171: 203-205.

Janzen DH. 1982. Ecological distribution of chlorophyllous developing embryos among perennial plants in a tropical deciduous forest. – Biotropica 14: 232-236.

Jarolimova V. 1994. Chromosome counts of some Cuban angiosperms. – Folia Geobot. Phytotaxon. 29: 101-106.

Jaramillo CA, Dilcher DL. 2001. Middle Paleogene palynology of central Colombia, South America: a study of pollen and spores from tropical latitudes. – Palaeontographica, Abt. B, 258: 87-213.

Jaramillo CA, Rueda MJ, Mora G. 2006. Cenozoic plant diversity in the Neotropics. – Science 311: 1893-1896.

Jardiné S, Doerenkamp A, Biens P. 1974. Dicheiropollis etruscus, un pollen caractéristique de Crétacé inférieur afro-sudaméricain. Conséquences pour l’évaluation des unités climatiques et implications dans la dérive des continents. – Bull Sci. Géol. Strasbourg 27: 69-85.

Jarmolenko AV. 1935. The Upper Cretaceous flora of the North-Western Kara-Tau. – Acta Univ. Asiae Mediae. Ser. Viiib. Bot. 28: 1-36.

Jarzen DM. 1978. Some Maastrichtian palynomorphs and their phytogeographical and palaeoecological implications. – Palynology 2: 29-38.

Jarzen DM. 1982. Palynology of Dinosaur Provincial Park (Campanian) Alberta. – Syllogeus 38: 1-69.

Jarzen DM, Norris G. 1975. Evolutionary significance and botanical relationships of Cretaceous angiosperm pollen in the western Canadian interior. – Geosci. Man 11: 47-60.

Jeffree CE. 1986. The cuticle, epicuticular waxes and trichomes of plants, with references to their structure, functions and evolution. – In: Juniper BE, Southwood R (eds), Insects and plant surfaces, Edward Arnold, London, pp. 23-64.

Jeffree CE. 1996. Structure and ontogeny of plant cuticles. – In:Kerstiens G (ed), Plant cuticles: an integrated functional approach, BioScientific, Oxford, pp. 33-82.

Jeffree CE, Baker EA, Holloway PJ. 1975. Ultrastructure and recrystallization of plant epicuticular waxes. – New Phytol. 75: 539-549.

Jeffree CE, Baker EA, Holloway PJ. 1976. Origins of the fine structure of plant epicuticular waxes. – In: Dickinson CH, Preece TF (eds), Microbiology of aerial plant surfaces, Academic Press, London, New York, pp. 119-158.

Jeffrey EC. 1917. The anatomy of woody plants. – University of Chicago, Chicago.

Jensen SR. 1991a. Plant iridoids, their biosynthesis and distribution in angiosperms. – In: Harborne JB, Tomas-Barberan FA (eds), Ecological chemistry and biochemistry of plant terpenoids, Clarendon Press, Oxford, pp. 132-158.

Jensen SR. 1991b. Steps toward the natural system of the dicotyledons: serological characters. – Aliso 13: 183-190.

Jensen SR. 1992. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. – Ann. Missouri Bot. Gard. 79: 284-302.

Jensen SR, Nielsen BJ, Dahlgren RMT. 1975. Iridoid compounds, their occurrence and systematic importance in the angiosperms. – Bot. Not. 128: 148-180.

Jensen U, Büttner C. 1981. The distribution of storage proteins in Magnoliophyta (angiosperms) and their serological similarities. – Taxon 30: 404-419.

Jensen U, Fairbrothers DE (eds). 1983. Proteins and nucleic acids in plant systematics. – Springer, Berlin, Heidelberg.

Jensen U, Greven B. 1984. Serological aspects and phylogenetic relationships of the Magnoliidae. – Taxon 33: 563-577.

Jensen U, Grumpe B. 1983. Seed storage proteins. – In: Jensen U, Fairbrothers DE (eds), Proteins and nucleic acids in plant systematics, Springer, Berlin, Heidelberg, pp. 238-254.

Jeong SC, Ritchie NJ, Myrold DD. 1999. Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. – Mol. Phylogen. Evol. 13: 493-503.

Jesson LK, Barrett SCH. 2003. The comparative biology of mirror-image flowers. – Intern. J. Plant Sci. 164(Suppl.): S237-S249.

Jetter R. 1993. Chemische Zusammensetzung, Struktur und Bildung röhrchenförmiger Wachskristalle auf Pflanzenoberflächen. – Ph.D. diss., Kaiserslautern, Germany.

Jetter R, Riederer M. 1994. Epicuticular crystals of nonacosan-10-ol: in-vitro reconstitution and factors influencing crystal habits. – Planta 195: 257-270.

Jetter R, Riderer M. 1995. In-vitro reconstitution of epicuticular wax crystals: formation of tubular aggregates by long chain secondary alkanediols. – Bot. Acta 108: 111-120.

Ji Q, Bowe LM, Liu Y, Taylor DW. 2004. Early Cretaceous Archaefructus eoflora sp. nov., with bisexual flowers from Beipiao, western Liaoning, China. – Acta Geol. Sin. 78: 883-896.

Jiao Y, Paterson AH. 2014. Polyploidy-associated genome modifications during land plant evolution. – Philos. Trans. R. Soc. B 369: 20130355.

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW. 2011. Ancestral polyploidy in seed plants and angiosperms. – Nature 473: 97-100.

Jobson RW, Albert A. 2002. Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. – Cladistics 18: 127-136.

Jobson RW, Nielsen R, Laakkonen L, Wikström M, Albert VA. 2004. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. – Proc. Natl. Acad. Sci. U.S.A. 101: 18064-18068.

Joel DM. 1988. Mimicry and mutualism in carnivorous pitcher plants (Sarraceniaceae, Nepenthaceae, Cephalotaceae, Bromeliaceae). – Biol. J. Linn. Soc. 35: 185-197.

Joel DM, Juniper BE, Dafni A. 1985. Ultraviolet patterns in the traps of carnivorous plants. – New Phytol. 101: 585-593.

Johansen B, Pedersen LB, Skipper M, Frederiksen S. 2002. MADS-box gene evolution – structure and transcription patterns. – Mol. Phylogen. Evol. 23: 458-480.

Johansen B, Frederiksen S, Skipper M. 2006. Molecular basis of development in petaloid monocot flowers. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 151-158.

Johansen DA. 1950. Plant embryology. Embryology of the Spermatophyta. – Chronica Botanica Company, Waltham, Massachusetts.

Johnson AW, Packer JG. 1968. Chromosome numbers in the flora of Ogotoruk Creek, N. W. Alaska. – Bot. Not. 121: 403-456.

Johnson KR. 1996. Description of seven common plant megafossils from the Hell Creek Formation (Late Cretaceous: late Maastrichtian), North Dakota, South Dakota, and Montana. – Proc. Denver Mus. Nature Sci 3: 1-47.

Johnson KR. 2002. Megaflora of the Hell Creek and lower Fort Union Formations in the western Dakotas: vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression. – Geol. Soc. Amer., Spec. Pap. 361: 329-391.

Johnson KR, Reynolds ML, Werth KW, Thomasson JR. 2003. Overview of the Late Cretaceous, early Paleocene, and early Eocene megafloras of the Denver Basin, Colorado. – Rocky Mountain Geol. 38: 101-120.

Johnson MAT, Brandham PE. 1997. New chromosome numbers in petaloid monocotyledons and in other miscellaneous angiosperms. – Kew Bull. 52: 121-138.

Johnson P, Brooke P. 1989. Wetland plants in New Zealand. – DSIR Publ., Wellington, New Zealand.

Johri BM. 1970. Symposium on comparative embryology of angiosperms. – Proc. Indian Natl. Sci. Acad., Sect. B, 41: 1-385.

Johri BM (ed). 1984. Embryology of angiosperms. – Springer, Berlin, Heidelberg, New York.

Johri BM, Ambegaokar KB, Srivastava PS. 1992. Comparative embryology of angiosperms 1-2. – Springer, Berlin, Heidelberg, New York.

Johri MM. 1966. The style, stigma and pollen tube II. Some taxa of the Liliaceae and Trilliaceae. – Phytomorphology 16: 92-109.

Joly S, Bouillet L, Bruneau A. 2001. Phylogenetic implications of the multiple losses of the mitochondrial coxII.i3 intron in the angiosperms. – Intern. J. Plant Sci. 162: 359-373.

Jones K, Smith JB. 1967. The karyotypes of twenty-five tropical species. – Kew Bull. 21: 31-33.

Jones ME. 1908. New species and notes. – Contr. West. Bot. 12: 1-81.

Jones OA. 1926. The Tertiary deposits of the Moreton district. – Proc. Roy. Soc. Queensland 38: 23-46.

Jones Q, Earle FR. 1966. Chemical analyses of seeds II. Oil and protein content of 759 species. – Econ. Bot. 20: 127-155.

Joppa LN, Roberts DL, Pimm SL. 2010. How many species of flowering plants are there? – Proc. Roy. Soc. B, 278: 554-559.

Jordan GJ, Carpenter JR, Hill RS. 1991. Late Pleistocene vegetation and climate near Melaleuca Inlet, south-west Tasmania, as inferred from fossil evidence. – Aust. J. Bot. 39: 315-333.

Jordan GJ, Macphail MK, Barnes RW, Hill RS. 1995. An Early to Middle Pleistocene flora of subalpine affinities in lowland Western Tasmania. – Aust. J. Bot. 43: 231-242.

Jud NA, Hickey LJ. 2013. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac group and its implications for the evolution of eudicot leaf archictecture. – Amer. J. Bot. 100: 2437-2449.

Judd WS. 1985. A revised traditional/descriptive classification of fruits for use in floristics and teaching. – Phytologia 58: 232-242.

Judd WS, Olmstead RG. 2004. A survey of tricolpate (eudicot) phylogenetic relationships. – Amer. J. Bot. 91: 1627-1644.

Judd WS, Sanders RW, Donoghue MJ. 1994. Angiosperm family pairs: preliminary phylogenetic analysis. – Harvard Pap. Bot. 5: 1-51.

Judd WS, Campbell CS, Kellogg EA, Stevens PF. 1999. Plant systematics – a phylogenetic approach. – Sinauer Associates, Sunderland, Massachusetts.

Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. 2002. Plant systematics – a phylogenetic approach, 2nd ed. – Sinauer Associates, Sunderland, Massachusetts.

Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. 2008. Plant systematics – a phylogenetic approach. 3rd ed. – Sinauer Associates, Sunderland, Massachusetts.

Juhász M, Góczán F. 1985. Comparative study of Albian monosulcate angiosperm pollen grains. – Acta Biol. Szeged. 31: 147-172.

Juhnke G, Winkler H. 1938. Der Balg als Grundelement des Angiospermengynaeceums. – Beitr. Biol. Pfl. 25: 290-324.

Jumelle H, Perrier de la Bâthie H. 1912. Quelques phanérogames parasites de Madagascar. – Rev. Gén. Bot. 24: 321-328.

Jumpponen A, Jones KL. 2009. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. – New Phytol. 184: 438-448.

Juniper BE, Robins RJ, Joel DM. 1989. The carnivorous plants. – Academic Press, London, San Diego.

Kadono Y. 1994. Aquatic plants of Japan. – Bun-ichi Sogo Shuppan Co., Ltd., Tokyo.

Kahlert E, Rüffle L. 2008. Monokotylen in der mitteleozänen Braunkohle des Geiseltales be Merseburg (Sachsen-Anhalt) und ihre ökologische Bedeutung. – Feddes Repert. 119: 217-224.

Kalisz S, Ree RH, Sargent RD. 2006. Linking floral symmetry genes to breeding system evolution. – Trends Plant Sci. 11: 568-573.

Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, Humphries CJ, Petersen G, Seberg O, Bremer K. 1998. Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. – Plant Syst. Evol. 213: 259-287.

Kamari G, Matthäs U. 1986. Cytotaxonomical contributions on the flora of Crete III. – Willdenowia 15: 515-520.

Kamienski F. 1891. Lentibulariaceae. – In: Engler A, Prantl K (eds), Die natürlichen Pflanzenfamilien IV, 3b, W. Engelmann, Leipzig, pp. 108-123.

Kapil RN, Bhatnagar AK. 1980. Embryology in relation to angiosperm taxonomy. – In: Nair PKK (ed), Glimpses in plant research 5, Vikas Publ. House, New Delhi, pp. 272-295.

Kapil RN, Bhatnagar AK. 1991. Embryological evidence in angiosperm classification and phylogeny. – Bot. Jahrb. Syst. 113: 309-338.

Kapil RN, Tiwari SC. 1978. The integumentary tapetum. – Bot. Rev. 44: 457-490.

Kaplan DR. 1973. The monocotyledons: their evolution and comparative biology VII. The problem of leaf morphology and evolution in the monocotyledons. – Quart. Rev. Biol. 48: 437-457.

Kaplan DR. 1975. Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. – Bot. Jahrb. Syst. 95: 1-105.

Kaplan DR, Cooke TJ. 1997. Fundamental concepts in the embryogenesis of dicotyledons: a morphological interpretation of embryo mutants. – Plant Cell 9: 1903-1919.

Kaplan MAC, Gottlieb OR. 1982. Iridoids as systematic markers in dicotyledons. – Biochem. Syst. Ecol. 10: 329-347.

Kapoor BM, Ramcharitar S, Gervais C. 1987. Liste annotée de nombres chromosomiques de la flora vasculaire du nord-est de l’Amérique. – Natur. Can. 114: 105-116.

Kårehed J. 2002. Introduction. – In: Evolutionary studies in asterids emphasising euasterids II, Acta Univ. Upsal., Uppsala, pp. 5-50.

Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U. 2011. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. – Plant Physiol. 156: 1967-1977.

Karsten G. 1918. Zur Phylogenie der Angiospermen. – Zeitschr. Bot. 10: 369-388.

Katayama H, Ogihara Y. 1993. Structural alterations of the chloroplast genome found in grasses are not common in monocots. – Curr. Gen. 23: 160-165.

Katayama H, Ogihara Y. 1996. Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. – Curr. Gen. 29: 572-581.

Kato M. 1996. Plant-pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. – Amer. J. Bot. 83: 732-743.

Kato M, Inoue T. 1994. Origin of insect pollination. – Nature 368: 195.

Katz O. 2018. Extending the scope of Darwin’s ‘abominable mystery’: integrative approaches to understanding angiosperm origins and species richness. – Ann. Bot. 121: 1-8.

Kauff F, Rudall PJ, Conran JG. 2000. Systematic root anatomy of Asparagales and other monocotyledons. – Plant Syst. Evol. 223: 139-154.

Kaul RB. 1976. Anatomical observations on floating leaves. – Aquatic Bot. 2: 215-234.

Kaul V, Koul AK, Sharma MC. 2000. The underground flower. – Curr. Sci. 78: 39-44.

Kaussmann B. 1941. Vergleichende Untersuchungen über die Blattnatur der Kelch-, Blumen- und Staubblätter. – Bot. Archiv 42: 503-572.

Kaussmann B. 1955. Histogenetische Untersuchungen zum Flachsproßproblem. – Bot. Stud. (Jena) 3: 1-136.

Kay KM, Sargent RD. 2009. The role of animal pollination in plant speciation: ecology, geography, and genetics. – Ann. Rev. Ecol. Syst. 40: 637-656.

Kay KM, Voelckel C, Yang JY, Hufford KM, Kaska DD, Hodges SA. 2006. Floral characters and species diversification. – In: Harder LD, Barrett SCH (eds), Ecology and evolution of flowers, Oxford University Press, Oxford, pp. 311-325.

Kay KM, Whittall JB, Hodges SA. 2006. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. – BMC Evol. Biol. 6: 36.

Kay QON, Daoud HS, Stirton CH. 1981. Pigment distribution, light reflection and cell structure in petals. – Bot. J. Linn. Soc. 83: 57-84.

Kayser G. 1893. Beiträge zur Kenntnis der Entwicklungsgeschichte der Samen mit besonderer Berücksichtigung des histogenetischen Aufbaues der Samenschalen. – Jahrb. Wiss. Bot. 25: 79-148.

Keating JM. 1992. Palynology of the Lachman Crags member, Santa Marta Formation (Upper Cretaceous) of north-west James Ross Island. – Antarctic Sci. 4: 293-304.

Kedves M. 1989. Evolution of the Normapolles complex. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 2, ‘Higher’ Hamamelidae, Systematics Association, Spec. Vol. 40B, Clarendon Press, Oxford, pp. 1-7.

Keeley JE. 1998. CAM photosynthesis in submerged aquatic plants. – Bot. Rev. 64: 121-175.

Keeley JE, Rundel PW. 2003. Evolution of CAM and C4 carbon-concentrating mechanisms. – Intern. J. Plant Sci. 164(suppl. 3): S55-S77.

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. – Nat. Rev. Genet. 9: 605-617.

Keijzer CJ. 1987. The processes of anther dehiscence and pollen dispersal II. The formation and the transfer mechanism of pollen kitt, cell-wall development of the loculus tissues and a function of orbicules in pollen dispersal. – New Phytol. 105: 499-507.

Keller R. 1994. Negelcted vegetative characters in field identification at the supraspecific level in woody plants: phyllotaxy, serial buds, syllepsis and architecture. – Bot. J. Linn. Soc. 116: 33-51.

Keller R. 1996. Identification of tropical woody plants in the absence of flowers and fruits: a field guide. – Birkhäuser, Basel.

Keller R. 2004. Identification of tropical woody plants in the absence of flowers: a field guide. 2nd ed. – Birkhäuser, Basel.

Kelley DR, Gasser CS. 2009. Ovule development: genetic trends and evolutionary considerations. – Sex. Plant Reprod. 22: 229-234.

Kellogg EA. 1998. Who’s related to whom? Recent results from molecular systematic studies. – Curr. Opin. Plant Biol. 1: 149-158.

Kellogg EA. 1999. Phylogenetic aspects of the evolution of C4 photosynthesis. – In: Sage RF, Monson RK (eds), C4 plant biology, Academic Press, San Diego, California, pp. 411-444.

Kellogg EA. 2000. A model of inflorescence development. – In: Wilson KL, Morrison AA (eds), Monocots: systematics and evolution, CSIRO Publ., Melbourne, pp. 84-88.

Kellogg EA, Bennetzen JL. 2004. The evolution of nuclear genome structure in seed plants. – Amer. J. Bot. 91: 1709-1725.

Kemp EM. 1968. Probable angiosperm pollen from British Barremian to Albian strata. – Palaeontology 11: 421-434.

Kemp EM. 1970. Aptian and Albian miospores from southern England. – Palaeontographica, Ser. B, 131: 73-143.

Kemp EM, Harris WK. 1975. The vegetation of Tertiary islands on the Ninetyeast Ridge. – Nature 258: 303-307.

Kennedy EM, Lovis JD, Daniel JL. 2003. Discovery of a Cretaceous angiosperm reproductive structure from New Zealand. – New Zealand J. Geol. Geophys. Abstr. 46: 519-522.

Kennedy RA, Laetsch WM. 1974. Plant species intermediate for C3, C4 photosynthesis. – Science 184. 1087-1089.

Kerner von Marilaun A. 1891. Pflanzenleben. – Leipzig, Wien.

Kerr AFG. 1938. Contributions to the flora of Siam XIX. – Kew Bull. 1938: 127-133.

Kerstens S, Verbelen J-P. 2002. Cellulose orientation in the outer epidermal wall of angiosperm roots: implications for biosystematics. – Ann. Bot. 90: 669-676.

Khatoon S, Ali SI. 1982. Chromosome numbers of some plants of Pakistan. – Pakistan J. Bot. 14: 117-129.

Kiehn M. 2005. Chromosome numbers of Hawaiian angiosperms: new records and comments. – Pacific Sci. 59: 363-377.

Kiehn M, Jodl M, Jakubowsky G. 2005. Chromosome numbers of angiosperms from the Juan Fernández Islands, the Tristan da Cunha Archipelago, and from Mainland Chile. – Pacific Sci. 59: 453-460.

Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W. 2005. Global patterns of plant diversity and floristic knowledge. – J. Biogeogr. 32: 1107-1116.

Kiew R, Lajis NH, Anthonysamy S, Bakar I, Lim CG, Yusuf O, Ravindran A, Salam MR. 1987. A phytochemical survey at Ulu Endau, Johore, Malaysia. – Malayan Nat. J. 41: 329-336.

Kim S, Soltis DE, Soltis PS, Zanis MJ, Suh Y. 2004. Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody? – Mol. Phylogen. Evol. 31: 16-30.

Kim S, Yoo M-J, Albert VA, Farris JS, Soltis PS, Soltis DE. 2004. Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. – Amer. J. Bot. 91: 2102-2118.

Kim S, Koh J, Kong H, Hu Y, Ma H, Soltis PS, Soltis DS. 2005. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. – Plant J. 43: 724-744.

Kimura T, Ohana T. 1992. Cretaceous palaeobotany and phytogeography in eastern Eurasia. – Paleontol. Soc. Korea, Spec. Publ. 1: 27-34.

Kimura Y. 1956. Système et phylogénie des monocotyledones. – Notul. Syst. (Paris) 15: 137-159.

King G, Prain D. 1898. Descriptions of some new plants from the north-eastern frontiers of India. – J. Asiat. Soc. Bengal 67: 284-305.

Kingsbury JM. 1964. Poisonous plants of the United States and Canada. – Prentice-Hall, Englewood Cliffs, Colorado.

Kirchheimer F. 1937. Beiträge zur Kenntnis der Tertiärflora. Früchte und Samen aus dem deutschen Tertiär. – Palaeontographica, Ser. B, 82: 73-141.

Kirchheimer F. 1938. Palaeobotanische Mitteilungen V und VI. – Zentralbl. Mineral. Geol. Palaeontol. 12: 487-507.

Kirchheimer F. 1943. Bemerkenswerte Frucht- und Samenreste, besonders aus den Braunkohlenschichten der Lausitz. – Bot. Arch. 44: 362-430.

Kirchheimer F. 1957. Die Laubgewächse der Braunkohlenzeit. – VEB Wilhelm Knapp, Halle/Saale.

Kite GC, Grayer RJ, Rudall PJ, Simmonds MSJ. 2000. The potential for chemical characters in monocotyledon systematics. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO, Collingwood, pp. 101-113.

Kivlin SN, Hawkes CV, Treseder KT. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. – Soil Biol. Biochem. 43: 2294-2303.

Kjær A. 1960. Naturally derived isothiocyanates (mustard oils) and their parent glucosides. – Fortschr. Chem. Org. Naturst. 18: 122-176.

Kjær A. 1973. The natural distribution of glucosinolates: a uniform group of sulfur-containing glucosides. – In: Bendz G, Santesson J (eds), Chemistry in botanical classification, Proceedings of the 25th Nobel Symposium, Academic Press, New York, pp. 229-234.

Kjær A, Conti J. Larsen I. 1953. Isothiocyanates IV. A systematic investigation of the occurrence and chemical nature of volatile isothiocyanates in seeds of various plants. – Acta Chem. Scand. 7: 1276-1283.

Kliphuis E, Barkoudah YJ. 1977. Chromosome numbers in some Syrian angiosperms. – Acta Bot. Neerl. 26: 239-249.

Klopfer K. 1969. Zur Ontogenese und Evolution des parakarpen Gynaeceums. – Wiss. Zeitschr. Pädagog. Hochsch. Potsdam 13: 207-243.

Kluge M, Ting IP. 1978. Crassulacean acid metabolism. – Springer, Berlin, Heidelberg, New York.

Kmenta M, Zetter R. 2013. Combined LM and SEM study of the upper Oligocene/lower Miocene palynoflora from Altmittweida (Saxony): providing new insights into Centozoic vegetation evolution of Central Europe. – Rev. Palaeobot. Palynol. 195: 1-18.

Knaben G, Engelskjön T. 1967. Chromosome numbers of Scandinavian arctic-alpine plant species II. – Acta Borealia A. Sci. 21: 1-57.

Knobloch E. 1964. Neue Pflanzenfunde aus dem südböhmischen Senon. – Jahrb. Staatl. Mus. Mineral. Geol. Dresden 1964: 133-201.

Knobloch E. 1971. Fossile Früchte und Samen aus der Flyschzone der mährischen Karpaten. – Sborník geologických Ved, Paleontologie 13: 7-46.

Knobloch E. 1975. Früchte und Samen aus der Gosauformation von Kössen in Österreich. – Věstnik Ústředního ústavu geologického 50: 83-91.

Knobloch E. 1977a. Fossile Pflanzenreste aus der Kreide und dem Tertiär von Österreich. – Verh. Geol. Bundesanst. 3: 415-426.

Knobloch E. 1977b. Paläokarpologische Characteristik der Flyschzone der mährischen Karpaten. – Sborník geologických Ved, Paleontologie 19: 79-137.

Knobloch E, Mai D-H. 1983. Carbonized seeds and fruits from the Cretaceous of Bohemia and Moravia and their stratigraphical significance. – Knihovnicka Zemního plynu a nafty 4: 305-332.

Knobloch E, Mai D-H. 1984. Neue Gattungen nach Früchten und Samen aus dem Cenoman bis Maastricht (Kreide) von Mitteleuropa. – Feddes Repert. 95: 3-41.

Knobloch E, Mai D-H. 1986. Monographie der Früchte und Samen in der Kreide von Mitteleuropa. – Rozpravy ústředního ústavu geologickénho, Českol. Akademie ved, Praha, 47: 1-219.

Knoll F. 1948. Bau, Entwicklung und morphologische Bedeutung unifazialer Vorläuferspitzen an Monokotylen-blättern. – Österr. Bot. Zeitschr. 95: 163-193.

Knowlton FH. 1930. The flora of the Denver and associated formations of Colorado. – U.S. Dept. Inter. Geol. Survey, Prof. Paper 155: 1-142.

Knox RB, McConchie CA. 1986. Structure and function of compound pollen. – In: Blackmore S, Ferguson IK (eds), Pollen and spores: form and function, Academic Press, London, pp. 265-282.

Knuth P. 1904. Handbuch der Blütenbiologie 3. – W. Engelmann, Leipzig.

Koch BE. 1963. Fossil plants from the lower Paleocene of the Agatdalen (Angmârtussut) area, central Nûgssuaq Peninsula, northwest Greenland. – Bull. Grønlands Geol. Undersøgelse 38: 1-120.

Koch BE. 1964. Review of fossil floras and nonmarine deposits of West Greenland. – Geol. Soc. Amer. Bull. 75: 535-548.

Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M. 2003. Evolution and divergence of MADS-box gene family based on genome wide expression analyses. – Mol. Biol. Evol. 20:1963-1977.

Koidzumi G. 1925. Contributiones ad cognitionem florae Asiae Orientalis XII. – Bot. Mag. (Tokyo) 39: 1-30.

Konda K. 1969. Chromosome numbers of carnivorous plants. – Bull. Torrey Bot. Club 96: 322-328.

Konda K. 1972. Chromosome numbers of some angiosperms in the United States II. – Phyton 30: 47-51.

Konno K. 2011. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. – Phytochemistry 72: 1510-1530.

Kooiman P. 1957. Amyloids of plant seeds. – Nature 179: 107-109.

Kooiman P. 1960. On the occurrence of amyloids in plant seeds. – Acta Bot. Neerl. 9: 208-219.

Koorders SH. 1897. Ueber die Blüthenknospen-Hydathoden einiger tropischen Pflanzen. – Sijfert Hendrik, Leiden.

Koppelhus EB, Batten DJ. 1989. Late Cretaceous megaspores from southern Sweden: morphology and palaeoenvironmental significance. – Palynology 13: 91-120.

Kosenko VN. 2001. Palynological data on the systematics of the superorder Lilianae. – Bot. Žurn. 86: 1-17.

Kottke I, Oberwinkler F. 1987. The cellular structure of the Hartig net: coenocytic and transfer cell-like organization. – Nord. J. Bot. 7: 85-95.

Kottke I, Haug I, Setaro S, Suárez JP, Weiss M, Preussing M, Nebel M, Oberwinkler F. 2008. Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. – Basic Appl. Ecol. 9: 13-23.

Koul AK, Wakhlu AK. 1976. Chromosome numbers of 52 dicot species of Kashmir. – Chromosome Inform Serv. 21: 4-6.

Koul AK, Wakhlu AK, Karihaloo JL. 1976. Chromosome numbers of some flowering plants of Jammu (Western Himalayas) II. – Chromosome Inform. Serv. 20: 32-33.

Koul KK, Gohil RN. 1988. SOCGI plant chromosome number reports VI. – J. Cytol. Genet. 23: 38-52.

Krach JE. 1976. Samenanatomie der Rosifloren I. Die Samen der Saxifragaceae. – Bot. Jahrb. Syst. 97: 1-60.

Krach JE. 1977. Seed characters in and affinities among the Saxifragineae. – In: Kubitzki K (ed), Flowering plants – evolution of higher categories, Plant Syst. Evol. [Suppl.] 1: 141-153.

Krahulcova A. 1990. Selected chromosome counts of the Czechoslovak flora II. – Folia Geobot. Phytotaxon. 25: 381-388.

Kramer K. 1974. Die tertiären Hölzer Südost-Asiens (unter Ausschluss der Dipterocarpaceae) 2. – Palaeontographica, B, 145: 1-150.

Kramer EM, Irish VF. 1999. Evolution of genetic mechanisms controlling petal development. – Nature 399: 144-148.

Kramer EM, Irish VF. 2000. Evolution of petal and stamen developmental programs: evidence from comparative studies of lower eudicots and basal angiosperms. – Intern. J. Plant Sci. 161(Suppl.): S29-S40.

Kramer EM, Jaramillo MA. 2005. Genetic basis for innovations in floral organ identity. – J. Exper. Zool. 304B: 526-535.

Kramer EM, Zimmer EA. 2006. Gene duplication and floral developmental studies of basal eudicots. – Adv. Bot. Res. 44: 353-384.

Kramer EM, Dorit RL, Irish VF. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. – Genetics 149: 765-783.

Kramer EM, Jaramillo MA, Di Stilio VS. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. – Genetics 166: 1011-1023.

Kramer EM, Su H-J, Wu C-C, Hu J-M. 2006. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. – BMC Evol. Biol. 6: 30.

Krassilov VA. 1977. The origin of angiosperms. – Bot. Rev. 43: 145-176.

Krassilov VA. 1984. New paleobotanical data on origin and early evolution of angiospermy. – Ann. Missouri Bot. Gard. 71: 577-592.

Krassilov VA. 1986. New floral structures from the Lower Cretaceous of Lake Baikal area. – Rev. Palaeobot. Palynol. 47: 9-16.

Krassilov VA. 1991. The origin of angiosperms: new and old problems. – Trends Ecol. Evol. 6: 215-220.

Krassilov VA. 1997. Angiosperm origins: morphological and ecological spects. – Pensoft, Sofia, Bulgaria.

Krassilov VA. 2004. Cretaceous floral structures from Negev, Israel as evidence of angiosperm radiation in the Gondwana realm. – Acta Palaeobot. 44: 37-53.

Krassilov VA, Bacchia F. 2000. Cenomanian florule of Nammoura, Lebanon. – Cretaceous Res. 21: 785-799.

Krassilov VA, Bugdaeva EV. 1982. Achene-like fossils from the Lower Cretaceous of the lake Baikal area. – Rev. Palaeobot. Palyn. 36: 279-295.

Krassilov VA, Dobruskina IA. 1995. Angiosperm fruit from the Lower Cretaceous of Israel and origins in rift valleys. – Paleontol. J. 29: 110-115.

Krassilov VA, Golovneva LB. 2001. Inflorescence with tricolpate pollen grains from the Cenomanian of Tschulymo-Yenisey Basin, West Siberia. – Rev. Palaeobot. Palynol. 40: 91-113.

Krassilov VA, Golovneva LB. 2004. A minute mid-Cretaceous flower from Siberia and implications for the problem of basal angiosperms. – Geodiversitas 26: 5-15.

Krassilov VA, Silantieva N. 2005. Plant evolution in the Late Cretaceous (Turonian) of the southern Negev, Israel. – Israel J. Plant Sci. 53: 55-64.

Krassilov VA, Volynets Y. 2008. Weedy Albian angiosperms. – Acta Palaeobot. 48: 151-169.

Krassilov VA, Shilin PV, Vachrameev VA. 1983. Cretaceous flowers from Kazakhstan. – Rev. Palaeobot. Palynol. 40: 91-113.

Krassilov VA, Lewy Z, Nevo E, Silantieva N. 2005. Late Cretaceous (Turonian) flora of Southern Negev, Israel. – Pensoft, Sofia, Moscow.

Krause DW, Hartman JH. 1996. Late Cretaceous fossils from Madagascar and their implications for biogeographic relationships with the Indian subcontinent. – Mem. Geol. Surv. India, Palaeontologia Indica 37: 135-154.

Krause K. 1930. Liliaceae. – In: Engler A (ed), Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 15a, W. Engelmann, Leipzig, pp. 227-386.

Krause K. 2011. Piecing together the puzzle of parasitic plant plastome evolution. – Planta 234: 647-656.

Krause K. Scharff LB. 2013. Reduced genomes from parasitic plant plastids: templates for minimal plastomes? – Prog. Bot. 75: 97-115.

Kräusel R. 1929. Fossile Pflanzen aus dem Tertiär von Süd-Sumatra. – Verh. Geol. Mijnb. Gen. Nederl. Kol., Geol. Ser., S’Gravenhage.

Kräusel R, Weyland H. 1950. Kritische Untersuchungen zur Kutikularanalyse tertiärer Blätter I. – Palaeontographica, Ser. B, 91: 7-92.

Kress A. 1970. Zytotaxonomische Untersuchungen an einigen Insektenfängern (Droseraceae, Byblidaceae, Cephalotaceae. Roridulaceae, Sarraceniaceae). – Ber. Deutsch. Bot. Ges. 83: 55-62.

Kress WJ. 1986. The systematic distribution of vascular epiphytes: an update. – Selbyana 9: 2-22.

Kress WJ, Beach JH. 1994. Flowering plant reproductive systems. – In: McDade LA, Bawa KS, Hespenheide HA, Hartshorn GS (eds), La selva: ecology and natural history of a neotropical rain forest, University of Chicago Press, Chicago, Illinois.

Kress WJ, Stone DE. 1983. Pollen intine structure, cytochemistry and function in monocots. – In: Mulcahy DL, Ottaviano E (eds), Pollen: biology and implications for plant breeding, Elsevier, pp. 159-163.

Kribs DA. 1935. Salient lines of structural specialization in the wood rays of dicotyledons. – Bot. Gaz. 96: 547-557.

Kribs DA. 1937. Salient lines of structural specialization in the wood parenchyma of dicotyledons. – Bull. Torrey Bot. Club 64: 177-186.

Krishnamurthy KV, Indra R. 1985. The helobial endosperm. – J. Plant Sci. Res. 1: 134-141.

Krishnappa DG. 1971. Cytological studies in some aquatic angiosperms. – Proc. Indian Acad. Sci., Sect. B, 73. 179-185.

Krishnaswamy N, Rahman VS. 1949. A note on the chromosome numbers of some economic plants of India. – Curr. Sci. 18: 376-378.

Krogulevich RE. 1978. Karyological analysis of the species of the flora of eastern Sayana. – In: Malyshev LI, Peshlcova GA (eds), Flora of the Prebaikal, pp. 19-48. [In Russian]

Krogulevich RE, RostovtsevaTS. 1984. Khromosomnye chisla tsvetkovykh rastenii sibiri i dal’nego vostoka. – Nauka, Novosibirsk.

Kruse HO. 1954. Some Eocene dicotyledonous wood from Eden Valley, Wyoming. – Ohio J. Sci. 54: 243-268.

Krutzsch W. 1962. Stratigraphisch bzw. botanisch wichtige neue Sporen- und Pollenformen aus dem deutschen Tertiär. – Geologie 11: 265-307.

Krutzsch W. 1966. Zur Kenntnis der präquartären periporaten Pollenformen. – Geologie 15: 16-71.

Krutzsch W. 1970. Zur Kenntnis fossiler disperser Tetradenpollen. – Paläontol. Abhandl., Abt. B, Paläobotanik, 3: 399-433.

Krutzsch W. 1989. Paleogeography and historical phytogeography (paleochorology) in the Neophyticum. – Plant Syst. Evol. 162: 5-61.

Krutzsch W, Lenk G. 1969. Über 5 neue Pollenarten aus dem Maastricht der Bohrung Colbitz 10 (Calvoorder Scholle, D.D.R.). – Monatsber. Deutsch. Akad. Wiss. Berlin 11: 938-945.

Krutzsch W, Lenk G. 1973. Sporenpaläontologische Untersuchungen im Alttertiär des Weißelster-Beckens I. Die stratigraphisch wichtigen Pollen- und Sporenformen aus dem Profil des Tagebaus Profen. – Abh. Zentr. Geol. Inst. 118: 59-76.

Kryshtofovich AN. 1929. Discovery of the oldest dicotyledons of Asia in the equivalents of the Potomac Group in Suchan, Ussuriland, Siberia. – Bull. Comité Géol. 48: 1357-1390. [In Russian with English summary]

Kubitzki K. 1973. Probleme der Großsystematik der Blütenpflanzen. – Ber. Deutsch. Bot. Ges. 85: 259-277.

Kubitzki K (ed). 1977. Flowering plants. Evolution and classification of higher categories. – Springer, Wien, Berlin, Heidelberg.

Kubitzki K. 1985. The dispersal of forest plants. – In: Prance GT, Lovejoy TE (eds), Key environments. Amazonia, Pergamon Press, Oxford, pp. 192-206.

Kubitzki K. 1987a. Origin and significance of trimerous flowers. – Taxon 36: 21-28.

Kubitzki K. 1987b. Phenylpropanoid metabolism in relation to land plant origin and diversification. – J. Plant Physiol. 131: 17-24.

Kubitzki K. 1993b. Introduction. – In: Kubitzki K, Rohwer JG, Bittrich V (eds), The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families, Springer, Berlin, Heidelberg, New York, pp. 1-12.

Kubitzki K (ed). 1998a. The families and genera of vascular plants III. Flowering plants. Monocotyledons. Lilianae (except Orchidaceae). – Springer, Berlin, Heidelberg, New York.

Kubitzki K. 1998b. Introductory material. – In: Kubitzki K (ed), The families and genera of vascular plants III. Flowering plants. Monocotyledons. Lilianae (except Orchidaceae), Springer, Berlin, Heidelberg, New York, pp. 49-52.

Kubitzki K (ed). 1998c. The families and genera of vascular plants IV. Flowering plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae). – Springer, Berlin, Heidelberg, New York.

Kubitzki K. 1998d. Introductory material. – In: Kubitzki K (ed), The families and genera of vascular plants IV. Flowering Plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), Springer, Berlin, Heidelberg, New York, pp. 1-6.

Kubitzki K (ed). 2004a. The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales. – Springer, Berlin, Heidelberg, New York.

Kubitzki K. 2004b. Introduction to families treated in this volume. – In: Kubitzki K (ed), The families and genera of vascular plants VI. Flowering plants. Dicotyledons. Celastrales, Oxalidales, Rosales, Cornales, Ericales, Springer, Berlin, Heidelberg, New York, pp. 1-11.

Kubitzki K. 2006. Introduction to the groups treated in this volume. – In: Kubitzki K (ed), The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p. p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York, pp. 1-22.

Kubitzki K (ed). 2011. The families and genera of flowering plants X. Flowering plants. Eudicots. Sapindales, Cucurbitales, Myrtaceae. – Springer, Berlin.

Kubitzki K, Bayer C (eds). 2002a. The families and genera of vascular plants V. Flowering plants. Dicotyledons. Malvales, Capparales and non-betalain Caryophyllales. – Springer, Berlin, Heidelberg, New York.

Kubitzki K, Gottlieb OR. 1984a. Micromolecular patterns and the evolution and major classification of angiosperms. – Taxon 33: 375-391.

Kubitzki K, Gottlieb OR. 1984b. Phytochemical aspects of angiosperm origin and evolution. – Acta Bot. Neerl. 33: 457-468.

Kubitzki K, Reznik H. 1966. Flavonoid-Muster der Polycarpicae als systematisches Merkmal I. Übersicht über die Familien. – Beitr. Biol. Pflanzen 42: 445-470.

Kubitzki K, Ziburski A. 1994. Seed dispersal in flood plain forests of Amazonia. – Biotropica 26: 30-43.

Kubitzki K, Rohwer JG, Bittrich V (eds). 1993. The families and genera of vascular plants II. Flowering plants. Dicotyledons. Magnoliid, hamamelid and caryophyllid families. – Springer, Berlin, Heidelberg, New York.

Kubitzki K, Bayer C, Stevens PF (eds). 2006. The families and genera of vascular plants IX. Flowering plants. Eudicots. Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales, Myrtales p. p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae, Springer, Berlin, Heidelberg, New York.

Kuhl JC, Cheung C, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderek M, Prince JP, Town CD, Harvey MJ. 2004. A unique set of 11,008 onion Expressed Sequence Tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales. – Plant Cell 16: 114-125.

Kuhlemeier C. 2007. Phyllotaxis. – Trends Plant Sci. 12: 143-150.

Kuhlmann JG. 1925. Contribuição para o conhecimento de algumas plantas novas, contendo tambem um trabalho de critica e novas combinações. – Arq. Jard. Bot. (Rio de Janeiro) 4: 347-365.

Kuijt J. 1969. The biology of parasitic flowering plants. – University of California Press, Berkeley, California.

Kuijt J. 1977. Haustoria of phanerogamic parasites. – Ann. Rev. Phytopathol. 15: 91-118.

Kukachka B, Miller R. 1980. A chemical spot test for aluminium and its value in wood identification. – IAWA Bull., N. S., 1: 104-109.

Kunkel G. 1984. Plants for human consumption. – Kluwer, Königstein.

Kunst L, Samuels AL. 2003. Biosynthesis and secretion of plant cuticular wax. – Progr. Lipid Res. 42: 51-80.

Kuntze O. 1891. Revisio generum plantarum 1-3. – Arthur Felix, Leipzig.

Kuprianova LA. 1948. Morphologie des pollens et phylogénie des monocotylédones. – Comm. Komarow Inst. Acad. Sci. 1(7): 163-262.

Kuprianova LA. 1979. On the possibility of the development of tricolpate pollen from monosulcate. – Grana 18: 1-4.

Kurosawa K. 1991. SEM photomicrographs of pollen of angiosperms. – Osaka Museum of Natural History, Osaka.

Kurosawa S. 1966. Cytological studies on some eastern Himalayan plants and their related species. – In: Hara H, Hohashi H (eds), Flora of eastern Himalaya, University of Tokyo Press, Tokyo, pp. 658-670.

Kurosawa S. 1971. Cytological studies on some eastern Himalayan plants and their related species. – In: Hara H, Hohashi H (eds), Flora of eastern Himalaya, 2nd report, University of Tokyo Press, Tokyo, pp. 355-364.

Kurosawa S. 1977. Notes on chromosome numbers of spermatophytes. – J. Jap. Bot. 52: 225-230.

Kurosawa S. 1980. Cytotaxonomic study on the spermatophytes in the Ose region. – In: Hara H (ed), Comprehensive research study of Osegahara and its allied area, Monbusho Scientific Research Program, Tokyo, pp. 46-48. [In Japanese]

Kurosawa S. 1981. Notes on chromosome numbers of spermatophytes 3. – J. Jap. Bot. 56: 245-251.

Kurosawa S. 1983. Notes on chromosome numbers of spermatophytes 4. – J. Jap. Bot. 58: 353-357.

Kutschera-Mitter L. 1982. Wurzeltypen der Monocotyledonen (Liliopsida). Entwurf eines Bestimmungsschlüssels für Arten Mitteleuropas nach anatomischen Merkmalen. – Stapfia 10: 53-70.

Kuzoff RK, Sweere JA, Soltis DE, Soltis PS, Zimmer EA. 1998. The phylogenetic potential of entire 26S rDNA sequences in plants. – Mol. Biol. Evol. 15: 251-263.

Kvaček J, Herman AB. 2004. Monocotyledons from the early Campanian (Cretaceous) of Grünbach, Lower Austria. – Rev. Palaeobot. Palyn. 128: 323-353.

Kvaček J, Wilde V. 2006. A critical re-evaluation of monocotyledons as described by Weyland and co-authors from the Rhenish browncoal (Miocene, Germany). – Palaeontogr. Abt. B: Paläophytologie 273: 1-139.

Kyhos DW. 1965. Documented chromosome numbers of plants. – Madroño 18: 122-126.

Labandeira CC. 1998. How old is the flower and the fly? – Science 280: 57-59.

Labandeira CC, Dilcher DL, Davis DH, Wagner DL. 1994. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. – Proc. Natl. Acad. Sci. U.S.A. 91: 12278-12282.

Lacroix C, Jeune B, Purcell-MacDonald S. 2003. Shoot and coumpound leaf comparisons in eudicots: dynamic morphology as an alternative approach. – Bot. J. Linn. Soc. 143: 219-230.

Ladd PG. 1994. Pollen presenters in flowering plants – form and function. – Bot. J. Linn. Soc. 115: 165-195.

Ladd PG, Donaldson JS. 1993. Pollen presenters in the South African flora. – South Afr. J. Bot. 59: 465-477.

LaFrankie JV Jr. 2010. Trees of Tropical Asia. – Black Tree Publ., Philippines.

Lakhanpal RN. 1958. The Rujada flora of west central Oregon. – Univ. Calif. Publ. Geol. Sci. 35: 1-66.

Lakhanpal RN. 1970. Tertiary floras of India and their bearing on the historical geology of the region. – Taxon 19: 675-694.

Lam HJ. 1945. Fragmenta Papuana. – Sargentia 5: 1-196.

Lam VKY, Merckx VSFT, Graham SW. 2016. A few-gene plastid phylogenetic framework for mycoheterotrophic monocots. – Amer. J. Bot. 103: 692-708.

Lam VKY, Darby H, Merckx VSFT, Lim G, Yukawa T, Neubig KM, Abbott JR, Beatty GE, Provan J, Gomez MS, Graham SW. 2018. Phylogenomic inference in extremis: a case study with mycoheterotroph plastomes. – Amer. J. Bot. 105: 480-494.

Lamb RS, Irish VF. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. – Proc. Natl. Acad. Sci. U.S.A. 100: 6558-6563.

Lamprecht I, Schmolz E, Blanco L, Romero CM. 2002. Flower ovens: thermal investigations on heat producing plants. – Thermochimica Acta 391: 107-118.

Łańcucka-Šrodoniowa M. 1977. New herbs described from the Tertiary of Poland. – Acta Palaeobot. 18: 37-44.

Łańcucka-Šrodoniowa M. 1979. Macroscopic plant remains from the freshwater Miocene of the Nowy-Sacz Basin (West Carpathians, Poland). – Acta Palaeobot. 20: 3-117.

Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS. 2018. Impact of whole-genome duplication events on diversification rates in angiosperms. – Amer. J. Bot. 105: 348-363.

Landsmann J, Dennis ES, Higgins TJV, Appleby CA, Kortt AA, Peacock WJ. 1986. Common evolutionary origin of legume and non-legume plant hemoglobins. – Nature 324: 166-168.

Langenheim JH. 2002. Plant resins: chemistry, evolution, ecology, and ethnobotany. – Timber Press, Portland, Oregon.

Lanjouw J. 1932. Contributions to the flora of tropical America XI. – Kew Bull. 1933: 184-187.

Lapcík O. 2007. Isoflavonoids in non-leguminous taxa: a rarity or rule? – Phytochemistry 68: 2909-2916.

Laroche J, Bousquet J. 1999. Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. – Mol. Biol. Evol. 16: 441-452.

Laroche J, Li P, Bousquet J. 1995. Mitochondrial DNA and monocot-dicot divergence time. – Mol. Biol. Evol. 12: 1151-1156.

Larsen K. 1954. Chromosome numbers of some European flowering plants. – Bot. Tidsskr. 50: 163-174.

Larsen K. 1956. Chromosome studies in some Mediterranean and South European flowering plants. – Bot. Not. 109: 293-307.

Larsen K. 1958. Preliminary note on the cytology of the endemic Canarian element. – Bot. Tidsskr. 54: 167-169.

Larsen K. 1960. Cytological and experimental studies on the flowering plants of the Canary Islands. – Biol. Skr. Danske Vidensk. Selsk. 11(3): 1-60.

Larsen K. 1962. Contribution to the cytology of the endemic Canarian element. – Bot. Not. 115: 196-202.

Larsen K. 1963a. Contribution to the cytology of the endemic Canarian element II. – Bot. Not. 116: 410-424.

Larsen K. 1963b. Studies in the flora of Thailand 14: Cytological studies in the vascular plants of Thailand. – Dansk Bot. Ark. 20: 211-275.

Larsen K. 1966. Studies in the flora of Thailand 40. Cytology of vascular plants II. – Dansk Bot. Ark. 23: 375-399.

Larsen K, Lagaard S. 1971. Chromosome studies of the Sicilian flora. – Bot. Tidsskr. 66: 249-268.

Larsson S. 2007. The “new” chemosystematics: phylogeny and phytochemistry. – Phytochemistry 68: 2903-2907.

Lassak EV, McCarthy T. 1990. Australian medicinal plants. – Mandarin Australia, Melbourne.

Lauber H. 1947. Untersuchungen über das Wachstum der Früchte einiger Angiospermen unter endomitotischer Polyploidisierung. – Österr. Bot. Zeitschr. 94: 30-60.

Lavault M, Bruneton J. 1980. Isolement de deux nouveaux alcaloïdes, triphyopeltine et O-méthyl-5’triphyopeltine. – J. Med. Plant Res. 38 (Suppl.): 17-21.

Lavrenko AN, Serditov NP. 1987. Chisla khromosom nekotorykh predstavitelei flory Urala (Komi ASSR). – Bot. Žurn. 72: 846-847.

Lavrenko AN, Serditov NP. 1988. Chisla khromosom nekotorykh vidov semeistv Asparagaceae, Asteraceae i Ranunculaceae s severnogo Urala (Komi ASSR). – Bot. Žurn. 73: 605-607.

Lavrenko AN, Serditov NP, Ulle LG. 1989. Chisla khromosom nekotorykh vidov tsvetkovykh rastenii Urala (Komi ASSR). – Bot. Žurn. 74: 1059-1061.

Lavrenko AN, Serditov NP. 1991. Choromosome numbers in some plant species from the southwest of the Komi ASSR. – Bot. Žurn. 76: 769-771. [In Russian]

Lawrence GHM. 1951. Taxonomy of vascular plants. – Macmillan Publ. Co., New York.

Leaf Architecture Working Group. 1999. Manual of leaf architecture. – Smithsonian Institution, Washington, D.C.

Leake JR. 1994. Tansley Review No. 69. The biology of mycoheterotrophic (‘saprophytic’) plants. – New Phytol. 127: 171-216.

Lebacq L, Dechamps R. 1964. Essais d’identification anatomique des bois de l’Afrique centrale. – Musée Royal de l’Afrique Centrale, Tervuren.

Lechevalier MP. 1986. Nitrogen-fixing actinomycetes of the genus Frankia. – Proc. IV ISME, pp. 253-256.

Lechtenberg M, Nahrstedt A. 1999. Cyanogenic glycosides. – In: Ikan R (ed), Naturally occurring glycosides, John Wiley, Chichester, pp. 147-191.

Lecuona Neumann RM, La Serna Ramos I, Mendes Pérez B, Wildpret de la Torre W. 1987. Contribución al estudio palinológico de la flora endémica macaronesica. – Pollen Spores 29: 359-390.

Ledford H. 2007. The flower of seduction. – Nature 445: 816-817.

Lee DE, Lee WG, Mortimer N. 2001. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. – Aust. J. Bot. 49: 341-356.

Lee DE, Conran JG, LIndqvist JK, Bannister JM, Mildenhall DC. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. – Bot. Rev. 78: 235-260.

Lee DH, Garvin DK, Wimpee CF. 1991. Molecular evolutionary history of ancient aquatic angiosperms. – Proc. Natl. Acad. Sci. U.S.A. 88: 10119-10123.

Lee EK, Cibrián-Jaramillo A, Kolokotronis S-O, Katari MS, Stamatakis A, Ott M, Chiu JC, Little DP, Stevenson DW, McCombie WR, Martienssen R, Coruzzi GM, DeSalle R. 2011. A functional phylogenomic view of seed plants. – PloS Genetics 7(12): e1002411.

Lee J-Y, Baum SF, Oh S-H, Jiang C-Z, Chen J-C, Bowman JL. 2006. Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. – Devel. 132: 5021-5032.

Lee N-S, Sang T, Crawford DJ, Yeau SH, Kim S-C. 1996. Molecular divergence between disjunct taxa in eastern Asia and eastern North America. – Amer. J. Bot. 83: 1373-1378.

Lee S. 1978. A factor analysis study of the functional significance of angiosperm pollen. – Syst. Bot. 3: 1-19.

Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, dePamphilis CW. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. – Mol. Biol. Evol. 22: 1948-1963.

Leebens-Mack J, Wall K, Duarte J, Zheng Z, Oppenheimer D, dePamphilis C. 2006. A genomics approach to the study of ancient polyploidy and floral developmental genomics. – Adv. Bot. Res. 44: 527-548.

Leffingwell HA. 1971. Palynology of the Lance (Late Cretaceous) and Fort Union (Paleocene) Formations of the type Lance Area, Wyoming. – Geol. Soc. Amer. Spec. Paper 127: 1-21.

Leinfellner W. 1950. Der Bauplan des synkarpen Gynözeums. – Österr. Bot. Zeitschr. 7: 403-436.

Leinfellner W. 1951a. Die Nachahmung der durch kongenitale Verwachsung entstandenen Formen des Gynözeums durch postgenitale Verschmelzungsvorgänge. – Österr. Bot. Zeitschr. 98: 403-411.

Leinfellner W. 1951b. Dei U-förmige Plazenta als der Plazentationstypus der Angiospermen. – Österr. Bot. Zeitschr. 98: 338-358.

Leins P. 1964. Das zentripetale und zentrifugale Androeceum. – Ber. Deutsch. Bot. Ges. 77: (23)-(25).

Leins P. 1971. Das Androeceum der Dikotylen. – Ber. Deutsch. Bot. Ges. 84: 191-193.

Leins P. 1972. Das Karpell im ober- und unterständigen Gynoeceum. – Ber. Deutsch. Bot. Ges. 5: 291-294.

Leins P. 1975. Die Beziehungen zwischen multistaminaten und einfachen Androeceen. – Bot. Jahrb. Syst. 96: 231-237.

Leins P. 1979. Der Übergang von zentrifugalen komplexen zum einfachen Androeceum. – Ber. Deutsch. Bot. Ges. 92: 717-719.

Leins P. 2000. Blüte und Frucht. Aspekte der Morphologie, Entwicklungsgeschichte, Phylogenie, Funktion und Ökologie. – Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.

Leins P, Erbar C. 1990. On the mechanisms of secondary pollen presentation in the Campanulales-Asterales complex. – Bot. Acta 103: 87-92.

Leins P, Erbar C. 1991a. Fascicled androecia in Dilleniidae and some remarks on the Garcinia androecium. – Bot. Acta 104: 336-344.

Leins P, Erbar C. 1991b. Entwicklungsmuster in Blüten und ihre mutmaßlichen phylogenetischen Zusammenhänge. – Biol. Unserer Zeit 21: 197-204.

Leins P, Erbar C. 1994. Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms II. The relationships between flowers of Magnoliidae, Dilleniidae, and Caryophyllidae – Plant Syst. Evol. [Suppl.] 8: 209-218.

Leins P, Erbar C. 1997. Floral developmental studies: some old and new questions. – Intern. J. Plant Sci. 158(Suppl.): S3-S12.

Leins P, Erbar C. 2003. Floral development features and molecular data in plant systematics. – In: Stuessy TF, Mayer V, Hörandl E (eds), Deep morphology: toward a renaissance of morphology in plant systematics, A. R. G. Gantner, Ruggell, Liechtenstein, pp. 81-106.

Leitch IJ, Hanson L. 2002. DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. – Bot. J. Linn. Soc. 140: 175-179.

Lemesle R. 1955. Contribution à l’étude de quelques familles de dicotylédones considérées comme primitives. – Phytomorphology 5: 11-45.

Leng Q, Friis EM. 2003. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with syncarpous fruits from the Yixian Formation of northeast China. – Plant Syst. Evol. 241: 77-88.

Leng Q, Friis EM. 2006. Angiosperm leaves associated with Sinocarpus Leng et Friis infructescences from the Yixian Formation (mid-Early Cretaceous) of NE China. – Plant Syst. Evol. 262: 173-187.

Leng Q, Schönenberger J, Friis EM. 2005. Late Cretaceous follicular fruits from southern Sweden with systematic affinities to early diverging eudicots. – Bot. J. Linn. Soc. 148: 377-407.

Lengyel S, Gove AD, Latimer AM, Majer JD, Dunn RR. 2010. Convergent seed dispersal by ants, and phylogeny and biogeography in flowering plants: a global survey. – Persp. Plant Ecol. Evol. Syst. 12: 43-55.

Lentini F, Romano S, Raimondo FM. 1988. Numeri cromosomici per la Flora Italiana: 1185-1196. – Inform. Bot. Ital. 20: 637-646.

Lenz LW. 1950. Chromosome numbers of some western American plants. – Aliso 2: 317-318.

Léonard J. 1951. Espèces congolaises nouvelles ou intéressantes. – Bull. Soc. Roy. Bot. Belg. 84: 47-60.

Leopold EB, McGinitie HD. 1972. Development and affinities of Tertiary floras in the Rocky Mountains. – In: Graham A (ed), Floristics and paleofloristics of Asia and eastern North America, Elsevier, Amsterdam, pp. 147-200.

Lepper L. 1982. Beiträge zur Chromosomen-Dokumentation cubanischer Pflanzensippen. – Rev. Jard. Bot. Nac. 3: 71-101.

Leppik EE. 1956. The form and function of natural patterns in flowers. – Amer. J. Bot. 43: 445-455.

Lersten NR. 1971. A review of septate microsporangia in vascular plants. – Iowa State J. Sci. 45: 487-497.

Lersten NR. 1997. Occurrence of endodermis with a casparian strip in stem and leaf. – Bot. Rev. 63: 265-277.

Lersten NR. 2004. Flowering plant embryology. – Blackwell, Oxford.

Lersten NR, Horner HT. 2007. Calcium oxalate crystal types and trends in their distribution patterns. – Plant Syst. Evol. 224: 83-96.

Lersten NR, Czlapinski AR, Curtis JD, Freckmann R, Horner HT. 2006. Oil bodies in leaf mesophyll cells of angiosperms: overview and a selected survey. – Amer. J. Bot. 93: 1731-1739.

Les DH. 1988. Breeding systems, population structure, and evolution in hydrophilous angiosperms. – Ann. Missouri Bot. Gard. 75: 819-835.

Les DH, Philbrick CT. 1993. Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. – Aquatic Bot. 44: 181-228.

Les DH, Schneider EL. 1995. The Nymphaeales, Alismatidae, and the theory of an aquatic monocotyledon origin. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 23-42.

Les DH, Garvin DK, Wimpee CF. 1991. Molecular evolutionary history of ancient aquatic angiosperms. – Proc. Natl. Acad. Sci. U.S.A. 88: 10119-10122.

Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E. 2003. Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. – Intern. J. Plant Sci. 164: 917-932.

Lesquereux L. 1878. Contributions to the flora of the western territories II. The Tertiary flora. – Rep. U.S. Geol. Surv. Terr. 7: 1-366.

Le Thomas A, Ferguson IK (eds), 1994. Morphologie pollinique: biologie, systématique et évolution. – Acta Bot. Gall., Bull. Soc. Bot. France 141: 1-187.

Levin DA. 1973. The role of trichomes in plant defence. – Quart. Rev. Biol. 48: 3-15.

Levin DA. 2002. The role of chromosomal change in plant evolution. – Oxford University Press, Oxford, New York.

Lewis WH. 1977. Pollen exine morphology and its adaptive significance. – Sida 7: 95-102.

Lewis WH, Stripling HL, Ross RG. 1962. Chromosome numbers for some angiosperms of the southern United States and Mexico. – Rhodora 64: 147-161.

Li H. 2003. Lower Cretaceous angiosperm leaf from Wuhe in Anhui, China. – Chin. Sci. Bull. 48: 611-614.

Li H-L. 1952. Floristic relationships between eastern Asia and eastern North America. – Trans. Amer. Phil. Soc. 42: 371-429.

Li H-L. 1972. Eastern Asia-eastern North America species-pairs in wide ranging genera. – In: Graham A (ed), Floristics and paleofloristics of Asia and eastern North America, Elsevier, Amsterdam, pp. 65-78.

Li H-L, Willaman JJ. 1968. Distribution of alkaloids in angiosperm phylogeny. – Econ. Bot. 22: 239-252.

Li H-L, Wang W, Li R-Q, Zhang J-B, Sun M, Naeem R, Su J-X, Xiang X-G, Mortimer PE. Li D-Z, Hyde KD, Xu J-C, Soltis DE, Soltis PS, Li J, Zhang S-Z, Wu H, Chen Z-D, Lu A-M. 2016. Global versus Chinese perspectives on the phylogeny of the N-fixing clade. – J. Syst. Evol. 54: 392-399.

Li H-Q. 2005. Early Cretaceous sarraceniacean-like pitcher plants from China. – Acta Bot. Gall. 152: 227-234.

Li J, Zhang Z-H. 2010. Sequences of 72 plastid genes support the early divergence of Cornales in the asterids. – J. Syst. Evol. 48: 426-434.

Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL. 2001. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. – Plant Cell 13: 1567-1585.

Li R-Q, Chen Z-D, Hong Y-P, Lu A-M. 2002. Phylogenetic relationships of the “higher” hamamelids based on chloroplast trnL-F sequences. – Acta Bot. Sin. 44: 1462-1468.

Li T, Cao H, Kang M, Zhang Z, Zhao N, Zhang H. 2009. Pollen flora of China – woody plants by SEM. – Science Press, Beijing.

Li W, Liu Z. 1994. The Cretaceous palynofloras and their bearing on stratigraphic correlation in China. – Cretaceous Res. 15: 333-365.

Li X-X, Zhou Z-K. 2006. A cladistic analysis of monocotyledons at the family level based on morphological data. – Acta Bot. Yunnan. 28: 241-249.

Li X-X, Zhou Z-K. 2007. The higher-level phylogeny of monocots based on matK, rbcL and 18S rDNA sequences. – Acta Phytotaxon. Sin. (J. Syst. Evol.) 45: 113-133.

Li Y-Q, Chen F, Linskens HF, Cresti M. 1994. Distribution of unesterified and esterified pectins in cell walls of pollen tubes of flowering plants. – Sexual Plant Repr. 7: 145-152.

Lidgard S, Crane PR. 1988. Quantitative analyses of the early angiosperm radiation. – Nature 331: 344-346.

Lidgard S, Crane PR. 1990. Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras. – Paleobiology 16: 77-93.

Lieux MH. 1980. An atlas of pollen of trees, shrubs, and woody vines of Louisiana and other southeastern states 1. Ginkgoaceae to Lauraceae. – Pollen Spores 22: 17-57.

Lieux MH. 1982. An atlas of pollen of trees, shrubs, and woody vines of Louisiana and other southeastern states 4. Sapotaceae to Fabaceae. – Pollen Spore 24: 331-368.

Linder HP. 1998. Morphology and the evolution of wind pollination. – In: Owens SJ,Rudall PJ (eds), Reproductive biology, Royal Botanic Gardens, Kew, pp. 123-135.

Linder HP, Hardy CR. 2004. Evolution of the species-rich Cape flora. – Phil. Trans. Roy. Soc. London, B, 359: 1623-1632.

Linder HP, Kellogg EA. 1995. Phylogenetic patterns in the commelinid clade. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 473-496.

Linder HP, Vlok JH, McDonald DJ, Oliver EGH, Boucher C, Wyk B-E van, Schutte A. 1993. The high altitude flora and vegetation of the Cape Floristic Region, South Africa. – Opera Bot. 121: 247-261.

Linder R, Lambert A-M. 1965. Étude caryologique d’endémiques canariennes. – Bull. Soc. Bot. France 112: 234-238.

Lindfors SM, Csikic Z, Grigorescu D, Friis EM. 2010. Preliminary account of plant mesofossils from the Maastrichtian Budurone microvertebrate site of the Haţeg Basin, Romania. – Palaeogeogr. Palaeoclim. Palaeoecol. 293: 353-359.

Lindley J. 1853. The vegetable kingdom. 3rd ed. – Bradbury and Evans, London.

Linkies A, Graeber K, Knight C, Leubner-Metger G. 2010. The evolution of seeds. – New Phytol. 186: 817-831.

Linsbauer K. 1930. Die Epidermis. – In: Linsbauer K (ed), Handbuch der Pflanzenanatomie, Band 4, Lief. 27. – Gebrüder Bornträger, Berlin.

Linsbauer K, Ziegenspeck H. 1942. Das Vorkommen von Spaltöffnungen bei heterotrophen Blütenpflanzen im Licht der Physiologie und Stammesgeschichte. – Biol. Gen. 17: 511-565.

Liogier AH. 1971. Novitates antillanae. – Mem. New York Bot. Gard. 21: 107-157.

Lisci M, Bianchini M, Pacini E. 1996. Structure and function of the elaiosome in some angiosperm species. – Flora 191: 131-141.

Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ. 2005. Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. – Phytochemistry 66: 2500-2520.

Litchfield C. 1972. Analysis of triglycerides. – Academic Press, New York.

Litt AJ, Irish VF. 2004. Duplication and diversification of the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. – Genetics 165: 821-833.

Little DP, Schwarzbach AE, Adams RP, Hsieh C-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly-described genus Xanthocyparis. – Amer. J. Bot. 91: 1872-1881.

Little EL Jr. 1983. North American trees with relationships in Eastern Asia. – Ann. Missouri Bot. Gard. 70: 605-615.

Liu G. 1998. A Miocene palynoflora from Huanan County of Heilongjiang Province, NE China. – Acta Micropalaeontol. Sin. 15: 48-54.

Liu G, Li H, Leng Q. 1995. A preliminary report on Miocene flora from Daotaiqiao Formation of Huanan County, Heilongjiang Province, NE China. – Acta Palaeontol. Sin. 34: 755-757.

Liu G, Li H, Leng Q. 1996. Occurrence of Late Miocene flora from north-east China. – Palaeobotanist 45: 440-446.

Liu M, Zhao J, Wang J, Liu Z, Liu G. 2017. Phylogenetic analysis of 25 plant species representing 19 angiosperm families and one gymnosperm family based on 390 orthologous genes. – Plant Syst. Evol. 303: 413-417.

Lloyd DG. 1975. The maintenance of gynodioecy and androdioecy in angiosperms. – Genetica 45: 325-339.

Lloyd DG. 1976. The transmission of genes via pollen and ovules in gynodioecious angiosperms. – Theor. Popul. Biol. 9: 299-316.

Lloyd DG. 1985. Progress in understanding the natural history of New Zealand plants. – New Zealand J. Bot. 23: 707-722.

Lloyd DG, Webb CJ. 1977. Secondary sex characters in plants. – Bot. Rev. 43: 177-216.

Lloyd FE. 1942. The carnivorous plants. 2nd ed. – Chronica Botanica Co., Waltham, Massachusetts.

Lobova TA, Geiselman CK, Mori SA. 2009. Seed dispersal by bats in the Neotropics. – New York Botanical Garden, Bronx, New York.

Loconte H. 1996. Comparison of alternative hypotheses for the origin of the angiosperms. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution, and phylogeny, Chapman and Hall, New York etc, pp. 267-285.

Loconte H, Stevenson DW. 1990. Cladistics of the Spermatophyta. – Brittonia 42: 197-211.

Loconte H, Stevenson DW. 1991. Cladistics of the Magnoliidae. – Cladistics 7: 267-296.

Lodkina MM. 1988. Evolutionary relations between mono- and dicotyledons based on embryo and seedling investigation. – Bot. Žurn. 73: 617-630. [In Russian with English summary]

Logan KJ, Thomas BA. 1985. Distribution of lignin derivatives in plants. – New Phytol. 99: 571-585.

Löhne C, Borsch T. 2005. Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. – Mol. Biol. Evol. 22: 317-332.

Lord EM. 1981. Cleistogamy: a tool for the study of floral morphogenesis, function, and evolution. – Bot. Rev. 47: 421-450.

Lorence A, Nessler CL. 2004. Camptothecin, over four decades of surprising findings. – Phytochemistry 65: 2735-2749.

Lorente MA. 1986. Palynology and palynofacies of the upper Tertiary in Venezuela. – Diss. Bot. 99, J. Cramer, Berlin, Stuttgart.

Loreto F, Bagnoli F, Fineschi S. 2009. One species, many terpenes: matching chemical and biological diversity. – Trends Plant Sci. 14: 416-420.

Lotsy JP. 1911. Vorträge über botanische Stammesgeschichte 3. Cormophyta Siphonogamia. – Gustav Fischer, Jena.

Lott JNA. 1981. Protein bodies in seeds. – Nord. J. Bot. 1: 421-432.

Löv L. 1926. Zur Kenntnis der Entfaltungszellen monokotyler Blätter. – Flora 120: 283-343.

Löve Á, Kjellqvist E. 1973. Cytotaxonomy of Spanish plants II. Monocotyledons. – Lagascalia 3: 147-182.

Löve Á, Löve D. 1961. Chromosome numbers of central and northwest European plant species. – Opera Bot. 5: 1-581.

Löve Á, Löve D. 1965. Taxonomic remarks on some American alpine plants. – Univ. Colorado Stud., Ser. Biol., 17: 1-43.

Löve Á, Löve D. 1966. Cytotaxonomy of the alpine vascular plants of Mount Washington. – Univ. Colorado Stud., Ser. Biol., 23: 1-124.

Löve Á, Löve D. 1974. Nomenclatural adjustments in the Yugoslavian flora II. Pteridophytes and dicotyledons. – Preslia 46: 123-138.

Löve Á, Löve D. 1975a. Cytotaxonomic atlas of the Arctic flora. – J. Cramer, Vaduz.

Löve Á, Löve D. 1975b. Nomenclatural notes on arctic plants. – Bot. Not. 128: 497-523.

Löve Á, Ritchie JC. 1966. Chromosome numbers from central northern Canada. – Can. J. Bot. 44: 429-439.

Lövkvist B, Hultgård U-M. 1999. Chromosome numbers in south Swedish vascular plants. – Opera Bot. 137: 1-42.

Lowrie A. 1987. Carnivorous plants of Australia 1. – University of Western Australia Press, Perth.

Lowrie A. 1989. Carnivorous plants of Australia 2. – University of Western Australia Press, Perth.

Lowrie A. 1998. Carnivorous plants of Australia 3. – University of Western Australia Press, Perth.

Lowry PP II. 1998. Diversity, endemism and extinction in the flora of New Caledonia: a review. – In: Peng C-I, Lowry PP II (eds), Proceedings of the international symposium on rare, threatened, and endangered floras of Asia and the Pacific Rim, Institute of Botany, Academia Sinica, Taipei, pp. 181-206.

Lu L, Wortley AH, Li D-Z, Wang H, Blackmore S. 2015. Evolution of angiosperm pollen. 2. The basal angiosperms. – Ann. Missouri Bot. Gard. 100: 227-269.

Lubbock J. 1892. A contribution to our knowledge of seedlings 2. – Kegan Paul, Trench, Trübner, Co., London.

Ludwig F. 1881. Über die Bestäubungsverhältnisse einiger Süßwasserpflanzen und ihre Anpassungen an das Wasser und gewisse wasserbewohnende Insekten. – Kosmos (Stuttgart) 10: 7-12.

Ludwig M. 2011. Carbonic anhydrase and the molecular evolution of C4 photosynthesis. – Plant Cell Environ. 35: 22-37.

Lunau K. 2006. Stamens and mimic stamens as components of floral colour patterns. – Bot. Jahrb. Syst. 127: 13-41.

Lundberg J. 2001a. Phylogenetic studies in the euasterids II, with particular reference to Asterales and Escalloniaceae. – Ph.D. diss, Department of Systematic Botany, EBC, University of Uppsala, Sweden.

Lundberg J. 2001b. A well resolved and supported phylogeny of euasterids II based on a Bayesian inference, with special emphasis on Escalloniaceae and other incertae sedis. – In: Lundberg J, Phylogenetic studies in the euasterids II, with particular reference to Asterales and Escalloniaceae, Acta Univ. Upsal., Uppsala.

Lundell CL. 1960. Plantae mayanae I. Notes on collections from the lowland of Guatemala. – Wrightia 2: 49-63.

Lundell CL. 1970. Studies of American plants II. – Wrightia 4: 129-152.

Lundell CL. 1971. Studies of American plants III. – Wrightia 4: 153-172.

Luo J, Yoshikawa N, Hodson MC, Hall BD. 2007. Duplication and paralog sorting of RPB2 and RPB1 genes in core eudicots. – Mol. Phylogen. Evol. 44: 850-862.

Luo Y, Lu L, Wortley, AH, Li D-Z, Wang H, Blackmore S. 2015. Evolution of angiosperm pollen. 3. Monocots. – Ann. Missouri Bot. Gard. 101: 406-455.

Lupia R. 1995. Paleobotanical data from fossil charcoal: an actualistic study of seed plant reproductive structures. – Palaios 10: 465-477.

Lupia R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. – Paleobiology 25: 1-28.

Lupia R, Lidgard S, Crane PR. 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. – Paleobiology 25: 305-340.

Lupia R, Crane PR, Lidgard SL. 2000. Angiosperm diversification and mid-Cretaceous environmental change. – In: Culver SJ, Rawson PF (eds), Biotic responses to global change: the last 145 million years, Cambridge University Press, Cambridge, pp. 207-222.

Lupia R, Herendeen PS, Keller JA. 2002. A new fossil flower and associated coprolites: evidence for angiosperm-insect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. – Intern. J. Plant Sci. 163: 675-686.

Lüttge U. 1971. Structure and function of plant glands. – Ann. Rev. Plant Physiol. 22: 23-44.

Lüttge U. 2005. Genotypes – phenotypes – ecotypes: relations to Crassulacean Acid Metabolism. – Nova Acta Leopoldina, N. F., 92: 177-193.

Maas PJM, Westra LYT. 1993. Neotropical plant families. – Koeltz, Königstein.

Maat L, Beyerman HC. 1983. The imidazole alkaloids. – In: Brossi A (ed), The alkaloids 22, Academic Press, New York, pp. 281-333.

Mabberley DJ. 1997. The plant-book. A portable dictionary of the vascular plants. 2nd ed. – Cambridge University Press, Cambridge.

McClure JW. 1970. Secondary constituents of aquatic angiosperms. – In: Harborne JB (ed), Phytochemical phylogeny, Academic Press, London, pp. 233-268.

McDade LA. 1992. Pollinator relationships, biogeography, and phylogenetics. – Bioscience 42: 21-26.

MacGinitie HD. 1941. A Middle Eocene flora from the central Sierra Nevada. – Publ. Carnegie Inst. Washington, DC. 534: 1-178.

MacGinitie HD. 1953. Fossil plants of the Florissant Beds, Colorado. – Publ. Carnegie Inst. Washington, DC. 599.

MacGinitie HD. 1969. The Eocene Green River flora of northwestern Colorado and northeastern Utah. – Univ. Calif. Publ. Geol. Sci. 83: 1-140.

MacGinitie HD. 1974. An early middle Eocene flora from the Yellowstone-Absaroka Volcanic province, northwestern Wind River Basin, Wyoming. – Univ. Calif. Publ. Geol. Sci. 108: 1-103.

McInerney FA, Strömberg CAE, White JWC. 2011. The Neogene transition from C3 to C4 grasslands in North America: stable carbon isotope ratios of fossil phytoliths. – Paleobiology 37: 23-49.

McIntyre DJ. 1965. Some new pollen species from New Zealand Tertiary deposits. – New Zealand J. Bot. 3: 204-214.

McIntyre DJ. 1968. Further new pollen species from New Zealand Tertiary and uppermost Cretaceous deposits. – New Zealand J. Bot. 6: 177-204.

McIver EE, Basinger JF. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. – Palaeontogr. Canad. Can. 10: 1-64.

McIver EE, Basinger JF. 1999. Early Tertiary floral evolution in the Canadian High Arctic. – Ann. Missouri Bot. Gard. 86: 523-545.

Mackova Z, Koblovska R, Lapcik O. 2006. Distribution of isoflavonoids in non-leguminous taxa – an update. – Phytochemistry 67: 849-855.

McLoughlin S. 1996. Early Cretaceous macrofloras of Western Australia. – Rec. West. Aust. Mus. 18: 19-65.

McLoughlin S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. – Aust. J. Bot. 49: 271-300.

McLoughlin S, Drinnan AN, Rozefelds AC. 1995. A Cenomanian flora from the Winton Formation, Eromanga Basin, Queensland. – Mem. Queensland Mus. 38: 273-313.

McLoughlin S, Tosolini A-M, Nagalingum N, Drinnan AN. 2002. The Early Cretaceous (Neocomian) flora and fauna of the lower Strzelecki Group, Gippsland Basin, Victoria. – Mem. Assoc. Australasian Palaeont. 26: 1-144.

McLoughlin S, Pott C, Elliott D. 2010. The Winton Formation flora (Albian-Cenomanian, Eromanga Basin): implications for vascular plant diversification and decline in the Australian Cretaceous. – Alcheringa 34: 303-323.

McMechan RD. 1983. Geology of the Princeton Basin, Province of British Columbia. – Ministry of Energy, Mines and Petroleum Resources, Victoria B.C. Paper 1983-3.

McNair JB. 1930. The taxonomic and climatic distribution of oil and starch in seeds in relation to the physical and chemical properties of both substances. – Amer. J. Bot. 17: 662-668.

MacNeal DL. 1958. The flora of the Upper Cretaceous Woodbine Sand in Denton County, Texas. – Monogr. Acad. Nat. Sci. Philadelphia 10: 1-152.

McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Turland NJ, Wiersema JH. 2006. International code of botanical nomenclature (Vienna Code). – Regnum Vegetabile 146. Gantner, Ruggell, Liechtenstein.

Macphail MK. 1999. Palynostratigraphy of the Murray Basin, inland southeastern Australia. – Palynology 23: 199-242.

Macphail MK, Cantrill DJ. 2006. Age and implications of the Forest Bed, Falkland Islands, southwest Atlantic: evidence from fossil pollen and spores. – Palaeogeogr. Palaeoclim. Palaeoecol. 240: 602-629.

Macphail MK, Partridge AD. 2012. First fossil pollen record of Auriculiidites Elsik, 1964 in Australia. – Alcheringa 36:283-286.

Macphail MK, Alley NF, Truswell EM, Sluiter IRK. 1994. Early Tertiary vegetation: evidence from spores and pollen. – In: Hill RS (ed), History of the Australian vegetation: Cretaceous to recent, Cambridge University Press, Cambridge, pp. 189-261.

MacRae WN, Towers GHN. 1984. Biological activities of lignans. – Phytochemistry 23: 1207-1220.

Madison M. 1977. Vascular epiphytes: their systematic occurrence and salient features. – Selbyana 2: 1-13.

Maercker U. 1965. Über das Vorkommen von Stomata in der Epidermis bunter Perianthblätter. – Zeitschr. Pflanzenphysiol. 53: 422-428.

Magallón SA. 2009. Flowering plants (Magnoliophyta). – In: Hedges SB, Kumar S (eds), The timetree of life, Oxford University Press, Oxford, United Kingdom, pp. 161-165.

Magallón SA, Castillo A. 2009. Angiosperm diversification through time. – Amer. J. Bot. 96: 349-365.

Magallón-Puebla SA, Sanderson MJ. 2001. Absolute diversification rates in angiosperm clades. – Evolution 55: 1762-1780.

Magallón-Puebla SA, Sanderson MJ. 2002. Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. – Amer. J. Bot. 89: 1991-2006.

Magallón-Puebla SA, Sanderson MJ. 2005. Angiosperm divergence times: the effect of genes, codon positions, and time constraints. – Evolution 59: 1653-1670.

Magallón-Puebla SA, Herendeen PS, Crane PR. 1997. Quadriplatanus georgianus gen. et sp. nov.: staminate and pistillate platanaceous flowers from the late Cretaceous (Coniacian-Santonian) of Georgia, USA. – Intern. J. Plant Sci. 162: 963-983.

Magallón-Puebla SA, Crane PR, Herendeen PS. 1999. Phylogenetic pattern, diversity, and diversification of eudicots. – Ann. Missouri Bot. Gard. 86: 297-372.

Magallón-Puebla SA, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. – New Phytol. 207: 437-453.

Maggia L, Bousquet J. 1994. Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity towards Frankia. – Mol. Ecol. 3: 459-467.

Magócsy-Diez A. 1899. Das Diaphragma in dem Marke der dicotylen Holzgewächse. – Math. Naturwiss. Ber. Ungern 17: 181-226.

Maguire B. 1970. On the flora of the Guayana Highland. – Biotropica 2: 85-100.

Maguire B. 1984. Flora de la Guayana Venezolana I. Nuevos taxa de la Guayana Venezolana. – Acta Bot. Venezolana 14: 5-52.

Magulaev AY. 1982. The number of chromosomes of the species of Asteraceae, Caryophyllaceae and Plantaginaceae of the North Caucasus. – Biol. Nauki (Alma-Ata) 11: 74-79. [In Russian]

Mahato SB, Ganguly AN, Sahu NP. 1982. Steroid saponins. –Phytochemistry 21: 959-978.

Maheshwari P. 1937. A critical review of the types of embryo sacs in angiosperms. – New Phytol. 36: 359-417.

Maheshwari P. 1946. The Adoxa type of embryo sac: a critical review. – Lloydia 9: 73-113.

Maheshwari P. 1947. Tetranucleate embryo sacs in angiosperms. – Lloydia 10: 1-18.

Maheshwari P. 1950. An introduction to the embryology of angiosperms. – McGraw-Hill, New York.

Maheshwari P. 1958. Embryology and the taxonomy. – Mem. Indian Bot. Soc. 1: 1-9.

Maheshwari P. 1963. Embryology in relation to taxonomy. – In: Turrill WS (ed), Vistas in botany IV, Pergamon Press, Oxford, pp. 55-97.

Maheshwari SC. 1955. The occurrence of bisporic embryo sacs in angiosperms – a critical review. – Phytomorphology 5: 67-99.

Mai DH. 1964. Die Mastixioideen-Floren im Tertiär der Oberlausitz. – Paläontol. Abhandl. Abt. B, Paläobotanik 2: 1-192.

Mai DH. 1970. Subtropische Elemente im europäischen Tertiär I. Die Gattungen Gironniera, Sarcococca, Illicium, Evodia, Ilex, Mastixia, Alangium, Symplocos und Rehderodendron. – Paläontol. Abhandl. Abt. B, Paläobotanik 3: 441-503.

Mai DH. 1976. Fossile Früchte und Samen aus dem Mitteleozän des Geiseltales. – Abhandl. Zentr. Geol. Insat. 26: 93-149.

Mai DH. 1980. Zur Bedeutung von Relikten in der Florengeschichte. – 100 Jahre Arboretum (1879-1979), pp. 281-307.

Mai DH. 1985. Entwicklung der Wasser- und Sumpfpflanzen-Gesellschaften Europas von der Kreide bis ins Quartär. – Flora 176: 449-511.

Mai DH. 1987. Neue Früchte und Samen aus paläozänen Ablagerungen Mitteleuropas. – Feddes Repert. 98: 197-229.

Mai DH. 1995. Tertiäre Vegetationsgeschichte Europas. – Gustav Fischer, Jena.

Mai DH. 1998. Contribution to the flora of the middle Oligocene Calau Beds in Brandenburg, Germany. – Rev. Palaeobot. Palynol. 101: 43-70.

Mai DH. 2000. Die untermiozänen Floren aus der Spremberger Folge und dem II. Flözhorizont der Lausitz. Teil III. Dialypetalae und Sympetalae. – Palaeontographica, B, 253: 1-106.

Mai DH. 2001. Die mittelmiozänen und obermiozänen Floren aus der Meuroer und Raunoer Folge in der Lausitz, Teil 2: Dicotyledonen. – Palaeontographica, B, 257: 35-176.

Mai DH, Gregor HJ. 1982. Neue und intressante Arten aus dem Miozän von Salzhausen im Vogelsberg. – Feddes Repert. 93: 405-435.

Mai DH, Walther H. 1978. Die Floren der Haselbacher Serie im Weißelster-Becken (Bez. Leipzig, DDR). – Abhandl. Staatl. Mus. Mineral. Geol. (Dresden) 28: 1-200.

Mai DH, Walther H. 1983. Die fossilen Floren des Weißelster-Beckens und seiner Randgebiete. – Hall. Jahrb. Geowiss. 8: 59-74.

Mai DH, Walther H. 1985. Die obereozänen Floren des Weißelster-Beckens und seiner Randgebiete. – Abh. Staatl. Mus. Mineral. Geol. (Dresden) 33: 1-260.

Mai DH, Walther H. 1991. Die oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. – Abhandl. Staatl. Mus. Mineral. Geol. (Dresden) 38: 1-230.

Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel L, Martinez EA, Driguez H, Bécard G, Dénare J. 2011. Fungal lipopolysaccharide symbiotic signals in arbuscular mycorrhiza. – Nature 469: 58-63.

Mair O. 1977.Zur Entwicklungsgeschichte monosymmetrischer Dicotylen-Blüten. – Diss. Bot. 38: 1-88.

Maire R. 1929. Contributions à l’étude de la flora de l’Afrique du Nord 16. – Bull. Soc. Hist. Nat. Afr. Nord 20: 171-208.

Maire R. 1931. Contributions à l’étude de la flore de l’Afrique du Nord 17. – Bull. Soc. Hist. Nat. Afr. Nord 22: 30-67.

Maire R. 1939. Contributions à l’étude de la flora de l’Afrique du Nord 28. – Bull. Soc. Hist. Nat. Afr. Nord 30: 255-314.

Malallah GA, Brown G. 1999. Determination of chromosome number of Kuwaiti flora I. – Cytologia 64: 181-196.

Malallah GA, Al-Dosari M, Murin A. 2001. Determination of chromosome numbers in Kuwaiti flora II. – Thaiszia J. Bot. 10: 137-150.

Malallah GA, Masood M, Al-Dosari M. 2001. Chromosome numbers of the Kuwaiti flora III. – Willdenowia 31: 411-418.

Malcomber ST, Kellogg EA. 2005. SEPALLATA gene diversification: brave new whorls. – Trends Plant Sci. 10: 427-435.

Malik CP. 1961. Chromosome numbers in some Indian angiosperms: monocotyledons. – Sci. & Culture 27: 260-261.

Malme G. 1933. Einige während der zweiten Regnellschen Reise gesammelte Phanerogamen. – Ark. f. Bot. 26A: 1-32.

Malte MO. 1934. Notes on Canadian Arctic plants. – Rhodora 36: 101-117, 172-193.

Manchester SR. 1994. Fruits and seeds of the Middle Eocene Nut Beds flora, Clarno Formation, Oregon. – Palaeontogr. Amer. 58: 1-205.

Manchester SR. 1999. Biogeographical relationships of North American Tertiary floras. – Ann. Missouri Bot. Gard. 86: 472-522.

Manchester SR. 2014. Revisions to Roland Brown’s North American Paleocene flora. – Sborn. Nár. Mus. Praze, Řada B, Přir. Vědy 70: 153-210.

Manchester SR, McIntosh WC. 2007. Late Eocene silicified fruits and seeds from the John Day Formation near Post, Oregon. – PaleoBios 27: 7-17.

Manchester SR, Meyer HW. 1987. Oligocene fossil plants of the John Day Formation Fossil, Oregon. – Oregon Geol. 49: 115-126.

Manchester SR, O’Leary EL. 2010. Phylogenetic distribution and identification of fin-winged fruits. – Bot. Rev. 76: 1-82.

Manchester SR, Chen Z-D, Lu A-M, Uemura K. 2009. Eastern Asian endemic seed plant genera and their paleogeographic history throughout the northern hemisphere. – J. Syst. Evol. 47: 1-41.

Manchester SR, Grímsson F, Zetter R. 2015. Assessing the fossil record of asterids in the context of our current phylogenetic framework. – Ann. Missouri Bot. Gard. 100: 329-363.

Manen JF, Savolainen V, Simon P. 1994. The atpB and rbcL promoters in plastid DNAs of a wide dicot range. – J. Mol. Evol. 38: 577-582.

Mangenot S, Mangenot G. 1957. Nombres chromosomiques nouveaux chez diverses dicotylédones et monocotylédones d’Afrique occidentale. – Bull. Jard. Bot. État Bruxelles 27: 639-654.

Mangenot S, Mangenot G. 1958. Deuxième liste des nombres chromosomiques nouveaux chez diverse Dicotylédones et Monocotylédones d’Afrique occidentale. – Bull. Jard. Bot. Natl. Belg. 28: 315-329.

Mangenot S, Mangenot G. 1962. Enquête sur les nombres chromosomiques dans une collection d’espèces tropicales. – Rev. Cytol. Biol. Végét. 25: 411-447.

Mangin L. 1882. Origine et insertion des racines adventives et modifications corrélations de la tige chez les monocotylédones. – Ann. Sci. Nat. Bot. Biol. Veg. VI, 14: 216-363.

Manning JC. 1996. Diversity of endothecial patterns in the angiosperms. – In: D’Arcy WG, Keating RC (eds), The anther, form, function and phylogeny, Cambridge University Press, Cambridge, pp. 136-158.

Manos PS, Steele KP. 1997. Phylogenetic analysis of ‘higher’ Hamamelididae based on plastid sequence data. – Amer. J. Bot. 84: 1407-1419.

Manos PS, Nixon KC, Doyle JJ. 1993. Cladistic analysis of restriction site variation within the chloroplast DNA inverted repeat region of selected Hamamelididae. – Syst. Bot. 18: 551-562.

Marazzi B, Sanderson M. 2010. Large-scale patterns of diversification in the widespread legume genus Senna and the evolutionary role of extrafloral nectaries. – Evolution 64: 3570-3592.

Marchi P, Visona L. 1982. Numeri cromosomici per la Flora Italiana: 889-905. – Inform. Bot. Ital. 14: 248-258.

Markgraf V, D’Antoni HL. 1978. Pollen flora of Argentina. – The University of Arizona Press, Tucson, Arizona.

Markmann K, Parniske M. 2009. Evolution of root endosymbiosis with bacteria: How novel are nodules? – Trends Plant Sci. 14: 77-86.

Markmann K, Giczey G, Parniske M. 2008. Functional adaptation of a plant receptor, kinase paved the way for the evolution of intracellular root symbioses with bacteria. – PloS Biol. 6(3). e68 doi:10.1371.journal.pbio.0060068.

Markova M, Goranova V. 1995. Mediterranean chromosome number reports nos. 435-473. – Flora Mediterranea 5: 289-316.

Marloth R. 1896. On the means of the distribution of seeds in the South African flora. – Trans. Philos. Soc. South Afr. 8: lxxiv-lxxxvii.

Marloth R. 1912. Some new South African succulents and other plants. – Trans. roy. Soc. South Afr. 2: 237-241.

Marsden MPF, Bailey IW. 1955. A fourth type of nodal anatomy in dicotyledons, illustrated by Clerodendron trichotomum Thunb. – J. Arnold Arbor. 36: 1-51.

Martin AC. 1946. The comparative internal morphology of seeds. – Amer. Midl. Natur. 36: 513-660.

Martin HA. 1973. The palynology of some Tertiary and Pleistocene deposits, Lachlan River valley, New South Wales. – Aust. J. Bot. [Suppl.] 6: 1-57.

Martin HA. 1978. Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. – Alcheringa 2: 181-202.

Martin HA. 1994. Australian Tertiary phytogeography: evidence from palynology. – In: Hill RS (ed), History of the Australian vegetation: Cretaceous to recent, Cambridge University Press, Cambridge, pp. 104-142.

Martin JT, Juniper BE. 1970. The cuticles of plants. – Edward Arnold, London.

Martín M, Sabater B. 2010. Plastid ndh genes in plant evolution. – Plant Physiol. Biochem. 48: 636-645.

Martin PG, Dowd JM. 1986. A phylogenetic tree for some monocotyledons and gymnosperms derived from protein sequences. – Taxon 35: 469-475.

Martin PG, Dowd JM. 1991a. Studies of angiosperm phylogenies using protein sequences. – Ann. Missouri Bot. Gard. 78: 296-337.

Martin PG, Dowd JM. 1991b. A comparison of 18S ribosomal RNA and Rubisco large subunit sequences for studying angiosperm phylogeny. – J. Mol. Evol. 33: 274-282.

Martin PG, Dowd JM, Stone SJL. 1983. The study of plant phylogeny using amino acid sequences of ribulose-1,5-bisphosphate carboxylase II. The analysis of small subunit data to form phylogenetic trees. – Aust. J. Bot. 31: 411-419.

Martin PG, Boulter D, Penny D. 1985. Angiosperm phylogeny studied using sequences of five macromolecules. – Taxon 34: 393-400.

Martin PS, Drew CM. 1969. Scanning electron photomicrographs of south-western pollen grains. – J. Arizona Acad. Sci. 5: 147-176.

Martin W, Gierl A, Saedler H. 1989. Molecular evidence for pre-Cretaceous angiosperm origins. – Nature 339: 46-48.

Martin W, Lydiate D, Brinkmann H, Forkmann G, Saedler H, Cerff R. 1993. Molecular phylogenetics in angiosperm evolution. – Mol. Biol. Evol. 10: 140-162.

Martín-Closas C. 2003. The fossil record and evolution of freshwater plants: a review. – Geologica Acta I: 315-338.

Martínez-Castilla LP, Alvarez-Buylla ER. 2003. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. – Proc. Natl. Acad. Sci. U.S.A. 100: 13407-13412.

Martínez-Millán M. 2010. Fossil record and age of the Asteridae. – Bot. Rev. 76: 83-135.

Mason-Gamer RJ, Weil CF, Kellogg EA. 1998. Granule-bound starch synthase: structure, function and phylogenetic utility. – Mol. Biol. Evol. 15: 1658-1673.

Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. – Science 264: 421-424.

Mateu I, Aguilella A, Azcarraga JM. 1987. Polenes de Jardin Botánico de Valencia I. – An. Asoc. Palinol. Lengua Español 3: 73-90.

Mathews S, Donoghue MJ. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. – Science 286: 947-950.

Mathews S, Donoghue MJ. 2000. Basal angiosperm phylogeny inferred from duplicate phytochromes A and C. – Intern. J. Plant Sci. 161(Suppl.): S41-S55.

Mathews S, Kramer EM. 2012. The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. – New Phytol. 194: 910-923.

Mathews S, Lavin M, Sharrock RA. 1995. Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms. – Ann. Missouri Bot. Gard. 82: 296-321.

Mathews S, Burleigh JG, Donoghue MJ. 2003. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms. – Mol. Biol. Evol. 20: 1087-1097.

Matile P. 1980. “Die Senfölbombe”: zur Kompartimentierung des Myrosinasesystems. – Biochem. Physiol. Pflanzen 175: 722-731.

Mattfeld J. 1938. Das morphologische Wesen und die phylogenetische Bedeutung der Blumenblätter. – Ber. Deutsch. Bot. Ges. 56: 86-116.

Matthews JR, Maclachlan CM. 1929. The structure of certain poricidal anthers. – Trans. Proc. Bot. Soc. Edinb. 30: 104-122.

Matthews ML, Endress PK. 2006. Floral structure and systematics in four orders of rosids, including a broad survey of floral mucilage cells. – Plant Syst. Evol. 260: 199-221.

Mauritzon J. 1936a. Zur Embryologie und systematischen Abgrenzung der Reihen Terebinthales und Celastrales. – Bot. Not. 1936: 161-212.

Mauritzon J. 1936b. Zur Embryologie einiger Parietales-Familien. – Svensk Bot. Tidskr. 30: 79-113.

Mauritzon J. 1939a. Contributions to the embryology of the orders Rosales and Myrtales. – Acta Univ. Lund., N. F., Avd. II, 35: 1-121.

Mauritzon J. 1939b. Die Bedeutung der embryologischen Forschung für das natürliche System der Pflanzen. – Lunds Univ. Årsskr. II, 35(15): 1-70.

Maximowicz CJ. 1881. Diagnoses plantarum novarum asiaticarum IV. – Bull. Acad. Sci. St. Petersbourg 27: 425-560.

May FE. 1975. Dichastopollenites reticulatus gen. et sp. nov. – potential Cenomanian guide fossil from southern Utah and northeastern Arizona. – J. Paleontol. 49: 528-533.

Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP. 2011. Recently formed polyploid plants diversify at lower rates. – Science 333: 1257.

Mears JA. 1973. Chemical constituents and systematics of Amentiferae. – Brittonia 25: 385-394.

Medus J, Berthou PY. 1980. Palynoflores dans la coupe de l’Albien de Foz do Folcão (Portugal). Geobios 13: 263-269.

Meeuse ADJ. 1972a. Facts and fiction in floral morphology with special reference to the Polycarpicae 1. A general survey. – Acta Bot. Neerl. 21: 113-127.

Meeuse ADJ. 1972b. Facts and fiction in floral morphology with special reference to the Polycarpicae 2. Interpretation of the floral morphology of various taxonomic groups. – Acta Bot. Neerl. 21: 235-252.

Meeuse ADJ. 1972c. Facts and fiction in floral morphology with special reference to the Polycarpicae 3. Consequences and various additional aspects of the anthocorm theory. – Acta Bot. Neerl. 21: 351-365.

Meeuse ADJ. 1975a. Floral evolution in the Hamamelidae III. Hamamelidales and associated groups including Urticales and final conclusions. – Acta Bot. Neerl. 24: 181-191.

Meeuse ADJ. 1975b. Aspects of the evolution of the monocotyledons. – Acta Bot. Neerl. 24: 421-436.

Meeuse ADJ. 1987. All about angiosperms. – Eburon, CIP-Gegevens Koninklijke Bibliotheek, Den Haag, Delft.

Mehra PN. 1972. Cytogenetical evolution of hardwoods. – Nucleus 15: 64-83.

Mehra PN. 1976. Cytology of Himalayan hardwoods. – Sree Saraswaty Press, Calcutta.

Mehra PN, Bawa KS. 1969. Chromosomal evolution in tropical hardwoods. – Evolution 23: 466-481.

Mehra PN, Sachdeva SK. 1976. Cytological observations on some W. Himalayan monocots IV. – Cytologia 41: 31-53.

Mehrotra RC. 2000. Study of plant megafossils from the Tura Formation of Nangwalbibra, Garo Hills, Meghalaya, India. – Palaeobotanist 49: 225-237.

Meijer JJF. 2000. Fossil woods from the Late Cretaceous Aachen Formation. – Rev. Palaeobot. Palynol. 112: 297-336.

Melcher IM, Bouman F, Cleef AM. 2004. Seed atlas of the monocotyledonous genera of the páramo. – Flora 199: 286-308.

Melchior H, Werdermann E (eds). 1964. A. Engler’s Syllabus der Pflanzenfamilien. 12. Aufl. – Gebrüder Bornträger, Berlin.

Melville R. 1962. A new theory of the angiosperm flower I. The androecium. – Kew Bull. 16: 1-50.

Melville R. 1963. A new theory of the angiosperm flower II. The androecium. – Kew Bull. 17: 1-63.

Melville R. 1975. The distribution of Australian relict plants and its bearing on angiosperm evolution. – Bot. J. Linn. Soc. 71: 6788.

Merckx V, Stöckel M, Fleischmann A, Bruns TD, Gebauer G. 2010. 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. – New Phytol. 188: 590-596.

Merckx VSFT, Janssens SB, Hynson NA, Bruns TD, Smets EF. 2012. Mycoheterotrophic interactions are not limited to a narrow phylogenetic range or arbuscular mycorrhizal fungi. – Mol. Ecol. 21: 1524-1532.

Merrill ED. 1912. Sertulum Bontocense. New or interesting plants collected in Bontoc Subprovince, Luzon, by Father Morice Vanoverbergh. – Philipp. J. Sci., C. Bot. 7: 71-75.

Merxmüller H. 1977. Summary lecture. – In: Kubitzki K (ed), Flowering plants: evolution and classification of higher categories, Plant Syst. Evol. [Suppl.] 1: 397-405.

Metcalfe CR. 1966. Distribution of latex in the plant kingdom. – Notes Jodrell Labor. 3: 1-18.

Metcalfe CR. 1967. Distribution of latex in the plant kingdom. – Econ. Bot. 21: 115-127.

Metcalfe CR (ed). 1969-1971. Anatomy of the monocotyledons. – Clarendon Press, Oxford.

Metcalfe CR, Chalk L. 1950. Anatomy of the dicotyledons I-II. – Clarendon Press, Oxford.

Metcalfe CR, Chalk L. 1957. Anatomy of the dicotyledons. – Oxford University Press, Cambridge.

Metcalfe CR, Chalk L. 1979. Anatomy of the dicotyledons. 2nd ed. Vol. I. Systematic anatomy of leaf and stem, with a brief history of the subject. – Clarendon Press, Oxford.

Metcalfe CR, Chalk L. 1983. Anatomy of the dicotyledons. 2nd ed. Vol. II. Wood structure and conclusions of the general introduction. – Clarendon Press, Oxford.

Metcalfe CR, Chalk L. 1987. Anatomy of the dicotyledons. 2nd ed. Vol. III. Magnoliales, Illiciales, and Laurales (sensu Armen Takhtajan). – Clarendon Press, Oxford.

Meurer-Grimes B. 1995. New evidence for the systematic significance of acylated spermidines and flavonoids in pollen of Higher Hamamelidae. – Brittonia 47: 130-142.

Meusel H. 1951. Die Bedeutung der Wuchsform für die Entwicklung des natürlichen Systems der Pflanzen. – Feddes Repert. 54: 137-172.

Meusel I. 1997. Rekristallisationsstudien ausgewählter epicuticularer Wachse. – Ph.D. diss., Friedrich-Wilhelms-Universität, Bonn, Rhein, Germany.

Meusel I, Leistner E, Barthlott W. 1994. Chemistry and micromorphology of compound epicuticular wax crystalloids (Strelitzia type). – Plant Syst. Evol. 193: 115-123.

Meusel I, Neinhuis C, Markstädter C, Barthlott W. 1999. Ultrastructure, chemical composition, and recrystallisation of epicuticular waxes: transversely ridged rodlets. – Can. J. Bot. 77: 706-730.

Meusel I, Barthlott W, Kutzke H, Barbier B. 2000. Crystallographic studies of plant waxes. – Powder Diffraction 15: 123-129.

Meusel I, Neinhuis C, Markstädter C, Barthlott W. 2000. Chemical composition and recrystallization of epicuticular waxes: coiled rodlets and tubules. – Plant Biol. 2: 462-470.

Meyer HW, Manchester SR. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. – Univ. Calif. Publ. Geol. Sci. 141: 1-195.

Meyers LA, Levin DA. 2006. On the abundance of polyploids in flowering plants. – Evolution 60: 1198-1206.

Meylan BA, Butterfield BG. 1975. Occurrence of simple, multiple, and combination perforation plates in the vessels of New Zealand woods. – New Zealand J. Bot. 13: 1-18.

Meylan BA, Butterfield BG. 1978a. The structure of New Zealand woods. – New Zealand Dept. Sci. Industr. Res. Inform. Ser. 222: 1-250.

Meylan BA, Butterfield BG. 1978b. Occurrence of helical thickenings in the vessels of New Zealand woods. – New Phytol. 81: 139-146.

Michaelis G. 1964. Chromosomenzahlen einiger kanarischer Endemismen. – Planta 62: 194.

Midgley JJ, Bond WJ. 1991. How important is biotic pollination and dispersal to the success of the angiosperms? – Philos. Trans. Roy. Soc. London, B, Biol. Sci. 333: 209-215.

Miège J. 1954. Nombres chromosomiques et répartition géographique de quelques plantes tropicales et équatoriales. – Rev. Cytol. Biol. Vég. 15: 312-348.

Miège J. 1960a. Nombres chromosomiques des plantes d’Afrique Occidentale. – Rev. Cytol. Biol. Vég. 21: 373-384.

Miège J. 1960b. Troisième liste de nombres chromosomiques d’espèces d’Afrique Occidentale. – Ann. Fac. Sci. Univ. Dakar 5: 75-85.

Miège J. 1962. Quatrième liste de nombres chromosomiques d’espèces d’Afrique Occidentale. – Rev. Cyt. Biol. Veg. 24: 149-164.

Mikesell J. 1990. Anatomy of terminal haustoria in the ovule of plantain (Plantago major L.) with taxonomic comparison to other angiosperm taxa. – Bot. Gaz. 151: 452-464.

Miki A. 1977. Late Cretaceous pollen and spore floras of northern Japan: composition and interpretation. – J. Fac. Sci. Hokkaido Univ., Ser. IV, Geology and Mineralogy 17: 399-436.

Miki S. 1941. On the change of flora in Eastern Asia since Tertiary period I. The clay of lignite beds flora in Japan with special reference to the Pinus trifolia beds in Central Hondo. – Jap. J. Bot. 11: 237-304.

Miki S. 1963. Further study on plant remains in Pinus trifoliata beds, Central Hondo, Japan. – Spec. Issue, Chigakukenkyu 80-93.

Miki S. 1968. Paleodavidia, synonym of Melliodendron and fossil remains in Japan. – Bull. Mukogawa Women Univ. 16: 287-291.

Miki S, Kokawa S. 1962. Late Cenozoic floras of Kyushu, Japan. – J. Biol. Osaka City Univ. 13: 65-85.

Milanez FR. 1935. Estudo de um Dicotyledoneo fossil do cretáceo. – Rodriguesia 1(2): 83-89.

Mildenhall DC. 1980. New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. – Palaeogeogr. Palaeoclim. Palaeoecol. 31: 197-233.

Mildenhall DC, Crosbie YM. 1979. Some porate pollen from the Upper Tertiary of New Zealand. – New Zealand J. Geol. Geophys. 22: 499-508.

Mildenhall DC, Pocknall DT. 1989. Miocene-Pleistocene spores and pollen from Central Otago, South Island, New Zealand. – Palaeontol. Bull. New Zealand Geol. Surv. 59: 1-128.

Mildenhall DC, Kennedy EM, Lee DE, Kaulfuss U, Bannister JM, Fox B, Conran JG. 2014. Palynology of the early Miocene Foulden Maar, Otago, New Zealand: diversity following destruction. – Rev. Palaeobot. Palyn. 204: 27-42.

Milewski AV, Bond WJ. 1982. Convergence of myrmechochory in Mediterranean Australia and South Africa. – In: Buckley RC (ed), Ant-plant interactions in Australia, W. Junk, The Hague, pp. 84-98.

Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Cray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH. 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. – Plant Cell 13: 645-658.

Miller IM. 1990. Bacterial leaf nodule symbiosis. – Adv. Bot. Res. 17: 163-234.

Miller JS, Venable DL. 2000. Polyploidy and the evolution of gender dimorphism in plants. – Scince 289: 2335-2338.

Milliken W, Kligård B, Baracat A. 2009. Neotropikey – Interactive key and information resources for flowering plants of the Neotropics. – Royal Botanic Gardens, Kew. http://www.kew.org/science/tropamerica/neotropikey/families/

Millspaugh CF. 1909. Praenunciae bahamenses II. – Publ. Field Columbian Mus., Bot. Ser. 2: 289-322.

Milne RI. 2009. Effects of taxon sampling on molecular dating for within-genus divergence events, when deep fossils are used for calibration. – J. Syst. Evol. 47: 383-401.

Miyoshi N, Fujiki T, Kimura H. 2011. Pollen flora of Japan. – Hokkaido University Press, Sapporo.

Moar NT. 1993. Pollen grains of New Zealand dicotyledonous plants. – Manaaki Whenua Press, Lincoln, New Zealand.

Moerman DE. 1998. Native American ethnobotany. – Timber Press, Portland, Oregon.

Mogami N, Miyamoto M, Onozuka M, Nakamura N. 2006. Comparison of callose plug structure between dicotyledon and monocotyledon pollen germinated in vitro. – Grana 45: 249-256.

Mogensen HL. 1996. The hows and whys of cytoplasmic inheritance in seed plants. – Amer. J. Bot. 83: 383-404.

Mogford DJ, Perry PL. 1981. Chromosome studies in the Southern African flora 7-9. – J. South Afr. Bot. 47: 293-296.

Mogford DJ, Hartley DH, Perry PL. 1981. Chromosome studies in the Southern African flora 22-24. – J. South Afr. Bot. 47: 751-754.

Mohamed MK. 1997. Chromosome counts in some flowering plants from Egypt. – Egypt. J. Bot. 37: 129-156.

Mohr BAR, Eklund H. 2003. Araripia florifera, a magnoliid angiosperm from the Lower Cretaceous Crato formation (Brazil). – Rev. Palaeobot. Palynol. 126: 279-292.

Mohr BAR, Friis EM. 2000. Early angiosperms from the Aptian Crato Formation (Brazil), a preliminary report. – Intern. J. Plant Sci. 161(Suppl.): S155-S167.

Mohr BAR, Rydin C. 2002. Trifurcatia flabellata n. gen. n. sp., a putative monocotyledon angiosperm from the Lower Cretaceous Crato Formation (Brazil). – Mitt. Mus. Naturk. Berlin, Geowiss. Reihe, 5: 335-344.

Mohr BAR, Bernardes-de-Oliveira MEC, Barale G, Ouaja M. 2006. Palaeogeographic distribution and ecology of Klitzschophyllites, an early Cretaceous angiosperm in southern Laurasia and northern Gondwana. – Cretaceous Res. 27: 464-472.

Mohr BAR, Bernardes-de-Oliveira MEC, Loveridge RF. 2007. The macrophyte flora of the Crato Formation. – In: Martill DM, Bechly G, Loveridge RF (eds), The Crato fossil beds of Brazil: window into an ancient world, Cambridge University Press, Cambridge, pp. 537-565.

Mole S. 1993. The systematic distribution of tannins in the leaves of angiosperms: a tool for ecological studies. – Biochem. Syst. Ecol. 21: 833-846.

Molero J, Daviña JR, Honfi AI, Franco D, Rovira A. 2006. Chromosome studies on plants from Paraguay II. – Candollea 61: 373-392.

Molero J, Daviña JR, Honfi AI, Franco D, Rovira A. 2007. Chromosome studies on plants from Paraguay II: amended table. – Candollea 62: 65-68.

Mølgaard P. 1985. Caffeic acid as a taxonomic marker in dicotyledons. – Nord. J. Bot. 5: 203-213.

Mølgaard P, Ravn H. 1988. Evolutionary aspects of caffeoyl ester distribution in dicotyledons. – Phytochemistry 27: 2411-2421.

Molina R, Massicotte H, Trappe JM. 1992. Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. – In: Allen MF (ed), Mycorrhizal functioning an integrative plant-fungal process, Chapman and Hall, New York.

Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T. 1998. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. – Amer. J. Bot. 85: 1477-1501.

Moncur MW. 1988. Floral development of tropical and subtropical fruit and nut species. An atlas of scanning electron micrographs. – Nat. Res. Ser. 8, CSIRO, Melbourne.

Monson RK. 1989. On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism. – Ad. Ecol. Res. 19: 57-110.

Monson RK, Edwards GE, Ku MSB. 1984. C3–C4 intermediate photosynthesis in plants. – Bioscience 34: 563-574.

Monteillet J, Lappartient J-R. 1981. Fruits et graines du Crétacé supérieur des carrières de Paki (Senegal). – Rev. Palaeobot. Palynol. 34: 331-344.

Montmollin B de. 1982. Étude cytotaxonomique de la flore endémique de la Crète. – Bull. Soc. Neuchâtel. Sci. Nat. 105: 65-77.

Montmollin B de. 1984. Étude cytotaxonomique de la flore de la Crète II. Nombres chromosomiques. – Bot. Helv. 94: 261-267.

Montmollin B de. 1986. Étude cytotaxonomique de la flore de la Crète III. Nombres chromosomiques. – Candollea 41: 431-439.

Moore DM. 1960. Chromosome numbers of flowering plants from Macquarie Island. – Bot. Not. 113: 185-191.

Moore DM. 1967. Chromosome numbers of Falkland Islands angiosperms. – Brit. Antarctic Surv. Bull. 14: 69-82.

Moore DM. 1970. Additions to the vascular flora of Tierra del Fuego. – Bol. Soc. Argent. Bot. 13: 1-9.

Moore DM. 1981. Chromosome numbers of Fuegian angiosperms. – Bol. Soc. Brot., sér. II, 53: 995-1012.

Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE. 2006. Rapid and accurate pyrosequencing of angiosperm plastid genomes. – BMC Plant Biol. 6: 17.

Moore MJ, Bell CD, Soltis PS, Soltis DE. 2007. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. – Proc. Natl. Acad. Sci. U.S.A. 104: 19363-19368.

Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. 2010. Phylogenetic analysis of 83 plastid genes resolves relationships among major clades of eudicot angiosperms and reveals multiple rapid radiations. – Proc. Natl. Acad. Sci., U.S.A. 107: 4623-4628.

Moore MJ, Hassan N, Gitzendanner MA, Bruenn RA, Croley M, Vandeventer A, Horn JW, Dhingra A, Brockington SF, Latvis M, Ramdial J, Alexandre R, Piedrahita A, X Z, Davis CC, Soltis PS, Soltis DE. 2011. Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. – Intern. J. Plant Sci. 172: 541-558.

Moran R. 1996. The Flora of Guadalupe Island, Mexico. – Mem. Calif. Acad. Sci. 19: 1-190.

Morawetz W. 1986. Remarks on karyological differentiation patterns in tropical woody plants. – Plant Syst. Evol. 152: 49-100.

Morawetz W, Hesse M. 1984. Primäre und sekundäre Aperturen bei Angiospermenpollen. – In: Clement C, Pacini E, Audran J-C (eds), Anther and pollen, from biology to biotechnology, Springer, Berlin, pp. 119-128.

Morawetz W, Rainer H. 1987. Die Chromosomenzahlen der Hamamelidae. – Sitzungsber. Österr. Akad. Wiss., Math.-Naturwiss. Kl., 197: 157-172.

Morawetz W, Samuel MRA. 1989. Karyological patterns in the Hamamelidae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 2, ‘Higher’ Hamamelidae, Systematics Association, Spec. Vol. 40B, Clarendon Press, Oxford, pp. 129-154.

Morawetz W, Waha M. 1984. Die Epidermisskulptur als Gattungsmerkmal bei primitiven Angiospermen. – Plant Syst. Evol. 144: 73-75.

Morgan WTW. 1981. Ethnobotany of the Turkana: use of plants by a pastoral people and their livestock in Kenya. – Econ. Bot. 35: 96-130.

Morley RJ. 1977. Palynology of tertiary and quaternary sediments in Southeast Asia. – In: Proceedings of the Indonesian Petroleum Association, 6th Ann. Conv., pp. 255-276.

Morley RJ. 2000. Origin and evolution of tropical rain forests. – John Wiley & Sons, Chichester.

Morton CM. 2011. Newly sequenced nuclear gene (Xdh) for inferring angiosperm phylogeny. – Ann. Missouri Bot. Gard. 98: 63-89.

Moseley MF. 1973 [1974]. Vegetative anatomy and morphology of Amentiferae. – Brittonia 25: 356-370.

Mosquin T, Hayley DE. 1966. Chromosome numbers and taxonomy of some Canadian arctic plants. – Can. J. Bot. 44: 1209-1217.

Mothes K. 1966a. Bemerkungen zum chemotaxonomischen Wert einiger Alkaloide. – Rev. Roum. Biochim. 1966: 103-110.

Mothes K. 1966b. Biogenesis of alkaloids and the problem of chemotaxonomy. – Lloydia 29: 156-171.

Mower JP, Stefanoviç S, Young GJ, Palmer JD. 2004. Gene transfer from parasitic to host plants. – Nature 452: 165-166.

Mower JP, Touzet P, Gummow JS, Dalph LF, Palmer JD. 2007. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. – BMC Evol. Biol. 7: 135.

Moyroud E, Kusters E, Monnieux M, Koes R, Parcy F. 2010. LEAFY blossoms. – Trends Plant Sci. 15: 346-352.

Muchhala N. 2007. Adaptive trade-off in floral morphology mediates specialization for flowers pollinated by bats and hummingbirds. – Amer. Natur. 169: 494-504.

Mueller F. 1891. Descriptions of new Australian plants with occasional other annotations. – Victoria Natur. 7: 180-183.

Muenchow GE. 1987. Is dioecy associated with fleshy fruit? – Amer. J. Bot. 74: 287-293.

Muenscher WCL. 1967. Aquatic plants of the United States. – Comstock Publication Associates, Ithaca, New York.

Muhaidat R, Sage RF, Dengler NG. 2007. Diversity of Kranz anatomy and biochemistry in C4 eudicots. – Amer. J. Bot. 94: 362-381.

Muhammad AF, Sattler R. 1982. Vessel structure in Gnetum and the origin of angiosperms. – Amer. J. Bot. 69: 1004-1021.

Mulcahy DL. 1979. The rise of the angiosperms: a genecological factor. – Science 206: 20-23.

Mullan DP. 1933. Observations on the biology and physiological anatomy of some Indian halophytes. – J. Indian Bot. Soc. 12: 165-182.

Muller J. 1968. Palynology of the Pedawan and Plateau sandstone formations (Cretaceous-Eocene) in Sarawak, Malaysia. – Micropaleontology 14: 1-37.

Muller J. 1970. Palynological evidence on early differentiation of angiosperms. – Biol. Rev. 45: 417-450.

Muller J. 1979. Form and function in angiosperm pollen. – Ann. Missouri Bot. Gard. 66: 593-632.

Muller J. 1981. Fossil pollen records of extant angiosperms. – Bot. Rev. (Lancaster) 47: 1-142.

Muller J. 1984. Significance of fossil pollen for angiosperm history. – Ann. Missouri Bot. Gard. 71: 419-443.

Müller KF, Borsch T, Hilu KW. 2006. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms. – Mol. Phylogen. Evol. 41: 99-117.

Müller-Doblies D. 1977. Über den geometrischen Zusammenhang der monochasialen Verzweigungen am Beispiel einiger Liliifloren. – Ber. Deutsch. Bot. Ges. 90: 351-362.

Müller-Doblies D, Müller Doblies U. 1987. Cautious improvements of a descriptive terminology of inflorescences. – Monocot Newsletter 4: 1-13.

Müller-Doblies D, Stützel T, Weberling F. 1992. A drepanium is not a cyme. – Flora 187: 61-65.

Müller-Schneider P. 1986. Diasporology of the spermatophytes of the Grisons (Switzerland). – Veröff. Geobot. Inst. ETH Stiftung Rübel Zürich 85.

Mullin BC, Swensen SM, Goetting-Minesky P. 1990. Hypotheses for the evolution of actinorhizal symbioses. – In: Gressoff PM, Roth LE, Stacey G, Newton WE (eds), Nitrogen fixation: achievement and objectives, Chapman and Hall, New York, pp. 781-787.

Muñoz Pizarro C. 1973. Chile: plantas en extinción. – Editorial Universitaria de Chile, Santiago, Chile.

Munster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theissen G. 1997. Floral homeotic genes were recruited from homologous MADS genes pre-existing in the common ancestor of ferns and seed plants. – Proc. Natl. Acad. Sci. U.S.A. 94: 2415-2420.

Murawski DA. 1995. Reproductive biology and genetics of tropical trees from a canopy perspective. – In: Lowman M, Nadkarni N (eds), Forest canopies, Academic Press, New York, pp. 457-493.

Murbeck S. 1920. Beiträge zur Biologie der Wüstenpflanzen II. Die Synaptospermie. – Lunds Univ. Årsskr., N.F., Avd. 2, 17(1): 1-53.

Murray BG, De Lange PJ. 1999. Contributions to a chromosome atlas of the New Zealand flora – 35. Miscellaneous families. – New Zealand J. Bot. 37: 511-521.

Murray RDH. 1991. Naturally occurring plant coumarins. – Progr. Chem. Org. Nat. Prod. 58: 83-316.

Murray RDH, Méndez J, Brown SA. 1982. The natural coumarins. Occurrence, chemistry and biochemistry. – Wiley, New York.

Mustoe GE. 2011. Cyclic sedimentation in the Eocene Allenby Formation of south-central British Columbia and the origin of the Princeton Chert fossil beds. – Can. J. Earth Sci. 48: 25-43.

Mylius G. 1913. Das Polyderm, eine vergleichende Untersuchung über die physiologischen Scheiden Polyderm, Periderm und Endodermis. – Bibl. Bot. 18(79): 1-119.

Nadot S, Bittar G, Carter L, Lacroix R, Lejeune B. 1995. A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4 using parsimony and a new numerical phenetics method. – Mol. Phylogen. Evol. 4: 257-282.

Nadot S, Forchioni A, Penet L, Sannier J, Ressayre A. 2006. Links between early pollen development and aperture pattern in monocots. – Protoplasma 228: 55-64.

Nadot S, Furness CA, Sannier J, Penet L, Triki-Teurtroy S, Albert B, Ressayre A. 2008. Phylogenetic comparative analysis of microsporogenesis in angiosperms with a focus on monocots. – Amer. J. Bot. 2008: 1426-1436.

Nagendra Prasad P, Janaki Ammal EK. 1985. Chromosome number report of some plants from Silent Valley I. – Indian J. Forestry 8: 205-207.

Nahrstedt A. 1982. Strukturelle Beziehungen zwischen pflanzlichen und tierischen Sekundärstoffe. – Planta Medica 44: 2-14.

Nahrstedt A. 1987. Recent developments in chemistry, distribution, and biology of the cyanogenic glycosides. – In: Hostettmann K, Lea PJ (eds), Biologically active natural products, Clarendon Press, Oxford.

Nair MNB. 1994. Some notes on gum and resin ducts and cavities in angiosperms. – In: Iqbal M (ed), The cambial derivatives [Handbuch der Pflanzenanatomie, Spez. Teil, IX, 4], Bornträger, Berlin, pp. 317-340.

Nair MNB, Mohan Ram HY. 1989. Vestured pits and vestured vessel member walls in some Indian dicotyledonous woods. – Bot. J. Linn. Soc. 100: 323-336.

Nair PKK. 1965. Pollen morphology of some families of Monochlamydeae. – Bot. Not. 118: 281-288.

Nair PKK, Sharma M. 1965. Pollen morphology of Liliaceae. – J. Palyn. (Lucknow) 1: 39-61.

Nakai T. 1924. Some new and noteworthy ligneous plants of eastern Asia. – J. Arnold Arbor. 5: 80.

Nakai T. 1930. Plantae Japonicae and Koreanae. – Bot. Mag. (Tokyo) 44: 22-23.

Nakai T. 1941. Notulae ad plantas Asiae Orientalis XVI. – Jap. J. Bot. 17: 189-203.

Nakai T. 1943. Ordines, familiae, tribi, genera, sectiones, species, varietates, formae et combinationes novae a prof. Nakai, Takenoshin adhuc ut novis edita. – Hokuryukan, Tokyo.

Nakai T. 1949. Classes, ordines, familiae, subfamiliae, tribus, genera nova quae attinent ad plantas Koreanas. – J. Jap. Bot. 24: 8-14.

Nakamura J. 1980. Diagnostic characters of pollen grains of Japan I-II. – Osaka Museum of Natural History, Osaka.

Nakanishi H. 2002. Splash seed dispersal by raindrops. – Ecol. Res. (Tokyo) 17: 663-671.

Nam J, dePamphilis CW, Ma H, Nei M. 2003. Antiquity and evolution of the MADS-box gene family controlling flower development in plants. – Mol. Biol. Evol. 20: 1435-1447.

Nambudiri EMV, Binda PL. 1989. Dicotyledonous fruits associated with coprolites from the Upper Cretaceous (Maastrichtian) Whitemud Formation, southern Saskatchewan, Canada. – Rev. Palaeobot. Palyn. 59: 57-66.

Nambudiri EMV, Tidwell WD. 1978. On probable affinities of Viracarpon Sahni from the Deccan Intertrappean flora of India. – Palaeontographica, Ser. B, 166: 30-43.

Nandi OI, Chase MW, Endress PK. 1998. A combined cladistic analysis of angiosperms using rbcL and non-molecular data sets. – Ann. Missouri Bot. Gard. 85: 137-212.

Naranjo CA. 1975. Chromosomal studies in Hypoxis L. Karyotype of H. decumbens L. – Phyton 33: 45-49.

Narayana LL. 1970. Comparative embryology of angiosperms: Oxalidaceae, Geraniaceae, Tropaeolaceae, Linaceae, Erythroxylaceae, Balsaminaceae. – Bull. Indian Natl. Acad. Sci. 41: 114-116, 117-120, 121-122, 127-132, 133-135, 158-162.

Nathan R. 2006. Long-distance dispersal of plants. – Science 313: 786-788.

Nathorst AG. 1888. Zur fossilen Flora Japans. – Palaeont. Abh. 4(3): 197-250.

Nazarova EA. 1975. Chromosome numbers of some species of Armenian flora. – Biologiceskij Žurnal Armenii 28: 95-97.

Neal PR, Dafn A, Giurfa M. 1998. Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. – Ann. Rev. Ecol. Syst. 29: 345-373.

Near TJ, Sanderson MJ. 2004. Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. – Phil. Trans. Roy. Soc. London, B, 359: 1477-1483.

Nee M. 1986. Solanaceae I. Flora de Veracruz 49. – Inst. Nac. sobre Recursos Bióticos, Xalapa.

Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. – Oxford University Press, New York.

Nelson EC. 1981. Phytogeography of southern Australia. – In: Keast A (ed), Ecological biogeography of Australia, Junk, The Hague, pp. 733-759.

Nelson T, Dengler N. 1997. Leaf vascular pattern formation. – Plant Cell 9: 1121-1135.

Nepi M. 2007. Nectary structure and ultrastructure. – In: Nicolson SW, Nepi M, Pacini E (eds), Nectaries and nectar, Springer, New York, pp. 129-166.

Netolitzky F. 1926. Anatomie der Angiospermen-Samen. – In: Linsbauer K (ed), Handbuch der Pflanzen-anatomie II, Abt. 2, Bd. 10, Gebrüder Bornträger, Berlin.

Neubauer HF. 1981 [1982]. Über Knotenbau und Blattgrundvascularisation bei Dicotylen. Übersicht und Zusammenfassung. – Beitr. Biol. Pflanzen 56: 357-366.

Neumeyer H. 1924. Die Geschichte der Blüte. – Abhandl. Zool.-Bot. Ges. Wien 14: 1-112.

Nevling LI Jr. 1969. The ecology of an elfin forest in Puerto Rico 5. Chromosome numbers of some flowering plants. – J. Arnold Arbor. 50: 99-103.

Newman EI, Reddell P. 1987. The distribution of mycorrhizas among families of vascular plants. – New Phytol. 106: 745-751.

Nichols DJ. 1992. Plants at the K/T boundary. – Nature 356: 295.

Nichols DJ. 2002. Palynology and palynostratigraphy of the Hell Creek Formation in North Dakota: a microfossil record of plants at the end of Cretaceous time. – Geol. Soc. Amer. Spec. Pap. 361: 393-456.

Nichols DJ, Johnson KR. 2008. Plants and the K-T boundary. – Cambridge University Press, Cambridge.

Nichols DJ, Matsukawa M, Ito M. 2006. Palynology and age of some Cretaceous nonmarine deposits in Mongolia and China. – Cretaceous Res. 27: 241-251.

Nickerson J, Drouin G. 2004. The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny. – Mol. Phylogen. Evol. 31: 403-413.

Nickrent DL. 2002. Orígenes filogenéticos de las plantas parásitas. – In: López-Sáez JA, Catalán P, Sáez L (eds), Plantas parásitas de la Península Ibérica e Islas Baleares, Mundi-Prensa, Madrid, pp. 29-56.

Nickrent DL. 2003. The parasitic plant connection. – Online article at website: http://www.science.siu.edu/parasitic-plants

Nickrent DL, Duff RJ. 1996. Molecular studies of parasitic plants using ribosomal RNA. – In: Moreno MT, Cubero JI, Nerner D, Joel D, Musselman LJ, Parker C (eds), Advances in parasitic plant research, Junta de Andalucia, Dirección General de Investigación Agraria, Córdoba, Spain, pp. 28-52.

Nickrent DL, Soltis DE. 1995. A comparison of angiosperm phylogenies from nuclear 18S rDNA and rbcL sequences. – Ann. Missouri Bot. Gard. 82: 208-234.

Nickrent DL, Starr EM. 1994. High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. – J. Molec. Evol. 39: 62-70.

Nickrent DL, Duff RJ, Konings DAM. 1997. Structural analyses of plastid-derived 16S rRNAs in holoparasitic angiosperms. – Plant Mol. Biol. 34: 731-743.

Nickrent DL, Ouyang Y, Duff RD, dePamphilis CW. 1997. Do nonasterid holoparaitic flowering plants have plastid genomes? – Plant Mol. Biol. 34: 717-729.

Nickrent DL, Duff JR, Colwell AE, Wolfe AD, Young ND, Steiner KE, dePamphilis CW. 1998. Molecular phylogenetic and evolutionary studies of parasitic plants. – In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular systematics of plants II. DNA sequencing, Kluwer Academic Publ., Boston, Massachusetts, pp. 211-241.

Nicolson SW, Nepi M, Pacini E (eds). 2007. Nectaries and nectar. – Springer, Dordrecht, The Netherlands.

Nisheda H. 1991. Diversity and significance of Late Cretaceous permineralized plant remains from Hookaido, Japan. – Bot. Mag. (To0ikyo) 104: 253-273.

Nishida H, Nishida M. 1988. Protomonimia kasainakajhongii gen. et sp. nov.: a permineralized magnolialean fructification from the mid-Cretaceous of Japan. – Bot. Mag. (Tokyo) 101: 397-437.

Nishimoto S. 1974. A chemotaxonomic study of n-alkanes in leaf surface waxes of terrestrial plants. – J. Sci. Hiroshima Univ., Ser. A, 38: 151-158.

Nikitin PA. 1957. Pliocene and Quaternary floras of Woronesh. – Akad. Nauk SSSR, Moscow.

Nikitin V. 1976. The Miocene of Mamontova Gora. – Akad. Nauk, Moscow.

Nilsson LA. 1988. The evolution of flowers with deep corolla tubes. – Nature 334: 147-149.

Nilsson Ö, Lassen P. 1971. Chromosome numbers of vascular plants from Austria, Mallorca and Yugoslavia. – Bot. Not. 124: 270-276.

Nilsson S, Praglowski J. 1992. Erdtman’s Handbook of palynology. 2nd ed. – Mungsgaard, Copenhagen.

Nishida H. 1994. Elsemaria, a Late Cretaceous angiosperm fructification from Hokkaido, Japan. – Plant Syst. Evol.(Suppl.) 8: 123-135.

Nishida M. 1984. The anatomy and the affinities of the petrified plants from the Tertiary of Chile IV. Dicotyledonous wood from Quiriquina Island, near Concepción. – In: Nishida M (ed), Contribution to the botany of the Andes, Academia Science Books, Tokyo, pp. 111-121.

Nishida M, Nishida H, Nasa T. 1988. Anatomy and affinities of the petrified plants from the Tertiary of Chile V. – Bot. Mag. (Tokyo) 101: 293-309.

Nishikawa T. 1985a. Chromosome counts of flowering plants of Hokkaido (Japan) 8. – J. Hokkaido Univ. Educ., Sect. II B, 35: 97-112.

Nishikawa T. 1985b. Chromosome counts of flowering plants of Hokkaido (Japan) 9. – J. Hokkaido Univ. Educ., Sect. II B, 36: 25-40.

Nixon KC, Crepet WL, Stevenson DW, Friis EM. 1994. A reevaluation of seed plant phylogeny. – Ann. Missouri Bot. Gard. 81: 484-533.

Noel ARA. 1959. The stem anatomy of Restio triticeus Rottb., Bobartia indica L., and Cadaba juncea (Sparm.) Harv. – J. South Afr. Bot. 25: 357-370.

Noel ARA. 1983. The endothecium – a neglected criterion in taxonomy and phylogeny? – Bothalia 14: 833-838.

Nordenstam B. 1969. Chromosome studies on South African vascular plants. – Bot. Not. 122: 398-408.

Nordenstam B. 1982. Chromosome numbers of southern African plants 2. – J. South Afr. Bot. 48: 273-275.

Norris T. 1941. Torus anatomy and nectary characteristics as phylogenetic criteria in the Rhoeadales. – Amer. J. Bot. 28: 101-113.

Nothnagel AL, Nothnagel EA. 2007. Primary cell wall structure in the evolution of land plants. – J. Integr. Plant Biol. 49: 1271-1278.

Nowicke JW, Skvarla JJ. 1979. Pollen morphology: the potential influence in higher order systematics. – Ann. Missouri Bot. Gard. 66: 633-700.

Nozeran R. 1955. Contribution à l’étude de quelques structures florales. – Ann. Sci. Nat. Bot. XI, 16: 1-224.

Nyffeler R, Eggli U. 2010. An up-to-date familial and suprafamilial classification of succulent plants. – Bradleya 28: 125-144.

Obaton M. 1960. Les lianes ligneuses a structure anormale des forêts denses d’Afrique occidentale. – Ann. Sci. Nat., Bot. 12: 1-220.

Ober D, Hartmann T. 2000. Phylogenetic origin of a secondary pathway: the case of pyrrolizidine alkaloids. – Plant Mol. Biol. 44: 445-450.

Oberprieler C, Vogt R. 1993. Chromosome numbers of North African phanerogams II. – Willdenowia 23: 211-238.

Ogden EC. 1974. Anatomical patterns of some aquatic vascular plants of New York. – New York State Mus. Bull. 424: 1-133.

Oginuma K, Tobe H, Ohba H. 1994. Chromosome numbers of some woody plants from Nepal. – Acta Phytotaxon. Geobot. 45: 15-22.

Oginuma K, Kiaptranis R, Damas K, Tobe H. 1998. A cytological study of some plants from Papua New Guinea. – Acta Phytotaxon. Geobot. 49: 105-114.

Ohana T, Kimura T. 1995. Late Mesozoic phytogeography in eastern Eurasia, with special reference to the origin of angiosperms in time and site. – Proceedings of the 15th International Symposium of Kyungpook National University, pp. 293-328.

Ohana T, Kimura T, Chitaley S. 1999. Keraocarpon gen. nov., magnolialean fruits from the Upper Cretaceous of Hookaido, Japan. – Paleontological Res. 3: 294-302.

Ohri D, Kumar A. 1986. Nuclear DNA amounts in some tropical hardwoods. – Caryologia 39: 303-307.

Ohtani J. 1983. SEM investigation on the micromorphology of vessel wall sculptures. – Res. Bull. College Exp. Forests Hokkaido Univ. 40: 323-386.

Ohtani J, Ishida S. 1976. Study on the pits of wood cells using scanning electron microscopy 5. Vestured pits in Japanese dicotyledonous woods. – Res. Bull. Coll. Exper. For. Hokkaido Univ. 33: 407-435.

Okada H. 1975. Karyomorphological studies of woody Polycarpicae. – J. Sci. Hiroshima Univ., Ser. B, Div. 2, Bot. 15: 115-200.

Okada H. 1984. Chromosomal counts of some plants collected from W. Sumatra. – In: Hotta M (ed), Forest ecology and flora of G. Gadut, West Sumatra. – Sumatra Nat. Study (Bot.), Kyoto, pp. 89-91.

Okada H. 1986. The cytotaxonomical observations of some plants collected from West Sumatra. – In: Hotta M (ed), Diversity and dynamics of plant life in Sumatra. Part 1: reports and collection of papers, Sumatra Nat. Study (Bot.), Kyoto University, pp. 61-70.

Olesen JM. 1985. The Macaronesian bird-flower element and its relation to bird and bee opportunists. – Bot. J. Linn. Soc. 91: 395-414.

Oliver WRB. 1926. New Zealand angiosperms. – Trans. Proc. New Zealand Inst. 56: 1-5.

Oliver WRB. 1928. The flora of the Waipaoa Series (Later Pliocene) of New Zealand. – Trans. New Zealand Inst. 59: 287-303.

Oliver WRB. 1936. The Tertiary flora of the Kaikorai Valley, Otago, New Zealand. – Trans. Roy. Soc. New Zealand 66: 284-304.

Oliver WRB. 1950. The fossil flora of New Zealand. – Tuatara 3: 1-11.

Olmstead RG, Jansen RK, Michaels HJ, Downie SR, Palmer JD. 1990. Chloroplast DNA and phylogenetic studies in the Asteridae. – In: Kawano S (ed), Biological approaches and evolutionary trends in plants (Proceedings of the IOPB Symposium, Kyoto, Japan), Academic Press, London, New York, pp. 110-134.

Olmstead RG, Michaels HJ, Scott KM, Palmer JD. 1992. Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. – Ann. Missouri Bot. Gard. 79: 249-265.

Olmstead RG, Scott KM, Palmer JD. 1992. A chloroplast DNA phylogeny for the Asteridae: implications for the Lamiales. – In: Harley RM, Reynolds T (eds), Advances in Labiate Science, Royal Botanic Gardens, Kew, pp. 19-25.

Olmstead RG, Scotland R, Wagstaff S, Sweere J, Reeves P. 1992. Application of the chloroplast gene ndhF to angiosperm phylogenetic studies. – Plant Mol. Evol. Newsl. 2: 27-30.

Olmstead RG, Bremer B, Scott KM, Palmer JD. 1993. A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. – Ann. Missouri Bot. Gard. 80: 700-722.

Olmstead, R. G., Kim, K.-J., Jansen, R. K. & Wagstaff, S. J. 2000. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. – Mol. Phylogen. Evol. 16: 96-112.

Olson SL, Blum KE. 1968. Avian dispersal of plants in Panama. – Ecology 49: 565-566.

O’Neill MA, York WS. 2003. The composition and structure of plant primary cell walls. – In: Rose JKC (ed), The plant cell wall, Blackwell, Oxford, pp. 1-54.

Ono M. 1977. Cytotaxonomical studies on the flowering plants endemic to the Bonin Islands. – Mém. Nat. Sci. Mus. 10: 63-80.

Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. 2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. – New Phytol. 184: 424-437.

Ornduff R. 1969. Reproductive biology in relation to systematics. – Taxon 18: 121-133.

Ornduff R. 1974. Heterostyly in South African plants: a conspectus. – J. South Afr. Bot. 40: 169-187.

Ortega J. 1981. Estudios en la Flora de Macaronesia: algunos números de cromosomas IV. – Bot. Macaronésica 7: 43-51.

Ortega J, Navarro B. 1977a. Estudios en la Flora de Macaronesia: algunos números de cromosomas III. – Bot. Macaronésica 3: 73-80.

Ortega J, Navarro B. 1977b. Estudios en la Flora de Macaronesia: algunos números de cromosomas IV. – Bot. Macaronésica 4: 69-76.

Orthia LA, Cook LG, Crisp MD. 2005. Generic delimitation and phylogenetic uncertainty: an example from a group that has undergone an explosive radiation. – Aust. Syst. Bot. 18: 41-47.

Osborne CP, Beerling DJ. 2006. Nature’s green revolution: the remarkable evolutionary rise of C4 plants. – Phil. Trans. Roy. Soc. London, B, 361: 173-194.

Oschkinis V, Gregor H-J. 1992. Paläontologische Funde aus der eozänen Braunkohle des Untertagebaus Stolzenbach (PreußenElektra) in Niederhessen I. Die Flora. – Doc. Nat. 72: 1-31.

Ostenfeld CH. 1916. Contributions to Western Australian Botany 1. – Dansk Bot. Ark. 2: 1-44.

Otoo SP, Whitton J. 2000. Polyploid incidence and evolution. – Ann. Rev. Gen. 34: 401-437.

Owens JP, Sohl NF. 1989. Campanian and Maastrichtian depositional systems of the Black Creek Group of the Carolinas. Field trip guidebook. – Carolina Geological Society, Raleigh, North Carolina.

Oxelman B, Yoshikawa N, McConaughy BL, Luo J, Denton AL, Hall BD. 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. – Mol. Phylogen. Evol. 32: 462-479.

Ozaki K. 1991. Late Miocene and Pliocene floras in Central Honshu. – Bull. Kanagawa Pref. Mus. Nat. Sci. Spec. Issue: 1-244.

Ozenda P. 1948. Recherches sur les Dicotylédones apocarpiques. Contribution à l’étude des Angiospèrmes dites primitives. – Ph.D. diss., l’Université de Paris, France.

Ozenda P. 1949. Recherches sur les dicotylédones apocarpiques. – Publ. Lab. Biol. École Norm. Supér., sér. Biologie 2, Jouve, Paris, pp. 24-75.

Pacini E. 1997. Tapetum character states: analytical keys for tapetum types and activities. – Can. J. Bot. 75: 1448-1459.

Pacini E. 2010. Relationships between tapetum, loculus, and pollen during development. – Intern. J. Plant Sci. 171: 1-11.

Pacini E, Hesse M. 2005. Pollenkitt – its composition, forms and functions. – Flora 200: 399-415.

Pacini E, Franchi GG, Hesse M. 1985. The tapetum: its form, function and possible phylogeny in Embryophyta. – Plant Syst. Evol. 149: 155-185.

Packer JG. 1964. Chromosome numbers and taxonomic notes on western Canadian and Arctic plants. – Can. J. Bot. 42: 473-494.

Packer JG, McPherson G. 1974. Chromosome numbers in some vascular plants from northern Alaska. – Can. J. Bot. 52: 1095-1099.

Pacltová B. 1971. Palynological study of Angiospermae from the Peruc Formation (?Albian-Lower Cenomanian) of Bohemia. – Sborník geologických ved, Paleontologie 13: 105-141.

Page VM. 1968. Angiosperm wood from the Upper Cretaceous of central California I. – Amer. J. Bot. 55: 168-172.

Page VM. 1970. Angiosperm wood from the Upper Cretaceous of central California III. – Amer. J. Bot. 69: 990-998.

Page VM. 1979. Dicotyledonous wood from the Upper Cretaceous of Central California. – J. Arnold Arbor. 60: 323-349.

Paiva J, Leitão MT. 1987. Números chromosomáticos de plantas de África tropical. – Fontqueria 14: 37-44.

Paiva J, Leitão MT. 1989. Números chromosomáticos para alguns taxa da Africa tropical II. – Bol. Soc. Brot. ser. II, 62: 117-130.

Palamarczuk S, Barreda V. 2000. Palinologia del Paleógeno tardío-Neógeno temprano, pozo Aries x-1, plataforma continental Argentina, Tierra del Fuego. – Ameghiniana 37: 221-234.

Paliwal GS. 1969. Stomatal ontogeny and phylogeny 1. Monocotyledons. – Acta Bot. Neerl. 18: 654-668.

Palm B. 1915. Studien über Konstruktionstypen und Entwicklungswege des Embryosacks der Angiospermen. – Akad. Afhandl., Stockholm 1915.

Palmer E, Pitman N. 1972. Trees of southern Africa. – A. A. Balkema, Cape Town.

Palmer JD. Jansen RK, Michaels HJ, Chase MD, Manhart JA. 1988. Chloroplast DNA variation and plant phylogeny. – Ann. Missouri Bot. Gard. 75: 1180-1206.

Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu Y-L, Song K. 2000. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. – Proc. Natl. Acad. Sci. U.S.A. 97: 6960-6966.

Palmgren O. 1943. Chromosome numbers in angiospermous plants. – Bot. Not. 1943: 348-352.

Palser BF. 1975. The bases of angiosperm phylogeny: embryology. – Ann. Missouri Bot. Gard. 62: 621-646.

Pankow H. 1962. Histogenetische Studien an den Blüten einiger Phanerogamen. – Bot. Stud. 13: 1-106.

Pannell CM, White F. 1988. Patterns of speciation in Africa, Madagascar, and the tropical Far East: regional faunas and cryptic evolution in vertebrate-dispersed plants. – Monogr. Syst. Bot. Missouri Bot. Gard. 25: 639-659.

Pant P, Rastogi RP. 1979. The triterpenoids. – Phytochemistry 18: 1095-1108.

Pareek A. 1988. Aquatic angiosperms of Rajasthan and their uses. – J. Econ. Taxon. Bot. 12: 139-145.

Parenicova L, Folter S, Kieffer M, Hrner D, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. – Plant Cell 15: 1538-1551.

Parham JF, Donoghue PCF, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, Patané JS, Smith ND, Tarver JE, Tuinen M van, Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA, Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor JM, Warnock RCM, Benton MJ. 2011. Best practices for justifying fossil calibrations. – Syst. Biol. 346-359.

Paris R, Nothis A. 1970. Plantes de Nouvelle-Calédonie. – Plant. Méd. Phytothérapie 4: 63-74.

Parkin J. 1914. The evolution of the inflorescence. – Bot. J. Linn. Soc. 42: 511-562.

Parkin J. 1923. The strobilus theory of angiospermous descent. – Proc. Linn. Soc. London 153: 51-64.

Parkinson CL, Adams KL, Palmer JD. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. – Curr. Biol. 9: 1485-1488.

Parra O, Marticorena C. 1968. Estudio de los granos de pollen de plantas chilenas. – Gayana, Botanica 17: 1-54.

Pate JS. 1989. Australian micro stilt plants. – Trends Ecol. Evol. 4: 45-49.

Pate JS, Dixon KW. 1982. Tuberous, cormous and bulbous plants. – University of Western Australia Press, Nedlands, Western Australia.

Pate JS, Weber G, Dixon KW. 1984. Stilt plants – extraordinary growth form of the Kwongan. – In: Pate JS, Beard JS (eds), Kwongan: plant life of the sandplain, University of Western Australia Press, Nedlands,Western Australia, pp. 101-125.

Patel RN. 1973a. Wood anatomy of dicotyledons endemic to New Zealand 1. Cornaceae. – New Zealand J. Bot. 11: 3-22.

Patel RN. 1973b. Wood anatomy of dicotyledons endemic to New Zealand 2. Escalloniaceae. – New Zealand J. Bot. 11: 421-434.

Patil GV. 1972. Viracarpon chitaleyi, sp. nov., from the Deccan Intertrappean beds of Mohgaon Kalan, India. – Botanique 3: 21-26.

Payer J-B. 1966. Traité d’organogénie comparée de la fleur. – J. Cramer, New York.

Payne WW. 1970. Helicocytic and allelocytic stomata: unrecognized patterns in the Dicotyledonae. – Amer. J. Bot. 57: 140-147.

Payne WW. 1978. A glossary of plant hair terminology. – Brittonia 30: 239-255.

Pedersen KR. 1976. Fossil floras of Greenland. – In: Escher A, Watt WS (eds), Geology of Greenland, The Geological Survey of Greenland, Copenhagen, pp. 519-535.

Pedersen KR, Crane PR, Drinnan AN, Friis EM. 1991. Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites type. – Grana 30: 577-590.

Pedersen KR, Friis EM, Crane PR, Drinnan AN. 1994. Reproductive structures of an extinct platanoid from the early Cretaceous (latest Albian) of eastern North America. – Rev. Palaeobot. Palynol. 80: 291-303.

Pedersen KR, Balthazar M von, Crane P, Friis EM. 2007. Early Cretaceous floral structures and in situ tricolpate-striate pollen: new early eudicots from Portugal. – Grana 46: 176-196.

Peer Y van de, Fawcett JA, Proost S, Sterck L, Vandepoole K. 2009. The flowering world: a tale of duplications. – Trends Plant Sci. 14: 680-688.

Peer Y van de, Maere S, Meyer A. 2009. The evolutionary significance of ancient genome duplications. – Nat. Rev. Gen. 10: 725-732.

Pellmyr O. 1992 Evolution of insect pollination and angiosperm diversification. – Trends Ecol. Evol. 7: 46-49.

Pemberton LMS, Tsai S-L, Lovell PH, Harris PJ. 2001. Epidermal patterning in seedling roots of eudicotyledons. – Ann. Bot. 87: 649-654.

Pemberton RW, Turner CE. 1989. Occurrence of predatory and fungivorous mites in leaf domatia. – Amer. J. Bot. 76: 105-112.

Penin AA, Choob VV, Ezhova TA. 2005. Basic principles of terminal flower formation. – Russ. J. Developm. Biol. 36: 65-69.

Pennington RT, Richardson JE, Lavin M. 2006. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. – New Phytol. 172: 605-616.

Pennisi E. 2009. On the origin of flowering plants. – Science 324: 28-31.

Penny JHJ. 1986. An Early Cretaceous angiosperm pollen assemblage from Egypt. – Spec. Pap. Palaeontology 35: 121-134.

Penny JHJ. 1988a. Early Cretaceous acolumellate semitectate pollen from Egypt. – Palaeontology 31: 373-418.

Penny JHJ. 1988b. Early Cretaceous striate pollen from the borehole Mersa Matruh 1, North West Desert, Egypt. – J. Micropalaeontology 7: 201-215.

Penny JHJ. 1989. New Early Cretaceous forms of the angiosperm pollen genus Afropollis from England and Egypt. – Rev. Palaeobot. Palynol. 58: 289-299.

Penny JHJ. 1991. Early Cretaceous angiosperm pollen from the borehole Mersa Matruh 1, North West Desert, Egypt. – Palaeontographica, Abt. B, 222: 31-88.

Penny JHJ. 1992. The relevance of the Early Cretaceous angiosperm palynology of Egypt to biostratigraphy and reconstruction of angiosperm palaeolatitude migrations. – Cretaceous Res. 13: 369-378.

Peppe DJ, Erickson J, Hickey J. 2007. Fossil leaf species from the Fox Hills Formation (Upper Cretaceous: North Dakota, USA) and their paleogeographic significance. – J. Paleontology 81: 550-567.

Percy DM, Page RDM, Cronk QCB. 2004. Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. – Syst. Biol. 53:120-127.

Pérez de Paz PL. 1980. Contribución al atlas palinológico de éndemismos Canario-Macaronésicos III. – Bot. Macaronesica 7: 77-112.

Periasamy K. 1962. The ruminate endosperm: development and types of rumination. – In: Maheshwari P (ed), Symposium on plant embryology, Council Sci. Indian Res., New Delhi, pp. 72-74.

Periasamy K. 1966. Studies on seeds with ruminate endosperm VI. Rumination in the Araliaceae, Aristolochiaceae, Caprifoliaceae and Ebenaceae. – Proc. Indian Acad. Sci., Sect. B, 60: 127-134.

Periasamy K. 1990. The ruminate seed. – Indian Rev. Life Sci. 10: 141-168.

Perry LM. 1980. Medicinal plants of East and Southeast Asia. Attributed properties and uses (with the assistance of J Metzger). – Cambridge University Press, Cambridge.

Peruzzi L. 2003. Numeri cromosomici per la Flora Italiana 1415-1420. – Inform. Bot. Ital. 35: 81-84.

Peruzzi L, Cesca G. 2002. Chromosome numbers of flowering plants from Calabria, S Italy. – Willdenowia 32: 33-44.

Peters T. 1927. Über die Bedeutung der inversen Leitbündel für die Phyllodien-Theorie. – Planta 3: 90-99.

Petersen AE. 1953. A comparison of the secondary xylem elements of certain species of the Amentiferae and Ranales. – Bull. Torrey Bot. Club 80: 365-384.

Petersen FP, Fairbrothers DE. 1979. Serological investigations of selected amentiferous taxa. – Syst. Bot. 4: 230-241.

Petersen FP, Fairbrothers DE. 1985. A serotaxonomic appraisal of the “Amentiferae”. – Bull. Torrey Bot. Club 112: 43-52.

Petersen G, Seberg O, Davis JI, Goldman DH, Stevenson DW, Campbell LM, Michelangeli FA, Specht CD, Chase MW, Fay MF, Pires JC, Freudenstein JV, Hardy CR, Simmons MP. 2006. Mitochondrial data in monocot phylogenetics. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 52-62.

Petersen G, Seberg O, Davis JI, Stevenson GW. 2006. RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes. – Taxon 55: 871-886.

Petersen OG. 1882. Über das Auftreten bicollateraler Gefäßbündel in verschiedenen Pflanzenfamilien und über den Werth derselben für die Systematik. – Engl. Bot. Jahrb. Syst. 3: 359-402.

Pettitt JM. 1984. Aspects of flowering and pollination in marine angiosperms. – Oceanogr. Mar. Biol. Annu. Rev. 22: 315-342.

Pettitt JM, Jermy AC. 1975. Pollen in hydrophilous angiosperms. – Micron (London) 5: 377-405.

Pettitt JM, Ducker SC, Knox RB. 1980. Submarine pollination. – Sci. Amer. 244: 134-143.

Pfeiffer A. 1891. Die Arillargebilde der Pflanzensamen. – Engl. Bot. Jahrb. Syst. 13: 492-540.

Pflug HD. 1953. Zur Entstehung und Entwicklung des angiospermiden Pollen in der Erdgeschichte. – Paleontographica, Abt. B, 95: 60-171.

Philbrick CT, Les DH. 1996. Evolution of aquatic angiosperm reproductive systems. – BioScience 46: 813-826.

Philipp M. 1923. Über die verkorten Abschlußgewebe der Monokotylen. – Bibl. Bot. 23(92): 1-30.

Philipson WR. 1974. Ovule morphology and the major classification of the dicotyledons. – Bot. J. Linn. Soc. 68: 89-108.

Philipson WR. 1975. Evolutionary lines within the dicotyledons. – New Zealand J. Bot. 13: 73-91.

Philipson WR. 1977. Ovule morphology and the major classification of dicotyledons. – Plant Syst. Evol. [Suppl.] 1: 123-140.

Philipson WR. 1987. The treatment of isolated genera. – Bot. J. Linn. Soc. 95: 19-25.

Phillips EP. 1926. The genera of South African flowering plants. – Bot. Surv. South Afr. 10: 1-702.

Phillips EP. 1951. The genera of South African flowering plants. – Cape Times Ltd., Government Printer, Cape Town.

Phillips PP, Felix CJ. 1971. A study of Lower and Middle Cretaceous spores and pollen from the southeastern United States II. Pollen. – Pollen Spores 13: 447-473.

Phitos D, Kamari G. 1974. Zytotaxonomische Beiträge zur Flora von Kreta I. – Bot. Not. 127: 302-308.

Pickett KM. 2005. The new and improved PhyloCode, now with types, ranks, and even polyphyly: a conference report from the First International Phylogenetic Nomenclature Meeting. – Cladistics 21: 79-82.

Pierce RL. 1961. Lower Upper Cretaceous plant microfossils from Minnesota. – Minnesota Geol. Surv. Bull.: 42: 1-86.

Pigg KB, Stockey RA. 1996. The significance of the Princeton Chert permineralized flora to the middle Eocene upland biota of the Okanogan Highlands. – Wash. Geol. 24: 32-36.

Pigg KB, Wehr WC. 2002. Tertiary flowers, fruits, and seeds of Washington State and adjacent areas III. – Washington Geol. 30: 3-16.

Pigg KB, Bryan FA, DeVore ML. 2018. Paleoallium billgenseli gen. et sp. nov.: fossil monocot remains from the latest Early Eocene Republic flora, northeastern Washington State, USA. – Intern. J. Plant Sci. 179: 477-486.

Pijl L van der. 1933. Mycetanthe vindplaatsen en opmerkingen. – Trop. Natuur 22: 51-52.

Pijl L van der. 1936. Fledermäuse und Blumen. – Flora II, 31: 1-40.

Pijl L van der. 1953. On the flower biology of some plants from Java with general remarks on fly-traps. – Ann. Bogor. 1: 77-99.

Pijl L van der. 1955. Sarcotesta, aril, pulpa and the evolution of the angiosperm fruit. – Proc. Kon. Nederl. Akad. Wet., C, 58: I, 154-161; II, 307-312.

Pijl L van der. 1960. Ecological aspects of flower evolution I. Phyletic evolution. – Evolution 14: 403-416.

Pijl L van der. 1966. Ecological aspects of fruit evolution, a functional study of dispersal organs. – Proc. Kon. Nederl. Akad. Wet., C, 69: I, 597-614; II, 615-624; III, 625-640.

Pijl L van der. 1978. Reproductive integration and sexual disharmony in floral functions. – In: Richards AJ (ed), The pollination of flowers by insects, Academic Press, London, pp. 79-88.

Pijl L van der. 1982. Principles of dispersal in higher plants. 3rd ed. – Springer, New York.

Pijl L van der. 1995. Some remarks on myrmecophytes. – Phytomorphology 5: 190-200.

Pilger R. 1921. Bemerkungen zur phylogenetischen Entwicklung der Blütenstände. – Ber. Freien Ver. Pflanzengeogr. Syst. Bot. 1919: 69-77.

Pilger R. 1922. Über Verzweigung und Blütenstandbildung bei den Holzgewächsen. – Bibl. Bot. 90: 1-38.

Pilger R, Krause K. 1915. Die natürlichen Pflanzenfamilien. Ergänzungsheft III enthaltend die Nachträge IV zu den Teilen II-IV für die Jahre 1905-1912. – W. Engelmann, Leipzig.

Pinkerton ME. 1936. Secondary root hairs. – Bot. Gaz. 98: 147-158.

Piperno D. 2006. Phytoliths. A comprehensive guide for archaeologists and paleoecologists. – Rowman & Littlefield, Lanham.

Pirwitz K. 1931. Physiologische und anatomische Untersuchungen an Speichertracheiden und Velamina. – Planta 14: 19-76.

Pittier H. 1910. New and noteworthy plants from Colombia and Central America. – Contr. U. S. Natl. Herb. 13: 93-132.

Pittier H. 1957. Plantas usuales de Costa Rica. 2nd ed. – University of Costa Rica, San José.

Plaziat J-C, Cavagnetto C, Koeniguer J-C, Balzer F. 2001. History and biogeography of the mangrove ecosystem, based on a critical reassessment of the paleontological record. – Wetl. Ecol. Manag. 9: 161-179.

Plouvier V. 1990. Alditols et cyclitols: Répartition et taxinomie chez les plantes supérieures. Les recherches publiêes depuis 1962. – Bull. Mus. Natl. Hist. Nat. Paris 12: 209-223.

Plouvier V, Favre-Bonvin J. 1971. Les iridoïdes et séco-iridoïdes: répartition, structure, propriétés, biosynthèse. – Phytochemistry 10: 1697-1772.

Pocknall DT. 1982. Palynology of late Oligocene Pomahaka Bed sediments, Waikoiboi, Southland, New Zealand. – New Zealand J. Bot. 20: 263-287.

Podlech D. 1986. Chromosomenstudien an Pflanzen des Saharo-Sindischen Trockengebietes. – Mitt. Bot. Staatssamml. München 22: 5-20.

Podlech D, Bader O. 1974. Chromosomenstudien an afghanischen Pflanzen II. – Mitt. Bot. Staatssamml. München 11: 457-488.

Podlech D, Dieterle A. 1969. Chromosomenstudien an afghanischen Pflanzen. – Candollea 24: 185-243.

Pogan E, Jzmalow R et al. 1983. Further studies in chromosome numbers of Polish angiosperms XVI. – Acta Biol. Cracov., Ser. Bot. 24: 159-189.

Poinar GO, Chambers KL. 2005. Palaeoanthella huangii gen. et sp. nov., an early Cretaceous flower (Angiospermae) in Burmese amber. – Sida 21: 2087-2092.

Poinar GO, Chambers KL. 2008. An Early Cretaceous angiosperm fossil of possible significance in rosid floral diversification. – J. Bot. Res. Inst. Texas 2: 1183-1192.

Poinar GO, Chambers KL, Buckley R. 2007. Eoepigynia burmensis gen. et sp. nov., an Early Cretaceous eudicot flower (Angiospermae) in Burmese amber. – J. Bot. Res. Inst. Texas : 91-96.

Poinar GO. 1992. Life in amber. – Stanford University Press, Stanford, California.

Pole MS. 1991. A modified terminology for angiosperm leaf architecture. – J. Roy. Soc. New Zealand 23: 297-312.

Pole MS. 1992. Cretaceous macrofloras of eastern Otago, New Zealand: angiosperms. – Aust. J. Bot. 40: 169-206.

Pole MS. 1993a. Early Miocene flora of the Manuherikia Group, New Zealand 5. Smilacaceae, Polygonaceae, Elaeocarpaceae. – J. Roy. Soc. New Zealand 23: 289-302.

Pole MS. 1993b. Early Miocene flora of the Manuherikia Group, New Zealand 9. Miscellaneous leaves and reproductive structures. – J. Roy. Soc. New Zealand 23: 345-391.

Pole MS. 1993c. Early Miocene flora of the Manuherikia Group, New Zealand 10. Paleoecology and stratigraphy. – J. Roy. Soc. New Zealand 23: 393-426.

Pole MS. 1994. The New Zealand flora – entirely long-distance dispersal. – J. Biogeogr. 21: 625-635.

Pole MS. 1996. Plant macrofossils from the Foulden Hills Diatomite (Miocene), Central Otago, New Zealand. – J. Roy. Soc. New Zealand 26: 1-39.

Pole MS. 1999. Latest Albian-earliest Cenomanian monocotyledonous leaves from Australia. – Bot. J. Linn. Soc. 129: 177-186.

Pole MS. 2000. Dicotyledonous leaf macrofossils from the latest Albian-earliest Cenomanian of the Eromanga Basin, Queensland, Australia. – Paleontological Res. 4. 39-52.

Pole MS. 2007a. Monocot macrofossils from the Miocene of southern New Zealand. – Palaeontol. Electr. 10 (3.14A): 1-21.

Pole MS. 2007b. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatta Point, Tasmania. – Palaeont. Electr. 10 (3.15A): 1-66.

Pole MS. 2008. Dispersed leaf cuticle from the Early Miocene of southern New Zealand. – Paleont. Electr. 11.3.15A, 1-115.

Pole MS. 2010. Was New Zealand a primary source for the New Caledonian flora? – Alcheringa 34: 61-74.

Pole MS. 2012. Plant macrofossils. – In: Gordon DP (ed), New Zealand inventory of biodiversity, Vol. 3: Kingdoms Bacteria, Protozoa, Chromista, Plantae, Fungi, Canterbury University Press, Christchurch, New Zealand, pp. 460-475.

Pole MS, Douglas BJ. 1998. A quantitative palynostratigraphy of the Miocene Manuherikia Group, New Zealand. – J. Roy. Soc. New Zealand 28: 405-420.

Pole MS, Douglas BJ. 1999. Plant macrofossils of the Upper Cretaceous Kaitanga Coalfield, New Zealand. – Pollard CJ. 1982. Fructose oligosaccharides in monocotyledons: a possible delimitation of the order Liliales. – Biochem. Syst. Ecol. 10: 245-249.

Pole MS, Philippe M. 2010. Cretaceous plant fossils of Pitt Island, the Chatham group, New Zealand. – Alcheringa 34: 231-263.

Pole MS, Vajda V. 2009. A new terrestrial Cretaceous-Paleogene site in Mew Zealand – turnover in macroflora confirmed by palynology. – Cretaceous Res. 30: 917-938.

Pole MS, Douglas BJ. 1999. Plant macrofossils of the Upper Cretaceous Kaitanga Coalfield, New Zealand. – Pollard CJ. 1982. Fructose oligosaccharides in monocotyledons: a possible delimitation of the order Liliales. – Biochem. Syst. Ecol. 10: 245-249.

Pollard CJ. 1982. Fructose oligosaccharides in monocotyledons: a possible delimitation of the order Liliales. – Biochem. Syst. Ecol. 10: 245-249.

Pollard CJ, Amuti KS. 1981. Fructose oligosaccharides: possible markers of phylogenetic relationships among dicotyledonous plant families. – Biochem. Syst. Ecol. 9: 69-78.

Pons D, Franceschi DD. 2007. Neogene woods from western Peruvian Amazon and palaeoenvironmental interpretation. – Bull. Geosci. 82: 343-354.

Ponsinet G, Ourisson G, Oehlschlager AC. 1968. Systematic aspects of the distribution of di- and tritgerpees. – In: Mabry TJ, Alston RE, Runeckles VC (eds), Rent advances in phytochemistry 1, Appleton-Century-Crofts, New York, pp. 271-302.

Poole I, Cantrill DJ. 2001. Fossil woods from Williams Point Beds, Livingston Island, Antarctica: a Late Cretaceous southern high latitude flora. – Palaeontology 44: 1081-1112.

Poole I, Cantrill DJ. 2006. Cretaceous and Tertiary vegetation of Antarctica – implications from the fossil wood record. – In: Francis JE, Pirrie D, Crame JA (eds), Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica, Geol. Soc. London, Spec. Publ. 258: 63-81.

Poole I, Gottwald H, Francis JE. 2000. Illicioxylon, an element of Gondwanan Polar forests? Late Cretaceous and early Tertiary woods of Antarctica? Late Cretaceous and early Tertiary woods of Antarctica. – Ann. Bot. 86: 421-432.

Poole I, Hunt JR, Cantrill DJ. 2001. A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene vegetation. – Ann. Bot. II, 88: 33-54.

Porembski S. 2006. Vegetative architecture of desiccation-tolerant arborescent monocotyledons. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 129-134.

Porsch O. 1907. Versuch einer phylogenetischen Erklärung des Embryosackes und der doppelten Befruchtung der Angiospermen. – Gustav Fischer, Jena.

Porsch O. 1924. Vogelblumenstudien I. – Jahrb. Wiss. Bot. 63: 553-706.

Porsch O. 1929. Vogelblumenstudien II. – Jahrb. Wiss. Bot. 70: 181-277.

Porter CL. 1967. Taxonomy of flowering plants. – W. H. Freeman and Co., San Francisco.

Post T von, Kuntze O. 1904. Lexicon Generum Phanerogamarum. – Deutsche Verlags-Anstalt, Stuttgart.

Pozner R. 2001. Approach to the early sporangial development in angiosperms considering meiosis control and cellular differentiation. – Plant Syst. Evol. 230: 25-42.

Praglowski JR. 1971. Reticulate and allied exines. – Grana 11: 79-86.

Prakash U. 1960. A survey of the Deccan Intertrappean flora of India. – J. Paleontology 34: 1027-1040.

Prakash U. 1965. A survey of the fossil dicotyledonous woods from India and the Far East. – J. Paleontology 39: 815-827.

Prakash U. 1972. Palaeoenvironmental analysis of Indian Tertiary floras. – Geophytology 2: 178-205.

Prakash U. 1974. Palaeogene angiospermous woods. – In: Surange KR, Lakhanpal RN, Bharadwaj DC (eds), Birbal Sahni Institute of Palaeobotany, Lucknow, pp. 306-320.

Prasad M, Pradhan UMS. 1998. Study on plant fossils from the Siwalik sediments of far western Nepal. – Palaeobotanist 47: 99-109.

Prasad V, Strömberg CAE, Alimohammadian H, Sahni A. 2005. Dinosaur coprolites and the early evolution of grasses and grazers. – Science 310: 1177-1180.

Premathilake R, Epitawatta S, Nilsson S. 1999. Pollen morphology of some selected plant species from Horton Plains, Sri Lanka. – Grana 38: 289-295.

Prenner G, Box MS, Cunniff J, Rudall PJ. 2008. The branching stamens of Ricinus and the homologies of the angiosperm stamen fascicle. – Intern. J. Plant Sci. 169: 735-744.

Prenner G, Vergara-Silva F, Rudall PJ. 2009. The key role of morphology in modelling inflorescence architecture – Trends Plant Sci. 14: 302-309.

Prenner G, Bateman RM, Rudall PJ. 2010. Floral formulae updated for routine inclusion in formal taxonomic descriptions. – Taxon 59: 241-250.

Press MC, Graves JD (eds). 1995. Parasitic Plants. – Chapman and Hall, London.

Presting D, Straka H, Friedrich B. 1983. Palynologica Madagassica et Mascarenica. Familien 128 bis 146. – Trop. Subtrop. Pflanzenwelt 44, F, Steiner, Mainz.

Preston JC, Hileman LC. 2009. Developmental genetics of floral symmetry evolution. – Trends Plant Sci. 14: 147-154.

Preston JC, Hileman LC, Cubas P. 2011. Reduce, reuse, and recycle: developmental evolution of trait diversification. – Amer. J. Bot. 98: 397-403.

Preston JC, Martinez CC, Hileman LC. 2011. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. – Proc. Natl. Acad. Sci. U.S.A. 108: 2343-2348.

Price JR, Robinson R. 1938. A new natural colouring matter of the naphthalene group. – Nature 143: 147.

Price JR, Robinson R. 1940. Dunnione. – J. Chem. Industr. 1940: 1493.

Prieu C, Sauquet H, Gouyon P-H, Albert B. 2017. More than sixty origins of pantoporate pollen in angiosperms. – Amer. J. Bot. 104: 1837-1845.

Primack RB, Duke NC, Tomlinson PB. 1981. Floral morphology in relation to pollination ecology in five Queensland coastal plants. – Austrobaileya 1: 346-355.

Pritzel E. 1898. Die Bedeutung der Samenanatomie, insbesondere des Endosperms, für die Systematik der Parietales. – Engl. Bot. Jahrb. Syst. 24: 348-394.

Probatova NS, Sokolovskaya AP. 1988. Chromosome numbers in the vascular plants from the Primorye Territory, the Amur River basin, north Koryakia, Kamchatka and Sakhalin. – Bot. Žurn. 73: 290-293. [In Russian]

Probatova NS, Sokolovskaya AP. 1995. Chromosome numbers in some species of vascular plants from the Russian Far East. – Bot. Žurn. 80: 85-88. [In Russian]

Probatova NS, Sokolovskaya AP, Rudyka EG. 1989. Chromosome numbers in some species of vascular plants from Kunashir Island (the Kuril Islands). – Bot. Žurn. 74: 1675-1678. [In Russian]

Probatova NS, Sokolovskaya AP, Rudyka EG. 1991. Chromosome numbers in some species of vascular plants from the Soviet Far East and other regions of the USSR. – Bot. Žurn. 76: 1174-1178. [In Russian]

Probatova NS, Rudyka EG, Shatalova SA. 2001. Chromosome numbers in some plant species from the environs of Vladivostok city (Primorski Region). – Bot. Žurn. 86: 168-172. [In Russian]

Prochescedil S, Cowling RM, Goldblatt P, Manning JC, Snijman DA. 2006. An overview of the Cape geophytes. – Biol. J. Linn. Soc. 87: 27-43.

Proctor M, Yeo P. 1979. The pollination of flowers. – Collins, London.

Prósperi CH, Cocucci AE. 1979. Importancia taxonómica de la calosa de los tubos polínicos en Tubiflorae. – Kurtziana 12-13: 75-81.

Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E. 2007. Evolution and development of inflorescence architectures. – Science 316: 1452-1456.

Prychid CJ, Rudall PJ. 1999. Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. – Ann. Bot. 84: 725-739.

Prychid CJ, Rudall PJ. 2000. Distribution of calcium oxalate crystals in monocotyledons. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Collingwood, pp. 159-162.

Prychid CJ, Rudall PJ, Gregory M. 2003. Systematics and biology of silica bodies in monocotyledons. – Bot. Rev. 69: 377-440.

Pulatova MZ. 1973. The upper Eocene flora of the Tadjik depression by palynological data. – Palinologiya kaynofita, Nauka, Moscow, pp. 114-121. [In Russian]

Pundir YPS. 1972. On the phenomenon of cauliflory in angiosperms. – In: Murty YS, Johri BM, Mohan Ram HY, Varghese TM (eds), Advances in plant morphology. Sarita Prakashan, Nauchandi, pp. 243-250.

Punt W, Blackmore S, Nilsson S, Le Thomas A. 1994. Glossary of pollen and spore terminology. – LPP Foundation, Utrecht, The Netherlands.

Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. 2006. Glossary of pollen and spore terminology. – Rev. Palaeobot. Palyn. 143: 1-81. (Updated online version: http://www.bio.uu.nl/palaeo/glossary/index.htm.)

Puri V. 1945. Studies in floral anatomy III. On the origin and orientation of placental strands. – Proc. Indian Natl. Acad. Sci., Sect. B, 15: 74-91.

Puri V. 1951. The role of floral anatomy in the solution of morphological problems. – Bot. Rev. 17: 471-553.

Puri V. 1952. Floral anatomy and inferior ovary. – Phytomorphology 2: 122-129.

Purugganan MD. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. – J. Mol. Evol. 45: 392-396.

Purugganan MD, Sounsley SD, Schmidt RJ, Yanofsky MF. 1995. Molecular evolution of flower development – diversification of the plant MADS-box regulatory gene family. – Genetics 140: 345-356.

Putz FE, Mooney HA (eds). 1991. The biology of vines. – Cambridge University Press, Cambridge.

Pütz N. 1992. Das Verhältnis von Bewegung und Wurzelkraft bei Monokotylen. – Beitr. Biol. Pflanzen 67: 173-191.

Pyykkö M. 1966. The leaf anatomy of East Patagonian xeromorphic plants. – Ann. Bot. Fenn. 3: 453-622.

Pyykkö M. 1979. Morphology and anatomy of leaves from some woody plants in a humid tropical forest of Venezuelan Guayana. – Acta Bot. Fenn. 112: 1-41.

Qian H, Ricklefs RE. 2004. Taxon richness and climate in angiosperms: is there a globally consistent relationship that precludes region effects? – Amer. Natur. 163: 773-779.

Qiu Y-L, Estabrook GF. 2008. Inference of phylogenetic relationships among key angiosperm lineages using a compatibility method on a molecular data set. – J. Syst. Evol. 46: 130-141.

Qiu Y-L, Chase MW, Les DH, Parks CR. 1993. Molecular phylogenetics of the Magnoliidae: cladistic analyses of nucleotide sequences of the plastid gene rbcL. – Ann. Missouri Bot. Gard. 80: 587-606.

Qiu Y-L, Chase MW, Hoot SB, Conti E, Crane PR, Sytsma KJ, Parks CR. 1998. Phylogenetics of Hamamelidae and their allies: parsimony analyses of nucleotide sequences of the plastid gene rbcL. – Intern. J. Plant Sci. 159: 891-905.

Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW. 1999. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. – Nature 402: 404-407.

Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW. 2000. Phylogeny of basal angiosperms: analyses of five genes from three genomes. – Intern. J. Plant Sci. 161(Suppl.): S3-S27.

Qiu YL, Lee J, Whitlock BA, Bernasconi-Quadroni F, Dombrovska O. 2001. Was the ANITA rooting of angiosperm phylogeny affected by long-branch attraction? – Mol. Biol. Evol. 18: 1745-1753.

Qiu Y-L, Dombrovska O, Lee J, Li L, Whitlock BA, Bernasconi-Quadroni F, Rest JS, Davis CC, Borsch T, Hilu KW, Renner SS, Soltis DE, Soltis PS, Zanis MJ, Cannone JJ, Gutell RR, Powell M, Savolainen V, Chatrou LW, Chase MW. 2005. Phylogenetic analysis of basal angiosperms based on nine plastid, mitochondrial and nuclear genes. – Intern. J. Plant Sci. 166: 815-842.

Qiu Y-L, Li L, Hendry T, Li R, Taylor DW, Issa MJ, Ronen AJ, Vekaria ML, White AM. 2006. Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes. – Taxon 55: 837-856.

Qiu Y-L, Li L, Wang B, Xue J-Y, Hendry TA, Li R-Q, Brown JW. 2010. Angiosperm phylogeny inferred from sequences of four mitochondrial genes. – J. Syst. Evol. 48: 391-425.

Queiros M. 1974. Contribução para o conhecimento citotaxonmico das Spermatophyta de Portugal I. Gramineae, supl. 2. – Bol. Soc. Brot. 48: 81-98.

Rabbi MF, Wilson KG. 1993. The mitochondrial coxII intron has been lost in two different lineages of dicots and altered in other. – Amer. J. Bot. 80: 1216-1223.

Raboud X, Zeyl C. 1994. Organelle evolution in plants. – Heredity 72: 132-140.

Radford AE, Dickison WC, Massey JR, Bell CR. 1974. Vascular plant systematics. – Harper & Row, New York.

Radlkofer L. 1904. Über Tonerdekörper in Pflanzenzellen. – Ber. Deutsch. Bot. Ges. 22: 216-224.

Radulescu D. 1973. Liliiflorae: discussions et considérations phylogénétiques à l’aide de quelques recherches morphologiques. – Acta Bot. Horti Bucurest. 1972-1973: 249-283.

Raffauf RF. 1970. A handbook of alkaloids and alkaloid-containing plants. – Wiley Interscience, New York.

Rahn K. 1960. Chromosome numbers in some South American angiosperms. – Bot. Tidsskr. 56: 117-127.

Raine JI, Mildenhall DC, Kennedy EM. 2011. New Zealand fossil spores and pollen: an illustrated catalogue, 4th ed. (GNS Science Miscellaneous Series No. 4). – GNS Science, Lower Hutt. http://www.gns.cri.nz/what/earthhist/fossils/spore_pollen/catalog/index.htm

Raj B. 1965. Chromosome numbers in some Indian angiosperms II. – Proc. Indian Acad. Sci., Sect. B, 61: 253-261.

Ramanujan CGK. 1968. Some observations on the flora of the Cuddalore Sandstone series: Cretaceous-Tertiary formations of South India. – J. Geol. Soc. India 2: 271-285.

Ramayya N, Bahadur B. 1968. Morphology of the “squamellae” in the light of their ontogeny. – Curr. Sci. 37: 520-522.

Rambo B. 1956. Der Regenwald am oberen Uruguay. – Sellowia 7/8: 183-233.

Ramomonjiarisoa B. 1980. Comparative anatomy and systematics of African and Malagasy woody Saxifragaceae sensu lato. – Ph.D. diss., University of Massachusetts, Amherst, Massachusetts.

Ramshaw JAM, Richardson DL, Meatyard BT, Brown RH, Richardson M, Thompson EW, Bulter D. 1972. The time of origin of flowering plants determined by using amino acid sequence data of cytochrome c. – New Phytol. 71: 773-779.

Ramstad E. 1953. Über das Vorkommen und die Verbreitung von Chelidonsäure in einigen Pflanzenfamilien. – Pharm. Acta Helv. 28: 45-57.

Rao AN, Lee Y-K. 1970. Studies on Singapore pollen. – Pacific Sci. 24: 255-268.

Rao TA. 1991. Compendium of foliar sclereids in angiosperms: morphology and taxonomy. – Wiley & Sons, New Delhi.

Rao TA, Bhattacharya J. 1979. A review on foliar sclereids in angiosperms. – Bull. Bot. Surv. India 20: 91-99.

Rao TA, Das S. 1979. Leaf sclereids – occurrence and distribution in the angiosperms. – Bot. Not. 132: 319-324.

Rao VS. 1971. The disk and its vasculature in the flowers of some dicotyledons. – Bot. Not. 124: 442-450.

Rasmussen H. 1981. Terminology and classification of stomata and stomatal development – a critical survey. – Bot. J. Linn. Soc. 83: 199-212.

Rasmussen LS, Rank C, Jensen SR. 2006. Transfer of iridoid glucosides from host plant Galium verum to hemiparasitic Euphrasia stricta. – Biochem. Syst. Ecol. 34: 763-765.

Rattenbury JA. 1957. Chromosome numbers in New Zealand angiosperms. – Trans. Roy. Soc. New Zealand 84: 936-938.

Ratter JA, Milne C. 1973a. Chromosome numbers of some primitive angiosperms. – Notes Roy. Bot.Gard. Edinb. 32: 423-428.

Ratter JA, Milne C. 1973b. Some angiosperm chromosome numbers. – Notes Roy. Bot. Gard. Edinb. 32: 429-438.

Ratter JA, Milne C. 1976. Chromosome counts in primitive angiosperms II. – Notes Roy. Bot. Gard. Edinb. 35: 143-145.

Raubeson LA, Jansen RK. 2005. Chloroplast genomes in plants. – In: Henry RJ (ed), Plant diversity and evolution: genotypic and phenotypic variation in higher plants, CAB International, Wallingford, pp. 45-68.

Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK. 2007. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. – BMC Genomics 8: 174.

Rauh W. 1937. Die Bildung von Hypokotyl- und Wurzelsprossen und ihre Bedeutung für die Wuchsformen der Pflanzen. – Nova Acta Leopoldiana, n. s., 4: 396-553.

Rauh W. 1998. Succulent and xerophytic plants of Madagascar 2. – Strawberry Press, Mill Valley.

Raven PH. 1963. Amphitropical relations in the flora of North and South America. – Quart. Rev. Biol. 29: 151-171.

Raven PH. 1973. Evolution of the subalpine and alpine plant groups in New Zealand. – New Zealand J. Bot. 11: 177-200.

Raven PH. 1975. The bases of angiosperm phylogeny: cytology. – Ann. Missouri Bot. Gard. 62: 724-764.

Raven PH. 1977. A suggestion concerning the Cretaceous rise to dominance of the angiosperms. – Evolution 31: 451-452.

Raven PH. 1979. Plate tectonics and southern hemisphere biogeography. – In: Larsen K, Holm-Nielsen LB (eds), Tropical botany, Academic Press, London, pp. 3-24.

Raven PH, Axelrod DI. 1974. Angiosperm biogeography and past continental movements. – Ann. Missouri Bot. Gard. 61: 539-673.

Raven PH, Axelrod DI. 1978. Origin and relationships of the California flora. – Univ. Calif. Publ. Bot. 72: 1-134.

Raven PH, Kyhos DW. 1965. New evidence concerning the original basic chromosome number of angiosperms. – Evolution 19: 244-248.

Raven PH, Kyhos DW, Hill AJ. 1965. Chromosome numbers of Spermatophytes, mostly Californian. – Aliso 6: 105-113.

Raven PH, Kyhos DW, Cave MS. 1971. Chromosome numbers and relationships in Annoniflorae. – Taxon 20: 479-483.

Ravi V, Khurana JP, Tyagi AK, Khurana P. 2007. Rosales sister to Fabales: towards resolving the rosid puzzle. – Mol. Phylogen. Evol. 44: 488-493.

Raynal-Roques A. 1981. Contribution à l’étude biomorphologique des angiosperms aquatiques tropicales – essai d’analyse de l’évolution I. – Ph.D. diss., Université de Montpellier, France.

Read PB. 1987. Tertiary stratigraphy and industrial minerals, Princeton and Tulameen Basins, British Columbia. – Province of British Columbia, Ministry of Energy, Mines and Petroleum Resources, Open File 1987-19.

Read PB. 2000. Geology and industrial minerals of the Tertiary basins, British Columbia. – British Columbia Geol. Survey, GeoFile 2000-3.

Rebelo AG. 1987. Bird pollination in the Cape flora. – In:Rebelo AG (ed), A preliminary synthesis of pollination biology in the Cape flora, South African National Scientific Programmes Rep., Pretoria, pp. 83-108.

Rechinger KH. 1934. Dreizehn neue Pflanzenarten aus Griechenland. – Magyar Bot. Lapok 33: 10-12.

Record SJ. 1919. Storied or tier-like structure of certain dicot wood. – Bull. Torrey Bot. Club 46: 253-273.

Record SJ, Hess HW. 1943. Timbers of the New World. – Yale University Press, New Haven, Connecticut.

Ree RH, Donoghue MJ. 1999. Inferring rates of change in flower symmetry in asterid angiosperms. – Syst. Biol. 48: 633-641.

Rees PM, Smellie JL. 1989. Cretaceous angiosperms from an allegedly Triassic flora at Williams Point, Livingston Island, South Shetland Islands. – Antarctic Science 1: 239-248.

Reese G. 1957. Über die Polyploidiespektren in den nordsaharischen Wüstenpflanzen. – Flora 144: 598-634.

Reeves PA, Olmstead RG. 2003. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological diversification. – Mol. Biol. Evol. 20: 1997-2009.

Reeves RD, Baker AJM, Borhidi A, Berazaín R. 1996. Nickel-accumulating plants from the ancient serpentine soils of Cuba. – New Phytol. 133: 217-224.

Reeves RD, Baker AJM, Borhidi A, Berazaín R. 1999. Nickel hyperaccumulation in the serpentine flora of Cuba. – Ann. Bot. 83: 29-38.

Regal PJ. 1977. Ecology and evolution of flowering plant dominance. – Science 196: 622-629.

Regali MSP. 1989. Tucanopollis, um gênero novo das angiospermas primitivas. – Bol. Geoci. Petrobrás 3: 395-402.

Regali MSP, Uesugui N, Santos AS. 1974. Palinologia dos sedimentos meso-cenozóicos do Brazil. – Bol. Tecn. Petrobrás 17: 117-191.

Rehder A. 1949. Bibliography of cultivated trees and shrubs. – Arnold Arboretum, Jamaica Plain, Massachusetts.

Reichert ET (ed). 1913. The differentiation and specificity of starches in relations to genera, species, etc. II. – Carnegie Institute of Washington, Washington D.C.

Reichgelt T, Jones WA, Jones DT, Conran JG, Bannister JM, Kennedy EM, Mildenhall DC, Lee DE. 2014. The flora of Double Hill (Dunedin Volcanic Complex, middle-late Miocene). – J. Roy. Soc. New Zealand 44: 105-135.

Reid EM. 1933. Note on some fossil fruits of Tertiary age from Colombia, South America. – Rev. Geogr. Phys. Geol. Dynam. 6: 209-215.

Reid EM, Chandler MEJ. 1926. Catalogue of Cainozoic plants in the Department of Geology 1. The Bembridge Flora. – British Museum (Natural History), London.

Reid EM, Chandler MEJ. 1933. The flora of the London Clay. – British Museum (Natural History), London.

Reiser L, Fischer RL. 1993. The ovule and the embryo sac. – Plant Cell 5: 1291-1301.

Reitsma T. 1970. Suggestions towards unification of descriptive terminology of angiosperm pollen grains. – Rev. Palaeobot. Palynol. 10: 39-60.

Rejmánek M, Brewer SW. 2001. Vegetative identification of tropical woody plants: State of the art and annotated bibliography. – Biotropica 33: 214-228.

Remane A. 1952. Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik. Theoretische Morphologie und Systematik 1. – Geest & Portig, Leipzig.

Remizowa MV, Sokoloff DD, Rudall PJ. 2010. Evolutionary history of the monocot flower. – Ann. Missouri Bot. Gard. 97: 617-645.

Remizowa MV, Sokoloff DD, Rudall PJ. 2013. Patterns of bract reduction in racemose inflorescences of early-divergent monocots. – In: Wilkin P, Mayo SJ (eds.), Early events in monocot evolution, Systematics Association Spec. Vol. Series, Cambridge University Press, Cambridge. doi:10.1017/CBO9781139002950.009

Ren M-X. 2008. Stamen fusion in plants: diversity, adaptive significance, and taxonomic implications. – J. Syst. Evol. 46: 452-466. [In Chinese]

Renard R, Lambinon J, Reekmans M, Veeken P van der, Govaert M. 1983. Nombres chromosomiques de quelques angiospermes du Rwanda, du Burundi et du Kenya. – Bull. Jard. Bot. Natl. Belg. 53: 342-377.

Rendle AB. 1925. The classification of flowering plants 1-2. – Cambridge University Press, Cambridge.

Rendle AB. 1953. The classification of flowering plants 1. Gymnosperms and monocotyledons. 2nd ed. – Cambridge University Press, Cambridge.

Rendle AB, Baker G, Moore SM. 1921. Systematic account of the plants collected in New Caledonia and the Island of Pines by Prof. R. H. Compton, M. A., in 1914. – Bot. J. Linn. Soc. 45: 246-417.

Renner SS. 2004. Plant dispersal across the tropical Atlantic by wind and sea currents. – Intern. J. Plant Sci. 165(suppl.): S23-S33.

Renner SS. 2005. Relaxed molecular clocks for dating historical plant dispersal events. – Trends Plant Sci. 10(11): 550-558.

Renner SS. 2006. Rewardless flowers in angiosperms and the role of insect cognition in their evolution. – In: Waser NM, Ollerton J (eds), Plant-pollinator interactions: From specialization to generalization, University of Chicago Press, Chicago, pp. 122-144.

Renner SS, Ricklefs RE. 1995. Dioecy and its correlates in the flowering plants. – Amer. J. Bot. 82: 596-606.

Renner SS, Schaefer H. 2010. The evolution and loss of oil-offering flowers: new insights from dated phylogenies for angiosperms and bees. – Philos. Trans. Roy. Soc., Ser. B, 365: 423-435.

Ressayre A, Godelle B, Raquin C, Gouyon P-H. 2002. Aperture pattern ontogeny in angiosperms. – J. Experim. Zool. 294: 122-135.

Ressayre A, Mignot A, Siljak-Yakovlev S, Raquin C. 2003. Postmeiotic cytokinesis and pollen aperture number determination in eudicots: effect of the cleavage wall number. – Protoplasma 221: 257-268.

Ressayre A, Triki-Teurtroy S, Forchioni A, Dreyer LL, Nadot S. 2005. Post-meiotic cytokinesis and pollen aperture pattern ontogeny: comparison of development in four species differing in sperture pattern. – Amer. J. Bot. 92: 576-583.

Retallack G, Dilcher DL. 1981a. A coastal hypothesis for the dispersal and rise to dominance of flowering plants. – In: Niklas KJ (ed), Palaeobotany, palaeoecology and evolution, Praeger Publ., New York, pp. 27-77.

Retallack G, Dilcher DL. 1981b. Early angiosperm reproduction: Prisca reynoldsii, gen. et sp. nov. from mid-Cretaceous coastal deposits in Kansas, USA. – Palaeontogr. Abt. B 179: 103-137.

Reveal JL. 1992a. Validation of subclass and superordinal names in Magnoliophyta. – Novon 2: 235-237.

Reveal JL. 1992b. Validation of ordinal names of extant vascular plants. – Novon 2: 238-240.

Reveal JL. 1993a. New ordinal names for extant vascular plants. – Phytologia 74: 173-177.

Reveal JL. 1993b. A splitter’s guide to the higher taxa of the flowering plants (Magnoliophyta) generally arranged to follow the sequence proposed by Thorne (1992) with certain modifications. – Phytologia 74: 203-263.

Reveal JL. 1993c. A list of validly published, automatically typified, ordinal names of vascular plants. – Taxon 42: 825-844.

Reveal JL. 1996. Newly required suprageneric names in Magnoliophyta. – Phytologia 79: 68-76.

Reveal JL. 1998 etc. Indices nominum supragenericorum plantarum vascularium. Alphabetical listing by genera of validly published suprageneric names. http://www.inform.umd.edu/PBIO/fam/inspvindex.html

Reveal JL, 2010. A checklist of familial and suprafamilial names for extant vascular plants. – Phytotaxa 6: 1-402.

Reveal JL. 2011a. Summary of recent systems of angiosperm classification. – Kew Bull. 66: 5-48.

Reveal JL. 2011b. New ordinal names established by changes to the botanical code. – Phytotaxa 30: 42-44.

Reveal JL. 2015. Nominum Supragenericorum Plantarum Vascularium [online]. Available from http://www.plantsystematics.org/reveal/pbio/WWW/supragen.html

Reveal JL, Chase MW. 2011. APG III: bibliographical information and synonymy of Magnoliidae. – Phytotaxa 19: 71-134.

Reveal JL, Takhtajan AL. 1993. Three new suprafamilial names in Magnoliophyta. – Phytologia 74: 171-172.

Reveal JL, Zomlefer WB. 1998. Two new orders for monocotyledonous plants. – Novon 8: 176-177.

Reynaud J, Guilet D, Terreux R, Lussignol M, Walchshofer N. 2005. Isoflavonoids in non-leguminous families: An update. – Nat. Prod. Rep. 22: 504-515.

Rezende CMADM, Gottlieb OR. 1973. Xanthones as systematic markers. – Biochem. Syst. 1: 111-118.

Reznik H, Neuhäusel R. 1959. Farblose Anthocyanine bei submersen Wassepflanzen. – Zeitschr. Bot. 47: 471-489.

Rhodes D, Hanson AD. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. – Ann. Rev. Plant Physiol. Plant Mol. Biol. 44: 357-384.

Ricardi M. 1958. Detección de saponinas en Angiospermae chilenas. – Bol. Soc. Biol. Concepción (Chile) 33: 29-94.

Ricardi M, Marticorena C. Silva M, Torres F. 1958. Detección de saponinas en angiospermae chilenas. – Bol. Soc. Biol. Concepción 33: 25-94.

Ricci M. 2006. Conservation status and ex situ cultivation efforts of endemic flora of the Juan Fernández Archipelago. – Biodivers. Conserv. 15: 3111-3130.

Rice KA, Donoghue MJ, Olmstead RG. 1998. Analyzing large data sets: rbcL 500 revisited. – Syst. Biol. 46: 554-563.

Richard P. 1970. Atlas pollinique des arbres et de quelques arbustes indigènes du Québec. – Nat. Can. 97: 241-306.

Richards AJ. 1997. Plant breeding systems. – George Allen & Unwin, London.

Richardson AO, Palmer JD. 2007. Horizontal gene transfer in plants. – J. Exper. Bot. 58: 1-9.

Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM. 2001. Rapid diversification of a species-rich genus of neotropical trees. – Science 293: 2242-2245.

Richardson JE, Weitz FM, Fay MF, Cronk QCB, Linder HP, Reeves G, Chase MW. 2001. Rapid and ancient origin of species richness in the Cape Flora of South Africa. – Nature 412: 181-183.

Richter HG, Grosser D, Heinz I, Gasson PE (eds) 2004. IAWA list of microscopic features for softwood identification. – IAWA J. 25: 1-70.

Rickett HW. 1944. The classification of inflorescences. – Bot. Rev. (Lancaster) 10: 187-231.

Rickett HW. 1954a. Materials for a dictionary of botanic terms I. – Bull. Torrey Bot. Club 81: 1-15.

Rickett HW. 1954b. Materials for a dictionary of botanic terms II. – Bull. Torrey Bot. Club 81: 188-198.

Rickett HW. 1955. Materials for a dictionary of botanic terms III. Inflorescences. – Bull. Torrey Bot. Club 82: 419-445.

Rickett HW. 1956. Materials for a dictionary of botanic terms IV. Terms to describe apices. – Bull. Torrey Bot. Club 83: 342-354.

Ricklefs RE, Renner SS. 1994. Species richness within families of flowering plants. – Evolution 48: 1619-1636.

Ricklefs RE, Renner SS. 2000. Evolutionary flexibility and flowering plant familial diversity: a comment on Dodd, Silvertown, and Chase. – Evolution 53: 1061-1065.

Ridley HN. 1930. The dispersal of plants throughout the world. – L. Reeve & Co., Ashford, Kent.

Rieseberg LH, Soltis DE. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants. – Evol. Trends Plants 5: 65-84.

Rieseberg LH, Wendel JF. 1993. Introgression and its consequences in plants. – In: Harrison R (ed), Hybrid zones and the evolutionary process, Oxford University Press, Oxford, pp. 70-109.

Rigby JF, Playford G. 1988. Upper Triassic and Lower Tertiary megafossil floras of the Ipswich area, Southeast Queensland; selected localities. – Excursion Guide, 7 International Palynological Congress, Brisbane, SA4: 1-9.

Riggins R, Farris SJ. 1983. Cladistics and the roots of angiosperms. – Syst. Bot. 8: 96-111.

Riley HP, Hoff VJ. 1961. Chromosome studies in some South African dicotyledons. – Can. J. Genet. Cytol. 3: 260-271.

Rinaldi AC, Commandini O, Kuyper TW. 2009. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. – Fungal Divers. 33: 1-45.

Ritterbusch A. 1980. The modelling of growth and development, a transformational approach to floral organogenesis. – Flora 169: 498-509.

Ritterbusch A. 1991. Morphologisches Beschreibungsmodell tubiflorer Kronen, ein Beitrag zur Terminologie und Morphologie der Asteriden-Blüte. – Bot. Jahrb. Syst. 112: 329-345.

Rizk AM. 1982. Constituents of plants growing in Qatar I. A chemical survey of sixty plants. – Fitoterapia 53: 35-44.

Robert EMR, Schmitz N, Boeren I, Driessens T, Herremans K, Mey J de, Casteele E van de, Beeckman H, Koedam N. 2011. Successive cambia: a developmental oddity or an adaptive structure? – PLOS ONE 6(1): e16558.

Robinson BL. 1907. New or otherwise noteworthy spermatophytes, chiefly from Mexico. – Proc. Amer. Acad. Arts 43: 21-48.

Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernández LM. 2004. Hosts – a database of the hostplants of the world’s Lepidoptera. – http://www.nhm.ac.uk/entomology/hostplants/

Robinson H. 1985. Observations on fusion and evolutionary variability in the angiosperm flower. – Syst. Bot. 10: 105-109.

Robinson T. 1991. The organic constituents of higher plants. Their chemistry and interrelationships. – Cordus Press, North Amherst, Massachusetts.

Robyns W. 1972. Outline of a new system of orders and families of Sympetalae. – Bull. Jard. Bot. Nat. Belg. 42: 363-372.

Rocher EJ de, Harkins KR, Galbraith DW, Bohnert HJ. 1990. Developmentally regulated systemic endopolyploidy in succulents with small genomes. – Science 250: 99-101.

Rode KP. 1933. A note on fossil angiospermous fruits from the Deccan Intertrappean beds of Central Provinces. – Curr. Sci. 2: 171-172.

Rodrigues M, Olmos F, Galetti M. 1993. Seed dispersal by tapir in southeastern Brazil. – Mammalia 57: 460-461.

Rodriguez RJ, White JF Jr, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. – New Phytol. 182: 313-340.

Rodriguez-Barrueco C. 1969. The occurrence of nitrogen-fixing root nodules on non-leguminous plants. – Bot. J. Linn. Soc. 62: 77-84.

Rohert W, Zalenski W. 1899. Über eine besondere Kategorie von Krystallbehältern. – Bot. Centralbl. 80: 1-11, 33-50, 97-106, 145-156, 194-204, 241-251.

Rohweder O. 1956. Die Farinosae in der Vegetation von El Salvador. – Abh. Auslandsk. 61, Reihe C Naturwiss. 18: 1-197.

Rohweder O, Endress PK. 1983. Samenpflanzen. Morphologie und Systematik der Angiospermen und Gymnospermen. – Thieme, Stuttgart.

Rohweder O, Schlumpf R, Krattinger K. 1971. Anmerkungen zum diacytischen Spaltöffnungstyp und zur taxonomischen Bedeutung der Spaltöffnung im allgemeinen. – Ber. Deutsch. Bot. Ges. 84: 275-285.

Roland F. 1965. Précisions sur la structure et l’ultrastructure d’une tétrade calymmée. – Pollen Spores 7: 5-8.

Roland F. 1968. Étude de l’ultrastructure des apertures II: pollens à sillons. – Pollen Spores 10: 479-519.

Roland F. 1969. Ultrastructure des apertures. – Pollen Spores 11: 475-498.

Roland F. 1971. The detailed structure and ultrastructure of an acalymmate tetrad. – Grana 11: 41-44.

Romeike A. 1978. Tropane alkaloids – occurrence and systematic importance in angiosperms. – Bot. Not. 131: 85-96.

Romero EJ, Archangelsky S. 1986. Early Cretaceous angiosperm leaves from southern South America. – Science 234: 1580-1582.

Romero EJ, Castro MT. 1986. Material fungio y granos de pollen de angiospermas de la formación Río Turbio (Eoceno), Provincia de Santa Cruz, Republica Argentina. – Ameghiniana 23: 101-118.

Ronse De Craene L-P. 1988. Two types of ringwall formation in the development of complex polyandry. – Bull. Soc. Roy. Bot. Belg. 121: 122-124.

Ronse De Craene L-P. 1992. The androecium of the Magnoliophytina: characterisation and systematic importance. – Ph.D. diss., Katholieke Universiteit Leuven, Belgium.

Ronse De Craene L-P. 2003. The evolutionary significance of homeosis in flowers: a morphological perspective. – Intern. J. Plant Sci. 164(Suppl.): S225-S235.

Ronse De Craene L-P. 2007. Are petals sterile stamens or bracts? The origin and evolution of petals in the core eudicots. – Ann. Bot. 100: 621-630.

Ronse De Craene L-P. 2008. Homology and evolution of petals in core eudicots. – Syst. Bot. 33: 301-325.

Ronse De Craene L-P. 2010. Floral diagrams. An aid to understanding flower morphology and evolution. – Cambridge University Press, Cambridge, New York, Melbourne, etc.

Ronse De Craene L-P, Smets EF. 1987. The distribution and systematic relevance of the androecial characters oligomery and polymery in the Magnoliophytina. – Nord. J. Bot. 7: 239-253.

Ronse De Craene L-P, Smets EF. 1992. Complex polyandry in the Magnoliatae: definition, distribution, and systematic value. – Nord. J. Bot. 12: 621-649.

Ronse De Craene L-P, Smets EF. 1993a. Dédoublement revisited: towards a renewed interpretation of the androeceum of the Magnoliophytina. – Bot. J. Linn. Soc. 113: 103-124.

Ronse De Craene L-P, Smets EF. 1993b. The distribution and systematic relevance of the androecial character polymery. – Bot. J. Linn. Soc. 113: 285-350.

Ronse De Craene L-P, Smets EF. 1994. Merosity in flowers: definition, origin, and taxonomic significance. – Plant Syst. Evol. 191: 83-104.

Ronse De Craene L-P, Smets EF. 1995a. The androecium of monocotyledons. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 143-254.

Ronse De Craene L-P, Smets EF. 1995b. The distribution and systematic relevance of the androecial character oligomery. – Bot. J. Linn. Soc. 118: 193-247.

Ronse De Craene L-P, Smets EF. 1996. The morphological variation and systematic value of stamen pairs in the Magnoliatae. – Feddes Rep. 107: 1-17.

Ronse De Craene L-P, Smets EF. 1998a. Notes on the evolution of androecial organisation in the Magnoliophytina (angiosperms). – Bot. Acta 111: 77-86.

Ronse De Craene L-P, Smets EF. 1998b. Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. – In: Owens SJ, Rudall PJ (eds), Reproductive biology in systematics, conservation and economic botany, Royal Botanic Gardens, Kew, pp. 85-112.

Ronse De Craene L-P, Smets E. 2001. Staminodes: their morphological and evolutionary significance. – Bot. Rev. 67: 351-402.

Ronse De Craene L-P, Clinckemaillie D, Smets E. 1993. Stamen-petal complexes in Magnoliatae. – Bull Jard. Bot. Natl. Belg. 62: 97-112.

Ronse De Craene L-P, Soltis PS, Soltis DE. 2003. Evolution of floral structures in basal angiosperms. – Intern. J. Plant Sci. 164(Suppl.): S329-S363.

Roosmalen MGM van. 1985. Fruits of the Guianan flora. – Inst. Syst. Bot., Utrecht University.

Rose AB. 1973. Food of some Australian birds. – Emu 73: 177-183.

Rose JR. 1906. Studies of Mexican and Central American plants. – Contr. U. S. Natl. Herb. 10: 79-132.

Rosell JA, Olson ME, Aguirre-Hernandez R, Carlquist S. 2007. Logistic regression in comparative wood anatomy: tracheid types, wood anatomical terminology, and new inferences from the Carlquist and Hoekman southern Californian data set. – Bot. J. Linn. Soc. 154: 331-351.

Rosendal Jensen S. 1992. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. – Ann. Missouri Bot. Gard. 79: 284-302.

Rosenkrantz A. 1970. Marine Upper Cretaceous and lowermost Tertiary deposits in West Greenland. Investigations before and since 1938. – Meddel. Dansk Geol. Foren. 19(4): 406-453.

Rosin FM, Kramer EM. 2009. Old dogs, new tricks: regulatory evolution in conserved genetic modules leads to novel morphologies in plants. – Devel. Biol. 332: 25-35.

Ross MD. 1982. Five evolutionary pathways to dioecy. – Amer. Natur. 119: 297-318.

Ross MD, Weir BS. 1976. Maintenance of males and females in hermaphrodite populations and the evolution of dioecy. – Evolution 30: 425-441.

Ross NE. 1949. On a Cretaceous pollen and spore bearing clay of Scania. – Bull. Geol. Inst. Uppsala 34: 25-43.

Rostovtseva TS. 1977. Chromosome numbers in some plant species from the south of Siberia II. – Bot. Žurn. 62: 1034-1042. [In Russian]

Roth I. 1949. Zur Entwicklungsgeschichte des Blattes, mit besonderer Berücksichtigung von Stipular- und Ligularbildungen. – Planta 37: 299-336.

Roth I. 1973. Estructura anatómica de la corteza de seis especies arbóreas de las familias Araliaceae, Dichapetalaceae, Lacistemaceae, Olacaceae, Opiliaceae y Quiinaceae. – Acta Biol. Venezuelica 8: 103-129.

Roth I. 1977. Fruits of angiosperms. – In: Encyclopedia of plant anatomy 10, Bornträger, Berlin, Stuttgart, pp. 148-171.

Roth I. 1981. Structural patterns of tropical barks. – In: Encyclopedia of plant anatomy 9(3), Bornträger, Berlin, Stuttgart.

Roubik DW, Moreno JE. 1991. Pollen and spores of Barro Colorado Island. – Missouri Botanical Garden, St. Louis, Missouri.

Routley MB, Bertin RI, Husband BC. 2004. Correlated evolution of dichogamy and self-incompatibility: a phylogenetic perspective. – Intern. J. Plant Sci. 165: 983-993.

Roux J. 1968. Sur le comportement des axes aériens chez quelques plantes à rameaux végétatifs polymorphs; le concept de rameaux plagitropes. – Ann. Sci. Nat. Bot. XII, 9: 109-256.

Rowley GD. 1982. Intergeneric hybrids in succulents. – Cact. Succ. J. 3: 2-6, 45-49, 76-80, 119.

Rowley JR. 1981. Pollen wall characters with emphasis upon applicability. – Nord. J. Bot. 1: 357-380.

Rozario SA. 1995. Association between mites and leaf domatia: evidence from Bangladesh, South Asia. – J. Trop. Ecol. 11: 99-108.

Rozefelds AC. 1990. A mid Tertiary rainforest flora from Capella, central Queensland. – In: Proc. 3rd IOP Conf., Melbourne, pp. 123-136.

Rudall PJ. 1991. Lateral meristems and stem thickening growth in monocotyledons. – Bot. Rev. 57: 150-163.

Rudall PJ. 1995. New records of secondary thickening in monocotyledons. – IAWA J. 16: 261-268.

Rudall PJ. 1997. The nucleus and chalaza in monocotyledons: structure and systematics. – Bot. Rev. 63: 140-181.

Rudall PJ. 2000. ‘Cryptic’ characters in monocotyledons: Homology and coding. – In: Scotland R, Pennington RT (eds), Homology and systematics: coding characters for phylogenetic analysis, Taylor & Francis, London, pp. 114-123.

Rudall PJ. 2001. Centrifixed anther attachment in monocotyledons. – Kew Bull. 56: 965-973.

Rudall PJ. 2002. Homologies of inferior ovaries and septal nectaries in monocotyledons. – Intern. J. Plant Sci. 163: 261-276.

Rudall PJ. 2006. How many nuclei make an embryo sac in flowering plants? – BioEssays 28: 1067-1071.

Rudall PJ. 2010. All in a spin: centrifugal organ formation and floral patterning. – Curr. Opin. Plant Biol. 13: 108-114.

Rudall PJ, Bateman RM. 2002. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. – Biol. Rev. 77: 403-441.

Rudall PJ, Bateman RM. 2003. Evolutionary changes in flowers: evidence from naturally-occurring angiosperm terata. – Trends Plant Sci. 8: 76-82.

Rudall PJ, Bateman RM. 2004. Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints. – New Phytol. 162: 25-44.

Rudall PJ, Bateman RM. 2007. Developmental bases for key innovations in the seed-plant microgametophyte. – Trends Plant Sci. 12: 317-326.

Rudall PJ, Bateman RM. 2010. Defining the limits of flowers: the challenge of distinguishing between the evolutionary products of simple versus compound strobili. – Philos. Trans. Roy. Soc., Ser. B, 365: 397-409.

Rudall PJ, Buzgo M. 2002. Evolutionary history of the monocot leaf. – In: Cronk QCB, Bateman RM, Hawkins JA (eds), Developmental genetics and plant evolution, Taylor and Francis, London, pp. 431-458.

Rudall PJ, Caddick LR. 1994. Investigation of the presence of phenolic compounds in monocotyledonous cell walls, using UV fluorescence microscopy. – Ann. Bot. 74: 483-491.

Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds). 1995. Monocotyledons: systematics and evolution 1-2. – Royal Botanic Gardens, Kew.

Rudall PJ, Prychid CJ, Jones C. 1998. Intra-ovarian trichomes, mucilage secretion and hollow styles in monocotyledons. – In: Owens SJ, Rudall PJ (eds), Reproductive biology, Royal Botanic Gardens, Kew, pp. 219-230.

Ruff O. 1931. Zur Phylogenie des Columniferen-Astes der Dicotylen. – Bot. Arch. 31: 1-140.

Rüffle L. 1976. Eozäne Floren des Geiseltals, Myricaceen, Legumonosae, Icacinaceae, Sterculiaceae, Nymphaeaceae etc. – Abh. Zentr. Geol. Inst. (Berlin) 26: 337-438.

Rüffle L. 1995. Some artificial genera (Fagaceae, Platanaceae, Araliaceae) of Upper Cretaceous of the Northern Hemisphere and heterophylly in some modern hybrids. – The Palaeobotanist 44: 225-237.

Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG. 2014. From algae to angiosperms – inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. – BMC Evol. boil. 14: 23.

Ruhlman TA, Ransen RK. 2014. The plastid genomes of flowering plants. – In: Maliga P (ed), Chloroplast Biotechnology: Methods and Protocols, Springer, New York, pp. 3-38.

Rusby HH. 1920. Description of three hundred new species of South American plants. – New York.

Russell SD. 1992. Double fertilization. – Intern. Rev. Cytol. 140: 357-388.

Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K, Sarkar N, Nascimbene PC, Stebner F, Thomas JC, Kraemer MS, Williams CJ, Engel MS, Sahni A, Grimaldi D. 2010. Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. – Proc. Natl. Acad. Sci. U.S.A. 107: 18360-18365.

Rüter E. 1918. Über Vorblattbildung bei Monokotylen. – Flora 110: 193-261.

Rutishauser R. 1981. Blattstellung und Sprossentwicklung bei Blütenpflanzen. – Diss. Bot. 62.

Rutishauser R. 1999. Polymerous leaf whorls in vascular plants: developmental morphology and fuzziness of organ identities. – Intern. J. Plant Sci. 160(Suppl.): S81-S103.

Rutishauser R. 2005. Der Bauplan abweichend gebauter Blütenpflanzen (misfits) – Kontinuummodel ergänzt klassische Pflanzenmorphologie. – In: Harlan V (ed), Wert und Grenzen des Typus in der botanischen Morphologie, Martina Galunder, Nümbrecht, pp. 127-148.

Rutishauser R, Isler B. 2001. Developmental genetics and morphological evolution of flowering plants, especially bladderworts (Utricularia): fuzzy arberian morphology complements classical morphology. – Ann. Bot. 88: 1173-1202.

Ryberg M, Matheny PB. 2012. Asynchronous origins of ectomycorrhizal clades of Agaricales. – Proc. Roy. Soc., Sect. B, 279: 2003-2011.

Rydberg PA. 1903. Some generic segregations. – Bull. Torrey Bot. Club 30: 271-281.

Rzedowski J. 1978. Vegetación de México. – Editorial Limusa, Mexico.

Sabnis TA. 1919. The physiological anatomy of the plants in the Indian desert. – J. Indian Bot. 1919: 56-57.

Sage RF. 2002. C4 photosynthesis in terrestrial plants does not require Kranz anatomy. – Trends Plant Sci. 7: 283-285.

Sage RF. 2004. The evolution of C4 photosynthesis. – New Phytol. 161: 341-370.

Sage RF, Monson RK (eds). 1999. C4 plant biology. – Academic Press, San Diego.

Sage RF, Li M, Monson RK. 1999. The taxonomic distribution of C4 photosynthesis. – In: Sage RF, Monson RK (eds), C4 plant biology, Academic Press, San Diego, California, pp. 551-584.

Sage RF, Christin P-A, Edwards EJ. 2011. The C4 lineages of planet earth. – J. Experim. Bot. 62: 3155-3169.

Sage TL, Hristova-Sarkovski K, Koehl V, Lyew J, Pontieri V, Bernhardt P, Weston P, Bagha S, Chiu G. 2009. Transmitting tissue architecture in basal-relictual angiosperms: implications for transmitting tissue origins. – Amer. J. Bot. 96: 183-206.

Sah SCD, Dutta SK. 1966. Palyno-stratigraphy of the sedimentary formations of Assam 1. Stratigraphical position of the Cherra formation. – Palaeobotanist 15: 72-86.

Sahni B. 1934. The silicified flora of the Deccan Intertrappean Series II. Gymnospermous and angiospermous fruits. – Proceedings of the 21st Indian Science Congress, Section V, Botany, pp. 317-318.

Sahni B. 1944. Palaeobotany in India V. Takli near Nagpur. Genus Viracarpon Sahni. – Proc. Indian Natl. Acad. Sci., Sect. B, 14: 80-82.

Sahni B, Rode KP. 1937. Fossil plants from the Intertrappean beds of the Mohgaon Kalan, in the Deccan, with a sketch of the geology of Chhindwara district. – Proc. Indian Natl. Acad. Sci., Sect. B, 7: 165-174.

Sainty GR, Jacobs SWL. 1981. Waterplants of New South Wales. – Water Resources Commission, New South Wales, Australia.

Sainty GR, Jacobs SWL. 1994. Waterplants in Australia. 3rd ed. – Sainty and Associates, Darlinghurst, Australia.

Sakai T, Hayashi K. 1973. Studies on the distribution of starchy and sugary leaves in monocotyledonous plants. – Bot. Mag. (Tokyo) 86: 13-25.

Salamin N, Davies TJ. 2004. Using supertrees to investigate species richness in grasses and flowering plants. – In: Bininda-Emonds ORP (ed), Phylogenetic supertrees: combining information to reveal the Tree of Life, Kluwer Academic, Dordrecht, pp. 461-486.

Salard-Cheboldaeff M. 1978. Sur la palynoflore Maestrichtienne et Tertiaire du basin sedimentaire littoral du Cameroun. – Pollen Spores 20: 215-260.

Salard-Cheboldaeff M. 1981. Palynologie Maestrichtienne et Tertiaire du Cameroun. – Rev. Palaeobot. Palynol. 32: 401-439.

Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C. 2009. Reconstruction of monocotelydonous proto-chromosomes reveals faster evolution in plants than in animals. – Proc. Natl. Acad. Sci. U.S.A. 106: 14908-14913.

Salvik B, Jarolimova V, Chrtek J. 1993. Chromosome counts of some plants from Cyprus. – Candollea 48: 221-230.

Samigullin TK, Martin WF, Troitsky AV, Antonov AS. 1999. Molecular data from the chloroplast rpoC1 gene suggest a deep and distinct dichotomy of contemporary spermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms. – J. Mol. Evol. 49: 310-315.

Sampson FB. 1969. Cytokinesis in pollen mother cells of angiosperms, with emphasis on Laurelia novae-zelandiae (Monimiaceae). – Cytologia 34: 627-634.

Sampson FB. 2000. Pollen diversity in some modern magnoliids. – Intern. J. Plant Sci. 161(Suppl.): S193-S210.

Sampson FB. 2007. Variation and similarities in pollen features in some basal angiosperms, with some taxonomic implications. – Plant Syst. Evol. 263: 59-75.

Sampson FB, McLean J. 1965. A note on the occurrence of domatia on the underside of the leaves in New Zealand plants. – New Zealand J. Bot. 3: 104-112.

Samylina VA. 1960. Angiosperms from the Lower Cretaceous of the Kolyma Basin. – Bot. Žurn. 45: 335-352. [In Russian]

Samylina VA. 1961. New data on the Lower Cretaceous flora of the southern part of the Maritime Territory of the R.F.S.R. – Bot. Žurn. 46: 634-645. [In Russian]

Samylina VA. 1968. Early Cretaceous angiosperms of the Soviet Union based on leaf and fruit remains. – Bot. J. Linn. Soc. 61: 207-218.

Samylina VA. 1974. Early Cretaceous flora of northeastern USSR. – Komarovskie chtniya 27: 1-56. [In Russian]

Samylina VA. 1976. The Cretaceous flora of Omsukchan (Magadan District). – Nauka, Leningrad.

Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD. 2008. Frequent phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. – Mol. Biol. Evol. 25: 1762-1777.

Sanders RW, Stuessy TF, Rodríguez R. 1983. Chromosome numbers from the flora of the Juan Fernandez Islands. – Amer. J. Bot. 70: 799-810.

Sanders RW, Judd WS, Donoghue MJ. 1991. Do the temperate-tropical family pairs constitute sister groups? – Amer. J. Bot. 78: 213-214.

Sanderson MJ, Donoghue MJ. 1994. Shifts in diversification rate with the origin of angiosperms. – Science 264: 1590-1593.

Sanderson MJ, Doyle JA. 2001. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. – Amer. J. Bot. 88: 1499-1516.

Sanderson MJ, Thorne JL, Wikström N, Bremer K. 2004. Molecular evidence on plant divergence times. – Amer. J. Bot. 91: 1656-1665.

Sandt W. 1925. Zur Kenntnis der Beiknospen. Zugleich ein Beitrag zum Korrelationsproblem. – Bot. Abhandl. 7:1-160.

Sargant E. 1903. A theory of the origin of monocotyledons, founded on the structure of their seedlings. – Ann. Bot. 17: 1-92.

Sargant E. 1904. The evolution of monocotyledons. – Bot. Gaz. 37: 325-345.

Sargent RD. 2004. Floral symmetry affects speciation rates in angiosperms. – Phil. Trans. Roy. Soc. London, Sect. B, 271: 603-608.

Särkinen T, Kottner S, Stuppy W, Ahmed F, Knapp S. 2018. A new commelinid monocot seed fossil from the early Eocene previously identified as Solanaceae. – Amer. J. Bot. 105: 95-107.

Sastri RLN. 1969. Comparative morphology and phylogeny of the Ranales. – Biol. Rev. 44: 294-297.

Satô D. 1942. Karyotype alteration and phylogeny in Liliaceae and allied families. – Jap. J. Bot. 12: 57-161.

Sattler R. 1967. Petal inception and the problem of pattern detection. – J. Theor. Biol. 17: 31-39.

Sattler R. 1973. Organogenesis of flowers. A photographic text-atlas. – University of Toronto Press, Toronto & Buffalo.

Sattler R. 1974. A new approach to gynoecial morphology. – Phytomorphology 24: 22-34.

Saunders ER. 1923. A reversionary character in the stock (Matthiola incana) and its significance in regard to the structure and evolution of the gynoecium in the Rhoeadales, the Orchidaceae, and other families. – Ann. Bot. 37: 451-482.

Saunders ER. 1930. Illustrations of carpel-polymorphism VI. – New Phytol. 29: 81-95.

Saunders ER. 1931. Illustrations of carpel polymorphism VII. – New Phytol. 30: 80-118.

Saunders ER. 1933. The cause of petaloid colouring in ‘apetalous’ flowers. – Ann. Bot. 49: 199-218.

Saunders ER. 1937. Floral morphology, a new outlook, with special reference to the interpretation of the gynoecium I. – Heffer and Sons, Cambridge.

Saunders ER. 1939. Floral morphology, a new outlook, with special reference to the interpretation of the gynoecium II. – Heffer and Sons, Cambridge.

Saupe SG. 1981. Cyanogenic compounds in angiosperm phylogeny. – In: Young DA, Seigler DS (eds), Phytochemistry and angiosperm phylogeny, Praeger, New York, pp. 80-116.

Sauquet H, Weston PH, Anderson CL, Barker N, Cantrill DJ, Mast AR, Savolainen V. 2009. Contrasted patterns of hyperdiversification in Mediterranean hotspots. – Proc. Natl. Acad. Sci. U.S.A. 106: 221-225.

Sauquet H, Balthazar M von, Doyle JA, Endress PK, Magallón S, Staedler Y, Schönenberger J. 2018. Challenges and questions in reconstructing the ancestral flower of angiosperms: a reply to Sokoloff et al. – Amer. J. Bot. 105: 127-135.

Savile BDO. 1979a. Fungi as aids in higher plant classification. – Bot. Rev. 45: 377-503.

Savile BDO. 1979b. Fungi as aids to plant taxonomy: methodology and principles. – Symb. Bot. Upsal. 22(4): 135-145.

Savolainen V, Goudet J. 1998. Rate of gene sequence evolution and species diversification in flowering plants: a re-evaluation. – Proc. Roy. Soc. London, B, 265: 603-607.

Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis DE, Bayer C, Fay MF, de Bruin AY, Sullivan S, Qiu Y-L. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. – Syst. Biol. 49: 306-362.

Savolainen V, Fay MF, Albach DC, Backlund A, van der Bank M, Cameron KM, Johnson SA, Lledó MD, Pintaud J-C, Powell M, Sheahan MC, Soltis DE, Soltis PS, Westo P, Whitten WM, Wurdack KJ, Chase MW. 2000. Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. – Kew Bull. 55: 257-309.

Sawada M, Viau EA, Gajewski K. 2003. The biogeography of aquatic macrophytes in North America since the last glacial maximum. – J. Biogeogr. 30: 999-1017.

Sayed O. 2001. Crassulacean Acid Metabolism 1975-2000, a checklist. – Photosynthetica 39: 339-352.

Sayeedad-din M. 1942. A comparative study of the structure of pollen grains in some of the families of angiosperms. – J. Osmania Univ. 10: 12-25.

Sazima I, Buzato S, Sazima M. 1996. An assemblage of hummingbird-pollinated flowers in a montane forest in southeastern Brazil. – Bot. Acta 109: 149-160.

Schaarschmidt F. 1984. Flowers from the Eocene oil-shale of Messel: a preliminary report. – Ann. Missouri Bot. Gard. 71: 599-606.

Schatz GE. 2001. Generic flora of the trees of Madagascar. – Royal Botanic Gardens, Kew & Missouri Botanical Garden, St. Louis.

Schemske DW. 1981. Floral convergence and pollinator sharing in two bee-pollinated, tropical herbs. – Ecology 62: 946-954.

Schenck H. 1886. Vergleichende Anatomie der submersen Gewächse. – Bibl. Bot. 1: 1-67.

Schiestl FP. 2010. The evolution of floral scent and insect chemical communication. – Ecol. Lett. 13: 643-656.

Schiestl FP, Dötterl S. 2012. The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias? – Evolution 66: 2042-2055.

Schill R, Rauh W, Wieland HP. 1974. Die Chromosomenzahlen der einzelnen Arten. – Trop. Subtrop. Pflanzenw. 11: 1-14.

Schill R, Baum A, Wolter M. 1985. Vergleichende Mikromorphologie der Narbenoberflächen bei den Angiospermen; Zusammenhänge mit Pollenoberflächen bei heterostylen Sippen. – Plant Syst. Evol. 148: 185-214.

Schittler J. 1953. Blütenartikulation und Phyllokladien der Liliaceae organphylogenetisch betrachtet. – Feddes Repert. 55: 154-258, Taf. 1-11.

Schlauer J. 1997. ”New” data relating to the evolution and phylogeny of some carnivorous plant families. – Carniv. Plants Newsl. 26: 34-38.

Schlechter R. 1906. Beiträge zur Kenntnis der Flora von Neu-Kaledonien. – Engl. Bot. Jahrb. Syst. 39: 1-274.

Schlechter R, Krause K. 1908. Beiträge zur Kenntnis der Flora von Neu-Kaledonien. – Engl. Bot. Jahrb. Syst. 11: 20-45.

Schlimbach H. 1924. Beiträge zur Kenntnis der afrikanischen Flora V. – Bull. Herb. Boissier 4: 809-846.

Schlueter JA, Dixon P, Granger C, Grant D, Clark L, Doyle JJ, Schoenmaker RC. 2004. Mining EST databases to resolve evolutionary events in major crop species. – Genom 47: 868-876.

Schmalhausen J. 1877. Beiträge zur Kenntnis das Milchsaftbehälter der Pflanzen. – Mém. Acad. Imp. Sci. St. Petersburg, sér. VII, 24: 1-27.

Schmid R. 1982. The terminology and classification of steles: historical perspectives and outlines of a system. – Bot. Rev. 48: 817-913.

Schmid R. 1986. On Cornerian and other terminology of angiospermous and gymnospermous seed coats: historical perspective and terminological recommendations. – Taxon 35: 476-491.

Schmid R. 1988. Reproductive versus extra-reproductive nectaries – historical perspective and terminological recommendations. – Bot. Rev. 54: 230-239.

Schmidt RJ. 1986. The ingenane polyol esters. – In: Evans FJ (ed), Naturally occurring phorbol esters, CRC Press, Boca Raton, Florida, pp. 245-270.

Schmidt RJ. 1987. The biosynthesis of tigliane and related diterpenoids; an intriguing problem. – Bot. J. Linn. Soc. 94: 221-230.

Schmitz G, Theres K. 2005. Shoot and inflorescence branching. – Curr. Opin. Plant Biol.. 8: 506-511.

Schnarf K. 1923. Kleine Beiträge zur Entwicklungsgeschichte der Angiospermen IV. Über das Verhalten des Antherentapetums einiger Pflanzen. – Österr. Bot. Zeitschr. 72: 242-245.

Schnarf K. 1929. Embryologie der angiospermen. – Handbuch der pflanzenanatomie X(2). – Berlin.

Schnarf K. 1931. Vergleichende Embryologie der Angiospermen. – Gebrüder Bornträger, Berlin.

Schnarf K. 1936. Contemporary understanding of embryo sac development among angiosperms. – Bot. Rev. 2: 565-585.

Schnell DE. 1976. Carnivorous plants of the United States and Canada. – John F. Blair, Winston-Salem, North Carolina.

Schnell DE. 2002. Carnivorous plants of the United States and Canada. 2nd ed. – Timber Press, Portland, Oregon.

Schnell R. 1963. Le problème des acarodomaties. – Marcellia (Strasbourg) 31: 95-107.

Schnepf E. 1969. Sekretion und Exkretion bei Pflanzen. – Springer-Verlag, Wien.

Schnepf E. 1977. Bau und Feinbau der Nektarien und der Mechanismus der Nektarsekretion. – Apidologie 8: 295-304.

Scholtz A. 1985. The palynology of the upper lacustrine sediments of the Arnot Pipe, Banke, Namaqualand. – Ann. South Afr. Mus. 95: 1-109.

Schönenberger J. 2005. Rise from the ashes – the reconstruction of charcoalified fossil flowers. – Trends Plant Sci. 10: 436-443.

Schönenberger J, Balthazar M von. 2006. Reproductive structures and phylogenetic framework of the rosids – progress and prospects. – Plant Syst. Evol. 260: 87-106.

Schöning M, Bandel K. 2004. A diverse assemblage of fossil hardwood from the Upper Tertiary (Miocene?) of the Arauco Peninsula, Chile. – J. South Amer. Earth Sci. 17: 59-71.

Schoot C van der, Dietrich MA, Storms M, Verbeke JA, Lucas WJ. 1995. Establishment of a cell-to-cell communication pathway between separate carpels during gynoecium development. – Planta 195: 450-455.

Schoute JC. 1935. On corolla aestivation and phyllotaxis of floral phyllomes. – Kon. Akad. Wet. Verhandl., Ser. II, 34, 4: 1-77.

Schrank E. 1982. Kretazäische Pollen und Sporen aus dem ”Nubischen Sandstein” des Dakhla-Beckens (Ägypten). – Berl. Geowiss. Abhandl., Abt. A, 40: 87-109.

Schrank E. 1983. Scanning electron and light microscopic investigations of angiosperm pollen from the Lower Cretaceous of Egypt. – Pollen Spores 25: 213-242.

Schrank E. 1987. Paleozoic and Mesozoic palynomorphs from Northeast Africa (Egypt and Sudan) with special reference to Late Cretaceous pollen and dinoflagellates. – Berl. Geowiss. Abhandl., Abt. A, 75: 249-310.

Schrank E. 1992. Nonmarine Cretaceous correlations in Egypt and northern Sudan: palynological and palaeobotanical evidence. – Cretaceous Res. 13: 351-368.

Schrank E. 1994. Palynology of the Yesomma Formation in Northern Somalia: a study of pollen, spores and associated phytoplankton from the Late Cretaceous. – Palaeontographica, Abt. B, 231: 63-112.

Schrank E. 1999. Mesozoische Floren aus Nordost-Afrika und ihre Beziehungen zum Klima am Paläoäquator. – Deutsche Forschungsgem. 1999: 137-166.

Schrank E, Ibrahim MIA. 1995. Cretaceous (Aptian-Maastrichtian) palynology of foraminifera-dated wells (KRM-1, AG-18) in northwestern Egypt. – Berl. Geowiss. Abhandl., Abt. A, 177: 1-44.

Schrank E, Mahmoud MS. 1998. Palynology (pollen, spores and dinoflagellates) and Cretaceous stratigraphy of the Dakhla Oasis, central Egypt. – J. African Earth Sci. 26: 167-193.

Schrank E, Rüffle L. 2003. The Late Cretaceous leaf flora from Jebel Muidaha, Sudan. – Cour. Forschungsinst. Senckenberg 241: 119-129.

Schraudolf H. 1965. Zur Verbreitung von Glucobassicin und Neoglucobrassicin in höheren Pflanzen. – Experientia 21: 520-522.

Schroeder F-G. 1987. Infloreszenzen, Synfloreszenzen und Moduln. Ein terminologischer Beitrag zur Infloreszenzmorphologie. – Bot. Jahrb. Syst. 108: 449-471.

Schukova PC. 1967. Chromosome numbers of some species of plants in the northeastern part of the U.S.S.R. II. – Bot. Žurn. 52: 983-987. [In Russian]

Schultes RE. 1976. Hallucinogenic plants. – Golden Press, New York.

Schumann K. 1887. Beiträge zur vergleichenden Blüthenmorphologie. – Jahrb. Wiss. Bot. 19: 133-193.

Schumann K. 1890. Neue Untersuchungen über den Blüthenanschluss. – Leipzig.

Schurr FM, Spiegel O, Steinitz O, Trakthtenbrot A, Tsoar A, Nathan R. 2009. Long-distance seed dispersal. – Ann. Plant Rev. 38: 204-237.

Schweingruber FH. 1978. Mikroskopische Holzanatomie. – Edition Zürcher AG, Zug.

Schweingruber FH. 1992. Anatomie europäischer Hölzer. – Verlag Paul Haupt, Bern, Stuttgart.

Scogin R. 1988. Floral anthocyanidins of bird-visited flowers. – Bot. Gaz. 149: 437-442.

Scogin R. 1992. The distribution of acteoside among angiosperms. – Biochem. Syst. Ecol. 20: 477-480.

Scotland RW. 2000. Are angiosperms firmly rooted? – Taxon 49: 529-531.

Scotland RW, Wortley AH. 2003. How many species of seed plants are there? – Taxon 52: 101-104.

Scott DH, Brebner G. 1893. On the secondary tissues of certain monocotyledons. – Ann. Bot. 7: 21-62.

Scott RA, Wheeler E. 1982. Fossil wood from the Eocene Clarno Formation of Oregon. – IAWA bull., n. s., 3: 135-154.

Scott-Elliot GF. 1890. Ornithophilous flowers in South Africa. – Ann. Bot. 4: 265-280.

Sculthorpe CD. 1967. The biology of aquatic vascular plants. – Edward Arnold (Publ.), Ltd., London.

Scurfield G, Silva SR, Ingle HD. 1970. Vessel wall structure: an investigation using scanning electron microscopy. – Aust. J. Bot. 18: 301-312.

Seaman FC, Funk VA. 1983. Cladistic analysis of complex natural products: developing transformation series from sesquiterpene lactone data. – Taxon 32: 1-27.

Seaman FC, Bohlmann F, Zdero C, Mabry TJ. 1990. Diterpenes of flowering plants. – Springer, Berlin, Heidelberg, New York.

Seegeler CJP. 1983. Oil plants in Ethiopia, their taxonomy and agricultural significance. – Pudoc, Wageningen.

Seigler DS. 1977. Plant systematics and alkaloids. – In: Manske RHF (ed), The alkaloids 16, Academic Press, New York, pp. 1-82.

Seigler DS. 1981a. Terpenes and plant phylogeny. – In Young DA, Seigler DS (eds), Phytochemistry and angiosperm phylogeny, Praeger, New York, pp. 117-148.

Seigler DS. 1981b. Secondary metabolites and plant systematics. – In: Conn EE (ed), The biochemistry of plants 7. Secondary plant products, Academic Press, New York, pp. 139-176.

Seigler DS. 1998. Plant secondary metabolism. – Kluwer, Boston.

Seigler DS, Brinker AM. 1993. Characterisation of cyanogenic glycosides, cyanolipids, organic nitro compounds and nitrile glycosides from plants. – In: Dey PM, Harborne JB (eds), Methods of plant biochemistry, alkaloids and sulphur compounds, Academic Press, New York, pp. 51-93.

Seine R, Porembski S, Barthlott W. 1995. A neglected habitat of carnivorous plants: Inselbergs. – Feddes Repert. 106: 555-562.

Sell Y. 1976. Tendences évolutives parmi les complexes inflorescentiels. – Rev. Gén. Bot. 83: 247-267.

Sell Y. 1995. Recherches de critères pour determiner la limite entre les domains végétatif et floral. – Feddes Repert. 106: 371-390.

Selling OH. 1947. Studies in Hawaiian pollen statistics II. The pollens of the Hawaiian phanerogams. – Bernice P. Bishop Mus. Spec. Publ. 38: 1-430.

Semerenko LV. 1985. Chromosome numbers of some Byelorussian flora species. – Bot. Žurn. 70: 130-132. [In Russian]

Sender LM, Diez JB, Ferrer J, Pons D, Rubio C. 2005. Preliminary data on a new Albian flora from the Valle del Río Martín, Teruel, Spain. – Cretaceous Res. 26: 898-905.

Sereno PC. 1999. Definitions in phylogenetic taxonomy: critique and rationale. – Syst. Biol. 48: 329-351.

Sereno PC. 2005. The logical basis of phylogenetic taxonomy. – Syst. Biol. 54: 595-619.

Seres A, Ramírez N. 1995. Biología floral y polinización de algunas monocotiledóneas de un bosque nublado venezolano. – Ann. Missouri Bot. Gard. 82: 61-81.

Serna L, Martin C. 2006. Trichomes: different regulatory networks lead to convergent structures. – Trends Plant Sci. 11: 274-280.

Sernander R. 1906. Entwurf einer Monographie der europäischen Myrmekochoren. – Kungl. Sv. Vetensk.-Akad. Handl. 41(7): 1-410.

Setchell WA. 1935. Geographic elements of the marine flora of the North Pacific Ocean. – Amer. Natur. 69: 560-577.

Setten AK van. 1992. Fruits and seeds of Annonaceae. Morphology and its significance for classification and identification. – Bibl. Bot. 142: 1-101.

Severin AJ, Cannon SB, Graham MM, Grant D, Shoemaker RC. 2011. Changes in twelve homoeologous genomic regions in soybean following rounds of polyploidy. – Plant Cell 23: 3219-3136.

Shamrov II. 1998. Ovule classification in flowering plants: new approaches and concepts. – Bot. Jahrb. Syst. 120: 377-407.

Shamrov II. 2002. Ovule nucellus: Its origin,differentiation, structure and functions. – Bot. Žurn. 87: 1-30. [In Russian]

Shamrov II. 2003. The integument of flowering plants: origin, differentiation, structure and functions. – Bot. Žurn. 88: 1-30. [In Russian]

Shamrov II. 2004. Structural differentiation of the ovule in flowering plants: chalaza, funiculus, obturator. – Bot. Žurn. 89: 337-353. [In Russian]

Shamrov II. 2006. Morphological nature of the ovule and its evolutionary lineages in flowering plants. – Bot. Žurn. 91: 1601-1635. [In Russian]

Shan H, Zhang N, Liu C, Xu G, Zhang J, Chen Z, Kong H. 2007. Pattern of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. – Mol. Phylogen. Evol. 44: 26-41.

Shane MW, Lambers H. 2005. Cluster roots: a curiosity in context. – Plant and Soil 274: 101-125.

Sharma AK. 1969. Evolution and taxonomy of monocotyledons. – In: Darlington CD, Lewis KR (eds), Chromosomes today 2, pp. 241-249.

Sharma M. 1968. Pollen morphology of the Indian monocotyledons. – J. Palynol., Lucknow, Spec. Vol. 1967: 1-98.

Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. – Amer. J. Bot. 92: 142-166.

Shetty BV. 1961. Chromosome numbers in some South Indian Plants. – J. Sci. Indian Res., Ser. C, 20: 28-30.

Shibata K. 1962. Estudios citologicos de plantas colombianas silvestres y cultivadas. – J. Agricult. Sci. (Tokyo) 8: 49-62.

Shimakura M. 1973. Palynomorphs of Japanese plants. – Osaka Museum of Natural History, Spec. Publ. 5: 1-60. [in Japanese]

Shimizu T. 1983. The new alpine flora of Japan in color. – Hoikusha, Osaka. [In Japanese]

Shindo S, Ito M, Ueda K, Kato M, Hasebe M. 1999. Chracterization of MADS genes in gymnosperm Gnetum parvifolium and its implication for the evolution of reproductive organs in seed plants. – Evol. Dev. 3: 180-190.

Shipunov AB. 2003. The system of flowering plants from a synthetic point of view. – J. Gen. Biol. 64: 501-510. [In Russian]

Shubin N, Tabin C, Carroll S. 2009. Deep homology and the origins of evolutionary novelty. – Nature 457: 818-823.

Silberbauer-Gottsberger I, Gottsberger G. 1975. Über sphingophile Angiospermen Brasiliens. – Plant Syst. Evol. 123: 157-184.

Silberbauer-Gottsberger I, Gottsberger G. 1988. A polinização de plantas do cerrado. – Rev. Brasil. Biol. 48: 651-663.

Silva-Caminha S, Jaramillo C, Absy ML. 2010. Neogene palynology of the Solimões basin, Brazilian Amazonia. – Palaeontogr. Abt. B, 283: 1-67.

Silvertown J, CcConway KJ, Dodd ME, Chase MW. 2000. ‘Flexibility’ as a trait and methodological issues in species diversity variation among angiosperm families. – Evolution 54: 1066-1068.

Simmons MP, Gatesy J. 2015. Coalescence vs. concatenation: sophisticated analyses vs. first principles applied to rooting the angiosperms. – Mol. Phylogen. Evol. 91: 98-122.

Simon MF, Grether R, Queiroz LP de, Skema C, Pennington RT, Hughes CE. 2009. Recent assembly of the Cerrado, a neotropical biodiversity hotspot, by in situ evolution of adaptations to fire. – Proc. Natl. Acad. Sci. U.S.A. 106: 20359-20364.

Simpson BB, Neff JL. 1981. Floral rewards: alternatives to pollen and nectar. – Ann. Missouri Bot. Gard. 68: 310-322.

Simpson MG. 1998. Reversal in ovary position from inferior to superior in the Haemodoraceae: evidence from floral ontogeny. – Intern. J. Plant Sci. 159: 466-479.

Simpson MG. 2006. Plant systematics. – Elsevier, Amsterdam.

Sims HJ, McConway KJ. 2003. Nonstochastic variation of species-level diversification rates within angiosperms. – Evolution 57: 460-479.

Sinclair J. 1955. The revision of the Malayan Annonaceae. – Gard. Bull. Straits Settlem. (Singapore) 14: 149-516.

Singer SR. 2006. Inflorescence architecture – moving beyond description to development, genes and evolution. – In: Ainsworth C (ed), Flowering and its manipulation, Blackwell, New York, pp. 98-113.

Singer SR, Sollinger J, Maki S, Fishbach J, Short B, Reinke C, Fick J, Cox L, McCall A, Mullen H. 1999. Inflorescence architecture: a developmental genetics approach. – Bot. Rev. 65: 385-410.

Singh B. 1951. Chromosome numbers in some flowering plants. – Curr. Sci. 20: 105.

Sinha N. 1999. Leaf development in angiosperms. – Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 419-446.

Sinnott EW. 1914. Investigations on the phylogeny of the angiosperms 1. The anatomy of the node as an aid in the classification of the angiosperms. – Amer. J. Bot. 1: 303-322.

Sinnott EW, Bailey IW. 1914. Investigations on the phylogeny of the angiosperms 3. Nodal anatomy and the morphology of stipules. – Amer. J. Bot. 1: 441-453.

Skalinska M, Pietrowicz M, Sokolowska-Kulczycka A. 1961. Further additions to chromosome numbers of Polish angiosperms. – Acta Soc. Bot. Pol. 30: 463-489.

Skarby A. 1968. Extratriporopollenites (Pflug) emend. from the Upper Cretaceous of Scania, Sweden. – Stockholm Contr. Geol. 16: 1-60.

Skottsberg C. 1955. Chromosome numbers in Hawaiian flowering plants. – Ark. f. Bot. 3(1-2): 63-70.

Slavik B, Jarolimova V, Chrtek J. 1993. Chromosome counts of some plants from Cyprus. – Candollea 48: 221-230.

Slob A, Jekel B, De Jong B, Schlatmann E. 1975. On the occurrence of tuliposides in the Liliiflorae. – Phytochemistry 14: 1997-2005.

Smets EF. 1986. Localization and systematic importance of the floral nectaries in the Magnoliatae (dicotyledons). – Bull. Jard. Bot. Natl. Belg. 56: 51-76.

Smets EF. 1988a. La présence des ‘nectaria persistentia’ chez les Magnoliophytina (Angiospermes). – Candollea 43: 709-716.

Smets EF. 1988b. Florale nektariën van de Magnoliophytina: karakterizering en systematische betekenis. – Ph.D. diss., Katholieke Universiteit Leuven, Belgium.

Smets EF, Crescens EM. 1988. Types of floral nectaries and the concepts ‘character’ and ‘character state’ – a reconsideration. – Acta Bot. Neerl. 37: 121-128.

Smets EF, Ronse De Craene L-P, Caris P, Rudall P. 2000. Floral nectaries in monocotyledons: Distribution and evolution. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Collingwood, pp. 230-240.

Smiley CJ. 1969. Cretaceous floras of Chandler-Coville region, Alaska. Stratigraphy and preliminary floristics. – Bull. Amer. Assoc. Petrol. Geol. 53: 482-502.

Smiley CJ, Gray J, Huggins LM. 1975. Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho. – J. Paleontol. 49: 833-844.

Smith AC. 1969. Studies of Pacific Island plants XXI. New and noteworthy flowering plants from Fiji. – Pacific Sci. 23: 383-393.

Smith AC. 1972. An appraisal of the orders and families of primitive extant angiosperms. – J. Indian Bot. Soc., Sect. A, 50: 215-226.

Smith CR Jr. 1970. Occurrence of unusual fatty acids in plants. – Prog. Chem. Fats Other Lipids 11: 139-177.

Smith CR Jr, Wilson TL, Melvin EH, Wolff IA. 1960. Dimorphecolic acid – a unique hydroxydienoid fatty acid. – J. Amer. Chem. Soc. 82: 1417-1421.

Smith FA, Smith SE. 1997. Structural diversity in (vesicular-)arbuscular mycorrhizal symbiosis. – New Phytol. 137: 3783-388.

Smith JD. 1914. Undescribed plants from Guatemala and other Central American republics XXXVIII. – Bot. Gaz. 57: 415-427.

Smith LB. 1958. Notes on South American phanerogams. – J. Washington Acad. Sci. 48: 282-283.

Smith LS. 1957. New species of and notes on Queensland plants II. – Proc. Roy. Soc. Queensland 68: 43-50.

Smith N, Mori SA, Henderson A, Stevenson DW, Heald SV (eds). 2004. Flowering plants of the Neotropics. – Princeton University Press, Princeton, New Jersey.

Smith PM. 1976. The chemotaxonomy of plants. – Arnold, London.

Smith SA, Donoghue MJ. 2008. Rates of molecular evolution are linked to life history in flowering plants. – Science 322: 86-89.

Smith SA, Beaulieu JM, Donoghue MJ. 2010. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. – Proc. Natl. Acad. Sci. U.S.A. 107: 5897-5902.

Smith SA, Beaulieu JM, Stamatkis A, Donoghue MJ. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. – Amer. J. Bot. 98: 404-414.

Smith SE, Read DJ. 1997. Mycorrhizal symbioses. – Academic Press, San Diego.

Smith SY. 2013. The fossil record of noncommelinid monocots. – In: Wilkin P, Mayo SJ (eds.), Early events in monocot evolution, Systematics Association Spec. Vol. Series, Cambridge University Press, Cambridge, pp. 29-59.

Smith UR. 2001. Revision of the Cretaceous fossil genus Palaeoaster (Papaveraceae) and clarification of pertinent species of Eriocaulon, Palaeoaster, and Sterculiocarpus. – Novon 11: 258-260.

Smith-White S. 1948. Polarised segregation in a stable triploid. – Heredity 2: 119-129.

Smith-White S. 1959. Cytological evolution in the Australian flora. – Quart. Biol. 24: 273-289.

Smyth DR. 2005. Morphogenesis of flowers: our evolving view. – Plant Cell 17: 330-341.

Snezhkova SA. 1986. Wood structure in some lianes of the Far East. – Bot. Žurn. 71: 768-773.

Snow DW. 1981. Tropical frugivorous birds and their food plants: a world survey. – Biotropica 13: 1-14.

Snow DW, Snow BK. 1980. Relationships between hummingbirds and flowers in the Andes of Colombia. – Bull. Brit. Mus. (Nat. Hist.) Zool. 38: 105-139.

Snow R. 1959. Chromosome numbers of California plants, with notes on some cases of cytological interest. – Madroño 15: 81-89.

Sobti SN, Singh SD. 1961. A chromosome wurvey of Indian medicinal plants I. – Proc. Indian Acad. Sci., Sect. B, 54: 138-144.

Soerianegara I, Lemmens RHMJ (eds). 1993. Plant resources of South East Asia 5(1). Timber trees: major commercial timbers. – Bogor.

Sokoloff DD, Rudall PJ, Remizowa MV. 2006. Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research. – J. Experim. Bot. 57: 3517-3530.

Sokoloff DD, Remizowa MV, Rudall PJ. 2013. Is syncarpy an ancestral condition in monocots and core eudicots? – In: Wilkin P, Mayo SJ (eds.), Early events in monocot evolution, Systematics Association Spec. Vol. Series, Cambridge University Press, Cambridge. doi:10.1017/CBO9781139002950.004

Sokoloff DD, Remizowa MV, Bateman RM, Rudall PJ. 2018. Was the ancestral angiosperm flower whorled throughout? – Amer. J. Bot. 105: 5-15.

Sokolovskaya AP, Probatova NS. 1985. Chromosome numbers in the vascular plants from the Primorye Territory, Kamchatka region, Amur Valley and Sakhalin. – Bot. Žurn. 70: 997-999. [In Russian]

Sokolovskaya AP, Strelkova OS. 1938. Polyploidy in the high mountain regions of Pamir and Altai. – Compt. Ren. (Doklady) Acad. Sci. URSS 21: 68-70. [In Russian]

Solano PJ, Dejean A. 2004. Ant-fed plants: comparison between three geophytic myrmecophytes. – Biol. J. Linn. Soc. 83: 433-439.

Sole de Porta N. 1971. Algunos géneros nuevos de polen procedentes de la Formación Guaduas (Maastrichtiense-Paleoceno) de Colombia. – Stud. Geol. (Salamanca) 2: 133-143.

Solereder H. 1899. Systematische Anatomie der Dicotyledonen. – Ferdinand Enke, Stuttgart.

Solereder H. 1908. Systematische Anatomie der Dicotyledonen. Ergänzungsband. – Ferdinand Enke, Stuttgart.

Solereder H. 1914. Zwei Beiträge zur systematischen Anatomie. – Engl. Bot. Jahrb. Syst. 50 (Suppl.): 578-585.

Solereder H, Meyer FJ. 1923. Systematische Anatomie der Monokotyledonen I. – Gebrüder Bornträger, Berlin.

Solereder H, Meyer FJ. 1928. Systematische Anatomie der Monokotyledonen III. Principes-Synanthae-Spathiflorae. – Gebrüder Bornträger, Berlin.

Solereder H, Meyer FJ. 1929a. Systematische Anatomie der Monokotyledonen II. – Gebrüder Bornträger, Berlin.

Solereder H, Meyer FJ. 1929b. Systematische Anatomie der Monokotyledonen IV. Farinosae. – Gebrüder Bornträger, Berlin.

Solereder H, Meyer FJ. 1930. Systematische Anatomie der Monokotyledonen VI. – Gebrüder Bornträger, Berlin.

Solms-Laubach H zu. 1868. Über den Bau und die Entwicklung der Ernährungsorgane parasitischer Phanerogamen. – Jahrb. Wiss. Bot. 6: 509-638.

Solomon AM, King JE, Martin PS, Thomas J. 1973. Further scanning electron photomicrographs of southwestern pollen grains. – J. Arizona Acad. Sci. 8: 135-157.

Soltis DE, Soltis PS. 1990. Isozyme evidence for ancient polyploidy in primitive angiosperms. – Syst. Bot. 15: 328-337.

Soltis DE, Soltis PS. 1997. Phylogenetic relationships in Saxifragaceae sensu lato: a comparison of topologies based on 18S rDNA and rbcL sequences. – Amer. J. Bot. 84: 504-522.

Soltis DE, Soltis PS. 2003. The role of phylogenetics in comparative genetics. – Plant Physiol. 132: 1790-1800.

Soltis DE, Soltis PS. 2004a. Amborella not a ”basal angiosperm”? Not so fast. – Amer. J. Bot. 91: 997-1001.

Soltis DE, Soltis PS. 2004b. The origin and diversification of angiosperms. – Amer. J. Bot. 91: 1614-1626.

Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG. 1995. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. – Proc. Natl. Acad. Sci. U.S.A. 92: 2647-2651.

Soltis DE, Hibsch-Jetter C, Soltis PS, Chase MW, Farris JS. 1997. Molecular phylogenetic relationships among angiosperms: an overview based on rbcL and 18S rDNA sequences. – In: Iwatsuki K, Raven PH (eds), Evolution and diversification of land plants, Springer, Tokyo, pp. 157-178.

Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Swensen SM, Zimmer EA, Shu-Miaw C, Gillespie LJ, Kress WJ, Sytsma KJ. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. – Ann. Missouri Bot. Gard. 84: 1-49.

Soltis DE, Soltis PS, Mort ME, Chase MW, Savolainen V, Hoot SB, Morton CM. 1998. Inferring complex phylogenies using parsimony: an empirical approach using three large DNA data sets for angiosperms. – Syst. Biol. 47: 32-42.

Soltis DE, Soltis PS, Chase MW. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. – Nature 402: 402-404.

Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. – Bot. J. Linn. Soc. 133: 381-461.

Soltis DE, Soltis PS, Zanis MJ. 2002. Phylogeny of seed plants based on evidence from eight genes. – Amer. J. Bot. 89: 1670-1681.

Soltis DE, Fishbein M, Kuzoff RK. 2003. Reevaluating the evolution of epigyny: data from phylogenetics and floral ontogeny. – Intern. J. Plant Sci. 164(Suppl.): S251-S264.

Soltis DE, Soltis PS, Bennett MD, Leitch IJ. 2003. Evolution of genome size in the angiosperms. – Amer. J. Bot. 90: 1596-1603.

Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu Y-L, Chase MW, Farris JS, Stefanovic S, Rice DW, Palmer JD, Soltis PS. 2004. Genome-scale data, angiosperm relationships, and ‘ending incongruence’: a cautionary tale in phylogenetics. – Trends Plant Sci. 9: 477-484.

Soltis DE, Albert VA, Kim S, Yoo M-J, Soltis PS, Frohlich MW, Leebens-Mack J, Kong H, Wall K, dePamphilis C, Ma H. 2005. Evolution of the flower. – In: Henry RJ (ed), Plant diversity and evolution: genotypic and phenotypic variation in higher plants, CAB International, Wallingford, pp. 165-200.

Soltis DE, Soltis PS, Endress PK, Chase MW. 2005. Phylogeny and evolution of angiosperms. – Sinauer Associates, Sunderland, Massachusetts.

Soltis DE, Gitzendanner MA, Soltis PS. 2007. A 567-taxon data set for angiosperms: the challenges posed by Bayesian analyses of large data sets. – Intern. J. Plant Sci. 168: 137-157.

Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS. 2007. The ABC model and its applicability to basal angiosperms. – Ann. Bot. 100: 155-163.

Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman NS, dePamphilis C, Leebens-Mack J. 2007. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. – Trends Plant Sci. 12: 358-367.

Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS. 2007. Autopolyploidy in angiosperms: have we grossly unterestimated the number of species? – Taxon 56: 13-30.

Soltis DE, Bell CD, Kim S, Soltis PS. 2008. The origin and early evolution of angiosperms. – Ann. New York Acad. Sci. 1133: 3-25.

Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C-F, Sankoff D, dePamphilis CW, Wall PK, Soltis PS. 2009. Polyploidy and angiosperm diversification. – Amer. J. Bot. 96: 336-348.

Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. – Amer. J. Bot. 98: 704-730.

Soltis PS, Soltis DE. 1996. Phylogenetic analysis of large molecular data sets. – Bol. Soc. Bot. Mexic. 59: 99-113.

Soltis PS, Soltis DE. 1998. Molecular evolution of 18S rDNA in angiosperms: implications for character weighting in phylogenetic analysis. – In: Soltis DE, Soltis PS, Doyle JJ (eds), Molecular systematics of plants II. DNA sequencing, Kluwer Academic, Boston, Massachusetts, pp. 188-210.

Soltis PS, Soltis DE. 2004. The origin and diversification of angiosperms. – Amer. J. Bot. 91: 1614-1626.

Soltis PS, Soltis DE, Chase MW. 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. – Nature 402: 402-404.

Soltis PS, Soltis DE, Zanis MJ, Kim S. 2000. Basal lineages of angiosperms: relationships and implications for floral evolution. – Intern. J. Plant Sci. 161(Suppl.): S97-S107.

Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG. 2002. Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. – Proc. Natl. Acad. Sci. U.S.A. 99: 4430-4435.

Soltis PS, Soltis DE, Chase MW, Endress PK, Crane PR. 2004. The diversification of flowering plants. – In: Cracraft J, Donoghue MJ (eds), Assembling the tree of life, Oxford University Press, Oxford, pp. 154-167.

Soltis PS, Soltis DE, Kim S, Chanderbali A, Buzgo M. 2006. Expression of floral regulators in basal angiosperms and the origin and evolution of ABC function. – Adv. Bot. Res. 44: 483-506.

Soltis PS, Gittzendanner MA, Soltis DE. 2007. A 567-taxon data set for angiosperms: the challenges poled by Bayesian analyses of large data sets. – Intern. J. Plant Sci. 168: 137-157.

Soltis PS, Brockington SF, Yoo M-J, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE. 2009. Floral variation and floral genetics in basal angiosperms. – Amer. J. Bot. 96: 110-128.

Song Z-C, Wang W-M, Fei H. 2004. Fossil pollen records of extant angiosperms in China. – Bot. Rev. 70: 425-458.

Soó R. 1967. Die modernen Systeme der Angiospermen. – Acta Bot. Acad. Scient. Hung. 13: 201-233.

Soó R. 1975. A review of the new classification systems of flowering plants (Angiospermatophyta, Magnoliophytina). – Taxon 24: 585-592.

Šopova M, Sekovski I. 1982. Chromosome atlas of some Macedonian angiosperms III. – Godisen Zbornik 35: 145-160.

Souza VC, Lorenzi H. 2005. Botânica sistemática. Guia ilustrado para identificação das famílias de angiospermas da flora brasileira, baseado em APG II. – Nova Odessa, SP, Inst. Plant. de Estudos da flora LTDA.

Sowunmi MA. 1973. Pollen grains of Nigerian plants I. Woody species. – Grana 13: 145-186.

Spackman W. 1948. A dicotyledonous wood found associated with the Idaho Tempskyas. – Ann. Missouri Bot. Gard. 35: 107-115.

Spears P. 2006. A tour of the flowering plants. – Missouri Botanical Garden, St. Louis, Missouri.

Specht CD, Bartlett ME. 2009. Flower evolution: the origin and subsequent diversification of the angiosperm flower. – Ann. Rev. Ecol. Evol. Syst. 40: 217-243.

Sperry JS, Hacke UG. 2004. Analysis of circular bordered pit function I. Angiosperm vessels with homogeneous pit membranes. – Amer. J. Bot. 91: 369-385.

Sperry JS, Hacke UG, Pittermann J. 2006. Size and function in conifer tracheids and angiosperm vessels. – Amer. J. Bot. 93: 1490-1500.

Sperry JS, Hacke UG, Feold TS, Sano Y, Sikkema EH. 2007. Hydraulic consequences of vessel evolution in angiosperms. – Intern. J. Plant Sci. 168Z: 1127-1139.

Speta F. 1972. Entwicklungsgeschichte und Karyologie von Elaiosomen an Samen und Früchten. – Naturk. Jahrb. Stadt Linz 18: 9-65.

Speta F. 1977. Proteinkörper in Zellkernen: neue Ergebnisse und deren Bedeuting für die Gefässpflanzen-systematik nebst einer Literaturübersicht für die Jahre 1966-1976. – Candollea 32: 133-163.

Speta F. 1979. Weitere Untersuchungen über Proteinkörper in Zellkernen und ihre taxonomische Bedeutung. – Plant Syst. Evol. 132: 1-26.

Speta F. 1984. Zwiebeln – versteckte Vielfalt in einfacher Form. – Linzer Biol. Beitr. 16: 3-44.

Spicer RA, Davies KS, Herman AB. 1994. Circum-Arctic plant fossils and the Cretaceous-Tertiary transition. – In: Boulter MC, Fischer HC (eds), Cenozoic plants and climates of the Arctic, Springer-Verlag, Berlin, Heidelberg, pp. 161-174.

Spichiger R, Savolainen V. 1997. Present state of Angiospermae phylogeny. – Candollea 52: 435-455.

Spichiger R-E., Savolainen VV, Figeat M, Jeanmond D. 2004. Systematic botany of flowering plants. – Science Publ., Enfield, New Hampshire.

Spies JJ, Du Plessis H. 1986a. Chromosome studies on African plants 1. – Bothalia 16: 87-88.

Spies JJ, Du Plessis H. 1986b. Chromosome studies on African plants 2. – Bothalia 16: 269-270.

Spies JJ, Du Plessis H. 1987. Chromosome studies on African plants 5. – Bothalia 17: 257-259.

Spies JJ, Du Plessis H. 1988. Chromosome studies on African plants 6. – Bothalia 18: 111-114.

Spies JJ, Hardy DS. 1983. A karyotypic and anatomical study of an unidentified liliaceous plant. – Bothalia 14: 215-217.

Spies JJ, Jonker A. 1987. Chromosome studies on African plants 4. – Bothalia 17: 135-136.

Spies JJ, Voges SP. 1988. Chromosome studies on African plants 7. – Bothalia 18: 114-119.

Spjut RW. 1994. A systematic treatment of fruit types. – Mem. New York Bot. Gard. 70: 1-182.

Spooner DM, Stuessy TF, Crawford DJ, Silva OM. 1987. Chromosome numbers from the flora of the Juan Fernandez Islands II. – Rhodora 89: 351-356.

Sporne KR. 1969. The ovule as an indicator of evolutionary status in angiosperms. – New Phytol. 68: 555-566.

Sporne KR. 1975. The morphology of angiosperms: the structure and evolution of flowering plants. – St. Martin’s Press, New York.

Sporne KR. 1980. A re-investigation of character correlations among dicotyledons. – New Phytol. 85: 419-449.

Srivastava SK. 1966. Upper Cretaceous microflora (Maastrichtian) from Scollard, Alberta, Canada. – Pollen Spores 8: 497-552.

Srivastava SK. 1969. Assorted angiosperm pollen from the Edmonton Formation (Maastrichtian), Alberta, Canada. – Can. J. Bot. 47: 975-989.

Srivastava SK. 1977. Microspores from the Fredericksburg Group (Albian) of the southern United States. – Paléobiologie Continentale 6: 1-119.

Srivastava SK. 1978. Cretaceous spore-pollen floras: a global evaluation. – Biol. Mem. 3: 1-130.

Srivastava SK. 1981. Evolution of Upper Cretaceous phytogeoprovinces and their pollen flora. – Rev. Palaeobot. Palynol. 35: 155-173.

Stace CA. 1965. Cuticular studies as an aid to plant taxonomy. – Bull. Brit. Mus. (Nat. Hist.), Bot. 4: 3-78.

Stace CA. 1966. The use of epidermal characters in phylogenetic considerations. – New Phytol. 65: 304-318.

Stace CA. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. – Taxon 49: 451-477.

Staedtler G. 1923. Über Reduktionserscheinungen im Bau der Antherwand von Angiosperm-Blüten. – Flora 116: 85-108.

Staff IA, Waterhouse JT. 1981. The biology of arborescent monocotyledons, with special reference to Australian species. – In: Pate JG, McComb AJ (eds), Biology of Australian plants, University of West Australian Press, Nedlands, pp. 216-257.

Stafford HA. 1988. Proanthocyanidins and the lignin connection. – Phytochemistry 27: 1-6.

Stafford HA. 1990. Flavonoid metabolism. – CRC Press, Boca Raton, Florida.

Standley PC. 1923. Trees and shrubs of Mexico. – Contr. U. S. Natl. Herb. 23: 1-1721.

Standley PC. 1925. New plants from Central America III. – J. Washington Acad. Sci. 15: 285.

Standley PC, Steyermark JA. 1944. Studies of Central American plants IV. – Field Mus. Nat. Hist., Bot. Ser., 23: 31-109.

Stanley TD, Ross EM. 1983. Flora of south-eastern Queensland. – Queensland Department of Primary Industries, Brisbane.

Starodubtsev VN. 1985. Chromosome numbers in the species of the flora of Primorye region. – Bot. Žurn. 69: 1565-1566. [In Russian]

Staudermann W von. 1924. Die Haare der Monocotyledonen. – Bot. Arch. 8: 105-184.

Stauffer HU. 1963. Gestaltwandel bei Blütenständen von Dicotyledonen. – Bot. Jahrb. Syst. 82: 216-251.

Stebbins GL. 1950. Variation and evolution in plants. – Columbia University Press, New York.

Stebbins GL. 1958. On the hybrid origin of the angiosperms. – Evolution 12: 267-270.

Stebbins GL. 1965. The probable growth habit of the earliest flowering plants. – Ann. Missouri Bot. Gard. 52: 457-468.

Stebbins GL. 1971a. Adaptive radiation of reproductive characteristics in angiosperms II. Seeds and seedling. – Ann. Rev. Ecol. Syst. 2: 237-260.

Stebbins GL. 1971b. Chromosome evolution in higher plants. – Addison-Wesley, Reading, Massachusetts.

Stebbins GL. 1973. Evolutionary trends in the inflorescence of angiosperms. – Flora, Ser. B, 162: 501-528.

Stebbins GL. 1974. Flowering plants. evolution above the species level. – The Belknap Press of Harvard University Press, Cambridge, Massachusetts.

Stebbins GL. 1976. Seeds, seedlings, and the origin of angiosperms. – In: Beck CB (ed), Origin and early evolution of angiosperms, Columbia University Press, New York, pp. 300-311.

Stebbins GL. 1981. Why are there so many species of flowering plants? – BioScience 31: 573-577.

Stebbins GL. 1984. Mosaic evolution, mosaic selection and angiosperm phylogeny. – Bot. J. Linn. Soc. 88: 149-164.

Stebbins GL, Khush GS. 1961. Variation in the organization of the stomatal complex in the leaf epidermis of monocotyledons and its bearing on their phylogeny. – Amer. J. Bot. 48: 51-59.

Stebbins GL, Major J. 1965. Endemism and speciation in the Californian flora. – Ecol. Monogr. 35: 1-35.

Steenis CGGJ van. 1959. Miscellaneous botanical notes IX. – Nova Guinea II, 10: 207-209.

Steenis CGGJ van. 1963. Definition of the concept ‘inflorescence’, with special reference to ligneous plants. – Flora Malesiana Bull. 18: 1005-1007.

Steenis CGGJ van. 1978. Rheophytes in South Africa. – Bothalia 12: 543-546.

Steenis CGGJ van. 1981. Rheophytes of the world. – Sijthoff & Nordhoff, Alphen a/d Rijn & Rockville, Maryland.

Steenis CGGJ van. 1982. Critical notes on New Guinea plants described by A. Gilli. – Blumea 28: 165-169.

Stefanovic S, Rice DW, Palmer JD. 2004. Long branch attraction, taxon sampling, and the earliest angiosperms: Amborella or monocots? – BMC Evol. Biol. 4: 35.

Steglich W, Strack D. 1990. Betalains. – In: Brossi A (ed), The alkaloids, Vol. 39, Academic Press, pp. 1-62.

Stein BA. 1992. Sicklebill hummingbirds, ants, and flowers. – Bioscience 42: 27-33.

Steinbachs JE, Holsinger KE. 2002. S-Rnase-mediated gametophytic self-incompatibility is ancestral in eudicots. – Mol. Biol. Evol. 19: 825-829.

Steiner KE. 1981. Nectarivory and potential pollination by a Neotropical marsupial. – Ann. Missouri Bot. Gard. 68: 505-513.

Steiner KE. 1988. Dioecism and its correlates in the Cape flora of South Africa. – Amer. J. Bot. 75: 1742-1754.

Steiner KE, Whitehead VB. 1991. Oil flowers and oil bees: further evidence for pollinator adaptation. – Evolution 45: 1493-1501.

Stellari GM, Jaramillo MA, Kramer EM. 2004. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in basal angiosperms. – Mol. Biol. Evol. 21: 506-519.

Stern WL. 1973. Development of the Amentiferous concept. – Brittonia 25: 316-333.

Stevens PF. 2001 onwards. Angiosperm Phylogeny Website. Version 10, April 2011. http://www.mobot.org/MOBOT/research/APweb/

Stevenson DW, Loconte H. 1995. Cladistic analysis of monocot families. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 543-578.

Stevenson DW, Davis JI, Freudenstein JV, Hardy CR, Simmons MP, Specht CD. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement of Acorus and Hydatellaceae. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Melbourne, pp. 17-24.

Stevenson G. 1978. Botanical evidence linking the New Zealand Maoris with New Caledonia and the New Hebrides. – Nature 276: 704-705.

Stewart GR, Press MC. 1990. The physiology and biochemistry of parasitic angiosperms. – Ann. Rev. Plant Physiol. Mol. Biol. 41: 127-151.

Stewart RN, Derman H. 1979. Ontogeny in monocotyledons as revealed by studies of developmental anatomy of periclinal chimeras. – Amer. J. Bot. 66: 47-58.

Stewart WN, Rothwell GW. 1993. Paleobotany and the evolution of plants. 2nd ed. – Cambridge University Press, Cambridge.

Steyermark JA. 1974. The summit vegetation of Cerro Autana. – Biotropica 6: 7-13.

Steyermark JA. 1979. Flora of the Guayana Highland: endemicity of the generic flora of the summits of the Venezuela tepuís. – Taxon 28: 45-54.

Steyermark JA. 1984. Flora of the Venezuelan Guayana I. – Ann. Missouri Bot. Gard. 71: 297-340.

Steyermark JA. 1986. Speciation and endemism in the flora of the Venezuelan tepuis. – In: Vuilleumier F, Monasterio M (eds), High altitude tropical biogeography, Oxford University Press, London, pp. 317-373.

Steyermark JA. 1989. Flora of the Venezuelean Guayana VI. – Ann. Missouri Bot. Gard. 75: 1565-1570.

Stiles FG. 1978. Temporal organization of flowering among the hummingbird food plants of a tropical wet forest. – Biotropica 10: 194-210.

Stockey RA. 1987. A permineralized flower from the Middle Eocene of British Columbia. – Amer. J. Bot. 74: 1878-1887.

Stockey RA. 2006. The fossil record of basal monocots. – In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds), Monocots: comparative biology and evolution. Excluding Poales, Rancho Santa Ana Botanical Garden, Claremont, California, pp. 91-106.

Stockey RA, Manchester SR. 1986. A fossil flower with in situ Pistillipollenites from the Eocene of British Columbia. – Can. J. Bot. 66: 313-318.

Stockey RA, Pigg KB. 1991. Flowers and fruits of Princetonia allenbyensis (Magnoliopsida; family indet.) from the Middle Eocene Princeton chert of British Columbia. – Rev. Palaeobot. Palynol. 70: 163-172.

Stone BA, Clarke AE. 1992. Chemistry and biology of (1-3)-β-glucans. – La Trobe University Press, Victoria, Australia.

Stone DE. 1973 [1974]. Patterns in the evolution of Amentiferous fruits. – Brittonia 25: 371-384.

Stone H. 1904. The timbers of commerce and their identification. – William Rider & Son, London.

Stopes MC. 1912. Petrifactions of the earliest European angiosperms. – Philos. Trans. Roy. Soc. London, Sect. B, 203: 75-100.

Stopes MC, Fujii K. 1910. Studies on the structure and affinities of Cretaceous plants. – Philos. Trans. Roy. Soc. London, Sect. B, 201: 1-90.

Stopp K. 1950a. Karpologische Studien I. Vergleichend-morphologische Untersuchungen über die Dehiszenzenformen der Kapselfrüchte. – Abh. Math.-Naturwiss. Kl. Akad. Wissensch. Lit. Mainz 7: 165-210.

Stopp K. 1950b. Karpologische Studien II. Über ”Fensterbildung” an Fruchtflügeln und ähnliche Erscheinungen. – Abh. Math.-Naturwiss. Kl. Akad. Wissensch. Lit. Mainz 7: 210-218.

Štorchová H, Olson MS. 2007. The architecture of the chloroplast psbA-trnH non-coding region in angiosperms. – Plant Syst. Evol. 268: 235-256.

Stork HE. 1956. Epiphyllous flowers. – Bull. Torrey Bot. Club 83: 338-341.

Stoutamire WP, Beaman JH. 1960. Chromosome studies of Mexican alpine plants. – Brittonia 12: 226-230.

Stover LE, Partridge AD. 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, south-eastern Australia. – Proc. Roy. Soc. Victoria 85: 237-286.

Straka H. 1964. Über die Bedeutung der Pollenmorphologie für die Systematik. – Ber. Deutsch. Bot. Ges. 77: 31-39.

Straka H, Friedrich B. 1983. Palynologia madagassica et mascarenica. Fam. 121-127. Microscopie électronique à balayage et addenda. – Pollen Spores 25: 49-73.

Straka H, Simon A, Cerceau-Larrival M-T. 1967. Palynologia madagassica et mascarenica, Fam. 155-166. – Pollen Spores 9: 455-460.

Streng A, Camp R op den, Bisseling T, Geurts R. 2011. Evolutionary origin of rhizobium Nod factor signaling. – Plant Signal. Behav. 6: 1510-1514.

Strid A. 1971. Chromosome numbers in some Albanian angiosperms. – Bot. Not. 124: 490-496.

Strid A. 1987. Chromosome numbers of Turkish mountain plants. An annotated list of 34 taxa. – Notes Roy. Bot. Gard. Edinb. 44: 351-356.

Stroebl F. 1925. Die Obdiplostemonie in den Blüten. – Bot. Arch. 9: 210-224.

Strunz GM, Findlay JA. 1985. Pyridine and piperidine alkaloids. – In: Brossi A (ed), The alkaloids 26, Academic Press, New York, pp. 89-183.

Stuessy TF. 2004. A transitional-combinational theory for the origin of angiosperms. – Taxon 53: 3-16.

Stuessy TF, Crawford DJ, Marticorena C. 1990. Patterns of phylogeny in the endemic vascular flora of the Juan Fernandez Islands, Chile. – Syst. Bot. 15: 338-346.

Stuessy TF, Crawford DJ, Silva MO. 1992. Evolution of the endemic vascular flora of the Juan Fernández Islands. – In: Dudley EC (ed), The unity of evolutionary biology, Dioscorides Press, Portland, Oregon, pp. 337-339.

Stuessey TF, Mayer V, Hörandl E. 2003. Deep Morphology. Toward a renaissance of morphology in plant systematics. Regnum Vegetabile, Vol. 141. – A. R. G. Gantner Verlag, Ruggell, Liechtenstein.

Stull GW, Schori M, Soltis DE, Soltis PS. 2018. Character evolution and missing (morphological) data across Asteridae. – Amer. J. Bot. 105: 470-479.

Su T. 1949. Illustrations of pollen grains of some Chinese plants. – Bot. Not. 1949: 277-282.

Subramanian D. 1988. Cytological studies of some mangrove flora of Tamilnadu. – Cytologia 53: 87-92.

Subramanyam K. 1962. Aquatic angiosperms. – Bot. Monogr. 3, Council of Industr. and Sci. Res., New Delhi.

Suda J, Kyncl T, Jarolímová V. 2005. Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. – Plant Syst. Evol. 252: 215-238.

Sudworth GB. 1967. Forest trees of the Pacific slope. 2nd ed. – Dover, NewYork

Suessenguth K. 1921. Beiträge zur Frage des systematischen Anschlusses der Monokotylen. – Beih. Bot. Centralbl. 38, Abt. 2: 1-79.

Sugiura T. 1928. Chromosome numbers in some higher plants 1. – Bot. Mag. (Tokyo) 42: 504-506.

Sugiura T. 1936. A list of chromosome numbers in angiospermous plants II. – Proc. Imp. Acad. Tokyo 12: 144-146.

Sugiura T. 1940. Studies on the chromosome numbers of higher plants V. – Cytologia 10: 363-370.

Sun BY, Stuessy TF, Crawford DJ. 1990. Chromosome counts from the flora of the Juan Fernández Islands, Chile III. – Pacific Sci. 4: 258-264.

Sun G, Dilcher DL. 1997. Discovery of the oldest known angiosperm inflorescence in the world from Lower Cretaceous of Jixi, China. – Acta Palaeontol. Sin. 36: 135-142.

Sun G, Dilcher DL. 2002. Early angiosperms from the Lower Cretaceous of Jixi, eastern Heilongjiang, China. – Rev. Palaeobot. Palynol. 121: 91-112.

Sun G, Guo S-X, Zheng S-L, Piao T-Y, Sun X-K. 1993. First discovery of the earliest angiospermous megafossils in the world. – Sci. China 36: 249-256.

Sun G, Cao Z, Li H, Wang X. 1995. Cretaceous floras. – In: Li X (ed), Fossil floras of China through the geological ages, Guangdong Science and Technology Press, Guangzhou, pp. 411-452.

Sun G, Dilcher DL, Zheng S-L, Zhou Z. 1998. In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. – Science 282: 1692-1695.

Sun G, Zhen S-L, Mei S-W. 2000. Discovery of Liaoningocladus gen. nov. from the lower part of the Yixian Formation (Upper Jurassic) in western Liaoning, China. – Acta Palaeontol. Sin. 39(Suppl.): 200-208.

Sun G, Zhen S-L, Dilcher DL, Wang Y, Mei S-W. 2001. Early angiosperms and their associated plants from western Liaoning, China. – Shanghai Scientific and Technological Education Publ. House, Shanghai.

Sun G, Ji Q, Dilcher DL, Zheng S-L, Nixon KC, Wang X. 2002. Archaefructaceae, a new basal angiosperm family. – Science 296: 899-904.

Sun G, Dilcher DL, Zheng S-L. 2008. A review of recent advances in the study of early angiosperms from northeastern China. – Palaeoworld 17: 166-171.

Sun G, Dilcher DL, Wang H, Chen Z. 2011. A eudicot from the Early Cretaceous of China. – Nature 471: 625-628.

Sun M, Soltis DE, Soltis PS, Zhu X, Burleigh JG, Chen Z. 2015. Deep phylogenetic incongruence in the angiosperm clade Rosidae. – Mol. Phylogen. Evol. 83: 156-166.

Sun M, Naeem R, Su J-X, Cao Z-Y, Burleigh JG, Soltis PS, Soltis DE, Chen Z-D. 2016. Phylogeny of the Rosidae: a dense taxon samling analysis. – J. Syst. Evol. 54: 363-391.

Sun X-J. 1979. Late Cretaceous-Paleocene palynological flora in China. – Acta Phytotaxon. Sin. 17: 8-23. [In Chinese with English summary]

Sun X-J, Zhang D-H, Hou J-S. 1979. Maastrichtian pollen and spore flora of northern Inner Mongolia. – Acta Bot. 21: 285-393. [In Chinese with English summary]

Sun X-J, Kong Z-C, Li P, Li M-X. 1981. Early Tertiary pollen and spore flora of northern South Sea in China. – Acta Phytotaxon. Sin. 19: 186-193. [In Chinese with English summary]

Sun Y, Moore MJ, Zhang S, Soltis PS, Soltis DE, Zhao T, Meng A, Li X, Li J, Wang H. 2016. Phylogenomic and structural analyses of 18 complete plastomes across nerly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. – Mol. Phylogen. Evol. 96: 93-101.

Suominen L, Roos C, Lortet G, Paulin L, Lindström K. 2001. Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. – Mol. Biol. Evol. 18: 907-916.

Sussman RW, Raven PH. 1978. Pollination by lemurs and marsupials: an archaic coevolutionary system. – Science 200: 731-736.

Suzuki M, Noshiro S, Takahashi A, Yoda K, Joshi L. 1991. Wood structure of Himalayan plants II. – In: Ohba H, Malla SB (eds), The Himalayan plants II, University of Tokyo Press, Tokyo.

Sventenius ERS. 1960. Additamentum ad floram Canariensem. – Instituto Nacional de Investigaciones Agronómicas Ministerio de Agricultura, Madrid.

Swamy BGL, Krishnamurthy KV. 1973. The helobial endosperm: a decennial review. – Phytomorphology 23: 74-79.

Swamy BGL, Parameswaran N. 1962. The helobial endosperm. – Biol. Rev. 38: 1-50.

Swamy BGL, Periasamy K. 1964. The concept of the conduplicate carpel. – Phytomorphology 14: 319-327.

Sweet AR. 1986. The Cretaceous-Tertiary boundary in the central Alberta Foothills II. Microspore and pollen taxonomy. – Can. J. Earth Sci. 23: 1375-1388.

Swensen SM. 1996. The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. – Amer. J. Bot. 83: 1503-1512.

Swensen SM, mullin C. 1997. Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. – Physiol. Plant. 99: 565-573.

Sytsma KJ, Baum DA. 1996. Molecular phylogenies and the diversification of angiosperms. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution and phylogeny, Chapman and Hall, New York, pp. 314-340.

Takahashi M. 1997. Fossil spores and pollen grains of Cretaceous (Upper Campanian) from Sakhalin, Russia. – J. Plant Res. 110: 283-298.

Takahashi K, Suzuki M. 2003. Dicotyledonous fossil wood flora and early evolution of wood characters in the Cretaceous of Hokkaido, Japan. – IAWA J. 24: 269-309.

Takahashi M, Crane PR, Ando H. 1999. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futuba Group, lower Coniacian, Upper Cretaceous) of Northeast Japan. – J. Plant Res. 112: 187-206.

Takhtajan AL. 1959. Die Evolution der Angiospermen. – Gustav Fischer, Jena.

Takhtajan AL. 1964. The taxa of the higher plants above the rank of order. – Taxon 13: 160-164.

Takhtajan AL. 1967. A system and phylogeny of the flowering plants. – Nauka, Moscow. [In Russian]

Takhtajan AL. 1969. Flowering plants – origin and dispersal (transl. by C. Jeffrey). – Oliver and Boyd, Edinburgh.

Takhtajan AL. 1973. Evolution und Ausbreitung der Blütenpflanzen. – Gustav Fischer, Jena.

Takhtajan AL. 1974. The chemical approach to plant classification with special reference to the higher taxa of Magnoliophyta. – In: Bendz G, Santesson J (eds), Chemistry in botanical classification, Proceedings of the 25th Nobel Symposium, Academic Press, New York, pp. 17-26.

Takhtajan AL. 1976. Neoteny and the origin of flowering plants. – In: Beck CB (ed), Origin and early evolution of angiosperms, Columbia University Press, New York, pp. 207-219.

Takhtajan AL. 1980. Outline of the classification of the flowering plants (Magnoliophyta). – Bot. Rev. (Lancaster) 46: 225-359.

Takhtajan AL (ed). 1982. Plant life 6. Angiosperms, monocotyledons. – Prosweshenie, Moskow. [In Russian]

Takhtajan AL. 1983. The systematic arrangement of dicotyledonous families. – In: Metcalfe CR, Chalk L (eds), Anatomy of the dicotyledons 2, 2nd ed., Clarendon Press, Oxford, pp. 180-201.

Takhtajan AL. 1985a. Three new families of flowering plants. – Bot. Žurn. 70: 1691-1693.

Takhtajan AL (ed). 1985b. Anatomia seminum comparativa 1. Liliopsida seu Monocotyledones. – Nauka, Leningrad. [In Russian]

Takhtajan AL. 1986. Floristic regions of the world (ed. by A Cronquist; transl. by TJ Crovello). – University of California Press, Berkeley.

Takhtajan AL. 1987. Systema Magnoliophytorum. – Institutum Botanicum Nomine V. L. Komarovii, Academia Scientiarum URSS, Leningrad. [In Russian]

Takhtajan AL (ed). 1988. Anatomia seminum comparativa 2. Dicotyledones: Magnoliidae, Ranunculidae. – Nauka, Leningrad. [In Russian]

Takhtajan AL (ed). 1991a. Anatomia seminum comparativa 3. Dicotyledones: Caryophyllidae-Dilleniidae. – Nauka, Leningrad. [In Russian]

Takhtajan AL. 1991b. Evolutionary trends in flowering plants. – Columbia University Press, New York.

Takhtajan AL (ed). 1992. Anatomia seminum comparativa 4. Dicotyledones: Dilleniidae. – Nauka, Leningrad. [In Russian]

Takhtajan AL. 1994a. New families of the monocotyledons. – Bot. Žurn. 79: 65-66.

Takhtajan A. 1994. Six new families of flowering plants. – Bot. Žurn. 79: 96-97.

Takhtajan A. 1996. Validation of some previously described families of flowering plants. – Bot. Žurn. 81: 85-86.

Takhtajan AL. 1997. Diversity and classification of flowering plants. – Columbia University Press, New York.

Takhtajan AL (ed). 1991-2000. Anatomia seminum comparativa 1-6. – Nauka/Mir et Semja, Leningrad/S:t Petersburg. [In Russian]

Takhtajan AL. 2009. Flowering plants, ed. 2 – Springer Neterhlands. http://dx.doi.org/10.1007/978-1-4020-9609-9

Takhtajan AL, Meyer N, Kosenko R, Kosenko VN. 1985. Pollen morphology and classification in Rafflesiaceae s.l. – Bot. Žurn. 70: 153-162.

Talianova M, Janousek B. 2011. What can we learn from tobacco and other Solanaceae about horizontal DNA transfer. – Amer. J. Bot. 98: 1231-1242.

Tamura MN, Yamashita J, Fuse S, Haraguchi M. 2004. Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL gene sequences. – J. Plant Res. 117: 109-120.

Tarnavschi IT. 1947 [1948]. Die Chromosomenzahlen der Anthophytenflora von Rumänien mit einem Ausblick auf das Polyploidie-Problem. – Bull. Jard. Mus. Bot. Univ. Cluj 28, Suppl. 1: 1-130.

Tarnavschi IT, Lungeana I. 1970. Chromosomenzahlen von einigen in Rumänien wildwachsenden Anthophyten. – Rev. Roumaine Biol., sér. Bot. 15: 381-383.

Tamura MN, Yamashita J, Fuse S, Haraguchi M. 2004. Molecular phylogeny of monocotyledons inferred from combined analysis of plastid matK and rbcL sequences. – J. Plant Res. 117: 109-120.

Tanaka T. 1976. Tanaka’s cyclopedia of edible plants of the world. – Keigaku Publ. Co., Tokyo.

Tang H, Wang X, Bowers JE, Ming R, Alam M, Paterson AH. 2008. Unraveling ancient hexaploidy through multiple-aligned angiosperm gene maps. – Genome Res. 18: 1944-1954.

Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. 2008. Synteny and collinearity in plant genomes. – Science 320: 486-488.

Tang H, Bowers JE, Wang X, Paterson AH. 2010. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. – Proc. Natl. Acad. Sci. U.S.A. 107: 472-477.

Tank DC, Donoghue MJ. 2010. Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of genes and taxa. – Syst. Bot. 35: 425-441.

Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ. 2015. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. – New Phytol. 207: 454-467.

Tao J-R, Zhang C-B. 1992. Two angiosperm reproductive organs from the Early Cretaceous of China. – Acta Phytotaxon. Sin. 30: 423-426.

Tarver JE, Donoghue PCJ. 2011. The trouble with topology: phylogenies without fossils provide a revisionist perspective of evolutionary history in topological analyses of diversity. – Syst. Biol. 60: 700-712.

Tavares R, Cagnon M, Negrutiu I, Mouchiroud D. 2010. Testing the recent theories for the origin of the hermaphrodite flower by comparison of the transcriptomes of gymnosperms and angiosperms. – BMC Evol. Biol. 10: 240.

Taylor DW. 1990. Paleobiogeographic relationships of angiosperms from the Cretaceous and Early Tertiary of the North American area. – Bot. Rev. 56: 279-416.

Taylor DW. 1991. Angiosperm ovules and carpels: their characters and polarities, distribution in basal clades, and structural evolution. – Postilla 208: 1-40.

Taylor DW. 2010. Implications of fossil floral data on understanding the early evolution of molecular developmental control of flowers. – In: Gee CT (ed), Plants in Mesozoic time: morphological innovations, phylogeny, ecosystems, Indiana University Press, Bloomington, pp. 118-169.

Taylor DW, Hickey LJ. 1990. An Aptian plant with attached leaves and flowers: implications for angiosperm origin. – Science 247: 702-704.

Taylor DW, Hickey LJ. 1992. Phylogenetic evidence for the herbaceous origin of angiosperms. – Plant Syst. Evol. 180: 137-156.

Taylor DW, Hickey LJ (eds). 1996a. Flowering plant origin, evolution and phylogeny. – Chapman and Hall, New York.

Taylor DW, Hickey LJ. 1996b. Evidence for and implications of an herbaceous origin for angiosperms. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution and phylogeny, Chapman and Hall, New York, pp. 232-266.

Taylor DW, Kirchner G. 1996. The origin and evolution of the angiosperm carpel. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution and phylogeny, Chapman and Hall, New York, pp. 116-140.

Taylor DW, Li H, Dahl J, Fago FJ, Zinniker D, Moldowan JM. 2006. Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. – Paleobiology 32: 179-190.

Taylor HC. 1978. Capensis. – In: Werger MJA (ed), Biogeography and ecology of southern Africa, Junk, The Hague.

Taylor LP, Hepler PK. 1997. Pollen germination and tube growth. – Ann. Rev. Plant Physiol. Plant Mol. Biol. 48: 461-491.

Taylor RA, Mulligan GA. 1968. Flora of the Queen Charlotte Islands II. Chromosome numbers. – Ottawa.

Taylor RL, Brockman RP. 1966. Chromosome numbers of some western Canadian plants. – Can. J. Bot. 44: 1093-1103.

Taylor TN, Taylor EL, Krings M. 2008. Palaobotany: the biology and evolution of fossil plants, ed. 2. – Academic Press, London.

Tedersoo L, Hansen K, perry BA, Kjøller R. 2006. Molecular and morphological diversity of pezizalean ectomycorrhiza. – New Phytol. 170: 581-596.

Teichman I von, Wyk AE van. 1991. Trends in the evolution of dicotyledonous seeds based on character associations, with special reference to pachychalazy and recalcitrance. – Bot. J. Linn. Soc. 105: 211-237.

Teixeira C. 1946. Flora cretácica de Esgueira (Aveiro). – Portugaliae Acta Biol. 1: 235-242.

Teixeira C. 1947. Nouvelles recherché et revision de la flore de Cercal. – Brotéria, Sér. Trim. Ci. Nat. 16: 5-15.

Teppner H. 2009. The easiest proof for the presence of pollenkitt. – Phyton 48: 169-328.

Ter Welle BJH. 1976. Silica grains in woody plants of the Neotropics, especially Surinam. – In: Baas P, Bolton AJ, Catling DM (eds), Wood structure in biological and technological research, Leiden Bot. Ser. 3, Leiden University Press, Leiden, pp. 107-142.

Thadeo M, Cassino MF, Vitarelli NC, Azevedo AA, Araújo JM, Valente VMM & Meira RMSA. 2008. Anatomical and histochemical characterization of extrafloral nectaries of Prockia crucis (Salicaceae). – Amer. J. Bot. 95: 1515-1522.

Thadeo M, Hampilos KE, Stevenson DW. 2015. Anatomy of fleshy fruits in the monocots. – Amer. J. Bot. 102: 1757-1779.

Thayn GF, Tidwell WD, Stokes WL. 1985. Flora of the Lower Cretaceous Cedar Mountain Formation of Utah and Colorado III: Icacinoxylon pittiensis n. sp. – Amer. J. Bot. 72: 175-180.

The Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. – Bot. J. Linn. Soc. 181: 1-20.

Theisen I. 1998. Ultrastruktur epicuticularer Wachse und ihre systematische Signifikanz bei den Asteridae s.l. – Ph.D. diss., Friedrich-Wilhelms-Universität, Bonn, Germany.

Theisen I, Barthlott W. 1994. Mikromorphologie der Epicuticularwachse und die Systematik der Gentianales, Rubiales, Dipsacales und Calycerales. – Trop. Subtrop. Pflanzenwelt 89: 7-62.

Theißen G. 2001. Development of floral organ identity: stories from the MADS house. – Curr. Opin. Plant Biol. 4: 75-85.

Theißen G, Kim JT, Saedler H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. – J. Mol. Evol. 43: 484-516.

Theißen G, Becker A, Rosa AD, Kanno A, Kim JT, Munster T, Winter K-U, Saedler H. 2000. A short history of MADS-box genes in plants. – Plant Mol. Biol. 42: 115-149.

Theißen G, Becker A, Winter K-U, Münster T, Kirchner C, Saedler H. 2002. How the land plants learned their floral ABCs: the role of MADS-box genes in the evolutionary origin of flowers. – In: Cronk QCB, Bateman RM, Hawkins JA (eds), Developmental genetics and plant evolution, Taylor and Francis, London, pp. 173-205.

Theobald WL, Krahulik JL, Rollins RC. 1979. Trichome description and classification. – In: Metcalfe CR, Chalk L (eds), Anatomy of the dicotyledons, 2nd ed., Vol. 1, Systematic anatomy of leaf and stem, with a brief history of the subject, Clarendon Press, Oxford, pp. 40-53.

Thiele-Pfeifer H. 1980. Die miozäne Mikroflora aus dem Braunkohlentagebau Oder bei Wackersdorf/Oberpfalz. – Palaeontographica, Abt. B, Palaeophytol. 174: 95-224.

Thieme H, Benecke R. 1970. Über die Identität der Glucoside Xylosmosid und Poliothyrsid mit Nigracin. – Pharmazie 25: 492.

Thien LB. 1980. Patterns in pollination in the primitive angiosperms. – Biotropica 12: 1-13.

Thien LB, Azuma H, Kawano S. 2000. New perspectives on the pollination biology of basal angiosperms. – Intern. J. Plant Sci. 161(Suppl.): S225-S235.

Thien LB, Bernhardt P, Devall MS, Chen Z-D, Luo Y-B, Fan J-H, Yuan L-C, Willliams JH. 2009. Pollination biology of basal angiosperms (ANITA grade). – Amer. J. Bot. 96: 166-182.

Thiergart F, Frantz U, Raukops K. 1963. Palynologische Untersuchungen von Tertiärkohlen und einer Oberflächenprobe nähe Knysna, Südafrika. – Adv. Front. Plant Sci. 4: 151-178.

Thomas V. 1991. Structural, functional and phylogenetic aspects of the colleter. – Ann. Bot. 68: 287-305.

Thompson JN, Pellmyr O. 1992. Mutualism with pollinating seed parasites amid co-pollinators: constraints on specialization. – Ecology 73: 1780-1791.

Thompson MF. 1976. Studies in the Hypoxidaceae 1. Vegetative morphology and anatomy. – Bothalia 12: 111-117.

Thompson RD, Kaufmann H, Kirch HH, Salamini F. 1991. Self-incompatibility in flowering plants. – In: Harding J, Singh F, Mol JNH (eds), Genetics and breeding of ornamental species, Kluwer Academic Publ., Dordrecht, pp. 367-385.

Thompson RH. 1971. Naturally occurring quinones. – Academic Press, New York.

Thompson RH. 1987. Naturally occurring quinones III. Recent advances. – Chapman and Hall, New York.

Thompson WP. 1918. Independent evolutions of vessels in Gnetales and angiosperms. – Bot. Gaz. 65: 83-90.

Thompson WP. 1923. The relationships of the different types of angiosperm vessels. – Ann. Bot. 37: 183-192.

Thomson JD. 1989. Deployment of ovules and pollen among flowers within inflorescences. – Evol. Trends Plants 3:65-68.

Thomson JD, Barrett SCH. 1981. Selection for outcrossing, sexual selection, and the evolution of dioecy in plants. – Amer. Natur. 118: 443-449.

Thorne RF. 1967. A phylogenetic classification of the Angiospermae. – Evol. Biol. 9: 35-106.

Thorne RF. 1968. Synopsis of a putatively phylogenetic classification of the flowering plants. – Aliso 6: 57-66.

Thorne RF. 1972. Major disjunctions in the geographic ranges of seed plants. – Quart. Rev. Biol. 47: 365-411.

Thorne RF. 1973. The ‘Amentiferae’ or Hamamelidae as an artificial group: a summary statement. – Brittonia 25: 395-405.

Thorne RF. 1974. A phylogenetic classification of the Annoniflorae. – Aliso 8: 147-209.

Thorne RF. 1976. A phylogenetic classification of the Angiospermae. – In: Hecht MK, Steere WC, Wallace B (eds), Evolutionary biology 9, Plenum Press, New York, pp. 35-106.

Thorne RF. 1978. Plate tectonics and angiosperm distribution. – Notes Roy. Bot. Gard. Edinb. 36: 297-315.

Thorne RF. 1981. Phytochemistry and angiosperm phylogeny: a summary statement. – In: Young DA, Siegler DS (eds), Phytochemistry and angiosperm phylogeny, Praeger Scientific Publ., New York, pp. 233-295.

Thorne RF. 1983. Proposed new realignments in the angiosperms. – Nord. J. Bot. 3: 85-117.

Thorne RF. 1989. ‘Hamamelididae’: a commentary. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae, Vol. 2, ‘Higher’ Hamamelidae, Syst. Assoc. Spec. Vol. 40B, Clarendon Press, Oxford, pp. 9-16.

Thorne RF. 1992a. An updated phylogenetic classification of the flowering plants. – Aliso 13: 365-389.

Thorne RF. 1992b. Classification and geography of the flowering plants. – Bot. Rev. 58: 225-348.

Thorne RF. 1996. The least specialized angiosperms. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution and phylogeny, Chapman and Hall, New York, pp. 286-313.

Thorne RF. 2000a. The classification and geography of the monocotyledon subclasses Alismatidae, Liliidae, and Commelinidae. – In: Nordenstam B, El Ghazaly G, Kassas M (eds), Plant systematics for the 21st Century, Portland, Oregon, pp. 75-124.

Thorne RF. 2000b. The classification and geography of flowering plants: dicotyledons of the class Angiospermae (subclasses Magnoliidae, Ranunculidae, Caryophyllidae, Dilleniidae, Rosidae, Asteridae, and Lamiidae). – Bot. Rev. (Lancaster) 66: 441-647.

Thorne RF, Reveal JL. 2007. An updated classification of the class Magnoliopsida (‘Angiospermae’). – Bot. Rev. (Lancaster) 73: 67-182.

Thulin M. 1970. Chromosome numbers of some vascular plants from East Africa. – Bot. Not. 123: 488-494.

Thurston EL, Lersten NR. 1969. The morphology and toxicology of plant stinging hairs. – Bot. Rev. 35: 393-412.

Tidwell WD, Parker LR. 1990. Protoyucca shadishii gen. et sp. nov., an arborescent monocotyledon with secondary growth from the Middle Miocene of northwestern Nevada, USA. – Rev. Palaeobot. Palynol. 62: 79-95.

Tidwell WD, Ash SR, Parker LR. 1981. Cretaceous and Tertiary floras of the San Juan Basin. – In: Lucas SG, Rigby JK, Kues BS (eds), Advances in San Juan Basin paleontology, University of New Mexico Press, Albuquerque, New Mexico.

Tieghem MP van. 1875. Recherches sur la structure du pistil et sur l’anatomie comparée de la fleur. – Mém. Prés. Divers Savants Acad. Inst. Impérial France 21: 1-261.

Tieghem MP van. 1897. Sur les inseminées à nucelle pourvu d’un seul tegument, formant la subdivision des unitegminées ou Icacininées. – Compt. Rend. Acad. Sci. Paris 1: 871-876.

Tieghem MP van. 1900. Sur les Dicotylédones du groupe des Homoxylées. – J. Bot. 14: 275-297, 330-361.

Tieghem MP van. 1901. L’œuf des plantes considéré comme base de leur classification. – Ann. Sci. Nat. Bot., sér. VIII, 14: 213-390.

Tiffney BH. 1977. Dicotyledonous angiosperm flower from the Upper Cretaceous of Martha’s Vineyard, Massachusetts. – Nature 265: 136-137.

Tiffney BH. 1980. Fruits and seeds of the Brandon Lignite. – J. Arnold Arbor. 61: 1-40.

Tiffney BH. 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. – Ann. Missouri Bot. Gard. 71: 551-576.

Tiffney BH. 1985a. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. – J. Arnold Arbor. 66: 73-94.

Tiffney BH. 1985b. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the northern hemisphere. – J. Arnold Arbor. 66: 243-273.

Tiffney BH. 1986a. Fruit and seed dispersal and the evolution of the Hamamelidae. – Ann. Missouri Bot. Gard. 73: 394-416.

Tiffney BH. 1986b. Evolution of seed dispersal syndromes according to the fossil record. – In: Murray DR (ed), Seed dispersal, Academic Press, Sydney, pp. 273-305.

Tiffney BH. 1994. Re-evaluation of the age of the Brandon lignite (Vermont, USA) based on plant megafossils. – Rev. Palaeobot. Palynol. 82: 299-315.

Tiffney BH. 1999. Fossil fruit and seed flora from the early Eocene Fisher/Sullivan site. – In: Early Eocene vertebrates and plants from the Fisher/Sullivan Site (Nanjemoy Formation), Stafford County, Virginia, Virginia Div. Mineral Res. Publ. 152: 139-159.

Tiffney BH. 2008. Phytogeography, fossils, and Northern Hemisphere biogeography: the role of physiological uniformitarianism. – Ann. Missouri Bot. Gard. 95: 135-143.

Tiffney BH, Mazer SJ. 1995. Angiosperm growth habit, dispersal and diversification reconsidered. – Evol. Ecol. 9: 93-117.

Tiffney BH, Fleagle JG, Bown TM. 1994. Early to Middle Miocene angiosperm fruits and seeds from Fejej, Ethiopia. – Tertiary Res. 15: 25-42.

Tillich H-J. 1992. Bauprinzipien und Evolutionslinien bei monocotylen Keimpflanzen. – Bot. Jahrb. Syst. 114: 91-132.

Tillich H-J. 1995. Seedlings and systematics in monocotyledons. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 303-352.

Tillich H-J. 1998. Development and organization. – In: Kubitzki K (ed), The families and genera of vascular plants. Vol. III. Flowering plants. Monocotyledons. Lilianae (except Orchidaceae), Springer, Berlin, pp. 1-19.

Tillich H-J. 2000. Ancestral and derived character states in seedlings of monocotyledons. – In: Wilson KL, Morrison DA (eds), Monocots: systematics and evolution, CSIRO Publ., Collingwood, pp. 221-229.

Tipple BJ, Pagani M. 2007. The early origins of terrestrial C4 photosynthesis. – Ann. Rev. Earth Planet. Sci. 35: 435-461.

Tischler G. 1950. Die Chromosomenzahlen der Gefässpflanzen Mitteleuropas. – ‘s Gravenhage.

Tissot C, Chikhi H, Nayar TS. 1994. Pollen of wet evergreen forests of the western Ghats, India. – Trav. Sect. Sci. Techn. Inst. Franç. Pondichérie 35: 1-133.

Tjio JH. 1948. The somatic chromosomes of some tropical plants. – Hereditas 34: 135-146.

Tomlinson PB. 1969. Commelinales-Zingiberales. – In: Metcalfe CR (ed), Anatomy of the Monocotyledons 3, Clarendon Press, Oxford.

Tomlinson PB. 1970. Monocotyledons: towards an understanding of their morphology and anatomy. – In: Preston RD (ed), Advances in botanical research 3, New York, pp. 207-292.

Tomlinson PB. 1974. Development of the stomatal complex as a taxonomic character in the monocotyledons. – Taxon 23: 109-128.

Tomlinson PB. 1980. Monocotyledonous habit in relationship to morphology and anatomy. – In: Brickell CD, Cutler DF, Gregory M (eds), Petaloid monocotyledons, Academic Press, London, pp. 7-20.

Tomlinson PB. 1986. The botany of mangroves. – Cambridge University Press, England.

Tomlinson PB. 1995. Non-homology of vascular organization in monocotyledons and dicotyledons. – In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew, pp. 589-622.

Tomlinson PB, Esler AE. 1973. Establishment growth in woody monocotyledons native to New Zealand. – New Zealand J. Bot. 11: 627-644.

Tomlinson PB, Zimmermann MH. 1969 Vascular anatomy of monocotyledons with secondary growth – an introduction. – J. Arnold Arbor. 50: 159-179.

Tooke F, Ordidge M, Chiurugwi T, Battey N. 2005. Mechanisms and function of flower and inflorescence reversion. – J. Experim. Bot. 56: 2587-2599.

Torrey JG. 1978. Nitrogen fixation by actinomycete nodulated angiosperms. – BioScience 28: 586-592.

Towers GHN, Gibbs RD. 1953. Lignin chemistry and the taxonomy of higher plants. – Nature 172: 25-26.

Toyoda K. 1959. On the chlorophylls in some angiospermous seeds. – Bot. Mag. (Tokyo) 72: 159-168.

Toyoda K. 1961. A complementary note on the chlorophylls in some spermatophytic seeds. – Bot. Mag. (Tokyo) 74: 310-312.

Tralau H. 1963. Asiatic dicotyledonous affinities in the Cainozoic flora of Europe. – Kungl. Sv. Vet.-Akad. Handl. 9: 1-87.

Trapp A. 1956a. Entwicklungsgeschichtliche Untersuchungen über die Antherengestaltung sympetaler Blüten. – Beitr. Biol. Pflanzen 32: 279-312.

Trapp A. 1956b. Zur Morphologie und Entwicklungsgeschichte der Staubblätter sympetaler Blüten. – Bot. Studien, Jena 5: 1-90.

Trappe JM. 1987. Phylogenetic and ecologic aspects of mycotrophy in angiosperms from an evolutionary standpoint. – In: Safir GR (ed), Ecophysiology of VA Mycorrhizal Plants, CRC Press, Boca Raton, Florida, pp. 5-15.

Trevor CH, Dettmann ME. 2001. Drupe – a term in search of a definition. – Austrobaileya 6: 127-131.

Trias-Blasi A, Baker WJ, Haigh AL, Simpson DA, Weber O, Wilkin P. 2015. A genus-level phylogenetic linear sequence of monocots. – Taxon 64: 552-581.

Trincão PRP. 1990. Esporos e pólenes do Cretácio inferior (Berriasiano-Aptiano) de Portugal: paleontologia e biostratigrafia. – Ph.D. diss., Universidade Nova de Lisboa.

Troitsky AV, Melekhovets YF, Rakhimova GM, Bobrova VK, Valiejo-Roman KM, Antonov AS. 1991. Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. – J. Mol. Evol. 32: 253-261.

Troll W. 1927. Zur Frage nach der Herkunft der Blumenblätter. – Flora 112: 57-75.

Troll W. 1928. Organisation und Gestalt im Bereich der Blüte. – Springer, Berlin, Heidelberg, New York.

Troll W. 1930. Über die sogenannten Atemwurzeln der Mangroven. – Ber. Deutsch. Bot. Ges. 48: 81-99.

Troll W. 1932. Morphologie der schildförmigen Blätter. – Planta 17: 153-314.

Troll W. 1935a. Vergleichende Morphologie der Fiederblätter. – Nova Acta Leopoldina, N. F., 2: 315-455.

Troll W. 1935b. Vergleichende Morphologie der höheren Pflanzen I. Vegetationsorgane 1. – Gebrüder Bornträger, Berlin.

Troll W. 1939. Vergleichende Morphologie der höheren Pflanzen I. Vegetationsorgane 2. – Gebrüder Bornträger, Berlin.

Troll W. 1943. Vergleichende Morphologie der höheren Pflanzen I. Vegetationsorgane 3. – Gebrüder Bornträger, Berlin.

Troll W. 1950. Über den Infloreszenzbegriff und seine Anwendung auf die blühende Region krautiger Pflanzen. – Abhandl. Akad. Wiss. Lit. Mainz, Math.-Naturw. Kl. 1950: 377-415.

Troll W. 1954. Praktische Einführung in die Pflanzenmorphologie. I. – Gustav Fischer, Jena.

Troll W. 1955. Über den morphologischen Wert der sogenannten Vorläuferspitze von Monokotylenblättern. Ein Beitrag zur Typologie des Monokotylenblattes. – Beitr. Biol. Pflanzen 31: 525-558.

Troll W. 1957. Praktische Einführung in die Pflanzenmorphologie II. Die blühende Pflanze. – Gustav Fischer, Jena.

Troll W. 1964, 1969. Die Infloreszenzen, Typologie und Stellung im Aufbau des Vegetationskörpers I-II. – VEB Fischer, Jena.

Troll W. 1971. Vergleichende Morphologie der höheren Pflanzen: Vegetationsorgane. Register. – Otto Koeltz, Königstein.

Troll W, Heidenhain B. 1951. Beiträge zur Kenntnis racemöser Infloreszenzformen. – Akad. Wiss. Abh. Math.-Naturwiss. Kl. 5: 139-213.

Troll W, Weber H. 1953. Morphologie einschließlich Anatomie. – Fortschr. Bot. 14: 16-43.

Troll W, Weber H. 1955. Morphologie einschließlich Anatomie. – Fortschr. Bot. 17: 16-50.

Troll W, Weberling F. 1989. Infloreszenzuntersuchungen an monotelen Familien. Materialien zur Infloreszenz-morphologie. – Gustav Fischer, Stuttgart, Jena.

Truswell EM, Harris WK. 1982. The Cainozoic palaeobotanical record in arid Australia: fossil evidence for an arid adapted flora. – In: Barker WR, Greenslade PJM (eds), Evolution of the flora and fauna of arid Australia, Peacock Publ., Frewville, South Australia, pp. 67-76.

Truswell EM, Kershaw AP, Sluiter IR. 1987. The Australian–south-east Asian connection: evidence from the palaeobotanical record. – In: Whitmore TC (ed), Biogeographical evolution of the Malay Archipelago, Clarendon Press, Oxford, pp. 32-49.

Tsukada M. 1968. The fine sculpturing of pollen surfaces and some terminological problems. – Bot. Mag. (Tokyo) 81: 385-395.

Tucker SC. 1974. The role of ontogenetic evidence in floral morphology. – In: Murty YS & al. (eds), Advances in plant morphology, Surita Prakashan, Meerut, pp. 359-369.

Tucker SC. 1984. Origin of symmetry in flowers. – In: White RA, Dickison WC (eds), Contemporary problems in plant anatomy, Academic Press, New York, pp. 351-395.

Tucker SC. 1988. Loss versus suppression of floral organs. – In: Leins P, Tucker SC, Endress P (eds), Aspects of floral development, Bornträger, J. Cramer, Berlin-Stuttgart, pp. 69-82.

Tucker SC, Douglas AW. 1996. Floral structure, development, and relationships of paleoherbs: Saruma, Cabomba, Lactoris, and selected Piperales. – In: Taylor DW, Hickey LJ (eds), Flowering plant origin, evolution and phylogeny, Chapman and Hall, New York, pp. 141-175.

Tucker SC, Grimes J. 1999. The inflorescence. Introduction. – Bot. Rev. 65: 303-316.

Tulloch AP. 1981. Chemistry of waxes of higher plants. – In: Kolattukudy PE (ed), Chemistry and biochemistry of natural waxes, Elsevier, Amsterdam, pp. 236-287.

Turala K. 1969. Cytotaxonomic studies in Ranunculus subgenus Batrachium (DC.) A. Gray from Poland. – Acta Biol. Crac., Ser. Bot. 12: 9-20.

Turgeon R, Ayre BG. 2005. Pathways and mechanisms of phloem loading. – In: Holbrook NM, Zwieniecki MA (eds), Vascular transport in plants, Elsevier/Academic Press, Oxford, pp. 45-67.

Turgeon R, Medville R, Nixon KC. 2001. The evolution of minor vein phloem and phloem loading. – Amer. J. Bot. 88: 1331-1339.

Turner BL. 1967. Plant chemosystematics and phylogeny. – J. Pure Appl. Chem. 14: 189-213.

Turner BL, Harborne JB. 1967. Distribution of canavanine in the plant kingdom. – Phytochemistry 6: 863-866.

Turner GW. 1999. A brief history of the lysigenous gland hypothesis. – Bot. Rev. 65: 76-88.

Turner V. 1982. Marsupials as pollinators in Australia. – In: Armstrong JA, Powell JM, Richards AJ (eds), Pollination and evolution, Royal Botanic Gardens, Sydney, pp. 55-66.

Tyler AA. 1897. The nature and origin of stipules. – Ann. New York Acad. Sci. 10: 1-49.

Tzanoudakis D. 1986. Chromosome studies in the Greek flora I. Karyotypes of some Aegean angiosperms. – Bot. Helv. 96: 27-36.

Ulbrich E. 1928. Biologie der Früchte und Samen. – Springer, Berlin, Heidelberg, New York.

Uotila P, Pellinen K. 1985. Chromosome numbers in vascular plants from Finland. – Acta Bot. Fennica 130: 1-37.

Upchurch GR. 1984. Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. – Ann. Missouri Bot. Gard. 71: 522-550.

Upchurch GR, Dilcher DL. 1990. Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek Locality, Jefferson County, southeastern Nebraska. – Bull. U.S. Geol. Surv. 1915: 1-55.

Upchurch GR, Crane PR, Drinnan AN. 1994. The megaflora from the Quantico locality (upper Albian), Lower Cretaceous Potomac Group of Virginia. – Virginia Mus. Nat. Hist. Mem. 4: 1-57.

Urban I. 1926. Plantae Haitienses novae vel rariores II. – Ark. f. Bot. 20A(5): 1-65.

Urban I. 1927. Plantae Haitenses novae vel rariores IV. – Ark. f. Bot. 21A: 1-97.

Utech FH. 1980. Chromosome atlas of the vascular plants of western Pennsylvania I. – Ann. Carnegie Mus. 49: 265-305.

Utteridge T, Nagasamu H, Teo SP, White LC, Gasson P. 2005. Sleumeria (Icacinaceae): a new genus from Northern Borneo. – Syst. Bot. 30: 635-643.

Vagujfalvi D. 1971. Die Alkaloidakkumulation im Latex. – Acta Bot. Acad. Sci. Hung. 17: 217-241.

Vakhrameev VA, Kotova IZ. 1977. Ancient angiosperms and accompanying plants from the Lower Cretaceous of Transbaikalia. – Paleontol. Žurn. 1977: 487-495. [In Russian]

Vakhrameev VA, Krassilov VA. 1979. Reproductive organs of flowering plants from the Albian of Kazakhstan. – Paleontol. Žurn. 1979: 112-118. [In Russian]

Valdes-Bermejo E. 1980. Números chromosomáticos de plantas occidentals 1-34. – An. Jard. Bot. Madrid 36: 373-389.

Vallentin EF, Cotton EM. 1921. Illustrations of the flowering plants and ferns of the Falkland Islands. – Reeve, London.

Vamosi JC, Otto SP. 2002. When looks can kill: the evolution of sexually dimorphic floral display and the extinction of dioecious plants. – Proc. Roy. Soc. London, B, 269: 1187-1194.

Vamosi JC, Vamosi SM. 2010. Key innovations withon a geographical context in flowering plants: towards resolving Darwin’s abominable mystery. – Ecol. Lett. 13: 1270-1279.

Vamosi JC, Vamosi SM. 2011. Factors influencing diversification in angiosperms: at the crossroads of intrinsic and extrinsic traits. – Amer. J. Bot. 98: 460-471.

Van Boskirk MC. 1998. The flora of the Eagle Formation and its significance for Late Cretaceous floristic evolution. – Ph.D. diss., Yale University, New Haven, Connecticut.

Vandenborre G, Smagghe G, Damme EJM van. 2011. Plant lectins as defense proteins against phytophagous insects. – Phytochemistry 72: 1538-1550.

Vanneste K, Baele G, Maere S, Van de Peer Y. 2014. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. – Genome Res. 24: 1334-1347.

Vasanthy G. 1976. Pollens des montagnes du Sud de l’Inde. – Trav. Sect. Sci. Tech. Inst. Franç. Pondichéry 15: 1-74.

Vasil IK, Johri MM. 1964. The style, stigma and pollen tube I. – Phytomorphology 14: 352-369.

Vásquez-Lobo A, Carlsbecker A, Vergara-Silva F, Alvarez-Buylla ER, Piñero D, Engström P. 2007. Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. – Evol. Developm. 9: 446-459.

Vasudevan KN. 1975. Contribution to the cytotaxonomy and cytogeography of the flora of the western Himalayas (with an attempt to compare it with the flora of the Alps) II. – Ber. Schweiz. Bot. Ges. 85: 210-252.

Vaudois-Miéja N, Lejal-Nicol A. 1987. Paléocarpologie africaine: Cercidiphyllocarpon prasadii n. gen. n. sp., un nouveau fruit du Nubien de l’Afrique orientale. – Compt. Rend. Acad. Sci. Paris, sér. II, 305: 149-153.

Vaudois-Miéja N, Lejal-Nicol A. 1988. Paléocarpologie africaine: Sapindaceaecarpum koelreuterioides n.sp., un nouveau fruit du Nubien de l’Afrique orientale. – Compt. Rend. Acad. Sci. Paris, sér. II, 307: 855-862.

Veen G. 1992. Aspekte zur Biosynthese, Chemie und Chemotaxonomie der Chinolizidin-Alkaloide. – Ph.D. diss., Universität Würzburg, Germany.

Veh R von 1931. Untersuchungen und Betrachtungen zum Blattstellungsproblem. – Flora 125: 83-154.

Velenovský J. 1904. Die gegliederten Blüten. – Beih. Bot. Centralbl. 16: 289-300.

Velenovský J. 1907. Vergleichende Morphologie der Pflanzen II. – Fr. Řivnáč, Prague.

Venkatachala BS, Kar RK. 1969. Palynology of the Tertiary sediments of Kutch 1. Spores and pollen from bore-hole no. 14. – Palaeobotanist 17: 157-178.

Venkatachala BS, Caratini C, Tissot C, Kar RK. 1988. Palaeocene-Eocene marker pollen from India and tropical Africa. – Palaeobotanist 37: 1-25.

Venkata Rao C. 1963. On the morphology of the calyculus. – J. Indian Bot. Soc. 42: 618-628.

Verbeke JA. 1992. Fusion events during floral morphogenesis. – Ann. Rev. Plant Physiol. Molec. Biol. 43: 583-598.

Verdcourt B, Trump EC. 1969. Common poisonous plants of East Africa. – Collins, London.

Verdú M. 2002. Age at maturity and diversification in woody angiosperms. – Evolution 56: 1352-1361.

Verdú M. 2006. Tempo, mode and phylogenetic associations of relative embryo size evolution in angiosperms. – J. Evol. Biol. 19: 625-634.

Verma JK. 1958. On an inflorescence of a new petrified monocot flower, Shuklanthus superbum gen. et sp. nov. from the Deccan Intertrappean series of Madhya Pradesh, India. – J. Palaeontol. Soc. India 3: 185-200.

Versteegh C. 1968. An anatomical study of some woody plants of the mountain flora in the tropics (Indonesia). – Acta Bot. Neerl. 17: 151-159.

Vezey EL, Skvarla JJ. 1990. Computerized feature analysis of exine sculpture patterns. – Rev. Palaeobot. Palynol. 64: 187-196.

Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K. 2009. Pistillata-duplications as a mode for floral diversification in (basal) asterids. – Mol. Biol. Evol. 26: 2627-2645.

Vickery JR. 1980. The fatty acid composition of seed oils from ten plant families with particular reference to cyclopropene and dihydrosterculic acids. – J. Amer. Oil Chem. Soc. 57: 87-91.

Vickery JR. 1981. The occurrence of dihydromalvalic acid in some seed oils. – J. Amer. Oil Chem. Soc. 58: 731-732.

Vij SP, Sharma M, Chandhuri JB. 1982. Cytogenetical investigations into some garden ornamentals III. Chromosomes in some monocot taxa. – Cytologia 47: 649-663.

Villanueva-Amadoz U, Pons D, Diez JB, Ferrer J, Sender LM. 2010. Angiosperm pollen grains of San Just site (Escucha Formation) from the Albian of the Iberian Range (north-eastern Spain). – Rev. Palaeobot. Palynol. 162: 362-381.

Vincken J-P, Heng L, Groot A de, Gruppen H. 2007. Saponins, classification and occurrence in the plant kingdom. – Phytochemistry 68: 275-297.

Vir Jee DU, Kachroo P. 1984. Cytology of some alpine-subalpine taxa of Kashmir Himalaya. Chromosome numbers. – Herba Hung. 23: 29-33.

Vir Jee DU, Kachroo P. 1989. Cytogeography of some endemic taxa of Kashmir Himalaya. – Proc. Indian Natl. Sci. Acad., Sect. B, 55: 177-184.

Visser J. 1981. South African parasitic flowering plants. – Juta, Capetown, Johannesburg.

Vittoz P, Engler R. 2007. Seed dispersal distances: a typology based on dispersal modes and plant traits. – Bot. Helv. 117: 109-124.

Voelckel C, Borevitz JO, Kramer EM, Hodges SA. 2010. Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis. – PloS ONE 5(3): 39735.

Vogel EF de. 1980. Seedlings of dicotyledons: structure, development, types. Descriptions of 150 woody Malesian taxa. – Centre for Agricultural Publishing and Documentation, Wageningen.

Vogel S. 1954. Blütenbiologische Typen als Elemente der Sippengliederung, dargestellt an der Flora Südafrikas. – In: Troll W, Guttenberg H von (eds), Bot. Studien, Heft 1, Gustav Fischer, Jena, pp. 128-141.

Vogel S. 1958. Fledermausblumen in Südamerika. – Österr. Bot. Zeitschr. 104: 491-530.

Vogel S. 1962. Duftdrüsen im Dienst der Bestäubung: Über Bau und Funktion der Osmophoren. – Abh. Math.-Naturw. Kl. Akad. Wiss. Mainz 1962(10): 599-763.

Vogel S. 1963. Duftdrüsen im Dienste der Bestäubung. – Abh. Math.-Naturwiss. Königl. Akad. Wiss. Mainz 1962(10): 601-763.

Vogel S. 1968. Chiropterophilie in der neotropischen Flora. Neue Mitteilungen I. – Flora B, 157: 562-602.

Vogel S. 1969a. Chiropterophilie in der neotropischen Flora. Neue Mitteilungen II. – Flora B, 158: 185-222.

Vogel S. 1969b. Chiropterophilie in der neotropischen Flora. Neue Mitteilungen III. – Flora B, 158: 289-323.

Vogel S. 1974a. Ölblumen und ölsammelnde Bienen. – Trop. Subtrop. Pflanzenwelt (Akad. Wiss. Lit. Mainz) 7: 1-267.

Vogel S. 1974b. Ölblumen und ölsammelnde Bienen. Zweite Folge. – Trop. Subtrop. Pflanzenwelt 7: 283-547.

Vogel S. 1977. Nektarien und ihre ökologische Bedeutung. – Apidologie 8: 321-335.

Vogel S. 1978a. Pilzmückenblumen als Pilzmimeten. – Flora 167: 329-366.

Vogel S. 1978b. Evolutionary shifts from reward to deception in pollen flowers. – In: Richards AJ (ed), The pollination of flowers by insects, Linnaean Society Symposium Series No. 6, Academic Press, New York, pp. 89-104.

Vogel S. 1981. Bestäubungskonzepte der Monokotylen und ihr Ausdruck im System. – Ber. Deutsch. Bot. Ges. 94: 663-675.

Vogel S. 1990a. Ölblumen und ölsammelnde Bienen. Dritte Folge. – Trop. Subtrop. Pflanzenwelt 73: 1-186.

Vogel S. 1990b. The role of scent glands in pollination. On the structure and function of osmophores. – National Science Foundation and Smithsonian Institution Libraries, Washington, D.C.

Vogel S. 1993. Betrug bei Pflanzen: die Täuschblumen. – Abhandl. Akad. Wiss. Lit. Mainz Math.-Naturwiss. Kl. 1993(1): 1-48.

Vogel S. 1997. Remarkable nectaries: structure, ecology, organophyletic perspectives I. Substitutive nectaries. – Flora 192: 305-333.

Vogel S. 1998a. Remarkable nectaries: structure, ecology, organophyletic perspectives II. Nectarioles. – Flora 193: 1-29.

Vogel S. 1998b. Remarkable nectaries: structure, ecology, organophyletic perspectives IV. Miscellaneous cases. – Flora 193: 225-248.

Vogel S. 2002. Extra-tapetal pollen adhesives: where they occur and how they function. – In: Schönenberger J, Balthazar M von, Matthews M (eds), Flowers: diversity, development & evolution, Institute of Systematic Botany, Universität Zürich, Switzerland, p. 48.

Vogel S, Westerkamp C, Thiel B, Gessner K. 1984. Ornithophilie auf den Canarischen Inseln. – Plant Syst. Evol. 146: 225-248.

Vogt R, Oberprieler C. 1993. Chromosome numbers of North African phanerogams I. – Flora Mediterranea 2: 187-210.

Vogt R, Oberprieler C. 1994. Chromosome numbers of North African phanerogams IV. – Candollea 49: 549-570.

Volkens G. 1887. Die Flora der ägyptisch-arabischen Wüste auf Grundlage anatomisch-physiologischer Forschungen. – Gebrüder Bornträger, Berlin.

Volkens G. 1890. Über Pflanzen mit lackierten Blättern. – Ber. Deutsch. Bot. Ges. 8: 120-140.

Volkheimer W, Salas A. 1975. Die älteste Angiospermen-Palynoflora Argentiniens von der Typuslokalität der unterkretazischen Huitrin-Folge des Neuquén-Beckens. Mikrofloristische Assoziation und biostratigraphische Bedeutung. – Neues Jahrb. Geol. Paläont. Monatsh. 7: 424-436.

Volkova SA, Boyko EV. 1989. Chromosome numbers in representatives of some families of the flora of the Soviet Far East. – Bot. Žurn. 74: 1810-1811.

Vrebalov J, Pan IL, Arroyo AJ, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF. 2009. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. – Plant Cell 21: 3041-3062.

Vural M, Tan K. 1983. New taxa and records from Turkey. – Notes Roy. Bot. Gard. Edinb. 41: 65-75.

Wächter W. 1897. Beiträge zur Kenntnis einiger Wasserpflanzen. – Flora 83: 381-397.

Wagenitz G. 1975. Flower reduction as central problem of angiosperm taxonomy. – Bot. Jahrb. Syst. 96: 448-470.

Wagenitz G. 1976a. Was ist ein Achäne? Zur Geschichte eines karpologischen Begriffs. – Candollea 31: 79-85.

Wagenitz G. 1976b. Blütenreduktion als ein zentrales Problem der Angiospermen-Systematik. – Bot. Jahrb. Syst. 96: 448-470.

Wagenitz G. 1977. New aspects of the systematics of Asteridae. – Plant Syst. Evol. [Suppl.] 1: 375-395.

Wagenitz G. 1992. The Asteridae: evolution of a concept and its present status. – Ann. Missouri Bot. Gard. 79: 209-217.

Wagenitz G. 1997. The impact of molecular methods on the systematics of angiosperms. – Bot. Acta 110: 274-281.

Wagner P. 1977. Vessel types of the monocotyledons: a survey. – Bot. Not. 130: 383-402.

Wagner WL, Funk VA (eds). 1995. Hawaiian biogeography: evolution on a hot spot archipelago. – Smithsonian Institution Press, Washington, D.C.

Wagstaff SJ, Breitwieser I. 2004. Phylogeny and classification of Brachyglottis (Senecioneae, Asteraceae): an example of a rapid species radiation in New Zealand. – Syst. Bot. 29: 1003-1010.

Wagstaff SJ, Breitwieser I, Swenson U. 2006. Origin and relationships of the austral genus Abrotanella (Asteraceae) inferred from DNA sequences. – Taxon 55: 95-106.

Waisel Y. 1995. Developmental and functional aspects of the periderm. – In: Iqbal M (ed), The cambial derivatives, Handbuch der Pflanzenanatomie, Spez. Teil IX(4), Bornträger, Berlin, pp. 293-315.

Waisel Y, Liphschitz N. 1975. Sites of phellogen initiation. – Bot. Gaz. 136: 146-150.

Waisman CE, Rozenblum E, Hunziker JH. 1986. Estudios cariológicos en Compositae III. – Darwiniana 27: 179-189.

Walker JW. 1974a. Evolution of exine structure in the pollen of primitive angiosperms. – Amer. J. Bot. 61: 891-902.

Walker JW. 1974b. Aperture evolution in the pollen of primitive angiosperms. – Amer. J. Bot. 61: 1112-1136.

Walker JW. 1976a. Evolutionary significance of the exine in the pollen of primitive angiosperms. – In: Ferguson IK, Muller J (eds), The evolutionary significance of the exine, Academic Press, London, New York, pp. 251-308.

Walker JW. 1976b. Pollen morphology and phylogeny of the ranalean complex. – In: Beck CB (ed), Origin and early evolution of angiosperms, Columbia University Press, New York, pp. 241-299.

Walker JW, Doyle JA. 1975. The bases of angiosperm phylogeny: palynology. – Ann. Missouri Bot. Gard. 62: 664-723.

Walker JW, Skvarla JJ. 1975. Primitively columellaless pollen: a new concept in the evolutionary morphology of angiosperms. – Science 187: 445-447.

Walker JW, Walker AG. 1984 [1985]. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. – Ann. Missouri Bot. Gard. 71: 464-521.

Walker JW, Walker AG. 1986. Ultrastructure of Early Cretaceous angiosperm pollen and its evolutionary implications. – In: Blackmore S, Ferguson IK (eds), Pollen and spores: form and function, Academic Press, London, pp. 203-217.

Walker-Larsen J, Harder LD. 2000. The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional re-invention. – Amer. J. Bot. 87: 1367-1384.

Wall ME, Fenske CS, Kenney HE, Willaman JJ, Correll DS, Schubert BG, Gentry HS. 1957. Steroidal sapogenins XLIII. – J. Amer. Pharm. Assoc. 46: 653-684.

Waller GR, Nowacki EK. 1978. Alkaloid biology and metabolism in plants. – Plenum, New York.

Walters SM. 1961. The shaping of angiosperm taxonomy. – New Phytol. 60: 74-84.

Walters SM, Alexander JCM, Brady A, Brickwell CD, Cullen J, Green PS, Heywood VH, Matthews VA, Robson NKB, Yeo PF, Knees SG (eds). 1989. The European garden flora. – Cambridge University Press, England.

Walton NJ, Brown DE (eds). 1999. Chemicals from plants: perspectives on plant secondary products. – Imperial College Press, London.

Wang A, Xia Q, Xie W, Datla R, Salvaraj G. 2003. The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. – Proc. Natl. Acad. Sci. U.S.A. 100: 14487-14492.

Wang B, Qiu Y-L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. – Mycorrhiza 16: 299-363.

Wang B, Zhang Y, Wei P, Sun M, Ma X, Zhu X. 2014. Identification of nuclear low-copy genes and their phylogenetic utility in rosids. – Genome 57: 547-554.

Wang H, Dilcher DL. 2006. Aquatic angiosperms from the Dakota Formation (Albian, Lower Cretaceous), Hoisington III locality, Kansas, USA. – Intern. J. Plant Sci. 167: 385-401.

Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. – Proc. Natl. Acad. Sci. U.S.A. 106: 3853-3858.

Wang H, Blanchard HJ, Dilcher DL. 2013. Fruits, seeds, and flowers from the Warman clay pit (middle Eocene Claiborne Group), western Tennessee, USA. – Palaeontol. Electronica 16(3): 1-73.

Wang H-S. 1989. A study of the origin of spermatophytic genera endemic to China. – Acta Bot. Yunnan. 11: 1-16.

Wang J-H, Humphreys DJ, Stodulski GBJ, Middleton DJ, Barlow RM, Lee JB. 1989. Structure and distribution of a neurotoxic principle, hemerocallin. – Phytochemistry 28: 1825-1826.

Wang X. 2010a. Schmeissneria: an angiosperm from the Early Jurassic. – J. Syst. Evol. 48: 326-335.

Wang X. 2010b. The dawn of angiosperms: uncovering the origin of flowering plants. – Springer, Berlin.

Wang X, Wang S. 2010. Xingxueanthus: an enigmatic Jurassic seed plant and its implications for the origin of angiospermy. – Acta Geol. Sin. 84: 47-55.

Wang X-F, Armbruster WS, Huang S-Q. 2012. Extra-gynoecial pollen-tube growth in apocarpous angiosperms is phylogenetically widespread and probably adaptive. – New Phytol. 193: 253-260.

Wang XZ, Ren D, Wang YF. 2000. First discovery of angiospermous pollen from Yixian Formation in Western Liaoning. – Acta Geol. Sin. 74: 265-272. [In Chinese]

Ward DE. 1984. Chromosome counts from New Mexico and Mexico. – Phytologia 56: 55-60.

Ward DE, Spellenberg R. 1988. Chromosome counts of angiosperms from New Mexico and adjacent areas. – Phytologia 64: 390-398.

Ward JV. 1986. Early Cretaceous angiosperm pollen from the Cheyenne and Kiowa Formations (Albian) of Kansas, USA. – Palaeontographica, Abt. B, 202: 1-81.

Ward JV, Doyle JA. 1994. Ultrastructure and relationships of mid-Cretaceous polyforate and triporate pollen from northern Gondwana. – In: Kurmann MH, Doyle JA (eds), Ultrastructure of fossil spores and pollen. Its bearing on relationships among fossil and living groups, The Royal Botanic Gardens, Kew, pp. 161-172.

Ward JV, Doyle JA, Hotton CL. 1989. Probable granular magnoliid angiosperm pollen from the early Cretaceous. – Pollen Spores 31: 113-132.

Ward LF. 1886. Synopsis of the flora of the Laramie Group. – Ann. Rep. U.S. Geol. Surv. 6: 399-558.

Ward LF. 1887. Types of the Laramie flora. – Bull. U.S. Geol. Surv. 37: 1-115.

Ward LK, Hackshaw A, Clarke RT. 2003. Do food plant preferences of modern families of phytophagous insects and mites reflect past evolution with plants? – Biol. J. Linn. Soc. 78: 51-83.

Wardlaw CW. 1955. Embryogenesis in plants. – Methuen, London.

Wardle P. 1963. Evolution and distribution of the New Zealand flora, as affected by Quaternary climates. – New Zealand J. Bot. 1: 3-17.

Wardle P. 1968. Evidence for an indigenous pre-quaternary element in the mountain flora of New Zealand. – New Zealand J. Bot. 6: 120-125.

Warming E. 1878. De l’ovule. – Ann. Sci. Nat., Bot., sér. VI, 5: 177-266.

Warming E. 1914. Observations sur la valeur sysematique de l’ovule. – In: Jungersen HFE, Warming E (eds), Mindeskrift i anledning af hundredaaret for Japetus Steenstrups fødelse 2(24), København, pp. 1-45.

Warren BH, Hawkins JA. 2006. The distribution of species diversity across a flora’s component lineages: dating the Cape’s ‘relicts’. – Proc. Roy. Soc. London, B, 273: 2149-2158.

Waser NM. 1998. Pollination, angiosperm speciation, and the nature of species boundaries. – Oikos 82: 198-201.

Waser NM, Ollerton J (eds). 2006. Plant-pollinator interactions: from specialization to generalization. – University of Chicago Press, Chicago.

Watari S. 1939. Anatomical studies on the leaves of some saxifragaceous plants, with special reference to the vascular system. – J. Fac. Sci. Imp. Univ. Tokyo, Sect. III, Bot. 5: 195-316.

Watari S. 1952. Dicotyledonous woods from the Miocene along the Japan-Sea of Honsyu. – J. Fac. Sci. Univ. Tokyo, Sect. III (Bot.), 6: 97-134.

Waterman PG. 1999. The chemical systematics of alkaloids: a review emphasising the contribution of Robert Hegnauer. – Biochem. Syst. Ecol. 27: 395-406.

Waterman PG. 2005. Diversity in secondary metabolism in plants. – In: Henry RJ (ed), Plant diversity and evolution: genotypic and phenotypic variation in higher plants, CAB International, Wallingford, pp. 229-247.

Waterman PG. 2007. The current status of chemical systematics. – Phytochemistry 68: 2896-2903.

Watson L, Dallwitz MJ. 1991. The families of angiosperms: automated descriptions, with interactive identification and information retrieval. – Aust. Syst. Bot. 4: 681-695.

Watson L, Dallwitz MJ. 1992 onwards. The Families of Flowering Plants: descriptions, illustrations, identification, and information retrieval. Version: 29th July 2006. http://delta-intkey.com

Watson S. 1890. Contributions to American botany. – Proc. Amer. Acad. Arts Sci. 25: 146.

Watt JM, Breyer-Brandwijk MG. 1962. The medicinal and poisonous plants of southern and eastern Africa. 2nd ed. – E. & S. Livingstone, London, Edinburgh.

Webb CJ, Kelly D. 1993. The reproductive biology of the New Zealand flora. – Trends Ecol. Evol. 8: 442-447.

Webb LJ. 1954. Aluminium accumulation in the Australian-New Guinea flora. – Aust. J. Bot. 2: 176-196.

Webb LJ. 1959. A physiognomic classification of Australian rain forests. – J. Ecol. 47: 551-570.

Webber IE. 1936. The woods of sclerophyllous and desert shrubs and desert plants of California. – Amer. J. Bot. 23: 181-188.

Weber A. 1980. Die Homologie des Perigons der Zingiberaceen: ein Beitrag zur Morphologie und Phylogenie des Monocotylen-Perigons. – Plant Syst. Evol. 133: 149-179.

Weber A. 2004. What is morphology and why is it time for its renaissance in plant systematics? – In: Stuessy TF, Mayer V, Hörandl E (eds), Deep morphology: toward a renaissance of morphology in plant systematics, A. R. G. Gantner, Ruggell, Liechtenstein, pp. 3-32.

Weber H. 1954. Wurzelstudien an tropischen Pflanzen I. – Abh. Math.-Nat. Kl. Akad. Wiss. Lit. Mainz 6: 211-249.

Weber M, Ulrich S. 2010. The endexine: a frequently overlooked pollen wall layer and a simple method for detection. – Grana 49: 83-90.

Weber WA. 1984. New names and combinations, principally in the Rocky Mountain flora IV. – Phytologia 55: 1-11.

Weberbauer A. 1898. Beiträge zur Anatomie der Kapselfrüchte. – Bot. Centralbl. 73: 54-59, 97-105, 135-142, 161-169, 193-202, 250-258, 296-302.

Weberling F. 1956. Morphologische und entwicklungsgeschichtliche Untersuchungen über die Ausbildung des Unterblattes bei dikotylen Gewächsen. – Beitr. Biol. Pflanzen 32: 27-105.

Weberling F. 1958. Die Bedeutung blattmorphologischer Untersuchungen für die Systematik. – Bot. Jahrb. Syst. 77: 458-468.

Weberling F. 1965. Typology of inflorescences. – Bot. J. Linn. Soc. 59: 215-221.

Weberling F. 1971. Die Bedeutung der Infloreszenzmorphologie für die Systematik. – Ber. Deutsch. Bot. Ges. 84: 179-181.

Weberling F. 1975. Über die Beziehungen zwischen Scheidenlappen und Stipeln. – Bot. Jahrb. Syst. 96: 471-491.

Weberling F. 1981. Morphologie der Blüten und Blütenstände. – Eugen Ulmer, Stuttgart.

Weberling F. 1982. Current problems of modern inflorescence morphology – Aust. Syst. Bot. Soc. Newsl.: 5-21.

Weberling F. 1983a. Evolutionstendenzen bei Blütenständen. – Akad. Wiss. Abh. Math.-Naturwiss. Kl. 1983(1): 5-32.

Weberling F. 1983b. Fundamental features of modern inflorescence morphology. – Bothalia 14: 917-922.

Weberling F. 1988. Inflorescence structure in primitive angiosperms. – Taxon 37: 657-690.

Weberling F. 1989. Morphology of flowers and inflorescences. – Cambridge University Press, Cambridge.

Weberling F. 1992. Primitive Blütenstände bei primitiven Angiospermen? – Stapfia 28: 29-51.

Weberling F. 2006. Les estípulas como caractares sistemáticos confiables. – Bol. Soc. Argentinas Bot. 41: 127-150.

Weberling F. 2007. The problem of generalized flowers: morphological aspects. – Taxon 56: 707-716.

Weberling F, Troll W. 1998. Die Infloreszenzen. Typologie und Stellung im Aufbau des Vegetationskörpers II, 2. – Gustav Fischer, Jena.

Weberling F, Müller-Doblies U, Müller-Doblies D. 1993. Zur deskriptiven und vergleichend-morphologischen Terminologie komplexer Infloreszenzen. – Beitr. Biol. Pflanzen 67: 453-473.

Webster AJ, Payne RJH, Pagel M. 2003. Molecular phylogenies link rates of evolution and speciation. – Science 301: 478.

Weeler SG. 1992. Evolutionary modifications of tristylous breeding systems. – In: Barrett SCH (ed), Evolution and function of heterostyly, Springer, Berlin, Heidelberg, New York, pp. 247-272.

Wehmer C. 1911. Die Pflanzenstoffe. – Gustav Fischer, Jena.

Wehmer C. 1929. Die Pflanzenstoffe. 2. Aufl. – Gustav Fischer, Jena.

Wehr WC, Hopkins DQ. 1994. The Eocene orchards and gardens of Republic, Washington. – Washington Geology 22: 27-34.

Wehr WC, Manchester SR. 1996. Paleobotanical significance of Eocene flowers, fruits and seeds from Republic, Washington. – Washington Geol. 24: 25-27.

Weiblen GD, Oyama RK, Donoghue MJ. 2000. Phylogenetic analysis of dioecy in monocotyledons. – Amer. Natur. 155: 46-58.

Weigel D, Meyerowitz EM. 1994. The ABCs of floral homeotic genes. – Cell 78: 203-209.

Weiss H, Sun Y-Y, Stuessy TF, Kim HH, Kato I, Wakabayashi M. 2002. Karyology of plant species endemic to Ullung Island (Korea) and selected relatives in peninsular Korea and Japan. – Bot. J. Linn. Soc. 138: 93-105.

Weiss JE. 1890. Beiträge zur Kenntniss der Korkbildung. – München.

Welkie GW, Caldwell M. 1970. Leaf anatomy of species in some dicotyledon families as related to the C3 and C4 pathways of carbon fixation. – Can. J. Bot. 48: 2135-2146.

Welle BJH ter. 1976. Silica grains in woody plants of the Neotropics, especially Suriname. – In: Baas P et al. (eds), Wood structure in biological and technological research, Leiden Bot. Res. 3, Leiden University Press, Leiden, pp. 107-142.

Weller SG, Donoghue MJ, Charlesworth D. 1995. The evolution of self-incompatibility in angiosperms: a phylogenetic approach. – In Hoch PC, Stephenson AG (eds), Experimental and molecular approaches to plant biosystematics, Monogr. Syst. Bot. Missouri Bot. Gard., pp. 355-382.

Wellman FL. 1977. Dictionary of tropical American crops and their diseases. – Scarecrow Press, Metuchan, New Jersey.

Wen J. 1999. Evolution of eastern Asia and eastern North American disjunct distributions in flowering plants. – Ann. Rev. Ecol. Syst. 30: 421-455.

Wen J, Jansen RK, Zimmer EA. 1996. Phylogenetic relationships and DNA sequence divergence of eastern Asian and eastern North American disjunct plants. – In: Nei M, Takahata N (eds), Current topics on molecular evolution, publ. jointly by Pennsylvania State University and the Graduate University for Advanced Studies, Hayama, Japan, pp. 37-44.

Wen J, Ickert-Bond S. 2009. Evolution of Madrean-Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. – J. Syst. Evol. 47: 331-348.

Wendelbo P. 1952. Plants from Tirich Mir. – Nytt Mag. f. Bot. 1: 1-70.

Werker E. 1997. Handbuch der Pflanzenanatomie 10:3. Seed anatomy. – Bornträger, Berlin.

Werker E. 2000. Trichome diversity and development. – Adv. Bot. Res. 31: 1-35.

Wernham HF. 1911-1912. Floral evolution: with particular reference to the sympetalous dicotyledons. – New Phytol. 10: 73-83, 109-120, 145-159; 11: 143-166, 217-235, 290-305, 373-397.

Wertheim JO, Sanderson MJ. 2010. Estimating diversification rates: How useful are divergence times? – Evolution 65: 309-320.

West WC. 1969. Ontogeny of oil cells in the woody Ranales. – Bull. Torrey Bot. Club 96: 329-344.

Westergaard M. 1958. The mechanisms of sex determination in dioecious flowering plants. – Adv. Genet. 9: 217-281.

Westerkamp C. 1996. Pollen in bee-flower relations: some considerations on melittophily. – Bot. Acta 109: 325-332.

Westerkamp C. 1997. Keel blossoms: bee flowers with adaptations against bees. – Flora 192: 125-132.

Westerkamp C, Claßen-Bockhoff R. 2007. Bilabiate flowers: the ultimate response to bees? – Ann. Bot. 100: 361-374.

Westerkamp C, Demmelmeyer H. 1997. Leaf surfaces of Central European woody plants. – Bornträger, Berlin.

Westermaier M. 1897. Zur Physiologie und Morphologie der Angiospermensamenknospe. – Beitr. Wiss. Bot. (Stuttgart) 1: 255-280.

Wettstein RR von. 1901-1907. Handbuch der systematischen Botanik. – F. Deuticke, Leipzig, Wien.

Wettstein RR von. 1935. Handbuch der systematischen Botanik. 4. Aufl. – F. Deuticke, Leipzig, Wien.

Wettstein-Knowles P von. 1974. Ultrastructure and origin of epicuticular wax tubes. – J. Ultrastr. Res. 46: 483-498.

Wettstein-Knowles P von. 1979. Genetics and biosynthesis of plant epicuticular waxes. – In: Appelqvist LA, Liljenberg L (eds), Advances in the biochemistry and physiology of plant lipids, Elsevier, Amsterdam, pp. 1-26.

Wettstein-Knowles P von. 1995. Biosynthesis and genetics of waxes. – In: Hamilton RJ (ed), Waxes: chemistry, molecular biology and functions., The Oily Press, Dundee,Scotland, pp. 91-130.

Weyland H. 1937. Beiträge zur Kenntnis der rheinischen Tertiärflora II. Erste Ergänzungen und Berichtigungen zur Flora der Blätterkohle und des Polierschiefers von Rott im Siebengebirge. – Palaeontographica, Abt. B, Paläophyt. 83: 67-122..

Weyland H. 1938. Beiträge zur Kenntnis der rheinischen Tertiärflora III. – Palaeontographica, Abt. B, 83: 123-171.

Weyland H, Kilpper K, Berendt W. 1967. Kritische Untersuchungen zur Kutikularanalyse tertiärer Blätter VII. – Palaeontographica, Abt. B, 120: 151-168.

Wheatley JI. 1992. A guide to the common trees of Vanuatu. With lists of their traditional uses and ni-Vanuatu names. – Department of Forestry, Port Vila, Vanuatu.

Wheeler EA. 1991. Paleocene dicotyledonous trees from Big Bend National Park, Texas: variability in wood types common in the Late Cretaceous and the Early Tertiary, and ecological inferences. – Amer. J. Bot. 78: 658-671.

Wheeler EA, Baas P. 1991. A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. – IAWA Bull. 12: 275-332.

Wheeler EA, Baas P. 1993. The potentials and limitations of dicotyledonous wood anatomy for climatic reconstructions. – Paleobiology 19: 487-498.

Wheeler EA, Lehmann TM. 2001. Late Cretaceous and Paleocene woody dicots from the Aguja and Javellina Formations, Big Bend National Park, Texas, USA. – IAWA J. 21: 83-120.

Wheeler EA, Lehmann TM. 2009. New Late Cretaceous and Paleocene dicot woods of Big Bend National Park, Texas, and review of Cretaceous wood characteristics. – IAWA J. 30: 293-318.

Wheeler EA, Lee M, Matten LC. 1987. Dicotyledonous woods from the Upper Cretaceous of southern Illinois. – Bot. J.Linn. Soc. 95: 77-100.

Wheeler EA, Baas P, Gasson PE (eds). 1989. IAWA list of microscopic features for hardwood identification. – IAWA Bull. 10: 219-332.

Wheeler EA et al. 2004 etc. InsideWood: an internet accessible wood anatomy database. http://www.lib.ncsu.edu/insidewood/

Wheeler EA, Baas P, Rodgers S. 2007. Variation in dicot wood anatomy: a global analysis based on the InsideWood database. – IAWA J. 28: 229-258.

Wheeler EF, Scott RA, Barghoorn ES. 1977. Fossil dicotyledononous wood from Yellowstone National Park. – J. Arnold Arbor. 58: 280-306.

Wheeler EF, Scott RA, Barghoorn ES. 1978. Fossil dicotyledonous woods from Yellowstone National Park II. – J. Arnold Arbor. 59: 1-26.

Wheeler EF, Lee M, Matten LC. 1987. Dicotyledonous woods from the Upper Cretaceous of southern Illinois. – Bot. J. Linn. Soc. 95: 77-100.

Wheeler MJ, Franklin-Tong VE, Franklin FCH. 2001. The molecular and genetic basis of pollen-pistil interactions. – New Phytol. 151: 565-584.

Wheelwright NT, Haber WA, Murray KG, Guindon C. 1984. Tropical fruit-eating birds and their food plants: a survey of a Costa Rican lower montane forest. – Biotropica 16: 173-192.

Whitaker TW. 1933. Chromosome number and relationship in the Magnoliales. – J. Arnold Arbor. 14: 376-385.

Whitaker TW. 1934. Chromosome constitution in certain monocotyledons. – J. Arnold Arbor.15: 135-143.

White CT. 1933. Ligneous plants collected for the Arnold Arboretum in north Queensland by S. F. Kajewski in 1929. – Contr. Arnold Arbor. Harvard Univ. 4: 5-108.

Whitehead DR. 1969. Wind pollination in the angiosperms: evolutionary and environmental considerations. – Evolution 23: 28-35.

Whitehead VB, Giliomee JH, Rebelo AG. 1987. Insect pollination in the Cape Flora. – In: Rebelo AG (ed), A preliminary synthesis of pollination biology in the Cape Flora, CSIR, Pretoria, South Afr. Nat. Sci. Prog. Rep. 141, pp. 52-82.

Wieffering JH. 1966. Aucubinartige Glucoside (Pseudoindikane) und verwandte Heteroside als systematische Merkmale. – Phytochemistry 5: 1053-1064.

Wiens D, Halleck DK. 1962. Chromosome numbers in Rocky Mountain plants I. – Bot. Not. 115: 455-464.

Wijninga VM. 1996. Paleobotany and palynology of Neogene sediments from the High Plain of Bogotá (Colombia). – Ponsen & Looijen BV, Wageningen.

Wijninga VM, Kuhry P. 1990. A Pliocene flora from the Subachoque Valley (Cordillera Oriental, Colombia). – Rev. Palaeobot. Palynol. 62: 249-290.

Wikström N, Savolainen V, Chase MW. 2001. Evolution of the angiosperms: calibrating the family tree. – Proc. Roy. Soc. London B, Biol. Sci. 268: 2211-2220.

Wikström N, Savolainen V, Chase MW. 2003. Angiosperm divergence times: congruence and incongruence between fossils and sequence divergence estimates. – In: Donoghue PCJ, Smith MP (eds), Telling the evolutionary time: molecular clocks and the fossil record, CRC Press, Boca Raton, Florida, pp. 142-165.

Wilde V. 1989. Untersuchungen zur Systematik der Blattrest aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). – Cour. Forschungsinst. Senckenberg 115: 1-213.

Wildman WC, Pursey BA. 1968. Colchicine and related compounds. – In: Manske RHF (ed), The alkaloids, chemistry and physiology 11, Academic Press, London, pp. 407-457.

Wilf P, Rubén Cuneo N, Johnson KR, Hicks JF, Wing SL, Obradovich JD. 2003. High plant diversity in Eocene South America: evidence from Patagonia. – Science 300: 122-125.

Wilhelm K. 1910. Die Samenpflanzen. – Deuticke, Wien, Leipzig.

Wilhelmi H, Barthlott W. 1997. Mikromorphologie der Epicuticularwachse und die Systematik der Gymnospermen. – Trop. Subtrop. Pflanzenwelt 96: 1-49.

Wilkinson AM. 1948. Floral anatomy and morphology of some species of the genus Viburnum of the Caprifoliaceae. – Amer. J. Bot. 35: 455-465.

Wilkinson HP. 1979. The plant surface (mainly leaf). – In: Metcalfe CR, Chalk L (eds), Anatomy of the dicotyledons. 2nd ed. Vol. 1. Systematic anatomy of leaf and stem, with a brief history of the subject, Clarendon Press, Oxford, pp. 97-165.

Willaman JJ, Li H-L. 1970. Alkaloid-bearing plants and their contained alkaloids 1957-1968. – J. Nat. Prod. (Lloydia) 33 [Suppl. 3A]: 1-286.

Willaman JJ, Schubert BG. 1961. Alkaloid-bearing plants and their contained alkaloids. – Techn. Bull. U.S. Dept. Agric. 1234: 1-287.

Wille AC, Lucas WJ. 1984. Ultrastructural and histochemical studies on guard cells. – Planta 160: 129-142.

Williams CA. 1975. Biosystematics of the Monocotyledoneae – flavonoid patterns in leaves of the Liliaceae. – Biochem. Syst. Ecol. 3: 229-244.

Williams CA, Harborne JB. 1988. Distribution and evolution of flavonoids in the monocotyledons. – In: Harborne JB (ed), The flavonoids: advances in research since 1980, Chapman and Hall, London, pp. 505-524.

Williams CA, Harborne JB, Mathew B. 1988. A chemical appraisal via leaf flavonoids of Dahlgren’s Liliiflorae. – Phytochemistry 27: 2609-2629.

Williams GL, Brideaux WW. 1975. Palynological analyses of upper Mesozoic-Cenozoic offshore eastern Canada. – Geol. Surv. Canada Bull. 236: 1-162.

Williams JH. 2008. Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. – Proc. Natl. Acad. Sci. U.S.A. 105: 11259-11263.

Williams JH, Friedman WE. 2002. Identification of diploid endosperm in an early angiosperm lineage. – Nature 415: 522-526.

Williams SE, Aldon EF. 1976. Endomycorrhizal associations of some arid-zone shrubs. – South West. Natur. 20: 437-444.

Willis JH. 1967. Systematic notes on the indigenous Australian flora. – Muelleria 1: 117-163.

Willmer CM, Sexton R. 1979. Stomata and plasmodesmata. – Protoplasma 100: 113-124.

Wilson CL. 1937. The phylogeny of the stamen. – Amer. J. Bot. 24: 686-699.

Wilson CL. 1942. The telome theory and the origin of the stamen. – Amer. J. Bot. 29: 759-764.

Wilson KL, Morrison DA. 2000. Monocots: systematics and evolution. – CSIRO Publ., Collingwood, Victoria, Australia.

Wing SL, Boucher LD. 1998. Ecological aspects of the Cretaceous flowering plant radiation. – Ann. Rev. Earth Planet Sci. 26: 379-421.

Wing SL, Tiffney BH. 1987. The reciprocal interaction of angiosperm evolution and tetrapod herbivory. – Rev. Palaeobot. Palynol. 50: 179-210.

Wing SL, Hickey LJ, Swisher CC. 1993. Implications of an exceptional fossil flora for Late Cretaceous vegetation. – Nature 363: 342-344.

Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilf P, Labandeira CC. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. – Proc. Natl. Acad. Sci., U.S.A. 106: 18627-18632.

Wink M. 1992. The role of quinolizidine alkaloids in plant insect interactions. – In: Bernays EA (ed), Insect plant interactions IV, IRC Press, Boca Raton, Florida, pp. 131-166.

Wink M (ed). 1999. Biochemistry of plant secondary metabolism. – Sheffield Academic Press, Sheffield. [Ann. Plant Rev. 2]

Wink M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. – Phytochemistry 64: 3-19.

Wink M. 2008. Plant secondary metabolism: diversity, function and its evolution. – Nat. Prod. Commun. 3: 1205-1216.

Wink M, Waterman P. 1999. Chemotaxonomy in relation to molecular phylogeny of plants. – In: Wink E (ed), Function of plant secondary metabolites and their exploitation in biotechnology, Ann. Plant Rev. 2, Sheffield Academic Press, Sheffield.

Winkler H. 1906. Botanische Untersuchungen aus Buitenzorg II. – Ann. Jard. Bot. Buitenzorg II, 5: 208-276.

Winkler H. 1907. Beiträge zur Morphologie und Biologie tropischer Blüten und Früchte. – Engl. Bot. Jahrb. Syst. 38: 233-243.

Winkler H. 1940. Zur Einigung und Weiterführung in der Frage des Fruchtsystems. – Beitr. Biol. Pflanzen 27: 92-130.

Winkworth RC, Robertson AW, Ehrendorfer F, Lockhart PJ. 1999. The importance of dispersal and recent speciation in the flora of New Zealand. – J. Biogeogr. 26: 1323-1325.

Winkworth RC, Lundberg J, Donoghue MJ. 2008. Toward a resolution of campanulid phylogeny, with a special reference to the placement of Dipsacales. – Taxon 57: 53-65.

Winter K, Smith JAC (eds). 1996a. Crassulacean acid metabolism. – Ecol. Stud. 114, Springer, Berlin.

Winter K, Smith JAC 1996b. An introduction to crassulacean acid metabolism. Biochemical principles and ecological diversity. – In: Winter K, Smith JAC (eds), Crassulacean acid metabolism: biochemistry, ecophysiology, and evolution, Ecol. Stud. 114, Springer, Berlin, pp. 1-13.

Winter KU, Becker A, Munster T, Kim JT, Saedler H, Theißen G. 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. – Proc. Natl. Acad. Sci. U.S.A. 96: 7342-7347.

Winterscheid H. 2006. Oligozäne und untermiozäne Floren in der Umgebung des Siebengebirges. – Doc. Nat. 158, Pts. 1, 2: 1-485.

Wodehouse RP. 1932. Tertiary pollen I. Pollen of the living representatives of the Green River flora. – Bull. Torrey Bot. Club 59: 313-340.

Wodehouse RP. 1959. Pollen grains: their structure, identification and significance in science and medicine. – Hafner, New York.

Wolfe AD, dePamphilis CW. 1998. The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. – Mol. Biol. Evol. 15: 1243-1258.

Wolfe JA. 1964. Miocene floras from Fingerrock wash, southwestern Nevada. – U.S. Geol. Surv. Prof. Paper, 454-N: 1-31.

Wolfe JA. 1973 [1974]. Fossil forms of Amentiferae. – Brittonia 25: 334-355.

Wolfe JA. 1975. Some aspects of plant geography in the northern hemisphere during the late Cretaceous and Tertiary. – Ann. Missouri Bot. Gard. 62: 264-279.

Wolfe JA. 1977. Paleogene floras from the Gulf of Alaska region. – Profess. Pap. U.S. Geol. Surv. 997: 1-107.

Wolfe JA. 1989. Leaf-architectural analysis of the Hamamelididae. – In: Crane PR, Blackmore S (eds), Evolution, systematics, and fossil history of the Hamamelidae 1, Introduction and ‘lower’ Hamamelidae, Systematics Association, Spec. Vol. 40A, Clarendon Press, Oxford, pp. 75-104.

Wolfe JA. 1997. Relations of environmental change to angiosperm evolution during the late Cretaceous and Tertiary. – In: Iwatsuki K, Raven PH (eds), Evolution and diversification of land plants, Springer, Tokyo, pp. 269-290.

Wolfe JA, Wehr W. 1987. Middle Eocene dicotyledonus plants from Republic, northeastern Washington. – Bull. U. S. Geol. Surv. 1597: 1-25.

Wolfe JA, Doyle JA, Page VM. 1975. The bases of angiosperm phylogeny: paleobotany. – Ann. Missouri Bot. Gard. 62: 801-824.

Wolfe KH. 2001. Yesterday’s polyploids and the mystery of diploidization. – Nature Rev. Genet. 2: 333-341.

Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. – Proc. Natl. Acad. Sci. U.S.A. 86: 6201-6205.

Wolfe KH, Morden CW, Palmer JD. 1992. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. – Proc. Natl. Acad. Sci. U.S.A. 89: 10648-10652.

Wolkinger F. 1969. Morphologie und systematischeVerbreitung lebender Holzfasern bei Sträucher und Bäumen I. Zur Morphologie und Zytologie. – Holzforschung 23: 138-144.

Wollenweber E. 1984. The systematic implication of flavonoids secreted by plants. – In: Rodriguez E, Healey L, Mehta I (eds), Biology and chemistry of plant trichomes, Plenum Press, New York, pp. 53-69.

Wollenweber E, jay M. 1988. Flavones and flavonols. – In: Harborne JB (ed), The flavonoids. Advances in research since 1980, Chapman and Hall, London, pp. 233-302.

Won H, Renner SS. 2003. Horizontal gene transfer from flowering plants to Gnetum. – Proc. Natl. Acad. Sci. U.S.A. 100: 10824-10829.

Wood CE Jr. 1972. Morphology and phytogeography: the classical approach to the study of disjunctions. – Ann. Missouri Bot. Gard. 59: 107-124.

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in plants. – Proc. Natl. Acad. Sci. U.S.A. 106: 13875-13879.

Worberg A, Quandt D, Barniske A-M, Löhne C, Hilu KW, Borsch T. 2007. Phylogeny of basal eudicots: insights from non-coding and rapidly evolving DNA. – Organisms Divers. Evol. 7: 55-77.

Worbes M. 1989. Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. – IAWA Bull., N. S., 10: 109-122.

World Checklist of Selected Plant Families. 2008. Publ. by the Board of Trustees of the Royal Botanic Gardens, Kew, acc. January 2008. http://www.kew.org/wcsp/

Worsdell WC. 1903. The origin of the perianth of flowers. – New Phytol. 2: 43-48.

Wortley AH, Wang H, Lu L, Li D-Z, Blackmore S. 2015. Evolution of angiosperm pollen. 1. Introduction. – Ann. Missouri Bot. Gard. 100: 177-226.

Wray GA. 2001. Dating branches on the tree of life using DNA. – Genome Biol. 3: 1.1-1.7.

Wright IJ, Clifford HT, Kidson R, Reed ML, Rice BL, Westoby M. 2000. A survey of seed and seedling characters in 1744 Australian dicotyledon species: cross-species trait correlations and correlated trait-shifts within evolutionary lineages. – Biol. J. Linn. Soc. 69: 521-547.

Wu F, Mueller LA, Crouzillat D, Pétiard V, Tanksley SD. 2006. Combining bioinformatics and phylogenetics to identify large sets of single-copy, orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. – Genetics 174: 1407-1420.

Wu S-Q. 1999. A preliminary study of the Jehol flora from western Liaoning. – Palaeoworld 11: 7-37. [In Chinese with English summary]

Wu Z-M. 1995. Cytological studies on some plants of woody flora in Huangshan, Anhui Province. – J. Wuhan Bot. Res. 13: 107-112.

Wu Z-Y. 1983. On the significance of Pacific intercontinental discontinuity. – Ann. Missouri Bot. Gard. 70: 577-590.

Wu Z-Y, Tang Y-C, Lu A-M, Chen Z-D. 1998. On primary subdivisions of the Magnoliophyta – towards a new scheme for an eighth class – system of classification of the angiosperms. – Acta Phytotaxon. Sin. 36: 385-402.

Wu Z-Y, Lu A-M, Tang Y-C, Chen Z-D, Li D-Z. 2002. Synopsis of a new “polyphyletic-polychronic-polytopic” system of the angiosperms. – Acta Phytotaxon. Sin. 40: 298-322. [In Chinese]

Wu Z-Y, Lu A-M, Tang Y-C, Chen Z-D, Li D-Z. 2003. The families and genera of angiosperms in China, a comprehensive analysis. – Science Press, Beijing.

Wulff HD. 1937. Chromosomenstudien an der schleswig-holsteinischen Angiospermen-Flora I. – Ber. Deutsch. Bot. Ges 56: 262-269.

Wunderlich R. 1954. Über das Antherentapetum mit besonderer Berücksichtigung seiner Kernzahl. – Österr. Bot. Zeitschr. 101: 1-63.

Wunderlich R. 1959. Zur Frage der Phylogenie der Endospermtypen bei den Angiospermen. – Österr. Bot. Zeitschr. 106: 203-293.

Wunderlich R. 1967. Some remarks on the taxonomic significance of the seed coat. – Phytomorphology 17: 301-311.

Wyk B-E van, Oudtshoorn B van, Gericke N. 1997. Medicinal plants of Southern Africa. – Briza Publ., Pretoria.

Wylie RB. 1954. Leaf organization of some woody dicotyledons from New Zealand. – Amer. J. Bot. 41: 186-191.

Xiang Q-Y, Soltis DE, Soltis PS. 1998. The eastern Asian and eastern and western North American floristic disjunction: congruent phylogenetic patterns in seven diverse genera. – Mol. Phylogen. Evol. 10: 178-190.

Xiang Q-Y, Soltis DE, Soltis PS, Manchester SR, Crawford DJ. 2000. Timing the eastern Asian-eastern North American floristic disjunction: molecular clock corroborates paleontological evidence. – Mol. Phylogen. Evol. 15: 462-472.

Xu B-S, Weng R-F, Zhang M-Z. 1992. Chromosome numbers of Shanghai plants I. – Invest. Stud. Nat. 12: 48-65.

Yakovlev MS, Žukova GY. 1975. On the presence of chlorophyll in embryos of angiosperm seeds. – In: Form, structure and function in plants. Prof. B. M. Johri Commemoration vol.: 223-229.

Yakovlev MS, Žukova GY. 1980. Chlorophyll in embryos of angiosperm seeds, a review. – Bot. Not. 133: 323-336.

Yamaguchi T, Tsukaya H. 2007. Evo-devo of leaf shape control with a special emphasis on unifacial leaves in monocots. – Korean J. Plant Tax. 37: 351-361.

Yamazaki T. 1974. A system of Gamopetalae based on the embryology. – J. Fac. Sci. Univ. Tokyo, sect. III (Bot.), 11: 263-281.

Yamazaki T. 1982. Recognized types in early development of the embryo and the phylogenetic significance in the dicotyledons. – Acta Phytotaxon. Geobot. 33: 400-409. [In Japanese]

Yang X-J. 2003. New material of fossil plants from the Early Cretaceous Muling Formation of the Jixi Basin, Eastern Heilongjiang Province, China. – Acta Palaeontol. Sin. 42: 561-584.

Yeo PF. 1989. What is happening to the monocotyledons? – Plant Syst. Evol. 167: 75-86.

Yeo PF. 1993. Secondary pollen presentation. – Plant Syst. Evol. [Suppl.] 6: 1-268.

Yeo RR. 1966. Yields of propagules in certain aquatic plants I. – Weeds 14: 110-113.

Yeung EC, Meinke DW. 1993. Embryogenesis in plants: development of the suspensor. – Plant Cell 5: 1371-1381.

Yıldız K, Gücel S. 2006. Chromosome numbers of 16 endemic plant taxa from northern Cyprus. – Turkish J. Bot. 30: 181-192.

Ying T-S, Zhang Y-L, Boufford DE. 1993. The endemic genera of seed plants of China. – Science Press, Beijing.

Young DA. 1981. Are the angiosperms primitively vesselless? – Syst. Bot. 6: 313-330.

Young DA, Seigler DS (eds). 1981. Phytochemistry and angiosperm phylogeny. – Praeger, New York.

Young DA, Watson L. 1970. The classification of dicotyledons: a study of the upper levels of the hierarchy. – Aust. J. Bot. 18: 387-433.

Young KR, Ulloa Ulloa C, Luteyn JL, Knapp S. 2002. Plant evolution and endemism in Andean South America: an introduction. – Bot. Rev. 68: 4-21.

Yu C-H, Chen Z-L. 1990. Leaf architecture of the woody dicotyledons from tropical and subtropical China. – Pergamon Press, Oxford.

Yu Y, Wortley AH, Lu L, Li D-Z, Wang H, Blackmore S. 2018. Evolution of angiosperm pollen. 5. Early diverging Superasteridae (Berberidopsidales, Caryophyllales, Cornales, Ericales, and Santalales) plus Dilleniales. – Ann. Missouri Bot. Gard. 103: 106-161.

Yue J-X, Li J, Wang D, Araki H, Tian D, Yang S. 2010. Genome-wide investigation reveals high evolutionary rates in annual model plants. – BMC Plant Biol. 10: 242.

Yurtsev BA. 1981. Seven new taxa of flowering plants from the northeastern Asia and adjacent territories. – Bot. Žurn. 66: 1041-1043. [In Russian]

Yurtsev BA. Tsvelyov NN. 1972. New taxa from north-east Asia. – Bot. Žurn. 57: 644-647. [In Russian]

Yurtsev BA, Žukova PG. 1982. Chromosome number of some plants of the northeastern Yakutia (the drainage of the Indigirka River in the middle reaches). – Bot. Žurn. 67: 778-787. [In Russian]

Zakharyeva OI, Astanova SB. 1968. Chromosomny je cisla nekotorych dikorastuscich vidov cvetkovych rastenij srednej azii (Chromosome numbers of some wild species of flowering plants of Middle Asia.). – Rep. Acad. Sci. Tadzhik SSR 2: 72-75.

Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H. 2005. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. – Genetics 169: 2209-2223.

Zahn LM, Leebens-Mack JH, dePamphilis CW, Ma H, Theissen G. 2005. To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. – J. Hered. 96: 225-240.

Zahur MS. 1956. Comparative study of secondary phloem of 423 species of woody dicots belonging to 87 families. – Cornell Univ. Agric. Exper. Station Mem. 358: 1-160.

Zakirova RO, Nafanailova II. 1988. Chromosome numbers in members of some families of the Kazakhstan flora. – Bot. Žurn. 73: 452-453.

Zamaloa MC. 2000. Palinoflora y ambiente en el Terciario del nordeste de Tierra del Fuego, Argentina. – Rev. Mus. Argent. Ci. Nat. 2: 43-51.

Zanis MJ, Soltis DE, Soltis PS, Qiu Y-L, Mathews S, Donoghue MJ. 2002. The root of the angiosperms revisited. – Proc. Natl. Acad. Sci., U.S.A. 99: 6848-6853.

Zanis MJ, Soltis PS, Qiu YL, Zimmer EA, Soltis DE. 2003. Phylogenetic analysis and perianth evolution in basal angiosperms. – Ann. Missouri Bot. Gard. 90: 129-150.

Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RL, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu J. 2014. Three keys to the radiation of angiosperms into freezing environments. – Nature 506: 89-92.

Zardini EM. 1971. Especies nuevas o criticas de la flora Jujeña II. – Bull. Sc. Argent. Bot. 14: 107-110.

Zarinkamar F. 2007. Stomatal observations in dicotyledons. – Pakistan J. Biol. Sci. 10: 199-219.

Zastawniak E. 1994. Upper Cretaceous leaf flora from the Blaszyk Moraine (Zamek Formation), King George Island, South Shetland Islands, West Antarctica. – Acta Palaeobot. 34: 119-163.

Zavada MS. 1983. Comparative morphology of monocot pollen and evolutionary trends of apertures and pollen wall structures. – Bot. Rev. 49: 331-379.

Zavada MS. 1984. Angiosperm origins and evolution based on dispersed fossil pollen ultrastructure. – Ann. Missouri Bot. Gard. 71: 444-463.

Zavada MS. 2003. The ultrastructure of angiosperm pollen from the Lower Cenomanian of the Morondova Basin, Madagascar. – Grana 42: 20-32.

Zavada MS. 2007. The identification of fossil angiosperm pollen and its bearing on the time and place of the origin of angiosperms. – Plant Syst. Evol. 263: 117-134.

Zavada MS, Dilcher DL. 1986. Comparative pollen morphology and its relationship to phylogeny of pollen in the Hamamelidae. – Ann. Missouri Bot. Gard. 73: 348-381.

Zavada MS, Taylor TN. 1986. The role of self-incompatibility and sexual selection in the gymnosperm-angiosperm transition: a hypothesis. – Amer. Natur. 128: 538-550.

Zeba-Bano, Maheshawari HK, Bose MN. 1979. Some plant remains from Pathargama, Rajmahal Hills, Bihar. – The Palaeobotanist 26: 144-156.

Zeeuw CH de. 1990. Secondary xylem of neotropical Lecythidaceae. – In: Luteyn JL, Mori SA, Lebrón-Luteyn ML, Hammond HD (eds), Flora Neotropica, New York Botanical Garden, Bronx, New York, 21(2), pp. 4-59.

Zeng L, Zhang Q, Sun R, Kong H, Zhang N, Ma H. 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. – Nat. Commun. 5: 4956.

Zetter R, Hofmann C-C, Draxler I, Durango de Cabrera J, Vergel MM, Fervoorst F. 1999. A rich Middle Eocene microflora at Arroyo de los Mineros, near Cañadón Beta, NE Tierra del Fuego Province, Argentina. – Abh. Geol. Bundesanst. Wien 56: 439-460.

Zetter R, Hesse M, Huber KH. 2002. Combined LM, SEM and TEM studies of Late Cretaceous pollen and spores from Gmünd, Lower Austria. – Stapfia 80: 201-230.

Zetter R, Farabee MJ, Pigg KB, Manchester SR, DeVore ML, Nowak MD. 2011. Palynoflora of the late Paleocene silicified shale at Almont, North Dakota, USA. – Palynology 35: 179-211.

Zeybek N, Tokur S, Akbulut I, Mert HH. 1977. Chromosomenzahlen von drei Salzpflanzen aus Westanatolien. – Ber. Schweiz. Bot. Ges. 87: 60-62.

Zhang M-Y, Lu L, Wortley AH, Wang H, Li D-Z, Blackmore S. 2017. Evolution of angiosperm pollen. 4. Basal eudicots. – Ann. Missouri Bot. Gard. 102: 141-182.

Zhang N, Zeng L, Shan H, Ma H. 2012. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. – New Phytol. 195: 923-937.

Zhang T-J. 1992. The chromosome numbers of nine species of medicinal plants. – Chin. Tradit. Herbal Drugs 23: 88-89.

Zhang W, Kramer EM, Davis CC III. 2010. Floral symmetry genes and the origin and maintenance of floral zygomorphy in a plant-pollinator mutualism. – Proc. Natl. Acad. Sci. U.S.A. 107: 6388-6393.

Zhang Y-Y. 1999. The evolutionary succession of Cretaceous angiosperm pollen in China. – Acta Palaeontol. Sin. 38: 435-453. [In Chinese with English summary]

Zhao L, Li X, Zhang N, Zhang S-D, Yi T-S, Ma H, Guo Z-H, Li D-Z. 2016. Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids. – Mol. Phylogen. Evol. 105: 166-176.

Zheng S, Wang X. 2010. An undercover angiosperm from the Jurassic of China. – Acta Geol. Sin. (Engl. Ed.) 84: 895-902.

Zheng Y, Wang W. 1994. Sequence of Miocene Fotan Group in SE Fujian and its palyno-assemblages. – Acta Palaeontol. Sin. 33: 200-216. [In Chinese with English summary]

Zhilin SG. 1974. The Tertiary floras of the plateau Ustjurt (Transcaspia). – Nauka, Leningrad.

Zhou R-H, Jiang Z-H. 1990. Chemical constituents of the Hamamelidae and their systematic significance. – Cathaya 2: 63-76.

Zhou Z-Y, Li H. 1994. Some Late Cretaceous plants from King George Island, Antarctica. – In: Shen Y (ed), Stratigraphy and palaeontology of Fildes Peninsula, King Georges Island, Antarctica, State Antarctic Committee, Monograph 3, Science Press, Beijing, pp. 85-95.

Zhou Z-Y, Li H-M, Cao ZY. 1990. Some Cretaceous plants from Pingzhou (Ping Chau) Island, Hong Kong. – Acta Palaeontol. Sin. 29: 415-426.

Zhu X-Y, Chase MW, Qiu Y-L, Kong H-Z, Dilcher DL, Li J-H, Chen ZD. 2007. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. – BMC Evol. Biol. 7: e217.

Ziegenspeck H. 1944. Das Vorkommen von Öl in den Stomata der Monokotyledonen und die Bedeutung des Konstitutionellen Vorkommens für die Systematik derselben. – Feddes Repert. 53: 151-173.

Zimmer EA, Wen J. 2015. Using nuclear gene data for plant phylogenetics: progress and prospects II. Next-gen approaches. – J. Syst. Evol. 53: 371-379.

Zimmer EA, Hamby RK, Arnold ML, LeBlanc DA, Theriot EC. 1989. Ribosomal RNA phylogenies and flowering plant evolution. – In: Fernholm B, Bremer K, Jörnvall H (eds), The hierarchy of life, Elsevier Science, Stockholm, Amsterdam, pp. 205-214.

Zimmerman J. 1932. Über die extrafloralen Nektarien der Angiospermen. – Bot. Centralbl. Beih. 49: 99-196.

Zimmerman W. 1933. Paläobotanische und phylogenetische Beiträge I-V. – Palaeobiologica 5: 321-348.

Zimmermann MH, Tomlinson PB. 1972. The vascular system of monocotyledonous stems. – Bot. Gaz. 133: 141-155.

Zimmermann MH, Ziegler H. 1975. List of sugars and sugar alcohols in sieve-tube exudates. – In: Zimmermann MH, Milburn JA (eds), Encyclopedia of plant physiology, N. S., Vol. 1: Transport in plants 1. Phloem transport, Springer, Heidelberg, pp. 480-503.

Zimmermann W. 1935. Die Phylogenie der Angiospermen-Blütenstände. Untersuchungen zur Gesamtphylogenie der Angiospermen I. – Beih. Bot. Centralbl. 53: 95-121.

Zimmermann W. 1965. Die Blütenstände, ihr System und ihre Phylogenie. – Ber. Deutsch. Bot. Gesellsch. 78: 3-12.

Zinderen-Bakker EM van. 1956. South African pollen and spores 2. – A. A. Balkema, Cape Town.

Zizka G. 1986. Chromosomenzählungen bei einigen kapverdischen Pflanzen. – Cour. Forsch.-Inst. Senckenberg 81: 181-182.

Zohary D, Hopf M. 2000. Domestication of plants in the Old World. 3rd ed. – Clarendon Press, Oxford.

Zomlefer WB. 1994. Guide to flowering plant families. – University of North Carolina Press, Chapel Hill, North Carolina.

Zona S. 2001. Starchy pollen in commelinoid monocots. – Ann. Bot. 87: 109-116.

Zonneveld BJM, Leitch IJ, Bennett MD. 2005. First nuclear DNA amounts in more than 300 angiosperms. – Ann. Bot. 96: 229-244.

Žukova PG. 1964. Kariologiya nekotorykh vidiv Compositae v Polyarno-Alpiiskom botanicheskom sadu. – Bot. Žurn. 49: 1656-1659.

Žukova PG. 1965. Kariologicheskaya kharakteriska nekotorykh rasteniy Chukotskogo poluostrova. – Bot. Žurn. 50: 1001-1004.

Žukova PG. 1967a. Chromosome numbers in certain plant species indigenous to the north-east of the USSR II. – Bot. Žurn. 52: 983-987. [In Russian]

Žukova PG. 1967b. Karyology of some plants, cultivated in the Arctic-Alpine Botanical Garden. – In: Avrorin NA (ed), Plantarum in zonam polarem transportatio II, Nauka, Leningrad, pp. 139-149.

Žukova PG. 1997. Chromosome numbers in certain plant species indigenous to the north-east of the USSR IV. – Bot. Žurn. 54: 1985-1990. [In Russian]

Žukova PG, Petrovsky VV. 1971. Chromosome numbers of certain flowering plants of the Wrangel Island. – Bot. Žurn. 58: 1331-1342. [In Russian]

Žukova PG, Petrovsky VV. 1975. Chromosome numbers of some Western Chukota plant species. – Bot. Žurn. 60: 395-401. [In Russian]

Žukova PG, Petrovsky VV. 1976. Chromosome numbers of some Western Chukota plant species 2. – Bot. Žurn. 61: 963-969. [In Russian]

Žukova PG, Petrovsky VV. 1987. Chromosome numbers and taxonomy of some secies from the northern Asian regions. – Bot. Žurn. 72: 1617-1624. [In Russian]

Žukova PG, Petrovsky VV, Plieva TV. 1973. The chromosome numbers and taxonomy of some plant species from Siberia and Far East. – Bot. Žurn. 58: 1331-1342. [In Russian]

Zweypfenning RCVJ. 1978. A hypothesis on the function of vestured pits. – IAWA Bull. 1: 13-15.